WO2012169522A1 - Agricultural or horticultural chemical agent, method for controlling plant disease, and product for controlling plant disease - Google Patents

Agricultural or horticultural chemical agent, method for controlling plant disease, and product for controlling plant disease Download PDF

Info

Publication number
WO2012169522A1
WO2012169522A1 PCT/JP2012/064547 JP2012064547W WO2012169522A1 WO 2012169522 A1 WO2012169522 A1 WO 2012169522A1 JP 2012064547 W JP2012064547 W JP 2012064547W WO 2012169522 A1 WO2012169522 A1 WO 2012169522A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
agricultural
horticultural
cyclopropyl group
group
Prior art date
Application number
PCT/JP2012/064547
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 竪石
須藤 敬一
久 菅野
荒木 信行
山崎 徹
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2012169522A1 publication Critical patent/WO2012169522A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • the present invention relates to an agricultural and horticultural chemical and a method for controlling plant diseases. More specifically, it is an agricultural and horticultural drug containing at least one azole compound as an active ingredient, and relates to an agricultural and horticultural drug that can be used for disease control of wheat, paddy rice, fruit trees, sugar beet and the like. .
  • the present invention also relates to a product for controlling plant diseases containing at least two active ingredients separately.
  • a hydroxyethylazole derivative which is a hetero 5-membered ring containing one or more nitrogen atoms in the ring, and a cycloalkyl group or cyclohexane is further bonded to the carbon atom to which the hydroxy group is bonded.
  • Many derivatives in which an alkyl group substituted with an alkyl group is bonded have been proposed (see, for example, Patent Documents 1 to 13).
  • European Patent Application No. 0015756 European Patent Application Publication No. 0052424 European Patent Application Publication No. 0061835 European Patent Application No. 0297345 European Patent Application Publication No. 0047594
  • European Patent Application No. 0212605 Japanese Patent Publication “JP-A-56-97276” Japanese Patent Publication “JP-A-61-226049” Japanese Patent Publication “JP-A-2-286664” Japanese Patent Publication “JP 59-98061 A” Japanese Patent Publication “Japanese Patent Laid-Open No. 61-271276” European Patent Application No.
  • the present invention has been made in view of the above-described problems, and provides an agricultural and horticultural medicine that reduces the amount of spraying required to obtain the same level of effect as compared to conventional medicines. Main purpose.
  • the present inventors synthesized a large number of azole derivatives and examined the chemical structure and physiological activity in detail. As a result, the present inventors have used an azole derivative represented by the following general formula (I) as a mixture with a conventionally used azole compound (especially at least one of metconazole and epoxiconazole). The present invention has been completed.
  • the agricultural and horticultural agent according to the present invention is an agricultural and horticultural agent containing a plurality of active ingredients, and one of the active ingredients is an azole derivative represented by the following general formula (I). .
  • R 1 represents a cyclopropyl group or an alkyl group having 1 or 2 carbon atoms in which one hydrogen atom is substituted with the cyclopropyl group. At least one of the cyclopropyl groups in R 1 The hydrogen atom may be substituted with a substituent selected from a bromine atom, a chlorine atom and a methyl group, and R 2 represents a carbon number in which a cyclopropyl group or one hydrogen atom is substituted with the cyclopropyl group. Represents an alkyl group of 1 or 2. At least one hydrogen atom of the cyclopropyl group in R 2 may be substituted with a chlorine atom.
  • the azole derivative represented by the above general formula (I) exhibits a controlling effect against a wide range of plant diseases. Furthermore, the azole derivative represented by the general formula (I) is used in combination with other active ingredients and exhibits a synergistic effect as compared with the case where each is used alone. Therefore, in the agricultural and horticultural medicine containing the azole derivative represented by the general formula (I) as one of the active ingredients, the amount of spray for obtaining the same effect as that of the conventional medicine can be reduced.
  • a product for controlling plant diseases comprising the azole derivative represented by the above general formula (I) and other active ingredients separately is also included in the present invention. Included in the category.
  • a plant disease control method including a procedure for performing foliage treatment or non-foliage treatment using the above agricultural and horticultural chemicals is also included in the scope of the present invention.
  • R 1 represented in the general formula (I) R 1 shown in the general formula (II) represents the same substituent, functional group or atom.
  • the agricultural and horticultural medicine according to the present invention contains at least an azole derivative represented by the above general formula (I) as an active ingredient.
  • Agricultural and horticultural drugs containing at least the azole derivative represented by the general formula (I) are more effective against many bacteria causing plant diseases than when other drugs contained as active ingredients are used alone. Show a synergistic bactericidal effect.
  • the agricultural and horticultural medicine according to the present invention has an effect of reducing the amount of the medicine sprayed to show the same degree of control effect as compared with the case where the conventional medicine is used alone.
  • the agricultural and horticultural medicine according to the present invention also has the effect of reducing the toxicity to non-target organisms and the burden on the environment, and suppressing the appearance of pathogenic bacteria having drug resistance.
  • FIG. 2 is a drawing-substituting graph showing the results of a test for controlling effect on wheat red mold of Test Example 1.
  • FIG. 5 is a drawing-substituting graph showing the results of a test for controlling effect on wheat red mold of Test Example 2.
  • FIG. 6 is a drawing-substituting graph showing the results of a test for controlling effect on wheat red mold of Test Example 4.
  • FIG. 6 is a drawing-substituting graph showing the results of a control effect test for wheat leaf mold when using Compound I-4 and metconazole in Test Example 5.
  • FIG. FIG. 5 is a drawing-substituting graph showing the results of a control effect test for wheat leaf blight when using Compound I-8 and metconazole in Test Example 5.
  • FIG. It is a figure which shows the equal effect curve in the control value of the plant disease control composition in Test Example 21.
  • the agricultural and horticultural agent according to the present invention is a so-called admixture and contains a plurality of active ingredients.
  • One of the active ingredients is an azole derivative represented by the following general formula (I). That is, the agricultural and horticultural agent according to the present invention contains at least one compound as an active ingredient in addition to the azole derivative represented by the general formula (I).
  • the active ingredient contained in the agricultural and horticultural medicine according to the present invention is not particularly limited as long as it is two kinds (components) or more.
  • the compound contained as an active ingredient in addition to the azole derivative represented by the general formula (I) is a compound having an ergosterol biosynthesis inhibitory ability, an succinate dehydrogenase inhibitory ability. It is preferable to be at least one selected from a compound having a compound, a strobilurin-based compound, a benzimidazole compound, and metalaxyl. Specific examples of the active ingredient contained in the agricultural and horticultural chemical according to the present invention will be described in detail below.
  • R 1 and R 2 R 1 represents a cyclopropyl group or an alkyl group having 1 or 2 carbon atoms in which one hydrogen atom is substituted with a cyclopropyl group. At least one hydrogen atom of these cyclopropyl groups may be substituted with one or more substituents selected from a bromine atom, a chlorine atom and a methyl group, for example, 1 to 4 substituents.
  • alkyl group having 1 or 2 carbon atoms substituted with a cyclopropyl group include a cyclopropylmethyl group and a 2- (cyclopropyl) ethyl group.
  • R 2 represents a cyclopropyl group or an alkyl group having 1 or 2 carbon atoms in which one hydrogen atom is substituted with a cyclopropyl group. At least one hydrogen atom of these cyclopropyl groups may be substituted with a chlorine atom, for example, 1 or 2 substituted.
  • the number of substitutions by a substituent in the cyclopropyl group in R 1 is 1 to 4, and the number of substitutions by a chlorine atom in the cyclopropyl group in R 2 is 1 or 2. Is preferable from the viewpoint of activity.
  • the agricultural and horticultural medicine according to the present invention contains the following ergosterol biosynthesis inhibiting compound and compound (I) as active ingredients, so that the ergosterol biosynthesis inhibiting compound shown below is used as a single agent. Thus, it is possible to reduce the spraying amount of the medicine necessary for obtaining the same effect.
  • EBI ergosterol biosynthesis inhibition
  • Examples of ergosterol biosynthesis inhibiting compounds include azaconazole, viteltanol, bromconazole, difenoconazole, cyproconazole, diniconazole, fenarimol, fenbuconazole, fenpropidin, fenpropimorph, flukinconazole, flusilazole, flutriafor, hexa Conazole, imazalyl, imibenconazole, metconazole, ipconazole, microbutanyl, nuarimol, oxpoconazole, pefazoate, penconazole, prochloraz, propiconazole, prothioconazole, epoxiconazole, cimeconazole, spiroxamine, tebuconazole, tetraconazole Triadimephone, Triadimenol, Triflumizole, Trifolin, Triticonazole, Fenhe Samido, mention may be made
  • an azole compound or fenpropimorph is preferable, and metconazole, epoxiconazole, ipconazole, prothioconazole, prochloraz, tebuconazole, or fenpropimorph is more preferable.
  • Agricultural and horticultural drugs including metconazole, epoxiconazole, ipconazole, prothioconazole, prochloraz, tebuconazole or fenpropimorph exhibit particularly high activity.
  • Metoconazole (see the following structural formula) is known as a triazole compound that exhibits a high control effect on diseases such as wheat, fruit trees, sugar beet, shiba and rice. Metoconazole may be produced by a conventionally known method.
  • Epoxyconazole (see the structural formula below) is known as a triazole compound that exhibits a high control effect on diseases such as wheat. Epoxyconazole may be produced by a conventionally known method.
  • the agricultural and horticultural agent according to the present invention may contain a compound having an ability to inhibit succinate dehydrogenase (also referred to as an SDHI compound) as an active ingredient.
  • a compound having an ability to inhibit succinate dehydrogenase also referred to as an SDHI compound
  • the SDHI compound may be included instead of the above azole compound, or may be included together with the above azole compound.
  • the agricultural and horticultural medicine according to the present invention contains the SDHI compound and the compound (I) shown below as active ingredients, so that it is comparable to the case of using the SDHI compound shown below as a single agent. It is possible to reduce the spray amount of the medicine necessary for obtaining the effect.
  • SDHI compounds examples include bixafen, boscalid, pentiopyrad, isopyrazam, fluopyram, furametopyl, tifluzamide, flutolanil, mepronil, fenfuran, carboxin, oxycarboxyne and benodanyl.
  • bixafen see the structural formula below
  • Bixafen is known as an SDHI compound that exhibits a high control effect on diseases of vegetables such as cucumber.
  • Bixafen may be produced by a conventionally known method.
  • Agricultural and horticultural drugs including bixafen, boscalid, pentiopyrad, isopyrazam, fluopyram, furametopil, or benodanyl show particularly high activity.
  • the agricultural or horticultural agent according to the present invention may contain a strobilurin-based compound as an active ingredient.
  • a strobilurin-based compound is a compound that inhibits the electron transport system of pathogenic bacteria.
  • the strobilurin compound may be included in place of the above azole compound and the above SDHI compound, or may be included together with at least one of the above azole compound and the above SDHI compound.
  • the agricultural and horticultural agent according to the present invention contains the following strobilurin-based compound and compound (I) as active ingredients, so that it is comparable to when using the strobilurin-based compound shown below as a single agent. It is possible to reduce the spray amount of the medicine necessary for obtaining the effect.
  • strobilurin-based compounds examples include pyraclostrobin, azoxystrobin, dimethoxystrobin, famoxadone, floxastrobin, metminostrobin, orisatrobin, pyraclostrobin, trifloxystrobin, dimoxystrobin, fenamidone, and Mention may be made of cresoxime methyl.
  • pyraclostrobin see the following structural formula
  • azoxystrobin, or cresoxime methyl is preferable.
  • Pyraclostrobin is known as a strobilurin-based compound that exhibits a high control effect on a wide range of diseases such as rice, wheat, vegetables, and fruit trees. Note that pyraclostrobin may be produced by a conventionally known method. Agricultural and horticultural agents including pyraclostrobin, azoxystrobin or cresoxime methyl show particularly high activity.
  • the agricultural and horticultural agent according to the present invention may contain a benzimidazole compound as an active ingredient.
  • the benzimidazole compound may be included instead of the above azole compound, the above SDHI compound and the above strobilurin compound, or the above azole compound, the above SDHI compound and the above strobilurin compound. It may be included together with at least one of these.
  • the agricultural and horticultural medicine according to the present invention contains the following benzimidazole compound and compound (I) as active ingredients, so that it is comparable to the case where the benzimidazole compound shown below is used alone. It is possible to reduce the spray amount of the medicine necessary for obtaining the effect.
  • benzimidazole compounds include benomyl, carbendazim, fuberidazole, thiabendazole, thiophanate methyl, and dietofencarb. Among these, thiophanate methyl is preferable.
  • the agricultural and horticultural agent according to the present invention may contain metalaxyl as an active ingredient.
  • Metalaxyl may be included instead of the above azole compound, the above SDHI compound, the above strobilurin compound and the above benzimidazole compound, or the above azole compound, the above SDHI compound, or the above.
  • the agricultural and horticultural medicine according to the present invention contains metalaxyl and compound (I) as active ingredients, so that it is necessary to spread the medicine necessary for obtaining the same effect as when using metalaxyl alone. The amount can be reduced.
  • the active ingredient contained in the agricultural and horticultural medicine according to the present invention may be three or more.
  • the agricultural and horticultural agent according to the present invention contains at least two kinds of the above-described compounds in addition to the compound (I). Of course, different series of compounds may be included. However, in order to make use of the effect of the compound (I), it is preferable that at least one of metconazole, epoxiconazole, bixaphene and pyractostrobin is contained.
  • each compound mentioned above is an example, and even if it is a compound which is not mentioned above, if it has the same activity, it can be contained as an active ingredient in the agricultural and horticultural medicine which concerns on this invention.
  • Step A1 Next, the manufacturing method of compound (I) is demonstrated.
  • One embodiment of this production method includes a step of reacting an oxirane compound represented by the following general formula (II) with 1,2,4-triazole represented by the following general formula (III) (step A1). (See the following reaction formula (1)).
  • the oxirane compound represented by the general formula (II) is referred to as “compound (II)”
  • the 1,2,4-triazole represented by the general formula (III) is referred to as “compound (III)”.
  • R 1 and R 2 are as described above.
  • M represents a hydrogen atom or an alkali metal.
  • a carbon atom in the oxirane ring of compound (II) is reacted with compound (III) to form a carbon-nitrogen bond between the carbon atom in the oxirane ring of compound (II) and the nitrogen atom of compound (III). Is generated.
  • the solvent used is not particularly limited.
  • the amount of compound (III) used relative to compound (II) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol. Moreover, you may add a base if desired. In this case, the amount of the base used relative to compound (III) is, for example, 0 to 10 times mol (excluding 0), preferably 0.5 to 5 times mol.
  • reaction temperature and reaction time can be appropriately set depending on the type of solvent and base used.
  • R 1 and R 2 are as described above.
  • X represents a halogen atom.
  • Bases used include alkali metal or alkaline earth metal hydroxide salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide; alkali metal carbonates or hydrogen carbonates such as sodium carbonate and potassium carbonate, etc. Can be preferably used, but is not limited thereto.
  • the amount of the base is preferably 0.5 to 20 times mol, more preferably 0.8 to 5 times mol for the compound (VI).
  • the solvent is not particularly limited.
  • phase transfer of quaternary ammonium salts such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, crown ether and the like, etc. into the reaction mixture. It is also possible to carry out the reaction by adding a catalyst.
  • step A3 The compound (VI) used in step A2 is a compound represented by the general formula (IV) with respect to the carbonyl group of the compound represented by the general formula (VII) (hereinafter referred to as “compound (VII)”) (hereinafter referred to as “compound (VII)”). , Referred to as “compound (IV)”, to produce a carbon-carbon bond (see the following reaction formula (3)).
  • reaction formula (3)
  • R 1 and R 2 are as described above.
  • L includes alkali metal, alkaline earth metal-Q 1 (Q 1 is a halogen atom), 1/2 (Cu alkali metal), zinc-Q 2 (Q 2 is a halogen atom), etc. Is possible.
  • the alkali metal include lithium, sodium, and potassium, and it is preferable to use lithium.
  • the alkaline earth metal include magnesium.
  • the solvent used is not particularly limited as long as it is an inert solvent under the reaction conditions.
  • a phase transfer catalyst such as a quaternary ammonium salt such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, crown ether and the like is added to the reaction mixture. It is also possible to carry out the reaction by adding.
  • the amount of compound (IV) to be used relative to compound (VII) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol. In addition, it is preferable to use the compound (IV) prepared immediately before. Further, when L is zinc-Q 2 (Q 2 is a halogen atom), the reaction can be carried out while generating compound (IV) in the reaction system.
  • a Lewis acid may be added if desired.
  • the amount of the Lewis acid used relative to compound (IV) is, for example, 0 to 5 times mol (excluding 0), preferably 0.1 to 2 times mol.
  • Examples of the Lewis acid used include aluminum chloride, zinc chloride, and cerium chloride.
  • reaction temperature and reaction time can be appropriately set depending on the solvent used, the type of compound (VII), the type of compound (IV), and the like.
  • the compound (IV) and compound (VII) used here may be produced by existing techniques.
  • a compound having a gem-dihalocyclopropane structure in the molecule represented by the general formula (II-a) (hereinafter referred to as “compound (II-a)”) can be obtained by the following suitable second synthesis method. That is, it can be synthesized from an oxirane compound having a double bond in the molecule represented by the general formula (VIII) (hereinafter referred to as “compound (VIII)”) by reaction of trihalomethane with a base such as sodium hydroxide. it can. Alternatively, it can be synthesized from compound (VIII) by addition reaction of halocarbenes generated by thermal decomposition of trihaloacetate. These reactions are shown in the following reaction formula (4). Reaction formula (4)
  • R 2 the definition content of R 2 is as described above.
  • R 8 , R 9 , R 10 , R 11 , and R 12 each independently represent a hydrogen atom, a bromine atom, a chlorine atom, or a methyl group.
  • n represents an integer of 0 to 2.
  • R 11 and R 12 there are a plurality of R 11 and R 12 , but their definition contents independently represent the definition contents of R 11 and R 12 .
  • X 1 and X 2 each independently represent a halogen atom.
  • trihalomethane used examples include chloroform, bromoform, chlorodifluoromethane, dichlorofluoromethane, and dibromofluoromethane.
  • the amount of trihalomethane used for compound (VIII) is not particularly limited.
  • trihalomethane itself, or other solvents such as dichloromethane or toluene inert to the reaction can be used.
  • phase transfer catalyst When adding a base, when using an aqueous solution such as an aqueous sodium hydroxide solution, it is preferable to use a phase transfer catalyst.
  • the phase transfer catalyst that can be used is not particularly limited.
  • the amount of the phase transfer catalyst used is, for example, 0.001 to 5 times mol, preferably 0.01 to 2 times mol, of the compound (VIII).
  • the base used is not particularly limited.
  • the amount of the base to be used is, for example, 0.1 to 100 times mol, preferably 0.8 to 50 times mol, of compound (VIII).
  • the concentration of the aqueous alkali metal hydroxide solution at this time is, for example, 10% to a saturated aqueous solution, preferably 30% to a saturated aqueous solution.
  • the reaction temperature is, for example, 0 ° C. to 200 ° C., preferably 10 ° C. to 150 ° C.
  • the reaction time is 0.1 hour to several days, preferably 0.2 hour to 2 days.
  • Process A4 Compound (VIII) used in step A2a can be obtained by the following first preferred synthesis method.
  • the above-mentioned compound (VII) is reacted with an organometallic compound represented by the general formula (X) (hereinafter referred to as “compound (X)”), and the organometallic compound to the carbonyl carbon atom of the compound (VII) A carbon-carbon bond is formed by a nucleophilic addition reaction by.
  • a halohydrin compound represented by the general formula (IX) hereinafter referred to as “compound (IX)”
  • compound (IX) is oxiraneed in the presence of a base to obtain compound (VIII) (see the following reaction formula (5)).
  • Reaction formula (5) Reaction formula (5)
  • R 2 , R 8 , R 9 , R 10 , R 11 , R 12 , L, X, and n are as described above.
  • the solvent used is not particularly limited as long as it is an inert solvent. These solvents can also be used as a mixture. Moreover, when using water for reaction, it is also possible to mix and use with an organic solvent. When water is used together with a hydrophobic organic solvent, a quaternary ammonium salt such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, crown ether and the like, etc. are added to the reaction mixture as necessary. A phase transfer catalyst may be added.
  • the amount of compound (X) used relative to compound (VII) is, for example, 0.5 to 10-fold mol, preferably 0.8 to 5-fold mol. It is preferable to use the compound (X) prepared immediately before. Further, when L is zinc-Q 2 (Q 2 is a halogen atom), the reaction can be carried out while generating the compound (X) in the reaction system.
  • a Lewis acid may be added.
  • the amount of Lewis acid used relative to compound (VII) is, for example, 0 to 5 times mol (excluding 0), preferably 0.1 to 2 moles.
  • the Lewis acid used include aluminum chloride, zinc chloride, and cerium chloride.
  • reaction temperature and reaction time can be appropriately set depending on the type of solvent used, compound (VII), compound (X), and the like.
  • the oxiraneation of compound (IX) in this step can be carried out under the same conditions as the synthesis of compound (II) from compound (VI) in step A2.
  • compound (X) used here a compound that can be produced by an existing synthesis technique such as conversion of an alkenyl halide compound to an organometallic reagent may be used.
  • L in compound (X) is zinc-Q 2 (Q 2 is a halogen atom)
  • the method shown in the following reaction formula (6) can be employed.
  • compound (Xa) In order to generate compound (Xa), a method of reacting alkenyl halide represented by compound (XVII) with zinc in the system is suitable. That is, compound (Xa) is prepared by mixing in a solvent in the presence of compound (XVII). Reaction formula (6)
  • R 2 , R 8 , R 9 , R 10 , R 11 , R 12 , Q 2 , X, and n are as described above.
  • the solvent used is not particularly limited.
  • water for reaction it is also possible to mix and use with an organic solvent.
  • a quaternary ammonium salt such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, crown ether and the like, etc. are added to the reaction mixture as necessary. You may make it react by adding a phase transfer catalyst.
  • an organic solvent containing compound (VII) and an aqueous solution containing an additive that promotes activation of zinc such as a salt containing hydrogen halide or hydrogen halide
  • an additive that promotes activation of zinc such as a salt containing hydrogen halide or hydrogen halide
  • alkenyl halide represented by the compound (XVII) and zinc can be mixed under the conditions of contact with each other.
  • Examples of the salt containing hydrogen halide include ammonium chloride and ammonium bromide.
  • Examples of the hydrogen halide include hydrogen chloride and hydrogen bromide.
  • the amount of compound (XVII) used at this time is, for example, 0.5 to 20-fold mol, preferably 0.8 to 10-fold mol based on compound (VII).
  • the amount of zinc used is, for example, 0.5 to 20-fold mol, preferably 0.8 to 10-fold mol based on compound (VII).
  • the reaction temperature is preferably 0 ° C. to 150 ° C., more preferably 5 ° C. to 100 ° C.
  • the reaction time is preferably 0.1 to 24 hours, and more preferably 0.5 to 12 hours.
  • the compound (VII) used in this step may be one produced by existing technology.
  • R 2 the definition content of R 2 is as described above.
  • R 13 represents an alkyl group having 1 to 4 carbon atoms.
  • R 14 , R 15 , R 16 , R 17 , and R 18 each independently represent a hydrogen atom, a bromine atom, a chlorine atom, or a methyl group.
  • n 1 or 2.
  • R 17 and R 18 there are a plurality of R 17 and R 18 , but their definition contents independently represent the definition contents of R 17 and R 18 .
  • X 3 represents a halogen atom.
  • This reaction can be carried out in a solvent or using compound (XVI) as a solvent.
  • the amount of the compound (XVI) used relative to the compound (XV) is, for example, 0.5 times to 20 times mol, preferably 0.8 times to 10 times mol.
  • the base used is not particularly limited.
  • the amount of the base used relative to compound (XV) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol.
  • the reaction temperature is, for example, 0 ° C. to 250 ° C., preferably room temperature to 150 ° C.
  • the reaction time is, for example, 0.1 hour to several days, preferably 0.5 hour to 24 hours.
  • the compound (XV) and compound (XVI) used here may be those synthesized by methods known in the literature.
  • This reaction is usually performed in a solvent in the presence of a base.
  • the amount of compound (XIV) used relative to compound (XIII) is, for example, 0.5 times to 10 times mol, preferably 0.8 times to 5 times mol.
  • the base used is not particularly limited.
  • the amount of the base used for compound (XIII) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol.
  • the acidity of the hydrogen atom in the methylene moiety between the carbonyl group and the ester group of the produced compound (XIII) is the compound ( Since the acidity of the hydrogen atom of the acetyl group of XV) is higher, an alkali metal salt of compound (XIII) is formed in the course of the reaction, so the reaction solution of compound (XIII) is used without isolation as it is. You can also. In that case, it is also possible to react without adding a new base.
  • the reaction temperature is, for example, 0 ° C. to 250 ° C., preferably room temperature to 150 ° C.
  • the reaction time is, for example, 0.1 hour to several days, preferably 0.5 hour to 24 hours.
  • This hydrolysis and decarboxylation reaction can be carried out in a solvent under basic conditions or acidic conditions.
  • an alkali metal base such as sodium hydroxide or potassium hydroxide is usually used as the base.
  • water containing alcohol or the like is usually used in addition to water.
  • the acid catalyst is preferably an inorganic acid such as hydrochloric acid, hydrobromic acid and sulfuric acid, or an organic acid such as acetic acid.
  • the solvent is usually added by adding water or an organic acid such as acetic acid to water.
  • the reaction temperature is, for example, 0 ° C. to the reflux point, preferably 10 ° C. to the reflux point.
  • the reaction time is, for example, 0.1 hour to several days, preferably 0.5 hour to 24 hours.
  • the sulfonium methylide or sulfoxonium methylide used is a sulfonium salt (for example, trimethylsulfonium iodide or trimethylsulfonium bromide) or a sulfoxonium salt (for example trimethylsulfoxonium iodide or trimethylsulfone) in a solvent.
  • a sulfonium salt for example, trimethylsulfonium iodide or trimethylsulfonium bromide
  • a sulfoxonium salt for example trimethylsulfoxonium iodide or trimethylsulfone
  • the amount of the sulfonium methylides or sulfoxonium methylides is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol for the compound (XI).
  • the solvent used is not particularly limited. Two or more kinds of solvents can be mixed and used.
  • water when water is used in the reaction, it can be used by mixing with an organic solvent.
  • a quaternary ammonium salt such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, crown ether and the like, etc. are added to the reaction mixture as necessary. It is also possible to carry out the reaction by adding a phase transfer catalyst.
  • the base used for the production of sulfonium methylides and sulfoxonium methylides is not particularly limited.
  • reaction temperature and reaction time can be appropriately set depending on the type of the solvent used, compound (XI), sulfonium salt or sulfoxonium salt, base and the like.
  • the solvents, bases, acids, and the like used can be as follows unless otherwise specified.
  • the solvent used is not particularly limited.
  • halogenated hydrocarbons such as dichloromethane, chloroform and dichloroethane
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic ethers such as petroleum ether, hexane and methylcyclohexane.
  • Hydrocarbons amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidinone
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • alcohols such as methanol and ethanol Is mentioned.
  • examples of the solvent include water, carbon disulfide, acetonitrile, ethyl acetate, pyridine, and dimethyl sulfoxide. These solvents can be used as a mixture of two or more.
  • a solvent composition comprising a solvent that does not form a uniform layer with each other can be mentioned.
  • a phase transfer catalyst such as a quaternary ammonium salt such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, crown ether and the like may be added to the reaction mixture to perform these reactions.
  • the solvent to be used is not particularly limited, but benzene, chloroform, dichloromethane, hexane, toluene, tetrahydrofuran and the like can be used as the oil phase.
  • alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate and potassium hydrogen carbonate
  • alkaline earth metal carbonates such as calcium carbonate and barium carbonate
  • Alkali metal hydroxides such as sodium and potassium hydroxide
  • alkali metals such as lithium, sodium and potassium
  • alkali metal alkoxides such as sodium methoxide, sodium ethoxide and potassium t-butoxide
  • alkali metal hydrides such as lithium hydride
  • organometallic compounds of alkali metals such as n-butyllithium and methylmagnesium bromide
  • alkali metal amides such as lithium diisopropylamide
  • triethylamine Pyridine 4-dimethylaminopyridine, N, N-dimethylaniline and 1,8-diazabicyclo-7- [5.4.0] Organic amines such as undecene, and the like.
  • the acid to be used is not particularly limited.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid and sulfuric acid
  • organic acids such as formic acid, acetic acid, butyric acid and p-toluenesulfonic acid
  • chloride examples include Lewis acids such as lithium, lithium bromide, rhodium chloride, zinc chloride, iron chloride and aluminum chloride.
  • Triazole Composition The plant disease control composition according to the present invention may be a plant disease control composition containing two types of triazole derivatives as its active ingredients.
  • One triazole derivative is a compound represented by the following formula (I ′) (hereinafter referred to as “compound (I ′)”).
  • the other triazole derivative is, for example, a compound represented by the following formula (XVIII) (hereinafter referred to as “compound (XVIII)”).
  • R 25 represents a cyclopropyl group in which at least one hydrogen atom is substituted with a halogen atom, a methyl group or an ethyl group, or a carbon in which one hydrogen atom is substituted with the cyclopropyl group.
  • R 26 represents an alkyl group having 1 to 4 and R 26 represents a cyclopropyl group in which at least one hydrogen atom is substituted with a halogen atom, or a carbon number in which one hydrogen atom is substituted with the cyclopropyl group 1 to 3 alkyl groups are represented.
  • R 19 represents a haloalkyl group having 1 to 4 carbon atoms or a haloalkenyl group having 2 to 4 carbon atoms.
  • R 19 include a chloromethyl group, a bromomethyl group, a chloroethyl group, and a 2-chloro-2-propenyl group.
  • R 20 represents an alkyl group or haloalkyl group having 1 to 4 carbon atoms, or an alkenyl group or haloalkenyl group having 2 to 4 carbon atoms.
  • R 20 include a methyl group, an ethyl group, and a chloromethyl group.
  • Y represents a halogen atom. Of these, a fluorine atom, a chlorine atom and a bromine atom are preferable.
  • P represents an integer of 0 to 3, preferably 0, 1 or 2, and more preferably 0 or 1.
  • the plurality of Y may be the same halogen atom as each other or different from each other. There is no restriction
  • Compound (I ′) may have optical isomers and diastereomers as in Compound (I).
  • Compound (I ′) includes both those containing these isomers alone and those containing each isomer in an arbitrary ratio.
  • compound (XVIII) has a stereoisomer based on the configuration of the organic group bonded to the cyclopentane ring, and an optical isomer exists for each stereoisomer. Therefore, the compound (XVIII) includes both those containing these isomers alone and those containing each isomer in an arbitrary ratio.
  • Examples of one form of the compound (I ′) include a compound represented by the following formula (Ia ′).
  • X 5 to X 7 represent a halogen atom or a hydrogen atom, and at least one of X 5 to X 7 is a halogen atom.
  • X 5 is a hydrogen atom
  • both X 6 and X 7 are halogen atoms.
  • s 1 represents 0 or 1
  • s 2 represents 0, 1 or 2.
  • R 27 represents a hydrogen atom or a methyl group.
  • R 28 to R 30 represent a hydrogen atom, a halogen atom or a methyl group, and are preferably a hydrogen atom or a halogen atom.
  • X 8 and X 9 represent a halogen atom, and it is preferable that X 8 and X 9 are the same halogen atom species.
  • Compound (XVIII) in the present embodiment is a compound represented by the following formula (XX) that can be produced using a known method as shown in the following Scheme 1 (hereinafter referred to as compound) (Referred to as (XX)). Note that the compound represented by the following formula (XVIIIb) has substantially the same structure as the compound represented by the formula (XVIII).
  • R 21 represents a methylene group, a halomethylene group, an alkylene group or haloalkylene group having 2 to 4 carbon atoms, or an alkenylene group or haloalkenylene group having 2 to 4 carbon atoms.
  • q denotes the number of hydroxy groups bonded to a functional group represented by R 21 in formula (XX).
  • R 22 is a hydrogen atom an alkyl group of 1-3 1 carbon atoms which may be substituted, represents a phenyl group or a naphthyl group.
  • X 4 represents a halogen atom.
  • compound (XXa) a compound represented by the following formula (XXa) having a hydroxymethyl group at the 2-position
  • compound (XXa) is a compound represented by the following formula ( XXVII) can be suitably obtained by the following synthesis method (see Scheme 2 below).
  • R 23 and R 24 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • R 23 is the same functional group as R 20 in compound (X).
  • Agricultural and horticultural chemicals Compound (I) blended as an active ingredient in the agricultural and horticultural chemicals according to the present invention exhibits a controlling effect against a wide range of plant diseases. Furthermore, compound (I) is used in combination with an ergosterol biosynthesis inhibitor compound, SDHI compound, strobilurin compound, benzimidazole compound, metalaxyl, etc., and has a synergistic effect as compared with the case where each is used alone. Demonstrate.
  • compound (I) Since compound (I) has a 1,2,4-triazolyl group, it forms an acid addition salt with an inorganic acid or an organic acid, or a metal complex. Compound (I) may be used in the form of these acid addition salts and metal complexes.
  • At least one of diastereomers or enantiomers present in the compound (I) can be used as an active ingredient such as an agricultural or horticultural agent.
  • a drug containing at least compound (I) as an active ingredient exhibits a control effect against a wide range of plant diseases.
  • Examples of applicable diseases include the following.
  • Soybean rust (Phakopsora pachyrhizi, Phakopsora meibomiae), rice blast (Pyricularia grisea), rice sesame leaf blight (Cochliobolus miyabeanus), rice white leaf blight (Xanthomonas oryzae), rice rot (Rhizoctonia sol) Nuclear disease (Helminthosporium sigmoideun), rice idiot seedling (Gibberella fujikuroi), rice seedling blight (Pythium aphanidermatum), apple powdery mildew (Podosphaera leucotricha), apple black rot (Venturia inaequalis), apple peach linear Apple spotted leaf blight (Alternaria alternata), apple rot blight (Valsa mali), pear black blight (Alternaria kikuchiana), pear powdery mildew (Phyllactinia pyri), pear red blight
  • grape rust Phakopsora ampelopsidis
  • watermelon vine split Fusarium oxysporum f.sp.niveum
  • cucumber vine split Feusarim oxysporum f.sp.cucumerinum
  • radish yellow Fusarium oxysporum f. sp.raphani
  • tobacco red star disease Alternaria longipes
  • pea mosquito summer rot Alternaria solani
  • soybean brown spot Septoria ines glycines
  • soybean purpura Crocospora kikuchii
  • Examples of applied plants include wild plants, plant cultivars, plants and plant cultivars obtained by conventional biological breeding such as crossbreeding or protoplast fusion, genetically modified plants and plant cultivars obtained by genetic manipulation. Can be mentioned.
  • Examples of genetically modified plants and plant cultivars include herbicide-tolerant crops, pest-tolerant crops incorporating insecticidal protein production genes, disease-resistant crops incorporating resistance-inducing substance production genes for diseases, improved crops, improved yields
  • Examples include crops, preservative-enhancing crops, and yield-enhancing crops.
  • Specific examples of genetically modified plant cultivars include those containing registered trademarks such as ROUNDUP READY, LIBERTY LINK, CLEARFIELD, YIELDGARD, HERCULEX, and BOLLGARD.
  • a drug containing at least compound (I) as an active ingredient exhibits an excellent effect of protecting the material from a wide range of harmful microorganisms that invade industrial materials.
  • the mixing ratio of compound (I) to metconazole and / or epoxiconazole is 100: 1 to 1: 100, preferably 5: 2 to 50: 3.
  • the same mixing ratio can be used for ergosterol biosynthesis inhibiting compounds other than metconazole and epoxiconazole, SDHI compounds, strobilurin compounds, benzimidazole compounds and metalaxyl.
  • the agricultural and horticultural medicine according to the present invention includes a plurality of active ingredients in addition to the compound (I), the mixing ratio of the active ingredients other than the compound (I) may be appropriately set according to the intended use of the medicine. .
  • the agricultural and horticultural preparation may contain various components and can be mixed with a solid carrier, a liquid carrier, a surfactant, or other preparation adjuvant.
  • a solid carrier e.g., a styrene, a styrene, a styrene, a styrene, a styrene, a styrene, a styl, sulfate, a sulfate, a surfactant, or other preparation adjuvant.
  • the dosage form of the agricultural and horticultural preparation include various forms such as powders, wettable powders, granules, and emulsions.
  • the active ingredient is preferably contained in an amount of 0.1 to 95% by weight, more preferably 0.5 to 90% by weight, and more preferably 2 to 80% by weight based on the total amount of the preparation. Is more preferable.
  • Examples of carriers, diluents, and surfactants used as formulation adjuvants include talc, kaolin, bentonite, diatomaceous earth, white carbon, and clay as solid carriers.
  • Liquid diluents include water, xylene, toluene, chlorobenzene, cyclohexane, cyclohexanone, dimethyl sulfoxide, dimethylformamide, and alcohol.
  • Surfactants should be properly used depending on the effect, such as polyoxyethylene alkylaryl ether and polyoxyethylene sorbitan monolaurate as emulsifiers, lignin sulfonate and dibutyl naphthalene sulfonate as dispersants,
  • the wetting agent include alkyl sulfonates and alkyl phenyl sulfonates.
  • the preparation may be used as it is, or diluted to a predetermined concentration with a diluent such as water.
  • a diluent such as water.
  • the concentration of the active ingredient is desirably in the range of 0.001 to 1.0% with respect to the total amount of drug after dilution.
  • the amount of compound (I) used in the agricultural and horticultural agent according to the present invention is 20 to 5000 g, more preferably 50 to 2000 g, per 1 ha of agricultural and horticultural land such as fields, rice fields, orchards, and greenhouses. What is necessary is just to set suitably about content of the other active ingredient contained in the said agricultural and horticultural medicine based on the usage-amount of compound (I). Since these use concentrations and amounts vary depending on the dosage form, use time, use method, use place, target crop, etc., they can be increased or decreased without sticking to the above range.
  • the agricultural and horticultural medicine according to the present invention is combined with other active ingredients (active ingredients contained in bactericides, insecticides, acaricides and herbicides) shown below in addition to the above-mentioned active ingredients, It can also be used with improved performance as a pharmaceutical agent.
  • active ingredients contained in bactericides, insecticides, acaricides and herbicides
  • MBI agents melanin biosynthesis inhibitors
  • Carpropamide, diclocimet, phenoxanyl, fusalide, pyroxylone, and tricyclazole Carpropamide, diclocimet, phenoxanyl, fusalide, pyroxylone, and tricyclazole.
  • ⁇ Insecticide / acaricide / nematicide> Abamectin, Acephate, Acrinathrin, Alanicarb, Aldicarb, Alletrin, Amitraz, Avermectin, Azadirachtin, Azamethifos, Azinphos-ethyl, Azinphos-methyl, Azocycline, Bacillus filmus, Bacillus subtilis, Bacillus thuringibulbbenthulbenbencarb , Benzoxymate, Bifenazite, Bifenthrin, Bioallethrin, Bioresmethrin, Bistriflurone, Buprofezin, Butocaboxin, ButoxyCarboxin, Kazusafos, Carbaryl, Carbofuran, Carbosulfan, Cartap, CGA 50439, Chlordein, Chloretifos, Chlorphenapal Chlorfenvin foss, chlor
  • the plant disease control method according to the present embodiment is a method including a procedure for performing foliage treatment or non-foliage treatment using the above-mentioned agricultural and horticultural chemicals.
  • a labor can be reduced compared with the case where a foliage process is performed.
  • a wettable powder or powder is mixed with the seed and stirred, or the seed is immersed in a diluted wettable powder to attach the drug to the seed.
  • the combined use amount of the active ingredients in the seed treatment is 0.01 to 10000 g, preferably 0.1 to 1000 g, per 100 kg of seeds.
  • what is necessary is just to utilize the seed processed with the agricultural and horticultural chemical
  • irrigation is performed by treating the planting hole and its surroundings with granules, etc. at the time of transplanting seedlings, or treating the soil around the seeds or plants with granules or wettable powder. .
  • the total use amount of the active ingredients in the irrigation treatment is 0.01 to 10000 g, preferably 0.1 to 1000 g, per 1 m 2 of agricultural and horticultural land.
  • Water surface treatment is performed by treating the surface of paddy fields with granules.
  • the combined use amount of active ingredients in the case of water surface treatment is 0.1 to 10000 g, preferably 1 to 1000 g, per paddy field 10a.
  • the total amount of active ingredients used is 20 to 5000 g, more preferably 50 to 2000 g, per ha of agricultural and horticultural lands such as fields, fields, orchards and greenhouses.
  • concentration and amount used vary depending on the dosage form, time of use, method of use, place of use, target crop, etc., and can be increased or decreased without sticking to the above range.
  • the ears of wheat at the flowering stage (variety: Norin 61) were cut from the top of the leaf and inserted into a 10 cm long test tube to which hydroponics (hyponex) was added (3 cut ears / test tube). After weighing a predetermined amount, each compound was dissolved in acetone and mixed to prepare a spray solution (acetone 10%, spreading agent (Guramin S) 60 ppm). The sprayed liquid was sprayed on the cut ears at a liquid volume equivalent to 1000 L / ha (one ward three-track system). After the spray solution was dried at room temperature, wheat spores spores (5 ⁇ 10 5 / ml) were spray-inoculated on the cut ears.
  • Judgment of the cooperation effect by mixing was performed according to the iso-effect curve method described in the literature (see Pesticide Experiment Method Vol. 3, Soft Science, p109-116). From the control values when epoxiconazole and compound I-4 were used in combination at different concentrations, an isoeffect curve showing a certain control value was prepared. When the straight line of the equal effect is linear, the effect is determined to be additive, when it is curved upward, it is determined to be antagonistic, and when it is curved downward, it is determined to be synergistic.
  • FIG. 1 shows an equi-effect curve that gives a control value of 90 when epoxiconazole and compound I-4 are used in combination at different concentrations.
  • the isoeffect curve is curved downward, revealing that compound I-4 and epoxiconazole have a synergistic effect.
  • a chemical solution containing pyraclostrobin and compound I-4 was prepared and sprayed on the cut ears so as to obtain a predetermined dose.
  • the other test methods and the determination method of the cooperation effect are the same as in Test Example 1.
  • FIG. 2 shows an equivalent effect curve in which a control value of 70 is obtained when pyraclostrobin and compound I-4 are used in combination at different concentrations.
  • the isoeffect curve is curved downward, revealing that compound I-4 and pyraclostrobin have a synergistic effect.
  • Cut ears were prepared from flowering wheat plants (variety: Norin 61). A medicinal solution containing bixaphene and compound I-4 was prepared and sprayed on the cut ears to give a predetermined dosage. Other test methods are the same as in Test Example 1.
  • ⁇ and ⁇ are the control values when each agent is sprayed alone.
  • Cut ears were prepared from flowering wheat plants (variety: Norin 61). A medicinal solution containing metconazole and compound I-2 was prepared and sprayed on the cut ears so as to obtain a predetermined dose. The cut ears were dried at room temperature for about 1 hour, and then sprayed and inoculated with a Fusarium graminearum ascospore suspension (1 ⁇ 10 5 cells / ml). It was kept in a room box at 20 ° C., and after 5 days, the disease was investigated according to the evaluation method described in the literature (see Ban & Suenaga Euphyitica 113, p87-99, (2000)). The test scale was three cut ears and one treatment zone.
  • ⁇ and ⁇ are the control values when each agent is sprayed alone.
  • Control effect test on wheat leaf mold> A control effect test for wheat leaf blight was conducted in the same manner as in Test Example 4 except that Compound I-4 or Compound I-8 was used instead of Compound I-2. The results when using Compound I-4 are shown in FIG. 4, and the results when using Compound I-8 are shown in FIG.
  • ⁇ Test Example 6 In vitro antibacterial activity test> Boscalid and compound I-4 were mixed in PDA medium to a predetermined concentration. A 4 mm diameter flora disk was cut out from the vicinity of the colony of the wheat leaf blight fungus (Microdocum nivale) that had been pre-cultured in a PDA medium, and inoculated on the PDA medium mixed with the drug. After culturing at 25 ° C. for 3 days, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • Example 7 In vitro antibacterial activity test> Isopyrazam and compound I-4 were mixed in a PDA medium at a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined.
  • the test method is the same as in Test Example 6.
  • the determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • ⁇ Test Example 8 In vitro antibacterial activity test> Fluopyram and compound I-4 were mixed in PDA medium to a predetermined concentration. A 4 mm diameter bacterial flora disc was cut out from around the colony of rice rot (Rhizoctonia oryzae) pre-cultured in PDA medium and inoculated on PDA medium mixed with the drug. After culturing at 25 ° C. for 1 day, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • Example 9 In vitro antibacterial activity test> Frametopyr and the above compound I-4 were mixed in a PDA medium so as to have a predetermined concentration.
  • a 4 mm-diameter flora disk was cut out from around a colony of wheat eye spot fungus (Pseudocercoporella herpotrichoides) that had been pre-cultured in PDA medium in advance, and inoculated on PDA medium mixed with the drug. After culturing at 20 ° C. for 7 days, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • Example 10 In vitro antibacterial activity test> Benodanil and compound I-4 were mixed in PDA medium to a predetermined concentration. A 4 mm diameter bacterial flora disc was cut out from around the colony of wheat blight (Phaeosphaeria nodorum) that had been pre-cultured in a PDA medium, and inoculated on a PDA medium mixed with the drug. After culturing at 20 ° C. for 7 days, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • Example 11 In vitro antibacterial activity test> Penthiopyrad and compound I-4 were mixed in PDA medium to a predetermined concentration. A 4 mm-diameter flora disk was cut out from around the colony of a wheat blight fungus (Gaeumannomyces graminis) that had been pre-cultured in a PDA medium in advance and inoculated on a PDA medium mixed with the drug. After culturing at 20 ° C. for 3 days, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • ⁇ Test Example 12 In vitro antibacterial activity test> Azoxystrobin and compound I-4 were mixed in a PDA medium at a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined.
  • the test method is the same as in Test Example 7.
  • the determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • ⁇ Test Example 13 In vitro antibacterial activity test> Cresoxime methyl and compound I-4 were mixed in a PDA medium at a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined. The test method is the same as in Test Example 7. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • Example 14 In vitro antibacterial activity test> Ipconazole and Compound I-4 were mixed in a PDA medium at a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined.
  • the test method is the same as in Test Example 7.
  • the determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • ⁇ Test Example 15 In vitro antibacterial activity test> Prochloraz and compound I-4 were mixed in a PDA medium to a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined. The test method is the same as in Test Example 7. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • Example 16 In vitro antibacterial activity test> Prothioconazole and Compound I-4 were mixed in PDA medium to a predetermined concentration. A 4 mm diameter flora disk was cut out from around the colony of Botrytis cinerea pre-cultured in PDA medium, and inoculated on PDA medium mixed with the drug. After culturing at 20 ° C. for 2 days, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • ⁇ Test Example 17 In vitro antibacterial activity test> Fenpropimorph and compound I-4 were mixed in a PDA medium at a predetermined concentration, and the mycelial growth inhibition rate of wheat leaf blight fungus (Gaeumannomyces graminis) was determined. The method is the same as in Test Example 11. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • ⁇ Test Example 18 In vitro antibacterial activity test> Thiophanate methyl and compound I-4 were mixed in a PDA medium so as to have a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined.
  • the test method is the same as in Test Example 7.
  • the determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • ⁇ Test Example 19 In vitro antibacterial activity test> Tebuconazole and Compound I-4 were mixed in a PDA medium to a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined.
  • the test method is the same as in Test Example 7.
  • the determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • Example 20 In vitro antibacterial activity test> Metalaxyl and compound I-4 were mixed in a PDA medium to a predetermined concentration. A 4 mm diameter bacterial flora disk was cut out from around the colony of rice seedling blight (Pythium aphanidermatum) that had been pre-cultured in PDA medium in advance and inoculated on PDA medium mixed with the drug. After culturing at 25 ° C. for 3 days, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
  • ⁇ Test Example 21 Wheat red mold control effect test by foliar spray treatment of plant disease control composition> Cut ears were prepared from flowering wheat plants (variety: Norin 61). A preparation in the form of a wettable powder such as Mixed Preparation Example 1 described later containing Compound I-2 and Compound XVIII-1 at a predetermined concentration is prepared, diluted and suspended to a predetermined concentration with water, and a ratio of 1,000 L / ha Scattered with. After air-drying the ear portion, (adjusted to 1 ⁇ 10 5 cells / ml, including Grameen S final concentration 60 ppm) spores of wheat Fusarium fungus were sprayed inoculated, 20 ° C., and held in high humidity conditions.
  • a wettable powder such as Mixed Preparation Example 1 described later containing Compound I-2 and Compound XVIII-1 at a predetermined concentration is prepared, diluted and suspended to a predetermined concentration with water, and a ratio of 1,000 L /
  • Control value (%) (1 ⁇ (average morbidity in sprayed area / average illness in non-sprayed area)) ⁇ 100
  • the test scale was carried out with three cut ears and three treatment zones.
  • Determination of the cooperative effect by mixing Compound I-2 and Compound XVIII-1 is based on the effect of mixing by the isoeffect curve method described in Agricultural Chemical Experiment Method Vol. 3 (Soft Science, March 1981), pages 109-116. The judgment method was used as a reference. According to this determination method, if the combination of the two compounds is additive, the isoeffect curve becomes linear, and if it is antagonistic, the curve curves upward (convex curve), and is cooperative (synergistic). ), The curve curves downward (concave curve).
  • Compound I-2 used in this Test Example and the following Reference Test Example is a compound of Compound No. I-2a obtained in Production Example 2 described later.
  • Control value (%) (1 ⁇ (average morbidity in sprayed area / average illness in non-sprayed area)) ⁇ 100 As a result, the preparation containing Compound I-2 showed a control value of 90% or more.
  • the organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate, and the solvent was evaporated.
  • the obtained oil was purified by silica gel column chromatography to obtain the desired product.
  • reaction solution was poured into ice water and extracted with hexane, and the organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate.
  • the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography to obtain the desired product.
  • “1,2-cis”, “1,5-cis” And “1,2-trans” means that the hydroxy group at position 1 of the cyclopentane ring, the hydroxymethyl group at position 2 and the substituted or unsubstituted benzyl group at position 5 in compound (XXa), or compound (XXa) Mention is made of functional groups corresponding to these groups in the derivatives.
  • each formulation example represents parts by weight.
  • ⁇ Mixed preparation example 1 wettable powder
  • Compound (I) 25 parts metconazole 25 parts lignin sulfonate 5 parts alkyl sulfonate 3 parts diatomaceous earth 42 parts are pulverized and mixed to obtain a wettable powder, diluted with water and used.
  • ⁇ Mixed preparation example 2 (powder)> Compound (I) 3 parts metconazole 3 parts clay 40 parts talc 54 parts are ground and mixed and used as dust.
  • ⁇ Mixed preparation example 3 (granule)> Compound (I) 2.5 parts metconazole 2.5 parts bentonite 43 parts clay 45 parts lignin sulfonate 7 parts uniformly mixed, water added and kneaded, processed into granules in an extrusion granulator, dried and granulated Use as an agent.
  • ⁇ Mixed formulation example 4 (emulsion)> Compound (I) 5 parts metconazole 5 parts polyoxyethylene alkyl aryl ether 10 parts polyoxyethylene sorbitan monolaurate 3 parts Xylene 77 parts are mixed and dissolved uniformly to give an emulsion.
  • the agricultural and horticultural medicine according to the present invention can be suitably used as a medicine for plant diseases such as wheat red mold.

Abstract

This agricultural or horticultural chemical agent contains various active ingredients, one of which being an azole derivative represented by general formula (I). (In the formula, R1 represents a cyclopropyl group or an alkyl group substituted with said cyclopropyl group. Said cyclopropyl group may be substituted with a substituent selected from among a bromine atom, a chlorine atom, and a methyl group. R2 represents a cyclopropyl group or an alkyl group substituted with the cyclopropyl group. Said cyclopropyl group may be substituted with a chlorine atom.)

Description

農園芸用薬剤、植物病害防除方法および植物病害防除用製品Agricultural and horticultural chemicals, plant disease control methods, and plant disease control products
 本発明は、農園芸用薬剤、および植物病害防除方法に関する。より詳しくは、有効成分として少なくとも1種類のアゾール系化合物を含有する農園芸用薬剤であり、麦類、水稲、果樹類、および蔬菜類などの病害防除に用いることができる農園芸用薬剤などに関する。また、本発明は、少なくとも2種の有効成分を別々に含む植物病害防除用製品にも関する。 The present invention relates to an agricultural and horticultural chemical and a method for controlling plant diseases. More specifically, it is an agricultural and horticultural drug containing at least one azole compound as an active ingredient, and relates to an agricultural and horticultural drug that can be used for disease control of wheat, paddy rice, fruit trees, sugar beet and the like. . The present invention also relates to a product for controlling plant diseases containing at least two active ingredients separately.
 従来、農園芸用殺菌剤の有効成分として、環内に窒素原子1個以上を含む複素5員環であるヒドロキシエチルアゾール誘導体で、かつヒドロキシ基が結合する炭素原子にさらにシクロアルキル基、もしくはシクロアルキル基で置換されたアルキル基が結合している誘導体が多数提案されている(例えば、特許文献1~13参照)。 Conventionally, as an active ingredient of an agricultural and horticultural fungicide, a hydroxyethylazole derivative which is a hetero 5-membered ring containing one or more nitrogen atoms in the ring, and a cycloalkyl group or cyclohexane is further bonded to the carbon atom to which the hydroxy group is bonded. Many derivatives in which an alkyl group substituted with an alkyl group is bonded have been proposed (see, for example, Patent Documents 1 to 13).
 また、ある種の2-置換-5-ベンジル-1-アゾリルメチルシクロペンタノール誘導体には、殺菌活性を示すものが知られている(例えば、特許文献14、15参照)。 Further, some 2-substituted-5-benzyl-1-azolylmethylcyclopentanol derivatives are known to exhibit bactericidal activity (see, for example, Patent Documents 14 and 15).
欧州特許出願公開第0015756号明細書European Patent Application No. 0015756 欧州特許出願公開第0052424号明細書European Patent Application Publication No. 0052424 欧州特許出願公開第0061835号明細書European Patent Application Publication No. 0061835 欧州特許出願公開第0297345号明細書European Patent Application No. 0297345 欧州特許出願公開第0047594号明細書European Patent Application Publication No. 0047594 欧州特許出願公開第0212605号明細書European Patent Application No. 0212605 日本国公開特許公報「特開昭56-97276号公報」Japanese Patent Publication “JP-A-56-97276” 日本国公開特許公報「特開昭61-126049号公報」Japanese Patent Publication “JP-A-61-226049” 日本国公開特許公報「特開平2-286664号公報」Japanese Patent Publication “JP-A-2-286664” 日本国公開特許公報「特開昭59-98061号公報」Japanese Patent Publication “JP 59-98061 A” 日本国公開特許公報「特開昭61-271276号公報」Japanese Patent Publication “Japanese Patent Laid-Open No. 61-271276” 欧州特許出願公開第0229642号明細書European Patent Application No. 0229642 日本国公開特許公報「特開平4-230270号公報」Japanese Patent Publication “JP-A-4-230270” 日本国公開特許公報「特開平1-93574号公報」Japanese Patent Publication “JP-A-1-93574” 日本国公開特許公報「特開平1-186871号公報」Japanese Patent Publication “Japanese Patent Laid-Open No. 1-186871” 日本国公開特許公報「特開平5-271197号公報」Japanese Patent Publication “JP-A-5-271197” 日本国公開特許公報「特開平1-301664号公報」Japanese Patent Publication “JP-A-1-301664”
 農園芸用殺菌剤による病害防除では、標的外生物への影響および環境への影響、ならびに薬剤抵抗性菌の出現などが問題となっている。標的外生物への毒性および環境への負荷を軽減すると共に、薬剤抵抗性の出現を抑制するために、薬剤の散布量を低減しつつ高い防除効果を発揮し得る殺菌剤が希求されている。 In disease control with agricultural and horticultural fungicides, there are problems such as the effects on non-target organisms and the environment, and the appearance of drug-resistant bacteria. In order to reduce the toxicity to non-target organisms and the burden on the environment, and to suppress the appearance of drug resistance, a bactericide that can exert a high control effect while reducing the amount of drug sprayed is desired.
 本発明は、上記の問題点に鑑みてなされたものであり、従来の薬剤に比して同程度の効果を得るために必要とされる散布量を低減した農園芸用薬剤を提供することを主な目的とする。 The present invention has been made in view of the above-described problems, and provides an agricultural and horticultural medicine that reduces the amount of spraying required to obtain the same level of effect as compared to conventional medicines. Main purpose.
 上記課題解決のため、本発明者らは、多数のアゾール誘導体を合成し、化学構造および生理活性を詳細に検討した。その結果、本発明者らは、下記一般式(I)で示されるアゾール誘導体が、従来用いられているアゾール系化合物(特にメトコナゾールおよびエポキシコナゾールの少なくとも何れか一方)との混合剤として用いられて相乗的な活性を示すことを見出し、本発明を完成させるにいたった。 In order to solve the above problems, the present inventors synthesized a large number of azole derivatives and examined the chemical structure and physiological activity in detail. As a result, the present inventors have used an azole derivative represented by the following general formula (I) as a mixture with a conventionally used azole compound (especially at least one of metconazole and epoxiconazole). The present invention has been completed.
 すなわち、本発明に係る農園芸用薬剤は、複数の有効成分を含む農園芸用薬剤であって、当該有効成分の1つが下記一般式(I)で示されるアゾール誘導体であることを特徴とする。 That is, the agricultural and horticultural agent according to the present invention is an agricultural and horticultural agent containing a plurality of active ingredients, and one of the active ingredients is an azole derivative represented by the following general formula (I). .
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(I)中、Rは、シクロプロピル基または1つの水素原子が該シクロプロピル基で置換されている炭素数1もしくは2のアルキル基を表す。Rにおけるシクロプロピル基の少なくとも1つの水素原子は、臭素原子、塩素原子およびメチル基から選択される置換基で置換されていてもよい。Rは、シクロプロピル基または1つの水素原子が該シクロプロピル基で置換されている炭素数1もしくは2のアルキル基を表す。Rにおけるシクロプロピル基の少なくとも1つの水素原子は、塩素原子で置換されていてもよい。)
 上記一般式(I)で示されるアゾール誘導体は、広汎な植物病害に対して防除効果を呈する。さらに、一般式(I)で示されるアゾール誘導体は、他の有効成分と併用されて、それぞれを単独で使用した場合に比して相乗的な効果を発揮する。従って、一般式(I)で示されるアゾール誘導体を有効成分の1つとして含む農園芸用薬剤では、従来の薬剤に比して同程度の効果を得るための散布量を低減することができる。
(In formula (I), R 1 represents a cyclopropyl group or an alkyl group having 1 or 2 carbon atoms in which one hydrogen atom is substituted with the cyclopropyl group. At least one of the cyclopropyl groups in R 1 The hydrogen atom may be substituted with a substituent selected from a bromine atom, a chlorine atom and a methyl group, and R 2 represents a carbon number in which a cyclopropyl group or one hydrogen atom is substituted with the cyclopropyl group. Represents an alkyl group of 1 or 2. At least one hydrogen atom of the cyclopropyl group in R 2 may be substituted with a chlorine atom.
The azole derivative represented by the above general formula (I) exhibits a controlling effect against a wide range of plant diseases. Furthermore, the azole derivative represented by the general formula (I) is used in combination with other active ingredients and exhibits a synergistic effect as compared with the case where each is used alone. Therefore, in the agricultural and horticultural medicine containing the azole derivative represented by the general formula (I) as one of the active ingredients, the amount of spray for obtaining the same effect as that of the conventional medicine can be reduced.
 また、複数の有効成分を混合して使用するための組み合わせ調製物として、上記一般式(I)で示されるアゾール誘導体と、他の有効成分とを別々に含む植物病害防除用製品も本発明の範疇に含まれる。 In addition, as a combined preparation for using a mixture of a plurality of active ingredients, a product for controlling plant diseases comprising the azole derivative represented by the above general formula (I) and other active ingredients separately is also included in the present invention. Included in the category.
 さらに、上記の農園芸用薬剤を用いて茎葉処理または非茎葉処理を行う手順を含む植物病害防除方法についても本発明の範疇に含まれる。 Furthermore, a plant disease control method including a procedure for performing foliage treatment or non-foliage treatment using the above agricultural and horticultural chemicals is also included in the scope of the present invention.
 本明細書では、各一般式において同一の置換基、官能基または原子を規定している符号は同一の記号を付し、その記号で示される置換等の詳細は重複して説明しない。例えば、一般式(I)において示されるRと、一般式(II)において示されているRは同一の置換基、官能基または原子を示している。 In the present specification, the symbols defining the same substituent, functional group or atom in each general formula are assigned the same symbol, and details such as substitution indicated by the symbol are not redundantly described. For example, the R 1 represented in the general formula (I), R 1 shown in the general formula (II) represents the same substituent, functional group or atom.
 本発明に係る農園芸用薬剤は、少なくとも上記の一般式(I)で示されるアゾール誘導体を有効成分として含んでいる。一般式(I)で示されるアゾール誘導体を少なくとも含む農園芸用薬剤は、有効成分として含有されている他の薬剤を単剤で用いたときと比較して、植物病害を引き起こす多くの菌に対して相乗的な殺菌効果を示す。これによって、本発明に係る農園芸用薬剤では、従来の薬剤を単剤で用いる場合と比較して同程度の防除効果を示すために要する薬剤の散布量を低減することができる効果を奏する。また、本発明に係る農園芸用薬剤は、標的外生物への毒性や環境への負荷を軽減し、薬剤抵抗性を有する病原菌の出現を抑制することができる効果も併せて奏する。 The agricultural and horticultural medicine according to the present invention contains at least an azole derivative represented by the above general formula (I) as an active ingredient. Agricultural and horticultural drugs containing at least the azole derivative represented by the general formula (I) are more effective against many bacteria causing plant diseases than when other drugs contained as active ingredients are used alone. Show a synergistic bactericidal effect. As a result, the agricultural and horticultural medicine according to the present invention has an effect of reducing the amount of the medicine sprayed to show the same degree of control effect as compared with the case where the conventional medicine is used alone. In addition, the agricultural and horticultural medicine according to the present invention also has the effect of reducing the toxicity to non-target organisms and the burden on the environment, and suppressing the appearance of pathogenic bacteria having drug resistance.
試験例1のコムギ赤かび病に対する防除効果試験の結果を示す図面代用グラフである。2 is a drawing-substituting graph showing the results of a test for controlling effect on wheat red mold of Test Example 1. FIG. 試験例2のコムギ赤かび病に対する防除効果試験の結果を示す図面代用グラフである。5 is a drawing-substituting graph showing the results of a test for controlling effect on wheat red mold of Test Example 2. FIG. 試験例4のコムギ赤かび病に対する防除効果試験の結果を示す図面代用グラフである。6 is a drawing-substituting graph showing the results of a test for controlling effect on wheat red mold of Test Example 4. FIG. 試験例5において化合物I-4とメトコナゾールとを用いた際のコムギ赤かび病に対する防除効果試験の結果を示す図面代用グラフである。FIG. 6 is a drawing-substituting graph showing the results of a control effect test for wheat leaf mold when using Compound I-4 and metconazole in Test Example 5. FIG. 試験例5において化合物I-8とメトコナゾールとを用いた際のコムギ赤かび病に対する防除効果試験の結果を示す図面代用グラフである。FIG. 5 is a drawing-substituting graph showing the results of a control effect test for wheat leaf blight when using Compound I-8 and metconazole in Test Example 5. FIG. 試験例21における植物病害防除組成物の防除価における等効果曲線を示す図である。It is a figure which shows the equal effect curve in the control value of the plant disease control composition in Test Example 21.
 以下、本発明を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, preferred embodiments for carrying out the present invention will be described. In addition, embodiment described below shows an example of typical embodiment of this invention, and, thereby, the range of this invention is not interpreted narrowly.
 また、本実施形態において、同一の用語は、特に言及しない限り、同一の意味で用いる。これは、一般式において置換基、官能基または原子を示す記号、もしくはそれらの個数を示す記号についても同様である。 In the present embodiment, the same terms are used with the same meaning unless otherwise specified. The same applies to symbols indicating substituents, functional groups or atoms, or symbols indicating the number thereof in the general formula.
 1.混合剤
 本発明に係る農園芸用薬剤は、いわゆる混合剤であり、複数の有効成分を含有している。有効成分の1つは、下記にて一般式(I)で示すアゾール誘導体である。すなわち、本発明に係る農園芸用薬剤は、一般式(I)で示すアゾール誘導体に加えて少なくとも1つの化合物を有効成分として含んでいる。
1. Admixture The agricultural and horticultural agent according to the present invention is a so-called admixture and contains a plurality of active ingredients. One of the active ingredients is an azole derivative represented by the following general formula (I). That is, the agricultural and horticultural agent according to the present invention contains at least one compound as an active ingredient in addition to the azole derivative represented by the general formula (I).
 なお、本発明に係る農園芸用薬剤に含有されている有効成分は、2種類(成分)以上であれば特に限定されるものではない。しかしながら本発明に係る農園芸用薬剤において、一般式(I)で示されるアゾール誘導体に加えて有効成分として含まれる化合物は、エルゴステロール生合成阻害能を有する化合物、コハク酸脱水素酵素阻害能を有する化合物、ストロビルリン系化合物、ベンズイミダゾール化合物およびメタラキシルから選択される一以上とされることが好ましい。本発明に係る農園芸用薬剤に含まれる有効成分の具体例については以下に詳述する。 In addition, the active ingredient contained in the agricultural and horticultural medicine according to the present invention is not particularly limited as long as it is two kinds (components) or more. However, in the agricultural and horticultural medicine according to the present invention, the compound contained as an active ingredient in addition to the azole derivative represented by the general formula (I) is a compound having an ergosterol biosynthesis inhibitory ability, an succinate dehydrogenase inhibitory ability. It is preferable to be at least one selected from a compound having a compound, a strobilurin-based compound, a benzimidazole compound, and metalaxyl. Specific examples of the active ingredient contained in the agricultural and horticultural chemical according to the present invention will be described in detail below.
 2.アゾール誘導体等
 (1)化合物(I)
 本発明に係る農園芸用薬剤に有効成分として配合される一般式(I)で示されるアゾール誘導体(以下、化合物(I)と称する)について説明する。
2. Azole derivatives, etc. (1) Compound (I)
The azole derivative represented by the general formula (I) (hereinafter referred to as compound (I)) blended as an active ingredient in the agricultural and horticultural medicine according to the present invention will be described.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 以下、化合物(I)の各記号(RおよびR)の定義内容およびその具体例について説明する。 Hereinafter, the definition content and specific examples of each symbol (R 1 and R 2 ) of compound (I) will be described.
 (1-1)RおよびR
 Rは、シクロプロピル基、または1つの水素原子がシクロプロピル基で置換されている炭素数1もしくは2のアルキル基を表す。これらのシクロプロピル基の少なくとも1つの水素原子は、臭素原子、塩素原子およびメチル基から選択される一種以上の置換基で置換されていてもよく、例えば1~4置換されていてもよい。
(1-1) R 1 and R 2
R 1 represents a cyclopropyl group or an alkyl group having 1 or 2 carbon atoms in which one hydrogen atom is substituted with a cyclopropyl group. At least one hydrogen atom of these cyclopropyl groups may be substituted with one or more substituents selected from a bromine atom, a chlorine atom and a methyl group, for example, 1 to 4 substituents.
 シクロプロピル基で置換されている炭素数1もしくは2のアルキル基としては、具体的にはシクロプロピルメチル基、および2-(シクロプロピル)エチル基を挙げることができる。 Specific examples of the alkyl group having 1 or 2 carbon atoms substituted with a cyclopropyl group include a cyclopropylmethyl group and a 2- (cyclopropyl) ethyl group.
 Rは、シクロプロピル基、あるいは1つの水素原子がシクロプロピル基で置換されている炭素数1もしくは2のアルキル基を表す。これらのシクロプロピル基の少なくとも1つの水素原子は、塩素原子で置換されていてもよく、例えば1または2置換されていてもよい。 R 2 represents a cyclopropyl group or an alkyl group having 1 or 2 carbon atoms in which one hydrogen atom is substituted with a cyclopropyl group. At least one hydrogen atom of these cyclopropyl groups may be substituted with a chlorine atom, for example, 1 or 2 substituted.
 上記一般式(I)で示されるアゾール誘導体は、R中のシクロプロピル基における置換基による置換数が1~4であり、R中のシクロプロピル基における塩素原子による置換数が1または2であることが活性の観点から好ましい。 In the azole derivative represented by the general formula (I), the number of substitutions by a substituent in the cyclopropyl group in R 1 is 1 to 4, and the number of substitutions by a chlorine atom in the cyclopropyl group in R 2 is 1 or 2. Is preferable from the viewpoint of activity.
 (1-2)異性体
 化合物(I)は、RおよびRが異なる場合、ヒドロキシ基が結合する炭素原子が不斉炭素となる。すなわち、化合物(I)には光学異性体が存在する。当該不斉炭素に加えて、RおよびR中に不斉炭素が存在する場合がある。この場合、化合物(I)には複数の不斉炭素が存在するため、化合物(I)にはジアステレオマーが存在することになる。なお、本明細書等において「ジアステレオマー」とは、分子内の複数の不斉炭素原子の存在によって生じる立体異性体であって、鏡像関係にないものをいう。本明細書等における化合物(I)は、存在するいずれかの異性体のみからなっていてもよいし、各異性体を任意の比率で含んでいてもよい。
(1-2) Isomer In the compound (I), when R 1 and R 2 are different, the carbon atom to which the hydroxy group is bonded is an asymmetric carbon. That is, optical isomers exist in compound (I). In addition to the asymmetric carbon, an asymmetric carbon may exist in R 1 and R 2 . In this case, since compound (I) has a plurality of asymmetric carbons, diastereomer exists in compound (I). In the present specification and the like, the “diastereomer” refers to a stereoisomer produced by the presence of a plurality of asymmetric carbon atoms in a molecule and having no mirror image relationship. The compound (I) in the present specification and the like may consist of any isomers present or may contain each isomer in an arbitrary ratio.
 (1-3)具体例
 化合物(I)の具体例を以下に示す。
(1-3) Specific Examples Specific examples of the compound (I) are shown below.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (2)エルゴステロール生合成阻害化合物
 続いて、本発明に係る農園芸用薬剤の有効成分としてエルゴステロール生合成阻害(EBI)能を有する化合物(エルゴステロール生合成阻害化合物)が含まれる場合について説明する。本発明に係る農園芸用薬剤は、下記に示すエルゴステロール生合成阻害化合物と化合物(I)とを有効成分として含むことにより、下記に示すエルゴステロール生合成阻害化合物を単剤で用いるときと比較して、同程度の効果を得るために必要な薬剤の散布量を低減することができる。
(2) Ergosterol Biosynthesis Inhibitory Compound Subsequently, a case where a compound having an ergosterol biosynthesis inhibition (EBI) ability (ergosterol biosynthesis inhibition compound) is included as an active ingredient of the agricultural and horticultural medicine according to the present invention will be described. To do. The agricultural and horticultural medicine according to the present invention contains the following ergosterol biosynthesis inhibiting compound and compound (I) as active ingredients, so that the ergosterol biosynthesis inhibiting compound shown below is used as a single agent. Thus, it is possible to reduce the spraying amount of the medicine necessary for obtaining the same effect.
 エルゴステロール生合成阻害化合物としては、アザコナゾール、ビテルタノール、ブロムコナゾール、ジフェノコナゾール、シプロコナゾール、ジニコナゾール、フェナリモル、フェンブコナゾール、フェンプロピジン、フェンプロピモルフ、フルキンコナゾール、フルシラゾール、フルトリアフォル、ヘキサコナゾール、イマザリル、イミベンコナゾール、メトコナゾール、イプコナゾール、ミクロブタニル、ヌアリモル、オキスポコナゾール、ペフラゾエート、ペンコナゾール、プロクロラズ、プロピコナゾール、プロチオコナゾール、エポキシコナゾール、シメコナゾール、スピロキサミン、テブコナゾール、テトラコナゾール、トリアジメフォン、トリアジメノール、トリフルミゾール、トリホリン、トリチコナゾール、フェンヘキサミド、ドデモルフ、フェンプロピモルフおよびトリデモルフを挙げることができる。これらの中でも、アゾール系化合物またはフェンプロピモルフであることが好ましく、メトコナゾール、エポキシコナゾール、イプコナゾール、プロチオコナゾール、プロクロラズ、テブコナゾールまたはフェンプロピモルフであることがより好ましい。メトコナゾール、エポキシコナゾール、イプコナゾール、プロチオコナゾール、プロクロラズ、テブコナゾールまたはフェンプロピモルフを含む農園芸用薬剤は、特に高い活性を示す。 Examples of ergosterol biosynthesis inhibiting compounds include azaconazole, viteltanol, bromconazole, difenoconazole, cyproconazole, diniconazole, fenarimol, fenbuconazole, fenpropidin, fenpropimorph, flukinconazole, flusilazole, flutriafor, hexa Conazole, imazalyl, imibenconazole, metconazole, ipconazole, microbutanyl, nuarimol, oxpoconazole, pefazoate, penconazole, prochloraz, propiconazole, prothioconazole, epoxiconazole, cimeconazole, spiroxamine, tebuconazole, tetraconazole Triadimephone, Triadimenol, Triflumizole, Trifolin, Triticonazole, Fenhe Samido, mention may be made of dodemorph, the fenpropimorph and tridemorph. Among these, an azole compound or fenpropimorph is preferable, and metconazole, epoxiconazole, ipconazole, prothioconazole, prochloraz, tebuconazole, or fenpropimorph is more preferable. Agricultural and horticultural drugs including metconazole, epoxiconazole, ipconazole, prothioconazole, prochloraz, tebuconazole or fenpropimorph exhibit particularly high activity.
 (2-1)メトコナゾール
 メトコナゾール(下記構造式参照)は、麦類、果樹類、蔬菜類、シバ、およびイネなどの病害に高い防除効果を示すトリアゾール化合物として知られている。なお、メトコナゾールは従来公知の方法で製造すればよい。
(2-1) Metoconazole Metoconazole (see the following structural formula) is known as a triazole compound that exhibits a high control effect on diseases such as wheat, fruit trees, sugar beet, shiba and rice. Metoconazole may be produced by a conventionally known method.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 (2-2)エポキシコナゾール
 エポキシコナゾール(下記構造式参照)は、麦類などの病害に高い防除効果を示すトリアゾール化合物として知られている。なお、エポキシコナゾールは従来公知の方法で製造すればよい。
(2-2) Epoxyconazole Epoxyconazole (see the structural formula below) is known as a triazole compound that exhibits a high control effect on diseases such as wheat. Epoxyconazole may be produced by a conventionally known method.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (3)SDHI系化合物
 さらに、本発明に係る農園芸用薬剤は、有効成分としてコハク酸脱水素酵素阻害能を有する化合物(SDHI系化合物とも称する)を含んでいてもよい。
(3) SDHI compound Further, the agricultural and horticultural agent according to the present invention may contain a compound having an ability to inhibit succinate dehydrogenase (also referred to as an SDHI compound) as an active ingredient.
 SDHI系化合物は、上述のアゾール系化合物に代えて含まれていてもよいし、上述のアゾール系化合物とともに含まれていてもよい。本発明に係る農園芸用薬剤は、下記に示すSDHI系化合物と化合物(I)とを有効成分として含むことにより、下記に示すSDHI系化合物を単剤で用いるときと比較して、同程度の効果を得るために必要な薬剤の散布量を低減することができる。 The SDHI compound may be included instead of the above azole compound, or may be included together with the above azole compound. The agricultural and horticultural medicine according to the present invention contains the SDHI compound and the compound (I) shown below as active ingredients, so that it is comparable to the case of using the SDHI compound shown below as a single agent. It is possible to reduce the spray amount of the medicine necessary for obtaining the effect.
 SDHI系化合物としては、ビキサフェン、ボスカリド、ペンチオピラド、イソピラザム、フルオピラム、フラメトピル、チフルザミド、フルトラニル、メプロニル、フェンフラン、カルボキシン、オキシカルボキシンおよびベノダニルを挙げることができる。これらの中でも、ビキサフェン(下記構造式参照)であることが特に好ましい。ビキサフェンは、キュウリなどの野菜類の病害に高い防除効果を示すSDHI系化合物として知られている。なお、ビキサフェンは従来公知の方法で製造すればよい。ビキサフェン、ボスカリド、ペンチオピラド、イソピラザム、フルオピラム、フラメトピル、またはベノダニルを含む農園芸用薬剤は、特に高い活性を示す。 Examples of SDHI compounds include bixafen, boscalid, pentiopyrad, isopyrazam, fluopyram, furametopyl, tifluzamide, flutolanil, mepronil, fenfuran, carboxin, oxycarboxyne and benodanyl. Among these, bixafen (see the structural formula below) is particularly preferable. Bixafen is known as an SDHI compound that exhibits a high control effect on diseases of vegetables such as cucumber. Bixafen may be produced by a conventionally known method. Agricultural and horticultural drugs including bixafen, boscalid, pentiopyrad, isopyrazam, fluopyram, furametopil, or benodanyl show particularly high activity.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (4)ストロビルリン系化合物
 さらに、本発明に係る農園芸用薬剤は、有効成分としてストロビルリン系化合物を含んでいてもよい。ストロビルリン系化合物は、病原菌の電子伝達系を阻害する化合物である。
(4) Strobilurin-based compound Furthermore, the agricultural or horticultural agent according to the present invention may contain a strobilurin-based compound as an active ingredient. A strobilurin-based compound is a compound that inhibits the electron transport system of pathogenic bacteria.
 ストロビルリン系化合物は、上述のアゾール系化合物および上述のSDHI系化合物に代えて含まれていてもよいし、上述のアゾール系化合物および上述のSDHI系化合物の少なくとも何れか一方とともに含まれていてもよい。本発明に係る農園芸用薬剤は、下記に示すストロビルリン系化合物と化合物(I)とを有効成分として含むことにより、下記に示すストロビルリン系化合物を単剤で用いるときと比較して、同程度の効果を得るために必要な薬剤の散布量を低減することができる。 The strobilurin compound may be included in place of the above azole compound and the above SDHI compound, or may be included together with at least one of the above azole compound and the above SDHI compound. . The agricultural and horticultural agent according to the present invention contains the following strobilurin-based compound and compound (I) as active ingredients, so that it is comparable to when using the strobilurin-based compound shown below as a single agent. It is possible to reduce the spray amount of the medicine necessary for obtaining the effect.
 ストロビルリン系化合物としては、ピラクロストロビン、アゾキシストロビン、ジメトキシストロビン、ファモキサドン、フルオキサストロビン、メトミノストロビン、オリサストロビン、ピラクロストロビン、トリフロキシストロビン、ジモキシストロビン、フェンアミドン、およびクレソキシムメチルを挙げることができる。これらの中でも、ピラクロストロビン(下記構造式参照)、アゾキシストロビンまたはクレソキシムメチルであることが好ましい。ピラクロストロビンは、イネ、麦、野菜類、および果樹などの広範囲の病害に高い防除効果を示すストロビルリン系化合物として知られている。なお、ピラクロストロビンは従来公知の方法で製造すればよい。ピラクロストロビン、アゾキシストロビンまたはクレソキシムメチルを含む農園芸用薬剤は、特に高い活性を示す。 Examples of strobilurin-based compounds include pyraclostrobin, azoxystrobin, dimethoxystrobin, famoxadone, floxastrobin, metminostrobin, orisatrobin, pyraclostrobin, trifloxystrobin, dimoxystrobin, fenamidone, and Mention may be made of cresoxime methyl. Among these, pyraclostrobin (see the following structural formula), azoxystrobin, or cresoxime methyl is preferable. Pyraclostrobin is known as a strobilurin-based compound that exhibits a high control effect on a wide range of diseases such as rice, wheat, vegetables, and fruit trees. Note that pyraclostrobin may be produced by a conventionally known method. Agricultural and horticultural agents including pyraclostrobin, azoxystrobin or cresoxime methyl show particularly high activity.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (5)ベンズイミダゾール化合物
 さらに、本発明に係る農園芸用薬剤は、有効成分としてベンズイミダゾール化合物を含んでいてもよい。
(5) Benzimidazole Compound Furthermore, the agricultural and horticultural agent according to the present invention may contain a benzimidazole compound as an active ingredient.
 ベンズイミダゾール化合物は、上述のアゾール系化合物、上述のSDHI系化合物および上述のストロビルリン系化合物に代えて含まれていてもよいし、上述のアゾール系化合物、上述のSDHI系化合物および上述のストロビルリン系化合物の少なくとも何れか一つとともに含まれていてもよい。本発明に係る農園芸用薬剤は、下記に示すベンズイミダゾール化合物と化合物(I)とを有効成分として含むことにより、下記に示すベンズイミダゾール化合物を単剤で用いるときと比較して、同程度の効果を得るために必要な薬剤の散布量を低減することができる。 The benzimidazole compound may be included instead of the above azole compound, the above SDHI compound and the above strobilurin compound, or the above azole compound, the above SDHI compound and the above strobilurin compound. It may be included together with at least one of these. The agricultural and horticultural medicine according to the present invention contains the following benzimidazole compound and compound (I) as active ingredients, so that it is comparable to the case where the benzimidazole compound shown below is used alone. It is possible to reduce the spray amount of the medicine necessary for obtaining the effect.
 ベンズイミダゾール化合物としては、ベノミル、カルベンダジム、フベリダゾール、チアベンダゾール、チオファネートメチル、およびジエトフェンカルブを挙げることができる。これらの中でも、チオファネートメチルであることが好ましい。 Examples of benzimidazole compounds include benomyl, carbendazim, fuberidazole, thiabendazole, thiophanate methyl, and dietofencarb. Among these, thiophanate methyl is preferable.
 (6)メタラキシル
 さらに、本発明に係る農園芸用薬剤は、有効成分としてメタラキシルを含んでいてもよい。メタラキシルは、上述のアゾール系化合物、上述のSDHI系化合物、上述のストロビルリン系化合物および上述のベンズイミダゾール化合物に代えて含まれていてもよいし、上述のアゾール系化合物、上述のSDHI系化合物、上述のストロビルリン系化合物および上述のベンズイミダゾール化合物の少なくとも何れか一つとともに含まれていてもよい。本発明に係る農園芸用薬剤は、メタラキシルと化合物(I)とを有効成分として含むことにより、メタラキシルを単剤で用いるときと比較して、同程度の効果を得るために必要な薬剤の散布量を低減することができる。
(6) Metalaxyl Furthermore, the agricultural and horticultural agent according to the present invention may contain metalaxyl as an active ingredient. Metalaxyl may be included instead of the above azole compound, the above SDHI compound, the above strobilurin compound and the above benzimidazole compound, or the above azole compound, the above SDHI compound, or the above. And at least one of the above-mentioned strobilurin-based compounds and the above-described benzimidazole compounds. The agricultural and horticultural medicine according to the present invention contains metalaxyl and compound (I) as active ingredients, so that it is necessary to spread the medicine necessary for obtaining the same effect as when using metalaxyl alone. The amount can be reduced.
 本発明に係る農園芸用薬剤に含有されている有効成分は3種類以上であってもよい。この場合、本発明に係る農園芸用薬剤は、化合物(I)以外に上述した化合物を少なくとも2種類含む。もちろん、異なる系統の化合物が含まれていてもよい。ただし、化合物(I)の効果を活かすために、メトコナゾール、エポキシコナゾール、ビキサフェンおよびピラクトストロビンの少なくとも何れかが含まれていることが好ましい。 The active ingredient contained in the agricultural and horticultural medicine according to the present invention may be three or more. In this case, the agricultural and horticultural agent according to the present invention contains at least two kinds of the above-described compounds in addition to the compound (I). Of course, different series of compounds may be included. However, in order to make use of the effect of the compound (I), it is preferable that at least one of metconazole, epoxiconazole, bixaphene and pyractostrobin is contained.
 なお、上述した各化合物は一例であり、上述されていない化合物であっても同様の活性を有するものであれば本発明に係る農園芸用薬剤において有効成分として含有させることができる。 In addition, each compound mentioned above is an example, and even if it is a compound which is not mentioned above, if it has the same activity, it can be contained as an active ingredient in the agricultural and horticultural medicine which concerns on this invention.
 3.化合物(I)の製造方法
 (1)工程A1
 次に、化合物(I)の製造方法について説明する。この製造方法の1つの実施形態は、下記一般式(II)で示されるオキシラン化合物と、下記一般式(III)で示される1,2,4-トリアゾールと、を反応させる工程(工程A1)を含む(下記反応式(1)参照)。以下、一般式(II)で示されるオキシラン化合物を「化合物(II)」と、一般式(III)で示される1,2,4-トリアゾールを「化合物(III)」と称する。
反応式(1)
3. Production Method of Compound (I) (1) Step A1
Next, the manufacturing method of compound (I) is demonstrated. One embodiment of this production method includes a step of reacting an oxirane compound represented by the following general formula (II) with 1,2,4-triazole represented by the following general formula (III) (step A1). (See the following reaction formula (1)). Hereinafter, the oxirane compound represented by the general formula (II) is referred to as “compound (II)”, and the 1,2,4-triazole represented by the general formula (III) is referred to as “compound (III)”.
Reaction formula (1)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 ここで、RおよびRの定義内容は、上述の通りである。 Here, the definition contents of R 1 and R 2 are as described above.
 Mは、水素原子又はアルカリ金属を表す。 M represents a hydrogen atom or an alkali metal.
 本工程では、化合物(II)のオキシラン環中の炭素原子と化合物(III)を反応させて、化合物(II)のオキシラン環中の炭素原子と化合物(III)の窒素原子間に炭素-窒素結合を生成させる。 In this step, a carbon atom in the oxirane ring of compound (II) is reacted with compound (III) to form a carbon-nitrogen bond between the carbon atom in the oxirane ring of compound (II) and the nitrogen atom of compound (III). Is generated.
 この際、用いられる溶媒は、特に限定されない。 At this time, the solvent used is not particularly limited.
 化合物(II)に対する化合物(III)の使用量は、例えば0.5~10倍モルであり、好ましくは0.8~5倍モルである。また、所望により塩基を添加してもよい。その場合の化合物(III)に対する塩基の使用量は、例えば0~10倍モル(ただし、0を除く)であり、好ましくは0.5~5倍モルである。 The amount of compound (III) used relative to compound (II) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol. Moreover, you may add a base if desired. In this case, the amount of the base used relative to compound (III) is, for example, 0 to 10 times mol (excluding 0), preferably 0.5 to 5 times mol.
 反応温度および反応時間は、用いられる溶媒および塩基の種類等によって適宜設定することができる。 The reaction temperature and reaction time can be appropriately set depending on the type of solvent and base used.
 (2)工程A2
 工程A1で使用される化合物(II)の好適な第一の合成方法として、一般式(VI)で示されるハロヒドリン化合物(以下、「化合物(VI)」と称する)を、塩基存在下、溶媒中で反応して得る方法が挙げられる(下記反応式(2)参照)。
反応式(2)
(2) Process A2
As a suitable first synthesis method of the compound (II) used in the step A1, a halohydrin compound represented by the general formula (VI) (hereinafter referred to as “compound (VI)”) is dissolved in a solvent in the presence of a base. (See the following reaction formula (2)).
Reaction formula (2)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 ここで、RおよびRの定義内容は、上述の通りである。また、Xは、ハロゲン原子を表す。 Here, the definition contents of R 1 and R 2 are as described above. X represents a halogen atom.
 使用される塩基としては、水酸化ナトリウム、水酸化カリウムおよび水酸化カルシウム等のアルカリ金属もしくはアルカリ土類金属の水酸化物塩;炭酸ナトリウムおよび炭酸カリウム等のアルカリ金属の炭酸塩もしくは炭酸水素塩等が好ましく使用できるが、これらに限定されるものではない。 Bases used include alkali metal or alkaline earth metal hydroxide salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide; alkali metal carbonates or hydrogen carbonates such as sodium carbonate and potassium carbonate, etc. Can be preferably used, but is not limited thereto.
 塩基の量は、化合物(VI)に対して0.5~20倍モルであることが好ましく、0.8~5倍モルであることがより好ましい。 The amount of the base is preferably 0.5 to 20 times mol, more preferably 0.8 to 5 times mol for the compound (VI).
 溶媒は、特に限定されるものではない。塩基の水溶液を、疎水性溶媒と共に用いる場合には、反応混合物中に、テトラブチルアンモニウム塩、トリメチルベンジルアンモニウム塩およびトリエチルベンジルアンモニウム塩等の4級アンモニウム塩、クラウンエーテルとその類似物等の相間移動触媒を添加して反応を行うこともできる。 The solvent is not particularly limited. When an aqueous base solution is used with a hydrophobic solvent, phase transfer of quaternary ammonium salts such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, crown ether and the like, etc. into the reaction mixture. It is also possible to carry out the reaction by adding a catalyst.
 (3)工程A3
 工程A2で使用される化合物(VI)は、一般式(VII)で示される化合物(以下、「化合物(VII)」と称する)のカルボニル基に対し、一般式(IV)で示される化合物(以下、「化合物(IV)」と称する)を求核付加させ、炭素-炭素結合を生成させることにより製造することができる(下記反応式(3)参照)。
反応式(3)
(3) Process A3
The compound (VI) used in step A2 is a compound represented by the general formula (IV) with respect to the carbonyl group of the compound represented by the general formula (VII) (hereinafter referred to as “compound (VII)”) (hereinafter referred to as “compound (VII)”). , Referred to as “compound (IV)”, to produce a carbon-carbon bond (see the following reaction formula (3)).
Reaction formula (3)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 ここで、RおよびRの定義内容は、上述の通りである。 Here, the definition contents of R 1 and R 2 are as described above.
 Lは、アルカリ金属、アルカリ土類金属-Q1(Q1はハロゲン原子)、1/2(Cuアルカリ金属)、および亜鉛-Q2(Q2はハロゲン原子)等が挙げられ、いずれでも使用可能である。アルカリ金属としては、リチウム、ナトリウムおよびカリウム等が挙げられるが、リチウムを用いることが好ましい。また、アルカリ土類金属としては、マグネシウム等を挙げることができる。 L includes alkali metal, alkaline earth metal-Q 1 (Q 1 is a halogen atom), 1/2 (Cu alkali metal), zinc-Q 2 (Q 2 is a halogen atom), etc. Is possible. Examples of the alkali metal include lithium, sodium, and potassium, and it is preferable to use lithium. Examples of the alkaline earth metal include magnesium.
 使用される溶媒としては、反応条件において不活性な溶媒であれば特に限定されない。また、水溶液を疎水性溶媒と共に用いる場合には反応混合物中に、テトラブチルアンモニウム塩、トリメチルベンジルアンモニウム塩およびトリエチルベンジルアンモニウム塩等の4級アンモニウム塩、クラウンエーテルとその類似物等の相間移動触媒を添加して反応を行うことも可能である。 The solvent used is not particularly limited as long as it is an inert solvent under the reaction conditions. When an aqueous solution is used with a hydrophobic solvent, a phase transfer catalyst such as a quaternary ammonium salt such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, crown ether and the like is added to the reaction mixture. It is also possible to carry out the reaction by adding.
 化合物(VII)に対する化合物(IV)の使用量は、例えば0.5~10倍モルであり、好ましくは0.8~5倍モルである。なお、化合物(IV)は、直前に調製されたものを用いることが好ましい。また、Lが亜鉛-Q2(Q2はハロゲン原子)の場合には、反応系内で化合物(IV)を発生させながら反応させることもできる。 The amount of compound (IV) to be used relative to compound (VII) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol. In addition, it is preferable to use the compound (IV) prepared immediately before. Further, when L is zinc-Q 2 (Q 2 is a halogen atom), the reaction can be carried out while generating compound (IV) in the reaction system.
 また、所望によりルイス酸を添加してもよい。化合物(IV)に対するルイス酸の使用量は、例えば0~5倍モル(ただし、0は除く)であり、好ましくは0.1~2倍モルである。用いられるルイス酸としては、塩化アルミニウム、塩化亜鉛、および塩化セリウム等を挙げることができる。 Further, a Lewis acid may be added if desired. The amount of the Lewis acid used relative to compound (IV) is, for example, 0 to 5 times mol (excluding 0), preferably 0.1 to 2 times mol. Examples of the Lewis acid used include aluminum chloride, zinc chloride, and cerium chloride.
 反応温度および反応時間は、用いられる溶媒、化合物(VII)および化合物(IV)の種類等によって適宜設定することができる。 The reaction temperature and reaction time can be appropriately set depending on the solvent used, the type of compound (VII), the type of compound (IV), and the like.
 ここで使用される化合物(IV)および化合物(VII)は、既存の技術で製造すればよい。 The compound (IV) and compound (VII) used here may be produced by existing techniques.
 (4)工程A2a
 工程A1で使用される化合物(II)の中で、一般式(II-a)で示される、分子中にgem-ジハロシクロプロパン構造を有する化合物(以下、「化合物(II-a)」と称する)は、以下の好適な第二の合成法により得ることができる。すなわち、一般式(VIII)で示される分子中に二重結合を有するオキシラン化合物(以下、「化合物(VIII)」と称する)から、トリハロメタンと水酸化ナトリウム等の塩基との反応によって合成することができる。あるいは、化合物(VIII)から、トリハロ酢酸塩の熱分解等によって生じるハロカルベン類の付加反応によって合成することができる。これらの反応を、下記反応式(4)に示す。
反応式(4)
(4) Process A2a
Among the compounds (II) used in the step A1, a compound having a gem-dihalocyclopropane structure in the molecule represented by the general formula (II-a) (hereinafter referred to as “compound (II-a)”) Can be obtained by the following suitable second synthesis method. That is, it can be synthesized from an oxirane compound having a double bond in the molecule represented by the general formula (VIII) (hereinafter referred to as “compound (VIII)”) by reaction of trihalomethane with a base such as sodium hydroxide. it can. Alternatively, it can be synthesized from compound (VIII) by addition reaction of halocarbenes generated by thermal decomposition of trihaloacetate. These reactions are shown in the following reaction formula (4).
Reaction formula (4)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 ここで、Rの定義内容は、上述の通りである。 Here, the definition content of R 2 is as described above.
 R、R、R10、R11、およびR12は、それぞれ独立に、水素原子、臭素原子、塩素原子またはメチル基を示す。 R 8 , R 9 , R 10 , R 11 , and R 12 each independently represent a hydrogen atom, a bromine atom, a chlorine atom, or a methyl group.
 nは、0から2の整数を示す。ここで、nが2の場合、R11およびR12は複数存在することになるが、それらの定義内容は各々独立にR11、およびR12の定義内容を示す。 n represents an integer of 0 to 2. Here, when n is 2, there are a plurality of R 11 and R 12 , but their definition contents independently represent the definition contents of R 11 and R 12 .
 X、およびXは、それぞれ独立にハロゲン原子を示す。 X 1 and X 2 each independently represent a halogen atom.
 以下、トリハロメタンと水酸化ナトリウム等の塩基との反応により化合物(II-a)を合成する方法について説明する。 Hereinafter, a method of synthesizing compound (II-a) by reaction of trihalomethane with a base such as sodium hydroxide will be described.
 使用されるトリハロメタンには、例えば、クロロホルム、ブロモホルム、クロロジフルオロメタン、ジクロロフルオロメタン、およびジブロモフルオロメタン等が用いられる。化合物(VIII)に対するトリハロメタンの使用量は、特に限定されない。 Examples of the trihalomethane used include chloroform, bromoform, chlorodifluoromethane, dichlorofluoromethane, and dibromofluoromethane. The amount of trihalomethane used for compound (VIII) is not particularly limited.
 溶媒には、トリハロメタンそのもの、あるいは、反応に不活性なジクロロメタンもしくはトルエン等の他の溶媒を用いることができる。 As the solvent, trihalomethane itself, or other solvents such as dichloromethane or toluene inert to the reaction can be used.
 塩基を添加する際、水酸化ナトリウム水溶液等の水溶液を使用する場合は、相関移動触媒を使用することが好ましい。用いることができる相関移動触媒は、特に限定されるものではない。相関移動触媒の使用量は、化合物(VIII)に対し、例えば0.001~5倍モルであり、好ましくは0.01~2倍モルである。 When adding a base, when using an aqueous solution such as an aqueous sodium hydroxide solution, it is preferable to use a phase transfer catalyst. The phase transfer catalyst that can be used is not particularly limited. The amount of the phase transfer catalyst used is, for example, 0.001 to 5 times mol, preferably 0.01 to 2 times mol, of the compound (VIII).
 また、使用される塩基も、特に限定されるものではない。塩基の使用量は、化合物(VIII)に対し、例えば0.1~100倍モルであり、好ましくは0.8~50倍モルである。また、このときのアルカリ金属水酸化物の水溶液の濃度は例えば10%から飽和水溶液、好ましくは30%から飽和水溶液である。 Also, the base used is not particularly limited. The amount of the base to be used is, for example, 0.1 to 100 times mol, preferably 0.8 to 50 times mol, of compound (VIII). The concentration of the aqueous alkali metal hydroxide solution at this time is, for example, 10% to a saturated aqueous solution, preferably 30% to a saturated aqueous solution.
 反応温度は、例えば0℃~200℃であり、好適には10℃~150℃である。また、反応時間は0.1時間~数日、好ましくは0.2時間~2日である。 The reaction temperature is, for example, 0 ° C. to 200 ° C., preferably 10 ° C. to 150 ° C. The reaction time is 0.1 hour to several days, preferably 0.2 hour to 2 days.
 (5)工程A4
 工程A2aで使用される化合物(VIII)は、以下の好適な第一の合成法により得ることができる。まず、上記の化合物(VII)に、一般式(X)で示される有機金属化合物(以下、「化合物(X)」と称する)を反応させ、化合物(VII)のカルボニル炭素原子への有機金属化合物による求核付加反応により炭素-炭素結合を生成させる。これにより、一般式(IX)で示されるハロヒドリン化合物(以下、「化合物(IX)」と称する)を得る。次いで、化合物(IX)を、塩基存在下にオキシラン化して、化合物(VIII)を得る(下記反応式(5)参照)。
反応式(5)
(5) Process A4
Compound (VIII) used in step A2a can be obtained by the following first preferred synthesis method. First, the above-mentioned compound (VII) is reacted with an organometallic compound represented by the general formula (X) (hereinafter referred to as “compound (X)”), and the organometallic compound to the carbonyl carbon atom of the compound (VII) A carbon-carbon bond is formed by a nucleophilic addition reaction by. Thereby, a halohydrin compound represented by the general formula (IX) (hereinafter referred to as “compound (IX)”) is obtained. Next, compound (IX) is oxiraneed in the presence of a base to obtain compound (VIII) (see the following reaction formula (5)).
Reaction formula (5)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 ここで、R、R、R、R10、R11、R12、L、X、およびnの定義内容は、上述の通りである。 Here, the definition contents of R 2 , R 8 , R 9 , R 10 , R 11 , R 12 , L, X, and n are as described above.
 以下、化合物(VII)に化合物(X)を反応させ、化合物(IX)を得る反応について説明する。 Hereinafter, the reaction of reacting compound (VII) with compound (X) to obtain compound (IX) will be described.
 使用される溶媒としては、不活性溶媒であれば特に限定されるものではない。これらの溶媒は、混合して使用することも可能である。また、反応に水を用いる場合は、有機溶媒と混合して使用することも可能である。水を疎水性有機溶媒と共に用いる場合には、必要に応じて反応混合物中に、テトラブチルアンモニウム塩、トリメチルベンジルアンモニウム塩およびトリエチルベンジルアンモニウム塩等の4級アンモニウム塩、クラウンエーテルとその類似物等の相間移動触媒を添加してもよい。 The solvent used is not particularly limited as long as it is an inert solvent. These solvents can also be used as a mixture. Moreover, when using water for reaction, it is also possible to mix and use with an organic solvent. When water is used together with a hydrophobic organic solvent, a quaternary ammonium salt such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, crown ether and the like, etc. are added to the reaction mixture as necessary. A phase transfer catalyst may be added.
 化合物(VII)に対する化合物(X)の使用量は、例えば0.5~10倍モルであり、好ましくは0.8~5倍モルである。化合物(X)は、直前に調製したものを用いることが好ましい。また、Lが亜鉛-Q2(Q2はハロゲン原子)の場合には、反応系内で化合物(X)を発生させながら反応させることもできる。 The amount of compound (X) used relative to compound (VII) is, for example, 0.5 to 10-fold mol, preferably 0.8 to 5-fold mol. It is preferable to use the compound (X) prepared immediately before. Further, when L is zinc-Q 2 (Q 2 is a halogen atom), the reaction can be carried out while generating the compound (X) in the reaction system.
 また、所望によりルイス酸を添加してもよく、その場合の化合物(VII)に対するルイス酸の使用量は、例えば0~5倍モル(ただし、0は除く)であり、好ましくは0.1~2倍モルである。用いられるルイス酸としては、塩化アルミニウム、塩化亜鉛、および塩化セリウム等を挙げることができる。 If desired, a Lewis acid may be added. In this case, the amount of Lewis acid used relative to compound (VII) is, for example, 0 to 5 times mol (excluding 0), preferably 0.1 to 2 moles. Examples of the Lewis acid used include aluminum chloride, zinc chloride, and cerium chloride.
 反応温度および反応時間は、用いられる溶媒、化合物(VII)および化合物(X)の種類等によって適宜設定することができる。 The reaction temperature and reaction time can be appropriately set depending on the type of solvent used, compound (VII), compound (X), and the like.
 なお、本工程における化合物(IX)のオキシラン化は、工程A2における化合物(VI)から化合物(II)の合成と同様の条件で行うことができる。 The oxiraneation of compound (IX) in this step can be carried out under the same conditions as the synthesis of compound (II) from compound (VI) in step A2.
 ここで使用される化合物(X)は、ハロゲン化アルケニル化合物を有機金属試薬に変換する等の既存の合成技術で製造可能なものを使用すればよい。例えば、化合物(X)中のLが亜鉛-Q2(Q2はハロゲン原子)である場合には、下記の反応式(6)に示す方法を採用することができる。 As the compound (X) used here, a compound that can be produced by an existing synthesis technique such as conversion of an alkenyl halide compound to an organometallic reagent may be used. For example, when L in compound (X) is zinc-Q 2 (Q 2 is a halogen atom), the method shown in the following reaction formula (6) can be employed.
 化合物(X-a)を発生させるには、化合物(XVII)で表されるハロゲン化アルケニルと亜鉛から系内で反応させる方法が好適である。すなわち、化合物(X-a)は、化合物(XVII)共存下溶媒中で混合することにより、調製される。
反応式(6)
In order to generate compound (Xa), a method of reacting alkenyl halide represented by compound (XVII) with zinc in the system is suitable. That is, compound (Xa) is prepared by mixing in a solvent in the presence of compound (XVII).
Reaction formula (6)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 ここで、R、R、R、R10、R11、R12、Q2、X、およびnの定義内容は、上述の通りである。 Here, the definition contents of R 2 , R 8 , R 9 , R 10 , R 11 , R 12 , Q 2 , X, and n are as described above.
 ここで、使用される溶媒は特に限定されるものではない。また、反応に水を用いる場合は、有機溶媒と混合して使用することも可能である。水を疎水性有機溶媒と共に用いる場合には、必要に応じて反応混合物中に、テトラブチルアンモニウム塩、トリメチルベンジルアンモニウム塩およびトリエチルベンジルアンモニウム塩等の4級アンモニウム塩、クラウンエーテルとその類似物等の相間移動触媒を添加して反応させてもよい。 Here, the solvent used is not particularly limited. Moreover, when using water for reaction, it is also possible to mix and use with an organic solvent. When water is used together with a hydrophobic organic solvent, a quaternary ammonium salt such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, crown ether and the like, etc. are added to the reaction mixture as necessary. You may make it react by adding a phase transfer catalyst.
 化合物(X-a)のより好適な製造方法の一例として、化合物(VII)を含む有機溶媒と、ハロゲン化水素を含む塩もしくはハロゲン化水素等の亜鉛の活性化を促す添加物を含む水溶液とが接触する条件下で、合物(XVII)で表されるハロゲン化アルケニルおよび亜鉛を混合する方法を挙げることができる。 As an example of a more preferable production method of compound (Xa), an organic solvent containing compound (VII) and an aqueous solution containing an additive that promotes activation of zinc such as a salt containing hydrogen halide or hydrogen halide, And alkenyl halide represented by the compound (XVII) and zinc can be mixed under the conditions of contact with each other.
 ハロゲン化水素を含む塩としては、塩化アンモニウムおよび臭化アンモニウムなどを挙げることができる。また、ハロゲン化水素としては、塩化水素および臭化水素などを挙げることができる。 Examples of the salt containing hydrogen halide include ammonium chloride and ammonium bromide. Examples of the hydrogen halide include hydrogen chloride and hydrogen bromide.
 このとき使用される化合物(XVII)の量は、化合物(VII)に対して、例えば0.5~20倍モルであり、好ましくは0.8~10倍モルである。また、使用される亜鉛の量は、化合物(VII)に対して、例えば0.5~20倍モルであり、好ましくは0.8~10倍モルである。 The amount of compound (XVII) used at this time is, for example, 0.5 to 20-fold mol, preferably 0.8 to 10-fold mol based on compound (VII). The amount of zinc used is, for example, 0.5 to 20-fold mol, preferably 0.8 to 10-fold mol based on compound (VII).
 反応温度は好適には0℃~150℃であり、より好適には5℃~100℃である。また、反応時間は、好適には0.1~24時間であり、より好適には0.5~12時間である。 The reaction temperature is preferably 0 ° C. to 150 ° C., more preferably 5 ° C. to 100 ° C. The reaction time is preferably 0.1 to 24 hours, and more preferably 0.5 to 12 hours.
 本工程で使用される化合物(VII)は、既存の技術で製造したものを使用すればよい。 The compound (VII) used in this step may be one produced by existing technology.
 (6)工程A4a
 工程A2aで使用される化合物(VIII)の中で、一般式(VIII-a)で示されるオキシラン化合物(以下、化合物(VIII-a)と称する)は、以下の好適な第二の合成法により得ることができる。すなわち、一般式(XV)で示されるメチルケトン化合物(以下、「化合物(XV)」と称する)に対し、塩基存在下、一般式(XVI)で示される炭酸ジアルキル化合物(以下、「化合物(XVI)」と称する)との反応を行い、一般式(XIII)で表されるケトエステル化合物(以下、「化合物(XIII)」と称する)を得る。次いで、塩基存在下、化合物(XIII)中のアルコキシカルボニル基の結合した炭素原子の、一般式(XIV)で示されるハロゲン化アルケニル化合物(以下、「化合物(XIV)」と称する)への求核置換反応により炭素-炭素結合を生成させて、一般式(XII)で表されるアルケニル化ケトエステル化合物(以下、「化合物(XII)」と称する)を得る。そして、化合物(XII)を加水分解および脱炭酸して、一般式(XI)で示されるカルボニル化合物(以下、「化合物(XI)」と称する)を得る。最後に、化合物(XI)をオキシラン化して、化合物(VIII-a)を得る。これらの反応を、下記反応式(7)に示す。
反応式(7)
(6) Process A4a
Among the compounds (VIII) used in step A2a, the oxirane compound represented by the general formula (VIII-a) (hereinafter referred to as compound (VIII-a)) is prepared by the following second suitable synthesis method. Obtainable. That is, with respect to the methyl ketone compound represented by the general formula (XV) (hereinafter referred to as “compound (XV)”), in the presence of a base, a dialkyl carbonate compound represented by the general formula (XVI) (hereinafter referred to as “compound (XVI)”). And a ketoester compound represented by the general formula (XIII) (hereinafter referred to as “compound (XIII)”). Next, nucleophilicity to the halogenated alkenyl compound represented by the general formula (XIV) (hereinafter referred to as “compound (XIV)”) of the carbon atom bonded to the alkoxycarbonyl group in the compound (XIII) in the presence of a base A carbon-carbon bond is generated by a substitution reaction to obtain an alkenylated ketoester compound represented by the general formula (XII) (hereinafter referred to as “compound (XII)”). Then, the compound (XII) is hydrolyzed and decarboxylated to obtain a carbonyl compound represented by the general formula (XI) (hereinafter referred to as “compound (XI)”). Finally, compound (XI) is oxiraneed to give compound (VIII-a). These reactions are shown in the following reaction formula (7).
Reaction formula (7)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 ここで、Rの定義内容は、上述の通りである。 Here, the definition content of R 2 is as described above.
 R13は、炭素数1~4のアルキル基を示す。R14、R15、R16、R17、およびR18は、それぞれ独立に、水素原子、臭素原子、塩素原子またはメチル基を示す。 R 13 represents an alkyl group having 1 to 4 carbon atoms. R 14 , R 15 , R 16 , R 17 , and R 18 each independently represent a hydrogen atom, a bromine atom, a chlorine atom, or a methyl group.
 mは、1または2を表す。ここで、mが2の場合、R17およびR18は複数存在することになるが、それらの定義内容は各々独立にR17、およびR18の定義内容を示す。 m represents 1 or 2. Here, when m is 2, there are a plurality of R 17 and R 18 , but their definition contents independently represent the definition contents of R 17 and R 18 .
 Xは、ハロゲン原子を表す。 X 3 represents a halogen atom.
 まず、化合物(XV)に対し、塩基存在下、化合物(XVI)を反応させて、化合物(XIII)を得る反応について説明する。 First, the reaction of obtaining compound (XIII) by reacting compound (XV) with compound (XVI) in the presence of a base will be described.
 本反応は、溶媒中もしくは、化合物(XVI)を溶媒として行うことができる。 This reaction can be carried out in a solvent or using compound (XVI) as a solvent.
 化合物(XV)に対する化合物(XVI)の使用量は、例えば0.5倍モル~20倍モルであり、好ましくは0.8倍モル~10倍モルである。 The amount of the compound (XVI) used relative to the compound (XV) is, for example, 0.5 times to 20 times mol, preferably 0.8 times to 10 times mol.
 使用される塩基は特に限定されるものではない。化合物(XV)に対する塩基の使用量は、例えば0.5倍モル~10倍モルであり、好ましくは0.8倍モル~5倍モルである。 The base used is not particularly limited. The amount of the base used relative to compound (XV) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol.
 反応温度は、例えば0℃~250℃であり、好ましくは室温~150℃である。また、反応時間は、例えば0.1時間~数日であり、好ましくは0.5時間~24時間である。 The reaction temperature is, for example, 0 ° C. to 250 ° C., preferably room temperature to 150 ° C. The reaction time is, for example, 0.1 hour to several days, preferably 0.5 hour to 24 hours.
 ここで使用される化合物(XV)や化合物(XVI)は、文献既知の方法等により合成したものを用いればよい。 The compound (XV) and compound (XVI) used here may be those synthesized by methods known in the literature.
 次に、化合物(XIII)中のアルコキシカルボニル基の結合した炭素原子の、化合物(XIV)への求核置換反応により炭素-炭素結合を生成させて、化合物(XII)を得る反応について説明する。 Next, the reaction for producing a compound (XII) by producing a carbon-carbon bond by nucleophilic substitution reaction of the carbon atom bonded to the alkoxycarbonyl group in the compound (XIII) to the compound (XIV) will be described.
 本反応は、通常、溶媒中、塩基の存在下で行われる。 This reaction is usually performed in a solvent in the presence of a base.
 化合物(XIII)に対する化合物(XIV)の使用量は、例えば0.5倍モル~10倍モルであり、好ましくは0.8倍モル~5倍モルである。 The amount of compound (XIV) used relative to compound (XIII) is, for example, 0.5 times to 10 times mol, preferably 0.8 times to 5 times mol.
 使用される塩基は特に限定されるものではない。 The base used is not particularly limited.
 化合物(XIII)に対する塩基の使用量は、例えば0.5倍モル~10倍モルであり、好ましくは0.8倍モル~5倍モルである。 The amount of the base used for compound (XIII) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol.
 また、上述した化合物(XV)から、塩基存在下、化合物(XIII)を得る反応において、生成した化合物(XIII)のカルボニル基とエステル基との間のメチレン部の水素原子の酸性度は化合物(XV)のアセチル基の水素原子の酸性度よりも高いため、反応の過程で化合物(XIII)のアルカリ金属塩等を形成するので、そのまま単離することなく化合物(XIII)の反応液を使用することもできる。その場合は、特に新たに塩基の添加することなく反応することも可能である。 In the reaction for obtaining compound (XIII) from the above-mentioned compound (XV) in the presence of a base, the acidity of the hydrogen atom in the methylene moiety between the carbonyl group and the ester group of the produced compound (XIII) is the compound ( Since the acidity of the hydrogen atom of the acetyl group of XV) is higher, an alkali metal salt of compound (XIII) is formed in the course of the reaction, so the reaction solution of compound (XIII) is used without isolation as it is. You can also. In that case, it is also possible to react without adding a new base.
 反応温度は、例えば0℃~250℃、好ましくは室温~150℃であり、反応時間は、例えば0.1時間~数日、好ましくは0.5時間~24時間である。 The reaction temperature is, for example, 0 ° C. to 250 ° C., preferably room temperature to 150 ° C., and the reaction time is, for example, 0.1 hour to several days, preferably 0.5 hour to 24 hours.
 続いて、化合物(XII)を加水分解および脱炭酸して、化合物(XI)を得る反応について説明する。 Subsequently, the reaction of hydrolyzing and decarboxylating compound (XII) to obtain compound (XI) will be described.
 この加水分解および脱炭酸反応は、溶媒中、塩基性条件下でも酸性条件下でも行うことができる。 This hydrolysis and decarboxylation reaction can be carried out in a solvent under basic conditions or acidic conditions.
 塩基性条件下で行なう場合、塩基には、通常、水酸化ナトリウムおよび水酸化カリウム等のアルカリ金属塩基を使用する。溶媒には、通常、水の他、アルコール類などを加えた水を使用する。 When the reaction is carried out under basic conditions, an alkali metal base such as sodium hydroxide or potassium hydroxide is usually used as the base. As the solvent, water containing alcohol or the like is usually used in addition to water.
 また、酸性条件下で行なう場合、酸触媒には、好ましくは塩酸、臭化水素酸および硫酸などの無機酸、または酢酸等の有機酸を使用する。溶媒には、通常、水、もしくは、水に酢酸などの有機酸を加えて行なう。 When the reaction is carried out under acidic conditions, the acid catalyst is preferably an inorganic acid such as hydrochloric acid, hydrobromic acid and sulfuric acid, or an organic acid such as acetic acid. The solvent is usually added by adding water or an organic acid such as acetic acid to water.
 反応温度は、例えば0℃~還流点であり、好ましくは10℃~還流点である。反応時間は、例えば0.1時間~数日であり、好ましくは0.5時間~24時間である。 The reaction temperature is, for example, 0 ° C. to the reflux point, preferably 10 ° C. to the reflux point. The reaction time is, for example, 0.1 hour to several days, preferably 0.5 hour to 24 hours.
 最後に、化合物(XI)をオキシラン化して、化合物(VIII-a)を得る反応について説明する。 Finally, a reaction in which the compound (XI) is oxiraneated to obtain the compound (VIII-a) will be described.
 本反応として、化合物(XI)をジメチルスルホニウムメチリド等のスルホニウムメチリド類またはジメチルスルホキソニウムメチリド等のスルホキソニウムメチリド類等の硫黄イリドと溶媒中で反応させる方法が採用できる。 As this reaction, a method in which the compound (XI) is reacted with a sulfur ylide such as a sulfonium methylide such as dimethylsulfonium methylide or a sulfoxonium methylide such as dimethylsulfoxonium methylide in a solvent can be employed.
 使用されるスルホニウムメチリド類またはスルホキソニウムメチリド類は、溶媒中、スルホニウム塩(例えば、トリメチルスルホニウムヨージドやトリメチルスルホニウムブロミド等)またはスルホキソニウム塩(例えばトリメチルスルホキソニウムヨージドやトリメチルスルホキソニウムブロミド等)と、塩基とを反応させることにより生成させることができる。 The sulfonium methylide or sulfoxonium methylide used is a sulfonium salt (for example, trimethylsulfonium iodide or trimethylsulfonium bromide) or a sulfoxonium salt (for example trimethylsulfoxonium iodide or trimethylsulfone) in a solvent. Xoxonium bromide and the like) and a base can be reacted.
 スルホニウムメチリド類またはスルホキソニウムメチリド類の量は、化合物(XI)に対して例えば0.5~10倍モルであり、好適には0.8~5倍モルである。 The amount of the sulfonium methylides or sulfoxonium methylides is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol for the compound (XI).
 用いられる溶媒は特に限定されるものではない。溶媒は、2種類以上を混合して用いることができる。 The solvent used is not particularly limited. Two or more kinds of solvents can be mixed and used.
 また、反応に水を用いる場合は、有機溶媒と混合して使用することも可能である。水を疎水性有機溶媒と共に用いる場合には、必要に応じて反応混合物中に、テトラブチルアンモニウム塩、トリメチルベンジルアンモニウム塩およびトリエチルベンジルアンモニウム塩等の4級アンモニウム塩、クラウンエーテルとその類似物等の相間移動触媒を添加して反応を行うことも可能である。 Also, when water is used in the reaction, it can be used by mixing with an organic solvent. When water is used together with a hydrophobic organic solvent, a quaternary ammonium salt such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, crown ether and the like, etc. are added to the reaction mixture as necessary. It is also possible to carry out the reaction by adding a phase transfer catalyst.
 スルホニウムメチリド類およびスルホキソニウムメチリド類の生成に用いられる塩基は、特に限定されない。 The base used for the production of sulfonium methylides and sulfoxonium methylides is not particularly limited.
 反応温度および反応時間は、用いられる溶媒、化合物(XI)、スルホニウム塩もしくはスルホキソニウム塩および塩基等の種類によって適宜設定することができる。 The reaction temperature and reaction time can be appropriately set depending on the type of the solvent used, compound (XI), sulfonium salt or sulfoxonium salt, base and the like.
 以上に説明した本発明に係る製造方法の各工程において、使用される溶媒、塩基および酸等は、特に言及しない限り、次のようなものを用いることができる。 In the steps of the production method according to the present invention described above, the solvents, bases, acids, and the like used can be as follows unless otherwise specified.
 [溶媒]
 使用される溶媒は、特に限定されないが、例えば、ジクロロメタン、クロロホルムおよびジクロロエタン等のハロゲン化炭化水素類、ベンゼン、トルエンおよびキシレン等の芳香族炭化水素類、石油エーテル、ヘキサンおよびメチルシクロヘキサン等の脂肪族炭化水素類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドおよびN-メチル-2-ピロリジノン等のアミド類、ジエチルエーテル、テトラヒドロフランおよびジオキサン等のエーテル類、ならびにメタノールおよびエタノール等のアルコール類等が挙げられる。この他、溶媒としては、水、二硫化炭素、アセトニトリル、酢酸エチル、ピリジン、およびジメチルスルホキシド等が挙げられる。これらの溶媒は、2種類以上を混合して用いることができる。
[solvent]
The solvent used is not particularly limited. For example, halogenated hydrocarbons such as dichloromethane, chloroform and dichloroethane, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic ethers such as petroleum ether, hexane and methylcyclohexane. Hydrocarbons, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidinone, ethers such as diethyl ether, tetrahydrofuran and dioxane, and alcohols such as methanol and ethanol Is mentioned. In addition, examples of the solvent include water, carbon disulfide, acetonitrile, ethyl acetate, pyridine, and dimethyl sulfoxide. These solvents can be used as a mixture of two or more.
 また、溶媒として、互いに均一な層を形成することのない溶媒からなる溶媒組成物が挙げられる。例えば、反応混合物中に、テトラブチルアンモニウム塩、トリメチルベンジルアンモニウム塩およびトリエチルベンジルアンモニウム塩等の四級アンモニウム塩、クラウンエーテルとその類似物等の相間移動触媒を添加してこれらの反応を行うこともできる。この場合において、用いる溶媒は特に限定されないが、油相としてはベンゼン、クロロホルム、ジクロロメタン、ヘキサン、トルエン、およびテトラヒドロフラン等を用いることができる。 Further, as the solvent, a solvent composition comprising a solvent that does not form a uniform layer with each other can be mentioned. For example, a phase transfer catalyst such as a quaternary ammonium salt such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, crown ether and the like may be added to the reaction mixture to perform these reactions. it can. In this case, the solvent to be used is not particularly limited, but benzene, chloroform, dichloromethane, hexane, toluene, tetrahydrofuran and the like can be used as the oil phase.
 [塩基・酸]
 上述の溶媒には、塩基または酸を添加してもよい。
[Base / acid]
You may add a base or an acid to the above-mentioned solvent.
 用いられる塩基は、特に限定されないが、例えば、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムおよび炭酸水素カリウム等のアルカリ金属の炭酸塩;炭酸カルシウムおよび炭酸バリウム等のアルカリ土類金属の炭酸塩;水酸化ナトリウムおよび水酸化カリウム等のアルカリ金属の水酸化物;リチウム、ナトリウムおよびカリウム等のアルカリ金属;ナトリウムメトキシド、ナトリウムエトキシドおよびカリウムt-ブトキシド等のアルカリ金属のアルコキシド;水素化ナトリウム、水素化カリウムおよび水素化リチウム等のアルカリ金属水素化合物;n-ブチルリチウムおよびメチルマグネシウムブロミド等のアルカリ金属の有機金属化合物;リチウムジイソプロピルアミド等のアルカリ金属アミド類;ならびにトリエチルアミン、ピリジン、4-ジメチルアミノピリジン、N,N-ジメチルアニリンおよび1,8-ジアザビシクロ-7-[5.4.0]ウンデセン等の有機アミン類等が挙げられる。 Although the base used is not particularly limited, for example, alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate and potassium hydrogen carbonate; alkaline earth metal carbonates such as calcium carbonate and barium carbonate; Alkali metal hydroxides such as sodium and potassium hydroxide; alkali metals such as lithium, sodium and potassium; alkali metal alkoxides such as sodium methoxide, sodium ethoxide and potassium t-butoxide; sodium hydride, potassium hydride And alkali metal hydrides such as lithium hydride; organometallic compounds of alkali metals such as n-butyllithium and methylmagnesium bromide; alkali metal amides such as lithium diisopropylamide; and triethylamine Pyridine, 4-dimethylaminopyridine, N, N-dimethylaniline and 1,8-diazabicyclo-7- [5.4.0] Organic amines such as undecene, and the like.
 また、用いられる酸は、特に限定されないが、例えば、塩酸、臭化水素酸、ヨウ化水素酸および硫酸等の無機酸、ギ酸、酢酸、酪酸およびp-トルエンスルホン酸等の有機酸、ならびに塩化リチウム、臭化リチウム、塩化ロジウム、塩化亜鉛、塩化鉄および塩化アルミニウム等のルイス酸が挙げられる。 The acid to be used is not particularly limited. For example, inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid and sulfuric acid, organic acids such as formic acid, acetic acid, butyric acid and p-toluenesulfonic acid, and chloride Examples include Lewis acids such as lithium, lithium bromide, rhodium chloride, zinc chloride, iron chloride and aluminum chloride.
 4.植物病害防除組成物
 (1)トリアゾール化合物
 本発明に係る植物病害防除組成物は、その有効成分として、2種類のトリアゾール誘導体を含む植物病害防除組成物であってもよい。一方のトリアゾール誘導体は、下記式(I’)で示される化合物(以下、「化合物(I’)」と称する)である。他方のトリアゾール誘導体は、例えば、下記式(XVIII)で示される化合物(以下、「化合物(XVIII)」と称する)である。
4). Plant Disease Control Composition (1) Triazole Compound The plant disease control composition according to the present invention may be a plant disease control composition containing two types of triazole derivatives as its active ingredients. One triazole derivative is a compound represented by the following formula (I ′) (hereinafter referred to as “compound (I ′)”). The other triazole derivative is, for example, a compound represented by the following formula (XVIII) (hereinafter referred to as “compound (XVIII)”).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(I’)中、R25は、少なくとも1つの水素原子がハロゲン原子、メチル基もしくはエチル基で置換されているシクロプロピル基、または1つの水素原子が該シクロプロピル基で置換されている炭素数1~4のアルキル基を表しており、R26は、少なくとも1つの水素原子がハロゲン原子で置換されているシクロプロピル基、または1つの水素原子が該シクロプロピル基で置換されている炭素数1~3のアルキル基を表している。 In formula (I ′), R 25 represents a cyclopropyl group in which at least one hydrogen atom is substituted with a halogen atom, a methyl group or an ethyl group, or a carbon in which one hydrogen atom is substituted with the cyclopropyl group. R 26 represents an alkyl group having 1 to 4 and R 26 represents a cyclopropyl group in which at least one hydrogen atom is substituted with a halogen atom, or a carbon number in which one hydrogen atom is substituted with the cyclopropyl group 1 to 3 alkyl groups are represented.
 式(XVIII)中、R19は、炭素数1~4のハロアルキル基または炭素数2~4のハロアルケニル基を表している。R19としては、例えばクロロメチル基、ブロモメチル基、クロロエチル基および2-クロロ-2-プロペニル基を挙げることができる。 In Formula (XVIII), R 19 represents a haloalkyl group having 1 to 4 carbon atoms or a haloalkenyl group having 2 to 4 carbon atoms. Examples of R 19 include a chloromethyl group, a bromomethyl group, a chloroethyl group, and a 2-chloro-2-propenyl group.
 式(XVIII)中、R20は、炭素数1~4のアルキル基もしくはハロアルキル基、または炭素数2~4のアルケニル基もしくはハロアルケニル基を表している。R20としては、メチル基、エチル基およびクロロメチル基を挙げることができる。 In formula (XVIII), R 20 represents an alkyl group or haloalkyl group having 1 to 4 carbon atoms, or an alkenyl group or haloalkenyl group having 2 to 4 carbon atoms. Examples of R 20 include a methyl group, an ethyl group, and a chloromethyl group.
 式(XVIII)中、Yは、ハロゲン原子を表している。なかでも、フッ素原子、塩素原子および臭素原子が好ましい。また、pは、0~3の整数を表しており、0、1または2であることが好ましく、0または1であることがより好ましい。pが2または3である場合に、複数あるYは、互いに同じハロゲン原子であってもよく、互いに異なるハロゲン原子であってもよい。ベンジル基におけるYの位置に特に制限はない。 In the formula (XVIII), Y represents a halogen atom. Of these, a fluorine atom, a chlorine atom and a bromine atom are preferable. P represents an integer of 0 to 3, preferably 0, 1 or 2, and more preferably 0 or 1. When p is 2 or 3, the plurality of Y may be the same halogen atom as each other or different from each other. There is no restriction | limiting in particular in the position of Y in a benzyl group.
 化合物(I’)には、化合物(I)と同様に、光学異性体およびジアステレオマーが存在する場合がある。化合物(I’)は、これら異性体を単独で含むもの、および、各異性体を任意の比率で含むもののいずれをも含むものである。 Compound (I ′) may have optical isomers and diastereomers as in Compound (I). Compound (I ′) includes both those containing these isomers alone and those containing each isomer in an arbitrary ratio.
 また、化合物(XVIII)には、シクロペンタン環に結合している有機基の立体配置に基づく立体異性体が存在し、立体異性体毎に光学異性体が存在する。したがって、化合物(XVIII)は、これら異性体を単独で含むもの、および、各異性体を任意の比率で含むもののいずれをも含むものである。 In addition, compound (XVIII) has a stereoisomer based on the configuration of the organic group bonded to the cyclopentane ring, and an optical isomer exists for each stereoisomer. Therefore, the compound (XVIII) includes both those containing these isomers alone and those containing each isomer in an arbitrary ratio.
 化合物(I’)の一形態として、例えば、下記式(Ia’)で示される化合物を挙げることができる。 Examples of one form of the compound (I ′) include a compound represented by the following formula (Ia ′).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 ここで、X~Xはハロゲン原子または水素原子を表しており、X~Xの少なくとも何れか1つはハロゲン原子である。Xが水素原子である場合には、XおよびXの何れもがハロゲン原子であることが好ましい。sは0または1を表しており、sは0、1または2を表している。R27は、水素原子またはメチル基を表している。sが2である場合に、2つあるR27同士は、相違していてもよい。R28~R30は水素原子、ハロゲン原子またはメチル基を表しており、水素原子またはハロゲン原子であることが好ましい。XおよびXはハロゲン原子を表しており、XおよびXが互いに同一のハロゲン原子種であることが好ましい。 Here, X 5 to X 7 represent a halogen atom or a hydrogen atom, and at least one of X 5 to X 7 is a halogen atom. When X 5 is a hydrogen atom, it is preferable that both X 6 and X 7 are halogen atoms. s 1 represents 0 or 1, and s 2 represents 0, 1 or 2. R 27 represents a hydrogen atom or a methyl group. When s 2 is 2, each other there are two R 27 may be different. R 28 to R 30 represent a hydrogen atom, a halogen atom or a methyl group, and are preferably a hydrogen atom or a halogen atom. X 8 and X 9 represent a halogen atom, and it is preferable that X 8 and X 9 are the same halogen atom species.
 化合物(I’)のより具体的な例は、上述の化合物(I)の具体例と同様である。 More specific examples of compound (I ′) are the same as the specific examples of compound (I) described above.
 化合物(XVIII)の具体例を以下に示す。 Specific examples of the compound (XVIII) are shown below.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 (2)化合物(XVIII)の製造方法
 本実施の形態における化合物(XVIII)は、下記スキーム1に示すように、公知の方法を用いて製造できる下記式(XX)で示される化合物(以下、化合物(XX)と称する)から、製造することができる。なお、下記式(XVIIIb)で示される化合物は、式(XVIII)で示される化合物と実質的に同一の構造である。
(2) Method for Producing Compound (XVIII) Compound (XVIII) in the present embodiment is a compound represented by the following formula (XX) that can be produced using a known method as shown in the following Scheme 1 (hereinafter referred to as compound) (Referred to as (XX)). Note that the compound represented by the following formula (XVIIIb) has substantially the same structure as the compound represented by the formula (XVIII).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 なお、スキーム1内に示されている化合物中、R21は、メチレン基、ハロメチレン基、炭素数2~4のアルキレン基もしくはハロアルキレン基、または炭素数2~4のアルケニレン基もしくはハロアルケニレン基を表している。また、qは式(XX)においてR21で示される官能基に結合しているヒドロキシ基の数を示している。また、R22は水素原子が置換されていてもよい炭素数1~3のアルキル基、フェニル基またはナフチル基を表している。また、Xはハロゲン原子を表している。 In the compounds shown in Scheme 1, R 21 represents a methylene group, a halomethylene group, an alkylene group or haloalkylene group having 2 to 4 carbon atoms, or an alkenylene group or haloalkenylene group having 2 to 4 carbon atoms. Represents. Also, q denotes the number of hydroxy groups bonded to a functional group represented by R 21 in formula (XX). Further, R 22 is a hydrogen atom an alkyl group of 1-3 1 carbon atoms which may be substituted, represents a phenyl group or a naphthyl group. X 4 represents a halogen atom.
 なお、上記化合物(XX)のうち、2位にヒドロキシメチル基を有する下記式(XXa)で示される化合物(以下、「化合物(XXa)」と称する)は、公知の技術により得られる下記式(XXVII)で示される化合物から、以下の合成法により好適に得ることができる(下記スキーム2参照)。 Of the compounds (XX), a compound represented by the following formula (XXa) having a hydroxymethyl group at the 2-position (hereinafter referred to as “compound (XXa)”) is a compound represented by the following formula ( XXVII) can be suitably obtained by the following synthesis method (see Scheme 2 below).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 なお、スキーム2内に示されている化合物中、R23およびR24は、それぞれ独立に炭素数1~4のアルキル基を表す。R23は化合物(X)中のR20と同一の官能基である。 In the compounds shown in Scheme 2, R 23 and R 24 each independently represents an alkyl group having 1 to 4 carbon atoms. R 23 is the same functional group as R 20 in compound (X).
 5.農園芸用薬剤
 本発明に係る農園芸用薬剤に有効成分として配合される化合物(I)は、広汎な植物病害に対して防除効果を呈する。さらに、化合物(I)は、エルゴステロール生合成阻害化合物、SDHI系化合物、ストロビルリン系化合物、ベンズイミダゾール化合物およびメタラキシルなどと併用されて、それぞれを単独で使用した場合に比して相乗的な効果を発揮する。
5. Agricultural and horticultural chemicals Compound (I) blended as an active ingredient in the agricultural and horticultural chemicals according to the present invention exhibits a controlling effect against a wide range of plant diseases. Furthermore, compound (I) is used in combination with an ergosterol biosynthesis inhibitor compound, SDHI compound, strobilurin compound, benzimidazole compound, metalaxyl, etc., and has a synergistic effect as compared with the case where each is used alone. Demonstrate.
 化合物(I)は、1,2,4-トリアゾリル基を有するので、無機酸もしくは有機酸との酸付加塩、または金属錯体を形成する。化合物(I)は、これらの酸付加塩および金属錯体の形態で用いてもよい。 Since compound (I) has a 1,2,4-triazolyl group, it forms an acid addition salt with an inorganic acid or an organic acid, or a metal complex. Compound (I) may be used in the form of these acid addition salts and metal complexes.
 さらに、化合物(I)に存在するジアステレオマーまたはエナンチオマーうちの少なくとも1種類を農園芸用薬剤等の有効成分として使用することもできる。 Furthermore, at least one of diastereomers or enantiomers present in the compound (I) can be used as an active ingredient such as an agricultural or horticultural agent.
 (1)植物病害防除効果
 本発明に係る農園芸用薬剤としての有用性について説明する。
(1) Plant disease control effect The usefulness as an agricultural and horticultural agent according to the present invention will be described.
 少なくとも化合物(I)を有効成分として含む薬剤は、広汎な植物病害に対して防除効果を呈する。適用病害の例として以下が挙げられる。 A drug containing at least compound (I) as an active ingredient exhibits a control effect against a wide range of plant diseases. Examples of applicable diseases include the following.
 ダイズさび病(Phakopsora pachyrhizi、Phakopsora meibomiae)、イネいもち病 (Pyricularia grisea)、イネごま葉枯病 (Cochliobolus miyabeanus)、イネ白葉枯病 (Xanthomonas oryzae)、イネ紋枯病 (Rhizoctonia solani)、イネ小黒菌核病(Helminthosporium sigmoideun)、イネばか苗病 (Gibberella fujikuroi)、イネ苗立枯病 (Pythium aphanidermatum)、リンゴうどんこ病 (Podosphaera leucotricha)、リンゴ黒星病 (Venturia inaequalis)、リンゴモリニア病 (Monilinia mali)、リンゴ斑点落葉病 (Alternaria alternata)、リンゴ腐乱病 (Valsa mali)、ナシ黒斑病 (Alternaria kikuchiana)、ナシうどんこ病(Phyllactinia pyri)、ナシ赤星病 (Gymnosporangium asiaticum)、ナシ黒星病 (Venturia nashicola)、ブドウうどんこ病 (Uncinula necator)、ブドウべと病 (Plasmopara viticola)、ブドウ晩腐病 (Glomerella cingulata)、オオムギうどんこ病 (Erysiphe graminis f. sp hordei)、オオムギ黒さび病 (Puccinia graminis)、オオムギ黄さび病 (Puccinia striiformis)、オオムギ斑葉病 (Pyrenophora graminea)、オオムギ雲形病 (Rhynchosporium secalis)、コムギうどんこ病 (Erysiphe graminis f. sp tritici)、コムギ赤さび病(Puccinia recondita)、コムギ黄さび病 (Puccinia striiformis)、コムギ眼紋病 (Pseudocercosporella herpotrichoides)、コムギ赤かび病 (Fusarium graminearum、Microdochium nivale)、コムギふ枯病 (Phaeosphaeria nodorum)、コムギ葉枯病 (Septoria tritici)、ウリ類うどんこ病 (Sphaerotheca fuliginea)、ウリ類の炭疸病 (Colletotrichum lagenarium)、キュウリべと病(Pseudoperonospora cubensis)、キュウリ灰色疫病 (Phytophthora capsici)、トマトうどんこ病 (Erysiphe cichoracearum)、トマト輪紋病 (Alternaria solani)、ナスうどんこ病 (Erysiphe cichoracearum)、イチゴうどんこ病 (Sphaerotheca humuli)、タバコうどんこ病 (Erysiphe cichoracearum)、テンサイ褐斑病(Cercospora beticola)、トウモロコシ黒穂病 (Ustillaga maydis)、核果類果樹の灰星病 (Monilinia fructicola)、種々の作物をおかす灰色かび病(Botrytis cinerea)、および菌核病 (Sclerotinia sclerotiorum)等。 Soybean rust (Phakopsora pachyrhizi, Phakopsora meibomiae), rice blast (Pyricularia grisea), rice sesame leaf blight (Cochliobolus miyabeanus), rice white leaf blight (Xanthomonas oryzae), rice rot (Rhizoctonia sol) Nuclear disease (Helminthosporium sigmoideun), rice idiot seedling (Gibberella fujikuroi), rice seedling blight (Pythium aphanidermatum), apple powdery mildew (Podosphaera leucotricha), apple black rot (Venturia inaequalis), apple peach linear Apple spotted leaf blight (Alternaria alternata), apple rot blight (Valsa mali), pear black blight (Alternaria kikuchiana), pear powdery mildew (Phyllactinia pyri), pear red blight (Gymnosporangium asiaticum), pear black blight , Grape powdery mildew (Uncinula necator), grape mildew (Plasmopara viticola), grape late rot (Glomerella cingulata), barley powdery mildew (Erysiphe grami) nis f. sp hordei), barley black rust disease (Puccinia graminis), barley yellow rust disease (Puccinia striiformis), barley spotty disease (Pyrenophora graminea), barley cloud shape disease (Rhynchosporium secalis), wheat .Spsp tritici), wheat red rust (Puccinia ), Wheat leaf blight (Septoria tritici), cucumber powdery mildew (Sphaerotheca fuliginea), cucumber anthracnose (Colletotrichum lagenarium), cucumber downy mildew (Pseudoperonospora cubensis), cucumber gray plague (Phytophthora capsi Erysiphe cichoracearum, tomato ring-rot disease (Alternaria solani), eggplant powdery mildew (Erysiphe cichoracearum), strawberry powdery mildew (Sphae rotheca humuli), tobacco powdery mildew (Erysiphe cichoracearum), sugar beet brown spot (Cercospora beticola), corn smut (Ustillaga maydis), berries of Monasteria fruit tree (Monilinia fructicola), gray mold that causes various crops (Botrytis cinerea), and Sclerotinia sclerotiorum, etc.
 さらに、ブドウのさび病(Phakopsora ampelopsidis)、スイカのつる割病(Fusarium oxysporum f.sp.niveum)、キュウリのつる割病(Fusarim oxysporum f.sp.cucumerinum)、ダイコンの萎黄病(Fusarium oxysporum f.sp.raphani)、タバコの赤星病(Alternaria longipes)、ジャカイモノ夏疫病(Alternaria solani)、ダイズの褐紋病(Septoria glycines)、およびダイズの紫斑病(Cercospora kikuchii)等。 In addition, grape rust (Phakopsora ampelopsidis), watermelon vine split (Fusarium oxysporum f.sp.niveum), cucumber vine split (Fusarim oxysporum f.sp.cucumerinum), radish yellow (Fusarium oxysporum f. sp.raphani), tobacco red star disease (Alternaria longipes), pea mosquito summer rot (Alternaria solani), soybean brown spot (Septoria ines glycines), and soybean purpura (Cercospora kikuchii).
 また、適用植物の例としては、野生植物、植物栽培品種、異種交配もしくは原形質融合などの従来の生物育種によって得られる植物および植物栽培品種、遺伝子操作によって得られる遺伝子組み換え植物および植物栽培品種が挙げられる。遺伝子組み換え植物および植物栽培品種としては、例えば、除草剤耐性作物、殺虫性タンパク産生遺伝子を組み込んだ害虫耐性作物、病害に対する抵抗性誘導物質産生遺伝子を組み込んだ病害耐性作物、食味向上作物、収量向上作物、保存性向上作物、および収量向上作物等が挙げられる。遺伝子組み換え植物栽培品種としては、具体的に、ROUNDUP READY、LIBERTY LINK、CLEARFIELD、YIELDGARD、HERCULEX、およびBOLLGARD等の登録商標を含むものが挙げられる。 Examples of applied plants include wild plants, plant cultivars, plants and plant cultivars obtained by conventional biological breeding such as crossbreeding or protoplast fusion, genetically modified plants and plant cultivars obtained by genetic manipulation. Can be mentioned. Examples of genetically modified plants and plant cultivars include herbicide-tolerant crops, pest-tolerant crops incorporating insecticidal protein production genes, disease-resistant crops incorporating resistance-inducing substance production genes for diseases, improved crops, improved yields Examples include crops, preservative-enhancing crops, and yield-enhancing crops. Specific examples of genetically modified plant cultivars include those containing registered trademarks such as ROUNDUP READY, LIBERTY LINK, CLEARFIELD, YIELDGARD, HERCULEX, and BOLLGARD.
 さらに、少なくとも化合物(I)を有効成分として含む薬剤は、工業材料を侵す広汎な有害微生物から材料を保護する優れた効果を示す。 Furthermore, a drug containing at least compound (I) as an active ingredient exhibits an excellent effect of protecting the material from a wide range of harmful microorganisms that invade industrial materials.
 (2)製剤
 本発明に係る農園芸用薬剤において、化合物(I)と、メトコナゾールおよび/またはエポキシコナゾールとの混合比は、重量比で100:1~1:100、好ましくは5:2~50:3である。メトコナゾールおよびエポキシコナゾール以外のエルゴステロール生合成阻害化合物、SDHI系化合物、ストロビルリン系化合物、ベンズイミダゾール化合物およびメタラキシルについても同様の混合比とすることができる。なお、本発明に係る農園芸用薬剤が化合物(I)以外に複数の有効成分を含む場合、化合物(I)以外の有効成分の混合比は、薬剤の使用用途に応じて適宜設定すればよい。
(2) Formulation In the agricultural and horticultural medicine according to the present invention, the mixing ratio of compound (I) to metconazole and / or epoxiconazole is 100: 1 to 1: 100, preferably 5: 2 to 50: 3. The same mixing ratio can be used for ergosterol biosynthesis inhibiting compounds other than metconazole and epoxiconazole, SDHI compounds, strobilurin compounds, benzimidazole compounds and metalaxyl. In addition, when the agricultural and horticultural medicine according to the present invention includes a plurality of active ingredients in addition to the compound (I), the mixing ratio of the active ingredients other than the compound (I) may be appropriately set according to the intended use of the medicine. .
 また、農園芸用製剤は、種々の成分を含んでいてもよく、固体担体、液体担体、界面活性剤、またはその他の製剤補助剤と混合することができる。農園芸用製剤の剤型としては、粉剤、水和剤、粒剤、および乳剤などの種々の形態を挙げることができる。 Also, the agricultural and horticultural preparation may contain various components and can be mixed with a solid carrier, a liquid carrier, a surfactant, or other preparation adjuvant. Examples of the dosage form of the agricultural and horticultural preparation include various forms such as powders, wettable powders, granules, and emulsions.
 これらの製剤中、有効成分は、製剤全量に対して、0.1~95重量%含まれることが好ましく、0.5~90重量%含まれることがより好ましく、2~80重量%含まれることがさらに好ましい。 In these preparations, the active ingredient is preferably contained in an amount of 0.1 to 95% by weight, more preferably 0.5 to 90% by weight, and more preferably 2 to 80% by weight based on the total amount of the preparation. Is more preferable.
 農園芸用薬剤に他の成分を混合させて、種々の製剤形態とする場合、各有効成分を混合したものを製剤化する方法に限らず、有効成分のそれぞれを別々に製剤化し、それらを混合することにより、複数の有効成分を含む製剤形態の農園芸用製剤として調製することもできる。したがって、植物病害防除において混合して使用するための組み合わせ調製物として、化合物(I)とその他の有効成分とを別々に含む、植物病害防除用製品も本発明の範疇に含まれる。有効成分を3つ以上含む場合、化合物(I)以外の有効成分も別々となっていてもよい。 When mixing other ingredients with agricultural and horticultural chemicals to form various preparations, not only the method of formulating a mixture of each active ingredient, but formulating each of the active ingredients separately and mixing them By doing so, it can also be prepared as an agricultural and horticultural preparation in the form of a preparation containing a plurality of active ingredients. Therefore, a product for controlling plant diseases which contains Compound (I) and other active ingredients separately as a combined preparation for use in mixture in plant disease control is also included in the scope of the present invention. When three or more active ingredients are contained, the active ingredients other than the compound (I) may be separate.
 製剤補助剤として使用する坦体、希釈剤、界面活性剤を例示すれば、まず、固体坦体として、タルク、カオリン、ベントナイト、珪藻土、ホワイトカーボン、およびクレーなどがある。液体希釈剤として、水、キシレン、トルエン、クロロベンゼン、シクロヘキサン、シクロヘキサノン、ジメチルスルホキシド、ジメチルホルムアミド、およびアルコールなどがある。界面活性剤は、その効果により使い分けるのがよく、乳化剤として、ポリオキシエチレンアルキルアリールエーテル、およびポリオキシエチレンソルビタンモノラウレートなど、分散剤として、リグニンスルホン酸塩、およびジブチルナフタリンスルホン酸塩など、湿潤剤として、アルキルスルホン酸塩、およびアルキルフェニルスルホン酸塩など、を挙げることができる。 Examples of carriers, diluents, and surfactants used as formulation adjuvants include talc, kaolin, bentonite, diatomaceous earth, white carbon, and clay as solid carriers. Liquid diluents include water, xylene, toluene, chlorobenzene, cyclohexane, cyclohexanone, dimethyl sulfoxide, dimethylformamide, and alcohol. Surfactants should be properly used depending on the effect, such as polyoxyethylene alkylaryl ether and polyoxyethylene sorbitan monolaurate as emulsifiers, lignin sulfonate and dibutyl naphthalene sulfonate as dispersants, Examples of the wetting agent include alkyl sulfonates and alkyl phenyl sulfonates.
 製剤は、そのまま使用してもよいし、水等の希釈剤で所定濃度に希釈して使用してもよい。希釈して使用する場合、有効成分の濃度は、希釈後の薬剤全量に対して0.001~1.0%の範囲とすることが望ましい。 The preparation may be used as it is, or diluted to a predetermined concentration with a diluent such as water. When used after diluting, the concentration of the active ingredient is desirably in the range of 0.001 to 1.0% with respect to the total amount of drug after dilution.
 また、本発明に係る農園芸用薬剤における化合物(I)の使用量は、畑、田、果樹園、および温室などの農園芸地1haあたり、20~5000g、より好ましくは50~2000gである。当該農園芸用薬剤に含有されている他の有効成分の含有量については、化合物(I)の使用量に基づいて適宜設定すればよい。これらの使用濃度および使用量は剤形、使用時期、使用方法、使用場所、および対象作物等によっても異なるため、上記の範囲にこだわることなく増減することが可能である。 In addition, the amount of compound (I) used in the agricultural and horticultural agent according to the present invention is 20 to 5000 g, more preferably 50 to 2000 g, per 1 ha of agricultural and horticultural land such as fields, rice fields, orchards, and greenhouses. What is necessary is just to set suitably about content of the other active ingredient contained in the said agricultural and horticultural medicine based on the usage-amount of compound (I). Since these use concentrations and amounts vary depending on the dosage form, use time, use method, use place, target crop, etc., they can be increased or decreased without sticking to the above range.
 さらに、本発明に係る農園芸用薬剤は、上述した有効成分以外にも以下に示す他の有効成分(殺菌剤、殺虫剤、殺ダニ剤、除草剤に含まれる有効成分)と組み合わせ、農園芸用薬剤としての性能を高めて使用することもできる。 Furthermore, the agricultural and horticultural medicine according to the present invention is combined with other active ingredients (active ingredients contained in bactericides, insecticides, acaricides and herbicides) shown below in addition to the above-mentioned active ingredients, It can also be used with improved performance as a pharmaceutical agent.
 <抗菌性物質>
 メラニン生合成阻害剤(MBI剤)として以下の化合物。
<Antimicrobial substances>
The following compounds as melanin biosynthesis inhibitors (MBI agents).
 カルプロパミド、ジクロシメット、フェノキサニル、フサライド、ピロキロン、およびトリシクラゾール。 Carpropamide, diclocimet, phenoxanyl, fusalide, pyroxylone, and tricyclazole.
 その他の化合物として以下の化合物。 The following compounds are other compounds.
 アシベンゾラル‐Sメチル、アミスルブロム、2-フェニルフェノール(OPP)、ベンチアバリカルブ-イソプロピル、ボルドー液、ボラックス、ビカルボネイト、ビフェニル、ブラストサイジン-S、ブロノポール、ブピリメート、セックブチラミン、カルシウムポリスルフィド、カプタフォル、キャプタン、カルボキシン、キノメチオネート、クロロネブ、クロロピクリン、クロロタロニル、クロゾリネート、シアゾファミド、シフルフェナミド、シモキサニル、シプロジニル、ダゾメット、デバカルブ、ジクロフルアニド、ジクロメジン、ジクロラン、ジフルメトリン、ジノカップ、ジフェニルアミン、ジチアノン、ドデモルフ、ドジン、ジメトモルフ、エディフェンフォス、エタポキサム、エトキシキン、エトリジアゾール、エネストロブリン、フェンピクロニル、フェンチン、フェルバム、フェリムゾン、フルアジナム、フルジオキソニル、フルモルフ、フルオロイミド、フルスルファミド、フォルペット、フォセチル-アルミニウム、フララキシル、フルオピコリド、グアザチン、ヘキサクロロベンゼン、ヒメキサゾール、イミノクタジン、イプロベンフォス、イプロジオン、イプロバリカルブ、イソプロチオラン、イソピラザム、イソチアニル、カスガマイシン、銅調製物(例えば水酸化銅、ナフテン酸銅、オキシ塩化銅、硫酸銅、酸化銅、オキシン-銅)、クレゾキシムメチル、マンコカッパー、マンコゼブ、マネブ、マンジプロパミド、メパニピリム、メプロニル、メチラム、ミルジオマイシン、ニトロタル-イソプロピル、オフレース、オキサジキシル、オキソリニック酸、オキシカルボキシン、オキシテトラサイクリン、ペンシクロン、ピリベンカルブ、ピコキシストロビン、ピペラリン、ポリオキシン、プロベナゾール、プロシミドン、プロパモカルブ、プロピネブ、プロキナジド、ピラゾフォス、ピリフェノックス、ピリメタニル、キノキシフェン、キントゼン、シルチオファム、硫黄および硫黄調製物、テクロフタラム、テクナゼン、チラム、チアジニル、トルクロフォス-メチル、トリルフルアニド、トリアゾキシド、バリダマイシン、ビンクロゾリン、ジネブ、ジラム、ゾキサミド、アミスルブロム、フルチアニル、バリフェナール、アメトクトラジン、メトラフェノン、ヒドロキシイソキサゾール、チフルザミド、トリデモルフならびにメタスルホカルブ等。 Acibenzoral-S methyl, amisulbrom, 2-phenylphenol (OPP), bench avaricarb isopropyl, Bordeaux solution, borax, bicarbonate, biphenyl, blasticidin-S, bronopol, bupyrimeate, secbutyramine, calcium polysulfide, captafor, captan , Carboxin, quinomethionate, chloronebu, chloropicrin, chlorothalonil, clozolinate, cyazofamide, cyflufenamide, simoxanyl, cyprodinil, dazomet, debacarb, diclofluanid, diclomedin, dichlorane, diflumethrin, dinocup, diphenylamine, dithianone, dodemol Fenphos, etapoxam, ethoxyquin, etridiazole, energy Strobulin, fenpicuronyl, fentin, ferbam, ferrimzone, fluazinam, fludioxonil, furmorph, fluoroimide, flusulfamide, folpette, fosetyl-aluminum, flaxyl, fluopicolide, guazatine, hexachlorobenzene, himexazole, iminoctazine, iprobenfos, iprodicarb , Isopyrazam, Isothianyl, Kasugamycin, Copper preparations (eg copper hydroxide, copper naphthenate, copper oxychloride, copper sulfate, copper oxide, oxine-copper), crezooxime methyl, mancopper, mancozeb, maneb, mandipropamide, mepanipyrim , Mepronil, methylam, myrdiomycin, nitrotal-isopropyl, off-race, oxadixyl, o Solinic acid, oxycarboxin, oxytetracycline, pencyclon, pyribencarb, picoxystrobin, piperalin, polyoxin, probenazole, procymidone, propamocarb, propineb, proquinazide, pyrazophos, pyrifenox, pyrimethanil, quinoxyphene, quintozene, silthiophane, sulfur and sulfur Preparations, teclophthalam, technazene, thiram, thiazinyl, tolurophos-methyl, tolylfluanid, triazoxide, validamycin, vinclozolin, dineb, diram, zoxamide, amisulbrom, fluthianyl, varifenal, amethoctrazine, metolaphenone, hydroxyisoxazole, tifluzamide As well as metasulfocarb.
 <殺虫剤/殺ダニ剤/殺線虫剤>
 アバメクチン、アセフェート、アクリナトリン、アラニカルブ、アルジカルブ、アレトリン、アミトラズ、アベルメクチン、アザジラクチン、アザメチフォス、アジンフォス-エチル、アジンフォス-メチル、アゾサイクロチン、バシルス・フィルムス、バシルス・ズブチルス、バシルス・ツリンジエンシス、ベンジオカルブ、ベンフラカルブ、ベンスルタップ、ベンゾキシメイト、ビフェナゼイト、ビフェントリン、ビオアレトリン、ビオレスメトリン、ビストリフルロン、ブプロフェジン、ブトカルボキシン、ブトキシカルボキシン、カズサフォス、カルバリル、カルボフラン、カルボスルファン、カータップ、CGA 50439、クロルデイン、クロレトキシフォス、クロルフェナピル、クロルフェンビンフォス、クロルフルアズロン、クロルメフォス、クロルピリフォス、クロルピリフォスメチル、クロマフェノザイド、クロフェンテジン、クロチアニジン、クロラントラリニプロール、コウンパフォス、クリオライト、シアノフォス、シクロプロトリン、シフルトリン、シハロトリン、シヘキサチン、シペルメトリン、シフェノトリン、シロマジン、シアザピル、シエノピラフェン、DCIP、DDT、デルタメトリン、デメトン-S-メチル、ジアフェンチウロン、ジアジノン、ジクロロフェン、ジクロロプロペン、ジクロルボス、ジコフォル、ジクロトフォス、ジシクラニル、ジフルベンズロン、ジメトエート、ジメチルビンフォス、ジノブトン、ジノテフラン、エマメクチン、エンドスルファン、EPN、エスフェンバレレート、エチオフェンカルブ、エチオン、エチプロール、エトフェンプロックス、エトプロフォス、エトキサゾール、ファムフル、フェナミフォス、フェナザキン、フェンブタチンオキシド、フェニトロチオン、フェノブカルブ、フェノチオカルブ、フェノキシカルブ、フェンプロパトリン、フェンピロキシメート、フェンチオン、フェンバレレート、フイプロニル、フロニカミド、フルアクロピリム、フルシクロクスロン、フルシトリネート、フルフェノクスロン、フルメトリン、フルバリネート、フルベンジアミド、フォルメタネート、フォスチアゼート、ハルフェンプロクス、フラチオカルブ、ハロヘノジド、ガンマ-HCH、ヘプテノフォス、ヘキサフルムロン、ヘキシチアゾックス、ヒドラメチルノン、イミダクロプリド、イミプロトリン、インドキサカルブ、イソプロカルブ、イソキサチオン、ルフェヌロン、マラチオン、メカルバム、メタム、メタミドフォス、メチダチオン、メチオカルブ、メトミル、メトプレン、メトスリン、メトキシフェノジド、メトルカルブ、ミルベメクチン、モノクロトフォス、ナレド、ニコチン、ニテンピラム、ノバルロン、ノビフルムロン、オメトエート、オキサミル、オキシデメトンメチル、パラチオン、パーメトリン、フェントエート、フォレート、フォサロン、フォスメット、フォスファミドン、フォキシム、ピリミカルブ、ピリミフォスメチル、プロフェノフォス、プロポクスル、プロチオフォス、ピメトロジン、ピラクロフォス、ピレスリン、ピリダベン、ピリダリル、ピリミジフェン、ピリプロキシフェン、ピリフルキナゾン、ピリプロール、キナルフォス、シラフルオフェン、スピノサド、スピロジクロフェン、スピロメシフェン、スピロテトラマット、スルフラミド、スルフォテップ、SZI-121、テブフェノジド、テブフェンピラド、テブピリムフォス、テフルベンズロン、テフルトリン、テメフォス、テルブフォス、テトラクロルビンフォス、チアクロプリド、チアメトキサム、チオジカルブ、チオファノックス、チオメトン、トルフェンピラド、トラロメトリン、トラロピリル、トリアザメート、トリアゾフォス、トリクロルフオン、トリフルムロン、バミドチオン、バリフェナール、XMC、キシリルカルブ、イミシアホス、およびレピメクチン等。
<Insecticide / acaricide / nematicide>
Abamectin, Acephate, Acrinathrin, Alanicarb, Aldicarb, Alletrin, Amitraz, Avermectin, Azadirachtin, Azamethifos, Azinphos-ethyl, Azinphos-methyl, Azocycline, Bacillus filmus, Bacillus subtilis, Bacillus thuringibulbbenthulbenbencarb , Benzoxymate, Bifenazite, Bifenthrin, Bioallethrin, Bioresmethrin, Bistriflurone, Buprofezin, Butocaboxin, ButoxyCarboxin, Kazusafos, Carbaryl, Carbofuran, Carbosulfan, Cartap, CGA 50439, Chlordein, Chloretifos, Chlorphenapal Chlorfenvin foss, chlorfluazuron , Chlormefos, Chlorpyrifos, Chlorpyrifosmethyl, Chromaphenozide, Chlofenthedin, Clothianidin, Chlorantraliniprole, Counpafos, Cryolite, Cyanophos, Cycloproton, Cyfluthrin, Cyhalothrin, Cihexatin, Cipermethrin, Ciphenothrin , Cyromazine, ciazapyr, sienopyrfen, DCIP, DDT, deltamethrin, demeton-S-methyl, diafenthiuron, diazinon, dichlorophen, dichloropropene, dichlorovos, dicofol, dicrotophos, dicyclanil, diflubenzuron, dimethoate, dimethylvinphos, dinobutone Dinotefuran, emamectin, endosulfan, EPN, esfenvalerate, etiophencarb, ethion, Tiprol, etofenprox, etoprofos, etoxazole, famflu, fenamifos, phenazaquin, fenbutatin oxide, fenitrothion, fenocarb, phenothiocarb, phenoxycarb, fenpropatrine, fenpyroximate, fenthionate, fenvalerate, fipronil, flunipyamide Ron, flucitrinate, flufenoxuron, flumethrin, fulvalinate, fulvendiamide, formethanate, fostiazate, halfenprox, furthiocarb, halohenozide, gamma-HCH, heptenofos, hexaflumuron, hexithiazox, hydramethylnon , Imidacloprid, imiprothrin, indoxacarb, isoproca Bu, isoxathion, lufenuron, malathion, mecarbam, metham, methamidophos, methidathione, metiocarb, methomyl, methoprene, methosrine, methoxyphenozide, metorcarb, milbemectin, monocrotofos, nared, nicotine, nitenpyram, novalflumetron, oxyflumetron Tonmethyl, parathion, permethrin, phentoate, folate, fosaron, fosmet, fosfamidon, foxime, pirimicarb, pirimiphos methyl, profenofos, propoxur, prothiophos, pymetrozine, pyracrofos, pyrethrin, pyridaben, pyridalyl, pyrimidifene, pyriproxy Fen, Pyrifluquinazone, Pyriprole, Quinarfos, Shirafu Luofen, Spinosad, Spirodiclofen, Spiromesifene, Spirotetramat, Sulfamide, Sulfotep, SZI-121, Tebufenozide, Tebufenpyrad, Tebupyrimfos, Teflubenzuron, Tefluthrin, Temefos, Terbufos, Tetrachlorbinfos, Thiacloprid, Thiamethoxam Fanox, thiometone, tolfenpyrad, tralomethrin, tralopyril, triazamate, triazophos, trichlorphone, triflumuron, bamidthione, varifenal, XMC, xylylcarb, imisiaphos, and lepimectin.
 <植物成長調節剤>
 アンシミドール、6-ベンジルアミノプリン、パクロブトラゾール、ジクロブトラゾール、ウニコナゾール、メチルシクロプロペン、メピコートクロリド、エセフォン、クロルメコートクロライド、イナベンフィド、プロヘキサジオンおよびその塩、ならびにトリネキサパックエチル等。また、植物ホルモンとしてのジャスモン酸、ブラシノステロイド、およびジベレリン等。
<Plant growth regulator>
Ansimidol, 6-benzylaminopurine, paclobutrazole, diclobutrazole, uniconazole, methylcyclopropene, mepiquat chloride, ethephone, chlormequat chloride, inabenfide, prohexadione and salts thereof, and trinexa Pack ethyl etc. Moreover, jasmonic acid, brassinosteroid, gibberellin and the like as plant hormones.
 (3)農園芸用薬剤を用いた植物病害防除方法
 本実施の形態に係る農園芸用薬剤は、茎葉散布といった茎葉処理に加えて、種子処理、潅注処理、および水面処理などの非茎葉処理によっても施用できる。したがって、本実施の形態に係る植物病害防除方法は、上述の農園芸用薬剤を用いて茎葉処理または非茎葉処理を行う手順を含む方法である。なお、非茎葉処理を行う場合には、茎葉処理を行う場合に比べて、労力を低減させることができる。
(3) Plant disease control method using agricultural and horticultural chemicals In addition to the foliage treatment such as foliage spraying, the agricultural and horticultural chemicals according to the present embodiment are obtained by non-foliage treatment such as seed treatment, irrigation treatment, and water surface treatment. Can also be applied. Therefore, the plant disease control method according to the present embodiment is a method including a procedure for performing foliage treatment or non-foliage treatment using the above-mentioned agricultural and horticultural chemicals. In addition, when performing a non-foliage process, a labor can be reduced compared with the case where a foliage process is performed.
 種子処理による施用では、水和剤または粉剤などを種子と混合し攪拌することにより、あるいは希釈した水和剤などに種子を浸漬することにより、薬剤を種子に付着させる。種子処理の場合の有効成分の合算の使用量は、種子100kgに対して0.01~10000gであり、好ましくは0.1~1000gである。なお、本発明に係る農園芸用薬剤で処理した種子は、通常の種子と同様に利用すればよい。 In application by seed treatment, a wettable powder or powder is mixed with the seed and stirred, or the seed is immersed in a diluted wettable powder to attach the drug to the seed. The combined use amount of the active ingredients in the seed treatment is 0.01 to 10000 g, preferably 0.1 to 1000 g, per 100 kg of seeds. In addition, what is necessary is just to utilize the seed processed with the agricultural and horticultural chemical | medical agent which concerns on this invention similarly to a normal seed.
 潅注処理による施用は、苗の移植時などに植穴およびその周辺に粒剤などを処理したり、種子または植物体の周囲の土壌に粒剤または水和剤などを処理したりすることによって行う。潅注処理の場合の有効成分の合算の使用量は、農園芸地1mあたり0.01~10000gであり、好ましくは0.1~1000gである。 Application by irrigation is performed by treating the planting hole and its surroundings with granules, etc. at the time of transplanting seedlings, or treating the soil around the seeds or plants with granules or wettable powder. . The total use amount of the active ingredients in the irrigation treatment is 0.01 to 10000 g, preferably 0.1 to 1000 g, per 1 m 2 of agricultural and horticultural land.
 水面処理による施用は、水田の田面水に粒剤などを処理することによって行う。水面処理の場合の有効成分の合算の使用量は、水田10aあたり0.1~10000gであり、好ましくは1~1000gである。 Application by water surface treatment is performed by treating the surface of paddy fields with granules. The combined use amount of active ingredients in the case of water surface treatment is 0.1 to 10000 g, preferably 1 to 1000 g, per paddy field 10a.
 茎葉散布に用いる場合の有効成分の合算の使用量は、畑、田、果樹園および温室などの農園芸地1haあたり20~5000g、より好ましくは50~2000gである。なお、使用濃度および使用量は剤形、使用時期、使用方法、使用場所および対象作物等によっても異なるため、上記の範囲にこだわることなく増減することが可能である。
(付記事項)
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
When used for foliage spraying, the total amount of active ingredients used is 20 to 5000 g, more preferably 50 to 2000 g, per ha of agricultural and horticultural lands such as fields, fields, orchards and greenhouses. The concentration and amount used vary depending on the dosage form, time of use, method of use, place of use, target crop, etc., and can be increased or decreased without sticking to the above range.
(Additional notes)
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
 以下、製造例、製剤例、試験例を示し、本発明を具体的に説明する。なお、本発明はその要旨を越えない限り以下の製造例、製剤例および試験例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to production examples, formulation examples, and test examples. In addition, this invention is not limited to the following manufacture examples, formulation examples, and test examples, unless the summary is exceeded.
 化合物(I)に不斉炭素が2個以上存在する場合は、異性体として複数のジアステレオマーが生成する。これらのジアステレオマー全てをそれぞれ分離、帰属することは困難である。そこで、以下の製造例等においては、帰属可能となったジアステレオマーのみを、アルファベット順に記載した。アルファベット順の順序に特段の意味はなく、帰属された順に、例えば、化合物I-1a、化合物I-1b等と記載した。 When two or more asymmetric carbons are present in compound (I), a plurality of diastereomers are produced as isomers. It is difficult to separate and assign all these diastereomers. Therefore, in the following production examples, only diastereomers that can be assigned are described in alphabetical order. There is no particular meaning to the order in alphabetical order. For example, compound I-1a, compound I-1b and the like are described in the assigned order.
 <試験例1:コムギ赤かび病に対する防除効果試験>
 エポキシコナゾールと以下の化学式で示される化合物(下記製造例4の化合物I-4)を所定の割合で混合し、コムギ赤かび病に対する協力効果を試験した。
<Test Example 1: Control effect test against wheat leaf mold>
Epoxyconazole and a compound represented by the following chemical formula (Compound I-4 of Production Example 4 below) were mixed at a predetermined ratio, and the cooperative effect on wheat red mold was tested.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 開花期のコムギ(品種:農林61号)の穂を止葉の上部より切り取り、水耕液(ハイポネックス)を添加した長さ10cmの試験管に挿し入れた(切り穂3本/試験管)。所定薬量を秤量後、各化合物をアセトンに溶解して混合し、散布液(アセトン10%、展着剤(グラミンS)60ppm)を調製した。散布液を切り穂に対して液量1000L/ha相当で散布した(1区3連制)。室温にて散布液を乾燥させた後、コムギ赤かび病菌の子のう胞子液(5×10/ml)を切り穂に散布接種した。その後20℃の湿箱内に5日間保持し、発病の程度をBan & Suenagaの発病指数(Ban & Suenaga Euphyitica 113, p87-99, (2000)参照)で調査し、薬剤無処理区の発病度を基準に防除価を算出した。 The ears of wheat at the flowering stage (variety: Norin 61) were cut from the top of the leaf and inserted into a 10 cm long test tube to which hydroponics (hyponex) was added (3 cut ears / test tube). After weighing a predetermined amount, each compound was dissolved in acetone and mixed to prepare a spray solution (acetone 10%, spreading agent (Guramin S) 60 ppm). The sprayed liquid was sprayed on the cut ears at a liquid volume equivalent to 1000 L / ha (one ward three-track system). After the spray solution was dried at room temperature, wheat spores spores (5 × 10 5 / ml) were spray-inoculated on the cut ears. After that, it is kept in a 20 ° C wet box for 5 days, and the severity of the disease is investigated by the disease index of Ban & Suenaga (see Ban & Suenaga Euphyitica 113, p87-99, (2000)). The control value was calculated based on
 混合による協力効果の判定は、文献記載の等効果曲線法に従って行った(農薬実験法第3巻、ソフトサイエンス社、p109-116参照)。エポキシコナゾールと化合物I-4とを異なる濃度で組み合わせて用いた場合の防除価から、一定の防除価を示す等効果曲線を作成した。そして、等効果直線が直線的なら効果が相加的、上に湾曲している場合は拮抗的、下に湾曲している場合は相乗的と判定した。 Judgment of the cooperation effect by mixing was performed according to the iso-effect curve method described in the literature (see Pesticide Experiment Method Vol. 3, Soft Science, p109-116). From the control values when epoxiconazole and compound I-4 were used in combination at different concentrations, an isoeffect curve showing a certain control value was prepared. When the straight line of the equal effect is linear, the effect is determined to be additive, when it is curved upward, it is determined to be antagonistic, and when it is curved downward, it is determined to be synergistic.
 試験結果を図1に示す。図1は、エポキシコナゾールと化合物I-4とを異なる濃度で組み合わせて用いた場合に防除価90が得られる等効果曲線を示す。等効果曲線は、下に湾曲しており、化合物I-4とエポキシコナゾールとが相乗的な効果を示すことが明らかとなった。 The test results are shown in FIG. FIG. 1 shows an equi-effect curve that gives a control value of 90 when epoxiconazole and compound I-4 are used in combination at different concentrations. The isoeffect curve is curved downward, revealing that compound I-4 and epoxiconazole have a synergistic effect.
 <試験例2:コムギ赤かび病に対する防除効果試験>
 ピラクロストロビンと前記の化合物I-4とを所定の割合で混合し、コムギ赤かび病に対する協力効果を試験した。
<Test Example 2: Control effect test against wheat leaf mold>
Pyraclostrobin and the above compound I-4 were mixed at a predetermined ratio, and the cooperative effect on wheat leaf mold was tested.
 ピラクロストロビンと化合物I-4とを含む薬液を調製し、所定投下薬量となるように切穂に散布した。その他の試験方法および協力効果の判定方法は試験例1と同様である。 A chemical solution containing pyraclostrobin and compound I-4 was prepared and sprayed on the cut ears so as to obtain a predetermined dose. The other test methods and the determination method of the cooperation effect are the same as in Test Example 1.
 試験結果を図2に示す。図2は、ピラクロストロビンと化合物I-4とを異なる濃度で組み合わせて用いた場合に防除価70が得られる等効果曲線を示す。等効果曲線は、下に湾曲しており、化合物I-4とピラクロストロビンとが相乗的な効果を示すことが明らかとなった。 The test results are shown in FIG. FIG. 2 shows an equivalent effect curve in which a control value of 70 is obtained when pyraclostrobin and compound I-4 are used in combination at different concentrations. The isoeffect curve is curved downward, revealing that compound I-4 and pyraclostrobin have a synergistic effect.
 <試験例3:コムギ赤かび病に対する防除効果試験>
 ビキサフェンと前記の化合物I-4とを所定の割合で混合し、コムギ赤かび病に対する協力効果を試験した。
<Test Example 3: Control effect test against wheat leaf mold>
Bixafen and the aforementioned compound I-4 were mixed at a predetermined ratio, and the cooperative effect on wheat red mold was tested.
 開花中のコムギ植物体(品種:農林61号)より切穂を調製した。ビキサフェンと化合物I-4とを含む薬液を調製し、所定投下薬量となるように切穂に散布した。その他の試験方法は試験例1と同様である。 Cut ears were prepared from flowering wheat plants (variety: Norin 61). A medicinal solution containing bixaphene and compound I-4 was prepared and sprayed on the cut ears to give a predetermined dosage. Other test methods are the same as in Test Example 1.
 コルビーの式(下記式参照)を用い、ビキサフェンと化合物I-4とをそれぞれ単独散布した場合の防除価から、混合散布した場合の防除価の理論値を計算した。そして、実際の混合散布時の防除価が理論値より大きければ効果が相乗的、同等であれば相加的、小さければ拮抗的であると判断した。 Using the Colby formula (see the following formula), the theoretical value of the control value in the case of mixed spraying was calculated from the control value in the case of separately spraying bixafen and compound I-4. Then, it was judged that the effect was synergistic if the control value at the time of actual mixed spraying was larger than the theoretical value, additive if it was equivalent, and antagonistic if it was small.
 混合散布時の防除価(理論値)=α+((100-α)×β)/100
 式中、それぞれの薬剤の単独散布時の防除価をα、βとする。
Control value at the time of mixing spraying (theoretical value) = α + ((100−α) × β) / 100
In the formula, α and β are the control values when each agent is sprayed alone.
 結果を表1に示す。ビキサフェンと化合物I-4とを混合散布した際の防除価は、それぞれを単独独散布した場合の防除価から算出される理論値よりも大きく、化合物I-4とビキサフェンとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 1. The control value of the mixture sprayed with Bixafen and Compound I-4 is larger than the theoretical value calculated from the control value of each sprayed alone, and Compound I-4 and Bixafen have a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 <試験例4:コムギ赤かび病に対する防除効果試験>
 メトコナゾールと化合物I-2とを所定の割合で混合し、コムギ赤かび病に対する協力効果を試験した。
<Test Example 4: Control effect test against wheat leaf mold>
Methoconazole and Compound I-2 were mixed at a predetermined ratio, and the cooperative effect on wheat red mold was tested.
 開花中のコムギ植物体(品種:農林61号)より切穂を調製した。メトコナゾールと化合物I-2とを含む薬液を調製し、所定投下薬量となるように切穂に散布した。室温に約1時間置いて切穂を乾燥させた後、赤かび病菌(Fusarium graminearum)の子嚢胞子懸濁液(1×10個/ml)を散布接種した。20℃の室箱中に保持し、5日後に文献記載の評価法(Ban & Suenaga Euphyitica 113, p87-99, (2000)参照)に従って発病を調査した。試験規模は切穂1連3本、1処理区3連で行った。 Cut ears were prepared from flowering wheat plants (variety: Norin 61). A medicinal solution containing metconazole and compound I-2 was prepared and sprayed on the cut ears so as to obtain a predetermined dose. The cut ears were dried at room temperature for about 1 hour, and then sprayed and inoculated with a Fusarium graminearum ascospore suspension (1 × 10 5 cells / ml). It was kept in a room box at 20 ° C., and after 5 days, the disease was investigated according to the evaluation method described in the literature (see Ban & Suenaga Euphyitica 113, p87-99, (2000)). The test scale was three cut ears and one treatment zone.
 コルビーの式(下記式参照)を用い、メトコナゾールと化合物I-2とをそれぞれ単独散布した場合の防除価から、混合散布した場合の防除価の理論値を計算した。そして、実際の混合散布時の防除価が理論値より大きければ効果が相乗的、同等であれば相加的、小さければ拮抗的であると判断した。 Using the Colby formula (see the following formula), the theoretical value of the control value when mixed sprayed was calculated from the control value when metconazole and compound I-2 were sprayed individually. Then, it was judged that the effect was synergistic if the control value at the time of actual mixed spraying was larger than the theoretical value, additive if it was equivalent, and antagonistic if it was small.
 混合散布時の防除価(理論値)=α+((100-α)×β)/100
 式中、それぞれの薬剤の単独散布時の防除価をα、βとする。
Control value at the time of mixing spraying (theoretical value) = α + ((100−α) × β) / 100
In the formula, α and β are the control values when each agent is sprayed alone.
 試験結果を図3に示す。メトコナゾールと化合物I-2とを混合散布した際の防除価は、それぞれを単独独散布した場合の防除価から算出される理論値よりも大きく、化合物I-2とメトコナゾールが相乗的な効果を示すことが明らかとなった。 The test results are shown in FIG. The control value when metconazole and compound I-2 were mixed and sprayed was larger than the theoretical value calculated from the control value when each was sprayed alone, and compound I-2 and metconazole showed a synergistic effect. It became clear.
 <試験例5:コムギ赤かび病に対する防除効果試験>
 化合物I-2の代わりに化合物I-4または化合物I-8を用いた以外は試験例4と同様の方法でコムギ赤かび病に対する防除効果試験を行った。化合物I-4を用いた場合の結果を図4に示し、化合物I-8を用いた場合の結果を図5に示す。
<Test Example 5: Control effect test on wheat leaf mold>
A control effect test for wheat leaf blight was conducted in the same manner as in Test Example 4 except that Compound I-4 or Compound I-8 was used instead of Compound I-2. The results when using Compound I-4 are shown in FIG. 4, and the results when using Compound I-8 are shown in FIG.
 化合物I-4または化合物I-8を用いた場合にも、混合散布した際の防除価は、それぞれを単独独散布した場合の防除価から算出される理論値よりも大きく、化合物I-4または化合物I-8とメトコナゾールとが相乗的な効果を示すことが明らかとなった。 Also in the case of using Compound I-4 or Compound I-8, the control value when mixed and sprayed is larger than the theoretical value calculated from the control value when spraying each alone, It was revealed that Compound I-8 and metconazole have a synergistic effect.
 <試験例6:in vitro抗菌活性試験>
 ボスカリドと化合物I-4とを所定濃度となるようにPDA培地中に混和した。予めPDA培地で前培養を行った麦類赤かび病菌(Microdocum nivale)のコロニー周辺から直径4mmの菌叢ディスクを切り取り、薬剤を混和したPDA培地上に植菌した。25℃、3日間培養した後、生育したコロニーの直径を計り、薬剤を含まない培地上のコロニー直径と比較して菌糸生長阻害率を求めた。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 6: In vitro antibacterial activity test>
Boscalid and compound I-4 were mixed in PDA medium to a predetermined concentration. A 4 mm diameter flora disk was cut out from the vicinity of the colony of the wheat leaf blight fungus (Microdocum nivale) that had been pre-cultured in a PDA medium, and inoculated on the PDA medium mixed with the drug. After culturing at 25 ° C. for 3 days, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表2に示す。ボスカリドと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とボスカリドとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 2. The growth inhibition rate when boscalid and compound I-4 were mixed was larger than the theoretical value calculated from the inhibition rate when each was used alone, and compound I-4 and boscalid had a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 <試験例7:in vitro抗菌活性試験>
 イソピラザムと化合物I-4とを所定濃度となるようにPDA培地中に混和し、麦類赤かび病菌(Microdocum nivale)の菌糸生長阻害率を求めた。試験方法は試験例6と同様である。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 7: In vitro antibacterial activity test>
Isopyrazam and compound I-4 were mixed in a PDA medium at a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined. The test method is the same as in Test Example 6. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表3に示す。イソピラザムと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とイソピラザムとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 3. The growth inhibition rate when isopyrazam and compound I-4 are mixed is larger than the theoretical value calculated from the inhibition rate when each is used alone, and compound I-4 and isopyrazam have a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 <試験例8:in vitro抗菌活性試験>
 フルオピラムと化合物I-4とを所定濃度となるようにPDA培地中に混和した。予めPDA培地で前培養を行ったイネ紋枯病菌(Rhizoctonia oryzae)のコロニー周辺から直径4mmの菌叢ディスクを切り取り、薬剤を混和したPDA培地上に植菌した。25℃、1日間培養した後、生育したコロニーの直径を計り、薬剤を含まない培地上のコロニー直径と比較して菌糸生長阻害率を求めた。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 8: In vitro antibacterial activity test>
Fluopyram and compound I-4 were mixed in PDA medium to a predetermined concentration. A 4 mm diameter bacterial flora disc was cut out from around the colony of rice rot (Rhizoctonia oryzae) pre-cultured in PDA medium and inoculated on PDA medium mixed with the drug. After culturing at 25 ° C. for 1 day, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表4に示す。フルオピラムと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とフルオピラムとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 4. The growth inhibition rate when fluopyram and compound I-4 are mixed is larger than the theoretical value calculated from the inhibition rate when each is used alone, and compound I-4 and fluopyram have a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 <試験例9:in vitro抗菌活性試験>
 フラメトピルと前記の化合物I-4とを所定濃度となるようにPDA培地中に混和した。予めPDA培地で前培養を行ったコムギ眼紋病菌(Pseudocercoporella herpotrichoides)のコロニー周辺から直径4mmの菌叢ディスクを切り取り、薬剤を混和したPDA培地上に植菌した。20℃、7日間培養した後、生育したコロニーの直径を計り、薬剤を含まない培地上のコロニー直径と比較して菌糸生長阻害率を求めた。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 9: In vitro antibacterial activity test>
Frametopyr and the above compound I-4 were mixed in a PDA medium so as to have a predetermined concentration. A 4 mm-diameter flora disk was cut out from around a colony of wheat eye spot fungus (Pseudocercoporella herpotrichoides) that had been pre-cultured in PDA medium in advance, and inoculated on PDA medium mixed with the drug. After culturing at 20 ° C. for 7 days, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表5に示す。フラメトピルと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とフラメトピルとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 5. The growth inhibition rate when mixing flametopil and compound I-4 is larger than the theoretical value calculated from the inhibition rate when each is used alone, and compound I-4 and flametopil have a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 <試験例10:in vitro抗菌活性試験>
 ベノダニルと化合物I-4とを所定濃度となるようにPDA培地中に混和した。予めPDA培地で前培養を行ったコムギふ枯病(Phaeosphaeria nodorum)のコロニー周辺から直径4mmの菌叢ディスクを切り取り、薬剤を混和したPDA培地上に植菌した。20℃、7日間培養した後、生育したコロニーの直径を計り、薬剤を含まない培地上のコロニー直径と比較して菌糸生長阻害率を求めた。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 10: In vitro antibacterial activity test>
Benodanil and compound I-4 were mixed in PDA medium to a predetermined concentration. A 4 mm diameter bacterial flora disc was cut out from around the colony of wheat blight (Phaeosphaeria nodorum) that had been pre-cultured in a PDA medium, and inoculated on a PDA medium mixed with the drug. After culturing at 20 ° C. for 7 days, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表6に示す。ベノダニルと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とベノダニルとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 6. The growth inhibition rate when benodanyl and compound I-4 were mixed was larger than the theoretical value calculated from the inhibition rate when each was used alone, and compound I-4 and benodanyl had a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 <試験例11:in vitro抗菌活性試験>
 ペンチオピラドと化合物I-4とを所定濃度となるようにPDA培地中に混和した。予めPDA培地で前培養を行ったコムギ立枯れ病菌(Gaeumannomyces graminis)のコロニー周辺から直径4mmの菌叢ディスクを切り取り、薬剤を混和したPDA培地上に植菌した。20℃、3日間培養した後、生育したコロニーの直径を計り、薬剤を含まない培地上のコロニー直径と比較して菌糸生長阻害率を求めた。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 11: In vitro antibacterial activity test>
Penthiopyrad and compound I-4 were mixed in PDA medium to a predetermined concentration. A 4 mm-diameter flora disk was cut out from around the colony of a wheat blight fungus (Gaeumannomyces graminis) that had been pre-cultured in a PDA medium in advance and inoculated on a PDA medium mixed with the drug. After culturing at 20 ° C. for 3 days, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表7に示す。ペンチオピラドと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とペンチオピラドとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 7. The growth inhibition rate when penthiopyrad and compound I-4 are mixed is larger than the theoretical value calculated from the inhibition rate when each is used alone, and compound I-4 and penthiopyrad have a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 <試験例12:in vitro抗菌活性試験>
 アゾキシストロビンと化合物I-4とを所定濃度となるようにPDA培地中に混和し、麦類赤かび病菌(Microdocum nivale)の菌糸生長阻害率を求めた。試験方法は試験例7と同様である。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 12: In vitro antibacterial activity test>
Azoxystrobin and compound I-4 were mixed in a PDA medium at a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined. The test method is the same as in Test Example 7. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表8に示す。アゾキシストロビンと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とアゾキシストロビンとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 8. The growth inhibition rate when azoxystrobin and compound I-4 were mixed was larger than the theoretical value calculated from the inhibition rate when each was used alone, and compound I-4 and azoxystrobin Was shown to have a synergistic effect.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 <試験例13:in vitro抗菌活性試験>
 クレソキシムメチルと化合物I-4とを所定濃度となるようにPDA培地中に混和し、麦類赤かび病菌(Microdocum nivale)の菌糸生長阻害率を求めた。試験方法は試験例7と同様である。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 13: In vitro antibacterial activity test>
Cresoxime methyl and compound I-4 were mixed in a PDA medium at a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined. The test method is the same as in Test Example 7. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表9に示す。クレソキシムメチルと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とクレソキシムメチルとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 9. The growth inhibition rate when mixing cresoxime methyl and compound I-4 is larger than the theoretical value calculated from the inhibition rate when each is used alone, and compound I-4 and cresoxime methyl have a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 <試験例14:in vitro抗菌活性試験>
 イプコナゾールと化合物I-4とを所定濃度となるようにPDA培地中に混和し、麦類赤かび病菌(Microdocum nivale)の菌糸生長阻害率を求めた。試験方法は試験例7と同様である。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 14: In vitro antibacterial activity test>
Ipconazole and Compound I-4 were mixed in a PDA medium at a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined. The test method is the same as in Test Example 7. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表10に示す。イプコナゾールと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とイプコナゾールとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 10. The growth inhibition rate when mixing ipconazole and compound I-4 is larger than the theoretical value calculated from the inhibition rate when each is used alone, and compound I-4 and ipconazole have a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 <試験例15:in vitro抗菌活性試験>
 プロクロラズと化合物I-4とを所定濃度となるようにPDA培地中に混和し、麦類赤かび病菌(Microdocum nivale)の菌糸生長阻害率を求めた。試験方法は試験例7と同様である。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 15: In vitro antibacterial activity test>
Prochloraz and compound I-4 were mixed in a PDA medium to a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined. The test method is the same as in Test Example 7. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表11に示す。プロクロラズと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とプロクロラズとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 11. The growth inhibition rate when prochloraz and compound I-4 were mixed was larger than the theoretical value calculated from the inhibition rate when each was used alone, and compound I-4 and prochloraz had a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 <試験例16:in vitro抗菌活性試験>
 プロチオコナゾールと化合物I-4とを所定濃度となるようにPDA培地中に混和した。予めPDA培地で前培養を行った灰色かび病菌(Botrytis cinerea)のコロニー周辺から直径4mmの菌叢ディスクを切り取り、薬剤を混和したPDA培地上に植菌した。20℃、2日間培養した後、生育したコロニーの直径を計り、薬剤を含まない培地上のコロニー直径と比較して菌糸生長阻害率を求めた。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 16: In vitro antibacterial activity test>
Prothioconazole and Compound I-4 were mixed in PDA medium to a predetermined concentration. A 4 mm diameter flora disk was cut out from around the colony of Botrytis cinerea pre-cultured in PDA medium, and inoculated on PDA medium mixed with the drug. After culturing at 20 ° C. for 2 days, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表12に示す。プロチオコナゾールと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とプロチオコナゾールとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 12. The growth inhibition rate when prothioconazole and compound I-4 are mixed is larger than the theoretical value calculated from the inhibition rate when each is used alone, and compound I-4 and prothioconazole synergistically It became clear that it showed the effect.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 <試験例17:in vitro抗菌活性試験>
 フェンプロピモルフと化合物I-4とを所定濃度となるようにPDA培地中に混和し、コムギ立枯れ病菌(Gaeumannomyces graminis)の菌糸生長阻害率を求めた。方法は試験例11と同様である。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 17: In vitro antibacterial activity test>
Fenpropimorph and compound I-4 were mixed in a PDA medium at a predetermined concentration, and the mycelial growth inhibition rate of wheat leaf blight fungus (Gaeumannomyces graminis) was determined. The method is the same as in Test Example 11. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表13に示す。フェンプロピモルフと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とフェンプロピモルフとが相乗効果を示すことが明らかになった。 The results are shown in Table 13. The growth inhibition rate when fenpropimorph and compound I-4 were mixed was larger than the theoretical value calculated from the inhibition rate when each was used alone, and compound I-4 and fenpropimorph were synergistic. It became clear to show the effect.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 <試験例18:in vitro抗菌活性試験>
 チオファネートメチルと化合物I-4とを所定濃度となるようにPDA培地中に混和し、、麦類赤かび病菌(Microdocum nivale)の菌糸生長阻害率を求めた。試験方法は試験例7と同様である。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 18: In vitro antibacterial activity test>
Thiophanate methyl and compound I-4 were mixed in a PDA medium so as to have a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined. The test method is the same as in Test Example 7. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表14に示す。チオファネートメチルと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とチオファネートメチルとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 14. The growth inhibition rate when thiophanate methyl and compound I-4 were mixed was larger than the theoretical value calculated from the inhibition rate when each was used alone, and compound I-4 and thiophanate methyl had a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 <試験例19:in vitro抗菌活性試験>
 テブコナゾールと化合物I-4を所定濃度となるようにPDA培地中に混和し、麦類赤かび病菌(Microdocum nivale)の菌糸生長阻害率を求めた。試験方法は試験例7と同様である。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 19: In vitro antibacterial activity test>
Tebuconazole and Compound I-4 were mixed in a PDA medium to a predetermined concentration, and the mycelial growth inhibition rate of the wheat fungus (Microdocum nivale) was determined. The test method is the same as in Test Example 7. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表15に示す。テブコナゾールと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とテブコナゾールとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 15. The growth inhibition rate when tebuconazole and compound I-4 were mixed was larger than the theoretical value calculated from the inhibition rate when each was used alone, and compound I-4 and tebuconazole had a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 <試験例20:in vitro抗菌活性試験>
 メタラキシルと化合物I-4とを所定濃度となるようにPDA培地中に混和した。予めPDA培地で前培養を行ったイネ苗立枯れ病(Pythium aphanidermatum)のコロニー周辺から直径4mmの菌叢ディスクを切り取り、薬剤を混和したPDA培地上に植菌した。25℃、3日間培養した後、生育したコロニーの直径を計り、薬剤を含まない培地上のコロニー直径と比較して菌糸生長阻害率を求めた。協力効果の判定は、試験例1と同様にコルビーの式を用いた方法により行った。
<Test Example 20: In vitro antibacterial activity test>
Metalaxyl and compound I-4 were mixed in a PDA medium to a predetermined concentration. A 4 mm diameter bacterial flora disk was cut out from around the colony of rice seedling blight (Pythium aphanidermatum) that had been pre-cultured in PDA medium in advance and inoculated on PDA medium mixed with the drug. After culturing at 25 ° C. for 3 days, the diameter of the grown colonies was measured, and the mycelial growth inhibition rate was determined by comparing with the colony diameter on the medium not containing the drug. The determination of the cooperation effect was performed by a method using the Colby equation as in Test Example 1.
 結果を表16に示す。メタラキシルと化合物I-4とを混合した際の生育阻害率は、それぞれを単独で使用した場合の阻害率から算出される理論値よりも大きく、化合物I-4とメタラキシルとが相乗的な効果を示すことが明らかとなった。 The results are shown in Table 16. The growth inhibition rate when mixing metalaxyl and compound I-4 is larger than the theoretical value calculated from the inhibition rate when each is used alone, and compound I-4 and metalaxyl have a synergistic effect. It became clear to show.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 <試験例21:植物病害防除組成物の茎葉散布処理によるコムギ赤かび病防除効果試験>
 開花中のコムギ植物体(品種:農林61号)より切穂を調製した。所定濃度の化合物I-2および化合物XVIII-1を含む後述する混合製剤例1のような水和剤形態の製剤を調製して、水で所定濃度に希釈懸濁し、1,000L/haの割合で散布した。穂部を風乾した後、コムギ赤かび病菌の胞子(1×10個/mlに調整、終濃度60ppmのグラミンSを含む)を散布接種し、20℃、高湿度条件下に保持した。接種後、5日目にコムギ赤かび病の罹病度を調査して、防除価を下記式により算出した。
防除価(%)=(1-(散布区の平均罹病度/無散布区の平均罹病度))×100
 なお、試験規模は、切穂1連3本、1処理区3連でおこなった。
<Test Example 21: Wheat red mold control effect test by foliar spray treatment of plant disease control composition>
Cut ears were prepared from flowering wheat plants (variety: Norin 61). A preparation in the form of a wettable powder such as Mixed Preparation Example 1 described later containing Compound I-2 and Compound XVIII-1 at a predetermined concentration is prepared, diluted and suspended to a predetermined concentration with water, and a ratio of 1,000 L / ha Scattered with. After air-drying the ear portion, (adjusted to 1 × 10 5 cells / ml, including Grameen S final concentration 60 ppm) spores of wheat Fusarium fungus were sprayed inoculated, 20 ° C., and held in high humidity conditions. On the fifth day after inoculation, the morbidity of wheat red mold was investigated, and the control value was calculated by the following formula.
Control value (%) = (1− (average morbidity in sprayed area / average illness in non-sprayed area)) × 100
In addition, the test scale was carried out with three cut ears and three treatment zones.
 化合物I-2および化合物XVIII-1の混合による協力効果の判定は、農薬実験法 第3巻(ソフトサイエンス社、1981年3月)、109~116頁に記載の等効果曲線法による混合効果の判定法を参考として実施した。この判定法に従えば、2種の化合物の組み合わせが相加的であると等効果曲線は直線的となり、拮抗的であると上側に湾曲した曲線(凸型の曲線)となり、協力的(相乗的)であると下側に湾曲した曲線(凹型の曲線)となる。 Determination of the cooperative effect by mixing Compound I-2 and Compound XVIII-1 is based on the effect of mixing by the isoeffect curve method described in Agricultural Chemical Experiment Method Vol. 3 (Soft Science, March 1981), pages 109-116. The judgment method was used as a reference. According to this determination method, if the combination of the two compounds is additive, the isoeffect curve becomes linear, and if it is antagonistic, the curve curves upward (convex curve), and is cooperative (synergistic). ), The curve curves downward (concave curve).
 各化合物の濃度の組み合わせによる防除効果から、防除価60%を示す等効果曲線を作成した。作成した等効果曲線を図6に示す。 From the control effect by the combination of the concentration of each compound, an iso-effect curve showing a control value of 60% was prepared. The created equal effect curve is shown in FIG.
 図6に示すように、化合物I-2(図中、化合物A)および化合物XVIII-1(図中、化合物B)を混合散布した場合の等効果曲線は、下側に湾曲した凹型の曲線を示した。すなわち、化合物I-2および化合物XVIII-1を混合した場合に、協力的な防除効果が得られることが示された。 As shown in FIG. 6, the equivalent effect curve when compound I-2 (compound A in the figure) and compound XVIII-1 (compound B in the figure) are mixed and dispersed is a concave curve curved downward. Indicated. That is, it was shown that when compound I-2 and compound XVIII-1 were mixed, a cooperative control effect was obtained.
 なお、本試験例および次の参考試験例において用いた化合物I-2は、後述する製造例2により得られた化合物番号I-2aの化合物である。
<参考試験例:茎葉散布処理によるコムギ赤かび病防除効果試験>
 開花中のコムギ植物体(品種:農林61号)より切穂を調製した。化合物I-2および化合物XVIII-1のうち化合物I-2のみを含む水和剤形態の製剤を調製して、水で所定濃度(500mg/L)に希釈懸濁し、1,000L/haの割合で散布した。穂部を風乾した後、コムギ赤かび病菌の胞子(2×10個/mlに調整、終濃度60ppmのグラミンSおよび終濃度0.5%のスクロースを含む)を噴霧接種し、20℃、高湿度条件下に保持した。接種後、4~7日目にコムギ赤かび病の罹病度を調査して、防除価を下記式により算出した。
防除価(%)=(1-(散布区の平均罹病度/無散布区の平均罹病度))×100
 その結果、化合物I-2を含む製剤は、防除価90%以上を示した。
Compound I-2 used in this Test Example and the following Reference Test Example is a compound of Compound No. I-2a obtained in Production Example 2 described later.
<Reference test example: Wheat red mold control effect test by foliar spray treatment>
Cut ears were prepared from flowering wheat plants (variety: Norin 61). A preparation in the form of a wettable powder containing only compound I-2 of compound I-2 and compound XVIII-1 was prepared, diluted and suspended in water to a prescribed concentration (500 mg / L), and a ratio of 1,000 L / ha Scattered with. After air-drying the head, spray inoculated with wheat spore mold spores (adjusted to 2 × 10 5 cells / ml, containing Gramine S with a final concentration of 60 ppm and sucrose with a final concentration of 0.5%), 20 ° C., Maintained under high humidity conditions. On the 4th to 7th day after inoculation, the morbidity of wheat red mold was investigated, and the control value was calculated by the following formula.
Control value (%) = (1− (average morbidity in sprayed area / average illness in non-sprayed area)) × 100
As a result, the preparation containing Compound I-2 showed a control value of 90% or more.
 また、化合物I-2および化合物XVIII-1のうち化合物XVIII-1のみを含む水和剤形態の製剤を調製して、同様の試験を行った。 In addition, a preparation in the form of a wettable powder containing only Compound XVIII-1 out of Compound I-2 and Compound XVIII-1 was prepared and subjected to the same test.
 その結果、化合物XVIII-1を含む製剤についても、防除価90%以上を示した。
<製造例1>
 1-(1-クロロシクロプロピル)-1-(2,2-ジクロロシクロプロピル)-2-(1H-1,2,4-トリアゾール-1-イル)エタノール(化合物番号I-1)の合成
(1)中間体、1-クロロ-2-(1-クロロシクロプロピル)-3-ブテン-2-オール(化合物(IX-1)(化合物(IX)、R2= 1-chlorocyclopropyl, R8= H, R9= H, R10 = H, X=Cl, n=0))の合成
 窒素気流下、2-クロロ-1-(1-クロロシクロプロピル)エタノン(化合物(VII)、R2= 1-chlorocyclopropyl, X=Cl)(4.38 mmol)の無水THF(5 ml)を-20℃に冷却した。この溶液へ、0.75Mビニルマグネシウムブロミド(化合物(X)、R8= H, R9= H, R10 = H, L=MgBr , n=0)(9.38 mmol)を無水THF(6 ml)で希釈した溶液を、反応温度が上昇しないように滴下した。滴下終了後、ゆっくりと0℃まで加温した後、0℃で1時間撹拌した。氷水冷却下、反応液に飽和塩化アンモニウム溶液を加え、ジエチルエーテルで抽出した。有機層を飽和重曹水、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した後、溶媒を留去した。得られた油状物をシリカゲルカラムクロマトグラフィーにより精製し、目的物を得た。
(2)中間体、2-(1-クロロシクロプロピル)-2-(2,2-ジクロロシクロプロピル)オキシラン(化合物(II-a-1)(化合物(II-a)、R2= 1-chlorocyclopropyl, R8= H, R9= H, R10 = H, X1=Cl, X2=Cl, n=0))の合成
 化合物(IX-1)(2.93 mmol)をクロロホルム(2.4 ml)に溶解し、ベンジルトリエチルアンモニウムクロリド(0.15 mmol)を加えた。この溶液の中へ水酸化ナトリウム(45.0mmol)を水(1.8 ml)に溶解した溶液を加え、60℃で8時間激しく撹拌した。その後、反応温度を70℃にして、さらに4時間、反応温度を80℃で20時間撹拌した。反応後、クロロホルムで抽出し、有機層を、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた油状物をシリカゲルカラムクロマトグラフィーで精製し、目的物を2種の異性体としてそれぞれ得た。
(3)1-(1-クロロシクロプロピル)-1-(2,2-ジクロロシクロプロピル)-2-(1H-1,2,4-トリアゾール-1-イル)エタノール(化合物番号I-1a)の合成
 窒素気流下、1H-1,2,4-トリアゾール(化合物(III)、M=H)(0.22 mmol)、炭酸カリウム(0.22 mmol)、カリウムt-ブトキシド(0.02 mmol)をNMP(2 ml)に懸濁させた。化合物(II-a-1)(0.16 mmol)のNMP(1 ml)溶液を加え、80℃で5時間撹拌した。反応液を氷水中に注ぎ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製し、目的物を得た。
収率:25%
NMR δH (400 MHz, CDCl3):
0.74-0.87 (m, 2H), 1.09-1.15 (m, 1H), 1.35-1.41 (m, 2H), 1.52 (dd, J = 11.0, 7.1Hz, 1H), 2.20 (dd, J = 11.0, 9.1Hz, 1H), 3.75 (s, 1H), 4.51 (d, J = 14.2Hz, 1H), 4.60(d, J = 14.2Hz, 1H), 7.98 (s, 1H), 8.22 (s, 1H).
<製造例2>
 2-(1-クロロシクロプロピル)-1-(2,2-ジブロモシクロプロピル)-3-(1H-1,2,4-トリアゾール-1-イル)プロパン-2-オール(化合物番号I-2)の合成
(1)中間体、1-クロロ-2-(1-クロロシクロプロピル)-4-ペンテン-2-オール(化合物(IX-2)(化合物(IX)、R2= 1-chlorocyclopropyl, R8= H, R9= H, R10 = H, R11= H, R12 = H, X=Cl, n=1))の合成
 アルゴン雰囲気下、2-クロロ-1-(1-クロロシクロプロピル)エタノン(化合物(VII)、R2= 1-chlorocyclopropyl, X=Cl)(0.0098 mol)をジエチルエーテル(20 ml)に溶解し、約-50℃に冷却した。アリルマグネシウムブロミド(化合物(X)、R8= H, R9= H, R10= H, R11 = H, R12 = H, L=MgBr, n=1)1Mジエチルエーテル溶液(0.0098 x 1.8 mol)を加え、同温度で約20分間、徐々に昇温しながら1時間撹拌した。さらに、氷冷下、1時間撹拌した後、氷水と飽和塩化アンモニウム水溶液を加えた。ジエチルエーテルで抽出した後、有機層を飽和重曹水と飽和食塩水で抽出し、無水硫酸ナトリウムで乾燥後、濃縮し、粗目的物を得た。
(2)中間体、2-(1-クロロシクロプロピル)-2-(2,2-ジブロモシクロプロピルメチル)オキシラン(化合物(II-a-2)(化合物(II-a)、R2= 1-chlorocyclopropyl, R8= H, R9= H, R10 = H, R11= H, R12 = H, X1=Br, X2=Br, n=1))の合成
 化合物(IX-2)(0.0031 mol)をブロモホルム (9.2 mmol)、50%水酸化ナトリウム水溶液(2g)とベンジルトリエチルアンモニウムクロリド(0.154 mmol)を加え、室温下、1時間、約60℃で1時間、更に約80℃で1時間攪拌した。反応液に水を加え、ジエチルエーテルで抽出した。有機層を水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、濃縮した。得られた粗生成物に、ブロモホルム(9.2 mmol)、50%水酸化ナトリウム水溶液(2g)とベンジルトリエチルアンモニウムクロリド(0.30 mol)を加え、約80℃で4時間攪拌した。反応液に水を加え、ジエチルエーテルで抽出した。有機層を水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、濃縮した。シリカゲルカラムクロマトグラフィーで精製して粗生成物を得た。
(3)2-(1-クロロシクロプロピル)-1-(2,2-ジブロモシクロプロピル)-3-(1H-1,2,4-トリアゾール-1-イル)プロパン-2-オール(化合物番号I-2)の合成
 炭酸カリウム(2.7 mmol)をDMF(3 ml)に加え懸濁した後、t-BuONa(0.36 mmol)、1,2,4-トリアゾール(化合物(III)、M=H)2.7 mmol)を加えた。DMF(3 ml)に溶解した化合物(II-a-2)(0.0018 mol)を加え、90℃で2時間攪拌した。酢酸エチルと水を加え、分配した後、有機層を飽和食塩水で洗浄した。水層を酢酸エチルで抽出した後、有機層を無水硫酸ナトリウムで乾燥し、濃縮した。シリカゲルカラムクロマトグラフィーで精製を行い、2種の異性体の中で低極性の異性体aを単離した。
[化合物番号I-2a]
収率:9%
NMR δH (400 MHz, CDCl3):
0.28-0.38 (m, 1H), 0.42-0.52 (m, 1H), 0.73-0.84 (m, 1H), 1.02-1.12 (m, 1H), 1.42 (app.t, J= 7.6 Hz, 1H), 1.88 (dd, J= 7.3, 10.6 Hz, 1H), 1.92-2.19 (m, 3H), 4.36 (s, 1H), 4.39 (d, J=14.2 Hz, 1H,), 4.95 (d, J= 14.2 Hz, 1H), 8.04 (s, 1H), 8.28 (s, 1H).
<製造例3>
 1,3-ビス(2,2-ジクロロシクロプロピル)-2-(1H-1,2,4-トリアゾール-1-イルメチル)プロパン-2-オール(化合物番号I-3)の合成
(1)中間体、4-クロロメチルヘプタ-1,6-ジエン-4-オールの合成
 窒素気流下、マグネシウム(24 mmol)に無水ジエチルエーテル(10 ml)を加え、ここへ、アリルブロミド(22.3 mmol)をジエチルエーテル(25 ml)に溶解した溶液を、反応液が穏やかに還流し続けるように滴下した後、室温で30分間撹拌した。塩化クロロアセチル(10.6 mmol)を無水ジエチルエーテル(10 ml)に溶解した溶液を-40℃に冷却し、先に調整したアリルマグネシウムブロミド溶液を、反応液温度が上昇しないように滴下した。滴下終了後、-40℃で2時間撹拌した後、ゆっくりと0℃まで加温した。氷水冷却下、反応液に飽和塩化アンモニウム溶液を加え、ジエチルエーテルで抽出した。有機層は、飽和重曹水、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、目的物を得た。
(2)中間体、2,2-ビス(2,2-ジクロロシクロプロピルメチル)オキシラン(化合物(II-1)(化合物(II)、R1= 2,2-dichlorocyclopropylmethyl, R2= 2,2-dichlorocyclopropylmethyl))の合成
 4-クロロメチルヘプタ-1,6-ジエン-4-オール(6.6 mmol)をクロロホルム(11 ml)に溶解し、ベンジルトリエチルアンモニウムクロリド(0.66 mmol)を加えた。水酸化ナトリウム(130 mmol)を水(5 ml)に溶解した溶液を加え、60℃で15時間激しく撹拌した。反応後、クロロホルムで抽出し、有機層は、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、目的物をジアステレオマー混合物として得た。
(3)1,3-ビス(2,2-ジクロロシクロプロピル)-2-(1H-1,2,4-トリアゾール-1-イルメチル)プロパン-2-オール(化合物番号I-3)の合成
 窒素気流下、60%水素化ナトリウム(3.0 mmol)をヘキサンで洗浄した後、無水DMF(5.0 ml)に懸濁させ、氷冷下1H-1,2,4-トリアゾール(化合物(III)、M=H)(2.9 mmol)を加えた。室温で30分間撹拌した後、化合物(II-1)(2.0 mmol)の無水DMF(3.0 ml)溶液を加え、90℃で8 時間撹拌した。反応液を氷水中に注ぎ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製し、目的物を得た。
[化合物番号I-3a]
収率:11%
NMR δH (400 MHz, CDCl3):
1.30 (t, J=7.4Hz, 2H), 1.69-1.74 (m, 4H), 1.84-1.85 (m, 4H), 3.98 (s, 1H), 4.44 (s, 2H), 8.04 (s, 1H), 8.18 (s, 1H).
[化合物番号I-3b]
収率:26%
NMR δH (400 MHz, CDCl3):
1.03-1.07 (m, 1H), 1.17-1.21 (m, 1H), 1.46-1.56 (m, 1H), 1.64-1.68 (m, 1H), 1.72-1.81 (m, 4H), 1.95-1.99 (m, 1H), 2.08 (dd, J=4.1, 14.8Hz, 1H), 4.01 (d, J=1.4Hz, 1H), 4.39 (d, J=14.1Hz, 1H), 4.45 (d, J=14.1Hz, 1H), 8.03 (s, 1H), 8.17 (s, 1H).
<製造例4>
 2-(1-クロロシクロプロピル)-4-(2,2-ジクロロシクロプロピル)-1-(1H-1,2,4-トリアゾール-1-イル)ブタン-2-オール(化合物番号I-4)の合成
(1)中間体、3-(1-クロロシクロプロピル)-3-オキソプロピオン酸メチル(化合物(XIII-1)(化合物(XIII)、R2= 1-chlorocyclopropyl, R13 = Me))の合成
 窒素気流下、60% 水素化ナトリウム(95.0 mmol)をヘキサン洗浄後、炭酸ジメチル(化合物(XVI)、R13 = Me) (80 ml)に懸濁し、無水メタノール(0.5 ml)を加え、80℃に加温した。1-(1-クロロシクロプロピル)エタノン(化合物(XV)、R2= 1-chlorocyclopropyl)(86.0mmol)を炭酸ジメチル(化合物(XVI)、R13 = Me) (6 ml)に溶解した溶液を加え、80℃で3時間撹拌した。放冷後、反応液に酢酸(10 ml)を加え、次いで氷水中に注ぎ、有機層を分取した。水層をジエチルエーテルで抽出し、有機層をそれぞれ、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去した後、減圧蒸留により、目的物を得た。
(2)中間体、2-(2-プロペニル)-3-(1-クロロシクロプロピル)-3-オキソプロピオン酸メチル(化合物(XII-1)(化合物(XII)、R2= 1-chlorocyclopropyl, R14= H, R15= H, R16 = H, R17 = H, R18 = H, R13 = Me, m=1))の合成
 窒素気流下、60%水素化ナトリウム(33.0 mmol)をヘキサン洗浄後、無水DMF(70 ml)に懸濁した。化合物(XIII-1)(30.0mmol)を無水DMF(15 ml)に溶解した溶液を加え、室温で 1.5時間撹拌した。撹拌後、アリルブロミド(化合物(XIV)、R14= H, R15= H, R16= H, R17 = H, R18 = H, X3=Br, m=1) (33.0mmol)を無水DMF(15 ml)に溶解した溶液を加え、室温下、3時間撹拌した。反応液を氷水中に注ぎ、ヘキサンで抽出し、有機層を水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、目的物を得た。
(3)中間体、1-(1-クロロシクロプロピル)-4-ペンテン-1-オン(化合物(XI-1)(化合物(XI)、R2= 1-chlorocyclopropyl, R14= H, R15= H, R16 = H, R17 = H, R18 = H, m=1))の合成
 化合物(XII-1)(28.5 mmol)をイソプロパノール(10 ml)に溶解した。水酸化ナトリウム (55.0mmol)を水(11 ml)に溶解した溶液を加え、80℃で 4.5時間撹拌した。放冷後、反応液を氷水中に注ぎ、ヘキサンで抽出し、有機層を水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、シリカゲルカラムクロマトグラフィーにより精製し、目的物を得た。
(4)中間体、2-(3-ブテニル)-2-(1-クロロシクロプロピル)オキシラン(化合物(VIII-a-1)(化合物(VIII-a)、R2= 1-chlorocyclopropyl, R14= H, R15= H, R16 = H, R17 = H, R18 = H, m=1))の合成
 窒素気流下、60%水素化ナトリウム(43.7mmol)をヘキサンで洗浄後、無水DMSO (70 ml)に懸濁した。トリメチルスルホキソニウムブロミド(43.4mmol)を加え、室温で 1.5時間撹拌した。化合物(XI-1)(31.5mmol)を無水DMSO (30 ml)に溶解した溶液を加え、室温でさらに3時間撹拌した。反応液を氷水中に注ぎ、ヘキサンで抽出し、有機層を水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた油状物を減圧蒸留して、目的物を得た。
(5)中間体、2-(1-クロロシクロプロピル)-2-[2-(2,2-ジクロロシクロプロピル)エチル]オキシラン(化合物(II-a-3)(化合物(II-a)、R2= 1-chlorocyclopropyl, R8= H, R9= H, R10 = H, R11= H, R12 = H, X1=Cl, X2=Cl, n=2))の合成
 化合物(VIII-a-1)(110 mmol)、ベンジルトリエチルアンモニウムクロリド(2.26 mmol)をクロロホルム(63 ml)に溶解させ、水酸化ナトリウム(577 mmol)/水(23.5 ml)溶液を加え、60℃で2時間撹拌した。反応液を氷水中に注ぎ、クロロホルムで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、粗生成物を得た。得られた粗生成物を減圧蒸留により精製し、残渣をシリカゲルカラムクロマトグラフィーで精製し、目的物を得た。
(6)2-(1-クロロシクロプロピル)-4-(2,2-ジクロロシクロプロピル)-1-(1H-1,2,4-トリアゾール-1-イル)ブタン-2-オール(化合物番号I-4)の合成
 窒素気流下、1H-1,2,4-トリアゾール(化合物(III)、M=H)(2.06 mmol)、炭酸カリウム(1.96 mmol)、カリウムt-ブトキシド(0.13 mmol)をDMF(2 ml)に懸濁させた。化合物(II-a-3)(1.54 mmol)のDMF(2 ml)溶液を加え、70℃で5時間撹拌した。反応液を氷水中に注ぎ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィーにより粗精を行い、2種のジアステレオマーとして目的物を得た。
[化合物番号I-4a]
収率:8 %
NMR δH (400 MHz, CDCl3):
0.24 (ddd, J = 11.0, 7.2, 6.0Hz, 1H), 0.45 (ddd, J = 10.7, 7.5, 6.0Hz, 1H), 0.83(ddd, J = 10.7, 7.2, 5.7Hz, 1H), 1.06 (ddd, J = 11.0, 7.5, 5.7Hz, 1H), 1.12 (bs, 1H), 1.5-1.6 (m, 2H), 1.6-1.8 (m,1H), 1.8-2.1 (m, 3H), 4.06 (s, 1H), 4.27 (d, J = 14.2Hz, 1H), 4.71 (d, J = 14.2Hz, 1H), 8.01 (s, 1H), 8.24 (s, 1H).
[化合物番号I-4b]
収率:11%
NMR δH (400 MHz, CDCl3):
0.24 (ddd, J = 11.0, 7.2, 6.0Hz, 1H), 0.44 (ddd, J = 10.8, 7.5, 6.0Hz, 1H), 0.85(ddd, J = 10.8, 7.2, 5.7Hz, 1H), 1.07 (ddd, J = 11.0, 7.5, 5.7Hz, 1H), 1.1-1.2 (m, 1H), 1.5-1.6 (m, 2H), 1.7-1.8 (m,2H), 1.8-2.0 (m, 1H), 2.2-2.3 (m, 1H), 4.08 (s, 1H), 4.26 (d, J = 14.2Hz, 1H), 4.71 (d, J = 14.2Hz, 1H), 8.02 (s,1H), 8.24 (s, 1H).
 上記製造例1~4に準じた方法で、下記「表17」~「表20」に示す化合物(I)を合成した。
As a result, the formulation containing compound XVIII-1 also showed a control value of 90% or more.
<Production Example 1>
Synthesis of 1- (1-chlorocyclopropyl) -1- (2,2-dichlorocyclopropyl) -2- (1H-1,2,4-triazol-1-yl) ethanol (Compound No. I-1) 1) Intermediate, 1-chloro-2- (1-chlorocyclopropyl) -3-buten-2-ol (compound (IX-1) (compound (IX), R 2 = 1-chlorocyclopropyl, R 8 = H , R 9 = H, R 10 = H, X = Cl, n = 0)) Under a nitrogen stream, 2-chloro-1- (1-chlorocyclopropyl) ethanone (compound (VII), R 2 = 1 -Chlorocyclopropyl, X = Cl) (4.38 mmol) in anhydrous THF (5 ml) was cooled to -20 ° C. To this solution, add 0.75 M vinylmagnesium bromide (compound (X), R 8 = H, R 9 = H, R 10 = H, L = MgBr, n = 0) (9.38 mmol) in anhydrous THF (6 ml). The diluted solution was added dropwise so that the reaction temperature did not increase. After completion of the dropwise addition, the mixture was slowly heated to 0 ° C and then stirred at 0 ° C for 1 hour. A saturated ammonium chloride solution was added to the reaction solution while cooling with ice water, and the mixture was extracted with diethyl ether. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate, and the solvent was evaporated. The obtained oil was purified by silica gel column chromatography to obtain the desired product.
(2) Intermediate, 2- (1-chlorocyclopropyl) -2- (2,2-dichlorocyclopropyl) oxirane (compound (II-a-1) (compound (II-a), R 2 = 1- Chlorocyclopropyl, R 8 = H, R 9 = H, R 10 = H, X 1 = Cl, X 2 = Cl, n = 0)) Compound (IX-1) (2.93 mmol) in chloroform (2.4 ml) And benzyltriethylammonium chloride (0.15 mmol) was added. A solution obtained by dissolving sodium hydroxide (45.0 mmol) in water (1.8 ml) was added to this solution, and the mixture was vigorously stirred at 60 ° C. for 8 hours. Thereafter, the reaction temperature was raised to 70 ° C., and the mixture was further stirred for 4 hours and the reaction temperature at 80 ° C. for 20 hours. After the reaction, the mixture was extracted with chloroform, and the organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting oil was purified by silica gel column chromatography to obtain the desired product as two isomers.
(3) 1- (1-chlorocyclopropyl) -1- (2,2-dichlorocyclopropyl) -2- (1H-1,2,4-triazol-1-yl) ethanol (Compound No. I-1a) Synthesis of 1H-1,2,4-triazole (compound (III), M = H) (0.22 mmol), potassium carbonate (0.22 mmol), potassium t-butoxide (0.02 mmol) under NMP (2 ml) ). A solution of compound (II-a-1) (0.16 mmol) in NMP (1 ml) was added and stirred at 80 ° C. for 5 hours. The reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was purified by silica gel column chromatography to obtain the desired product.
Yield: 25%
NMR δ H (400 MHz, CDCl 3 ):
0.74-0.87 (m, 2H), 1.09-1.15 (m, 1H), 1.35-1.41 (m, 2H), 1.52 (dd, J = 11.0, 7.1Hz, 1H), 2.20 (dd, J = 11.0, 9.1 Hz, 1H), 3.75 (s, 1H), 4.51 (d, J = 14.2Hz, 1H), 4.60 (d, J = 14.2Hz, 1H), 7.98 (s, 1H), 8.22 (s, 1H).
<Production Example 2>
2- (1-Chlorocyclopropyl) -1- (2,2-dibromocyclopropyl) -3- (1H-1,2,4-triazol-1-yl) propan-2-ol (Compound No. I-2 ) (1) Intermediate, 1-chloro-2- (1-chlorocyclopropyl) -4-penten-2-ol (compound (IX-2) (compound (IX), R 2 = 1-chlorocyclopropyl, Synthesis of R 8 = H, R 9 = H, R 10 = H, R 11 = H, R 12 = H, X = Cl, n = 1)) 2-chloro-1- (1-chloro Cyclopropyl) ethanone (compound (VII), R 2 = 1-chlorocyclopropyl, X═Cl) (0.0098 mol) was dissolved in diethyl ether (20 ml) and cooled to about −50 ° C. Allylmagnesium bromide (compound (X), R 8 = H, R 9 = H, R 10 = H, R 11 = H, R 12 = H, L = MgBr, n = 1) 1M diethyl ether solution (0.0098 x 1.8 mol) was added, and the mixture was stirred at the same temperature for about 20 minutes while gradually raising the temperature for 1 hour. Further, after stirring for 1 hour under ice cooling, ice water and a saturated aqueous ammonium chloride solution were added. After extraction with diethyl ether, the organic layer was extracted with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over anhydrous sodium sulfate, and concentrated to obtain a crude product.
(2) Intermediate, 2- (1-chlorocyclopropyl) -2- (2,2-dibromocyclopropylmethyl) oxirane (compound (II-a-2) (compound (II-a), R 2 = 1) -chlorocyclopropyl, R 8 = H, R 9 = H, R 10 = H, R 11 = H, R 12 = H, X 1 = Br, X 2 = Br, n = 1)) ) (0.0031 mol) was added bromoform (9.2 mmol), 50% aqueous sodium hydroxide solution (2 g) and benzyltriethylammonium chloride (0.154 mmol), and then at room temperature for 1 hour, about 60 ° C for 1 hour, and further about 80 ° C. For 1 hour. Water was added to the reaction mixture, and the mixture was extracted with diethyl ether. The organic layer was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated. Bromoform (9.2 mmol), 50% aqueous sodium hydroxide solution (2 g) and benzyltriethylammonium chloride (0.30 mol) were added to the resulting crude product, and the mixture was stirred at about 80 ° C. for 4 hours. Water was added to the reaction mixture, and the mixture was extracted with diethyl ether. The organic layer was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated. Purification by silica gel column chromatography gave a crude product.
(3) 2- (1-chlorocyclopropyl) -1- (2,2-dibromocyclopropyl) -3- (1H-1,2,4-triazol-1-yl) propan-2-ol (compound number) Synthesis of I-2) After potassium carbonate (2.7 mmol) was added to DMF (3 ml) and suspended, t-BuONa (0.36 mmol), 1,2,4-triazole (compound (III), M = H) 2.7 mmol) was added. Compound (II-a-2) (0.0018 mol) dissolved in DMF (3 ml) was added, and the mixture was stirred at 90 ° C. for 2 hours. Ethyl acetate and water were added and partitioned, and the organic layer was washed with saturated brine. The aqueous layer was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated. Purification was performed by silica gel column chromatography, and the less polar isomer a was isolated from the two isomers.
[Compound No. I-2a]
Yield: 9%
NMR δ H (400 MHz, CDCl 3 ):
0.28-0.38 (m, 1H), 0.42-0.52 (m, 1H), 0.73-0.84 (m, 1H), 1.02-1.12 (m, 1H), 1.42 (app.t, J = 7.6 Hz, 1H), 1.88 (dd, J = 7.3, 10.6 Hz, 1H), 1.92-2.19 (m, 3H), 4.36 (s, 1H), 4.39 (d, J = 14.2 Hz, 1H,), 4.95 (d, J = 14.2 Hz, 1H), 8.04 (s, 1H), 8.28 (s, 1H).
<Production Example 3>
Synthesis of 1,3-bis (2,2-dichlorocyclopropyl) -2- (1H-1,2,4-triazol-1-ylmethyl) propan-2-ol (Compound No. I-3) (1) Intermediate Synthesis of 4-chloromethylhepta-1,6-dien-4-ol In a nitrogen stream, anhydrous diethyl ether (10 ml) was added to magnesium (24 mmol), and allyl bromide (22.3 mmol) was added to diethyl A solution dissolved in ether (25 ml) was added dropwise so that the reaction solution continued to gently reflux, and then stirred at room temperature for 30 minutes. A solution of chloroacetyl chloride (10.6 mmol) dissolved in anhydrous diethyl ether (10 ml) was cooled to −40 ° C., and the previously prepared allylmagnesium bromide solution was added dropwise so that the reaction solution temperature did not increase. After completion of dropping, the mixture was stirred at -40 ° C for 2 hours, and then slowly heated to 0 ° C. A saturated ammonium chloride solution was added to the reaction solution while cooling with ice water, and the mixture was extracted with diethyl ether. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain the desired product.
(2) Intermediate, 2,2-bis (2,2-dichlorocyclopropylmethyl) oxirane (compound (II-1) (compound (II), R 1 = 2,2-dichlorocyclopropylmethyl, R 2 = 2,2 Synthesis of 4-dichlorocyclopropylmethyl)) 4-Chloromethylhepta-1,6-dien-4-ol (6.6 mmol) was dissolved in chloroform (11 ml), and benzyltriethylammonium chloride (0.66 mmol) was added. A solution of sodium hydroxide (130 mmol) dissolved in water (5 ml) was added and stirred vigorously at 60 ° C. for 15 hours. After the reaction, the mixture was extracted with chloroform, and the organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain the desired product as a diastereomer mixture.
(3) Synthesis of 1,3-bis (2,2-dichlorocyclopropyl) -2- (1H-1,2,4-triazol-1-ylmethyl) propan-2-ol (Compound No. I-3) Nitrogen Under a stream of air, 60% sodium hydride (3.0 mmol) was washed with hexane, suspended in anhydrous DMF (5.0 ml), and cooled with ice to 1H-1,2,4-triazole (compound (III), M = H) (2.9 mmol) was added. After stirring at room temperature for 30 minutes, a solution of compound (II-1) (2.0 mmol) in anhydrous DMF (3.0 ml) was added, and the mixture was stirred at 90 ° C. for 8 hours. The reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was purified by silica gel column chromatography to obtain the desired product.
[Compound No. I-3a]
Yield: 11%
NMR δ H (400 MHz, CDCl 3 ):
1.30 (t, J = 7.4Hz, 2H), 1.69-1.74 (m, 4H), 1.84-1.85 (m, 4H), 3.98 (s, 1H), 4.44 (s, 2H), 8.04 (s, 1H) , 8.18 (s, 1H).
[Compound No. I-3b]
Yield: 26%
NMR δ H (400 MHz, CDCl 3 ):
1.03-1.07 (m, 1H), 1.17-1.21 (m, 1H), 1.46-1.56 (m, 1H), 1.64-1.68 (m, 1H), 1.72-1.81 (m, 4H), 1.95-1.99 (m , 1H), 2.08 (dd, J = 4.1, 14.8Hz, 1H), 4.01 (d, J = 1.4Hz, 1H), 4.39 (d, J = 14.1Hz, 1H), 4.45 (d, J = 14.1Hz , 1H), 8.03 (s, 1H), 8.17 (s, 1H).
<Production Example 4>
2- (1-Chlorocyclopropyl) -4- (2,2-dichlorocyclopropyl) -1- (1H-1,2,4-triazol-1-yl) butan-2-ol (Compound No. I-4 ) (1) Intermediate, methyl 3- (1-chlorocyclopropyl) -3-oxopropionate (compound (XIII-1) (compound (XIII), R 2 = 1-chlorocyclopropyl, R 13 = Me)) ) Under nitrogen flow, 60% sodium hydride (95.0 mmol) was washed with hexane, suspended in dimethyl carbonate (compound (XVI), R 13 = Me) (80 ml), and anhydrous methanol (0.5 ml) was added. And heated to 80 ° C. A solution of 1- (1-chlorocyclopropyl) ethanone (compound (XV), R 2 = 1-chlorocyclopropyl) (86.0 mmol) dissolved in dimethyl carbonate (compound (XVI), R 13 = Me) (6 ml) The mixture was further stirred at 80 ° C. for 3 hours. After allowing to cool, acetic acid (10 ml) was added to the reaction solution, and then poured into ice water to separate the organic layer. The aqueous layer was extracted with diethyl ether, and the organic layers were washed with water and saturated brine, and then dried over anhydrous sodium sulfate. After evaporating the solvent under reduced pressure, the desired product was obtained by distillation under reduced pressure.
(2) Intermediate, methyl 2- (2-propenyl) -3- (1-chlorocyclopropyl) -3-oxopropionate (compound (XII-1) (compound (XII), R 2 = 1-chlorocyclopropyl, R 14 = H, R 15 = H, R 16 = H, R 17 = H, R 18 = H, R 13 = Me, m = 1))) 60% sodium hydride (33.0 mmol) under nitrogen Was washed with hexane and suspended in anhydrous DMF (70 ml). A solution of compound (XIII-1) (30.0 mmol) dissolved in anhydrous DMF (15 ml) was added, and the mixture was stirred at room temperature for 1.5 hours. After stirring, allyl bromide (compound (XIV), R 14 = H, R 15 = H, R 16 = H, R 17 = H, R 18 = H, X 3 = Br, m = 1) (33.0 mmol) A solution dissolved in anhydrous DMF (15 ml) was added, and the mixture was stirred at room temperature for 3 hours. The reaction solution was poured into ice water and extracted with hexane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain the desired product.
(3) Intermediate, 1- (1-chlorocyclopropyl) -4-penten-1-one (compound (XI-1) (compound (XI), R 2 = 1-chlorocyclopropyl, R 14 = H, R 15 = H, R 16 = H, R 17 = H, R 18 = H, m = 1)) Compound (XII-1) (28.5 mmol) was dissolved in isopropanol (10 ml). A solution of sodium hydroxide (55.0 mmol) dissolved in water (11 ml) was added and stirred at 80 ° C. for 4.5 hours. After allowing to cool, the reaction solution was poured into ice water and extracted with hexane, and the organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography to obtain the desired product.
(4) Intermediate, 2- (3-butenyl) -2- (1-chlorocyclopropyl) oxirane (compound (VIII-a-1) (compound (VIII-a), R 2 = 1-chlorocyclopropyl, R 14 = H, R 15 = H, R 16 = H, R 17 = H, R 18 = H, m = 1)) Under nitrogen flow, 60% sodium hydride (43.7 mmol) was washed with hexane Suspended in DMSO (70 ml). Trimethylsulfoxonium bromide (43.4 mmol) was added and stirred at room temperature for 1.5 hours. A solution of compound (XI-1) (31.5 mmol) in anhydrous DMSO (30 ml) was added, and the mixture was further stirred at room temperature for 3 hours. The reaction solution was poured into ice water and extracted with hexane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting oil was distilled under reduced pressure to obtain the desired product.
(5) Intermediate, 2- (1-chlorocyclopropyl) -2- [2- (2,2-dichlorocyclopropyl) ethyl] oxirane (compound (II-a-3) (compound (II-a), R 2 = 1-chlorocyclopropyl, R 8 = H, R 9 = H, R 10 = H, R 11 = H, R 12 = H, X 1 = Cl, X 2 = Cl, n = 2)) (VIII-a-1) (110 mmol) and benzyltriethylammonium chloride (2.26 mmol) were dissolved in chloroform (63 ml), and a solution of sodium hydroxide (577 mmol) / water (23.5 ml) was added at 60 ° C. Stir for 2 hours. The reaction solution was poured into ice water and extracted with chloroform. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain a crude product. The obtained crude product was purified by distillation under reduced pressure, and the residue was purified by silica gel column chromatography to obtain the desired product.
(6) 2- (1-chlorocyclopropyl) -4- (2,2-dichlorocyclopropyl) -1- (1H-1,2,4-triazol-1-yl) butan-2-ol (compound number) I-4) Synthesis Under nitrogen stream, 1H-1,2,4-triazole (compound (III), M = H) (2.06 mmol), potassium carbonate (1.96 mmol), potassium t-butoxide (0.13 mmol) Suspended in DMF (2 ml). A solution of compound (II-a-3) (1.54 mmol) in DMF (2 ml) was added, and the mixture was stirred at 70 ° C. for 5 hours. The reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was purified by silica gel column chromatography to obtain the desired product as two diastereomers.
[Compound No. I-4a]
Yield: 8%
NMR δ H (400 MHz, CDCl 3 ):
0.24 (ddd, J = 11.0, 7.2, 6.0Hz, 1H), 0.45 (ddd, J = 10.7, 7.5, 6.0Hz, 1H), 0.83 (ddd, J = 10.7, 7.2, 5.7Hz, 1H), 1.06 ( ddd, J = 11.0, 7.5, 5.7Hz, 1H), 1.12 (bs, 1H), 1.5-1.6 (m, 2H), 1.6-1.8 (m, 1H), 1.8-2.1 (m, 3H), 4.06 ( s, 1H), 4.27 (d, J = 14.2Hz, 1H), 4.71 (d, J = 14.2Hz, 1H), 8.01 (s, 1H), 8.24 (s, 1H).
[Compound No. I-4b]
Yield: 11%
NMR δ H (400 MHz, CDCl 3 ):
0.24 (ddd, J = 11.0, 7.2, 6.0Hz, 1H), 0.44 (ddd, J = 10.8, 7.5, 6.0Hz, 1H), 0.85 (ddd, J = 10.8, 7.2, 5.7Hz, 1H), 1.07 ( ddd, J = 11.0, 7.5, 5.7Hz, 1H), 1.1-1.2 (m, 1H), 1.5-1.6 (m, 2H), 1.7-1.8 (m, 2H), 1.8-2.0 (m, 1H), 2.2-2.3 (m, 1H), 4.08 (s, 1H), 4.26 (d, J = 14.2Hz, 1H), 4.71 (d, J = 14.2Hz, 1H), 8.02 (s, 1H), 8.24 (s , 1H).
Compounds (I) shown in the following “Table 17” to “Table 20” were synthesized by the method according to the above Production Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
<製造例5>
 (1,2-シス、1,5-シス)-5-(4-クロロベンジル)-2-クロロメチル-2-メチル-1-(1H-1,2,4-トリアゾール-1-イルメチル)シクロペンタノール(R20=CH、(Y)p=4-Cl、R21=CH、X=Cl、q=1であり、1,2-シス、1,5-シスである化合物(XVIIIb)、化合物番号:XVIII-1)の合成
 (1)1-(4-クロロベンジル)-3-メチル-3-ヒドロキシメチル-2-オキソシクロペンタンカルボン酸メチルエステル(化合物(XXVI-1)(化合物(XXVI)、R23=CH、R24=CH、(Y)p=4-Cl))の合成
 1-(4-クロロベンジル)-3-メチル-2-オキソシクロペンタンカルボン酸メチルエステル(化合物(XXVII):R23=CH、R24=CH、(Y)p=4-Cl)(4.0mmol)に、37%ホルムアルデヒド水溶液(12mmol)および炭酸カリウム(2.0mmol)を加えて、室温で4時間激しく撹拌した。反応終了後、水を加え、酢酸エチル(30ml)で抽出した。有機層を飽和食塩水(10ml)で洗浄した後、無水硫酸ナトリウムを用いて乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーによって精製し、化合物(XXVI-1)を2種の異性体として得た。
<Production Example 5>
(1,2-cis, 1,5-cis) -5- (4-chlorobenzyl) -2-chloromethyl-2-methyl-1- (1H-1,2,4-triazol-1-ylmethyl) cyclo Pentanol (R 20 = CH 3 , (Y) p = 4-Cl, R 21 = CH 2 , X 4 = Cl, q = 1, 1,2-cis, 1,5-cis compound ( XVIIIb), Compound No .: XVIII-1) (1) 1- (4-Chlorobenzyl) -3-methyl-3-hydroxymethyl-2-oxocyclopentanecarboxylic acid methyl ester (compound (XXVI-1) ( Synthesis of Compound (XXVI), R 23 = CH 3 , R 24 = CH 3 , (Y) p = 4-Cl)) Methyl 1- (4-chlorobenzyl) -3-methyl-2-oxocyclopentanecarboxylate Ester (compound (X VII): R 23 = CH 3 , R 24 = CH 3, the addition of (Y) p = 4-Cl ) ( in 4.0 mmol), 37% aqueous formaldehyde (12 mmol) and potassium carbonate (2.0 mmol), Stir vigorously at room temperature for 4 hours. After completion of the reaction, water was added and extracted with ethyl acetate (30 ml). The organic layer was washed with saturated brine (10 ml) and then dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography to obtain compound (XXVI-1) as two isomers.
 (2)5-(4-クロロベンジル)-2-メトキシメトキシメチル-2-メチルシクロペンタノン(化合物(XXIV-1)(化合物(XXIV)、R23=CH、(Y)p=4-Cl、G=CHOCH))の合成
 化合物(XXVI-1)(0.60mmol)を塩化メチレン(5.6ml)に溶解し、ここにジメトキシメタン(2.8ml)を加えた。これを水浴で冷却し、五酸化二リン(372mg)を加えて室温で10分間激しく撹拌した。反応終了後、飽和食塩水に反応液を加え、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去し減圧乾燥することにより粗製の1-(4-クロロベンジル)-3-メトキシメトキシメチル-3-メチル-2-オキソシクロペンタンカルボン酸メチルエステル(化合物(XXV-1)(化合物(XXV)、R23=CH、R24=CH、(Y)p=4-Cl、G=CHOCH))(195mg)を得た。
(2) 5- (4-Chlorobenzyl) -2-methoxymethoxymethyl-2-methylcyclopentanone (Compound (XXIV-1) (Compound (XXIV), R 23 = CH 3 , (Y) p = 4- Synthesis of Cl, G = CH 2 OCH 3 )) Compound (XXVI-1) (0.60 mmol) was dissolved in methylene chloride (5.6 ml), and dimethoxymethane (2.8 ml) was added thereto. This was cooled in a water bath, diphosphorus pentoxide (372 mg) was added, and the mixture was vigorously stirred at room temperature for 10 minutes. After completion of the reaction, the reaction mixture was added to saturated brine and extracted with diethyl ether. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was distilled off and the residue was dried under reduced pressure to obtain crude 1- (4-chlorobenzyl) -3-methoxymethoxymethyl-3-methyl-2-oxocyclopentanecarboxylic acid methyl ester (compound (XXV-1) (compound ( XXV), R 23 = CH 3 , R 24 = CH 3 , (Y) p = 4-Cl, G = CH 2 OCH 3 )) (195 mg).
 得られた化合物(XXV-1)188.8mgをイソプロパノール(0.53ml)に溶解し、ここに2M水酸化ナトリウム水溶液(1.12mmol)を加えて、60℃で1時間撹拌した。反応終了後、水を加えて、酢酸エチルにより抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムを用いて乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーによって精製して、化合物(XXIV-1)を2種の異性体の混合物として得た。 188.8 mg of the obtained compound (XXV-1) was dissolved in isopropanol (0.53 ml), 2M aqueous sodium hydroxide solution (1.12 mmol) was added thereto, and the mixture was stirred at 60 ° C. for 1 hour. After completion of the reaction, water was added and extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography to obtain compound (XXIV-1) as a mixture of two isomers.
 (3)5-(4-クロロベンジル)-2-メトキシメトキシメチル-2-メチル-1-(1H-1,2,4-トリアゾール-1-イルメチル)シクロペンタノール(化合物(XXI-1)(化合物(XXI)、R23=CH、(Y)p=4-Cl、G=CHOCH))の合成
 1H-1,2,4-トリアゾールナトリウム塩(13.1mmol)をNMP(7ml)に溶解し、内温115℃まで昇温した。ここに化合物(XXIV-1)(8.76mmol)を加え、NMP(1.8ml)で洗い込みを行った。内温が115℃に戻った後に、ナトリウムt-ブトキシド(5.26mmol)およびトリメチルスルホキソニウムブロミド(1.476mmol)を約3時間かけて分割添加した。添加終了後、同温度で75分間撹拌した。反応液を35℃まで冷却した後、反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去して、残渣をシリカゲルカラムクロマトグラフィーによって精製して、化合物(XXI-1)を得た。
(3) 5- (4-Chlorobenzyl) -2-methoxymethoxymethyl-2-methyl-1- (1H-1,2,4-triazol-1-ylmethyl) cyclopentanol (compound (XXI-1) ( Synthesis of Compound (XXI), R 23 = CH 3 , (Y) p = 4-Cl, G = CH 2 OCH 3 )) 1H-1,2,4-triazole sodium salt (13.1 mmol) was added to NMP (7 ml) And the temperature was raised to an internal temperature of 115 ° C. Compound (XXIV-1) (8.76 mmol) was added thereto, and washing was performed with NMP (1.8 ml). After the internal temperature returned to 115 ° C., sodium t-butoxide (5.26 mmol) and trimethylsulfoxonium bromide (1.476 mmol) were added in portions over about 3 hours. After completion of the addition, the mixture was stirred at the same temperature for 75 minutes. The reaction solution was cooled to 35 ° C., water was added to the reaction solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography to obtain compound (XXI-1).
 (4)5-(4-クロロベンジル)-2-ヒドロキシメチル-2-メチル-1-(1H-1,2,4-トリアゾール-1-イルメチル)シクロペンタノール(化合物(XXa-1)(化合物(XXa)、R23=CH、(Y)p=4-Cl))の合成
 化合物(XXI-1)(1.66mmol)をメタノール(6.3ml)に溶解し、ここに10%塩化水素-メタノール(1.73mmol)を加えて室温で48時間撹拌した。反応終了後、溶媒を留去した後、水を加えた。さらに酢酸エチル(80ml)を加えた後に、水酸化ナトリウム水溶液をpHが10になるまで添加した。有機層を分離し、飽和食塩水で洗浄した後に、無水硫酸ナトリウムで乾燥した。溶媒を留去して、化合物(XXa-1)を複数の異性体((化合物(XXa-1a)(1,2-シス、1,5-シス型):化合物(XXa-1b)(1,2-トランス、1,5-シス型):その他の幾何異性体=6:3:1)として得た。なお、本製造例において、「1,2-シス」、「1,5-シス」および「1,2-トランス」との記載は、化合物(XXa)におけるシクロペンタン環1位のヒドロキシ基、2位のヒドロキシメチル基および5位の置換もしくは無置換のベンジル基、あるいは化合物(XXa)の誘導体におけるこれらの基に対応する官能基について言及しているものである。
(4) 5- (4-Chlorobenzyl) -2-hydroxymethyl-2-methyl-1- (1H-1,2,4-triazol-1-ylmethyl) cyclopentanol (compound (XXa-1) (compound Synthesis of (XXa), R 23 = CH 3 , (Y) p = 4-Cl)) Compound (XXI-1) (1.66 mmol) was dissolved in methanol (6.3 ml), and 10% hydrogen chloride was added thereto. -Methanol (1.73 mmol) was added and stirred at room temperature for 48 hours. After completion of the reaction, the solvent was distilled off and water was added. Further, ethyl acetate (80 ml) was added, and then an aqueous sodium hydroxide solution was added until the pH reached 10. The organic layer was separated, washed with saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off to give compound (XXa-1) as a plurality of isomers ((compound (XXa-1a) (1,2-cis, 1,5-cis form): compound (XXa-1b) (1, 2-trans, 1,5-cis type): other geometric isomers = 6: 3: 1) In this production example, “1,2-cis”, “1,5-cis” And “1,2-trans” means that the hydroxy group at position 1 of the cyclopentane ring, the hydroxymethyl group at position 2 and the substituted or unsubstituted benzyl group at position 5 in compound (XXa), or compound (XXa) Mention is made of functional groups corresponding to these groups in the derivatives.
 (5)(1,2-シス、1,5-シス)-5-(4-クロロベンジル)-2-メチル-2-[(4-メチルフェニル)スルホニルオキシメチル]-1-(1H-1,2,4-トリアゾール-1-イルメチル)シクロペンタノール(化合物(XIX-1)(化合物(XIX)、R20=CH、(Y)p=4-Cl、R21=CH、R22=4-メチルフェニル、q=1、1,2-シス、1,5-シス))の合成
 アルゴン雰囲気下、水素化ナトリウム(1.83mmol)をヘキサンで洗浄した後、脱水THF(4ml)に懸濁し、氷水冷却した。次いで、脱水THF(5ml)に溶解した化合物(XXa-1a)(1.52mmol)を滴下した。室温に戻して、30分間攪拌した。再び、氷水冷却した後、p-トルエンスルホニルクロリド(1.97mmol)を添加し、同温度で1.5時間攪拌した後、室温で0.5時間攪拌した。反応液に水(20ml)を加え、反応を停止した後、酢酸エチルで分配した。有機層を飽和食塩水で洗浄して、無水硫酸ナトリウムで乾燥した後、濃縮した。シリカゲルクロマトグラフィーで精製し、化合物(XIX-1)を得た。
(5) (1,2-cis, 1,5-cis) -5- (4-chlorobenzyl) -2-methyl-2-[(4-methylphenyl) sulfonyloxymethyl] -1- (1H-1 , 2,4-Triazol-1-ylmethyl) cyclopentanol (compound (XIX-1) (compound (XIX), R 20 = CH 3 , (Y) p = 4-Cl, R 21 = CH 2 , R 22 = 4-methylphenyl, q = 1, 1,2-cis, 1,5-cis)) In an argon atmosphere, sodium hydride (1.83 mmol) was washed with hexane, and then dehydrated in THF (4 ml). It was suspended and cooled with ice water. Then, compound (XXa-1a) (1.52 mmol) dissolved in dehydrated THF (5 ml) was added dropwise. It returned to room temperature and stirred for 30 minutes. After cooling with ice water again, p-toluenesulfonyl chloride (1.97 mmol) was added and stirred at the same temperature for 1.5 hours and then at room temperature for 0.5 hour. Water (20 ml) was added to the reaction mixture to stop the reaction, and the mixture was partitioned with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated. Purification by silica gel chromatography gave compound (XIX-1).
 (6)化合物(XVIII-1)の合成
 アルゴン雰囲気下、化合物(XIX-1)(0.0245mmol)を脱水DMF(0.24ml)に溶解した。ここに塩化リチウム(0.245mmol)を加え、100℃で1.5時間撹拌した。反応液に酢酸エチル(2ml)を加えた後、飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、濃縮した。シリカゲルカラムクロマトグラフィーで精製し、化合物(XVIII-1)を得た。
収率:58%
1H-NMR(400MHz, CDCl3) δ:
 1.18(3H,s),1.46(2H,m),1.70(1H,m),1.92(2H,m),2.35(2H,m),3.26(1H,d,J=10.8Hz),3.57(1H,d,J=10.8Hz),4.06(1H,s),4.25(1H,d,J=14.2Hz),4.54(1H,d,J=14.2Hz),6.98(2H,d,J=8.4Hz),7.21(2H,d,J=8.4Hz),8.02(1H,s),8.19(1H,s).
 次に、混合製剤例を示す。なお、担体(希釈剤)および助剤、その混合比は広い範囲で変更し得るものとする。各製剤例の「部」は重量部を表す。
<混合製剤例1(水和剤)>
化合物(I)     25部
メトコナゾール    25部
リグニンスルホン酸塩  5部
アルキルスルホン酸塩  3部
珪藻土        42部
を粉砕混合して水和剤とし、水で希釈して使用する。
<混合製剤例2(粉剤)>
化合物(I)   3部
メトコナゾール  3部
クレー     40部
タルク     54部
を粉砕混合し、散粉として使用する。
<混合製剤例3(粒剤)>
化合物(I)      2.5部
メトコナゾール     2.5部
ベントナイト       43部
クレー          45部
リグニンスルホン酸塩    7部
を均一に混合しさらに水を加えて練り合わせ、押し出し式造粒機で粒状に加工乾燥して粒剤とする。
<混合製剤例4(乳剤)>
化合物(I)                  5部
メトコナゾール                 5部
ポリオキシエチレンアルキルアリールエーテル  10部
ポリオキシエチレンソルビタンモノラウレート   3部
キシレン                   77部
を均一に混合溶解して乳剤とする。
(6) Synthesis of Compound (XVIII-1) Compound (XIX-1) (0.0245 mmol) was dissolved in dehydrated DMF (0.24 ml) under an argon atmosphere. To this was added lithium chloride (0.245 mmol), and the mixture was stirred at 100 ° C. for 1.5 hours. Ethyl acetate (2 ml) was added to the reaction mixture, and the mixture was washed with saturated brine. The organic layer was dried over anhydrous sodium sulfate and concentrated. Purification by silica gel column chromatography gave compound (XVIII-1).
Yield: 58%
1 H-NMR (400 MHz, CDCl 3 ) δ:
1.18 (3H, s), 1.46 (2H, m), 1.70 (1H, m), 1.92 (2H, m), 2.35 (2H, m), 3.26 (1H, d, J = 10.8Hz), 3.57 (1H , d, J = 10.8Hz), 4.06 (1H, s), 4.25 (1H, d, J = 14.2Hz), 4.54 (1H, d, J = 14.2Hz), 6.98 (2H, d, J = 8.4Hz) ), 7.21 (2H, d, J = 8.4Hz), 8.02 (1H, s), 8.19 (1H, s).
Next, mixed preparation examples are shown. The carrier (diluent) and auxiliary agent, and the mixing ratio thereof can be changed within a wide range. “Parts” in each formulation example represents parts by weight.
<Mixed preparation example 1 (wettable powder)>
Compound (I) 25 parts metconazole 25 parts lignin sulfonate 5 parts alkyl sulfonate 3 parts diatomaceous earth 42 parts are pulverized and mixed to obtain a wettable powder, diluted with water and used.
<Mixed preparation example 2 (powder)>
Compound (I) 3 parts metconazole 3 parts clay 40 parts talc 54 parts are ground and mixed and used as dust.
<Mixed preparation example 3 (granule)>
Compound (I) 2.5 parts metconazole 2.5 parts bentonite 43 parts clay 45 parts lignin sulfonate 7 parts uniformly mixed, water added and kneaded, processed into granules in an extrusion granulator, dried and granulated Use as an agent.
<Mixed formulation example 4 (emulsion)>
Compound (I) 5 parts metconazole 5 parts polyoxyethylene alkyl aryl ether 10 parts polyoxyethylene sorbitan monolaurate 3 parts Xylene 77 parts are mixed and dissolved uniformly to give an emulsion.
 本発明に係る農園芸用薬剤は、コムギ赤かび病などの植物病害に対する薬剤として好適に利用することができる。 The agricultural and horticultural medicine according to the present invention can be suitably used as a medicine for plant diseases such as wheat red mold.

Claims (15)

  1.  複数の有効成分を含む農園芸用薬剤であって、当該有効成分の1つが下記一般式(I)で示されるアゾール誘導体であることを特徴とする農園芸用薬剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、Rは、シクロプロピル基または1つの水素原子が該シクロプロピル基で置換されている炭素数1もしくは2のアルキル基を表す。Rにおけるシクロプロピル基の少なくとも1つの水素原子は、臭素原子、塩素原子およびメチル基から選択される置換基で置換されていてもよい。Rは、シクロプロピル基または1つの水素原子が該シクロプロピル基で置換されている炭素数1もしくは2のアルキル基を表す。Rにおけるシクロプロピル基の少なくとも1つの水素原子は、塩素原子で置換されていてもよい。)
    An agricultural and horticultural medicine containing a plurality of active ingredients, wherein one of the active ingredients is an azole derivative represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (I), R 1 represents a cyclopropyl group or an alkyl group having 1 or 2 carbon atoms in which one hydrogen atom is substituted with the cyclopropyl group. At least one of the cyclopropyl groups in R 1 The hydrogen atom may be substituted with a substituent selected from a bromine atom, a chlorine atom and a methyl group, and R 2 represents a carbon number in which a cyclopropyl group or one hydrogen atom is substituted with the cyclopropyl group. Represents an alkyl group of 1 or 2. At least one hydrogen atom of the cyclopropyl group in R 2 may be substituted with a chlorine atom.
  2.  前記一般式(I)で示される化合物に加えて前記有効成分として含まれる化合物が、エルゴステロール生合成阻害能を有する化合物であることを特徴とする請求項1に記載の農園芸用薬剤。 The agricultural and horticultural agent according to claim 1, wherein the compound contained as the active ingredient in addition to the compound represented by the general formula (I) is a compound having an ergosterol biosynthesis inhibitory ability.
  3.  前記エルゴステロール生合成阻害能を有する化合物が、アゾール系化合物およびフェンプロピモルフの少なくとも何れか一方であることを特徴とする請求項2に記載の農園芸用薬剤。 The agricultural and horticultural agent according to claim 2, wherein the compound having the ability to inhibit ergosterol biosynthesis is at least one of an azole compound and fenpropimorph.
  4.  前記アゾール系化合物は、メトコナゾール、エポキシコナゾール、イプコナゾール、プロチオコナゾール、テブコナゾールおよびプロクロラズの少なくとも何れか1つであることを特徴とする請求項3に記載の農園芸用薬剤。 The agricultural and horticultural agent according to claim 3, wherein the azole compound is at least one of metconazole, epoxiconazole, ipconazole, prothioconazole, tebuconazole and prochloraz.
  5.  前記一般式(I)で示される化合物に加えて前記有効成分として含まれる化合物が、コハク酸脱水素酵素阻害能を有する化合物であることを特徴とする請求項1から4のいずれか一項に記載の農園芸用薬剤。 5. The compound according to claim 1, wherein the compound contained as the active ingredient in addition to the compound represented by the general formula (I) is a compound having an ability to inhibit succinate dehydrogenase. Agricultural and horticultural chemicals as described.
  6.  前記コハク酸脱水素酵素阻害能を有する化合物が、ビキサフェン、ボスカリド、ペンチオピラド、イソピラザム、フルオピラム、フラメトピルおよびベノダニルの少なくとも何れか1つであることを特徴とする請求項5に記載の農園芸用薬剤。 The agricultural and horticultural agent according to claim 5, wherein the compound having an ability to inhibit succinate dehydrogenase is at least one of bixaphene, boscalid, pentiopyrad, isopyrazam, fluopyram, furametopil, and benodanyl.
  7.  前記一般式(I)で示される化合物に加えて前記有効成分として含まれる化合物が、ストロビルリン系化合物であることを特徴とする請求項1から6のいずれか一項に記載の農園芸用薬剤。 The agricultural or horticultural agent according to any one of claims 1 to 6, wherein the compound contained as the active ingredient in addition to the compound represented by the general formula (I) is a strobilurin-based compound.
  8.  前記ストロビルリン系化合物が、ピラクロストロビン、アゾキシストロビンおよびクレソキシムメチルの少なくとも何れか1つであることを特徴とする請求項7に記載の農園芸用薬剤。 The agricultural and horticultural agent according to claim 7, wherein the strobilurin-based compound is at least one of pyraclostrobin, azoxystrobin and cresoxime methyl.
  9.  前記一般式(I)で示される化合物に加えて前記有効成分として含まれる化合物が、ベンズイミダゾール化合物であることを特徴とする請求項1から8のいずれか一項に記載の農園芸用薬剤。 The agricultural or horticultural agent according to any one of claims 1 to 8, wherein the compound contained as the active ingredient in addition to the compound represented by the general formula (I) is a benzimidazole compound.
  10.  前記ベンズイミダゾール化合物が、チオファネートメチルであることを特徴とする請求項9に記載の農園芸用薬剤。 10. The agricultural and horticultural agent according to claim 9, wherein the benzimidazole compound is thiophanate methyl.
  11.  前記一般式(I)で示される化合物に加えて前記有効成分として含まれる化合物が、メタラキシルであることを特徴とする請求項1から10のいずれか一項に記載の農園芸用薬剤。 The agricultural and horticultural agent according to any one of claims 1 to 10, wherein the compound contained as the active ingredient in addition to the compound represented by the general formula (I) is metalaxyl.
  12.  前記式(I)において、R中の前記シクロプロピル基の前記置換基による置換数が1~4であり、R中の前記シクロプロピル基の塩素原子による置換数が1または2であることを特徴とする請求項1~11のいずれか一項に記載の農園芸用薬剤。 In the formula (I), the number of substitutions of the cyclopropyl group in R 1 by the substituent is 1 to 4, and the number of substitutions of the cyclopropyl group in R 2 by a chlorine atom is 1 or 2. The agricultural or horticultural agent according to any one of claims 1 to 11, wherein:
  13.  殺菌剤として用いられることを特徴とする請求項1から12のいずれか一項に記載の農園芸用薬剤。 The agricultural and horticultural agent according to any one of claims 1 to 12, wherein the agent is used as a disinfectant.
  14.  複数の有効成分を混合して使用するための組み合わせ調製物として、下記一般式(I)で示されるアゾール誘導体と、他の有効成分とを別々に含むことを特徴とする植物病害防除用製品。
    Figure JPOXMLDOC01-appb-C000002
    (式(I)中、Rは、シクロプロピル基、該シクロプロピル基で置換されている炭素数1もしくは2のアルキル基を表す。前記シクロプロピル基は、臭素原子、塩素原子およびメチル基から選択される置換基で置換されていてもよい。Rは、シクロプロピル基、あるいは該シクロプロピル基で置換されている炭素数1もしくは2のアルキル基を表す。前記シクロプロピル基は、塩素原子で置換されていてもよい。)
    A product for controlling plant diseases characterized by comprising separately an azole derivative represented by the following general formula (I) and another active ingredient as a combined preparation for using a mixture of a plurality of active ingredients.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (I), R 1 represents a cyclopropyl group or an alkyl group having 1 or 2 carbon atoms substituted with the cyclopropyl group. The cyclopropyl group includes a bromine atom, a chlorine atom and a methyl group. R 2 represents a cyclopropyl group or an alkyl group having 1 or 2 carbon atoms that is substituted with the cyclopropyl group, and the cyclopropyl group is a chlorine atom. May be substituted with.)
  15.  請求項1~13のいずれか一項に記載の農園芸用薬剤を用いて茎葉処理または非茎葉処理を行う工程を含むことを特徴とする植物病害防除方法。 A plant disease control method comprising a step of performing a foliage treatment or a non-foliage treatment using the agricultural and horticultural chemical according to any one of claims 1 to 13.
PCT/JP2012/064547 2011-06-07 2012-06-06 Agricultural or horticultural chemical agent, method for controlling plant disease, and product for controlling plant disease WO2012169522A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011127767 2011-06-07
JP2011127375 2011-06-07
JP2011-127767 2011-06-07
JP2011-127375 2011-06-07

Publications (1)

Publication Number Publication Date
WO2012169522A1 true WO2012169522A1 (en) 2012-12-13

Family

ID=47296081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064547 WO2012169522A1 (en) 2011-06-07 2012-06-06 Agricultural or horticultural chemical agent, method for controlling plant disease, and product for controlling plant disease

Country Status (1)

Country Link
WO (1) WO2012169522A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208243A1 (en) * 2013-06-26 2014-12-31 株式会社クレハ Method for producing azole derivative

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239581A (en) * 1985-08-07 1987-02-20 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Triazole derivative, its production and plant growth regulating composition containing said derivative
JPS62192371A (en) * 1986-02-18 1987-08-22 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Triazole compound, manufacture and plant growth regulant composition
JPH02286664A (en) * 1989-03-25 1990-11-26 Basf Ag Azolylethylcyclopropane and bactericide containing said compound
JPH0687703A (en) * 1992-07-31 1994-03-29 Shell Internatl Res Maatschappij Bv Bactericidal composition
WO2011070742A1 (en) * 2009-12-08 2011-06-16 Kureha Corporation Azole derivatives and methods for producing the same, intermediate compounds for the derivatives and methods for producing the same, and agro-horticultural agents and industrial material protecting agents containing the derivatives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239581A (en) * 1985-08-07 1987-02-20 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Triazole derivative, its production and plant growth regulating composition containing said derivative
JPS62192371A (en) * 1986-02-18 1987-08-22 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Triazole compound, manufacture and plant growth regulant composition
JPH02286664A (en) * 1989-03-25 1990-11-26 Basf Ag Azolylethylcyclopropane and bactericide containing said compound
JPH0687703A (en) * 1992-07-31 1994-03-29 Shell Internatl Res Maatschappij Bv Bactericidal composition
WO2011070742A1 (en) * 2009-12-08 2011-06-16 Kureha Corporation Azole derivatives and methods for producing the same, intermediate compounds for the derivatives and methods for producing the same, and agro-horticultural agents and industrial material protecting agents containing the derivatives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208243A1 (en) * 2013-06-26 2014-12-31 株式会社クレハ Method for producing azole derivative
CN105246885A (en) * 2013-06-26 2016-01-13 株式会社吴羽 Method for producing azole derivative

Similar Documents

Publication Publication Date Title
JP5831990B2 (en) Azole derivatives and methods for producing the same, intermediate compounds of the derivatives, and agricultural and horticultural agents
JP5886847B2 (en) Azole derivatives, process for producing the same, intermediate compounds, agricultural and horticultural chemicals and industrial material protecting agents
JP2012501294A (en) 5-Benzyl-4-azolylmethyl-4-spiro [2.4] heptanol derivative, process for producing the same, agricultural and horticultural chemicals and industrial material protective agents
JP5881733B2 (en) Azole derivatives and uses thereof
JP2013512857A (en) Azole derivatives and methods for producing the same, intermediate compounds of the derivatives and methods for producing the same, and agricultural and horticultural agents and industrial material protecting agents containing the derivatives
JP5826839B2 (en) Azole derivatives, methods for producing azole derivatives, and intermediate compounds
JP5858999B2 (en) Agricultural and horticultural agents, plant disease control compositions, plant disease control methods, and plant disease control products
WO2009088070A1 (en) (heterocyclic methyl)azolylmethylcyclopentanol derivative and intermediate thereof, process for production of the derivative, and agricultural or horticultural preparation and protective agent for industrial material each comprising the derivative
WO2010074021A1 (en) Substituted 1-(1-chlorocylcopropyl)-2-(1h-1,2,4-triazol-1-yl)-2-propen-1-ol derivative, method for producing same and agricultural/horticultural chemical and industrial material-protecting agent comprising same
JP2012219019A (en) Hydroxyisoxazole derivative, and fungicide containing the same
WO2012169522A1 (en) Agricultural or horticultural chemical agent, method for controlling plant disease, and product for controlling plant disease
JP5859000B2 (en) Method for producing oxetane compound, method for producing azolylmethylcyclopentanol compound, and intermediate compound
JP2013100238A (en) Triazole derivative, intermediate compound, method for producing triazole derivative, agricultural and horticultural chemical, and industrial material protective agent
US9253983B2 (en) Triazole compound and use thereof
WO2012165498A1 (en) Triazole compound and use thereof
JP2012250942A (en) Forage disease controlling agent and method for controlling plant disease
WO2013047308A1 (en) Azole derivative, agricultural/horticultural chemical, industrial material protecting agent, method for controlling plant disease, and seed
WO2014024890A1 (en) Hydroxyisoxazole derivative and germicide containing same
JP2012250961A (en) Azole derivative, its production method therefor, intermediate compound of the derivative, and agricultural or horticultural chemical and industrial material protectant containing the derivative
WO2014024897A1 (en) Thiazolidinedione and pyrrolidinedione derivatives, and germicide having same as active ingredients thereof
JP2012219020A (en) 5-methyl-3(2h)-isoxazolone derivative, and agricultural and horticultural chemical containing the same
JP2016033127A (en) Agent for agricultural and horticultural uses
WO2013084770A1 (en) Azole derivative, method for producing azole derivative, intermediate compound, drug for agricultural and horticultural applications, and industrial material protectant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP