WO2012165498A1 - Triazole compound and use thereof - Google Patents

Triazole compound and use thereof Download PDF

Info

Publication number
WO2012165498A1
WO2012165498A1 PCT/JP2012/063975 JP2012063975W WO2012165498A1 WO 2012165498 A1 WO2012165498 A1 WO 2012165498A1 JP 2012063975 W JP2012063975 W JP 2012063975W WO 2012165498 A1 WO2012165498 A1 WO 2012165498A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
formula
atom
solvent
Prior art date
Application number
PCT/JP2012/063975
Other languages
French (fr)
Japanese (ja)
Inventor
泰司 三宅
須藤 敬一
久 菅野
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2012165498A1 publication Critical patent/WO2012165498A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • the present invention relates to an enantiomer of a triazole compound, a plant disease control agent containing the same, a plant disease control method using the plant disease control agent, and use thereof.
  • a plant disease control agent As an active ingredient of a plant disease control agent, it is a hydroxyethylazole derivative which is a hetero 5-membered ring containing one or more nitrogen atoms in the ring, and a cycloalkyl group or a part of the carbon atom to which the hydroxy group is bonded
  • a hydroxyethylazole derivative which is a hetero 5-membered ring containing one or more nitrogen atoms in the ring, and a cycloalkyl group or a part of the carbon atom to which the hydroxy group is bonded
  • Many derivatives have been proposed in which an alkyl group in which a hydrogen atom is substituted with a cycloalkyl group is bonded (see, for example, Patent Documents 1 to 13).
  • the present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a compound that meets the above-mentioned demand.
  • the triazole compound according to the present invention has the formula (I)
  • X 1 ⁇ X 4 represents a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 2 are the same atom together
  • X 1 and At least one of X 2 is a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom
  • X 4 and X 5 are different atoms
  • the plant disease control agent according to the present invention is a plant disease control agent containing the above triazole compound as an active ingredient.
  • the plant disease control method according to the present invention is a method for controlling plant diseases, which comprises a step of performing a foliage treatment or a non-foliage treatment using the above-mentioned plant disease control agent.
  • the seed according to the present invention is a seed treated with the above plant disease control agent.
  • the triazole compound according to the present invention has an excellent bactericidal action against many bacteria that cause plant diseases. Therefore, the chemical
  • Triazole compound The triazole compound in the present embodiment has the formula (I)
  • X 1 ⁇ X 4 represents a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 2 are the same atom together
  • X 1 and At least one of X 2 is a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom
  • X 4 and X 5 are different atoms
  • X 1 to X 4 each independently represents a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • Examples of the halogen atom in X 1 to X 4 and X 5 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and among them, a chlorine atom and a bromine atom are preferable.
  • a plurality (four) of X 2 are the same atom, and at least one of X 1 and X 2 is a halogen atom. Of these, X 1 is a halogen atom, it is preferred that X 2 is a hydrogen atom.
  • X 3 is a hydrogen atom or a halogen atom, and preferably a hydrogen atom.
  • Plural (two) X 4 are the same atom, and similarly plural (two) X 5 are the same atom.
  • X 4 and X 5 are atoms different from each other. For example, when two X 4 are both hydrogen atoms and two X 5 are both chlorine atoms, or two X 4 are both hydrogen atoms and two X 5 are Examples of these include, but are not limited to, a bromine atom.
  • X 4 and X 5 may be different halogen atoms.
  • M and n each independently represents an integer of 0 to 3.
  • m is preferably 0 or 1, and 0 is particularly preferable.
  • n is preferably from 0 to 2, particularly preferably 1 or 2.
  • X 1 is a halogen atom
  • X 2 is a hydrogen atom
  • m is 0,
  • the triazole compounds which are ( ⁇ )-enantiomers among the enantiomers in the diastereomers having a lower polarity.
  • X 3 and X 4 triazole compounds mentioned above are hydrogen atom.
  • compound (I) examples include, for example, a compound represented by the following formula (I-1).
  • X 1a and X 5a are each independently represents a chlorine atom or a bromine atom, n a represents 0, 1 or 2.
  • compound (I) there are two asymmetric carbon atoms (the carbon atom indicated by * in formula (I)). Therefore, two diastereomers exist in compound (I).
  • the “diastereomer” refers to a stereoisomer generated by the presence of a plurality of asymmetric carbon atoms in a molecule and not having a mirror image relationship.
  • the triazole compound in the present embodiment is a diastereomer having a lower polarity among the two diastereomers.
  • a diastereomer having a lower polarity is referred to as “compound (Ia)”.
  • lower polar diastereomer means that when the Rf values of normal phase thin layer chromatography under the same conditions (for example, using ethyl acetate / hexane as a solvent) are compared, The larger diastereomer is intended.
  • each diastereomer has a pair of enantiomers, but the compound in the present embodiment is the ( ⁇ )-enantiomer of the pair of enantiomers in the less polar diastereomer.
  • “( ⁇ )-enantiomer” refers to an enantiomer that rotates the vibration plane of linearly polarized light of the sodium D line to the left.
  • the ( ⁇ )-enantiomer that is, the compound according to the present embodiment
  • compound (Ia ( ⁇ )) is referred to as “compound (Ia ( ⁇ )”.
  • silica gel As the stationary phase in column chromatography, silica gel, a highly polar stationary phase such as alumina, and a low polarity stationary phase such as alkyl group-bonded silica gel such as octadecylsilyl silica gel can be used.
  • organic solvents such as hexane, ethyl acetate, chloroform, alcohols and acetonitrile, water, and a mixture thereof can be used, and can be appropriately determined according to the type of stationary phase.
  • a plurality of separation methods may be combined, for example, after separation by column chromatography, separation and purification by recrystallization may be further performed.
  • Examples of the separation method of each enantiomer from the racemic compound (Ia) include a method of separation by chiral chromatography. Specifically, amylose tris (3,5-dimethylphenyl carbamate), cellulose tris (3,5-dimethylphenyl carbamate), cellulose tris (3,5-dichlorophenyl carbamate), amylose tris [(S) - ⁇ -methyl Benzyl carbamate], cellulose tris (4-methylbenzoate), amylose tris (5-chloro-2-methylphenyl carbamate) or cellulose tris (3-chloro-4-methylphenyl carbamate) immobilized on a silica gel carrier To separate from compound (Ia) using hexane / ethanol (100/0 to 0/100), hexane / isopropanol (100/0 to 0/100), ethanol, methanol or acetonitrile as the mobile phase.
  • optical rotation of each separated enantiomer may be determined according to a conventionally known method.
  • compound (I) is a compound represented by the following formula (VII) obtained by a known technique (hereinafter referred to as “compound (VII)”), and a compound represented by the following known technique. It can be produced from a compound represented by the formula (VI) (hereinafter referred to as “compound (VI)”).
  • X 3 , X 4 and n are synonymous with the above-mentioned X 3 , X 4 and n.
  • X 6 represents a halogen atom.
  • L represents alkali metal, alkaline earth metal-Q1 (Q1 is a halogen atom), 1/2 (Cu alkali metal), or zinc-Q2 (Q2 is a halogen atom).
  • the alkali metal include lithium, sodium, and potassium, and lithium is particularly preferable.
  • magnesium etc. are mentioned as an alkaline-earth metal.
  • R 2 represents a functional group represented by the following formula (XIV).
  • X 1 , X 2 and m have the same meanings as X 1 , X 2 and m described above.
  • the solvent is not particularly limited as long as it is an inert solvent, and examples thereof include ethers such as diethyl ether, tetrahydrofuran and dioxane, and aromatic hydrocarbons such as benzene, toluene and xylene. These solvents can also be used as a mixture.
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • aromatic hydrocarbons such as benzene, toluene and xylene.
  • These solvents can also be used as a mixture.
  • water when water is used for the reaction, it can be used by mixing with an organic solvent.
  • a tetrabutylammonium salt, trimethylbenzylammonium salt is added to the reaction mixture as necessary. It is also possible to carry out the reaction by adding a phase transfer catalyst such as a salt and a quaternary ammonium salt such as triethylbenzylammonium salt, and crown
  • the amount of compound (VI) to be used with respect to compound (VII) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol.
  • Compound (VI) is preferably prepared just before the reaction. Moreover, it may be possible to carry out the reaction while generating the compound (VI) in the reaction system. In particular, when L is zinc-Q2 (Q2 is a halogen atom), it is preferable to carry out the reaction while generating compound (VI) in the reaction system.
  • a Lewis acid may be added if desired.
  • the amount of the Lewis acid used relative to compound (VI) is, for example, 0 to 5 times mol (excluding 0), preferably 0.1 to 2 times mol.
  • the Lewis acid include aluminum chloride, zinc chloride and cerium chloride.
  • the reaction temperature and reaction time can be appropriately set depending on the type of the solvent, compound (VI), compound (VI) and the like.
  • the reaction temperature is preferably ⁇ 100 ° C. to 200 ° C., more preferably ⁇ 70 ° C. to 100 ° C.
  • the reaction time is preferably 0.1 to 12 hours, and more preferably 0.5 to 6 hours.
  • compound (VI) a commercially available compound or a compound that can be produced by an existing synthesis technique such as conversion of a halogenated alkenyl compound into an organometallic reagent can be used.
  • compound (VII) a commercially available compound or a compound that can be produced by existing techniques can be used.
  • Bases used in the reaction include alkali metal or alkaline earth metal hydroxide salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, and alkali metal carbonates or carbonates such as sodium carbonate and potassium carbonate.
  • alkali metal or alkaline earth metal hydroxide salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide
  • alkali metal carbonates or carbonates such as sodium carbonate and potassium carbonate.
  • hydrogen salt etc. can be used conveniently, it is not limited to these.
  • the amount of the base is, for example, 0.5 to 20 times mol, preferably 0.8 to 5 times mol for the compound (V).
  • the solvent is not particularly limited.
  • alcohols such as methanol, ethanol and isopropanol
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2 Amides such as pyrrolidinone
  • hydrocarbons such as n-hexane, methylcyclohexane, benzene, toluene and xylene
  • halogenated hydrocarbons such as dichloroethane and chloroform
  • mixed solvents thereof for example, alcohols such as methanol, ethanol and isopropanol; ethers such as diethyl ether, tetrahydrofuran and dioxane; N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2 Amides such as pyrrolidinone; hydrocarbons such as n-hexane,
  • the reaction mixture contains quaternary ammonium salts such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, and interphases such as crown ether and the like.
  • the reaction can also be carried out by adding a transfer catalyst.
  • the reaction temperature and reaction time can be appropriately set depending on the solvent, the type of compound (V), and the like.
  • the reaction temperature is preferably ⁇ 20 ° C. to 150 ° C., and more preferably 0 ° C. to 100 ° C.
  • the reaction time is preferably 0.1 to 24 hours, and more preferably 0.5 to 12 hours.
  • X 5 has the same meaning as X 5 above.
  • trihalomethane used examples include chloroform, bromoform, chlorodifluoromethane, dichlorofluoromethane, and dibromofluoromethane.
  • the amount of trihalomethane used with respect to compound (IV) is not particularly limited, and is, for example, 0.5 to 1000 times mol, preferably 0.8 to 100 times mol.
  • trihalomethane itself or other solvents such as dichloromethane and toluene inert to the reaction can be used.
  • phase transfer catalyst When adding a base, when using an aqueous solution such as an aqueous sodium hydroxide solution, it is preferable to use a phase transfer catalyst.
  • the phase transfer catalyst is not particularly limited, and includes quaternary ammonium salts such as tetramethylammonium chloride, tetrabutylammonium bromide, cetyltrimethylammonium bromide, benzyltriethylammonium chloride and benzyltrimethylammonium chloride, and three such as triethylamine and tripropylamine. Secondary amines can be used.
  • the amount of the phase transfer catalyst used is, for example, 0.001 to 5 times mol, preferably 0.01 to 2 times mol, of the compound (IV).
  • the base used for the reaction is not particularly limited, but alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are preferably used, and in many cases, used as an aqueous solution.
  • the amount of the base to be used is, for example, 0.1 to 100 times mol, preferably 0.8 to 50 times mol with respect to compound (IV).
  • the concentration of the aqueous solution of alkali metal hydroxide at this time is, for example, 10% to a saturated aqueous solution, and preferably 30% to a saturated aqueous solution.
  • the reaction temperature is, for example, 0 ° C. to 200 ° C., preferably 10 ° C. to 150 ° C.
  • the reaction time is, for example, 0.1 hour to several days, preferably 0.2 hour to 2 days.
  • M represents a hydrogen atom or an alkali metal.
  • the solvent to be used is not particularly limited, and examples thereof include amides such as N-methylpyrrolidone and N, N-dimethylformamide.
  • the amount of the compound (II) used relative to the compound (III) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol. Moreover, you may add a base if desired. In this case, the amount of the base used relative to the compound (II) is, for example, 0 to 10 times mol (excluding 0), preferably 0.5 to 5 times mol.
  • the reaction temperature and reaction time can be appropriately set depending on the solvent, base and the like.
  • the reaction temperature is preferably 0 ° C. to 250 ° C., more preferably 10 ° C. to 150 ° C.
  • the reaction time is preferably 0.1 hour to several days, more preferably 0.5 hour to 2 days.
  • an oxirane compound represented by the following formula (IVa) wherein n is 1 or 2 (hereinafter referred to as “compound (IVa)”) is synthesized by the above steps A1 to A2. In addition to the method, it can be obtained by the following suitable synthesis method (see the following Scheme 2). (Scheme 2)
  • R 2 has the same meaning as R 2 described above.
  • R 1 represents an alkyl group having 1 to 4 carbon atoms.
  • This reaction can be carried out in a solvent or using compound (XII) as a solvent.
  • the amount of compound (XII) used relative to compound (XIII) is, for example, 0.5 to 20 times mol, preferably 0.8 to 10 times mol.
  • Examples of the base include, but are not limited to, alkali metal hydrogen compounds such as sodium hydride, and alkali metal alkoxides such as sodium methoxide, sodium ethoxide, and potassium t-butoxide.
  • the amount of the base to be used with respect to compound (XIII) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol.
  • the reaction temperature is, for example, 0 ° C. to 250 ° C., preferably room temperature to 150 ° C.
  • the reaction time is, for example, 0.1 hour to several days, preferably 0.5 hour to 24 hours.
  • X 3 and X 4 are synonymous with X 3 and X 4 described above.
  • X 7 represents a halogen atom.
  • p represents 1 or 2.
  • This reaction is usually performed in a solvent in the presence of a base.
  • the amount of the compound (X) used relative to the compound (XI) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol.
  • Examples of the base include, but are not limited to, alkali metal hydrogen compounds such as sodium hydride, and alkali metal carbonates such as sodium carbonate and potassium carbonate.
  • the amount of base used with respect to compound (XI) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol.
  • the reaction temperature is, for example, 0 ° C. to 250 ° C., preferably room temperature to 150 ° C.
  • the reaction time is, for example, 0.1 hour to several days, preferably 0.5 hour to 24 hours.
  • the acidity of the hydrogen atom of the methylene part between the carbonyl group and the ester group of the compound (XI) produced in the reaction in the above-mentioned step B1 is more than the acidity of the hydrogen atom of the acetyl group in the compound (XIII). Since it is high, an alkali metal salt of compound (XI) is formed in the course of the reaction in step B1. Therefore, the reaction liquid in Step B1 can be used as it is for the reaction in this step (Step B2) without isolating compound (XI). In that case, it is also possible to react without adding a new base.
  • This hydrolysis and decarboxylation reaction can be carried out in a solvent under basic conditions or acidic conditions.
  • an alkali metal base such as sodium hydroxide or potassium hydroxide is used as the base.
  • the solvent for example, water or water to which alcohols are added is used.
  • the acid catalyst is preferably an inorganic acid such as hydrochloric acid, hydrobromic acid and sulfuric acid, or an organic acid such as acetic acid.
  • the solvent for example, water or water to which an organic acid such as acetic acid is added is used.
  • the reaction temperature is, for example, from 0 ° C. to the reflux point, and preferably from 10 ° C. to the reflux point.
  • the reaction time is, for example, 0.1 hour to several days, preferably 0.5 hour to 24 hours.
  • the amount of the sulfonium methylides and the sulfoxonium methylides is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol for the compound (XI).
  • the solvent is not particularly limited.
  • aromatic hydrocarbons such as toluene and xylene
  • amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidinone
  • diethyl ether diethyl ether
  • tetrahydrofuran And ethers such as dioxane, and dimethyl sulfoxide.
  • solvents can be used as a mixture of two or more.
  • water when used for the reaction, it can be used by mixing with an organic solvent.
  • a tetrabutylammonium salt, trimethylbenzylammonium salt is added to the reaction mixture as necessary. It is also possible to carry out the reaction by adding a phase transfer catalyst such as a salt and a quaternary ammonium salt such as triethylbenzylammonium salt, and crown ether and the like.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide
  • an organic solvent such as toluene
  • an alcohol such as diethylene glycol
  • the amount of alcohol used at this time is, for example, 0.001 to 10 times mol, preferably 0.005 to 5 times mol, of the compound (VIII).
  • the reaction temperature and reaction time can be appropriately set depending on the type of solvent, compound (VIII), sulfonium salt or sulfoxonium salt.
  • the reaction temperature is preferably ⁇ 100 ° C. to 200 ° C., more preferably ⁇ 50 ° C. to 150 ° C.
  • the reaction time is preferably 0.1 hour to several days, more preferably 0.5 hour to 2 days.
  • Sulfonium methylides and sulfoxonium methylides are prepared in a solvent by sulfonium salts (eg, trimethylsulfonium iodide and trimethylsulfonium bromide) or sulfoxonium salts (eg, trimethylsulfoxonium iodide and trimethylsulfoxonium bromide). Etc.) and a base.
  • sulfonium salts eg, trimethylsulfonium iodide and trimethylsulfonium bromide
  • sulfoxonium salts eg, trimethylsulfoxonium iodide and trimethylsulfoxonium bromide
  • the base used for the production of sulfonium methylides and sulfoxonium methylides is not particularly limited, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, metal hydrogen compounds such as sodium hydride,
  • alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium t-butoxide and potassium t-butoxide are preferably used.
  • solvent to be used is not particularly limited as long as it does not participate in the reaction.
  • ethers such as diethyl ether, tetrahydrofuran and dioxane; alcohols such as methanol, ethanol and isopropanol; benzene, toluene and xylene
  • Aromatic hydrocarbons such as petroleum ether, aliphatic hydrocarbons such as hexane and methylcyclohexane, and amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidinone Can be mentioned.
  • solvent water, acetonitrile, ethyl acetate, acetic anhydride, acetic acid, pyridine, dimethyl sulfoxide, and the like can be used as the solvent. These solvents may be used as a mixture of two or more.
  • examples of the solvent include a solvent composition composed of solvents that do not form a uniform layer with each other.
  • a phase transfer catalyst such as a conventional quaternary ammonium salt or crown ether may be added to the reaction system.
  • Base / acid A base or an acid may be added to the above-mentioned solvent.
  • the base used is not particularly limited.
  • examples of the base include alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate and potassium hydrogen carbonate; alkaline earth metal carbonates such as calcium carbonate and barium carbonate; sodium hydroxide and potassium hydroxide Alkali metal hydroxides; alkali metals such as lithium, sodium and potassium; alkali metal alkoxides such as sodium methoxide, sodium ethoxide and potassium t-butoxide; sodium hydride, potassium hydride and lithium hydride, etc.
  • Alkali metal hydrogen compounds such as n-butyllithium; alkali metal amides such as lithium diisopropylamide; and triethylamine, pyridine, 4-dimethylaminopyridine, N, N-dimethyla Phosphorus and 1,8-diazabicyclo-7- [5.4.0] Organic amines such as undecene, and the like.
  • the acid used is not particularly limited.
  • the acid include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid and sulfuric acid; organic acids such as formic acid, acetic acid, butyric acid, trifluoroacetic acid and p-toluenesulfonic acid; and lithium chloride, bromide Mention may be made of Lewis acids such as lithium, rhodium chloride, aluminum chloride and boron trifluoride.
  • the compound (Ia ( ⁇ )) Since the compound (Ia ( ⁇ )) has a 1,2,4-triazolyl group, it forms an acid addition salt with an inorganic acid or an organic acid, or a metal complex. Compound (Ia ( ⁇ )) may be used in the form of these acid addition salts and metal complexes.
  • Plant disease control effect The usefulness of the plant disease control agent which concerns on this Embodiment is demonstrated.
  • Compound (Ia ( ⁇ )) exerts a controlling effect against a wide range of plant diseases including foliage diseases, seed infectious diseases and soil infectious diseases.
  • Examples of applicable diseases include: soybean rust (Phakopsora pachyrhizi, Phakopsora meibomiae), rice blast (Pyricularia grisea, Pyricularia oryzae), rice sesame leaf blight (Cochliobolus miyabeanus), rice blight (Rhizoctonia solani) , Apple powdery mildew (Podosphaera leucotricha), apple black spot disease (Venturia inaequalis), apple morinia disease (Monilinia mali), apple spotted leaf disease (Alternaria alternata), apple rot disease (Valsa mali), pear black spot disease (Alternaria kikuchiana) Pear powdery mildew (Phyll
  • Examples of applied plants include wild plants, plant cultivars, plants and plant cultivars obtained by conventional biological breeding such as crossbreeding or protoplast fusion, genetically modified plants and plant cultivars obtained by genetic manipulation. Can be mentioned.
  • Examples of genetically modified plants and plant cultivars include herbicide-tolerant crops, pest-tolerant crops incorporating insecticidal protein production genes, disease-resistant crops incorporating resistance-inducing substance production genes for diseases, improved crops, improved yields
  • Examples include crops, preservative-enhancing crops, and yield-enhancing crops.
  • Specific examples of genetically modified plant cultivars include those containing registered trademarks such as ROUNDUP READY, LIBERTY LINK, CLEARFIELD, YIELDGARD, HERCULEX, BOLLGARD and the like.
  • compound (Ia ( ⁇ )) exhibits an effect of increasing the yield or improving the quality of a wide variety of crops and horticultural plants by controlling the growth.
  • crops include wheat, barley and buckwheat, rice, rapeseed, sugar cane, corn, maize, soybeans, peas, peanuts, sugar beet, cabbage, garlic, radish, carrots, apples, pears, tangerines, Citrus such as orange and lemon, peach, cherry peach, avocado, mango, papaya, pepper, cucumber, melon, strawberry, tobacco, tomato, eggplant, turf, chrysanthemum, azalea, and other ornamental plants.
  • a plant disease control agent containing the compound (Ia (-)) as an active ingredient is usually mixed with a solid carrier, liquid carrier, surfactant or other formulation adjuvant, and powder, wettable powder, granule It is formulated and used in various forms such as agents and emulsions.
  • These preparations may contain 0.1 to 95% by weight, preferably 0.5 to 90% by weight, more preferably 2 to 80% by weight, of the compound (Ia ( ⁇ )) as an active ingredient. .
  • Examples of carriers, diluents and surfactants used as formulation adjuvants include the following.
  • examples of the solid carrier include talc, kaolin, bennite, diatomaceous earth, white carbon, and clay.
  • examples of the liquid diluent include water, xylene, toluene, chlorobenzene, cyclohexane, cyclohexanone, dimethyl sulfoxide, dimethylformamide and alcohol. It is preferable to use different surfactants depending on their effects.
  • As the emulsifier it is preferable to use polyoxyethylene alkylaryl ether, polyoxyethylene sorbitan monolaurate, or the like.
  • lignin sulfonate and dibutyl naphthalene sulfonate are preferably used as the dispersant
  • alkyl sulfonate and alkylphenyl sulfonate are preferably used as the wetting agent.
  • Preparations include those that are used as they are and those that are diluted to a predetermined concentration with a diluent such as water.
  • concentration of the compound (Ia ( ⁇ )) contained in the spray liquid is desirably in the range of 0.001 to 1.0%.
  • the plant disease control agent containing the compound (Ia ( ⁇ )) can be applied by non-foliage treatment such as seed treatment, irrigation treatment and water surface treatment in addition to foliage treatment such as foliage spraying.
  • non-foliage treatment such as seed treatment, irrigation treatment and water surface treatment
  • foliage treatment such as foliage spraying.
  • a labor can be reduced compared with the case where a foliage process is performed.
  • the plant disease control agent containing the compound (Ia (-)) can control not only non-foliage diseases but also foliage diseases by non-foliage treatment.
  • a wettable powder or powder is mixed with the seed and stirred, or the seed is immersed in a diluted wettable powder to attach the drug to the seed.
  • the amount of compound (Ia ( ⁇ )) used in the seed treatment is 0.01 to 10000 g, preferably 0.1 to 1000 g, per 100 kg of seeds.
  • irrigation treatment is performed by treating granules or the like around the planting hole at the time of transplanting seedlings, or treating the soil around the seeds or plants with granules or wettable powder. .
  • the amount of compound (Ia ( ⁇ )) used in the irrigation treatment is 0.01 to 10000 g, preferably 0.1 to 1000 g, per 1 m 2 of agricultural and horticultural land.
  • water surface treatment is performed by treating the surface of paddy fields with granules.
  • the amount of compound (Ia ( ⁇ )) used is 0.1 to 10000 g, preferably 1 to 1000 g, per 10 a paddy field.
  • the concentration and amount used vary depending on the dosage form, time of use, method of use, place of use and target crop, and can be increased or decreased without sticking to the above range.
  • the amount of compound (Ia ( ⁇ )) used for foliage spraying is 20 to 5000 g, more preferably 50 to 2000 g, per ha of horticultural lands such as fields, rice fields, orchards and greenhouses.
  • the compound (Ia ( ⁇ )) should be used in combination with other active ingredients such as fungicides, insecticides, acaricides or herbicides as exemplified below to enhance performance as plant disease control agents. You can also.
  • ⁇ Antimicrobial substances > Acibenzolar S methyl, 2-phenylphenol (OPP), azaconazole, azoxystrobin, amisulbrom, bixaphene, benalaxyl, benomyl, bench avaricarb-isopropyl, bicarbonate, biphenyl, viteltanol, blasticidin-S, borax, bordeaux, boscalid, Bromuconazole, bronopol, bupirimate, secbutyramine, calcium polysulfide, captafor, captan, carbendazim, carboxin, carpropamide, quinomethionate, chloronebu, chloropicrin, chlorothalonil, clozolinate, cyazofamide,
  • ⁇ Insecticide / acaricide / nematicide> Abamectin, Acephate, Acrinathrin, Alanicarb, Aldicarb, Alletrin, Amitraz, Avermectin, Azadirachtin, Azamethifos, Azinphos-ethyl, Azinphos-methyl, Azocycline, Bacillus filmus, Bacillus subtilis, Bacillus thuringibulbbenthulbenbencarb , Benzoxymate, Bifenazite, Bifenthrin, Bioarethrin, Bioresmethrin, Bistriflurone, Buprofezin, Butocaboxin, Butoxycarboxyne, Kazusafos, Carbaryl, Carbofuran, Carbosulfan, Cartap, CGA50439, Chlordein, Chloretifol, Chlorfenapir Fenbinfoss,
  • plant hormones jasmonic acid, brassinosteroid, gibberellin and the like.
  • the seed treated with the above-mentioned plant disease control agent is also included in the category of the present invention. Since the treatment with the plant disease control agent has been described above, the description thereof is omitted. Seeds treated with a plant disease control agent can be used in the same manner as seeds not treated with seeds.
  • the plant disease control agent only needs to contain the compound (Ia ( ⁇ )), and may contain an enantiomer of the compound (Ia ( ⁇ )), that is, a (+)-enantiomer. .
  • the content of the (+)-enantiomer is preferably less than the content of the compound (Ia ( ⁇ )).
  • the content is more preferably 40% or less, still more preferably 20% or less, and particularly preferably no (+)-enantiomer is contained.
  • the reaction solution was poured into ice water and extracted with chloroform. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain a crude product. The obtained crude product was purified by distillation under reduced pressure, and the residue was purified by silica gel column chromatography to obtain the desired product.
  • ⁇ Formulation example 1 (wettable powder)> Compound (1a-1 (-)) 50 parts lignin sulfonate 5 parts alkyl sulfonate 3 parts diatomaceous earth 42 parts were pulverized and mixed to obtain a wettable powder and diluted with water for use.
  • ⁇ Formulation example 4 (emulsion)> Compound (1a-1 (-)) 20 parts polyoxyethylene alkyl aryl ether 10 parts polyoxyethylene sorbitan monolaurate 3 parts xylene 67 parts were mixed and dissolved uniformly to give an emulsion.
  • ⁇ Test Example 1 Cucumber gray mold control effect test by foliar spray treatment> To a cotyledon cucumber (variety: SHARP1) cultivated using a square plastic pot (6 cm ⁇ 6 cm), the compound (1a-1 ( ⁇ )) or the compound ((1a-2 ( ⁇ )) as in Preparation Example 1 ) In the form of a wettable powder was diluted with water to a predetermined concentration and sprayed at a rate of 1,000 L / ha, and the sprayed leaves were air-dried and then a paper disc impregnated with a spore solution of gray mold fungus. 8 mm in diameter) and kept under high humidity conditions at 20 ° C.
  • Control value (%) (1 ⁇ (average morbidity in sprayed area / average illness in non-sprayed area)) ⁇ 100
  • ⁇ Test Example 2 Wheat red rust control effect test by foliar spray treatment> Compound (1a-1 ( ⁇ )) or compound (1a-2) as in Preparation Example 1 was added to the second leaf wheat (cultivar: Norin 61) grown using a square plastic pot (6 cm ⁇ 6 cm). (-)) In the form of a wettable powder was diluted and suspended in water to a predetermined concentration and sprayed at a rate of 1,000 L / ha. The sprayed leaves were air-dried and then spray-inoculated with spores of wheat red rust fungus (adjusted to 200 cells / field of view, added with Grameen S to 60 ppm), and kept at 25 ° C. and high humidity for 48 hours.
  • Control value (%) (1 ⁇ (average morbidity in sprayed area / average illness in non-sprayed area)) ⁇ 100
  • ⁇ Test Example 3 Wheat powdery mildew control effect test by foliar spray treatment> Compound (1a-1 ( ⁇ )) or compound (1a-2) as in Preparation Example 1 was added to the second leaf wheat (cultivar: Norin 61) grown using a square plastic pot (6 cm ⁇ 6 cm). (-)) In the form of a wettable powder was diluted and suspended in water to a predetermined concentration and sprayed at a rate of 1,000 L / ha. After airing the sprayed leaves, wheat seedlings infected with wheat powdery mildew were sprinkled with powdery mildew fungus. On the 11th day after inoculation, the morbidity of wheat powdery mildew was examined according to the survey criteria shown in Table 4 above, and the control value was calculated in the same manner as in Test Example 2. The results are shown in Tables 7 and 8.
  • ⁇ Test Example 4 Wheat red mold control effect test by foliar spray treatment>
  • a compound (1a-1 ( ⁇ )) or a compound (1a-2 ( ⁇ )) in the form of a wettable powder as in Formulation Example 1 was added to water.
  • the suspension was diluted to a predetermined concentration and sprayed at a rate of 1,000 L / ha.
  • Control value (%) (1 ⁇ (average morbidity in sprayed area / average illness in non-sprayed area)) ⁇ 100
  • Example 5 Effect of controlling wheat red rust by seed treatment>
  • the control effect of wheat red rust caused by seed treatment was evaluated.
  • the compound (1a-1 ( ⁇ )) dissolved in DMSO so that the treatment amount is 20 g ai / 100 kg seeds or 5 g ai / 100 kg seeds was smeared on the wheat seeds in a vial, and then 8 wheat seeds were 80 cm. 2 pots were seeded.
  • the lower water supply was controlled in a greenhouse, and 27 days after sowing, wheat red rust fungus was inoculated and stored in a wet box for 2 days.
  • Control value (%) (1 ⁇ (Affected area ratio of treated area / Affected area ratio of untreated area)) ⁇ 100 The results are shown in Table 12.
  • Example 6 Controlling effect of rice seedling disease by seed treatment> The pot test was used to evaluate the control effect of rice seedling disease by seed treatment. Processing amount is 5g A compound (1-1a) dissolved in DMSO so as to be ai / 100 kg seeds was smeared on rice seeds infected with scab seedlings in a vial, and then 32 rice seeds were sown in 50 cm 2 pots. The lower water supply was managed in the greenhouse, and the diseased seedling rate was investigated 21 days after sowing, and the control value was calculated in the same manner as in Test Example 5.
  • a test bacterium previously cultured on a plate medium was punched out with a cork borer having a diameter of 4 mm and inoculated on the drug-containing plate medium.
  • each fungus was cultured for 1 to 14 days at a suitable temperature for growth of the fungus (see, for example, LIST OF CULTURES 1996 microorganisms 10th edition, literature from the Institute for Fermentation, etc.), and the growth of the fungus was measured by the fungus diameter.
  • the growth degree of the bacteria obtained on the drug-containing plate medium was compared with the growth degree of the bacteria in the drug-free group, and the mycelial elongation suppression rate was determined by the following formula.
  • R represents the hyphal elongation inhibition rate (%)
  • dc represents the diameter of the fungus on the untreated plate
  • dt represents the diameter of the fungus on the drug-treated plate.
  • R 100 (dc ⁇ dt) / dc
  • the abbreviation of the microbial species in Table 15 or 16 represents the following microbial species, respectively.
  • Pn wheat blight (Phaeosphaeria nodorum)
  • Ph Wheat eye spot disease fungus (Pseudocercoporella herpotrichoides)
  • Mn Wheat red snow rot fungus (Microdochium nivale)
  • Gg Wheat Blight Fungus (Gaeumannomyces graminis)
  • Pg Pyrenophora graminea
  • Fg Fusarium graminearum
  • Un Barley Bare Smut Fungus (Ustilago nuda)
  • Po Rice blast fungus (Pyricularia oryzae)
  • Rs Rhizoctonia solani
  • Gf Gibberella fujikuroi
  • Ro Rice seedling blight (Rhizopus oryzae)
  • Am Apple spotted leaf disease (Alternaria alternata)
  • Ss Sclerotinia
  • the present invention can be suitably used as an active ingredient of a control agent capable of controlling plant diseases by foliage treatment and non-foliage treatment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

In order to provide a compound exhibiting a high controlling effect with respect to a plant disease, this triazole compound is the less polar diastereomer of the two diastereomers of the triazole compound indicated in formula (I), and is the (-)-enantiomer of the enantiomers of the diastereomer that is less polar.

Description

トリアゾール化合物、およびその利用Triazole compounds and use thereof
 本発明は、トリアゾール化合物の鏡像異性体、これを含む植物病害防除剤、この植物病害防除剤を用いた植物病害防除方法、およびこれらの利用に関する。 The present invention relates to an enantiomer of a triazole compound, a plant disease control agent containing the same, a plant disease control method using the plant disease control agent, and use thereof.
 従来、植物病害防除剤の有効成分として、環内に窒素原子1個以上を含む複素5員環であるヒドロキシエチルアゾール誘導体であり、ヒドロキシ基が結合する炭素原子にさらにシクロアルキル基、もしくは一部の水素原子がシクロアルキル基で置換されたアルキル基が結合している誘導体が多数提案されている(例えば、特許文献1~13参照)。 Conventionally, as an active ingredient of a plant disease control agent, it is a hydroxyethylazole derivative which is a hetero 5-membered ring containing one or more nitrogen atoms in the ring, and a cycloalkyl group or a part of the carbon atom to which the hydroxy group is bonded Many derivatives have been proposed in which an alkyl group in which a hydrogen atom is substituted with a cycloalkyl group is bonded (see, for example, Patent Documents 1 to 13).
欧州特許出願公開第0015756号明細書European Patent Application No. 0015756 欧州特許出願公開第0052424号明細書European Patent Application Publication No. 0052424 欧州特許出願公開第0061835号明細書European Patent Application Publication No. 0061835 欧州特許出願公開第0297345号明細書European Patent Application No. 0297345 欧州特許出願公開第0047594号明細書European Patent Application Publication No. 0047594 欧州特許出願公開第0212605号明細書European Patent Application No. 0212605 日本国特許公報「特開昭56-97276号公報」Japanese Patent Gazette “JP-A-56-97276” 日本国特許公報「特開昭61-126049号公報」Japanese Patent Gazette "Japanese Patent Laid-Open No. 61-126049" 日本国特許公報「特開平2-286664号公報」Japanese Patent Gazette “JP-A 2-286664” 日本国特許公報「特開昭59-98061号公報」Japanese Patent Gazette “JP 59-98061 A” 日本国特許公報「特開昭61-271276号公報」Japanese Patent Gazette "Japanese Patent Laid-Open No. 61-271276" 欧州特許出願公開第0229642号明細書European Patent Application No. 0229642 日本国特許公報「特開平4-230270号公報」Japanese Patent Gazette “JP-A-4-230270”
 従来、人畜に対する毒性が低く取扱い安全性に優れ、かつ広範な植物病害に対して高い防除効果を示す植物病害防除剤が求められている。 Conventionally, there has been a demand for a plant disease control agent that is low in toxicity to human livestock, has excellent handling safety, and exhibits a high control effect on a wide range of plant diseases.
 そこで、本発明は上記の問題点に鑑みてなされたものであり、その目的は、上記の要望に応える化合物を提供することにある。 Therefore, the present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a compound that meets the above-mentioned demand.
 上記課題解決のため、本発明者らは、多数のアゾール誘導体について、その化学構造および生理活性を詳細に検討した。その結果、下記式(I)で示されるトリアゾール誘導体が優れた活性を有することを見出すとともに、そのうちの一つの異性体において特に優れた活性を有していることを見出し、本発明を完成させるに至った。本発明は係る新規知見に基づいてなされたものであり、以下の発明を包含する。 In order to solve the above problems, the present inventors have studied in detail the chemical structure and physiological activity of many azole derivatives. As a result, the triazole derivative represented by the following formula (I) was found to have excellent activity, and one of the isomers was found to have particularly excellent activity, thereby completing the present invention. It came. This invention is made | formed based on the novel knowledge which concerns, and includes the following inventions.
 本発明に係るトリアゾール化合物は、式(I) The triazole compound according to the present invention has the formula (I)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(I)中、X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、XおよびXの少なくとも一方はハロゲン原子であり、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、mおよびnは0~3を表している。*は、不斉炭素原子を示している。)
で示されるトリアゾール化合物における2種のジアステレオマーのうち、より低極性のジアステレオマーであり、より低極性の上記ジアステレオマーにおけるエナンチオマーのうち、(-)-エナンチオマーである、トリアゾール化合物である。
(In the formula (I), X 1 ~ X 4 represents a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 2 are the same atom together, X 1 and At least one of X 2 is a halogen atom, a plurality of X 4 are the same atom, a plurality of X 5 are the same atom, X 4 and X 5 are different atoms, m and n Represents 0 to 3. * represents an asymmetric carbon atom.)
Among the two diastereomers in the triazole compound represented by the formula, is a triazole compound that is a lower polar diastereomer, and is a (−)-enantiomer among the enantiomers in the lower polar diastereomer. .
 本発明に係る植物病害防除剤は、上記トリアゾール化合物を有効成分として含有する植物病害防除剤である。 The plant disease control agent according to the present invention is a plant disease control agent containing the above triazole compound as an active ingredient.
 本発明に係る植物病害防除方法は、上記植物病害防除剤を用いて茎葉処理または非茎葉処理を行う工程を含む、物病害防除方法である。 The plant disease control method according to the present invention is a method for controlling plant diseases, which comprises a step of performing a foliage treatment or a non-foliage treatment using the above-mentioned plant disease control agent.
 本発明に係る種子は、上記植物病害防除剤により処理した種子である。 The seed according to the present invention is a seed treated with the above plant disease control agent.
 本発明に係るトリアゾール化合物は、植物に病害を引き起こす多くの菌に対して優れた殺菌作用を有する。したがって、本発明に係るトリアゾール化合物を有効成分として含む薬剤は、広範な植物病害に対して高い防除効果を発揮することができる効果を奏する。 The triazole compound according to the present invention has an excellent bactericidal action against many bacteria that cause plant diseases. Therefore, the chemical | medical agent which contains the triazole compound which concerns on this invention as an active ingredient has an effect which can exhibit the high control effect with respect to a wide range of plant diseases.
 以下、本発明に係るトリアゾール化合物、植物病害防除剤および植物病害防除方法の一実施形態について説明する。 Hereinafter, an embodiment of a triazole compound, a plant disease control agent, and a plant disease control method according to the present invention will be described.
 〔トリアゾール化合物〕
 本実施の形態におけるトリアゾール化合物は、式(I)
[Triazole compound]
The triazole compound in the present embodiment has the formula (I)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(I)中、X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、XおよびXの少なくとも一方はハロゲン原子であり、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、mおよびnは0~3を表している。*は、不斉炭素原子を示している。)
で示されるトリアゾール化合物における2種のジアステレオマーのうち、より低極性のジアステレオマーであり、より低極性の上記ジアステレオマーにおけるエナンチオマーのうち、(-)-エナンチオマーである、トリアゾール化合物である。
(In the formula (I), X 1 ~ X 4 represents a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 2 are the same atom together, X 1 and At least one of X 2 is a halogen atom, a plurality of X 4 are the same atom, a plurality of X 5 are the same atom, X 4 and X 5 are different atoms, m and n Represents 0 to 3. * represents an asymmetric carbon atom.)
Among the two diastereomers in the triazole compound represented by the formula, is a triazole compound that is a lower polar diastereomer, and is a (−)-enantiomer among the enantiomers in the lower polar diastereomer. .
 X~Xは、それぞれ独立に水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表している。X~XおよびXにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられ、なかでも塩素原子および臭素原子が好ましい。 X 1 to X 4 each independently represents a hydrogen atom or a halogen atom, and X 5 represents a halogen atom. Examples of the halogen atom in X 1 to X 4 and X 5 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and among them, a chlorine atom and a bromine atom are preferable.
 複数(4つ)あるXは互いに同一の原子であり、XおよびXの少なくとも一方はハロゲン原子である。なかでも、Xがハロゲン原子であり、Xが水素原子であることが好ましい。 A plurality (four) of X 2 are the same atom, and at least one of X 1 and X 2 is a halogen atom. Of these, X 1 is a halogen atom, it is preferred that X 2 is a hydrogen atom.
 上記のとおり、Xは水素原子またはハロゲン原子であるが、なかでも水素原子であることが好ましい。 As described above, X 3 is a hydrogen atom or a halogen atom, and preferably a hydrogen atom.
 複数(2つ)あるXは互いに同一の原子であり、同様に、複数(2つ)あるXは互いに同一の原子である。また、XおよびXは互いに異なる原子である。例えば、2つあるXが何れも水素原子であり、2つあるXが何れも塩素原子である場合、あるいは、2つあるXが何れも水素原子であり、2つあるXが何れも臭素原子である場合等が挙げられるが、これらに限定されるものではない。例えば、XおよびXが互いに異なるハロゲン原子同士であってもよい。 Plural (two) X 4 are the same atom, and similarly plural (two) X 5 are the same atom. X 4 and X 5 are atoms different from each other. For example, when two X 4 are both hydrogen atoms and two X 5 are both chlorine atoms, or two X 4 are both hydrogen atoms and two X 5 are Examples of these include, but are not limited to, a bromine atom. For example, X 4 and X 5 may be different halogen atoms.
 mおよびnはそれぞれ独立に0~3の整数を表している。なかでも、mは0または1であることが好ましく、0が特に好ましい。一方、nは0~2であることが好ましく、1または2であることが特に好ましい。 M and n each independently represents an integer of 0 to 3. Among these, m is preferably 0 or 1, and 0 is particularly preferable. On the other hand, n is preferably from 0 to 2, particularly preferably 1 or 2.
 好適な具体例としては、上記式(I)で示され、Xはハロゲン原子であり、Xは水素原子であり、mは0であるトリアゾール化合物における2種のジアステレオマーのうち、より低極性のジアステレオマーであり、より低極性の上記ジアステレオマーにおけるエナンチオマーのうち、(-)-エナンチオマーであるトリアゾール化合物が挙げられる。 As a preferred specific example, among the two diastereomers in the triazole compound represented by the above formula (I), X 1 is a halogen atom, X 2 is a hydrogen atom, and m is 0, Among the enantiomers in the diastereomers having a low polarity, the triazole compounds which are (−)-enantiomers among the enantiomers in the diastereomers having a lower polarity.
 また、好適な具体例としては、XおよびXは水素原子である上述のトリアゾール化合物が挙げられる。 Further, as a preferred embodiment, X 3 and X 4 triazole compounds mentioned above are hydrogen atom.
 上記式(I)で示される化合物(以下、「化合物(I)」と称する)のさらなる具体例としては、例えば、下記式(I-1)で示される化合物が挙げられる。 Further specific examples of the compound represented by the above formula (I) (hereinafter referred to as “compound (I)”) include, for example, a compound represented by the following formula (I-1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(I-1)中、X1aおよびX5aは、それぞれ独立に塩素原子または臭素原子を表しており、nは、0、1または2を表している。*は、不斉炭素原子を示している。)
 化合物(I)には、2つの不斉炭素原子が存在する(式(I)中、*で示した炭素原子)。そのため、化合物(I)には、2種のジアステレオマーが存在する。なお、本明細書において「ジアステレオマー」とは、分子内の複数の不斉炭素原子の存在によって生じる立体異性体であって、鏡像関係にないものをいう。
(In the formula (I-1), X 1a and X 5a are each independently represents a chlorine atom or a bromine atom, n a represents 0, 1 or 2. * Is an asymmetric carbon atom Is shown.)
In compound (I), there are two asymmetric carbon atoms (the carbon atom indicated by * in formula (I)). Therefore, two diastereomers exist in compound (I). In the present specification, the “diastereomer” refers to a stereoisomer generated by the presence of a plurality of asymmetric carbon atoms in a molecule and not having a mirror image relationship.
 本実施の形態におけるトリアゾール化合物は、2種のジアステレオマーのうち、より低極性のジアステレオマーである。以下、上記式(I)で示される化合物における2種のジアステレオマーのうち、より低極性のジアステレオマーを「化合物(Ia)」と称する。 The triazole compound in the present embodiment is a diastereomer having a lower polarity among the two diastereomers. Hereinafter, of the two diastereomers in the compound represented by the formula (I), a diastereomer having a lower polarity is referred to as “compound (Ia)”.
 本明細書において「より低極性のジアステレオマー」とは、同一条件下(例えば、溶媒として酢酸エチル/ヘキサンを使用)における順相薄層クロマトグラフィーのRf値を比較した場合に、Rf値が大きいほうのジアステレオマーを意図している。 As used herein, the term “lower polar diastereomer” means that when the Rf values of normal phase thin layer chromatography under the same conditions (for example, using ethyl acetate / hexane as a solvent) are compared, The larger diastereomer is intended.
 各ジアステレオマーには、それぞれ1対のエナンチオマーが存在するが、本実施の形態における化合物は、より低極性のジアステレオマーにおける1対のエナンチオマーのうち、(-)-エナンチオマーである。なお、本明細書において、「(-)-エナンチオマー」とは、ナトリウムD線の直線偏光の振動面を左に回転させるエナンチオマーのことを指す。以下、化合物(Ia)における1対のエナンチオマーのうち、(-)-エナンチオマー(すなわち、本実施の形態に係る化合物)を、「化合物(Ia(-))」と称する。
〔トリアゾール化合物の製造方法〕
 (1)ジアステレオマーおよびエナンチオマーの分離
 化合物(Ia(-))は、例えば、後述するトリアゾール化合物の製造方法により得られる化合物(I)の異性体混合物から分離することによって得ることができる。
Each diastereomer has a pair of enantiomers, but the compound in the present embodiment is the (−)-enantiomer of the pair of enantiomers in the less polar diastereomer. In this specification, “(−)-enantiomer” refers to an enantiomer that rotates the vibration plane of linearly polarized light of the sodium D line to the left. Hereinafter, of the pair of enantiomers in the compound (Ia), the (−)-enantiomer (that is, the compound according to the present embodiment) is referred to as “compound (Ia (−))”.
[Method for producing triazole compound]
(1) Separation of diastereomers and enantiomers Compound (Ia (−)) can be obtained, for example, by separating it from an isomer mixture of compound (I) obtained by the method for producing a triazole compound described later.
 化合物(I)の異性体混合物からの各ジアステレオマーの分離方法としては、順相カラムクロマトグラフィー、逆相カラムクロマトグラフィー、および再結晶等の極性の違いを利用して分離する公知の技術を挙げることができる。 As a method for separating each diastereomer from the isomer mixture of compound (I), a known technique for separating using a difference in polarity such as normal phase column chromatography, reverse phase column chromatography, and recrystallization is used. Can be mentioned.
 カラムクロマトグラフィーにおける固定相としては、シリカゲル、およびアルミナ等の高極性固定相、オクタデシルシリルシリカゲル等のアルキル基結合シリカゲル等の低極性固定相、を用いることができる。また、溶離液としては、ヘキサン、酢酸エチル、クロロホルム、アルコール類およびアセトニトリル等の有機溶媒、水、ならびにこれらの混合物を用いることができ、固定相の種類に応じて適宜決定することができる。 As the stationary phase in column chromatography, silica gel, a highly polar stationary phase such as alumina, and a low polarity stationary phase such as alkyl group-bonded silica gel such as octadecylsilyl silica gel can be used. As the eluent, organic solvents such as hexane, ethyl acetate, chloroform, alcohols and acetonitrile, water, and a mixture thereof can be used, and can be appropriately determined according to the type of stationary phase.
 また、複数の分離方法を組み合わせて行ってもよく、例えば、カラムクロマトグラフィーにより分離した後、さらに再結晶による分離および精製を行ってもよい。 Further, a plurality of separation methods may be combined, for example, after separation by column chromatography, separation and purification by recrystallization may be further performed.
 上記の技術により分離される化合物(Ia)は、化合物(Ia)の(-)-エナンチオマーおよび(+)-エナンチオマーの等量混合物であるラセミ体である。 Compound (Ia) separated by the above technique is a racemate which is an equivalent mixture of the (−)-enantiomer and (+)-enantiomer of Compound (Ia).
 ラセミ体である化合物(Ia)からの各エナンチオマーの分離方法としては、キラルクロマトグラフィーによって分離する方法が挙げられる。具体的には、アミローストリス(3,5-ジメチルフェニルカルバメート)、セルローストリス(3,5-ジメチルフェニルカルバメート)、セルローストリス(3,5-ジクロロフェニルカルバメート)、アミローストリス[(S)-α-メチルベンジルカルバメート]、セルローストリス(4-メチルベンゾエート)、アミローストリス(5-クロロ-2-メチルフェニルカルバメート)またはセルローストリス(3-クロロ-4-メチルフェニルカルバメート)をシリカゲル担体に固定化した固定相上で、ヘキサン/エタノール(100/0~0/100)、ヘキサン/イソプロパノール(100/0~0/100)、エタノール、メタノールまたはアセトニトリルを移動相として用いて、化合物(Ia)から分取分離を行うことにより、化合物(Ia(-))を調製できる。 Examples of the separation method of each enantiomer from the racemic compound (Ia) include a method of separation by chiral chromatography. Specifically, amylose tris (3,5-dimethylphenyl carbamate), cellulose tris (3,5-dimethylphenyl carbamate), cellulose tris (3,5-dichlorophenyl carbamate), amylose tris [(S) -α-methyl Benzyl carbamate], cellulose tris (4-methylbenzoate), amylose tris (5-chloro-2-methylphenyl carbamate) or cellulose tris (3-chloro-4-methylphenyl carbamate) immobilized on a silica gel carrier To separate from compound (Ia) using hexane / ethanol (100/0 to 0/100), hexane / isopropanol (100/0 to 0/100), ethanol, methanol or acetonitrile as the mobile phase. By Compound (Ia (-)) to be prepared.
 分取分離された各エナンチオマーの旋光度は、従来公知の方法に従って決定すればよい。 The optical rotation of each separated enantiomer may be determined according to a conventionally known method.
 (2)トリアゾール化合物の製造工程
 次に、化合物(I)の製造方法の一実施形態について説明する。
(2) Process for Producing Triazole Compound Next, an embodiment of a process for producing compound (I) will be described.
 化合物(I)は、下記スキーム1に示すように、公知の技術により得られる下記式(VII)で示される化合物(以下、「化合物(VII)」と称する)、および公知の技術により得られる下記式(VI)で示される化合物(以下、「化合物(VI)」と称する)から、製造することができる。
(スキーム1)
As shown in the following scheme 1, compound (I) is a compound represented by the following formula (VII) obtained by a known technique (hereinafter referred to as “compound (VII)”), and a compound represented by the following known technique. It can be produced from a compound represented by the formula (VI) (hereinafter referred to as “compound (VI)”).
(Scheme 1)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 以下、各工程について説明する。 Hereinafter, each process will be described.
 (工程A1)
 まず、溶媒中で化合物(VII)に化合物(VI)を反応させ、有機金属化合物による化合物(VII)のカルボニル炭素原子への求核付加反応により、炭素-炭素結合を生成させる。これにより、下記式(V)で示されるハロヒドリン化合物(以下、「化合物(V)」と称する)を得る(下記反応式(1)参照)。
(反応式(1))
(Process A1)
First, compound (VII) is reacted with compound (VII) in a solvent, and a carbon-carbon bond is generated by a nucleophilic addition reaction of compound (VII) to the carbonyl carbon atom with an organometallic compound. Thereby, a halohydrin compound represented by the following formula (V) (hereinafter referred to as “compound (V)”) is obtained (see the following reaction formula (1)).
(Reaction Formula (1))
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ここで、X、Xおよびnは、上述のX、Xおよびnと同義である。 Here, X 3 , X 4 and n are synonymous with the above-mentioned X 3 , X 4 and n.
 Xは、ハロゲン原子を表している。 X 6 represents a halogen atom.
 Lは、アルカリ金属、アルカリ土類金属-Q1(Q1はハロゲン原子)、1/2(Cuアルカリ金属)、または亜鉛-Q2(Q2はハロゲン原子)を表している。アルカリ金属としては、リチウム、ナトリウムおよびカリウム等が挙げられ、なかでもリチウムが好ましい。また、アルカリ土類金属としては、マグネシウム等が挙げられる。 L represents alkali metal, alkaline earth metal-Q1 (Q1 is a halogen atom), 1/2 (Cu alkali metal), or zinc-Q2 (Q2 is a halogen atom). Examples of the alkali metal include lithium, sodium, and potassium, and lithium is particularly preferable. Moreover, magnesium etc. are mentioned as an alkaline-earth metal.
 Rは、下記式(XIV)で示す官能基を表している。 R 2 represents a functional group represented by the following formula (XIV).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(XIV)中の、X、Xおよびmは、上述のX、Xおよびmと同義である。 In the formula (XIV), X 1 , X 2 and m have the same meanings as X 1 , X 2 and m described above.
 溶媒としては、不活性溶媒であれば特に限定されず、例えば、ジエチルエーテル、テトラヒドロフランおよびジオキサン等のエーテル類、ならびにベンゼン、トルエンおよびキシレン等の芳香炭化水素類が挙げられる。これらの溶媒は、混合して使用することも可能である。また、反応に水を用いる場合は、有機溶媒と混合して使用することも可能であり、疎水性有機溶媒と共に用いる場合には必要に応じ、反応混合物中に、テトラブチルアンモニウム塩、トリメチルベンジルアンモニウム塩およびトリエチルベンジルアンモニウム塩等の4級アンモニウム塩、ならびにクラウンエーテルおよびその類似物等の相間移動触媒を添加して反応を行うことも可能である。 The solvent is not particularly limited as long as it is an inert solvent, and examples thereof include ethers such as diethyl ether, tetrahydrofuran and dioxane, and aromatic hydrocarbons such as benzene, toluene and xylene. These solvents can also be used as a mixture. In addition, when water is used for the reaction, it can be used by mixing with an organic solvent. When used with a hydrophobic organic solvent, a tetrabutylammonium salt, trimethylbenzylammonium salt is added to the reaction mixture as necessary. It is also possible to carry out the reaction by adding a phase transfer catalyst such as a salt and a quaternary ammonium salt such as triethylbenzylammonium salt, and crown ether and the like.
 化合物(VII)に対する化合物(VI)の使用量は、例えば0.5~10倍モルであり、好ましくは0.8~5倍モルである。化合物(VI)は、反応の直前に調製されたものが好ましい。また、反応系内で化合物(VI)を発生させながら反応させることも可能な場合もある。特にLが亜鉛-Q2(Q2はハロゲン原子)の場合には、反応系内で化合物(VI)を発生させながら反応させることが好ましい。 The amount of compound (VI) to be used with respect to compound (VII) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol. Compound (VI) is preferably prepared just before the reaction. Moreover, it may be possible to carry out the reaction while generating the compound (VI) in the reaction system. In particular, when L is zinc-Q2 (Q2 is a halogen atom), it is preferable to carry out the reaction while generating compound (VI) in the reaction system.
 また、所望によりルイス酸を添加してもよい。その場合の化合物(VI)に対するルイス酸の使用量は、例えば0~5倍モル(ただし、0は除く)であり、好ましくは0.1~2倍モルである。ルイス酸としては、塩化アルミニウム、塩化亜鉛および塩化セリウム等が挙げられる。 Further, a Lewis acid may be added if desired. In this case, the amount of the Lewis acid used relative to compound (VI) is, for example, 0 to 5 times mol (excluding 0), preferably 0.1 to 2 times mol. Examples of the Lewis acid include aluminum chloride, zinc chloride and cerium chloride.
 反応温度および反応時間は、溶媒、化合物(VI)および化合物(VI)の種類等によって適宜設定することができる。反応温度は、好適には-100℃~200℃であり、より好適には-70℃~100℃である。また、反応時間は、好適には0.1~12時間であり、より好適には0.5~6時間である。 The reaction temperature and reaction time can be appropriately set depending on the type of the solvent, compound (VI), compound (VI) and the like. The reaction temperature is preferably −100 ° C. to 200 ° C., more preferably −70 ° C. to 100 ° C. The reaction time is preferably 0.1 to 12 hours, and more preferably 0.5 to 6 hours.
 なお化合物(VI)は、市販化合物、あるいはハロゲン化アルケニル化合物を有機金属試薬に変換する等の既存の合成技術で製造可能な化合物を使用することができる。同様に、化合物(VII)は、市販化合物、あるいは既存の技術で製造可能な化合物を使用することができる。 As the compound (VI), a commercially available compound or a compound that can be produced by an existing synthesis technique such as conversion of a halogenated alkenyl compound into an organometallic reagent can be used. Similarly, as compound (VII), a commercially available compound or a compound that can be produced by existing techniques can be used.
 (工程A2)
 次に、化合物(V)を、塩基存在下、溶媒中で反応させ、下記式(IV)で示される、分子中に二重結合を有するオキシラン化合物(以下、「化合物(IV)」と称する)を得る(下記反応式(2)参照)。
(反応式(2))
(Process A2)
Next, the compound (V) is reacted in a solvent in the presence of a base, and an oxirane compound having a double bond in the molecule represented by the following formula (IV) (hereinafter referred to as “compound (IV)”). (See the following reaction formula (2)).
(Reaction Formula (2))
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 反応に使用される塩基としては、水酸化ナトリウム、水酸化カリウムおよび水酸化カルシウム等のアルカリ金属またはアルカリ土類金属の水酸化物塩、ならびに炭酸ナトリウムおよび炭酸カリウム等のアルカリ金属の炭酸塩または炭酸水素塩等が好適に使用できるが、これらに限定されるものではない。 Bases used in the reaction include alkali metal or alkaline earth metal hydroxide salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, and alkali metal carbonates or carbonates such as sodium carbonate and potassium carbonate. Although hydrogen salt etc. can be used conveniently, it is not limited to these.
 塩基の量は、化合物(V)に対して、例えば0.5~20倍モルであり、好適には0.8~5倍モルである。 The amount of the base is, for example, 0.5 to 20 times mol, preferably 0.8 to 5 times mol for the compound (V).
 溶媒は、特に限定されないが、例えば、メタノール、エタノールおよびイソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフランおよびジオキサン等のエーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドおよびN-メチル-2-ピロリジノン等のアミド類;n-ヘキサン、メチルシクロヘキサン、ベンゼン、トルエンおよびキシレン等の炭化水素類;ジクロロエタンおよびクロロホルム等のハロゲン化炭化水素類;ならびにこれらの混合溶媒等が挙げられる。塩基の水溶液を、疎水性溶媒と共に用いる場合には、反応混合物中に、テトラブチルアンモニウム塩、トリメチルベンジルアンモニウム塩およびトリエチルベンジルアンモニウム塩等の4級アンモニウム塩、ならびにクラウンエーテルおよびその類似物等の相間移動触媒を添加して反応を行うこともできる。 The solvent is not particularly limited. For example, alcohols such as methanol, ethanol and isopropanol; ethers such as diethyl ether, tetrahydrofuran and dioxane; N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2 Amides such as pyrrolidinone; hydrocarbons such as n-hexane, methylcyclohexane, benzene, toluene and xylene; halogenated hydrocarbons such as dichloroethane and chloroform; and mixed solvents thereof. When an aqueous base solution is used with a hydrophobic solvent, the reaction mixture contains quaternary ammonium salts such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, and interphases such as crown ether and the like. The reaction can also be carried out by adding a transfer catalyst.
 反応温度および反応時間は、溶媒、化合物(V)の種類等によって適宜設定することができる。反応温度は、好適には-20℃~150℃であり、より好適には0℃~100℃である。また、反応時間は、好適には0.1~24時間であり、より好適には0.5~12時間である。 The reaction temperature and reaction time can be appropriately set depending on the solvent, the type of compound (V), and the like. The reaction temperature is preferably −20 ° C. to 150 ° C., and more preferably 0 ° C. to 100 ° C. The reaction time is preferably 0.1 to 24 hours, and more preferably 0.5 to 12 hours.
 (工程A3)
 次に、化合物(IV)から、トリハロメタンと水酸化ナトリウム等の塩基との反応によって、下記式(III)で示される、分子中にgem-ジハロシクロプロパン構造を有する化合物(以下、「化合物(III)」と称する)を合成する。あるいは、化合物(IV)から、トリハロ酢酸塩の熱分解等によって生じるハロカルベン類の付加反応によって、化合物(III)を合成する。これらの反応を、下記反応式(3)に示す。
(反応式(3))
(Process A3)
Next, from the compound (IV), a compound having a gem-dihalocyclopropane structure in the molecule represented by the following formula (III) (hereinafter referred to as “compound (hereinafter referred to as“ compound ”)” by the reaction of trihalomethane with a base such as sodium hydroxide. III) ”). Alternatively, compound (III) is synthesized from compound (IV) by addition reaction of halocarbenes generated by thermal decomposition of trihaloacetate. These reactions are shown in the following reaction formula (3).
(Reaction Formula (3))
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(III)中、Xは、上述のXと同義である。 In the formula (III), X 5 has the same meaning as X 5 above.
 以下、化合物(III)を合成する好適な方法として、トリハロメタンと水酸化ナトリウム等の塩基との反応により合成する方法について説明する。 Hereinafter, as a suitable method for synthesizing compound (III), a method for synthesizing by reaction of trihalomethane and a base such as sodium hydroxide will be described.
 使用されるトリハロメタンには、例えば、クロロホルム、ブロモホルム、クロロジフルオロメタン、ジクロロフルオロメタンおよびジブロモフルオロメタン等が用いられる。化合物(IV)に対するトリハロメタンの使用量は、特に限定されず、例えば0.5~1000倍モルであり、好ましくは0.8~100倍モルである。 Examples of the trihalomethane used include chloroform, bromoform, chlorodifluoromethane, dichlorofluoromethane, and dibromofluoromethane. The amount of trihalomethane used with respect to compound (IV) is not particularly limited, and is, for example, 0.5 to 1000 times mol, preferably 0.8 to 100 times mol.
 溶媒には、トリハロメタンそのもの、あるいは、反応に不活性なジクロロメタンおよびトルエン等の他の溶媒を用いることができる。 As the solvent, trihalomethane itself or other solvents such as dichloromethane and toluene inert to the reaction can be used.
 塩基を添加する際、水酸化ナトリウム水溶液等の水溶液を使用する場合は、相関移動触媒を使用することが好ましい。相関移動触媒は、特に限定されず、テトラメチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、セチルトリメチルアンモニウムブロミド、ベンジルトリエチルアンモニウムクロリドおよびベンジルトリメチルアンモニウムクロリド等の四級アンモニウム塩、ならびにトリエチルアミンおよびトリプロピルアミン等の三級アミン類などを用いることができる。相関移動触媒の使用量は、化合物(IV)に対し、例えば0.001~5倍モルであり、好ましくは0.01~2倍モルである。 When adding a base, when using an aqueous solution such as an aqueous sodium hydroxide solution, it is preferable to use a phase transfer catalyst. The phase transfer catalyst is not particularly limited, and includes quaternary ammonium salts such as tetramethylammonium chloride, tetrabutylammonium bromide, cetyltrimethylammonium bromide, benzyltriethylammonium chloride and benzyltrimethylammonium chloride, and three such as triethylamine and tripropylamine. Secondary amines can be used. The amount of the phase transfer catalyst used is, for example, 0.001 to 5 times mol, preferably 0.01 to 2 times mol, of the compound (IV).
 反応に使用する塩基は、特に限定されないが、水酸化ナトリウムおよび水酸化カリウム等のアルカリ金属水酸化物が好適に使用され、多くの場合、水溶液として使用される。塩基の使用量は、化合物(IV)に対し、例えば0.1~100倍モルであり、好ましくは0.8~50倍モルである。また、このときのアルカリ金属水酸化物の水溶液の濃度は例えば10%から飽和水溶液であり、好ましくは30%から飽和水溶液である。 The base used for the reaction is not particularly limited, but alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are preferably used, and in many cases, used as an aqueous solution. The amount of the base to be used is, for example, 0.1 to 100 times mol, preferably 0.8 to 50 times mol with respect to compound (IV). Further, the concentration of the aqueous solution of alkali metal hydroxide at this time is, for example, 10% to a saturated aqueous solution, and preferably 30% to a saturated aqueous solution.
 反応温度は、例えば0℃~200℃であり、好適には10℃~150℃である。また、反応時間は、例えば0.1時間~数日であり、好ましくは0.2時間~2日である。 The reaction temperature is, for example, 0 ° C. to 200 ° C., preferably 10 ° C. to 150 ° C. The reaction time is, for example, 0.1 hour to several days, preferably 0.2 hour to 2 days.
 (工程A4)
 次に、化合物(III)と、下記式(II)で示される1,2,4-トリアゾール化合物(以下、「化合物(II)」と称する)とを反応させることにより、化合物(I)を得る(下記反応式(4)参照)。
(反応式(4))
(Process A4)
Next, compound (I) is obtained by reacting compound (III) with a 1,2,4-triazole compound represented by the following formula (II) (hereinafter referred to as “compound (II)”). (See the following reaction formula (4)).
(Reaction Formula (4))
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(II)中、Mは、水素原子またはアルカリ金属を表す。 In formula (II), M represents a hydrogen atom or an alkali metal.
 本工程では、化合物(III)のオキシラン環中の炭素原子と化合物(II)とを反応させて、化合物(III)のオキシラン環中の炭素原子と化合物(II)の窒素原子との間に炭素-窒素結合を生成させる。 In this step, a carbon atom in the oxirane ring of compound (III) is reacted with compound (II), and a carbon atom is present between the carbon atom in the oxirane ring of compound (III) and the nitrogen atom of compound (II). -Generate nitrogen bonds.
 この際、用いられる溶媒は、特に限定されないが、例えば、N-メチルピロリドンおよびN,N-ジメチルホルムアミド等のアミド類が挙げられる。 In this case, the solvent to be used is not particularly limited, and examples thereof include amides such as N-methylpyrrolidone and N, N-dimethylformamide.
 化合物(III)に対する化合物(II)の使用量は、例えば0.5~10倍モルであり、好ましくは0.8~5倍モルである。また、所望により塩基を添加してもよい。その場合の化合物(II)に対する塩基の使用量は、例えば0~10倍モル(ただし、0は除く)であり、好ましくは0.5~5倍モルである。 The amount of the compound (II) used relative to the compound (III) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol. Moreover, you may add a base if desired. In this case, the amount of the base used relative to the compound (II) is, for example, 0 to 10 times mol (excluding 0), preferably 0.5 to 5 times mol.
 反応温度および反応時間は、溶媒および塩基等によって適宜設定することができる。反応温度は、好適には0℃~250℃であり、より好適には10℃~150℃である。また、反応時間は、好適には0.1時間~数日であり、より好適には0.5時間~2日である。 The reaction temperature and reaction time can be appropriately set depending on the solvent, base and the like. The reaction temperature is preferably 0 ° C. to 250 ° C., more preferably 10 ° C. to 150 ° C. The reaction time is preferably 0.1 hour to several days, more preferably 0.5 hour to 2 days.
 以上により、本実施の形態に係る化合物(I)を得ることができる。 Thus, compound (I) according to the present embodiment can be obtained.
 なお、上記化合物(IV)のうち、nが1または2である、下記式(IVa)で示されるオキシラン化合物(以下、「化合物(IVa)」と称する)は、上記工程A1~工程A2による合成法以外に、以下の好適な合成法により得ることができる(下記スキーム2参照)。
(スキーム2)
Of the compounds (IV), an oxirane compound represented by the following formula (IVa) wherein n is 1 or 2 (hereinafter referred to as “compound (IVa)”) is synthesized by the above steps A1 to A2. In addition to the method, it can be obtained by the following suitable synthesis method (see the following Scheme 2).
(Scheme 2)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 以下、化合物(IVa)を得るための各工程について説明する。 Hereinafter, each step for obtaining the compound (IVa) will be described.
 (工程B1)
 まず、下記式(XIII)で示されるメチルケトン化合物(以下、「化合物(XIII)」と称する)に対し、塩基存在下、下記式(XII)で示される炭酸ジアルキル化合物(以下、「化合物(XII)」と称する)との反応を行い、下記式(XI)で示されるケトエステル化合物(以下、「化合物(XI)」と称する)を得る(下記反応式(5)参照)。
(反応式(5))
(Process B1)
First, with respect to a methyl ketone compound represented by the following formula (XIII) (hereinafter referred to as “compound (XIII)”), a dialkyl carbonate compound represented by the following formula (XII) (hereinafter referred to as “compound (XII)” in the presence of a base. And a keto ester compound represented by the following formula (XI) (hereinafter referred to as “compound (XI)”) (see the following reaction formula (5)).
(Reaction Formula (5))
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 ここで、Rは、上述のRと同義である。 Here, R 2 has the same meaning as R 2 described above.
 Rは、炭素数1~4のアルキル基を表している。 R 1 represents an alkyl group having 1 to 4 carbon atoms.
 本反応は、溶媒中もしくは、化合物(XII)を溶媒として行うことができる。 This reaction can be carried out in a solvent or using compound (XII) as a solvent.
 化合物(XIII)に対する化合物(XII)の使用量は、例えば0.5~20倍モルであり、好ましくは0.8~10倍モルである。 The amount of compound (XII) used relative to compound (XIII) is, for example, 0.5 to 20 times mol, preferably 0.8 to 10 times mol.
 塩基としては、水素化ナトリウム等のアルカリ金属水素化合物、ならびにナトリウムメトキシド、ナトリウムエトキシドおよびカリウムt-ブトキシド等のアルカリ金属のアルコキシド類等が挙げられるが、これらに限定されない。化合物(XIII)に対する塩基の使用量は、例えば0.5~10倍モルであり、好ましくは0.8~5倍モルである。 Examples of the base include, but are not limited to, alkali metal hydrogen compounds such as sodium hydride, and alkali metal alkoxides such as sodium methoxide, sodium ethoxide, and potassium t-butoxide. The amount of the base to be used with respect to compound (XIII) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol.
 反応温度は、例えば0℃~250℃であり、好ましくは室温~150℃である。また、反応時間は、例えば0.1時間~数日であり、好ましくは0.5時間~24時間である。 The reaction temperature is, for example, 0 ° C. to 250 ° C., preferably room temperature to 150 ° C. The reaction time is, for example, 0.1 hour to several days, preferably 0.5 hour to 24 hours.
 ここで使用される化合物(XIII)および化合物(XII)は、市販品または既知の方法等により合成可能である。 Compound (XIII) and compound (XII) used here can be synthesized by commercially available products or known methods.
 (工程B2)
 次に、塩基存在下、化合物(XI)中のアルコキシカルボニル基の結合した炭素原子における、下記式(X)で示されるハロゲン化アルケニル化合物(以下、「化合物(X)」と称する)への求核置換反応により炭素-炭素結合を生成させて、下記式(IX)で示されるアルケニル化ケトエステル化合物(以下、「化合物(IX)」と称する)を得る(下記反応式(6)参照)。
(反応式(6))
(Process B2)
Next, in the presence of a base, a request for a halogenated alkenyl compound represented by the following formula (X) (hereinafter referred to as “compound (X)”) at the carbon atom to which the alkoxycarbonyl group in compound (XI) is bonded is shown. A carbon-carbon bond is generated by a nuclear substitution reaction to obtain an alkenylated ketoester compound represented by the following formula (IX) (hereinafter referred to as “compound (IX)”) (see the following reaction formula (6)).
(Reaction Formula (6))
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 ここで、XおよびXは、上述のXおよびXと同義である。 Here, X 3 and X 4 are synonymous with X 3 and X 4 described above.
 Xは、ハロゲン原子を表している。pは1または2を表している。 X 7 represents a halogen atom. p represents 1 or 2.
 本反応は、通常、溶媒中、塩基の存在下で行われる。 This reaction is usually performed in a solvent in the presence of a base.
 化合物(XI)に対する化合物(X)の使用量は、例えば0.5~10倍モルであり、好ましくは0.8~5倍モルである。 The amount of the compound (X) used relative to the compound (XI) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol.
 塩基としては、水素化ナトリウム等のアルカリ金属水素化合物、ならびに炭酸ナトリウムおよび炭酸カリウム等のアルカリ金属の炭酸塩等が挙げられるが、これらに限定されない。 Examples of the base include, but are not limited to, alkali metal hydrogen compounds such as sodium hydride, and alkali metal carbonates such as sodium carbonate and potassium carbonate.
 化合物(XI)に対する塩基の使用量は、例えば0.5~10倍モルであり、好ましくは0.8~5倍モルである。 The amount of base used with respect to compound (XI) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol.
 反応温度は、例えば0℃~250℃であり、好ましくは室温~150℃である。また、反応時間は、例えば0.1時間~数日であり、好ましくは0.5時間~24時間である。 The reaction temperature is, for example, 0 ° C. to 250 ° C., preferably room temperature to 150 ° C. The reaction time is, for example, 0.1 hour to several days, preferably 0.5 hour to 24 hours.
 ところで、上述の工程B1における反応において生成した化合物(XI)のカルボニル基とエステル基との間のメチレン部の水素原子の酸性度は、化合物(XIII)におけるアセチル基の水素原子の酸性度よりも高いため、工程B1における反応の過程で化合物(XI)のアルカリ金属塩等を形成する。そのため、化合物(XI)を単離することなく、工程B1における反応液をそのまま本工程(工程B2)における反応に使用することもできる。その場合は、特に新たに塩基の添加することなく反応することも可能である。 By the way, the acidity of the hydrogen atom of the methylene part between the carbonyl group and the ester group of the compound (XI) produced in the reaction in the above-mentioned step B1 is more than the acidity of the hydrogen atom of the acetyl group in the compound (XIII). Since it is high, an alkali metal salt of compound (XI) is formed in the course of the reaction in step B1. Therefore, the reaction liquid in Step B1 can be used as it is for the reaction in this step (Step B2) without isolating compound (XI). In that case, it is also possible to react without adding a new base.
 (工程B3)
 次に、化合物(IX)を加水分解および脱炭酸して、下記式(VIII)で示されるカルボニル化合物(以下、「化合物(VIII)」と称する)を得る(下記反応式(7)参照)。
(反応式(7))
(Process B3)
Next, the compound (IX) is hydrolyzed and decarboxylated to obtain a carbonyl compound represented by the following formula (VIII) (hereinafter referred to as “compound (VIII)”) (see the following reaction formula (7)).
(Reaction Formula (7))
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 この加水分解および脱炭酸反応は、溶媒中、塩基性条件下でも酸性条件下でも行うことができる。 This hydrolysis and decarboxylation reaction can be carried out in a solvent under basic conditions or acidic conditions.
 塩基性条件下で行う場合、塩基には、例えば、水酸化ナトリウムおよび水酸化カリウム等のアルカリ金属塩基を使用する。溶媒には、例えば、水、またはアルコール類等を加えた水を使用する。 When the reaction is performed under basic conditions, an alkali metal base such as sodium hydroxide or potassium hydroxide is used as the base. As the solvent, for example, water or water to which alcohols are added is used.
 また、酸性条件下で行う場合、酸触媒には、好ましくは塩酸、臭化水素酸および硫酸等の無機酸、または酢酸等の有機酸を使用する。溶媒には、例えば、水、または酢酸等の有機酸を加えた水を使用する。 Further, when the reaction is carried out under acidic conditions, the acid catalyst is preferably an inorganic acid such as hydrochloric acid, hydrobromic acid and sulfuric acid, or an organic acid such as acetic acid. As the solvent, for example, water or water to which an organic acid such as acetic acid is added is used.
 反応温度は、例えば、0℃から還流点であり、好ましくは10℃から還流点である。また、反応時間は、例えば、0.1時間~数日であり、好ましくは0.5時間~24時間である。 The reaction temperature is, for example, from 0 ° C. to the reflux point, and preferably from 10 ° C. to the reflux point. The reaction time is, for example, 0.1 hour to several days, preferably 0.5 hour to 24 hours.
 また、他の方法として、(i)塩基性条件下で、まず加水分解を行った後に、酸性条件下で脱炭酸を行う方法、または(ii)加水分解で得られたβ-ケトカルボン酸を有機溶媒中で加熱して脱炭酸を行う方法、も採用可能である。その際、使用される塩基および酸等としては上述のものが挙げられる。 As another method, (i) a method in which hydrolysis is first performed under basic conditions, followed by decarboxylation under acidic conditions, or (ii) a β-ketocarboxylic acid obtained by hydrolysis is organically treated. A method of decarboxylation by heating in a solvent can also be employed. In that case, the above-mentioned thing is mentioned as a base, an acid, etc. which are used.
 (工程B4)
 最後に、化合物(VIII)をオキシラン化して、化合物(IVa)を得る(下記反応式(8)参照)。
(反応式(8))
(Process B4)
Finally, compound (VIII) is oxiraneated to obtain compound (IVa) (see the following reaction formula (8)).
(Reaction Formula (8))
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 本反応としては、化合物(VIII)を、ジメチルスルホニウムメチリド等のスルホニウムメチリド類およびジメチルスルホキソニウムメチリド等のスルホキソニウムメチリド類等の硫黄イリドと溶媒中で反応させる方法を採用できる。 As this reaction, a method of reacting compound (VIII) with a sulfur ylide such as sulfonium methylides such as dimethylsulfonium methylide and sulfoxonium methylides such as dimethylsulfoxonium methylide in a solvent can be employed. .
 スルホニウムメチリド類およびスルホキソニウムメチリド類の量は、化合物(XI)に対して、例えば0.5~10倍モルであり、好適には0.8~5倍モルである。 The amount of the sulfonium methylides and the sulfoxonium methylides is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol for the compound (XI).
 溶媒は特に限定されないが、例えば、トルエンおよびキシレン等の芳香族炭化水素類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドおよびN-メチル-2-ピロリジノン等のアミド類、ジエチルエーテル、テトラヒドロフランおよびジオキサン等のエーテル類、ならびにジメチルスルホキシド等が挙げられる。これらの溶媒は、2種類以上を混合して用いることができる。 The solvent is not particularly limited. For example, aromatic hydrocarbons such as toluene and xylene, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidinone, diethyl ether, tetrahydrofuran And ethers such as dioxane, and dimethyl sulfoxide. These solvents can be used as a mixture of two or more.
 また、反応に水を用いる場合は、有機溶媒と混合して使用することも可能であり、疎水性有機溶媒と共に用いる場合には必要に応じ、反応混合物中に、テトラブチルアンモニウム塩、トリメチルベンジルアンモニウム塩およびトリエチルベンジルアンモニウム塩等の4級アンモニウム塩、ならびにクラウンエーテルおよびその類似物等の相間移動触媒を添加して反応を行うことも可能である。 In addition, when water is used for the reaction, it can be used by mixing with an organic solvent. When used with a hydrophobic organic solvent, a tetrabutylammonium salt, trimethylbenzylammonium salt is added to the reaction mixture as necessary. It is also possible to carry out the reaction by adding a phase transfer catalyst such as a salt and a quaternary ammonium salt such as triethylbenzylammonium salt, and crown ether and the like.
 また、トルエン等の有機溶媒中、水酸化ナトリウムおよび水酸化カリウム等のアルカリ金属水酸化物を使用する場合は、ジエチレングリコール等のアルコール類を添加した方が好ましい場合がある。 In addition, when an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used in an organic solvent such as toluene, it may be preferable to add an alcohol such as diethylene glycol.
 このときのアルコール類の使用量は化合物(VIII)に対し、例えば0.001~10倍モルであり、好適には0.005~5倍モルである。 The amount of alcohol used at this time is, for example, 0.001 to 10 times mol, preferably 0.005 to 5 times mol, of the compound (VIII).
 反応温度および反応時間は、溶媒、化合物(VIII)、およびスルホニウム塩またはスルホキソニウム塩等の種類によって適宜設定することができる。反応温度は、好適には-100℃~200℃であり、より好適には-50℃~150℃である。また、反応時間は、好適には0.1時間~数日であり、より好適には0.5時間~2日である。 The reaction temperature and reaction time can be appropriately set depending on the type of solvent, compound (VIII), sulfonium salt or sulfoxonium salt. The reaction temperature is preferably −100 ° C. to 200 ° C., more preferably −50 ° C. to 150 ° C. The reaction time is preferably 0.1 hour to several days, more preferably 0.5 hour to 2 days.
 スルホニウムメチリド類およびスルホキソニウムメチリド類は、溶媒中、スルホニウム塩(例えば、トリメチルスルホニウムヨージドおよびトリメチルスルホニウムブロミド等)またはスルホキソニウム塩(例えばトリメチルスルホキソニウムヨージドおよびトリメチルスルホキソニウムブロミド等)と、塩基とを反応させることにより生成させることができる。 Sulfonium methylides and sulfoxonium methylides are prepared in a solvent by sulfonium salts (eg, trimethylsulfonium iodide and trimethylsulfonium bromide) or sulfoxonium salts (eg, trimethylsulfoxonium iodide and trimethylsulfoxonium bromide). Etc.) and a base.
 スルホニウムメチリド類およびスルホキソニウムメチリド類の生成に用いられる塩基は、特に限定されないが、例えば、水酸化ナトリウムおよび水酸化カリウム等のアルカリ金属水酸化物、水素化ナトリウム等の金属水素化合物、ならびにナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシドおよびカリウムt-ブトキシド等のアルカリ金属のアルコキシド等が好適に用いられる。 The base used for the production of sulfonium methylides and sulfoxonium methylides is not particularly limited, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, metal hydrogen compounds such as sodium hydride, In addition, alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium t-butoxide and potassium t-butoxide are preferably used.
 以上により、化合物(IVa)を得ることができる。 Thus, compound (IVa) can be obtained.
 なお、上述の製造方法の各工程(工程A1~A4および工程B1~B4)において、使用される溶媒、塩基および酸等は、特に言及しない限り、次のようなものを用いることができる。 Note that, in each step of the above-described production method (steps A1 to A4 and steps B1 to B4), the solvents, bases, acids, and the like used can be as follows unless otherwise specified.
 (3)溶媒
 使用される溶媒としては、反応に関与しなければ特に限定されないが、通常、ジエチルエーテル、テトラヒドロフランおよびジオキサン等のエーテル類;メタノール、エタノールおよびイソプロパノール等のアルコール類;ベンゼン、トルエンおよびキシレン等の芳香族炭化水素類;石油エーテル、ヘキサンおよびメチルシクロヘキサン等の脂肪族炭化水素類;ならびにN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドおよびN-メチル-2-ピロリジノン等のアミド類等を挙げることができる。この他、溶媒としては、水、アセトニトリル、酢酸エチル、無水酢酸、酢酸、ピリジンおよびジメチルスルホキシド等も使用可能である。これらの溶媒は、2種類以上を混合して使用してもよい。
(3) Solvent The solvent to be used is not particularly limited as long as it does not participate in the reaction. Usually, ethers such as diethyl ether, tetrahydrofuran and dioxane; alcohols such as methanol, ethanol and isopropanol; benzene, toluene and xylene Aromatic hydrocarbons such as petroleum ether, aliphatic hydrocarbons such as hexane and methylcyclohexane, and amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidinone Can be mentioned. In addition, water, acetonitrile, ethyl acetate, acetic anhydride, acetic acid, pyridine, dimethyl sulfoxide, and the like can be used as the solvent. These solvents may be used as a mixture of two or more.
 また、溶媒としては、互いに均一な層を形成することのない溶媒からなる溶媒組成物も挙げられる。この場合には、反応系に相間移動触媒、例えば、慣用の第4アンモニウム塩またはクラウンエーテルを添加してもよい。 Also, examples of the solvent include a solvent composition composed of solvents that do not form a uniform layer with each other. In this case, a phase transfer catalyst such as a conventional quaternary ammonium salt or crown ether may be added to the reaction system.
 (4)塩基・酸
 上述の溶媒には、塩基または酸を添加してもよい。
(4) Base / acid A base or an acid may be added to the above-mentioned solvent.
 使用される塩基は、特に限定されない。塩基としては、例えば、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムおよび炭酸水素カリウム等のアルカリ金属の炭酸塩;炭酸カルシウムおよび炭酸バリウム等のアルカリ土類金属の炭酸塩;水酸化ナトリウムおよび水酸化カリウム等のアルカリ金属の水酸化物;リチウム、ナトリウムおよびカリウム等のアルカリ金属;ナトリウムメトキシド、ナトリウムエトキシドおよびカリウムt-ブトキシド等のアルカリ金属のアルコキシド;水素化ナトリウム、水素化カリウムおよび水素化リチウム等のアルカリ金属水素化合物;n-ブチルリチウム等のアルカリ金属の有機金属化合物;リチウムジイソプロピルアミド等のアルカリ金属アミド類;ならびにトリエチルアミン、ピリジン、4-ジメチルアミノピリジン、N,N-ジメチルアニリンおよび1,8-ジアザビシクロ-7-[5.4.0]ウンデセン等の有機アミン類等を挙げることができる。 The base used is not particularly limited. Examples of the base include alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate and potassium hydrogen carbonate; alkaline earth metal carbonates such as calcium carbonate and barium carbonate; sodium hydroxide and potassium hydroxide Alkali metal hydroxides; alkali metals such as lithium, sodium and potassium; alkali metal alkoxides such as sodium methoxide, sodium ethoxide and potassium t-butoxide; sodium hydride, potassium hydride and lithium hydride, etc. Alkali metal hydrogen compounds; organometallic compounds of alkali metals such as n-butyllithium; alkali metal amides such as lithium diisopropylamide; and triethylamine, pyridine, 4-dimethylaminopyridine, N, N-dimethyla Phosphorus and 1,8-diazabicyclo-7- [5.4.0] Organic amines such as undecene, and the like.
 また、使用される酸は、特に限定されない。酸としては、例えば、塩酸、臭化水素酸、ヨウ化水素酸および硫酸等の無機酸;ギ酸、酢酸、酪酸、トリフルオロ酢酸およびp-トルエンスルホン酸等の有機酸;ならびに塩化リチウム、臭化リチウム、塩化ロジウム、塩化アルミニウムおよび三フッ化ホウ素等のルイス酸を挙げることができる。 Moreover, the acid used is not particularly limited. Examples of the acid include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid and sulfuric acid; organic acids such as formic acid, acetic acid, butyric acid, trifluoroacetic acid and p-toluenesulfonic acid; and lithium chloride, bromide Mention may be made of Lewis acids such as lithium, rhodium chloride, aluminum chloride and boron trifluoride.
 〔植物病害防除剤および植物病害防除方法〕
 本実施の形態に係るトリアゾール化合物(化合物(Ia(-)))を植物病害防除剤に利用した場合の有用性、およびこれを用いた植物病害防除方法について以下に説明する。
[Plant Disease Control Agent and Plant Disease Control Method]
The usefulness when the triazole compound (compound (Ia (−))) according to the present embodiment is used as a plant disease control agent and a plant disease control method using the same will be described below.
 化合物(Ia(-))は、1,2,4-トリアゾリル基を有するため、無機酸もしくは有機酸との酸付加塩、または金属錯体を形成する。化合物(Ia(-))は、これらの酸付加塩および金属錯体の形態で用いてもよい。 Since the compound (Ia (−)) has a 1,2,4-triazolyl group, it forms an acid addition salt with an inorganic acid or an organic acid, or a metal complex. Compound (Ia (−)) may be used in the form of these acid addition salts and metal complexes.
 (1)植物病害防除効果
 本実施の形態に係る植物病害防除剤の有用性について説明する。化合物(Ia(-))は、茎葉病害、種子伝染病害および土壌伝染病害を含む広範な植物病害に対して防除効果を奏する。適用病害の例として以下が挙げられる:ダイズさび病(Phakopsora pachyrhizi、Phakopsora meibomiae)、イネいもち病(Pyricularia grisea、Pyricularia oryzae)、イネごま葉枯病(Cochliobolus miyabeanus)、イネ紋枯病(Rhizoctonia solani)、リンゴうどんこ病(Podosphaera leucotricha)、リンゴ黒星病(Venturia inaequalis)、リンゴモリニア病(Monilinia mali)、リンゴ斑点落葉病(Alternaria alternata)、リンゴ腐乱病(Valsa mali)、ナシ黒斑病(Alternaria kikuchiana)、ナシうどんこ病(Phyllactinia pyri)、ナシ赤星病(Gymnosporangium asiaticum)、ナシ黒星病(Venturia nashicola)、ブドウうどんこ病(Uncinula necator)、ブドウべと病(Plasmopara viticola)、ブドウ晩腐病(炭疽病)(Glomerella cingulata)、オオムギうどんこ病(Erysiphe graminis f. sp hordei)、オオムギ黒さび病(Puccinia graminis)、オオムギ黄さび病(Puccinia striiformis)、オオムギ斑葉病(Pyrenophora graminea)、オオムギ雲形病(Rhynchosporium secalis)、オオムギ裸黒穂病(Ustilago nuda)、コムギうどんこ病(Erysiphe graminis f. sp tritici)、コムギ赤さび病(Puccinia recondita)、コムギ黄さび病(Puccinia striiformis)、コムギ眼紋病(Pseudocercosporella herpotrichoides)、コムギ赤かび病(Fusarium graminearum)、コムギ紅色雪腐病(Microdochium nivale)、コムギ立枯れ病(Gaeumannomyces graminis)、コムギふ枯病(Phaeosphaeria nodorum)、コムギ葉枯病(Septoria tritici)、ウリ類うどんこ病(Sphaerotheca fuliginea)、ウリ類の炭疸病(Colletotrichum lagenarium)、キュウリべと病(Pseudoperonospora cubensis)、キュウリ灰色疫病(Phytophthora capsici)、トマトうどんこ病(Erysiphe cichoracearum)、トマト輪紋病(Alternaria solani)、ナスうどんこ病(Erysiphe cichoracearum)、イチゴうどんこ病(Sphaerotheca humuli)、タバコうどんこ病(Erysiphe cichoracearum)、テンサイ褐斑病(Cercospora beticola)、核果類果樹の灰星病(Monilinia fructicola)、種々の作物をおかす灰色かび病(Botrytis cinerea)、菌核病(Sclerotinia sclerotiorum)、ブドウのさび病(Phakopsora ampelopsidis)、タバコの赤星病(Alternaria longipes)、ジャカイモノ夏疫病(Alternaria solani)、ダイズの褐紋病(Septoria glycines)、ダイズの紫斑病(Cercospora kikuchii)、イネ白葉枯病(Xanthomonas oryzae)、イネ小黒菌核病(Helminthosporium sigmoideun)、イネばか苗病(Gibberella fujikuroi)、イネ苗立枯病(Pythium aphanidermatum、Rhizopus oryzae)、トウモロコシ黒穂病(Ustillaga maydis)、スイカのつる割病(Fusarium oxysporum f.sp.niveum)、キュウリのつる割病(Fusarim oxysporum f.sp.cucumerinum)、カンキツ青かび(Penicillium italicum)およびダイコンの萎黄病(Fusarium oxysporum f.sp.raphani)等。
(1) Plant disease control effect The usefulness of the plant disease control agent which concerns on this Embodiment is demonstrated. Compound (Ia (−)) exerts a controlling effect against a wide range of plant diseases including foliage diseases, seed infectious diseases and soil infectious diseases. Examples of applicable diseases include: soybean rust (Phakopsora pachyrhizi, Phakopsora meibomiae), rice blast (Pyricularia grisea, Pyricularia oryzae), rice sesame leaf blight (Cochliobolus miyabeanus), rice blight (Rhizoctonia solani) , Apple powdery mildew (Podosphaera leucotricha), apple black spot disease (Venturia inaequalis), apple morinia disease (Monilinia mali), apple spotted leaf disease (Alternaria alternata), apple rot disease (Valsa mali), pear black spot disease (Alternaria kikuchiana) Pear powdery mildew (Phyllactinia pyri), pear red star disease (Gymnosporangium asiaticum), pear black spot disease (Venturia nashicola), grape powdery mildew (Uncinula necator), grape downy mildew (Plasmopara viticola), grape late rot (anthrax) Disease) (Glomerella cingulata), barley powdery mildew (Erysiphe graminis f. Sp hordei), barley black rust (Puccinia graminis), barley yellowness Disease (Puccinia striiformis), barley leaf leaf disease (Pyrenophora graminea), barley cloud shape disease (Rhynchosporium secalis), barley naked scab (Ustilago nuda), wheat powdery mildew (Erysiphe graminis f. Sp tritici), wheat red rust recondita), wheat yellow rust (Puccinia striiformis), wheat eyespot (Pseudocercosporella herpotrichoides), wheat red mold (Fusarium graminearum), wheat red snow rot (Microdochium nivale), wheat leaf blight (Gaeumannomyces graminis), wheat Dry blight (Phaeosphaeria nodorum), wheat leaf blight (Septoria tritici), cucumber powdery mildew (Sphaerotheca fuliginea), cucumber anthracnose (Colletotrichum lagenarium), cucumber downy mildew (Pseudoperonospora cubensis), cucumber gray plague ( Phytophthora capsici), tomato powdery mildew (Erysiphe cichoracearum), tomato ringworm (Alternaria solani), eggplant powdery mildew (Erysip he cichoracearum), strawberry powdery mildew (Sphaerotheca humuli), tobacco powdery mildew (Erysiphe cichoracearum), sugar beet brown spot disease (Cercospora beticola), berries of Monasteria fruit tree (Monilinia fructicola), gray molds that can be used in various crops Diseases (Botrytis cinerea), sclerotia (Sclerotinia sclerotiorum), grape rust (Phakopsora ampelopsidis), tobacco star rot (Alternaria longipes), pea moss (Alternaria solani), soybean brown spot (Septoria glycines), Soybean purpura (Cercospora kikuchii), rice leaf blight (Xanthomonas oryzae), rice black fungus nuclear disease (Helminthosporium sigmoideun), rice scab (Gibberella fujikuroi), rice seedling blight (Pythium aphanidermatum, Rhizopus oryz) Corn smut (Ustillaga maydis), watermelon vine split (Fusarium oxysporum f.sp.niveum), cucumber vine split (Fusarim oxysporum f.sp.cucumerinum), mosquito Tight blue mold (Penicillium italicum) and radish yellows disease (Fusarium oxysporum f.sp.raphani) and the like.
 また、適用植物の例としては、野生植物、植物栽培品種、異種交配もしくは原形質融合などの従来の生物育種によって得られる植物および植物栽培品種、遺伝子操作によって得られる遺伝子組み換え植物および植物栽培品種が挙げられる。遺伝子組み換え植物および植物栽培品種としては、例えば、除草剤耐性作物、殺虫性タンパク産生遺伝子を組み込んだ害虫耐性作物、病害に対する抵抗性誘導物質産生遺伝子を組み込んだ病害耐性作物、食味向上作物、収量向上作物、保存性向上作物、および収量向上作物等が挙げられる。遺伝子組み換え植物栽培品種としては、具体的に、ROUNDUP READY、LIBERTY LINK、CLEARFIELD、YIELDGARD、HERCULEX、BOLLGARD等の登録商標を含むものが挙げられる。 Examples of applied plants include wild plants, plant cultivars, plants and plant cultivars obtained by conventional biological breeding such as crossbreeding or protoplast fusion, genetically modified plants and plant cultivars obtained by genetic manipulation. Can be mentioned. Examples of genetically modified plants and plant cultivars include herbicide-tolerant crops, pest-tolerant crops incorporating insecticidal protein production genes, disease-resistant crops incorporating resistance-inducing substance production genes for diseases, improved crops, improved yields Examples include crops, preservative-enhancing crops, and yield-enhancing crops. Specific examples of genetically modified plant cultivars include those containing registered trademarks such as ROUNDUP READY, LIBERTY LINK, CLEARFIELD, YIELDGARD, HERCULEX, BOLLGARD and the like.
 (2)植物生長作用
 また、化合物(Ia(-))は、広汎な作物および園芸植物に対して、その生長を調節して収量を増加させる効果あるいはその品質を高める効果を示す。かかる作物の例としては、コムギ、大麦および燕麦などの麦類、稲、ナタネ、サトウキビ、トウモロコシ、メイズ、大豆、エンドウ、落花生、シュガービート、キャベツ、ニンニク、ダイコン、ニンジン、リンゴ、ナシ、みかん、オレンジおよびレモンなどの柑橘類、モモ、桜桃、アボガド、マンゴー、パパイヤ、トウガラシ、キュウリ、メロン、イチゴ、タバコ、トマト、ナス、芝、菊、ツツジ、ならびにその他の観賞用植物が挙げられる。
(2) Plant Growth Action In addition, compound (Ia (−)) exhibits an effect of increasing the yield or improving the quality of a wide variety of crops and horticultural plants by controlling the growth. Examples of such crops include wheat, barley and buckwheat, rice, rapeseed, sugar cane, corn, maize, soybeans, peas, peanuts, sugar beet, cabbage, garlic, radish, carrots, apples, pears, tangerines, Citrus such as orange and lemon, peach, cherry peach, avocado, mango, papaya, pepper, cucumber, melon, strawberry, tobacco, tomato, eggplant, turf, chrysanthemum, azalea, and other ornamental plants.
 (3)製剤
 化合物(Ia(-))を有効成分として含む植物病害防除剤は、通常、固体担体、液体担体、界面活性剤またはその他の製剤補助剤と混合して粉剤、水和剤、粒剤および乳剤などの種々の形態に製剤して使用する。
(3) Formulation A plant disease control agent containing the compound (Ia (-)) as an active ingredient is usually mixed with a solid carrier, liquid carrier, surfactant or other formulation adjuvant, and powder, wettable powder, granule It is formulated and used in various forms such as agents and emulsions.
 これらの製剤には有効成分として化合物(Ia(-))が、0.1~95重量%、好ましくは0.5~90重量%、より好ましくは2~80重量%含まれるようにすればよい。 These preparations may contain 0.1 to 95% by weight, preferably 0.5 to 90% by weight, more preferably 2 to 80% by weight, of the compound (Ia (−)) as an active ingredient. .
 製剤補助剤として使用する坦体、希釈剤および界面活性剤としては、以下のものを挙げることができる。まず、固体坦体としては、タルク、カオリン、ベンナイト、珪藻土、ホワイトカーボンおよびクレーなどを挙げることができる。液体希釈剤としては、水、キシレン、トルエン、クロロベンゼン、シクロヘキサン、シクロヘキサノン、ジメチルスルホキシド、ジメチルホルムアミドおよびアルコールなどを挙げることができる。界面活性剤は、その効果により使い分けることが好ましい。乳化剤としては、ポリオキシエチレンアルキルアリールエーテルおよびポリオキシエチレンソルビタンモノラウレートなどを用いることが好ましい。また、分散剤としては、リグニンスルホン酸塩およびジブチルナフタリンスルホン酸塩などを用いることが好ましく、湿潤剤としては、アルキルスルホン酸塩およびアルキルフェニルスルホン酸塩などを用いることが好ましい。 Examples of carriers, diluents and surfactants used as formulation adjuvants include the following. First, examples of the solid carrier include talc, kaolin, bennite, diatomaceous earth, white carbon, and clay. Examples of the liquid diluent include water, xylene, toluene, chlorobenzene, cyclohexane, cyclohexanone, dimethyl sulfoxide, dimethylformamide and alcohol. It is preferable to use different surfactants depending on their effects. As the emulsifier, it is preferable to use polyoxyethylene alkylaryl ether, polyoxyethylene sorbitan monolaurate, or the like. In addition, lignin sulfonate and dibutyl naphthalene sulfonate are preferably used as the dispersant, and alkyl sulfonate and alkylphenyl sulfonate are preferably used as the wetting agent.
 製剤には、そのまま使用するものと、水等の希釈剤で所定濃度に希釈して使用するものとがある。希釈して使用する場合、散布液中に含まれる化合物(Ia(-))の濃度は0.001~1.0%の範囲であることが望ましい。 Preparations include those that are used as they are and those that are diluted to a predetermined concentration with a diluent such as water. When diluted and used, the concentration of the compound (Ia (−)) contained in the spray liquid is desirably in the range of 0.001 to 1.0%.
 (4)植物病害防除方法
 化合物(Ia(-))を含む植物病害防除剤は、茎葉散布といった茎葉処理に加えて、種子処理、潅注処理、水面処理などの非茎葉処理によっても施用できる。なお、非茎葉処理を行う場合には、茎葉処理を行う場合に比べて、労力を低減させることができる。また、化合物(Ia(-))を含む植物病害防除剤は、非茎葉処理により非茎葉病害だけでなく、茎葉病害を防除することもできる。
(4) Plant Disease Control Method The plant disease control agent containing the compound (Ia (−)) can be applied by non-foliage treatment such as seed treatment, irrigation treatment and water surface treatment in addition to foliage treatment such as foliage spraying. In addition, when performing a non-foliage process, a labor can be reduced compared with the case where a foliage process is performed. In addition, the plant disease control agent containing the compound (Ia (-)) can control not only non-foliage diseases but also foliage diseases by non-foliage treatment.
 種子処理による施用では、水和剤または粉剤などを種子と混合し攪拌することにより、あるいは希釈した水和剤などに種子を浸漬することにより、薬剤を種子に付着させる。種子処理の場合の化合物(Ia(-))の使用量は、種子100kgに対して0.01~10000gであり、好ましくは0.1~1000gである。 In application by seed treatment, a wettable powder or powder is mixed with the seed and stirred, or the seed is immersed in a diluted wettable powder to attach the drug to the seed. The amount of compound (Ia (−)) used in the seed treatment is 0.01 to 10000 g, preferably 0.1 to 1000 g, per 100 kg of seeds.
 潅注処理による施用は、苗の移植時などに植穴またはその周辺に粒剤などを処理したり、種子または植物体の周囲の土壌に粒剤または水和剤などを処理したりすることによって行う。潅注処理の場合の化合物(Ia(-))の使用量は、農園芸地1mあたり0.01~10000gであり、好ましくは0.1~1000gである。 Application by irrigation treatment is performed by treating granules or the like around the planting hole at the time of transplanting seedlings, or treating the soil around the seeds or plants with granules or wettable powder. . The amount of compound (Ia (−)) used in the irrigation treatment is 0.01 to 10000 g, preferably 0.1 to 1000 g, per 1 m 2 of agricultural and horticultural land.
 水面処理による施用は、水田の田面水に粒剤などを処理することによって行う。水面処理の場合の化合物(Ia(-))の使用量は、水田10aあたり0.1~10000gであり、好ましくは1~1000gである。 Application by water surface treatment is performed by treating the surface of paddy fields with granules. In the case of water surface treatment, the amount of compound (Ia (−)) used is 0.1 to 10000 g, preferably 1 to 1000 g, per 10 a paddy field.
 なお、使用濃度および使用量は剤形、使用時期、使用方法、使用場所および対象作物等によっても異なるため、上記の範囲にこだわることなく増減することが可能である。 The concentration and amount used vary depending on the dosage form, time of use, method of use, place of use and target crop, and can be increased or decreased without sticking to the above range.
 なお、茎葉散布に用いる場合の化合物(Ia(-))の使用量は、畑、田、果樹園および温室などの農園芸地1haあたり20~5000g、より好ましくは50~2000gである。 The amount of compound (Ia (−)) used for foliage spraying is 20 to 5000 g, more preferably 50 to 2000 g, per ha of horticultural lands such as fields, rice fields, orchards and greenhouses.
 さらに、化合物(Ia(-))は他の有効成分、例えば以下に例示するような殺菌剤、殺虫剤、殺ダニ剤または除草剤と組み合わせ、植物病害防除剤としての性能を高めて使用することもできる。
<抗菌性物質>
 アシベンゾラーSメチル、2-フェニルフェノール(OPP)、アザコナゾール、アゾキシストロビン、アミスルブロム、ビキサフェン、ベナラキシル、ベノミル、ベンチアバリカルブ-イソプロピル、ビカルボネイト、ビフェニル、ビテルタノール、ブラスチシジン-S、ボラックス、ボルドー液、ボスカリド、ブロムコナゾール、ブロノポール、ブピリメート、セックブチラミン、カルシウムポリスルフィド、カプタフォル、キャプタン、カルベンダジム、カルボキシン、カルプロパミド、キノメチオネート、クロロネブ、クロロピクリン、クロロタロニル、クロゾリネート、シアゾファミド、シフルフェナミド、シモキサニル、シプロコナゾール、シプロジニル、ダゾメット、デバカルブ、ジクロフルアニド、ジクロシメット、ジクロメジン、ジクロラン、ジエトフェンカルブ、ジフェノコナゾール、ジフルメトリン、ジメトモルフ、ジメトキシストロビン、ジニコナゾール、ジノカップ、ジフェニルアミン、ジチアノン、ドデモルフ、ドジン、エディフェンフォス、エポキシコナゾール、エタポキサム、エトキシキン、エトリジアゾール、エネストロブリン、ファモキサドン、フェナミドン、フェナリモル、フェンブコナゾール、フェンフラム、フェンヘキサミド、フェノキサニル、フェンピクロニル、フェンプロピジン、フェンプロピモルフ、フェンチン、フェルバム、フェリムゾン、フルアジナム、フルジオキソニル、フルモルフ、フルオロミド、フルオキサストロビン、フルキンコナゾール、フルシラゾール、フルスルファミド、フルトラニル、フルトリアフォル、フォルペット、フォセチル-アルミニウム、フベリダゾール、フララキシル、フラメトピル、フルオピコリド、フルオピラム、グアザチン、ヘキサクロロベンゼン、ヘキサコナゾール、ヒメキサゾール、イマザリル、イミベンコナゾール、イミノクタジン、イプコナゾール、イプロベンフォス、イプロジオン、イプロバリカルブ、イソプロチオラン、イソピラザム、イソチアニル、カスガマイシン、銅調製物(例えば水酸化銅、ナフテン酸銅、オキシ塩化銅、硫酸銅、酸化銅、オキシン-銅)、クレゾキシムメチル、マンコカッパー、マンコゼブ、マネブ、マンジプロパミド、メパニピリム、メプロニル、メタラキシル、メトコナゾール、メチラム、メトミノスウトロビン、ミルジオマイシン、ミクロブタニル、ニトロタル-イソプロピル、ヌアリモル、オフレース、オキサジキシル、オキソリニック酸、オキスポコナゾール、オキシカルボキシン、オキシテトラサイクリン、ペフラゾエート、オリサストロビン、ペンコナゾール、ペンシクロン、ペンチオピラド、ピリベンカルブ、フサライド、ピコキシストロビン、ピペラリン、ポリオキシン、プロベナゾール、プロクロラズ、プロシミドン、プロパモカルブ、プロピコナゾール、プロピネブ、プロキナジド、プロチオコナゾール、ピラクロストロビン、ピラゾフォス、ピリフェノックス、ピリメタニル、ピロキロン、キノキシフェン、キントゼン、シルチオファム、シメコナゾール、スピロキサミン、硫黄および硫黄調製物、テブコナゾール、テクロフタラム、テクナゼン、テトラコナゾール、チアベンダゾール、チフルザミド、チオファネート-メチル、チラム、チアジニル、トルクロフォス-メチル、トリルフルアニド、トリアジメフォン、トリアジメノール、トリアゾキシド、トリシクラゾール、トリデモルフ、トリフロキシストロビン、トリフルミゾール、トリホリン、トリチコナゾール、バリダマイシン、ビンクロゾリン、ジネブ、ジラム、ゾキサミド、アミスルブロム、セダキサン、フルチアニル、バリフェナール、アメトクトラジン、ジモキシストロビン、メトラフェノン、ヒドロキシイソキサゾール、およびメタスルホカルブ等。
<殺虫剤/殺ダニ剤/殺線虫剤>
 アバメクチン、アセフェート、アクリナトリン、アラニカルブ、アルジカルブ、アレトリン、アミトラズ、アベルメクチン、アザジラクチン、アザメチフォス、アジンフォス-エチル、アジンフォス-メチル、アゾサイクロチン、バシルス・フィルムス、バシルス・ズブチルス、バシルス・ツリンジエンシス、ベンジオカルブ、ベンフラカルブ、ベンスルタップ、ベンゾキシメイト、ビフェナゼイト、ビフェントリン、ビオアレトリン、ビオレスメトリン、ビストリフルロン、ブプロフェジン、ブトカルボキシン、ブトキシカルボキシン、カズサフォス、カルバリル、カルボフラン、カルボスルファン、カータップ、CGA50439、クロルデイン、クロレトキシフォス、クロルフェナピル、クロルフェンビンフォス、クロルフルアズロン、クロルメフォス、クロルピリフォス、クロルピリフォスメチル、クロマフェノザイド、クロフェンテジン、クロチアニジン、クロラントラリニプロール、コウンパフォス、クリオライト、シアノフォス、シクロプロトリン、シフルトリン、シハロトリン、シヘキサチン、シペルメトリン、シフェノトリン、シロマジン、シアザピル、シエノピラフェン、DCIP、DDT、デルタメトリン、デメトン-S-メチル、ジアフェンチウロン、ジアジノン、ジクロロフェン、ジクロロプロペン、ジクロルボス、ジコフォル、ジクロトフォス、ジシクラニル、ジフルベンズロン、ジメトエート、ジメチルビンフォス、ジノブトン、ジノテフラン、エマメクチン、エンドスルファン、EPN、エスフェンバレレート、エチオフェンカルブ、エチオン、エチプロール、エトフェンプロックス、エトプロフォス、エトキサゾール、ファムフル、フェナミフォス、フェナザキン、フェンブタチンオキシド、フェニトロチオン、フェノブカルブ、フェノチオカルブ、フェノキシカルブ、フェンプロパトリン、フェンピロキシメート、フェンチオン、フェンバレレート、フイプロニル、フロニカミド、フルアクロピリム、フルシクロクスロン、フルシトリネート、フルフェノクスロン、フルメトリン、フルバリネート、フルベンジアミド、フォルメタネート、フォスチアゼート、ハルフェンプロクス、フラチオカルブ、ハロヘノジド、ガンマ-HCH、ヘプテノフォス、ヘキサフルムロン、ヘキシチアゾックス、ヒドラメチルノン、イミダクロプリド、イミプロトリン、インドキサカルブ、イソプロカルブ、イソキサチオン、ルフェヌロン、マラチオン、メカルバム、メタム、メタミドフォス、メチダチオン、メチオカルブ、メトミル、メトプレン、メトスリン、メトキシフェノジド、メトルカルブ、ミルベメクチン、モノクロトフォス、ナレド、ニコチン、ニテンピラム、ノバルロン、ノビフルムロン、オメトエート、オキサミル、オキシデメトンメチル、パラチオン、パーメトリン、フェントエート、フォレート、フォサロン、フォスメット、フォスファミドン、フォキシム、ピリミカルブ、ピリミフォスメチル、プロフェノフォス、プロポクスル、プロチオフォス、ピメトロジン、ピラクロフォス、ピレスリン、ピリダベン、ピリダリル、ピリミジフェン、ピリプロキシフェン、ピリフルキナゾン、ピリプロール、キナルフォス、シラフルオフェン、スピノサド、スピロジクロフェン、スピロメシフェン、スピロテトラマット、スルフラミド、スルフォテップ、SZI-121、テブフェノジド、テブフェンピラド、テブピリムフォス、テフルベンズロン、テフルトリン、テメフォス、テルブフォス、テトラクロルビンフォス、チアクロプリド、チアメトキサム、チオジカルブ、チオファノックス、チオメトン、トルフェンピラド、トラロメトリン、トラロピリル、トリアザメート、トリアゾフォス、トリクロルフオン、トリフルムロン、バミドチオン、バリフェナル、XMC、キシリルカルブ、イミシアホス、およびレピメクチン等。
<植物成長調節剤>
 アンシミドール、6-ベンジルアミノプリン、パクロブトラゾール、ジクロブトラゾール、ウニコナゾール、メチルシクロプロペン、メピコートクロリド、エセフォン、クロルメコートクロライド、イナベンフィド、プロヘキサジオンおよびその塩、ならびにトリネキサパックエチル等。また、植物ホルモンとして、ジャスモン酸、ブラシノステロイド、およびジベレリン等。
Further, the compound (Ia (−)) should be used in combination with other active ingredients such as fungicides, insecticides, acaricides or herbicides as exemplified below to enhance performance as plant disease control agents. You can also.
<Antimicrobial substances>
Acibenzolar S methyl, 2-phenylphenol (OPP), azaconazole, azoxystrobin, amisulbrom, bixaphene, benalaxyl, benomyl, bench avaricarb-isopropyl, bicarbonate, biphenyl, viteltanol, blasticidin-S, borax, bordeaux, boscalid, Bromuconazole, bronopol, bupirimate, secbutyramine, calcium polysulfide, captafor, captan, carbendazim, carboxin, carpropamide, quinomethionate, chloronebu, chloropicrin, chlorothalonil, clozolinate, cyazofamide, cyflufenamide, simoxanil, cyproconil, cyprodiazole Dazomet, debacarb, diclofuranide, diclocimet, dichrome Gin, Dichlorane, Dietofencarb, Difenoconazole, Diflumethrin, Dimethomorph, Dimethoxystrobin, Diniconazole, Dinocup, Diphenylamine, Dithianon, Dodemorph, Dodine, Edifenfoss, Epoxyconazole, Etapoxam, Ethoxyquin, Etridiodone, Enestropheline, Namidon Fenarimol, fenbuconazole, fenflam, fenhexamide, phenoxanyl, fenpicuronyl, fenpropidin, fenpropimorph, fentin, felvam, ferrimzone, fluazinam, fludioxonil, flumorph, fluoromide, floxastrobin, fluquinconazole, flusilazole, flusulfamide , Flutolanil, furtriafor, fu Rupet, Focetyl-aluminum, Fuberidazole, Furaxil, Furatopir, Fluopicolide, Fluopyram, Guazatine, Hexachlorobenzene, Hexaconazole, Himexazole, Imazalil, Imibenconazole, Iminotazine, Ipconazole, Iprobenfos, Iprodione, Iprovalithiol , Kasugamycin, copper preparations (eg copper hydroxide, copper naphthenate, copper oxychloride, copper sulfate, copper oxide, oxine-copper), crezooxime methyl, mancocapper, mancozeb, maneb, mandipropamide, mepanipyrim, mepronil, metalaxyl , Metconazole, methylam, metminosoutrobin, myrdiomycin, microbutanyl, nitrotal-isopropyl, Limol, off-race, oxadixyl, oxolinic acid, oxpoconazole, oxycarboxyl, oxytetracycline, pefrazoate, orisatrobin, penconazole, pencyclon, penthiopyrad, pyribencarb, fusalide, picoxystrobin, piperaline, polyoxin, probenazole, prochloraz, procymidone , Propamocarb, propiconazole, propinebole, proquinazide, prothioconazole, pyraclostrobin, pyrazophos, pyrifenox, pyrimethanil, pyroxylone, quinoxyphene, quintozen, silthiofam, cimeconazole, spiroxamine, sulfur and sulfur preparation, tebuconazole, teclophthalam, , Tetraconazole, thiabendazole, tifluzamide, Thiophanate-methyl, thyram, thiazinyl, tolcrophos-methyl, tolylfluanid, triadimethone, triadimenol, triazoxide, tricyclazole, tridemorph, trifloxystrobin, triflumizole, trifolin, triticonazole, validamycin, vinclozoline, Zineb, ziram, zoxamide, amisulbrom, sedaxane, flutianil, varifenal, amethoctrazine, dimoxystrobin, metolaphenone, hydroxyisoxazole, metasulfocarb and the like.
<Insecticide / acaricide / nematicide>
Abamectin, Acephate, Acrinathrin, Alanicarb, Aldicarb, Alletrin, Amitraz, Avermectin, Azadirachtin, Azamethifos, Azinphos-ethyl, Azinphos-methyl, Azocycline, Bacillus filmus, Bacillus subtilis, Bacillus thuringibulbbenthulbenbencarb , Benzoxymate, Bifenazite, Bifenthrin, Bioarethrin, Bioresmethrin, Bistriflurone, Buprofezin, Butocaboxin, Butoxycarboxyne, Kazusafos, Carbaryl, Carbofuran, Carbosulfan, Cartap, CGA50439, Chlordein, Chloretifol, Chlorfenapir Fenbinfoss, Chlorfluazuron Chlormefos, Chlorpyrifos, Chlorpyrifosmethyl, Chromaphenozide, Clofentedine, Clothianidin, Chloranthraliniprol, Counpafos, Cryolite, Cyanophos, Cycloproton, Cyfluthrin, Cyhalothrin, Cihexatin, Cipermethrin, Cifenotrin, Cyromazine, Ciazapyr, Sienopyrafen, DCIP, DDT, Deltamethrin, Demeton-S-methyl, Diafenthiuron, Diazinone, Dichlorophene, Dichloropropene, Dichlorvos, Dicofor, Dicrotophos, Dicyclanil, Diflubenzuron, Dimethoate, Dimethylvinphos, Franbutone, Dinobutone , Emamectin, endosulfan, EPN, esfenvalerate, etiophencarb, ethion, Tiprol, etofenprox, etoprofos, etoxazole, famflu, fenamifos, phenazaquin, fenbutatin oxide, fenitrothion, fenocarb, phenothiocarb, phenoxycarb, fenpropatrine, fenpyroximate, fenthionate, fenvalerate, fipronil, flunipyamide Ron, flucitrinate, fluphenoxuron, flumethrin, fulvalinate, flubendiamide, formethanate, fostiazate, halfenprox, furthiocarb, halohenozide, gamma-HCH, heptenofos, hexaflumuron, hexithiazox, hydramethylnon , Imidacloprid, imiprothrin, indoxacarb, isoprocar Bu, isoxathion, lufenuron, malathion, mecarbam, metham, methamidophos, methidathione, metiocarb, methomyl, methoprene, methosrine, methoxyphenozide, metorcarb, milbemectin, monocrotofos, nared, nicotine, nitenpyram, novalflumetron, oxyflumetron Tonmethyl, parathion, permethrin, phentoate, folate, fosaron, phosmet, phosfamidone, foxim, pirimicarb, pirimiphos methyl, profenofos, propoxur, prothiophos, pymetrozine, pyracrofos, pyrethrin, pyridaben, pyridalyl, pyrimidifene, pyriproxy Fen, Pyrifluquinazone, Pyriprole, Quinarfos, Shirafu Ofen, Spinosad, Spirodiclofen, Spiromethifene, Spirotetramat, Sulframide, Sulfotep, SZI-121, Tebufenozide, Tebufenpyrad, Tebupyrimfos, Teflubenzuron, Tefluthrin, Temefos, Terbufos, Tetrachlorbinfos, Thiacloprio, Thiamethioxam Fanox, thiometone, tolfenpyrad, tralomethrin, tralopyril, triazamate, triazophos, trichlorphone, triflumuron, bamidithione, varifenal, XMC, xylylcarb, imisiaphos, and lepimectin.
<Plant growth regulator>
Ansimidol, 6-benzylaminopurine, paclobutrazole, diclobutrazole, uniconazole, methylcyclopropene, mepiquat chloride, ethephone, chlormequat chloride, inabenfide, prohexadione and salts thereof, and trinexa Pack ethyl etc. In addition, as plant hormones, jasmonic acid, brassinosteroid, gibberellin and the like.
 なお、上述した植物病害防除剤により処理した種子も本発明の範疇に含む。植物病害防除剤による処理については上記で述べたため、記載を省略する。植物病害防除剤により処理した種子は、種子処理していない種子と同様に使用することができる。 In addition, the seed treated with the above-mentioned plant disease control agent is also included in the category of the present invention. Since the treatment with the plant disease control agent has been described above, the description thereof is omitted. Seeds treated with a plant disease control agent can be used in the same manner as seeds not treated with seeds.
 なお、植物病害防除剤には、化合物(Ia(-))が含まれていればよく、化合物(Ia(-))の鏡像異性体、すなわち(+)-エナンチオマーを含むものであってもよい。しかしながら、有効成分としての化合物(I)による効果を高めるために、(+)-エナンチオマーの含量は、化合物(Ia(-))の含量よりも少ないことが好ましく、化合物(Ia(-))の含量の40%以下であることがより好ましく、20%以下であることがさらに好ましく、(+)-エナンチオマーを含んでいないことが特に好ましい。 The plant disease control agent only needs to contain the compound (Ia (−)), and may contain an enantiomer of the compound (Ia (−)), that is, a (+)-enantiomer. . However, in order to enhance the effect of the compound (I) as an active ingredient, the content of the (+)-enantiomer is preferably less than the content of the compound (Ia (−)). The content is more preferably 40% or less, still more preferably 20% or less, and particularly preferably no (+)-enantiomer is contained.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention. Moreover, all the literatures described in this specification are used as reference.
<製造例1:2-(1-クロロシクロプロピル)-1-(2,2-ジブロモシクロプロピル)-3-(1H-1,2,4-トリアゾール-1-イル)プロパン-2-オールの合成>
 上記反応スキーム1に従って、化合物(VII)から化合物(I)を合成した。
<Production Example 1: 2- (1-chlorocyclopropyl) -1- (2,2-dibromocyclopropyl) -3- (1H-1,2,4-triazol-1-yl) propan-2-ol Synthesis>
According to the above reaction scheme 1, compound (I) was synthesized from compound (VII).
 (1)1-クロロ-2-(1-クロロシクロプロピル)-4-ペンテン-2-オール(化合物(V):R=1-クロロシクロプロピル、X=H、X=H、X=Cl、n=1)の合成
 アルゴン雰囲気下、2-クロロ-1-(1-クロロシクロプロピル)エタノン(化合物(VII):R=1-クロロシクロプロピル、X=Cl)(0.0098mol)をジエチルエーテル(20ml)に溶解し、-50℃に冷却した。アリルマグネシウムブロミド(化合物(VI):X=H、X=H、L=MgBr、n=1)1Mのジエチルエーテル溶液(18ml)を加え、同温度で約20分間攪拌した後、氷冷下まで徐々に昇温しながらさらに1時間撹拌した。攪拌後、氷水および飽和塩化アンモニウム水溶液を加えた。ジエチルエーテルで抽出した後、有機層を飽和重曹水および飽和食塩水で抽出した。無水硫酸ナトリウムで乾燥した後、濃縮して、粗目的物を得た。
収率:77%
 (2)2-(1-クロロシクロプロピル)-2-(2,2-ジブロモシクロプロピルメチル)オキシラン(化合物(III):R=1-クロロシクロプロピル、X=H、X=H、X=Br、n=1)の合成
 化合物(V)(0.0031mol)に、ブロモホルム(9.2mmol)、50%水酸化ナトリウム水溶液(2g)およびベンジルトリエチルアンモニウムクロリド(0.154mmol)を加え、室温下で1時間攪拌した後、約60℃でさらに1時間攪拌し、その後さらに約80℃で1時間攪拌した。反応液に水を加え、ジエチルエーテルで抽出した。有機層を水、および飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、濃縮した。得られた粗生成物に、ブロモホルム(9.2mmol)、50%水酸化ナトリウム水溶液(2g)およびベンジルトリエチルアンモニウムクロリド(0.30mol)を加え、80℃で4時間攪拌した。反応液に水を加え、ジエチルエーテルで抽出した。有機層を水、および飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥し、濃縮した。シリカゲルカラムクロマトグラフィーで精製して粗生成物を得て、そのまま次反応に用いた。
収率:59%
 (3)2-(1-クロロシクロプロピル)-1-(2,2-ジブロモシクロプロピル)-3-(1H-1,2,4-トリアゾール-1-イル)プロパン-2-オール(化合物(I):R=1-クロロシクロプロピル、X=H、X=H、X=Br、n=1)の合成、および低極性異性体の調製
 炭酸カリウム(2.7mmol)をDMF(3ml)に加え懸濁した後、ここに、ナトリウムt-ブトキシド(0.36mmol)、1,2,4-トリアゾール(化合物(II):M=H)(2.7mmol)を加えた。ここに、DMF(3ml)に溶解した化合物(III)(0.0018mol)を加え、90℃で2時間攪拌した。ここに、酢酸エチルおよび水を加え、分配した後、有機層を飽和食塩水で洗浄した。水層を酢酸エチルで抽出した後、有機層を無水硫酸ナトリウムで乾燥し、濃縮した。シリカゲルカラムクロマトグラフィーで精製を行い、2種の異性体の中で低極性の異性体(以下、異性体(1a-1)と称する)を単離した。
[異性体(1a-1)]
収率:9%
 (4)2-(1-クロロシクロプロピル)-1-(2,2-ジブロモシクロプロピル)-3-(1H-1,2,4-トリアゾール-1-イル)プロパン-2-オール(-)-エナンチオマーの調製
 異性体(1a-1)を、アミローストリス(3,5-ジメチルフェニルカルバメート)がシリカゲル担体に固定化された分取カラムをつないだ高速液体クロマトグラフィー(HPLC)に供し、各エナンチオマーの分取分離を行った。
(1) 1-chloro-2- (1-chlorocyclopropyl) -4-penten-2-ol (compound (V): R 2 = 1-chlorocyclopropyl, X 3 = H, X 4 = H, X Synthesis of 6 = Cl, n = 1) Under an argon atmosphere, 2-chloro-1- (1-chlorocyclopropyl) ethanone (compound (VII): R 2 = 1-chlorocyclopropyl, X 6 = Cl) (0 .0098 mol) was dissolved in diethyl ether (20 ml) and cooled to −50 ° C. Allylmagnesium bromide (compound (VI): X 3 = H, X 4 = H, L = MgBr, n = 1) 1M diethyl ether solution (18 ml) was added, and the mixture was stirred at the same temperature for about 20 minutes, then cooled on ice The mixture was further stirred for 1 hour while gradually warming to the bottom. After stirring, ice water and saturated aqueous ammonium chloride solution were added. After extraction with diethyl ether, the organic layer was extracted with saturated aqueous sodium hydrogen carbonate and saturated brine. The extract was dried over anhydrous sodium sulfate and concentrated to obtain a crude product.
Yield: 77%
(2) 2- (1-chlorocyclopropyl) -2- (2,2-dibromocyclopropylmethyl) oxirane (compound (III): R 2 = 1-chlorocyclopropyl, X 3 = H, X 4 = H , X 5 = Br, n = 1) Compound (V) (0.0031 mol) was mixed with bromoform (9.2 mmol), 50% aqueous sodium hydroxide (2 g) and benzyltriethylammonium chloride (0.154 mmol). In addition, the mixture was stirred at room temperature for 1 hour, further stirred at about 60 ° C. for 1 hour, and then further stirred at about 80 ° C. for 1 hour. Water was added to the reaction mixture, and the mixture was extracted with diethyl ether. The organic layer was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated. Bromoform (9.2 mmol), 50% aqueous sodium hydroxide solution (2 g) and benzyltriethylammonium chloride (0.30 mol) were added to the obtained crude product, and the mixture was stirred at 80 ° C. for 4 hours. Water was added to the reaction mixture, and the mixture was extracted with diethyl ether. The organic layer was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated. The product was purified by silica gel column chromatography to obtain a crude product, which was directly used in the next reaction.
Yield: 59%
(3) 2- (1-chlorocyclopropyl) -1- (2,2-dibromocyclopropyl) -3- (1H-1,2,4-triazol-1-yl) propan-2-ol (compound ( I): Synthesis of R 2 = 1-chlorocyclopropyl, X 3 = H, X 4 = H, X 5 = Br, n = 1) and preparation of the low polar isomers Potassium carbonate (2.7 mmol) was added to DMF After suspending in (3 ml), sodium t-butoxide (0.36 mmol) and 1,2,4-triazole (compound (II): M = H) (2.7 mmol) were added thereto. To this was added compound (III) (0.0018 mol) dissolved in DMF (3 ml), and the mixture was stirred at 90 ° C. for 2 hours. Ethyl acetate and water were added thereto and partitioned, and the organic layer was washed with saturated brine. The aqueous layer was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated. Purification was performed by silica gel column chromatography, and a low-polar isomer (hereinafter referred to as isomer (1a-1)) was isolated from the two isomers.
[Isomer (1a-1)]
Yield: 9%
(4) 2- (1-chlorocyclopropyl) -1- (2,2-dibromocyclopropyl) -3- (1H-1,2,4-triazol-1-yl) propan-2-ol (-) —Preparation of Enantiomers The isomer (1a-1) was subjected to high performance liquid chromatography (HPLC) connected to a preparative column in which amylose tris (3,5-dimethylphenylcarbamate) was immobilized on a silica gel carrier, and each enantiomer was Was separated.
 具体的な条件は、以下の通りである。
分取カラム:製品名「CHIRALPAK AD-H」、ダイセル化学工業社製
移動相:100%メタノール
カラム温度:40℃
検出波長:210nm
 上記条件下で分離したところ、溶出時間が異なる2つのピークが検出された。それぞれのピークに由来する化合物の比旋光度を測定した結果、最初に溶出された化合物は、右旋性エナンチオマー((+)-エナンチオマー)であり、後に溶出された化合物は、左旋性エナンチオマー((-)-エナンチオマー)であった。以下、当該(+)-エナンチオマーを化合物(1a-1(+))と称し、当該(-)-エナンチオマーを化合物(1a-1(-))と称する。
Specific conditions are as follows.
Preparative column: Product name “CHIRALPAK AD-H”, Daicel Chemical Industries mobile phase: 100% methanol Column temperature: 40 ° C.
Detection wavelength: 210 nm
When separated under the above conditions, two peaks with different elution times were detected. As a result of measuring the specific rotation of the compound derived from each peak, the compound eluted first is the dextrorotatory enantiomer ((+)-enantiomer), and the compound eluted later is the levorotatory enantiomer (( -)-Enantiomer). Hereinafter, the (+)-enantiomer is referred to as compound (1a-1 (+)), and the (−)-enantiomer is referred to as compound (1a-1 (−)).
 比旋光度の測定は、P-1020(日本分光社製、Naランプ:589nm)を用いてそれぞれ20回行った。具体的な測定結果は以下の通りである。
化合物(1a-1(-))の平均比旋光度:
[α] 28=-64.2°(10mlのクロロホルムあたり100mg)
化合物(1a-1(+))の平均比旋光度:
[α] 27=+65.7°(10mlのクロロホルムあたり100mg)
 また、それぞれの性状は以下の通りである。
化合物(1a-1(-)):白色固体、融点86.9℃
化合物(1a-1(+)):白色固体、融点88.4℃
 <製造例2:2-(1-クロロシクロプロピル)-4-(2,2-ジクロロシクロプロピル)-1-(1H-1,2,4-トリアゾール-1-イル)ブタン-2-オールの合成>
 上記反応スキーム2に従って、化合物(XIII)から化合物(IVa)を合成し、さらに、上記反応スキーム1に従って、化合物(IVa)から化合物(I)を合成した。
The specific rotation was measured 20 times using P-1020 (manufactured by JASCO Corporation, Na lamp: 589 nm). Specific measurement results are as follows.
Average specific rotation of compound (1a-1 (−)):
[Α] D 28 = −64.2 ° (100 mg per 10 ml of chloroform)
Average specific rotation of compound (1a-1 (+)):
[Α] D 27 = + 65.7 ° (100 mg per 10 ml of chloroform)
Moreover, each property is as follows.
Compound (1a-1 (−)): white solid, melting point 86.9 ° C.
Compound (1a-1 (+)): white solid, melting point 88.4 ° C.
<Production Example 2: 2- (1-chlorocyclopropyl) -4- (2,2-dichlorocyclopropyl) -1- (1H-1,2,4-triazol-1-yl) butan-2-ol Synthesis>
According to the above reaction scheme 2, compound (IVa) was synthesized from compound (XIII), and according to the above reaction scheme 1, compound (I) was synthesized from compound (IVa).
 (1)3-(1-クロロシクロプロピル)-3-オキソプロピオン酸メチル(化合物(XI):R=1-クロロシクロプロピル、R=Me)の合成
 窒素気流下で、60%水素化ナトリウム(95.0mmol)をヘキサンで洗浄した後、炭酸ジメチル(化合物(XII):R=Me)(80ml)に懸濁し、無水メタノール(0.5ml)を加え、80℃に加温した。この溶液に、1-(1-クロロシクロプロピル)エタノン(化合物(XIII):R=1-クロロシクロプロピル)(86.0mmol)を炭酸ジメチル(化合物(XII):R=Me)(6ml)に溶解した溶液を加え、80℃で3時間撹拌した。放冷後、反応液に酢酸(10ml)を加え、次いで氷水中に注ぎ、有機層を分取した。水層をジエチルエーテルで抽出し、有機層をそれぞれ、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去した後、減圧蒸留により、目的物を得た。
収率:58%
 (2)2-(2-プロペニル)-3-(1-クロロシクロプロピル)-3-オキソプロピオン酸メチル(化合物(IX):R=Me、R=1-クロロシクロプロピル、X=H、X=H、p=1)の合成
 窒素気流下、60%水素化ナトリウム(33.0mmol)をヘキサンで洗浄した後、無水DMF(70ml)に懸濁した。ここに、化合物(XI)(30.0mmol)を無水DMF(15ml)に溶解した溶液を加え、室温で1.5時間撹拌した。撹拌後、アリルブロミド(化合物(X):X=H、X=H、X=Br、p=1)(33.0mmol)を無水DMF(15ml)に溶解した溶液を加え、室温下、3時間撹拌した。反応液を氷水中に注ぎ、ヘキサンで抽出した。有機層を水、および飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、目的物を得た。
収率:98%
 (3)1-(1-クロロシクロプロピル)-4-ペンテン-1-オン(化合物(VIII)、R=1-クロロシクロプロピル、X=H、X=H、p=1)の合成
 化合物(IX)(28.5 mmol)をイソプロパノール(10ml)に溶解した。ここに、水酸化ナトリウム(55.0mmol)を水(11ml)に溶解した溶液を加え、80℃で4.5時間撹拌した。放冷後、反応液を氷水中に注ぎ、ヘキサンで抽出した。有機層を水、および飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、シリカゲルカラムクロマトグラフィーにより精製し、目的物を得た。
収率:67%
 (4)2-(3-ブテニル)-2-(1-クロロシクロプロピル)オキシラン(化合物(IVa):R=1-クロロシクロプロピル、X=H、X=H、p=1)の合成
 窒素気流下、60%水素化ナトリウム(43.7mmol)をヘキサンで洗浄した後、無水DMSO(70ml)に懸濁した。ここに、トリメチルスルホキソニウムブロミド(43.4mmol)を加え、室温で1.5時間撹拌した。攪拌後、化合物(VIII)(31.5mmol)を無水DMSO(30ml)に溶解した溶液を加え、室温でさらに3時間撹拌した。反応液を氷水中に注ぎ、ヘキサンで抽出した。有機層を水、および飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた油状物を減圧蒸留して、目的物を得た。
収率:31%
 (5)2-(1-クロロシクロプロピル)-2-[2-(2,2-ジクロロシクロプロピル)エチル]オキシラン(化合物(III):R=1-クロロシクロプロピル、X=H、X=H、X=Cl、n=2)の合成
 化合物(IVa)(110mmol)と、ベンジルトリエチルアンモニウムクロリド(2.26mmol)とをクロロホルム(63ml)に溶解させた後、水酸化ナトリウム(577mmol)/水(23.5ml)溶液を加え、60℃で2時間撹拌した。反応液を氷水中に注ぎ、クロロホルムで抽出した。有機層を水、および飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、粗生成物を得た。得られた粗生成物を減圧蒸留により精製し、残渣をシリカゲルカラムクロマトグラフィーで精製し、目的物を得た。
収率:71%
 (6)2-(1-クロロシクロプロピル)-4-(2,2-ジクロロシクロプロピル)-1-(1H-1,2,4-トリアゾール-1-イル)ブタン-2-オール(化合物(I):R=1-クロロシクロプロピル、X=H、X=H、X=Cl、n=2)の合成
 窒素気流下、1H-1,2,4-トリアゾール(化合物(II):M=H)(2.06mmol)、炭酸カリウム(1.96mmol)、およびカリウムt-ブトキシド(0.13mmol)をDMF(2ml)に懸濁させた。ここに、化合物(III)(1.54mmol)のDMF(2ml)溶液を加え、70℃で5時間撹拌した。反応液を氷水中に注ぎ、酢酸エチルで抽出した。有機層を水、および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィーに供し、2種の異性体のうちの低極性の異性体(以下、異性体(1a-2)と称する)を粗精製した。粗精製物において、再結晶を行い、異性体(1a-2)を得た。なお、この際に得られる、2種の異性体のうちの高極性の異性体を「異性体(1b-2)」と称する。
[異性体(1a-2)]
収率:8%
[異性体(1b-2)]
収率:11%
 (7)2-(1-クロロシクロプロピル)-4-(2,2-ジクロロシクロプロピル)-1-(1H-1,2,4-トリアゾール-1-イル)ブタン-2-オール(-)-エナンチオマーの調製
 異性体(1a-2)を、セルローストリス(3,5-ジメチルフェニルカルバメート)がシリカゲル担体に固定化された分取カラムをつないだ高速液体クロマトグラフィー(HPLC)に供し、各エナンチオマーの分取分離を行った。
(1) Synthesis of methyl 3- (1-chlorocyclopropyl) -3-oxopropionate (compound (XI): R 2 = 1-chlorocyclopropyl, R 1 = Me) 60% hydrogenation under a nitrogen stream Sodium (95.0 mmol) was washed with hexane, suspended in dimethyl carbonate (compound (XII): R 1 = Me) (80 ml), anhydrous methanol (0.5 ml) was added, and the mixture was heated to 80 ° C. To this solution, 1- (1-chlorocyclopropyl) ethanone (compound (XIII): R 2 = 1-chlorocyclopropyl) (86.0 mmol) was added to dimethyl carbonate (compound (XII): R 1 = Me) (6 ml). The solution dissolved in) was added and stirred at 80 ° C. for 3 hours. After allowing to cool, acetic acid (10 ml) was added to the reaction solution, and then poured into ice water to separate the organic layer. The aqueous layer was extracted with diethyl ether, and the organic layers were washed with water and saturated brine, and then dried over anhydrous sodium sulfate. After evaporating the solvent under reduced pressure, the desired product was obtained by distillation under reduced pressure.
Yield: 58%
(2) Methyl 2- (2-propenyl) -3- (1-chlorocyclopropyl) -3-oxopropionate (Compound (IX): R 1 = Me, R 2 = 1-chlorocyclopropyl, X 3 = Synthesis of H, X 4 = H, p = 1) Under a nitrogen stream, 60% sodium hydride (33.0 mmol) was washed with hexane and then suspended in anhydrous DMF (70 ml). A solution prepared by dissolving compound (XI) (30.0 mmol) in anhydrous DMF (15 ml) was added thereto, followed by stirring at room temperature for 1.5 hours. After stirring, a solution of allyl bromide (compound (X): X 3 = H, X 4 = H, X 7 = Br, p = 1) (33.0 mmol) dissolved in anhydrous DMF (15 ml) was added at room temperature. Stir for 3 hours. The reaction solution was poured into ice water and extracted with hexane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain the desired product.
Yield: 98%
(3) 1- (1-chlorocyclopropyl) -4-penten-1-one (compound (VIII), R 2 = 1-chlorocyclopropyl, X 3 = H, X 4 = H, p = 1) Synthesis Compound (IX) (28.5 mmol) was dissolved in isopropanol (10 ml). A solution obtained by dissolving sodium hydroxide (55.0 mmol) in water (11 ml) was added thereto, followed by stirring at 80 ° C. for 4.5 hours. After allowing to cool, the reaction solution was poured into ice water and extracted with hexane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography to obtain the desired product.
Yield: 67%
(4) 2- (3-Butenyl) -2- (1-chlorocyclopropyl) oxirane (compound (IVa): R 2 = 1-chlorocyclopropyl, X 3 = H, X 4 = H, p = 1) In a nitrogen stream, 60% sodium hydride (43.7 mmol) was washed with hexane and then suspended in anhydrous DMSO (70 ml). Trimethylsulfoxonium bromide (43.4 mmol) was added thereto and stirred at room temperature for 1.5 hours. After stirring, a solution of compound (VIII) (31.5 mmol) dissolved in anhydrous DMSO (30 ml) was added, and the mixture was further stirred at room temperature for 3 hours. The reaction solution was poured into ice water and extracted with hexane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting oil was distilled under reduced pressure to obtain the desired product.
Yield: 31%
(5) 2- (1-chlorocyclopropyl) -2- [2- (2,2-dichlorocyclopropyl) ethyl] oxirane (compound (III): R 2 = 1-chlorocyclopropyl, X 3 = H, Synthesis of X 4 = H, X 5 = Cl, n = 2) Compound (IVa) (110 mmol) and benzyltriethylammonium chloride (2.26 mmol) were dissolved in chloroform (63 ml), and then sodium hydroxide ( 577 mmol) / water (23.5 ml) solution was added, and the mixture was stirred at 60 ° C. for 2 hours. The reaction solution was poured into ice water and extracted with chloroform. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain a crude product. The obtained crude product was purified by distillation under reduced pressure, and the residue was purified by silica gel column chromatography to obtain the desired product.
Yield: 71%
(6) 2- (1-chlorocyclopropyl) -4- (2,2-dichlorocyclopropyl) -1- (1H-1,2,4-triazol-1-yl) butan-2-ol (compound ( I): Synthesis of R 2 = 1-chlorocyclopropyl, X 3 = H, X 4 = H, X 5 = Cl, n = 2) 1H-1,2,4-triazole (compound (II ): M = H) (2.06 mmol), potassium carbonate (1.96 mmol), and potassium t-butoxide (0.13 mmol) were suspended in DMF (2 ml). To this was added a DMF (2 ml) solution of compound (III) (1.54 mmol), and the mixture was stirred at 70 ° C. for 5 hours. The reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was subjected to silica gel column chromatography to obtain a low-polar isomer (hereinafter referred to as isomer (1a-2)) of the two isomers. Purified. The crude product was recrystallized to obtain the isomer (1a-2). Of the two isomers obtained at this time, the highly polar isomer is referred to as “isomer (1b-2)”.
[Isomer (1a-2)]
Yield: 8%
[Isomer (1b-2)]
Yield: 11%
(7) 2- (1-chlorocyclopropyl) -4- (2,2-dichlorocyclopropyl) -1- (1H-1,2,4-triazol-1-yl) butan-2-ol (-) —Preparation of Enantiomers The isomer (1a-2) was subjected to high performance liquid chromatography (HPLC) connected to a preparative column in which cellulose tris (3,5-dimethylphenylcarbamate) was immobilized on a silica gel carrier, and each enantiomer was Was separated.
 具体的な条件は、以下の通りである。
分取カラム:製品名「CHIRALCEL OD-H」、ダイセル化学工業社製
移動相:ヘキサン/エタノール=95/5
カラム温度:40℃
検出波長:205nm
 上記条件下で分離したところ、溶出時間が異なる2つのピークが検出された。それぞれのピークに由来する化合物の比旋光度を測定した結果、最初に溶出された化合物は、右旋性エナンチオマー((+)-エナンチオマー)であり、後に溶出された化合物は、左旋性エナンチオマー((-)-エナンチオマー)であった。以下、当該(+)-エナンチオマーを化合物(1a-2(+))と称し、当該(-)-エナンチオマーを化合物(1a-2(-))と称する。
Specific conditions are as follows.
Preparative column: Product name “CHIRALCEL OD-H”, Daicel Chemical Industries mobile phase: hexane / ethanol = 95/5
Column temperature: 40 ° C
Detection wavelength: 205 nm
When separated under the above conditions, two peaks with different elution times were detected. As a result of measuring the specific rotation of the compound derived from each peak, the compound eluted first is the dextrorotatory enantiomer ((+)-enantiomer), and the compound eluted later is the levorotatory enantiomer (( -)-Enantiomer). Hereinafter, the (+)-enantiomer is referred to as compound (1a-2 (+)), and the (−)-enantiomer is referred to as compound (1a-2 (−)).
 比旋光度の測定は、P-1020(日本分光社製、Naランプ:589nm)を用いて、14回(化合物(1a-2(-)))または26回(化合物(1a-2(+)))行った。具体的な測定結果は以下の通りである。
化合物(1a-2(-))の平均比旋光度:
[α] 22=-42.2°(2mlのクロロホルムあたり20mg)
化合物(1a-2(+))の平均比旋光度:
[α] 22=+41.8°(2mlのクロロホルムあたり20mg)
 また、それぞれの性状は以下の通りである。
化合物(1a-2(-)):白色固体、融点116℃
化合物(1a-2(+)):白色固体、融点115℃
 <製剤例1(水和剤)>
化合物(1a-1(-)) 50 部
リグニンスルホン酸塩    5 部
アルキルスルホン酸塩    3 部
珪藻土          42 部
を粉砕混合して水和剤とし、水で希釈して使用した。
Specific rotation was measured 14 times (compound (1a-2 (−))) or 26 times (compound (1a-2 (+)) using P-1020 (manufactured by JASCO Corporation, Na lamp: 589 nm). ))went. Specific measurement results are as follows.
Average specific rotation of compound (1a-2 (−)):
[Α] D 22 = −42.2 ° (20 mg per 2 ml of chloroform)
Average specific rotation of compound (1a-2 (+)):
[Α] D 22 = + 41.8 ° (20 mg per 2 ml of chloroform)
Moreover, each property is as follows.
Compound (1a-2 (−)): white solid, melting point 116 ° C.
Compound (1a-2 (+)): white solid, melting point 115 ° C.
<Formulation example 1 (wettable powder)>
Compound (1a-1 (-)) 50 parts lignin sulfonate 5 parts alkyl sulfonate 3 parts diatomaceous earth 42 parts were pulverized and mixed to obtain a wettable powder and diluted with water for use.
 <製剤例2(粉剤)>
化合物(1a-1(-)) 3 部
クレー         40 部
タルク         57 部
を粉砕混合し、散粉として使用した。
<Formulation example 2 (powder)>
Compound (1a-1 (-)) 3 parts Clay 40 parts Talc 57 parts were ground and mixed and used as dust.
 <製剤例3(粒剤)>
化合物(1a-1(-)) 5 部
ベンナイト       43 部
クレー         45 部
リグニンスルホン酸塩   7 部
を均一に混合しさらに水を加えて練り合わせ、押し出し式造粒機で粒状に加工乾燥して粒剤とした。
<Formulation example 3 (granule)>
Compound (1a-1 (-)) 5 parts Bennite 43 parts Clay 45 parts Lignin sulfonate 7 parts are mixed uniformly, kneaded with water, processed into granules with an extrusion granulator, dried and granulated did.
 <製剤例4(乳剤)>
化合物(1a-1(-))          20 部
ポリオキシエチレンアルキルアリールエーテル 10 部
ポリオキシエチレンソルビタンモノラウレート  3 部
キシレン                  67 部
を均一に混合溶解して乳剤とした。
<Formulation example 4 (emulsion)>
Compound (1a-1 (-)) 20 parts polyoxyethylene alkyl aryl ether 10 parts polyoxyethylene sorbitan monolaurate 3 parts xylene 67 parts were mixed and dissolved uniformly to give an emulsion.
 <試験例1:茎葉散布処理によるキュウリ灰色かび病防除効果試験>
 角型プラスチックポット(6cm×6cm)を用いて栽培した子葉期のキュウリ(品種:SHARP1)に、製剤例1のような化合物(1a-1(-))または化合物((1a-2(-))の水和剤形態のものを、水で所定濃度に希釈懸濁し、1,000L/haの割合で散布した。散布葉を風乾した後、灰色かび病菌の胞子液をしみこませたペーパーディスク(直径8mm)を乗せ、20℃、高湿度条件下に保った。接種後、4日目にキュウリ灰色かび病の罹病度を表1に示す調査基準により調査して、防除価を下記式により算出した。
防除価(%)=(1-(散布区の平均罹病度/無散布区の平均罹病度))×100
<Test Example 1: Cucumber gray mold control effect test by foliar spray treatment>
To a cotyledon cucumber (variety: SHARP1) cultivated using a square plastic pot (6 cm × 6 cm), the compound (1a-1 (−)) or the compound ((1a-2 (−)) as in Preparation Example 1 ) In the form of a wettable powder was diluted with water to a predetermined concentration and sprayed at a rate of 1,000 L / ha, and the sprayed leaves were air-dried and then a paper disc impregnated with a spore solution of gray mold fungus. 8 mm in diameter) and kept under high humidity conditions at 20 ° C. On the fourth day after inoculation, the morbidity of cucumber gray mold disease was investigated according to the survey criteria shown in Table 1, and the control value was calculated by the following formula: did.
Control value (%) = (1− (average morbidity in sprayed area / average illness in non-sprayed area)) × 100
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 結果を表2および3に示す。なお本試験例および以降の試験例における対照は、化合物(1a-1(-))および化合物(1a-2(-))の代わりに、それぞれ化合物(1a-1(+))および化合物(1a-2(+))を使用した製剤を用いて、各試験を行ったものである。なお、散布区の平均罹病度が無散布区の平均罹病度を上回った場合には、防除価を0%とした。 The results are shown in Tables 2 and 3. In this test example and the subsequent test examples, the compound (1a-1 (+)) and the compound (1a) were used instead of the compound (1a-1 (−)) and the compound (1a-2 (−)), respectively. -(+)) Was used for each test. In addition, when the average morbidity in the sprayed area exceeded the average illness in the non-sprayed area, the control value was set to 0%.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 <試験例2:茎葉散布処理によるコムギ赤さび病防除効果試験>
 角型プラスチックポット(6cm×6cm)を用いて栽培した第2葉期のコムギ(品種:農林61号)に、製剤例1のような化合物(1a-1(-))または化合物(1a-2(-))の水和剤形態のものを、水で所定濃度に希釈懸濁し、1,000L/haの割合で散布した。散布葉を風乾した後、コムギ赤さび病菌の胞子(200個/視野に調整、60ppmとなるようにグラミンSを添加)を噴霧接種し、25℃、高湿度条件下に48時間保った。その後は温室内で管理した。接種後、11日目にコムギ赤さび病の罹病度を表4に示す調査基準により調査して、防除価を下記式により算出した。
防除価(%)=(1-(散布区の平均罹病度/無散布区の平均罹病度))×100
<Test Example 2: Wheat red rust control effect test by foliar spray treatment>
Compound (1a-1 (−)) or compound (1a-2) as in Preparation Example 1 was added to the second leaf wheat (cultivar: Norin 61) grown using a square plastic pot (6 cm × 6 cm). (-)) In the form of a wettable powder was diluted and suspended in water to a predetermined concentration and sprayed at a rate of 1,000 L / ha. The sprayed leaves were air-dried and then spray-inoculated with spores of wheat red rust fungus (adjusted to 200 cells / field of view, added with Grameen S to 60 ppm), and kept at 25 ° C. and high humidity for 48 hours. After that, it was managed in the greenhouse. On the 11th day after the inoculation, the morbidity of wheat rust was investigated according to the survey criteria shown in Table 4, and the control value was calculated by the following formula.
Control value (%) = (1− (average morbidity in sprayed area / average illness in non-sprayed area)) × 100
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
結果を表5および6に示す。 The results are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 <試験例3:茎葉散布処理によるコムギうどんこ病防除効果試験>
 角型プラスチックポット(6cm×6cm)を用いて栽培した第2葉期のコムギ(品種:農林61号)に、製剤例1のような化合物(1a-1(-))または化合物(1a-2(-))の水和剤形態のものを、水で所定濃度に希釈懸濁し、1,000L/haの割合で散布した。散布葉を風乾した後、コムギうどんこ病に感染したコムギ苗から、うどんこ病菌をふりかけ接種した。接種後、11日目にコムギうどんこ病の罹病度を上記した表4に示す調査基準により調査して、試験例2と同様に防除価を算出した。結果を表7および8に示す。
<Test Example 3: Wheat powdery mildew control effect test by foliar spray treatment>
Compound (1a-1 (−)) or compound (1a-2) as in Preparation Example 1 was added to the second leaf wheat (cultivar: Norin 61) grown using a square plastic pot (6 cm × 6 cm). (-)) In the form of a wettable powder was diluted and suspended in water to a predetermined concentration and sprayed at a rate of 1,000 L / ha. After airing the sprayed leaves, wheat seedlings infected with wheat powdery mildew were sprinkled with powdery mildew fungus. On the 11th day after inoculation, the morbidity of wheat powdery mildew was examined according to the survey criteria shown in Table 4 above, and the control value was calculated in the same manner as in Test Example 2. The results are shown in Tables 7 and 8.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 <試験例4:茎葉散布処理によるコムギ赤かび病防除効果試験>
 開花期のコムギ穂部(品種:農林61号)に、製剤例1のような化合物(1a-1(-))または化合物(1a-2(-))の水和剤形態のものを、水で所定濃度に希釈懸濁し、1,000L/haの割合で散布した。穂部を風乾した後、コムギ赤かび病菌の胞子(2×10個/mlに調整、終濃度60ppmのグラミンSを含む)を噴霧接種し、20℃、高湿度条件下に保持した。接種後、5日目にコムギ赤かび病の罹病度を表9に示す調査基準により調査して、防除価を下記式により算出した。
防除価(%)=(1-(散布区の平均罹病度/無散布区の平均罹病度))×100
<Test Example 4: Wheat red mold control effect test by foliar spray treatment>
In a wheat head at the flowering stage (variety: Norin 61), a compound (1a-1 (−)) or a compound (1a-2 (−)) in the form of a wettable powder as in Formulation Example 1 was added to water. The suspension was diluted to a predetermined concentration and sprayed at a rate of 1,000 L / ha. After the head was air-dried, it was spray-inoculated with spores of wheat red mold fungus (adjusted to 2 × 10 5 cells / ml, containing Gramine S having a final concentration of 60 ppm), and kept at 20 ° C. under high humidity conditions. On the 5th day after inoculation, the morbidity of wheat red mold was investigated according to the survey criteria shown in Table 9, and the control value was calculated by the following formula.
Control value (%) = (1− (average morbidity in sprayed area / average illness in non-sprayed area)) × 100
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 結果を表10および11に示す。 Results are shown in Tables 10 and 11.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 <試験例5:種子処理によるコムギ赤さび病の防除効果>
 ポット試験により、種子処理によるコムギ赤さび病の防除効果を評価した。処理量が20g ai/100kg seedsまたは5g ai/100kg seedsとなるようにDMSOに溶解した化合物(1a-1(-))をバイアル内でコムギ種子に塗沫した後、8粒のコムギ種子を80cmポットに播種した。温室内で下部給水管理し、播種27日後にコムギ赤さび病菌を接種し、湿箱に2日間保管した。その後、再び温室内で下部給水管理し、接種8日後に、罹病面積率を調査し、下記式により防除価を算出した。
防除価(%)=(1-(処理区罹病面積率/無処理区罹病面積率))×100
 結果を表12に示す。
<Test Example 5: Effect of controlling wheat red rust by seed treatment>
By pot test, the control effect of wheat red rust caused by seed treatment was evaluated. The compound (1a-1 (−)) dissolved in DMSO so that the treatment amount is 20 g ai / 100 kg seeds or 5 g ai / 100 kg seeds was smeared on the wheat seeds in a vial, and then 8 wheat seeds were 80 cm. 2 pots were seeded. The lower water supply was controlled in a greenhouse, and 27 days after sowing, wheat red rust fungus was inoculated and stored in a wet box for 2 days. Thereafter, the lower water supply was managed again in the greenhouse, and the diseased area ratio was investigated 8 days after the inoculation, and the control value was calculated by the following formula.
Control value (%) = (1− (Affected area ratio of treated area / Affected area ratio of untreated area)) × 100
The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 <試験例6:種子処理によるイネばか苗病の防除効果>
 ポット試験により、種子処理によるイネばか苗病の防除効果を評価した。処理量が5g
 ai/100kg seedsとなるようにDMSOに溶解した化合物(1-1a)をバイアル内でばか苗病に感染したイネ種子に塗沫した後、32粒のイネ種子を50cmポットに播種した。温室内で下部給水管理し、播種21日後に、罹病苗率を調査し、試験例5と同様にして防除価を算出した。
<Test Example 6: Controlling effect of rice seedling disease by seed treatment>
The pot test was used to evaluate the control effect of rice seedling disease by seed treatment. Processing amount is 5g
A compound (1-1a) dissolved in DMSO so as to be ai / 100 kg seeds was smeared on rice seeds infected with scab seedlings in a vial, and then 32 rice seeds were sown in 50 cm 2 pots. The lower water supply was managed in the greenhouse, and the diseased seedling rate was investigated 21 days after sowing, and the control value was calculated in the same manner as in Test Example 5.
 結果を表13に示す。 The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 <試験例7:病原菌に対する抗菌性試験>
 本試験例では、各種植物病原性糸状菌に対する抗菌性を試験した。
<Test Example 7: Antibacterial test against pathogenic bacteria>
In this test example, antibacterial properties against various phytopathogenic fungi were tested.
 化合物(1a-1(-))または化合物(1a-2(-))をジメチルスルホキシドに溶解し、60℃前後のPDA培地(ポテト-デキストロース-アガー培地)に加えた。三角フラスコ内でよく混合した後、シャーレ内に流し固化させて、所定の濃度で化合物(1a-1(-))または化合物(1a-2(-))を含む平板培地を作製した。 Compound (1a-1 (−)) or compound (1a-2 (−)) was dissolved in dimethyl sulfoxide and added to PDA medium (potato-dextrose-aggar medium) at around 60 ° C. After mixing well in an Erlenmeyer flask, it was poured into a petri dish and solidified to prepare a plate medium containing the compound (1a-1 (−)) or compound (1a-2 (−)) at a predetermined concentration.
 一方、予め平板培地上で培養した供試菌を直径4mmのコルクボーラーで打ち抜き,上記の薬剤含有平板培地上に接種した。接種後、各菌の生育適温(例えば、LIST OF CULTURES 1996 microorganisms 10th edition、財団法人発酵研究所等の文献を参照)にて1~14日間培養し、菌の生育を菌そう直径で測定した。薬剤含有平板培地上で得られた菌の生育程度を、薬剤無添加区における菌の生育程度と比較して、下記式により菌糸伸長抑制率を求めた。なお、下記式中、Rは菌糸伸長抑制率(%)、dcは無処理平板上菌そう直径、dtは薬剤処理平板上菌そう直径を示している。
R=100(dc-dt)/dc
 得られた結果を、表14に示す基準にしたがって5段階評価した。抗菌性指数が大きいほど、抗菌性に優れていることを示す。
On the other hand, a test bacterium previously cultured on a plate medium was punched out with a cork borer having a diameter of 4 mm and inoculated on the drug-containing plate medium. After inoculation, each fungus was cultured for 1 to 14 days at a suitable temperature for growth of the fungus (see, for example, LIST OF CULTURES 1996 microorganisms 10th edition, literature from the Institute for Fermentation, etc.), and the growth of the fungus was measured by the fungus diameter. The growth degree of the bacteria obtained on the drug-containing plate medium was compared with the growth degree of the bacteria in the drug-free group, and the mycelial elongation suppression rate was determined by the following formula. In the following formula, R represents the hyphal elongation inhibition rate (%), dc represents the diameter of the fungus on the untreated plate, and dt represents the diameter of the fungus on the drug-treated plate.
R = 100 (dc−dt) / dc
The obtained results were evaluated in five stages according to the criteria shown in Table 14. The larger the antibacterial index, the better the antibacterial property.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 結果を表15および16に示す。 Results are shown in Tables 15 and 16.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 なお、表15または16における菌種の略記はそれぞれ以下の菌種を表している。
P.n:コムギふ枯病(Phaeosphaeria nodorum)
P.h:コムギ眼紋病菌(Pseudocercoporella herpotrichoides)
M.n:コムギ紅色雪腐病菌(Microdochium nivale)
G.g:コムギ立枯れ病菌(Gaeumannomyces graminis)
P.g:オオムギ斑葉病菌(Pyrenophora graminea)
F.g:コムギ赤かび病菌(Fusarium graminearum)
U.n:オオムギ裸黒穂病菌(Ustilago nuda)
P.o:イネいもち病菌(Pyricularia oryzae)
R.s:イネ紋枯病菌(Rhizoctonia solani)
G.f:イネばか苗病菌(Gibberella fujikuroi)
R.o:イネ苗立枯病(リゾプス)(Rhizopus oryzae)
A.m:リンゴ斑点落葉病(Alternaria alternata)
S.s:スクレロチニア(菌核)(Sclerotinia sclerotiorum)
B.c:灰色かび病菌(Botrytis cinerea)
G.c:炭疽病菌(Glomerella cingurata)
F.c:キュウリつる割れ(Fusarim oxysporum f.sp.cucumerinum)
P.i:カンキツ青かび(Penicillium italicum)
C.b:テンサイ褐班病(Cercospora beticola)
R.sec:オオムギ雲形病菌(Rhynchosporium secalis)
S.t:コムギ葉枯れ病菌(Septoria tritici)
In addition, the abbreviation of the microbial species in Table 15 or 16 represents the following microbial species, respectively.
Pn: wheat blight (Phaeosphaeria nodorum)
Ph: Wheat eye spot disease fungus (Pseudocercoporella herpotrichoides)
Mn: Wheat red snow rot fungus (Microdochium nivale)
Gg: Wheat Blight Fungus (Gaeumannomyces graminis)
Pg : Pyrenophora graminea
Fg: Fusarium graminearum
Un: Barley Bare Smut Fungus (Ustilago nuda)
Po: Rice blast fungus (Pyricularia oryzae)
Rs : Rhizoctonia solani
Gf : Gibberella fujikuroi
Ro: Rice seedling blight (Rhizopus oryzae)
Am: Apple spotted leaf disease (Alternaria alternata)
Ss: Sclerotinia sclerotiorum
Bc: Botrytis cinerea
Gc: Glomerella cingurata
Fc: Cucumber vine (Fusarim oxysporum f.sp.cucumerinum)
Pi: Citrus blue mold (Penicillium italicum)
Cb: sugar beet brown spot (Cercospora beticola)
R.sec: Rhynchosporium secalis
St: Wheat leaf blight fungus (Septoria tritici)
 本発明は、茎葉処理および非茎葉処理により植物病害を防除できる防除剤の有効成分として好適に利用することができる。 The present invention can be suitably used as an active ingredient of a control agent capable of controlling plant diseases by foliage treatment and non-foliage treatment.

Claims (7)

  1.  式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、XおよびXの少なくとも一方はハロゲン原子であり、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、mおよびnは0~3を表している。*は、不斉炭素原子を示している。)
    で示されるトリアゾール化合物における2種のジアステレオマーのうち、より低極性のジアステレオマーであり、
     より低極性の上記ジアステレオマーにおけるエナンチオマーのうち、(-)-エナンチオマーである、トリアゾール化合物。
    Formula (I)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (I), X 1 ~ X 4 represents a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 2 are the same atom together, X 1 and At least one of X 2 is a halogen atom, a plurality of X 4 are the same atom, a plurality of X 5 are the same atom, X 4 and X 5 are different atoms, m and n Represents 0 to 3. * represents an asymmetric carbon atom.)
    Of the two diastereomers in the triazole compound represented by the formula:
    Of the enantiomers in the diastereomers having a lower polarity, a triazole compound which is a (−)-enantiomer.
  2.  上記式(I)中、Xはハロゲン原子であり、Xは水素原子であり、mは0である、請求項1に記載のトリアゾール化合物。 The triazole compound according to claim 1, wherein in the formula (I), X 1 is a halogen atom, X 2 is a hydrogen atom, and m is 0.
  3.  上記式(I)中、nは0~2である、請求項1または2に記載のトリアゾール化合物。 The triazole compound according to claim 1 or 2, wherein n is 0 to 2 in the formula (I).
  4.  上記式(I)中、XおよびXは水素原子である、請求項1~3の何れか1項に記載のトリアゾール化合物。 The triazole compound according to any one of claims 1 to 3, wherein in the formula (I), X 3 and X 4 are hydrogen atoms.
  5.  請求項1~4の何れか1項に記載のトリアゾール化合物を有効成分として含有する、植物病害防除剤。 A plant disease control agent comprising the triazole compound according to any one of claims 1 to 4 as an active ingredient.
  6.  請求項5に記載の植物病害防除剤を用いて茎葉処理または非茎葉処理を行う工程を含む、植物病害防除方法。 A plant disease control method comprising a step of performing a foliage treatment or a non-foliage treatment using the plant disease control agent according to claim 5.
  7.  請求項5に記載の植物病害防除剤により処理した、種子。 Seeds treated with the plant disease control agent according to claim 5.
PCT/JP2012/063975 2011-06-03 2012-05-30 Triazole compound and use thereof WO2012165498A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011125814 2011-06-03
JP2011-125814 2011-06-03

Publications (1)

Publication Number Publication Date
WO2012165498A1 true WO2012165498A1 (en) 2012-12-06

Family

ID=47259350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063975 WO2012165498A1 (en) 2011-06-03 2012-05-30 Triazole compound and use thereof

Country Status (1)

Country Link
WO (1) WO2012165498A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998061A (en) * 1982-10-28 1984-06-06 サンド・アクチエンゲゼルシヤフト Novel azole compound
JPS61126049A (en) * 1984-11-02 1986-06-13 バイエル・アクチエンゲゼルシヤフト Substituted azolylmethylcyclopropylcarbinol derivative
JPH01250356A (en) * 1987-09-25 1989-10-05 Bayer Ag Fungicide
JPH02286664A (en) * 1989-03-25 1990-11-26 Basf Ag Azolylethylcyclopropane and bactericide containing said compound
JPH04230270A (en) * 1990-06-13 1992-08-19 Bayer Ag Azolylpropanol derivative
WO2011070742A1 (en) * 2009-12-08 2011-06-16 Kureha Corporation Azole derivatives and methods for producing the same, intermediate compounds for the derivatives and methods for producing the same, and agro-horticultural agents and industrial material protecting agents containing the derivatives

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998061A (en) * 1982-10-28 1984-06-06 サンド・アクチエンゲゼルシヤフト Novel azole compound
JPS61126049A (en) * 1984-11-02 1986-06-13 バイエル・アクチエンゲゼルシヤフト Substituted azolylmethylcyclopropylcarbinol derivative
JPH01250356A (en) * 1987-09-25 1989-10-05 Bayer Ag Fungicide
JPH02286664A (en) * 1989-03-25 1990-11-26 Basf Ag Azolylethylcyclopropane and bactericide containing said compound
JPH04230270A (en) * 1990-06-13 1992-08-19 Bayer Ag Azolylpropanol derivative
WO2011070742A1 (en) * 2009-12-08 2011-06-16 Kureha Corporation Azole derivatives and methods for producing the same, intermediate compounds for the derivatives and methods for producing the same, and agro-horticultural agents and industrial material protecting agents containing the derivatives

Similar Documents

Publication Publication Date Title
JP5886847B2 (en) Azole derivatives, process for producing the same, intermediate compounds, agricultural and horticultural chemicals and industrial material protecting agents
JP5831990B2 (en) Azole derivatives and methods for producing the same, intermediate compounds of the derivatives, and agricultural and horticultural agents
JP5881733B2 (en) Azole derivatives and uses thereof
JP2012501294A (en) 5-Benzyl-4-azolylmethyl-4-spiro [2.4] heptanol derivative, process for producing the same, agricultural and horticultural chemicals and industrial material protective agents
JP2013512857A (en) Azole derivatives and methods for producing the same, intermediate compounds of the derivatives and methods for producing the same, and agricultural and horticultural agents and industrial material protecting agents containing the derivatives
JP5826839B2 (en) Azole derivatives, methods for producing azole derivatives, and intermediate compounds
JP5858999B2 (en) Agricultural and horticultural agents, plant disease control compositions, plant disease control methods, and plant disease control products
WO2010074021A1 (en) Substituted 1-(1-chlorocylcopropyl)-2-(1h-1,2,4-triazol-1-yl)-2-propen-1-ol derivative, method for producing same and agricultural/horticultural chemical and industrial material-protecting agent comprising same
JP2012219019A (en) Hydroxyisoxazole derivative, and fungicide containing the same
JP5859000B2 (en) Method for producing oxetane compound, method for producing azolylmethylcyclopentanol compound, and intermediate compound
WO2012169522A1 (en) Agricultural or horticultural chemical agent, method for controlling plant disease, and product for controlling plant disease
JP2013100238A (en) Triazole derivative, intermediate compound, method for producing triazole derivative, agricultural and horticultural chemical, and industrial material protective agent
WO2012165498A1 (en) Triazole compound and use thereof
WO2012165499A1 (en) Triazole compound and use thereof
JP2012250942A (en) Forage disease controlling agent and method for controlling plant disease
WO2014024897A1 (en) Thiazolidinedione and pyrrolidinedione derivatives, and germicide having same as active ingredients thereof
WO2013047308A1 (en) Azole derivative, agricultural/horticultural chemical, industrial material protecting agent, method for controlling plant disease, and seed
JP2012250961A (en) Azole derivative, its production method therefor, intermediate compound of the derivative, and agricultural or horticultural chemical and industrial material protectant containing the derivative
JP2016033127A (en) Agent for agricultural and horticultural uses
WO2013084770A1 (en) Azole derivative, method for producing azole derivative, intermediate compound, drug for agricultural and horticultural applications, and industrial material protectant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP