WO2012169370A1 - Antenna device, and electronic device - Google Patents

Antenna device, and electronic device Download PDF

Info

Publication number
WO2012169370A1
WO2012169370A1 PCT/JP2012/063437 JP2012063437W WO2012169370A1 WO 2012169370 A1 WO2012169370 A1 WO 2012169370A1 JP 2012063437 W JP2012063437 W JP 2012063437W WO 2012169370 A1 WO2012169370 A1 WO 2012169370A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground conductor
radiation
antenna device
radiation electrode
antenna
Prior art date
Application number
PCT/JP2012/063437
Other languages
French (fr)
Japanese (ja)
Inventor
尾仲健吾
田中宏弥
櫛比裕一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201280023770.7A priority Critical patent/CN103548039B/en
Priority to JP2013519440A priority patent/JP5700122B2/en
Publication of WO2012169370A1 publication Critical patent/WO2012169370A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07786Antenna details the antenna being of the HF type, such as a dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements
    • H01Q9/24Shunt feed arrangements to single active elements, e.g. for delta matching

Definitions

  • the present invention relates to an antenna device and an electronic device including the antenna device, and more particularly to an antenna device and an electronic device used for wireless communication in a plurality of frequency bands.
  • Patent Document 1 discloses an antenna device in which two radiating electrodes are formed on a base and one feeding line is branched into two to feed each radiating element in order to increase the bandwidth or frequency bands. Is disclosed.
  • the antenna device of Patent Document 1 can operate in a plurality of frequency bands, but when the resonance frequencies of the two radiating elements are close, in the frequency band where the two frequency bands overlap, the two radiating elements become a continuous line. Resonant operation at 1/2 wavelength. Therefore, the antenna operation is completed at 1/2 wavelength, the equivalent antenna volume is reduced, and the antenna performance (particularly radiation efficiency) is deteriorated. In addition, since design and directivity control including the current flowing in the ground conductor are not considered, for example, it is easily affected by hand fog and noise when applied to a mobile phone.
  • the antenna device of Patent Document 2 operates in a single frequency band and does not support a plurality of frequency bands.
  • an object of the present invention is to provide an antenna device that has high radiation efficiency and operates in a plurality of frequency bands, and an electronic device including the antenna device.
  • An antenna device of the present invention includes a substrate on which a ground conductor is formed, A ground conductor non-formation region provided along a part of the outer edge of the ground conductor; A plurality of capacitance elements, a plurality of radiation electrodes, and a single or a plurality of capacitance elements, which are connected to both ends of the ground conductor non-formation region along the outer edge of the ground conductor and are disposed so as to straddle the ground conductor non-formation region A series circuit including a ground conductor of A transmission line branched to a feeder line having a first end connected to the feeder circuit and a second end connected to the plurality of radiation electrodes; Two radiation electrodes are connected to the ground conductor in the ground conductor non-forming region, and the capacitance element is connected between the radiation electrode and the radiation electrode, The point branched to the feed line is inside the two outer points of the connection points of the feed lines to the plurality of radiation electrodes.
  • the region (antenna occupied volume) from each radiation electrode to the inner peripheral edge of the ground conductor non-formation region and the capacitance element is configured to be smaller as the radiation frequency is higher. It is preferable.
  • the radiation electrode having a higher operating frequency is preferably disposed closer to the branch point of the transmission line.
  • An electronic device of the present invention includes a metal cavity partially formed with an insulator or dielectric slot, and an antenna device is disposed at a position for exciting the slot inside the metal cavity.
  • the antenna device is A substrate on which a ground conductor is formed; A ground conductor non-formation region provided along a part of the outer edge of the ground conductor; A plurality of capacitance elements, a plurality of radiation electrodes, and a single or a plurality of capacitance elements, which are connected to both ends of the ground conductor non-formation region along the outer edge of the ground conductor and are disposed so as to straddle the ground conductor non-formation region
  • a series circuit including a ground conductor of A transmission line branched to a feeder line having a first end connected to the feeder circuit and a second end connected to the plurality of radiation electrodes; Two radiation electrodes are connected to the ground conductor in the ground conductor non-forming region, and the capacitance element is connected between the radiation electrode and the radiation electrode, The point branched to the feed
  • the slot is preferably filled with a dielectric having a dielectric constant higher than that of air.
  • an antenna device having high radiation efficiency and operating in a plurality of frequency bands and an electronic device including the antenna device can be obtained.
  • FIG. 1A is a plan view of the antenna device 101 according to the first embodiment.
  • FIG. 1B is a rear view thereof.
  • FIG. 2 is an equivalent circuit diagram of the antenna device 101.
  • 3A and 3B are configuration diagrams of the two antenna devices when the antenna device 101 shown in FIG. 1 is separated into two antenna devices for a single frequency band.
  • FIG. 4 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 101 and the antenna device for a single frequency band as viewed from the power feeding circuit.
  • FIG. 5 is a diagram showing the directivity of the antenna device 101 and the antenna device for a single frequency band.
  • FIG. 6 is a plan view of the antenna device 102 according to the second embodiment.
  • FIG. 1A is a plan view of the antenna device 101 according to the first embodiment.
  • FIG. 1B is a rear view thereof.
  • FIG. 2 is an equivalent circuit diagram of the antenna device 101.
  • 3A and 3B are configuration diagrams of the two antenna devices when the antenna
  • FIG. 7 is a diagram illustrating the frequency characteristics of the return loss (S11) of the antenna device 102 and the antenna device for a single frequency band as viewed from the power feeding circuit.
  • FIG. 8 is a plan view of the antenna device 103 according to the third embodiment.
  • FIG. 9 is a diagram showing an example of the antenna occupied volume near the three radiation electrodes.
  • FIG. 10 is a plan view of a circuit board including the antenna device 104 of the fourth embodiment.
  • FIG. 11 is an external perspective view of an electronic apparatus 201 according to the fifth embodiment.
  • FIG. 12 is a plan view of the antenna device 106 according to the sixth embodiment.
  • 13A and 13B are diagrams showing the current intensity distribution of the antenna device 106.
  • FIG. FIG. 13A shows a state at 1.575 GHz
  • FIG. 13B shows a state at 1.6 GHz.
  • FIG. 14A is a diagram showing the frequency characteristics of the return loss (S11) seen from the power feeding circuit of the antenna device 106
  • FIG. 14B is a Smith chart showing the impedance seen from the power feeding circuit over a predetermined frequency range.
  • FIG. 15 is a diagram showing the efficiency of the antenna device 106.
  • FIG. 16 is a diagram showing the directivity of the antenna device 106.
  • FIG. 1A is a plan view of the antenna device 101 according to the first embodiment.
  • FIG. 1B is a rear view thereof.
  • the antenna device 101 includes a substrate 10.
  • the ground conductors 11 and 11F are formed on the first surface of the substrate 10, and the ground conductor 12 is formed on the second surface.
  • the ground conductors 11, 11F and 12 are connected via a plurality of via conductors (through holes).
  • the ground conductor 11 on the first surface has a rectangular shape, and has a first side S1 having a long side and a second side S2 facing the first side S1.
  • a ground conductor non-formation region 8 is provided along the first side S1 of the ground conductor 11 at other positions (center position) excluding both ends of the first side S1.
  • the ground conductor non-forming region 8 has an inner side S3 parallel to the first side S1.
  • the ground conductor 12 on the second surface is formed at a position facing the ground conductors 11 and 11F on the first surface. Accordingly, the ground conductor non-forming region 9 is also formed at a position facing the ground conductor non-forming region 8 on the first surface. However, a ground conductor is formed at a position opposite to power supply lines 16A and 16B described later.
  • a series circuit including the radiation electrode 13 and the capacitance element C1 is connected between the first end in the direction along the first side S1 of the ground conductor non-forming region 8 and the ground conductor 11F.
  • a series circuit including the radiation electrode 14 and the capacitance element C2 is connected between the second end of the ground conductor non-forming region 8 and the ground conductor 11F. That is, the two series circuits are arranged so as to straddle the ground conductor non-forming region 8 with the ground conductor 11F as a stepping stone.
  • the radiation electrode 13 is, for example, a radiation electrode for 5 GHz band
  • the radiation electrode 14 is, for example, a radiation electrode for 2.4 GHz band.
  • the capacitance element C1 constitutes a gap capacity between the radiation electrode 13 and the radiation electrode 13
  • the capacitance element C2 constitutes a gap capacity between the radiation electrode 14 and the radiation electrode 14.
  • the substrate 10 is formed with a transmission line 16 branched into power supply lines 16A and 16B having a first end connected to the power supply circuit and a second end connected to the radiation electrodes 13 and 14.
  • the feed line 16A is connected between the capacitance element C1 of the radiation electrode 13 and the ground conductor 11F
  • the feed line 16B is connected between the capacitance element C2 of the radiation electrode 14 and the ground conductor 11F.
  • the transmission line 16 and the ground conductor 11 constitute a coplanar line.
  • a microstrip line is configured by a part of the feeder lines 16A and 16B and the ground conductor on the second surface (back surface) of the substrate 10.
  • the branch point BP is inside the connection point of the feeder lines 16A and 16B to the radiation electrodes 13 and 14.
  • the branch point BP is at or near the center of the formation region of the radiation electrodes 13 and 14 in the ground conductor non-formation region 8.
  • the feeder lines 16A and 16B are both connected to a position near the ground conductor 11F. With this configuration, the distance from the feeding circuit to the feeding point to the radiation electrode can be shortened, and transmission loss can be suppressed.
  • the first end of the transmission line 16 is simply represented by a circular terminal.
  • a power feeding circuit is connected to this terminal.
  • FIG. 2 is an equivalent circuit diagram of the antenna device 101.
  • a series circuit including the radiation electrode 13 is connected between the first end of the ground conductor non-forming region 8 and the ground conductor 11F, and the second end of the ground conductor non-forming region 8 and the ground conductor 11F are connected.
  • a series circuit including the radiating electrode 14 is connected between the radiating electrode 13 and the radiating electrode 13 (position near the first end of the ground conductor 11F) and the radiating electrode 14 (position near the second end of the ground conductor 11F). This is a circuit configured as described above.
  • the radiation electrode 13 When the signal fed to the radiation electrodes 13 and 14 is a 5 GHz band signal, the radiation electrode 13 resonates. That is, the radiation electrode 13 functions as a radiation electrode in the 5 GHz band.
  • the signal fed to the radiation electrodes 13 and 14 is a 2.4 GHz band signal, the radiation electrode 14 resonates. That is, the radiation electrode 14 acts as a radiation electrode in the 2.4 GHz band.
  • a current similar to that of a dipole antenna (like a dipole antenna) is induced in the ground conductors 11 and 12.
  • the arrow in FIG. 2 represents the current.
  • a similar current flows through the ground conductor 12 on the second surface connected to the first surface by the via conductor.
  • FIG. 3 is a configuration diagram of the two antenna devices when the antenna device 101 shown in FIG. 1 is separated into two antenna devices for a single frequency band.
  • 3A shows an antenna device for the 5 GHz band
  • FIG. 3B shows an antenna device for the 2.4 GHz band.
  • the antenna device 101 according to the first embodiment of the present invention shown in FIG. 1 is equivalently equivalent to an integrated antenna for a 5 GHz band and an antenna for a 2.4 GHz band.
  • FIG. 4 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 101 and the antenna device for the single frequency band as viewed from the power feeding circuit. 4, (1) is the characteristic of the antenna for 5 GHz band shown in FIG. 3 (A), (2) is the characteristic of the antenna for 2.4 GHz band shown in FIG. 3 (B), and (3) is FIG. This is the characteristic of the antenna device 101 of the first embodiment shown in FIG.
  • each part is as follows.
  • Substrate 10 size 41 mm ⁇ 10 mm ⁇ 1.2 mm
  • Size of ground conductor non-formation regions 8 and 9 Region for 5 GHz band 3.75 mm ⁇ 4.5 mm 2.4 GHz band area: 6.75 mm x 4.5 mm
  • FIG. 4 matching is achieved in both the 5 GHz band and the 2.4 GHz band. It can be seen that a bandwidth equal to or greater than that of a single frequency antenna is obtained.
  • FIG. 5 is a diagram showing the directivity of the antenna device 101 and the antenna device for the single frequency band.
  • the direction of FIG. 5 corresponds to the direction of FIG. FIG. 5A shows the characteristics at 5 GHz
  • FIG. 5B shows the characteristics at 2.4 GHz.
  • the directivity of the antenna device 101 and the directivity of the single-frequency antenna device are almost the same, and are overlapped in FIGS. 5 (A) and 5 (B).
  • FIGS. 5 (A) and 5 (B) show that the same characteristics as those of the single-frequency antenna are obtained with respect to directivity.
  • the current flows in the same phase to the radiation electrode for each frequency band so as to exceed the ground conductor 11F, so that in any frequency band, the 0 ° direction (the ground conductor of the ground conductor 11 is not formed). Strong directivity is shown in the side where the region 8 is formed (the direction of the first side S1).
  • the radiation efficiency of the antenna is the same as that of a single frequency antenna. It can be seen that the characteristics can be obtained.
  • antenna performance such as return loss characteristics, directivity, and radiation efficiency can be achieved in a single frequency band. It is equivalent to an antenna device.
  • FIG. 6 is a plan view of the antenna device 102 according to the second embodiment.
  • the antenna device 102 includes a substrate 10, a ground conductor 11 is formed on the first surface of the substrate 10, and a ground conductor is formed on the second surface.
  • a series circuit including radiation electrodes 14 and 15, capacitance elements C2 and C3, and a ground conductor 11F is connected to both ends of the ground conductor non-formation region 8 in the direction along the first side S1. That is, the series circuit is arranged so as to straddle the ground conductor non-forming region 8.
  • the radiation electrode 14 is a radiation electrode for 2.4 GHz band
  • the radiation electrode 15 is a radiation electrode for GPS (1.5 GHz band).
  • the capacitance element C2 constitutes a gap capacitance between the radiation electrode 14 and the radiation electrode 14
  • the capacitance element C3 constitutes a gap capacitance between the radiation electrode 15 and the radiation electrode 15.
  • the sizes of the radiation electrodes 14 and 15 are determined according to the frequency band, they are different from the radiation electrodes 13 and 14 shown in FIG. 1A, but the overall basic configuration is the first embodiment. This is the same as the antenna device shown in FIG.
  • FIG. 7 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 102 and the antenna device for the single frequency band as viewed from the power feeding circuit. 7, (1) is the characteristics of the 2.4 GHz band antenna shown in FIG. 6, (2) is the characteristics of the GPS (1.5 GHz band) antenna, and (3) is the second characteristic shown in FIG. It is the characteristic of the antenna apparatus 102 of embodiment.
  • each part is as follows.
  • Substrate 10 size 41 mm ⁇ 10 mm ⁇ 1.2 mm Size of the ground conductor non-forming area 2.4 GHz band area: 6.75 mm ⁇ 4.5 mm Area for 1.5 GHz band: 9.00 mm ⁇ 4.5 mm
  • the return loss is small in both the 2.4 GHz band and the 1.5 GHz band. It can be seen that an equivalent bandwidth is obtained even when compared with a single-frequency antenna.
  • FIG. 8 is a plan view of the antenna device 103 according to the third embodiment.
  • the antenna device 103 includes a substrate 10, a ground conductor 11 is formed on the first surface of the substrate 10, and a ground conductor is formed on the second surface.
  • a series circuit including the radiation electrodes 13, 14, 15 and the capacitance elements C1, C2, C3 and the ground conductors 11F1, 11F2 is connected to both ends in the direction along the first side S1 of the ground conductor non-formation region 8. . That is, the series circuit is arranged so as to straddle the ground conductor non-forming region 8.
  • the radiation electrode 13 is a radiation electrode for 5 GHz band
  • the radiation electrode 14 is a radiation electrode for 2.4 GHz band
  • the radiation electrode 15 is a radiation electrode for GPS (1.5 GHz band).
  • the capacitance element C1 constitutes a gap capacitance between the radiation electrode 13 and the radiation electrode 13
  • the capacitance element C2 constitutes a gap capacitance between the radiation electrode 14 and the radiation electrode 14
  • the capacitance element C3 corresponds to the radiation electrode 15.
  • a gap capacitance with the radiation electrode 15 is formed.
  • the branch point BP of the transmission line 16 is inside the two outer points (connection points of the feed lines 16B, 16C) among the connection points of the feed lines 16A, 16B, 16C to the radiation electrodes 13, 14, 15. Further, the branch point BP is at or near the center of the formation area of the radiation electrodes 13, 14, 15 in the ground conductor non-formation area 8.
  • the size of the radiation electrodes 13, 14, 15 is determined according to the frequency band.
  • the substrate 10 is formed with a transmission line 16 that is branched into power supply lines 16A, 16B, and 16C having a first end connected to the power supply circuit and a second end connected to the radiation electrodes 13, 14, and 15.
  • the transmission line 16 and the ground conductor 11 constitute a coplanar line.
  • a microstrip line is configured by the power supply lines 16A, 16B, and 16C and the ground conductor on the second surface (back surface) of the substrate 10.
  • FIG. 9 is a diagram showing an example of the antenna occupied volume near the three radiation electrodes.
  • 9A shows a 5 GHz antenna occupied volume OV1 due to the radiation electrode 13
  • FIG. 9B shows a 2.4 GHz antenna occupied volume OV2 due to the radiation electrode 14, and
  • Each represents an antenna occupied volume OV3 of .5 GHz.
  • These antenna-occupied volumes are regions from the radiation electrodes 13, 14, 15 to the inner side S3 of the ground conductor non-formation region 8 and the capacitance element.
  • the antenna occupation volume is formed smaller as the radiation electrode has a higher operating frequency.
  • a plurality of antennas can be efficiently incorporated within a limited substrate area without waste. Therefore, the antenna device can be downsized.
  • the antenna unit that operates at a high frequency can only be seen as a notch in a relatively small ground conductor. In other words, it is a notch in the ground conductor that has no effect at low frequencies. Therefore, the antenna unit that operates at a low frequency is hardly affected by the antenna unit that operates at a high frequency. Conversely, for an antenna unit that operates at a high frequency, the antenna unit that operates at a low frequency appears to have a low impedance because the capacitance (gap capacitance) of the capacitance element is sufficiently large. In other words, it acts as an equivalent ground conductor.
  • the radiation electrode having a higher operating frequency is disposed closer to the branch point BP of the feeder line.
  • the radiation electrode 13 for 5 GHz is arranged at the position closest to the branch point BP
  • the radiation electrode 14 for 2.4 GHz band is arranged at the next distant position, and at the most distant position.
  • a radiation electrode 15 for 1.5 GHz band is disposed.
  • the frequency is higher, transmission loss is more likely to occur, and the characteristic impedance is likely to vary depending on the length of the transmission line. Therefore, the higher the frequency of the radiation electrode is, the closer to the branch point BP of the feeder line, the more suitable impedance matching and the lower the loss.
  • FIG. 10 is a plan view of a circuit board including the antenna device 104 of the fourth embodiment.
  • This circuit board is obtained by mounting various conductor patterns and various elements on a parent substrate 40.
  • the ground conductor 11 of the antenna device 104 has a first side S1 and a second side S2 facing the first side S1.
  • the ground conductor 11 is formed along a part of the outer edge of the parent substrate 40.
  • a main ground conductor 41 is formed on the parent substrate 40, and a ground conductor isolation region 42 is provided between the main ground conductor 41 and the ground conductor 11.
  • a part of the ground conductor 11 is connected to the main ground conductor 41 via the ground connection portion CS.
  • the configuration of the antenna device 104 is the same as that shown in FIG. 8 in the third embodiment.
  • a high frequency module 34 which is a power feeding circuit for the antenna device is mounted on the parent substrate 40.
  • the high-frequency module 34 and the antenna device 104 are connected by a feeder line 16.
  • the feeder line 16 and the ground conductors 11 and 41 constitute a coplanar line.
  • the ground conductor 11 is separated from the main ground conductor 41 of the parent substrate 40 except for the ground conductor of the transmission line portion, the influence of noise generated in the parent substrate 40 is reduced. Therefore, the versatility as an antenna device of the type incorporated in the parent substrate is also high.
  • the inner side S3 of the ground conductor non-forming region 8 is parallel to the first side S1 is shown.
  • the relationship between the sides S1 and S3 is accurate. It does not need to be parallel and may be substantially parallel.
  • a series circuit including a plurality of capacitance elements, a plurality of radiation electrodes, and a single or a plurality of ground conductors can be arranged in the ground conductor non-forming region 8, and dipoles are connected to the ground conductors 11 and 12. Any structure that induces a current similar to that of an antenna (like a dipole antenna) may be used.
  • FIG. 11 is an external perspective view of an electronic apparatus 201 according to the fifth embodiment.
  • the electronic apparatus 201 includes an antenna device 103 together with a substrate on which various circuits are configured inside a metal casing 50.
  • a slot 51 that is excited by the antenna device 103 is provided in a part of the housing 50.
  • an opening formed over the upper and lower surfaces and side surfaces of the housing 50 is filled with resin.
  • the antenna device 103 inside the housing is arranged at a position where the ground conductor non-forming portion of the antenna device 103 faces the outside of the housing 50 through the slot 51.
  • each radiation electrode of the antenna device 103 Since the direction in which each radiation electrode of the antenna device 103 extends is the gap direction of the slot 51, the electric field generated by the current flowing through the radiation electrode is applied in the gap width direction of the slot 51, and the slot 51 is excited. As a result, even if the gap of the slot 51 is smaller than the overall size of the housing 50, the slot 51 can radiate efficiently.
  • the gap and length of the slot 51 may be determined so that the slot 51 acts as a slot antenna with good radiation efficiency.
  • the resin filled in the slot is an insulator.
  • the dielectric has a dielectric constant higher than that of air (relative permittivity of 1 or more), the wavelength is shortened, so that the radio wave can be efficiently transmitted even in a smaller slot. Can radiate.
  • FIG. 12 is a plan view of the antenna device 106 according to the sixth embodiment. Unlike the antenna device shown in FIG. 1 in the first embodiment, this example is an example of an antenna device used for two relatively close frequencies.
  • the basic configuration is the same as that shown in FIG. 1, but the dimensions of the radiation electrodes 13 and 14 differ depending on the applied frequency. Further, the capacitances of the capacitance elements C1 and C2 are determined as necessary. More specifically, the radiation electrode 13 and the capacitance element C1 are used for GLONASS (Global Navigation Satellite System) signal reception, and the radiation electrode 13 and the capacitance element C1 are used for GPS (Global positioning system) signal reception.
  • GLONASS Global Navigation Satellite System
  • FIG. 13A and 13B are diagrams showing the current intensity distribution of the antenna device 106.
  • FIG. FIG. 13A shows a state at 1.575 GHz
  • FIG. 13B shows a state at 1.6 GHz.
  • the higher the current intensity the higher the concentration.
  • the inner periphery of the radiation electrode 14 and the ground conductor non-forming region on the radiation electrode 14 side contributes to radiation.
  • the radiation electrode 13, the inner periphery of the ground conductor non-forming region on the radiation electrode 13 side, and the radiation electrode 14 contribute to radiation.
  • FIG. 14A is a diagram showing the frequency characteristics of the return loss (S11) seen from the power feeding circuit of the antenna device 106
  • FIG. 14B is a Smith chart showing the impedance seen from the power feeding circuit over a predetermined frequency range.
  • the mark M01 indicates the impedance at 1.575 GHz
  • the mark M02 indicates 1.597 GHz
  • the mark M03 indicates the impedance at 1.606 GHz.
  • FIG. 15 is a diagram showing the efficiency of the antenna device 106.
  • curve R is the radiation efficiency
  • curve T is the total antenna efficiency.
  • an efficiency of 3.0-3.0 dB or higher is obtained in the band including 1.58 GHz to 1.6 GHz band.
  • FIG. 16 is a diagram showing the directivity of the antenna device 106.
  • A is the directivity at 1.575 GHz and B is the directivity at 1.6 GHz. In this way, it is directed in all directions at any frequency, and a higher gain can be obtained particularly in the y-axis direction (the direction in which the radiation electrodes 13 and 14 shown in FIG. 12 extend).
  • the shape of the ground conductor non-formation region is not limited to a rectangle. That is, the ground conductor non-forming region may be provided along a part of the outer edge of the ground conductor, and the shape of the side (S2) facing the outer edge of the ground conductor is arbitrary. For example, a semicircular shape or a step shape may be used.

Abstract

In the present invention, ground conductors (11, 11F) are formed on a first surface of a substrate (10), and a ground conductor (12) is formed on a second surface of the substrate (10). A ground conductor non-forming region (8) is provided along a first side (S1), which is a part of the outer edge of the ground conductor (11). A series circuit is connected to both ends of the ground conductor non-forming region (8) in a direction along the first side (S1), the series circuit contains emission electrodes (13, 14), capacitance elements (C1, C2), and the ground conductor (11F). As an example, the emission electrodes (13) are emission electrodes for a 5 GHz band, and the emission electrodes (14) are emission electrodes for a 2.4 GHz band. The capacitance element (C1) creates a gap capacitance between the emission electrode (13) and the emission electrode (13), and the capacitance element (C2) creates a gap capacitance between the emission electrode (14) and the emission electrode (14).

Description

アンテナ装置および電子機器ANTENNA DEVICE AND ELECTRONIC DEVICE
 本発明はアンテナ装置およびアンテナ装置を備えた電子機器に関し、特に複数の周波数帯域での無線通信等に用いられるアンテナ装置および電子機器に関する。 The present invention relates to an antenna device and an electronic device including the antenna device, and more particularly to an antenna device and an electronic device used for wireless communication in a plurality of frequency bands.
 広帯域化または周波数帯域の複数化を図るために、基体に二つの放射電極を形成し、一つの給電線を2つに分岐させて各々の放射素子に給電するようにしたアンテナ装置が特許文献1に開示されている。 Patent Document 1 discloses an antenna device in which two radiating electrodes are formed on a base and one feeding line is branched into two to feed each radiating element in order to increase the bandwidth or frequency bands. Is disclosed.
 また、直方体状のチップアンテナで、天面に間隙を挟んで均等に二つの放射電極が設けられ、二つの放射電極がグランド導体に接続され、一方の放射電極に電磁界的に給電電極が結合されるようにしたアンテナ装置が特許文献2に開示されている。 In addition, it is a rectangular parallelepiped chip antenna, two radiation electrodes are evenly provided on the top surface with a gap between them, the two radiation electrodes are connected to the ground conductor, and the feed electrode is electromagnetically coupled to one radiation electrode An antenna device configured as described above is disclosed in Patent Document 2.
特開平11-4113号公報Japanese Patent Laid-Open No. 11-4113 国際公開第2006/000631号パンフレットInternational Publication No. 2006/000631 Pamphlet
 特許文献1のアンテナ装置においては、複数の周波数帯域で動作できるが、二つの放射素子の共振周波数が近いと、二つの周波数帯域が重なる周波数帯域では、二つの放射素子が連続する線路となって1/2波長で共振動作してしまう。そのため、1/2波長でアンテナ動作が完結してしまい、等価的なアンテナ体積が小さくなって、アンテナ性能(特に放射効率)が劣化する。また、グランド導体に流れる電流を含めた設計および指向性制御について考慮されていないため、例えば携帯電話に適用した場合の手のかぶりやノイズの影響を受けやすい。 The antenna device of Patent Document 1 can operate in a plurality of frequency bands, but when the resonance frequencies of the two radiating elements are close, in the frequency band where the two frequency bands overlap, the two radiating elements become a continuous line. Resonant operation at 1/2 wavelength. Therefore, the antenna operation is completed at 1/2 wavelength, the equivalent antenna volume is reduced, and the antenna performance (particularly radiation efficiency) is deteriorated. In addition, since design and directivity control including the current flowing in the ground conductor are not considered, for example, it is easily affected by hand fog and noise when applied to a mobile phone.
 特許文献2のアンテナ装置は、単一の周波数帯域で動作するものであって、複数の周波数帯域には対応しない。 The antenna device of Patent Document 2 operates in a single frequency band and does not support a plurality of frequency bands.
 そこで、本発明は、放射効率が高くて且つ複数の周波数帯域で動作するアンテナ装置およびそれを備えた電子機器を提供することを目的としている。 Therefore, an object of the present invention is to provide an antenna device that has high radiation efficiency and operates in a plurality of frequency bands, and an electronic device including the antenna device.
(1)本発明のアンテナ装置は、グランド導体が形成された基板と、
 前記グランド導体の外縁の一部に沿って設けられたグランド導体非形成領域と、
 前記グランド導体非形成領域の前記グランド導体の外縁に沿った方向の両端に接続され、前記グランド導体非形成領域を跨ぐように配置された、複数のキャパシタンス素子、複数の放射電極および単一または複数のグランド導体を含む直列回路と、
 第1端が給電回路に接続され、第2端が前記複数の放射電極に接続される給電線に分岐された伝送線路と、を備え、
 前記グランド導体非形成領域内の前記グランド導体に二つの前記放射電極が接続され、前記キャパシタンス素子は前記放射電極と放射電極との間に接続され、
 前記給電線に分岐される点は、前記複数の放射電極への前記給電線の接続点のうち外側の二点より内側にあることを特徴とする。
(1) An antenna device of the present invention includes a substrate on which a ground conductor is formed,
A ground conductor non-formation region provided along a part of the outer edge of the ground conductor;
A plurality of capacitance elements, a plurality of radiation electrodes, and a single or a plurality of capacitance elements, which are connected to both ends of the ground conductor non-formation region along the outer edge of the ground conductor and are disposed so as to straddle the ground conductor non-formation region A series circuit including a ground conductor of
A transmission line branched to a feeder line having a first end connected to the feeder circuit and a second end connected to the plurality of radiation electrodes;
Two radiation electrodes are connected to the ground conductor in the ground conductor non-forming region, and the capacitance element is connected between the radiation electrode and the radiation electrode,
The point branched to the feed line is inside the two outer points of the connection points of the feed lines to the plurality of radiation electrodes.
(2)前記複数の放射電極のうち、各放射電極から前記グランド導体非形成領域の内周縁およびキャパシタンス素子までの領域(アンテナ占有体積)は、動作周波数が高い放射電極である程、小さく構成されていることが好ましい。 (2) Of the plurality of radiation electrodes, the region (antenna occupied volume) from each radiation electrode to the inner peripheral edge of the ground conductor non-formation region and the capacitance element is configured to be smaller as the radiation frequency is higher. It is preferable.
(3)前記複数の放射電極のうち、動作周波数の高い放射電極であるほど、前記伝送線路の分岐点に近い位置に配置されていることが好ましい。 (3) Of the plurality of radiation electrodes, the radiation electrode having a higher operating frequency is preferably disposed closer to the branch point of the transmission line.
(4)本発明の電子機器は、一部に絶縁体または誘電体のスロットが形成された金属キャビティを備え、前記金属キャビティの内部に前記スロットを励振する位置にアンテナ装置が配置され、
 前記アンテナ装置は、
 グランド導体が形成された基板と、
 前記グランド導体の外縁の一部に沿って設けられたグランド導体非形成領域と、
 前記グランド導体非形成領域の前記グランド導体の外縁に沿った方向の両端に接続され、前記グランド導体非形成領域を跨ぐように配置された、複数のキャパシタンス素子、複数の放射電極および単一または複数のグランド導体を含む直列回路と、
 第1端が給電回路に接続され、第2端が前記複数の放射電極に接続される給電線に分岐された伝送線路と、を備え、
 前記グランド導体非形成領域内の前記グランド導体に二つの前記放射電極が接続され、前記キャパシタンス素子は前記放射電極と放射電極との間に接続され、
 前記給電線に分岐される点は、前記複数の放射電極への前記給電線の接続点のうち外側の二点より内側にあることを特徴とする。
(4) An electronic device of the present invention includes a metal cavity partially formed with an insulator or dielectric slot, and an antenna device is disposed at a position for exciting the slot inside the metal cavity.
The antenna device is
A substrate on which a ground conductor is formed;
A ground conductor non-formation region provided along a part of the outer edge of the ground conductor;
A plurality of capacitance elements, a plurality of radiation electrodes, and a single or a plurality of capacitance elements, which are connected to both ends of the ground conductor non-formation region along the outer edge of the ground conductor and are disposed so as to straddle the ground conductor non-formation region A series circuit including a ground conductor of
A transmission line branched to a feeder line having a first end connected to the feeder circuit and a second end connected to the plurality of radiation electrodes;
Two radiation electrodes are connected to the ground conductor in the ground conductor non-forming region, and the capacitance element is connected between the radiation electrode and the radiation electrode,
The point branched to the feed line is inside the two outer points of the connection points of the feed lines to the plurality of radiation electrodes.
(5)前記スロットは空気より誘電率の高い誘電体で充填されていることが好ましい。 (5) The slot is preferably filled with a dielectric having a dielectric constant higher than that of air.
 本発明によれば、放射効率が高くて且つ複数の周波数帯域で動作するアンテナ装置およびそれを備えた電子機器が得られる。 According to the present invention, an antenna device having high radiation efficiency and operating in a plurality of frequency bands and an electronic device including the antenna device can be obtained.
図1(A)は第1の実施形態のアンテナ装置101の平面図である。図1(B)はその背面図である。FIG. 1A is a plan view of the antenna device 101 according to the first embodiment. FIG. 1B is a rear view thereof. 図2はアンテナ装置101の等価回路図である。FIG. 2 is an equivalent circuit diagram of the antenna device 101. 図3(A)、図3(B)は図1に示したアンテナ装置101を二つの単一周波数帯用のアンテナ装置に分離した場合の、その二つのアンテナ装置の構成図である。3A and 3B are configuration diagrams of the two antenna devices when the antenna device 101 shown in FIG. 1 is separated into two antenna devices for a single frequency band. 図4はアンテナ装置101および単一周波数帯用のアンテナ装置の、給電回路から見たリターンロス(S11)の周波数特性を示す図である。FIG. 4 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 101 and the antenna device for a single frequency band as viewed from the power feeding circuit. 図5はアンテナ装置101および単一周波数帯用のアンテナ装置の指向性を示す図である。FIG. 5 is a diagram showing the directivity of the antenna device 101 and the antenna device for a single frequency band. 図6は第2の実施形態のアンテナ装置102の平面図である。FIG. 6 is a plan view of the antenna device 102 according to the second embodiment. 図7はアンテナ装置102および単一周波数帯用のアンテナ装置の、給電回路から見たリターンロス(S11)の周波数特性を示す図である。FIG. 7 is a diagram illustrating the frequency characteristics of the return loss (S11) of the antenna device 102 and the antenna device for a single frequency band as viewed from the power feeding circuit. 図8は第3の実施形態のアンテナ装置103の平面図である。FIG. 8 is a plan view of the antenna device 103 according to the third embodiment. 図9は三つの放射電極付近のアンテナ占有体積の例を示す図である。FIG. 9 is a diagram showing an example of the antenna occupied volume near the three radiation electrodes. 図10は第4の実施形態のアンテナ装置104を含む回路基板の平面図である。FIG. 10 is a plan view of a circuit board including the antenna device 104 of the fourth embodiment. 図11は第5の実施形態の電子機器201の外観斜視図である。FIG. 11 is an external perspective view of an electronic apparatus 201 according to the fifth embodiment. 図12は第6の実施形態のアンテナ装置106の平面図である。FIG. 12 is a plan view of the antenna device 106 according to the sixth embodiment. 図13(A)、図13(B)はアンテナ装置106の電流強度分布を示す図である。図13(A)は1.575GHzでの状態、図13(B)は1.6GHzでの状態である。13A and 13B are diagrams showing the current intensity distribution of the antenna device 106. FIG. FIG. 13A shows a state at 1.575 GHz, and FIG. 13B shows a state at 1.6 GHz. 図14(A)はアンテナ装置106の、給電回路から見たリターンロス(S11)の周波数特性を示す図、図14(B)は給電回路から見たインピーダンスを所定の周波数範囲についてスミスチャート上に表した図である。FIG. 14A is a diagram showing the frequency characteristics of the return loss (S11) seen from the power feeding circuit of the antenna device 106, and FIG. 14B is a Smith chart showing the impedance seen from the power feeding circuit over a predetermined frequency range. FIG. 図15はアンテナ装置106の効率を示す図である。FIG. 15 is a diagram showing the efficiency of the antenna device 106. 図16はアンテナ装置106の指向性を示す図である。FIG. 16 is a diagram showing the directivity of the antenna device 106.
《第1の実施形態》
 第1の実施形態のアンテナ装置について各図を参照して説明する。図1(A)は第1の実施形態のアンテナ装置101の平面図である。図1(B)はその背面図である。
 アンテナ装置101は基板10を備えている。この基板10の第1面にグランド導体11,11Fが形成されていて、第2面にグランド導体12が形成されている。グランド導体11,11Fと12との間は複数のビア導体(スルーホール)を介して接続されている。
<< First Embodiment >>
The antenna device of the first embodiment will be described with reference to the drawings. FIG. 1A is a plan view of the antenna device 101 according to the first embodiment. FIG. 1B is a rear view thereof.
The antenna device 101 includes a substrate 10. The ground conductors 11 and 11F are formed on the first surface of the substrate 10, and the ground conductor 12 is formed on the second surface. The ground conductors 11, 11F and 12 are connected via a plurality of via conductors (through holes).
 図1(A)に表れているように、第1面のグランド導体11は長方形状であり、長辺である第1の辺S1とこれに対向する第2の辺S2を有する。グランド導体11の第1の辺S1に沿って、この第1の辺S1の両端部を除く他の位置(中央位置)にグランド導体非形成領域8が設けられている。このグランド導体非形成領域8は第1の辺S1に平行な内周の辺S3を有する。 As shown in FIG. 1A, the ground conductor 11 on the first surface has a rectangular shape, and has a first side S1 having a long side and a second side S2 facing the first side S1. A ground conductor non-formation region 8 is provided along the first side S1 of the ground conductor 11 at other positions (center position) excluding both ends of the first side S1. The ground conductor non-forming region 8 has an inner side S3 parallel to the first side S1.
 図1(B)に表れているように、第2面のグランド導体12は第1面のグランド導体11,11Fに対向する位置に形成されている。したがって、第1面のグランド導体非形成領域8に対向する位置にもグランド導体非形成領域9が形成されている。但し、後述する給電線16A,16Bの対向位置にはグランド導体が形成されている。 As shown in FIG. 1B, the ground conductor 12 on the second surface is formed at a position facing the ground conductors 11 and 11F on the first surface. Accordingly, the ground conductor non-forming region 9 is also formed at a position facing the ground conductor non-forming region 8 on the first surface. However, a ground conductor is formed at a position opposite to power supply lines 16A and 16B described later.
 グランド導体非形成領域8の第1の辺S1に沿った方向の第1端とグランド導体11Fとの間に放射電極13およびキャパシタンス素子C1を含む直列回路が接続されている。また、グランド導体非形成領域8の第2端とグランド導体11Fとの間に放射電極14およびキャパシタンス素子C2を含む直列回路が接続されている。すなわち、この二つの直列回路が、グランド導体11Fを飛び石としてグランド導体非形成領域8を跨ぐように配置されている。ここで、放射電極13は例えば5GHz帯用の放射電極、放射電極14は例えば2.4GHz帯用の放射電極である。キャパシタンス素子C1は放射電極13と放射電極13との間の間隙容量を構成し、キャパシタンス素子C2は放射電極14と放射電極14との間の間隙容量を構成する。 A series circuit including the radiation electrode 13 and the capacitance element C1 is connected between the first end in the direction along the first side S1 of the ground conductor non-forming region 8 and the ground conductor 11F. A series circuit including the radiation electrode 14 and the capacitance element C2 is connected between the second end of the ground conductor non-forming region 8 and the ground conductor 11F. That is, the two series circuits are arranged so as to straddle the ground conductor non-forming region 8 with the ground conductor 11F as a stepping stone. Here, the radiation electrode 13 is, for example, a radiation electrode for 5 GHz band, and the radiation electrode 14 is, for example, a radiation electrode for 2.4 GHz band. The capacitance element C1 constitutes a gap capacity between the radiation electrode 13 and the radiation electrode 13, and the capacitance element C2 constitutes a gap capacity between the radiation electrode 14 and the radiation electrode 14.
 基板10には、第1端が給電回路に接続され、第2端が放射電極13,14に接続される給電線16A,16Bに分岐された伝送線路16が形成されている。給電線16Aは放射電極13のキャパシタンス素子C1とグランド導体11Fとの間に接続されていて、給電線16Bは放射電極14のキャパシタンス素子C2とグランド導体11Fとの間に接続されている。 The substrate 10 is formed with a transmission line 16 branched into power supply lines 16A and 16B having a first end connected to the power supply circuit and a second end connected to the radiation electrodes 13 and 14. The feed line 16A is connected between the capacitance element C1 of the radiation electrode 13 and the ground conductor 11F, and the feed line 16B is connected between the capacitance element C2 of the radiation electrode 14 and the ground conductor 11F.
 伝送線路16はグランド導体11とともにコプレーナラインを構成している。また、給電線16A,16Bの一部と基板10の第2面(背面)のグランド導体とによってマイクロストリップラインが構成されている。 The transmission line 16 and the ground conductor 11 constitute a coplanar line. A microstrip line is configured by a part of the feeder lines 16A and 16B and the ground conductor on the second surface (back surface) of the substrate 10.
 前記分岐点BPは、放射電極13,14への給電線16A,16Bの接続点より内側にある。好ましくは、前記分岐点BPはグランド導体非形成領域8のうち放射電極13および14の形成領域の中央または中央付近である。給電線16A,16Bはいずれもグランド導体11F寄りの位置に接続されている。この構成により、給電回路から放射電極への給電点までの距離を短くでき、伝送損失が抑えられる。 The branch point BP is inside the connection point of the feeder lines 16A and 16B to the radiation electrodes 13 and 14. Preferably, the branch point BP is at or near the center of the formation region of the radiation electrodes 13 and 14 in the ground conductor non-formation region 8. The feeder lines 16A and 16B are both connected to a position near the ground conductor 11F. With this configuration, the distance from the feeding circuit to the feeding point to the radiation electrode can be shortened, and transmission loss can be suppressed.
 なお、図1では伝送線路16の第1端を簡易的に円形の端子で表している。この端子に給電回路が接続される。 In FIG. 1, the first end of the transmission line 16 is simply represented by a circular terminal. A power feeding circuit is connected to this terminal.
 図2は前記アンテナ装置101の等価回路図である。このアンテナ装置101は、グランド導体非形成領域8の第1端とグランド導体11Fとの間に放射電極13を含む直列回路が接続され、グランド導体非形成領域8の第2端とグランド導体11Fとの間に放射電極14を含む直列回路が接続され、放射電極13(グランド導体11Fの第1端寄りの位置)および放射電極14(グランド導体11Fの第2端寄りの位置)にそれぞれ給電されるように構成された回路である。 FIG. 2 is an equivalent circuit diagram of the antenna device 101. In the antenna device 101, a series circuit including the radiation electrode 13 is connected between the first end of the ground conductor non-forming region 8 and the ground conductor 11F, and the second end of the ground conductor non-forming region 8 and the ground conductor 11F are connected. A series circuit including the radiating electrode 14 is connected between the radiating electrode 13 and the radiating electrode 13 (position near the first end of the ground conductor 11F) and the radiating electrode 14 (position near the second end of the ground conductor 11F). This is a circuit configured as described above.
 放射電極13,14に給電される信号が5GHz帯の信号である場合、放射電極13が共振する。すなわち放射電極13が5GHz帯の放射電極として作用する。また、放射電極13,14に給電される信号が2.4GHz帯の信号である場合、放射電極14が共振する。すなわち放射電極14が2.4GHz帯の放射電極として作用する。いずれの場合もグランド導体11,12にダイポールアンテナと同様の(ダイポールアンテナ的な)電流が誘起される。図2中の矢印はその電流を表している。第1面とビア導体で接続された第2面のグランド導体12にも同様の電流が流れる。 When the signal fed to the radiation electrodes 13 and 14 is a 5 GHz band signal, the radiation electrode 13 resonates. That is, the radiation electrode 13 functions as a radiation electrode in the 5 GHz band. When the signal fed to the radiation electrodes 13 and 14 is a 2.4 GHz band signal, the radiation electrode 14 resonates. That is, the radiation electrode 14 acts as a radiation electrode in the 2.4 GHz band. In either case, a current similar to that of a dipole antenna (like a dipole antenna) is induced in the ground conductors 11 and 12. The arrow in FIG. 2 represents the current. A similar current flows through the ground conductor 12 on the second surface connected to the first surface by the via conductor.
 このように、グランド導体11Fを超えるように各周波数帯用の放射電極に電流が同相に流れる。 Thus, current flows in the same phase to the radiation electrodes for each frequency band so as to exceed the ground conductor 11F.
 図3は図1に示したアンテナ装置101を二つの単一周波数帯用のアンテナ装置に分離した場合の、その二つのアンテナ装置の構成図である。図3(A)は5GHz帯用のアンテナ装置、図3(B)は2.4GHz帯用のアンテナ装置である。図1に示した本発明の第1の実施形態のアンテナ装置101はこのように5GHz帯用のアンテナと2.4GHz帯用のアンテナを一体化したものと等価的に同じである。 FIG. 3 is a configuration diagram of the two antenna devices when the antenna device 101 shown in FIG. 1 is separated into two antenna devices for a single frequency band. 3A shows an antenna device for the 5 GHz band, and FIG. 3B shows an antenna device for the 2.4 GHz band. The antenna device 101 according to the first embodiment of the present invention shown in FIG. 1 is equivalently equivalent to an integrated antenna for a 5 GHz band and an antenna for a 2.4 GHz band.
 図4はアンテナ装置101および前記単一周波数帯用のアンテナ装置の、給電回路から見たリターンロス(S11)の周波数特性を示す図である。図4において、(1)は図3(A)に示した5GHz帯用アンテナの特性、(2)は図3(B)に示した2.4GHz帯用アンテナの特性、(3)は図1に示した第1の実施形態のアンテナ装置101の特性である。 FIG. 4 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 101 and the antenna device for the single frequency band as viewed from the power feeding circuit. 4, (1) is the characteristic of the antenna for 5 GHz band shown in FIG. 3 (A), (2) is the characteristic of the antenna for 2.4 GHz band shown in FIG. 3 (B), and (3) is FIG. This is the characteristic of the antenna device 101 of the first embodiment shown in FIG.
 ここで各部の寸法は次のとおりである。
 基板10のサイズ:41mm×10mm×1.2mm
 グランド導体非形成領域8,9のサイズ
  5GHz帯用の領域:3.75mm×4.5mm
  2.4GHz帯用の領域:6.75mm×4.5mm
 図4から明らかなように、5GHz帯と2.4GHz帯の両方で整合がとれている。単一周波数のアンテナと比較しても同等以上の帯域幅が得られていることがわかる。
Here, the dimensions of each part are as follows.
Substrate 10 size: 41 mm × 10 mm × 1.2 mm
Size of ground conductor non-formation regions 8 and 9 Region for 5 GHz band: 3.75 mm × 4.5 mm
2.4 GHz band area: 6.75 mm x 4.5 mm
As is apparent from FIG. 4, matching is achieved in both the 5 GHz band and the 2.4 GHz band. It can be seen that a bandwidth equal to or greater than that of a single frequency antenna is obtained.
 図5はアンテナ装置101および前記単一周波数帯用のアンテナ装置の指向性を示す図である。図5の向きは図1の向きに対応している。図5(A)は5GHzでの特性、図5(B)は2.4GHzでの特性である。いずれも、アンテナ装置101の指向性と前記単一周波数のアンテナ装置の指向性は殆ど同じであり、図5(A)および図5(B)では一本に重なっている。このように、指向性についても、単一周波数のアンテナと同じ特性が得られていることがわかる。 FIG. 5 is a diagram showing the directivity of the antenna device 101 and the antenna device for the single frequency band. The direction of FIG. 5 corresponds to the direction of FIG. FIG. 5A shows the characteristics at 5 GHz, and FIG. 5B shows the characteristics at 2.4 GHz. In either case, the directivity of the antenna device 101 and the directivity of the single-frequency antenna device are almost the same, and are overlapped in FIGS. 5 (A) and 5 (B). Thus, it can be seen that the same characteristics as those of the single-frequency antenna are obtained with respect to directivity.
 図2に示したように、グランド導体11Fを超えるように各周波数帯用の放射電極に電流が同相に流れることにより、いずれの周波数帯についても、0°方向(グランド導体11のグランド導体非形成領域8の形成辺(第1の辺S1)方向)に強い指向性を示す。 As shown in FIG. 2, the current flows in the same phase to the radiation electrode for each frequency band so as to exceed the ground conductor 11F, so that in any frequency band, the 0 ° direction (the ground conductor of the ground conductor 11 is not formed). Strong directivity is shown in the side where the region 8 is formed (the direction of the first side S1).
 なお、複数の放射電極を設けたことによってもアンテナの占有体積(グランド導体非形成領域の辺およびキャパシタンス素子までの領域)は減少しないので、アンテナの放射効率についても、単一周波数のアンテナと同じ特性が得られることがわかる。 In addition, since the occupied space of the antenna (the side of the ground conductor non-formation region and the region up to the capacitance element) is not reduced by providing a plurality of radiation electrodes, the radiation efficiency of the antenna is the same as that of a single frequency antenna. It can be seen that the characteristics can be obtained.
 このように、本発明によれば、異なる周波数で動作する複数のアンテナが互いに干渉せず、ほぼ独立して動作するので、リターンロス特性、指向性および放射効率といったアンテナ性能は単一周波数帯のアンテナ装置と同等となる。 As described above, according to the present invention, since a plurality of antennas operating at different frequencies do not interfere with each other and operate almost independently, antenna performance such as return loss characteristics, directivity, and radiation efficiency can be achieved in a single frequency band. It is equivalent to an antenna device.
《第2の実施形態》
 第2の実施形態では2.4GHz帯用およびGPS用(1.5GHz)のアンテナ装置の例を示す。
 図6は第2の実施形態のアンテナ装置102の平面図である。このアンテナ装置102は基板10を備え、この基板10の第1面にグランド導体11が形成されていて、第2面にグランド導体が形成されている。グランド導体非形成領域8の第1の辺S1に沿った方向の両端に、放射電極14,15およびキャパシタンス素子C2,C3およびグランド導体11Fを含む直列回路が接続されている。すなわち、この直列回路がグランド導体非形成領域8を跨ぐように配置されている。ここで、放射電極14は2.4GHz帯用の放射電極、放射電極15はGPS(1.5GHz帯)用の放射電極である。キャパシタンス素子C2は放射電極14と放射電極14との間の間隙容量を構成し、キャパシタンス素子C3は放射電極15と放射電極15との間の間隙容量を構成する。
<< Second Embodiment >>
In the second embodiment, examples of antenna devices for 2.4 GHz band and GPS (1.5 GHz) are shown.
FIG. 6 is a plan view of the antenna device 102 according to the second embodiment. The antenna device 102 includes a substrate 10, a ground conductor 11 is formed on the first surface of the substrate 10, and a ground conductor is formed on the second surface. A series circuit including radiation electrodes 14 and 15, capacitance elements C2 and C3, and a ground conductor 11F is connected to both ends of the ground conductor non-formation region 8 in the direction along the first side S1. That is, the series circuit is arranged so as to straddle the ground conductor non-forming region 8. Here, the radiation electrode 14 is a radiation electrode for 2.4 GHz band, and the radiation electrode 15 is a radiation electrode for GPS (1.5 GHz band). The capacitance element C2 constitutes a gap capacitance between the radiation electrode 14 and the radiation electrode 14, and the capacitance element C3 constitutes a gap capacitance between the radiation electrode 15 and the radiation electrode 15.
 放射電極14,15の大きさは周波数帯に応じて定めているので、図1(A)に示した放射電極13,14と異なっているが、全体の基本的な構成は第1の実施形態で示したアンテナ装置と同様である。 Since the sizes of the radiation electrodes 14 and 15 are determined according to the frequency band, they are different from the radiation electrodes 13 and 14 shown in FIG. 1A, but the overall basic configuration is the first embodiment. This is the same as the antenna device shown in FIG.
 図7はアンテナ装置102および前記単一周波数帯用のアンテナ装置の、給電回路から見たリターンロス(S11)の周波数特性を示す図である。図7において、(1)は図6に示した2.4GHz帯用アンテナの特性、(2)はGPS(1.5GHz帯)用アンテナの特性、(3)は図6に示した第2の実施形態のアンテナ装置102の特性である。 FIG. 7 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 102 and the antenna device for the single frequency band as viewed from the power feeding circuit. 7, (1) is the characteristics of the 2.4 GHz band antenna shown in FIG. 6, (2) is the characteristics of the GPS (1.5 GHz band) antenna, and (3) is the second characteristic shown in FIG. It is the characteristic of the antenna apparatus 102 of embodiment.
 ここで各部の寸法は次のとおりである。
 基板10のサイズ:41mm×10mm×1.2mm
 グランド導体非形成領域のサイズ
  2.4GHz帯用の領域:6.75mm×4.5mm
  1.5GHz帯用の領域:9.00mm×4.5mm
 図7から明らかなように、2.4GHz帯と1.5GHz帯の両方でリターンロスが小さくなっている。単一周波数のアンテナと比較しても同等の帯域幅が得られていることがわかる。
Here, the dimensions of each part are as follows.
Substrate 10 size: 41 mm × 10 mm × 1.2 mm
Size of the ground conductor non-forming area 2.4 GHz band area: 6.75 mm × 4.5 mm
Area for 1.5 GHz band: 9.00 mm × 4.5 mm
As is clear from FIG. 7, the return loss is small in both the 2.4 GHz band and the 1.5 GHz band. It can be seen that an equivalent bandwidth is obtained even when compared with a single-frequency antenna.
《第3の実施形態》
 第3の実施形態では5GHz帯用、2.4GHz帯用およびGPS用(1.5GHz)の三つの帯域で用いることのできるアンテナ装置の例を示す。
 図8は第3の実施形態のアンテナ装置103の平面図である。このアンテナ装置103は基板10を備え、この基板10の第1面にグランド導体11が形成されていて、第2面にグランド導体が形成されている。グランド導体非形成領域8の第1の辺S1に沿った方向の両端に、放射電極13,14,15およびキャパシタンス素子C1,C2,C3およびグランド導体11F1,11F2を含む直列回路が接続されている。すなわち、この直列回路がグランド導体非形成領域8を跨ぐように配置されている。ここで、放射電極13は5GHz帯用の放射電極、放射電極14は2.4GHz帯用の放射電極、放射電極15はGPS(1.5GHz帯)用の放射電極である。キャパシタンス素子C1は放射電極13と放射電極13との間の間隙容量を構成し、キャパシタンス素子C2は放射電極14と放射電極14との間の間隙容量を構成し、キャパシタンス素子C3は放射電極15と放射電極15との間の間隙容量を構成する。
<< Third Embodiment >>
In the third embodiment, an example of an antenna device that can be used in three bands for 5 GHz band, 2.4 GHz band, and GPS (1.5 GHz) is shown.
FIG. 8 is a plan view of the antenna device 103 according to the third embodiment. The antenna device 103 includes a substrate 10, a ground conductor 11 is formed on the first surface of the substrate 10, and a ground conductor is formed on the second surface. A series circuit including the radiation electrodes 13, 14, 15 and the capacitance elements C1, C2, C3 and the ground conductors 11F1, 11F2 is connected to both ends in the direction along the first side S1 of the ground conductor non-formation region 8. . That is, the series circuit is arranged so as to straddle the ground conductor non-forming region 8. Here, the radiation electrode 13 is a radiation electrode for 5 GHz band, the radiation electrode 14 is a radiation electrode for 2.4 GHz band, and the radiation electrode 15 is a radiation electrode for GPS (1.5 GHz band). The capacitance element C1 constitutes a gap capacitance between the radiation electrode 13 and the radiation electrode 13, the capacitance element C2 constitutes a gap capacitance between the radiation electrode 14 and the radiation electrode 14, and the capacitance element C3 corresponds to the radiation electrode 15. A gap capacitance with the radiation electrode 15 is formed.
 伝送線路16の分岐点BPは放射電極13,14,15への給電線16A,16B,16Cの接続点のうち外側の二点(給電線16B,16Cの接続点)より内側にある。さらには、前記分岐点BPはグランド導体非形成領域8のうち放射電極13,14,15の形成領域の中央または中央付近である。 The branch point BP of the transmission line 16 is inside the two outer points (connection points of the feed lines 16B, 16C) among the connection points of the feed lines 16A, 16B, 16C to the radiation electrodes 13, 14, 15. Further, the branch point BP is at or near the center of the formation area of the radiation electrodes 13, 14, 15 in the ground conductor non-formation area 8.
 放射電極13,14,15の大きさは周波数帯に応じて定めている。基板10には、第1端が給電回路に接続され、第2端が放射電極13,14,15に接続される給電線16A,16B,16Cに分岐された伝送線路16が形成されている。この伝送線路16はグランド導体11とともにコプレーナラインを構成している。また、給電線16A,16B,16Cと基板10の第2面(背面)のグランド導体とによってマイクロストリップラインが構成されている。 The size of the radiation electrodes 13, 14, 15 is determined according to the frequency band. The substrate 10 is formed with a transmission line 16 that is branched into power supply lines 16A, 16B, and 16C having a first end connected to the power supply circuit and a second end connected to the radiation electrodes 13, 14, and 15. The transmission line 16 and the ground conductor 11 constitute a coplanar line. In addition, a microstrip line is configured by the power supply lines 16A, 16B, and 16C and the ground conductor on the second surface (back surface) of the substrate 10.
 図9は三つの放射電極付近のアンテナ占有体積の例を示す図である。図9(A)には放射電極13による5GHzのアンテナ占有体積OV1、図9(B)には放射電極14による2.4GHzのアンテナ占有体積OV2、図9(C)には放射電極15による1.5GHzのアンテナ占有体積OV3をそれぞれ表している。これらのアンテナ占有体積は、放射電極13,14,15からグランド導体非形成領域8の内周の辺S3およびキャパシタンス素子までの領域である。 FIG. 9 is a diagram showing an example of the antenna occupied volume near the three radiation electrodes. 9A shows a 5 GHz antenna occupied volume OV1 due to the radiation electrode 13, FIG. 9B shows a 2.4 GHz antenna occupied volume OV2 due to the radiation electrode 14, and FIG. Each represents an antenna occupied volume OV3 of .5 GHz. These antenna-occupied volumes are regions from the radiation electrodes 13, 14, 15 to the inner side S3 of the ground conductor non-formation region 8 and the capacitance element.
 このように、アンテナ占有体積は、動作周波数が高い放射電極である程、小さく形成されている。このことにより、限られた基板面積内に複数のアンテナを無駄なく効率よく組み込める。そのためアンテナ装置の小型化が図れる。 Thus, the antenna occupation volume is formed smaller as the radiation electrode has a higher operating frequency. As a result, a plurality of antennas can be efficiently incorporated within a limited substrate area without waste. Therefore, the antenna device can be downsized.
 また、低い周波数で動作するアンテナ部(前記アンテナ占有体積の部分)にとって、高い周波数で動作するアンテナ部は、比較的小さなグランド導体の切り欠きにしか見えない。すなわち低い周波数では等価的に影響のないグランド導体の切り欠きである。そのため、低い周波数で動作するアンテナ部は、高い周波数で動作するアンテナ部の影響を殆ど受けない。逆に、高い周波数で動作するアンテナ部にとって、低い周波数で動作するアンテナ部は、キャパシタンス素子の容量(間隙容量)が十分に大きいため、低インピーダンスに見える。すなわち等価的にグランド導体があるものとして作用する。特に、サイズの大型化を抑制するために低い周波数で動作するアンテナ部ほど、キャパシタンス素子の容量が大きく設定されるので、この作用(等価的に低インピーダンスに見えること)は顕著となる、
 また、放射電極13,14,15のうち、動作周波数の高い放射電極であるほど、給電線の分岐点BPに近い位置に配置されている。図8に示した例では、5GHz用の放射電極13が分岐点BPに最も近い位置に配置され、次に離れた位置に2.4GHz帯用の放射電極14が配置され、最も離れた位置に1.5GHz帯用の放射電極15が配置されている。周波数が高いほど伝送損失が発生しやすく、伝送線路の長さによって特性インピーダンスが変動しやすいため、できるだけ短いほうが望ましい。そのため、このように周波数が高い放射電極であるほど、給電線の分岐点BPに近い位置に配置することによって、インピーダンス整合をより適正化できるとともに低損失化できる。
In addition, for an antenna unit that operates at a low frequency (the portion of the antenna-occupied volume), the antenna unit that operates at a high frequency can only be seen as a notch in a relatively small ground conductor. In other words, it is a notch in the ground conductor that has no effect at low frequencies. Therefore, the antenna unit that operates at a low frequency is hardly affected by the antenna unit that operates at a high frequency. Conversely, for an antenna unit that operates at a high frequency, the antenna unit that operates at a low frequency appears to have a low impedance because the capacitance (gap capacitance) of the capacitance element is sufficiently large. In other words, it acts as an equivalent ground conductor. In particular, since the capacity of the capacitance element is set larger as the antenna unit that operates at a lower frequency in order to suppress the increase in size, this effect (appears to be equivalently low impedance) becomes remarkable.
Further, of the radiation electrodes 13, 14, and 15, the radiation electrode having a higher operating frequency is disposed closer to the branch point BP of the feeder line. In the example shown in FIG. 8, the radiation electrode 13 for 5 GHz is arranged at the position closest to the branch point BP, the radiation electrode 14 for 2.4 GHz band is arranged at the next distant position, and at the most distant position. A radiation electrode 15 for 1.5 GHz band is disposed. As the frequency is higher, transmission loss is more likely to occur, and the characteristic impedance is likely to vary depending on the length of the transmission line. Therefore, the higher the frequency of the radiation electrode is, the closer to the branch point BP of the feeder line, the more suitable impedance matching and the lower the loss.
《第4の実施形態》
 図10は第4の実施形態のアンテナ装置104を含む回路基板の平面図である。この回路基板は親基板40に各種導体パターンおよび各種素子が実装されたものである。アンテナ装置104のグランド導体11は、第1の辺S1とこれに対向する第2の辺S2を有する。このグランド導体11は親基板40の外縁の一部に沿って形成されている。親基板40には主グランド導体41が形成されていて、この主グランド導体41とグランド導体11との間にグランド導体分離領域42が設けられている。グランド導体11の一部は主グランド導体41に対してグランド接続部CSを介して接続されている。
<< Fourth Embodiment >>
FIG. 10 is a plan view of a circuit board including the antenna device 104 of the fourth embodiment. This circuit board is obtained by mounting various conductor patterns and various elements on a parent substrate 40. The ground conductor 11 of the antenna device 104 has a first side S1 and a second side S2 facing the first side S1. The ground conductor 11 is formed along a part of the outer edge of the parent substrate 40. A main ground conductor 41 is formed on the parent substrate 40, and a ground conductor isolation region 42 is provided between the main ground conductor 41 and the ground conductor 11. A part of the ground conductor 11 is connected to the main ground conductor 41 via the ground connection portion CS.
 アンテナ装置104の構成は第3の実施形態で図8に示したものと同じである。親基板40にはアンテナ装置にとっての給電回路である高周波モジュール34が実装されている。この高周波モジュール34とアンテナ装置104とは給電線16で接続されている。この給電線16はグランド導体11,41とともにコプレーナラインを構成している。 The configuration of the antenna device 104 is the same as that shown in FIG. 8 in the third embodiment. A high frequency module 34 which is a power feeding circuit for the antenna device is mounted on the parent substrate 40. The high-frequency module 34 and the antenna device 104 are connected by a feeder line 16. The feeder line 16 and the ground conductors 11 and 41 constitute a coplanar line.
 この第4の実施形態によれば、伝送線路部のグランド導体以外は、親基板40の主グランド導体41からグランド導体11が分離されているので、親基板40で生じるノイズの影響が小さくなる。そのため、親基板に組み込まれるタイプのアンテナ装置としての汎用性も高い。 According to the fourth embodiment, since the ground conductor 11 is separated from the main ground conductor 41 of the parent substrate 40 except for the ground conductor of the transmission line portion, the influence of noise generated in the parent substrate 40 is reduced. Therefore, the versatility as an antenna device of the type incorporated in the parent substrate is also high.
 なお、以上に示した各実施形態では、グランド導体非形成領域8の内周の辺S3は第1の辺S1に対して平行である例を示したが、この辺S1とS3の関係は正確に平行である必要はなく、ほぼ平行であってもよい。本発明の課題を解決できるように、グランド導体非形成領域8に複数のキャパシタンス素子、複数の放射電極および単一または複数のグランド導体を含む直列回路が配置できて、グランド導体11,12にダイポールアンテナと同様の(ダイポールアンテナ的な)電流が誘起される構成であればよい。 In each of the embodiments described above, the example in which the inner side S3 of the ground conductor non-forming region 8 is parallel to the first side S1 is shown. However, the relationship between the sides S1 and S3 is accurate. It does not need to be parallel and may be substantially parallel. In order to solve the problems of the present invention, a series circuit including a plurality of capacitance elements, a plurality of radiation electrodes, and a single or a plurality of ground conductors can be arranged in the ground conductor non-forming region 8, and dipoles are connected to the ground conductors 11 and 12. Any structure that induces a current similar to that of an antenna (like a dipole antenna) may be used.
《第5の実施形態》
 図11は第5の実施形態の電子機器201の外観斜視図である。この電子機器201は金属製筐体50の内部に各種回路が構成された基板とともにアンテナ装置103を備えている。筐体50の一部に前記アンテナ装置103で励振されるスロット51が設けられている。このスロット51は、筐体50の上下面と側面の三面に亘って形成された開口に樹脂が充填されたものである。筐体内部のアンテナ装置103は、このアンテナ装置103のグランド導体非形成部がスロット51を介して筐体50の外界を臨むような位置に配置されている。
<< Fifth Embodiment >>
FIG. 11 is an external perspective view of an electronic apparatus 201 according to the fifth embodiment. The electronic apparatus 201 includes an antenna device 103 together with a substrate on which various circuits are configured inside a metal casing 50. A slot 51 that is excited by the antenna device 103 is provided in a part of the housing 50. In the slot 51, an opening formed over the upper and lower surfaces and side surfaces of the housing 50 is filled with resin. The antenna device 103 inside the housing is arranged at a position where the ground conductor non-forming portion of the antenna device 103 faces the outside of the housing 50 through the slot 51.
 アンテナ装置103の各放射電極が延びる方向はスロット51の間隙方向であるので、放射電極に流れる電流で生じる電界がスロット51の間隙幅方向に印加され、スロット51が励振されることになる。このことによって、スロット51の間隙は筐体50の全体のサイズに比べて小さくても、スロット51から効率良く放射される。スロット51の間隙および長さは、スロット51が放射効率の良好なスロットアンテナとして作用するように定めればよい。 Since the direction in which each radiation electrode of the antenna device 103 extends is the gap direction of the slot 51, the electric field generated by the current flowing through the radiation electrode is applied in the gap width direction of the slot 51, and the slot 51 is excited. As a result, even if the gap of the slot 51 is smaller than the overall size of the housing 50, the slot 51 can radiate efficiently. The gap and length of the slot 51 may be determined so that the slot 51 acts as a slot antenna with good radiation efficiency.
 前記スロットに充填される樹脂は絶縁体であるが、空気より誘電率の高い(比誘電率1以上の)誘電体であれば、波長短縮効果により、より小さなスロットであっても電波を効率良く放射できる。 The resin filled in the slot is an insulator. However, if the dielectric has a dielectric constant higher than that of air (relative permittivity of 1 or more), the wavelength is shortened, so that the radio wave can be efficiently transmitted even in a smaller slot. Can radiate.
《第6の実施形態》
 図12は第6の実施形態のアンテナ装置106の平面図である。第1の実施形態で図1に示したアンテナ装置と異なり、この例では、比較的近接する二つの周波数用に用いるアンテナ装置の例である。基本構成は図1に示したものと同じであるが、適用する周波数に応じて放射電極13,14の寸法が異なる。また、必要に応じてキャパシタンス素子C1,C2のキャパシタンスが定められている。具体的には、放射電極13およびキャパシタンス素子C1によってGLONASS ( Global Navigation Satellite System ) の信号受信用に利用し、放射電極13およびキャパシタンス素子C1によってGPS ( Global positioning system ) の信号受信用に利用する。
<< Sixth Embodiment >>
FIG. 12 is a plan view of the antenna device 106 according to the sixth embodiment. Unlike the antenna device shown in FIG. 1 in the first embodiment, this example is an example of an antenna device used for two relatively close frequencies. The basic configuration is the same as that shown in FIG. 1, but the dimensions of the radiation electrodes 13 and 14 differ depending on the applied frequency. Further, the capacitances of the capacitance elements C1 and C2 are determined as necessary. More specifically, the radiation electrode 13 and the capacitance element C1 are used for GLONASS (Global Navigation Satellite System) signal reception, and the radiation electrode 13 and the capacitance element C1 are used for GPS (Global positioning system) signal reception.
 図13(A)、図13(B)はアンテナ装置106の電流強度分布を示す図である。図13(A)は1.575GHzでの状態、図13(B)は1.6GHzでの状態である。電流強度が高いほど高い濃度で表している。1.575GHzでは放射電極14および放射電極14側のグランド導体非形成領域の内周が放射に寄与していることが分かる。また、1.6GHzでは放射電極13、放射電極13側のグランド導体非形成領域の内周および放射電極14が放射に寄与していることが分かる。 13A and 13B are diagrams showing the current intensity distribution of the antenna device 106. FIG. FIG. 13A shows a state at 1.575 GHz, and FIG. 13B shows a state at 1.6 GHz. The higher the current intensity, the higher the concentration. It can be seen that at 1.575 GHz, the inner periphery of the radiation electrode 14 and the ground conductor non-forming region on the radiation electrode 14 side contributes to radiation. In addition, at 1.6 GHz, it can be seen that the radiation electrode 13, the inner periphery of the ground conductor non-forming region on the radiation electrode 13 side, and the radiation electrode 14 contribute to radiation.
 図14(A)はアンテナ装置106の、給電回路から見たリターンロス(S11)の周波数特性を示す図、図14(B)は給電回路から見たインピーダンスを所定の周波数範囲についてスミスチャート上に表した図である。図14(B)において、マークM01 は1.575GHz 、マークM02 は1.597GHz 、マークM03 は1.606GHz でのインピーダンスを示している。 FIG. 14A is a diagram showing the frequency characteristics of the return loss (S11) seen from the power feeding circuit of the antenna device 106, and FIG. 14B is a Smith chart showing the impedance seen from the power feeding circuit over a predetermined frequency range. FIG. In FIG. 14B, the mark M01 indicates the impedance at 1.575 GHz, the mark M02 indicates 1.597 GHz, and the mark M03 indicates the impedance at 1.606 GHz.
 図14(A)、図14(B)から明らかなように、GPS の周波数である約1.575GHzとGLONASS の周波数である約1.602GHz で整合していることがわかる。 As is clear from FIGS. 14A and 14B, it can be seen that there is a match between the GPS75 frequency of about 1.575 GHz and the GLONASS frequency of about 1.602 GHz.
 図15はアンテナ装置106の効率を示す図である。図15において、曲線Rは放射効率、曲線Tはトータルのアンテナ効率である。この図から明らかなように、1.58GHz ~1.6GHz の帯域を含む帯域で -3.0dB 以上の効率が得られている。 FIG. 15 is a diagram showing the efficiency of the antenna device 106. In FIG. 15, curve R is the radiation efficiency and curve T is the total antenna efficiency. As is clear from this figure, an efficiency of 3.0-3.0 dB or higher is obtained in the band including 1.58 GHz to 1.6 GHz band.
 図16はアンテナ装置106の指向性を示す図である。図16中、Aは1.575GHz での指向性、Bは1.6GHz での指向性である。このように、いずれの周波数においても全方位に指向し、特にy軸方向(図12に示した放射電極13,14の延びる方向)に、より高い利得が得られる。 FIG. 16 is a diagram showing the directivity of the antenna device 106. In FIG. 16, A is the directivity at 1.575 GHz and B is the directivity at 1.6 GHz. In this way, it is directed in all directions at any frequency, and a higher gain can be obtained particularly in the y-axis direction (the direction in which the radiation electrodes 13 and 14 shown in FIG. 12 extend).
 なお、以上に示した各実施形態では、矩形状のグランド導体非形成領域を備えたアンテナ装置の例を示したが、グランド導体非形成領域の形状は矩形に限らない。すなわち、グランド導体非形成領域は、グランド導体の外縁の一部に沿って設けられていればよく、このグランド導体の外縁に対向する辺(S2)の形状は任意である。例えば半円形状や段差形状であってもよい。 In each of the embodiments described above, an example of an antenna device provided with a rectangular ground conductor non-formation region is shown, but the shape of the ground conductor non-formation region is not limited to a rectangle. That is, the ground conductor non-forming region may be provided along a part of the outer edge of the ground conductor, and the shape of the side (S2) facing the outer edge of the ground conductor is arbitrary. For example, a semicircular shape or a step shape may be used.
BP…分岐点
C1,C2,C3…キャパシタンス素子
CS…グランド接続部
OV1~OV3…アンテナ占有体積
S1…第1の辺
S2…第2の辺
8,9…グランド導体非形成領域
10…基板
11,12…グランド導体
11F,11F1,11F2…グランド導体
13,14,15…放射電極
16…伝送線路
16A,16B,16C…給電線
34…高周波モジュール
40…親基板
41…主グランド導体
42…グランド導体分離領域
50…金属製筐体
51…スロット
101~104,106…アンテナ装置
201…電子機器
BP ... branching points C1, C2, C3 ... capacitance element CS ... ground connection portions OV1 to OV3 ... antenna occupied volume S1 ... first side S2 ... second side 8, 9 ... ground conductor non-forming region 10 ... substrate 11, DESCRIPTION OF SYMBOLS 12 ... Ground conductor 11F, 11F1, 11F2 ... Ground conductors 13, 14, 15 ... Radiation electrode 16 ... Transmission line 16A, 16B, 16C ... Feed line 34 ... High frequency module 40 ... Main board 41 ... Main ground conductor 42 ... Ground conductor isolation | separation Area 50 ... Metal casing 51 ... Slots 101 to 104, 106 ... Antenna device 201 ... Electronic equipment

Claims (5)

  1.  グランド導体が形成された基板と、
     前記グランド導体の外縁の一部に沿って設けられたグランド導体非形成領域と、
     前記グランド導体非形成領域の前記グランド導体の外縁に沿った方向の両端に接続され、前記グランド導体非形成領域を跨ぐように配置された、複数のキャパシタンス素子、複数の放射電極および単一または複数のグランド導体を含む直列回路と、
     第1端が給電回路に接続され、第2端が前記複数の放射電極に接続される給電線に分岐された伝送線路と、を備え、
     前記グランド導体非形成領域内の前記グランド導体に二つの前記放射電極が接続され、前記キャパシタンス素子は前記放射電極と放射電極との間に接続され、
     前記給電線に分岐される点は、前記複数の放射電極への前記給電線の接続点のうち外側の二点より内側にあることを特徴とする、アンテナ装置。
    A substrate on which a ground conductor is formed;
    A ground conductor non-formation region provided along a part of the outer edge of the ground conductor;
    A plurality of capacitance elements, a plurality of radiation electrodes, and a single or a plurality of capacitance elements, which are connected to both ends of the ground conductor non-formation region along the outer edge of the ground conductor and are disposed so as to straddle the ground conductor non-formation region A series circuit including a ground conductor of
    A transmission line branched to a feeder line having a first end connected to the feeder circuit and a second end connected to the plurality of radiation electrodes;
    Two radiation electrodes are connected to the ground conductor in the ground conductor non-forming region, and the capacitance element is connected between the radiation electrode and the radiation electrode,
    The antenna device according to claim 1, wherein a point branched to the feed line is located inside two outer points of connection points of the feed lines to the plurality of radiation electrodes.
  2.  前記複数の放射電極のうち、各放射電極から前記グランド導体非形成領域の内周縁およびキャパシタンス素子までの領域は、動作周波数が高い放射電極である程、小さくした、請求項1に記載のアンテナ装置。 2. The antenna device according to claim 1, wherein among the plurality of radiation electrodes, a region from each radiation electrode to an inner peripheral edge of the ground conductor non-formation region and a capacitance element is smaller as the radiation electrode has a higher operating frequency. .
  3.  前記複数の放射電極のうち、動作周波数の高い放射電極であるほど、前記伝送線路の分岐点に近い位置に配置された、請求項1または2に記載のアンテナ装置。 The antenna device according to claim 1 or 2, wherein a radiation electrode having a higher operating frequency among the plurality of radiation electrodes is disposed closer to a branch point of the transmission line.
  4.  一部に絶縁体または誘電体のスロットが形成された金属キャビティを備え、
     前記金属キャビティの内部に前記スロットを励振する位置にアンテナ装置が配置され、
     前記アンテナ装置は、
     グランド導体が形成された基板と、
     前記グランド導体の外縁の一部に沿って設けられたグランド導体非形成領域と、
     前記グランド導体非形成領域の前記グランド導体の外縁に沿った方向の両端に接続され、前記グランド導体非形成領域を跨ぐように配置された、複数のキャパシタンス素子、複数の放射電極および単一または複数のグランド導体を含む直列回路と、
     第1端が給電回路に接続され、第2端が前記複数の放射電極に接続される給電線に分岐された伝送線路と、を備え、
     前記グランド導体非形成領域内の前記グランド導体に二つの前記放射電極が接続され、前記キャパシタンス素子は前記放射電極と放射電極との間に接続され、
     前記給電線に分岐される点は、前記複数の放射電極への前記給電線の接続点のうち外側の二点より内側にあることを特徴とする、電子機器。
    A metal cavity partially formed with an insulator or dielectric slot;
    An antenna device is disposed at a position for exciting the slot inside the metal cavity,
    The antenna device is
    A substrate on which a ground conductor is formed;
    A ground conductor non-formation region provided along a part of the outer edge of the ground conductor;
    A plurality of capacitance elements, a plurality of radiation electrodes, and a single or a plurality of capacitance elements, which are connected to both ends of the ground conductor non-formation region along the outer edge of the ground conductor and are disposed so as to straddle the ground conductor non-formation region A series circuit including a ground conductor of
    A transmission line branched to a feeder line having a first end connected to the feeder circuit and a second end connected to the plurality of radiation electrodes;
    Two radiation electrodes are connected to the ground conductor in the ground conductor non-forming region, and the capacitance element is connected between the radiation electrode and the radiation electrode,
    The electronic device according to claim 1, wherein a point branched to the power supply line is located on an inner side of two outer points of connection points of the power supply lines to the plurality of radiation electrodes.
  5.  前記スロットは空気より誘電率の高い誘電体で充填されている、請求項4に記載の電子機器。 The electronic device according to claim 4, wherein the slot is filled with a dielectric having a dielectric constant higher than that of air.
PCT/JP2012/063437 2011-06-06 2012-05-25 Antenna device, and electronic device WO2012169370A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280023770.7A CN103548039B (en) 2011-06-06 2012-05-25 Antenna assembly and electronic equipment
JP2013519440A JP5700122B2 (en) 2011-06-06 2012-05-25 ANTENNA DEVICE AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011126317 2011-06-06
JP2011-126317 2011-06-06

Publications (1)

Publication Number Publication Date
WO2012169370A1 true WO2012169370A1 (en) 2012-12-13

Family

ID=47295938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063437 WO2012169370A1 (en) 2011-06-06 2012-05-25 Antenna device, and electronic device

Country Status (3)

Country Link
JP (1) JP5700122B2 (en)
CN (1) CN103548039B (en)
WO (1) WO2012169370A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134772A (en) * 2015-01-20 2016-07-25 三菱マテリアル株式会社 Antenna device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9948268B2 (en) * 2015-02-09 2018-04-17 Samsung Electro-Mechanics Co., Ltd. Multiband antenna having external conductor and electronic device including the same
JP7342977B2 (en) * 2020-01-30 2023-09-12 株式会社村田製作所 antenna device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182438A (en) * 2007-01-24 2008-08-07 Nec Tokin Corp Radio tag
JP2008294847A (en) * 2007-05-25 2008-12-04 Toshiba Tec Corp High-frequency circuit and radio tag
JP2009044715A (en) * 2007-07-18 2009-02-26 Murata Mfg Co Ltd Wireless ic device and electronic apparatus
WO2011062238A1 (en) * 2009-11-20 2011-05-26 株式会社村田製作所 Antenna device and mobile communication terminal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453053B (en) * 2007-11-28 2012-09-26 智易科技股份有限公司 Dual-frequency antenna
CN101997162A (en) * 2009-08-25 2011-03-30 富士康(昆山)电脑接插件有限公司 Multi-frequency antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182438A (en) * 2007-01-24 2008-08-07 Nec Tokin Corp Radio tag
JP2008294847A (en) * 2007-05-25 2008-12-04 Toshiba Tec Corp High-frequency circuit and radio tag
JP2009044715A (en) * 2007-07-18 2009-02-26 Murata Mfg Co Ltd Wireless ic device and electronic apparatus
WO2011062238A1 (en) * 2009-11-20 2011-05-26 株式会社村田製作所 Antenna device and mobile communication terminal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134772A (en) * 2015-01-20 2016-07-25 三菱マテリアル株式会社 Antenna device

Also Published As

Publication number Publication date
JPWO2012169370A1 (en) 2015-02-23
CN103548039B (en) 2016-08-17
CN103548039A (en) 2014-01-29
JP5700122B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
KR100707242B1 (en) Dielectric chip antenna
FI119009B (en) Multiple-band antenna
US7564413B2 (en) Multi-band antenna and mobile communication terminal having the same
US6980154B2 (en) Planar inverted F antennas including current nulls between feed and ground couplings and related communications devices
JP3658639B2 (en) Surface mount type antenna and radio equipped with the antenna
JP5009240B2 (en) Multiband antenna and wireless communication terminal
JP2004088218A (en) Planar antenna
US20090289858A1 (en) antenna device , a portable radio communication device comprising such antenna device, and a battery package for a portable radio communication device
JP2004266311A (en) Antenna
JPWO2004109857A1 (en) Antenna and electronic equipment using it
JP2011528519A (en) Antenna device
CN107134633B (en) Antenna and antenna module including the same
WO2006098089A1 (en) Antenna assembly and radio communication apparatus employing same
KR20110031985A (en) Antenna arrangement
JP2006512003A (en) Small volume antenna for portable radio equipment
KR20020011141A (en) Integrable dual-band antenna
JP2008177888A (en) Multi-frequency antenna
US10971812B2 (en) Broadband antenna system
KR102003710B1 (en) An antenna and portable terminal having the same
JP2010087752A (en) Multiband antenna
JP2009253959A (en) Multiband antenna system and wireless communication apparatus using the same
JP5700122B2 (en) ANTENNA DEVICE AND ELECTRONIC DEVICE
US9054426B2 (en) Radio apparatus and antenna device
JP4201274B2 (en) Multi-band microstrip antenna and radio system using the same
JP2010050548A (en) Antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519440

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797600

Country of ref document: EP

Kind code of ref document: A1