WO2012169275A1 - Method for fixing optical fiber, and method for manufacturing laser module - Google Patents

Method for fixing optical fiber, and method for manufacturing laser module Download PDF

Info

Publication number
WO2012169275A1
WO2012169275A1 PCT/JP2012/059151 JP2012059151W WO2012169275A1 WO 2012169275 A1 WO2012169275 A1 WO 2012169275A1 JP 2012059151 W JP2012059151 W JP 2012059151W WO 2012169275 A1 WO2012169275 A1 WO 2012169275A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
solder
solder preform
support member
preform
Prior art date
Application number
PCT/JP2012/059151
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 葛西
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2012169275A1 publication Critical patent/WO2012169275A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4238Soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0607Solder feeding devices
    • B23K3/0623Solder feeding devices for shaped solder piece feeding, e.g. preforms, bumps, balls, pellets, droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres

Definitions

  • the present invention relates to an optical fiber fixing method. More specifically, the present invention relates to a fixing method for fixing an optical fiber to a support member using solder. The present invention also relates to a method for manufacturing a laser module.
  • Laser devices using laser elements such as semiconductor laser (LD) elements have been commercialized and are widely used in the field of optical communications.
  • a laser module that combines a laser element and an optical fiber.
  • it is required to combine the laser element and the optical fiber so as to be optically coupled with a high optical coupling rate.
  • the emission surface of the laser element (the surface from which the laser light is emitted) and the tip of the optical fiber so that more laser light emitted from the laser element is introduced into the optical fiber. Therefore, it is important to accurately maintain the positions of the emission surface of the laser element and the tip of the optical fiber in the aligned state.
  • high-power semiconductor laser elements such as those for processing have become widespread.
  • these laser elements have a low coupling efficiency with an optical fiber, the laser device is damaged by leakage light. The alignment with the fiber is extremely important.
  • the optical fiber is aligned with the laser element fixed on the laser mount, and the optical fiber is fixed on the fiber mount (support member) in the aligned state. For this reason, it is required to fix the optical fiber on the fiber mount while maintaining high positional accuracy.
  • Patent Document 1 discloses a solder preform 200 in which a groove 212 is formed as shown in FIG.
  • FIG. 10B is a front view of the solder preform 200 disposed on the upper surface (not shown) of the fiber mount and the optical fiber 214 disposed in the groove 212 of the solder preform 200.
  • the laser preform 215 is irradiated onto the solder preform 200, and the solder preform 200 is melted and re-solidified, whereby the optical fiber 214 is fixed to the fiber mount.
  • the groove 212 is formed so that the optical fiber 214 does not contact the body 201 of the solder preform 200. Accordingly, the optical fiber 214 is not brought into contact with or pulled by the body 201 before the solder preform 200 is melted by irradiating the laser 215, so that the position when the optical fiber 214 is fixed on the laser mount. The generation of errors can be suppressed. Further, since the laser beam 215 is not directly irradiated onto the optical fiber 214, the optical fiber 214 can be prevented from being damaged by the laser beam 215.
  • Patent Document 2 discloses a method of fixing an optical fiber 2 to a fixing base 6 (corresponding to a fiber mount) in which an upper concave structure 63 and a lower concave structure 62 are formed, as shown in FIG. Yes.
  • this fixing method first, in a state where the optical fiber 2 is fitted in the lower concave structure 62, the solder 3 is placed on the upper concave structure 63, and the laser beam 4 is irradiated so as not to directly irradiate the optical fiber 2. Also in this fixing method, since the laser beam 4 is not directly irradiated onto the optical fiber 2, the optical fiber 2 can be prevented from being damaged by the laser beam 4. Further, as shown in FIG. 11B, since the optical fiber 2 is fixed in a state of being positioned by the lower concave structure 62, occurrence of a position error when the optical fiber 2 is fixed to the fixing base 6 is suppressed. be able to.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2005-122129 (published May 12, 2005)” Japanese Patent Publication “Japanese Patent Laid-Open Publication No. 62-19811 (published Jan. 28, 1987)”
  • At least one of the solder preform and the fiber mount is processed into a special shape, thereby suppressing the occurrence of a position error that may occur when the optical fiber is fixed on the fiber mount. It was.
  • Au80Sn20 is most frequently used as a solder for fixing an optical fiber in a high-power laser module whose demand is increasing in recent years.
  • Au80Sn20 is a high-melting-point lead-free solder and has a high reliability of solder fixing.
  • it has the aspect that brittle collapse is likely to occur and processing is difficult. For this reason, as described in Patent Document 1, it is not easy to form the groove 212 in the solder preform 200, which causes problems such as a decrease in yield and an increase in cost.
  • Patent Document 2 requires a step of forming a groove on the upper surface of the fiber mount before the step of fixing the optical fiber to the fiber mount, thereby increasing the number of steps and increasing the cost. I will be invited.
  • solder is usually used in a fluxless manner so as not to reduce the reliability of the laser element.
  • fluxless since fluxless is used, an oxide film and solder originally present on the solder surface are not present.
  • the oxide film formed on the surface of the solder when melted cannot be removed, the wettability of the solder is lowered, and the reliability of the solder fixing is easily lowered.
  • Patent Document 1 and Patent Document 2 since the laser beam is directly irradiated onto the solder, the solder surface temperature at the location where the laser beam is hit is locally much higher than the melting point, The formation rate of the oxide film is remarkably increased. Therefore, there is a problem that solder wettability cannot be improved and it is not easy to perform highly reliable solder fixing.
  • the present invention has been made based on the knowledge obtained by the inventor in view of the above problems, and an object thereof is an optical fiber capable of performing highly reliable solder fixing while suppressing cost. It is to realize the fixing method.
  • an optical fiber fixing method is an optical fiber fixing method for fixing an optical fiber to a support member, and the optical fiber is disposed along an upper surface of the support member.
  • a holding step for holding, a placing step for placing a solder preform made of fluxless solder on the upper surface of the support member, and a laser light irradiation region set on the surface of the support member is irradiated with laser light.
  • a melting step of melting the solder preform by heat conduction from the laser beam irradiation region, and the solder preform placed in the placing step is held in the holding step.
  • the distance between the surface of the optical fiber that is located on one side of the optical fiber and held in the holding step and the upper surface of the support member is H, and the optical fiber
  • the diameter is D, when the height of the solder preform is placed at the top the placing step is L, and satisfies the H + D ⁇ L, it is characterized in that.
  • the solder preform placed in the placing step is sufficient if it is located on one side of the optical fiber held in the holding step.
  • the shape of the solder preform need not be a shape that straddles the optical fiber, and there is no need to form a recess in the support member. For this reason, the shape of the solder preform and the fiber mount can be simplified. Therefore, the processing cost of the solder preform and the support member can be saved, and the cost is suppressed.
  • the solder preform made of fluxless solder since the solder preform made of fluxless solder is used, the reliability is lowered due to the flux adsorbing to the optical fiber and the optical element that can be arranged around the optical fiber. And soldering can be performed.
  • the laser light irradiation region set on the surface of the support member is irradiated with laser light, and the solder preform is melted by heat conduction from the laser light irradiation region. Therefore, the solder oxidation that may occur when the laser beam is directly irradiated onto the solder preform is not caused, and the reliability of the solder fixing is improved. Furthermore, since the molten solder is supplied onto the surface of the heated support member, the wettability of the solder is increased as compared with the case where the support member is not heated. Solder fixation can be performed.
  • the solder preform formed as a single piece is melted, so that the solder to be melted is compared with a method of melting only a part of the thread solder wound around the reel, for example. Can be kept at the desired amount. For this reason, highly reliable solder fixation is possible. Further, since a device for sending out the thread solder wound around the reel is unnecessary, the cost can be suppressed.
  • the distance between the surface of the optical fiber held in the holding step and the upper surface of the support member is H
  • the diameter of the optical fiber is D
  • the solder plug placed in the placing step is used.
  • the distance between the surface of the optical fiber and the upper surface of the support member refers to the shortest distance from the surface of the optical fiber to the upper surface of the support member.
  • “holding the optical fiber along the upper surface of the support member” may hold the optical fiber separated from the surface of the support member, or may hold the optical fiber of the support member. It means that it may be held in contact with the surface.
  • a method for manufacturing a laser module according to the present invention is a method for manufacturing a laser module including an optical fiber and a support member for supporting the optical fiber, and uses the optical fiber fixing method. The optical fiber and the support member are fixed.
  • optical fiber fixing method of the present invention it is possible to stably perform highly reliable solder fixing while suppressing costs.
  • FIGS. 5A and 5B are diagrams for explaining an optical fiber fixing method according to an embodiment of the present invention, wherein FIGS. It is a figure which shows a mode that solder preform melt
  • FIGS. 5A and 5B are diagrams for explaining an optical fiber fixing method according to an embodiment of the present invention, in which FIGS.
  • FIGS. 5A and 5B show the shape of a solder preform, respectively.
  • 3 is a real photograph showing the shape of solder after re-solidification in the case of “Cylinder 1”, “Cylinder 2”, “Plate 1”, and “Plate 2” shown in FIG.
  • FIGS. 8A and 8B are diagrams for explaining an optical fiber fixing method according to a modification of the embodiment of the present invention, wherein FIGS. It is a figure which shows a procedure.
  • FIGS. 5A and 5B are diagrams for explaining an optical fiber fixing method according to a modification of the embodiment of the present invention, wherein FIGS.
  • FIGS. 1 to 9 An embodiment of the present invention will be described with reference to FIGS. 1 to 9 as follows.
  • main surface two surfaces having the largest area are also expressed as “main surface”, and four surfaces excluding the main surface are also expressed as “end surfaces”.
  • end surfaces When it is necessary to distinguish two main surfaces from each other, one main surface is expressed as “upper surface” and the other main surface is expressed as “lower surface”.
  • the upper surface refers to the main surface facing upward when the apparatus including the plate member is in a normal installation state
  • the lower surface is when the apparatus including the plate member is in a normal installation state. Refers to the main surface facing downward.
  • FIG. 1A is a diagram for explaining an optical fiber fixing method according to this embodiment, and is a perspective view showing the arrangement of the optical fiber 101, the fiber mount 102, and the solder preform 103.
  • FIG. 1A the optical fiber 101 is held along the upper surface of the fiber mount 102, and a solder preform 103 is placed on one side thereof.
  • the optical fiber fixing method is a method for fixing an optical fiber (optical fiber 101 in FIG. 1A) to a support member (fiber mount 102 in FIG. 1A) using solder. It is.
  • the specific material of the fiber mount 102 is not limited to this embodiment, but is preferably a material that easily absorbs the wavelength of a laser beam 300 to be described later, and is a material having low thermal conductivity. preferable. Examples of such materials include ZrO 2 (zirconia). By using such a material having low thermal conductivity, there is an advantage that the solder can be fixed easily.
  • materials having high thermal conductivity such as Cu (copper), AlN (aluminum nitride), and CuW (copper tungsten) can also be used.
  • Cu copper
  • AlN aluminum nitride
  • CuW copper tungsten
  • solder preform 103 The specific composition of the solder preform 103 is not limited to this embodiment, but high melting point lead-free solder such as Au80Sn20 (gold 80 tin 20) can be used. Further, as the solder preform 103, it is preferable to use fluxless solder. Thereby, solder fixation can be performed without inviting a decrease in reliability due to the flux adsorbing to the optical fiber 101 and the optical elements that can be disposed in the vicinity thereof.
  • FIG. 1B is a cross-sectional view of the optical fiber 101, the fiber mount 102, and the solder preform 103 along a plane perpendicular to the extending direction of the optical fiber 101.
  • H represents the shortest distance from the upper surface of the fiber mount 102 to the surface of the optical fiber 101
  • D represents the diameter of the optical fiber 101
  • L represents a solder preform.
  • the height of 103 that is, the length of the solder preform 103 along the direction orthogonal to the upper surface of the fiber mount 102 is shown.
  • H + D ⁇ L is satisfied in the present embodiment. Since this inequality is satisfied, as will be described later, the molten solder flows vigorously between the optical fiber 101 and the fiber mount 102 due to gravity, and wraps the optical fiber 101.
  • U in FIG. 1B represents a separation distance between the optical fiber 101 and the solder preform 103.
  • D 125 ⁇ m (micrometer)
  • H 150 ⁇ m
  • U 100 to 150 ⁇ m.
  • the optimum value of U can generally depend on the size of the metallized region set on the upper surface of the fiber mount 102 described later.
  • U 100 to 150 ⁇ m is suitable when the size of the metallized region is 0.8 mm ⁇ 0.8 mm.
  • the value of U is larger. Also good.
  • a metallized region is set on the upper surface of the fiber mount 102, and a metallized layer 102a is attached to the metallized region.
  • a metallized layer 101a is deposited on a portion of the surface of the optical fiber 101 corresponding to the metallized region.
  • the metallized layers 102a and 101a are both metal thin films, and are formed using, for example, a sputtering method or electroless plating.
  • the material which comprises a metallization layer does not limit this embodiment, Au (gold), Pt (platinum), Ti (titanium), Ni (nickel) etc. can be used.
  • Au gold
  • Pt platinum
  • Ti titanium
  • Ni nickel
  • the thickness of the metallized layers 102a and 101a is sufficiently smaller than D and L described above.
  • a laser beam irradiation region 102b is set on the upper surface of the fiber mount 102, and the laser beam 300 is irradiated to the laser beam irradiation region 102b. Is done. Due to the heat conduction from the laser irradiation region 102b that has been irradiated with the laser beam 300 and the temperature has increased, the temperature of the lower portion of the solder preform 103 rises and the solder preform 103 melts.
  • the laser beam is not directly irradiated onto the solder preform, the oxidation of the solder is suppressed and the optical fiber can be fixed with high reliability. Further, it is possible to reduce a risk that the optical fiber is accidentally irradiated with the laser light and the optical fiber is damaged. Furthermore, since the solder preform is melted by heat conduction from the laser beam irradiation region 102b, the melting temperature can be easily controlled, and the yield can be improved. Furthermore, since the molten solder is supplied onto the surface of the heated fiber mount 102, the wettability of the solder is increased as compared with the case where the fiber mount 102 is not heated. Soldering can be performed.
  • the amount of solder to be melted is smaller than, for example, a method in which only a part of thread solder wound on a reel is melted.
  • the desired amount can be kept. Thereby, highly reliable solder fixation can be performed. Further, since a device for sending out the thread solder wound around the reel is unnecessary, the cost can be suppressed.
  • the laser light irradiation region 102b is set on the upper surface of the fiber mount 102 on the side opposite to the optical fiber 101 when viewed from the solder preform 103. Is preferred. Thereby, the heat generated by the laser beam can be effectively used to melt the solder.
  • FIG. 2 is a flowchart showing steps included in the optical fiber fixing method according to the present embodiment. As shown in FIG. 2, the optical fiber fixing method according to the present embodiment includes the following steps.
  • Step S101 The optical fiber 101 is held along the upper surface of the fiber mount 102.
  • Step S102 The solder preform 103 is placed on the upper surface of the fiber mount 102.
  • Step S103 The laser irradiation region 102b on the surface of the fiber mount 102 is irradiated with the laser beam 300, and the solder preform 103 is melted by heat conduction from the laser irradiation region 102b whose temperature has been increased by irradiation with the laser beam 300.
  • the optical fiber 101 is held along the upper surface of the fiber mount 102 (step S101), and then the solder preform 103 is placed on the upper surface of the fiber mount 102 ( The optical fiber 101 may be held along the upper surface of the fiber mount 102 (step S101) after the solder preform 103 is placed on the upper surface of the fiber mount 102 (step S102). .
  • the optical fiber fixing method according to the present embodiment is performed before performing the step S103.
  • a step of aligning the optical fiber 101 with respect to the laser element may be included.
  • the solder preform 103 placed in step S102 is positioned on one side of the optical fiber 101 held in step S101, as shown in FIGS.
  • FIG. 3 (a) to 3 (e) show how the solder preform melts and re-solidifies as time elapses after the laser irradiation region 102b on the surface of the fiber mount 102 is irradiated in step S103.
  • FIG. 3 (a) to 3 (e) show how the solder preform melts and re-solidifies as time elapses after the laser irradiation region 102b on the surface of the fiber mount 102 is irradiated in step S103.
  • the temperature below the solder preform 103 exceeds the melting point due to heat conduction from the laser irradiation region 102b.
  • the solder preform 103 starts to melt from the lower part.
  • the melted lower part begins to spread along the upper surface of the metallized layer 102a.
  • the temperature of the upper portion of the solder preform 103 exceeds the melting point due to heat conduction, and the upper portion is directed to the fiber mount 102 due to gravity while changing to a spherical shape due to the influence of surface tension, as shown in FIG. Fall.
  • solder preform 103 is melted.
  • the melted solder begins to be deformed into a substantially hemispherical shape to minimize its surface area due to the influence of surface tension, and starts to envelop the optical fiber 101 as shown in FIG.
  • the solder that wraps around the optical fiber 101 and becomes substantially hemispherical is solidified again when the heating by the laser beam 300 is finished and the temperature of the fiber mount 102 falls below the solder melting point. .
  • solder 103 ' the re-solidified solder
  • solder preform 103 a preferable shape and size of the solder preform 103 will be described with reference to FIGS. 4 (a) to (b) to FIGS. 6 (a) to (d).
  • the preferable shape and size of the solder preform 103 described below are based on the inventor's knowledge obtained by repeating experiments.
  • FIGS. 4A to 4B show specific examples of the shape of the solder preform 103 in the present embodiment.
  • a plate-like thing may be used as the solder preform 103
  • a cylindrical thing may be used as shown in FIG. 4B.
  • the shape and size of the solder preform 103 satisfy the following (Condition 1) and (Condition 2).
  • C (Condition 2) C ⁇ H> Th2
  • FIG. 5 is a table showing each value of size, C ⁇ H (mm), and S ⁇ V (mm ⁇ 1 ) for each shape (column 1, column 2, plate 1, plate 2) of the solder preform 103. It is.
  • the metallized area of the fiber mount 102 is approximately 0.8 mm ⁇ 0.8 mm.
  • “Cylinder 1” and “Plate 1” both satisfy Condition 1 and Condition 2.
  • “Cylinder 2” does not satisfy Condition 2
  • “Plate 2” does not satisfy Condition 1.
  • FIG. 6 is a real photograph showing the shape of solder after re-solidification in the case of “plate 2”.
  • 6A and 6C are top views of the solder
  • FIGS. 6B and 6D are perspective views of the solder.
  • the shape of the metallized region on the fiber mount 102 is a square.
  • the solder preform 103 remains unmelted, the movement of the optical fiber 101 when the solder re-solidifies cannot be controlled, and the fixing accuracy of the optical fiber 101 decreases.
  • the solder re-solidifies with the thermal stress (distortion) due to the influence of the unmelted portion of the solder preform 103 when the re-solidified solder is heated by the influence of leakage light or the like, The thermal stress is released and the optical fiber 101 is misaligned.
  • a problem becomes conspicuous when an optical fiber is fixed in a laser module using a semiconductor laser having a high output (specifically, for example, 5 W or more).
  • the shape of the solder preform 103 is “plate 2”
  • the shape of the solder after re-solidification is asymmetrical with respect to the extending direction of the optical fiber 101. End up. This is because the shape and size of the “plate 2” do not satisfy the condition 1. More specifically, since the surface area S is large although the volume V of the solder preform 103 is small, the wettability of the solder is lowered due to the influence of the oxide film formed on the surface of the solder, and the solder has an asymmetrical shape. This is because it resolidifies as it is.
  • the optical fiber 101 can be fixed to the fiber mount 102 while suppressing the occurrence of position errors.
  • FIG. 7 is a perspective view showing the whole image of the semiconductor laser module 1.
  • the semiconductor laser module 1 is a laser module attached to the end of the optical fiber 101, and includes a substrate 10, a CoS (Chip on Submount) 30, a fiber mount 102, and a case 50, as shown in FIG.
  • a part of the top plate and the side plate of the case 50 is omitted.
  • the optical fiber 101 is fixed to the upper surface of the fiber mount 102 by solder 103 'using the optical fiber fixing method according to this embodiment. As shown in FIG. 7, the optical fiber 101 is drawn into the semiconductor laser module 1 through an insertion pipe 51 formed in the case 50.
  • the optical fiber 101 is arranged so that the tip 101a processed into a wedge shape faces the end surface 33a of the semiconductor laser chip 33. Laser light emitted from the end face 33 a of the semiconductor chip 33 enters the optical fiber 101 from the tip 101 a and propagates through the optical fiber 101.
  • the substrate 10 is a bottom plate of the semiconductor laser module 1.
  • the substrate 10 a plate-like member having a rectangular main surface is used.
  • the substrate 10 functions as a heat sink for dissipating heat generated inside the semiconductor laser module 1 (particularly CoS 30) to the outside of the semiconductor laser module 1.
  • the substrate 10 is formed of a material having high thermal conductivity, for example, Cu (copper).
  • the CoS 30 and the fiber mount 102 are placed on the upper surface of the substrate 10.
  • the fiber mount 102 is arranged on the side from which the optical fiber 101 is drawn
  • the CoS 30 is arranged on the side opposite to the side from which the optical fiber 101 is drawn.
  • CoS 30 is obtained by integrating a laser mount 31 and a semiconductor laser chip 33.
  • the laser mount 31 is a support that supports the semiconductor laser chip 31.
  • a plate-shaped member having a rectangular main surface is used as the laser mount 31, and the lower surface of the laser mount 31 is parallel to the upper surface of the substrate 10, and The long side of the main surface is arranged so as to be parallel to the long side of the main surface of the submount 20.
  • the laser mount 31 is bonded to the upper surface of the substrate 10 by solder 62 that spreads between the lower surface of the laser mount 31 and the upper surface of the substrate 10.
  • a semiconductor laser chip 30 is placed on the upper surface of the laser mount 31.
  • the semiconductor laser chip 33 is a laser light source that emits laser light from its end face 33.
  • a high-power semiconductor laser mainly made of GaAs (gallium arsenide) and having a cavity length of 3 mm or more is used.
  • the semiconductor laser chip 33 is arranged so that its extending direction is parallel to the long side of the main surface of the laser mount 31, and is attached to the laser mount 31 via a CuW (copper tungsten) layer 32. It is joined.
  • the semiconductor laser chip 33 is connected to a circuit formed on the upper surface of the laser mount 31 via a wire 34, and is driven by a current supplied from this circuit.
  • step S103 described above is replaced with the following step S203.
  • Step S203 While applying a load toward the fiber mound 102 to the solder preform 103, the laser irradiation region 102b on the surface of the fiber mount 102 is irradiated with the laser beam 300, and the laser beam 300 is irradiated, so that the temperature rises.
  • the solder preform 103 is melted by heat conduction from the laser irradiation region 102b.
  • FIGS. 8A to 8C are diagrams showing a procedure of a process example in which a load is applied toward the fiber mound 102 with respect to the solder preform 103.
  • a solder guide 201 is used as shown in FIG.
  • the solder guide 201 is a jig used for placing the solder preform 103 on the upper surface of the fiber mount 102 and applying a load to the upper surface of the placed solder preform 103. It is comprised from the support part 201b.
  • a guide hole through which the solder preform 103 can pass is formed in the guide portion 201a.
  • the guide part 201 a is fixed to the fiber mount 102 by fitting the support part 201 a into a part of the case 50.
  • the solder preform 103 is dropped into the guide hole of the guide portion 201 a, and the solder preform 103 is placed at a predetermined position on the metallized region of the fiber mount 102.
  • a solder push rod 202 is inserted into the guide hole of the guide portion 201 a, and the load directed to the fiber mount 102 on the upper surface of the solder preform 103 through the solder push rod 202. Is applied.
  • the case 50 is set on the aligning device with the load applied to the fiber mount 102 applied to the upper surface of the solder preform 103, and after aligning, the laser irradiation area 102b The laser 300 is irradiated. As a result, the solder preform 103 is melted and re-solidified, whereby the optical fiber 101 is fixed to the upper surface of the fiber mount 102.
  • FIGS. 9A to 9E show how the solder preform melts and re-solidifies as time elapses after the laser irradiation region 102b on the surface of the fiber mount 102 is irradiated in step S203.
  • FIG. 9A to 9E show how the solder preform melts and re-solidifies as time elapses after the laser irradiation region 102b on the surface of the fiber mount 102 is irradiated in step S203.
  • the temperature below the solder preform 103 exceeds the melting point due to heat conduction from the laser irradiation region 102b.
  • the solder preform 103 starts to melt from the lower part.
  • the melted lower part begins to spread along the upper surface of the metallized layer 102a.
  • the solder preform 103 is pushed out toward the fiber mount 102.
  • the temperature of the upper part of the extruded solder preform 103 exceeds the melting point due to heat conduction, and the upper part changes into a spherical shape due to the influence of surface tension as shown in FIG. Fall towards the. In this way, the entire solder preform 103 is melted.
  • the melted solder starts to be deformed into a substantially hemispherical shape to minimize its surface area due to the influence of surface tension, and starts to envelop the optical fiber 101 as shown in FIG.
  • FIG. 9E the solder that wraps around the optical fiber 101 and becomes substantially hemispherical is solidified again when the heating by the laser beam 300 is finished and the temperature of the fiber mount 102 falls below the solder melting point. . Thereby, the optical fiber 101 is fixed on the fiber mount 102.
  • 9A to 9E exemplify a structure in which the lower end of the solder push rod 202 does not reach the upper surface of the fiber mount 102 and stops halfway, this is not intended to limit the present embodiment.
  • the lower end of the solder push rod 202 may once reach the upper surface of the fiber mount 102, the solder push rod 202 may be pulled upward when the solder is in a molten state, and then the laser 300 may be stopped to resolidify the solder. .
  • solder preform 103 to which a load is applied is pushed out toward the fiber mount 102, so that it is difficult for the solder preform 103 to remain undissolved as compared to the case where no load is applied.
  • the solder preform 103 to which a load is applied is pushed out toward the fiber mount 102, the internal flow and the surface flow generated in the solder after melting have a large flow velocity. For this reason, it is more difficult to form an oxide film on the surface of the solder than when no load is applied. Moreover, even if an oxide film is formed, the oxide film is broken by the flow that rises from the inside.
  • the solder 103 ′ after solidification is present in the extension of the optical fiber 101 as compared with the case where no load is applied because it is not easily affected by the oxide film that can be formed on the surface of the molten solder. Problems such as left-right asymmetry with respect to direction are less likely to occur.
  • the optical fiber fixing method is an optical fiber fixing method for fixing an optical fiber to a support member, and holds the optical fiber along the upper surface of the support member.
  • a melting step of melting the solder preform by heat conduction from the irradiation region, and the solder preform placed in the placing step is formed of the optical fiber held in the holding step.
  • the distance between the surface of the optical fiber held at the holding step and the upper surface of the support member is H, and the diameter of the optical fiber is D.
  • the placing step is L, and satisfies the H + D ⁇ L, it is characterized in that.
  • the solder preform placed in the placing step is sufficient if it is located on one side of the optical fiber held in the holding step.
  • the shape of the solder preform need not be a shape that straddles the optical fiber, and there is no need to form a recess in the support member. For this reason, the shape of the solder preform and the fiber mount can be simplified. Therefore, the processing cost of the solder preform and the support member can be saved, and the cost is suppressed.
  • the solder preform made of fluxless solder since the solder preform made of fluxless solder is used, the reliability is lowered due to the flux adsorbing to the optical fiber and the optical element that can be arranged around the optical fiber. And soldering can be performed.
  • the laser light irradiation region set on the surface of the support member is irradiated with laser light, and the solder preform is melted by heat conduction from the laser light irradiation region. Therefore, the solder oxidation that may occur when the laser beam is directly irradiated onto the solder preform is not caused, and the reliability of the solder fixing is improved. Furthermore, since the molten solder is supplied onto the surface of the heated support member, the wettability of the solder is increased as compared with the case where the support member is not heated. Solder fixation can be performed.
  • the solder preform formed as a single piece is melted, so that the solder to be melted is compared with a method of melting only a part of the thread solder wound around the reel, for example. Can be kept at the desired amount. For this reason, highly reliable solder fixation is possible. Further, since a device for sending out the thread solder wound around the reel is unnecessary, the cost can be suppressed.
  • the distance between the surface of the optical fiber held in the holding step and the upper surface of the support member is H
  • the diameter of the optical fiber is D
  • the solder plug placed in the placing step is used.
  • the distance between the surface of the optical fiber and the upper surface of the support member refers to the shortest distance from the surface of the optical fiber to the upper surface of the support member.
  • “holding the optical fiber along the upper surface of the support member” may hold the optical fiber separated from the surface of the support member, or may hold the optical fiber of the support member. It means that it may be held in contact with the surface.
  • the value obtained by dividing the surface area of the solder preform by the volume of the solder preform is less than 16.5 with the reciprocal of millimeter as a unit. preferable.
  • the optical fiber fixing method since the surface area is smaller than the volume of the solder preform, the influence of the oxide film formed on the surface of the molten solder in the melting step is suppressed, and the solidified solder The shape is symmetrical with respect to the extending direction of the optical fiber. For this reason, the optical fiber can be fixed to the support member with high positional accuracy.
  • the value obtained by dividing the contact area where the solder preform and the supporting member are in contact with each other by the height of the solder preform is 0 in millimeters. Greater than .05.
  • the contact area between the solder preform and the support member is larger than the height of the solder preform.
  • the solder preform can be sufficiently melted by heat conduction from the irradiation region. For this reason, the unmelted solder preform does not occur, and the optical fiber can be fixed to the support member with high positional accuracy.
  • the melting step melts the solder preform while applying a load toward the support member with respect to the solder preform.
  • the internal flow and the surface flow generated in the solder after melting have a large flow velocity by melting the solder preform while applying a load to the solder preform. For this reason, compared with the case where a load is not applied, an oxide film is hard to be formed on the surface of the molten solder. Moreover, even if an oxide film is formed, the oxide film is broken by the flow that rises from the inside. Thus, according to the above optical fiber fixing method, the influence of the oxide film that can be formed on the surface of the molten solder is further suppressed, and the optical fiber is fixed to the support member with high positional accuracy. Can do.
  • the laser light irradiation region is set on the upper surface of the support member on the side opposite to the optical fiber as viewed from the solder preform. .
  • the optical fiber is mistakenly irradiated with the laser light as compared with the case where the laser light irradiation region is set on the same side as the optical fiber when viewed from the solder preform.
  • the risk of damaging the solder preform can be reduced, and the heat generated by the laser beam can be effectively used to melt the solder preform.
  • the present invention can be suitably applied to fix an optical fiber to a fiber mount. Moreover, it can apply suitably for the fixing process of the optical fiber at the time of manufacturing a semiconductor laser module.

Abstract

A method for fixing an optical fiber according to the present invention includes a step (S103) for melting a solder preform (103) located on one side of an optical fiber (101) by means of heat transfer from a laser irradiated area (102b) on a fiber mount (102), where the distance (H) between the surface of the optical fiber (101) and the upper surface of the fiber mount (102), the diameter (D) of the optical fiber (101), and the height (L) of the solder preform (103) satisfy the following formula: H + D < L.

Description

光ファイバ固定方法、及びレーザモジュールの製造方法Optical fiber fixing method and laser module manufacturing method
 本発明は、光ファイバの固定方法に関する。より具体的には、光ファイバを支持部材に対して半田を用いて固定する固定方法に関する。また、レーザモジュールの製造方法に関する。 The present invention relates to an optical fiber fixing method. More specifically, the present invention relates to a fixing method for fixing an optical fiber to a support member using solder. The present invention also relates to a method for manufacturing a laser module.
 半導体レーザ(LD;Laser Diode)素子等のレーザ素子を用いたレーザ装置は商品化され、光通信の分野に普及している。このようなレーザ装置の一例として、レーザ素子と光ファイバとを組み合わせたレーザモジュール(laser module)がある。このようなレーザモジュールにおいては、レーザ素子と光ファイバとを高い光結合率で光結合するように組み合わせることが求められる。 Laser devices using laser elements such as semiconductor laser (LD) elements have been commercialized and are widely used in the field of optical communications. As an example of such a laser apparatus, there is a laser module that combines a laser element and an optical fiber. In such a laser module, it is required to combine the laser element and the optical fiber so as to be optically coupled with a high optical coupling rate.
 このため、このようなレーザモジュールにおいては、レーザ素子から出射されるレーザ光がより多く光ファイバに導入されるよう、レーザ素子の出射面(レーザ光を出射する面)と光ファイバの先端部との位置合わせを正確に行うと共に、レーザ素子の出射面および光ファイバの先端部の位置を、位置合わせされた状態に正確に保つことが重要になる。特に近年、加工用など高出力の半導体レーザ素子が普及してきたが、これらのレーザ素子は、光ファイバとの結合効率が低いと漏れ光によってレーザ装置が損傷を受けてしまうので、レーザ素子と光ファイバとの位置合わせが極めて重要である。 For this reason, in such a laser module, the emission surface of the laser element (the surface from which the laser light is emitted) and the tip of the optical fiber so that more laser light emitted from the laser element is introduced into the optical fiber. Therefore, it is important to accurately maintain the positions of the emission surface of the laser element and the tip of the optical fiber in the aligned state. Particularly in recent years, high-power semiconductor laser elements such as those for processing have become widespread. However, since these laser elements have a low coupling efficiency with an optical fiber, the laser device is damaged by leakage light. The alignment with the fiber is extremely important.
 通常、レーザマウント上に固着されたレーザ素子に対して、光ファイバを位置合わせし、位置合わせした状態で、光ファイバをファイバマウント(支持部材)上に固着する。このため、光ファイバをファイバマウント上に位置精度を高く保ったまま固着することが求められる。 Normally, the optical fiber is aligned with the laser element fixed on the laser mount, and the optical fiber is fixed on the fiber mount (support member) in the aligned state. For this reason, it is required to fix the optical fiber on the fiber mount while maintaining high positional accuracy.
 特許文献1には、図10(a)に示すように、溝212が形成されたハンダプリフォーム200が開示されている。図10(b)は、ファイバマウントの上面(不図示)に配置されたこのハンダプリフォーム200、及び、ハンダプリフォーム200の溝212内に配置された光ファイバ214の正面図である。この状態でレーザ215がハンダプリフォーム200に照射され、ハンダプリフォーム200が溶融し再凝固することによって光ファイバ214がファイバマウントに固着される。 Patent Document 1 discloses a solder preform 200 in which a groove 212 is formed as shown in FIG. FIG. 10B is a front view of the solder preform 200 disposed on the upper surface (not shown) of the fiber mount and the optical fiber 214 disposed in the groove 212 of the solder preform 200. In this state, the laser preform 215 is irradiated onto the solder preform 200, and the solder preform 200 is melted and re-solidified, whereby the optical fiber 214 is fixed to the fiber mount.
 図10(b)に示すように、溝212は、光ファイバ214がハンダプリフォーム200のボディ201に接触することがないように形成されている。これにより、レーザ215を照射し半田プリフォーム200が溶融する前に、光ファイバ214がボディ201に接触したり引っ張られたりすることがないので、光ファイバ214をレーザマウント上に固着する際の位置誤差の発生が抑制され得る。また、レーザ光215が光ファイバ214に直接照射されることがないので、光ファイバ214がレーザ光215によって損傷することを防ぐことができる。 As shown in FIG. 10B, the groove 212 is formed so that the optical fiber 214 does not contact the body 201 of the solder preform 200. Accordingly, the optical fiber 214 is not brought into contact with or pulled by the body 201 before the solder preform 200 is melted by irradiating the laser 215, so that the position when the optical fiber 214 is fixed on the laser mount. The generation of errors can be suppressed. Further, since the laser beam 215 is not directly irradiated onto the optical fiber 214, the optical fiber 214 can be prevented from being damaged by the laser beam 215.
 特許文献2には、図11(a)に示すように、上部凹構63及び下部凹構62が形成された固定台6(ファイバマウントに対応)への光ファイバ2の固定方法が開示されている。この固定方法においては、まず、下部凹構62に光ファイバ2を嵌め込んだ状態で、上部凹構63に半田3を載置し、光ファイバ2に直射しないようレーザ光4を照射する。この固定方法においても、レーザ光4が光ファイバ2に直接照射されることがないので、光ファイバ2がレーザ光4によって損傷することを防ぐことができる。また、図11(b)に示すように、光ファイバ2が下部凹構62によって位置決めされた状態で固着されるので、光ファイバ2を固定台6に固定する際の位置誤差の発生を抑制することができる。 Patent Document 2 discloses a method of fixing an optical fiber 2 to a fixing base 6 (corresponding to a fiber mount) in which an upper concave structure 63 and a lower concave structure 62 are formed, as shown in FIG. Yes. In this fixing method, first, in a state where the optical fiber 2 is fitted in the lower concave structure 62, the solder 3 is placed on the upper concave structure 63, and the laser beam 4 is irradiated so as not to directly irradiate the optical fiber 2. Also in this fixing method, since the laser beam 4 is not directly irradiated onto the optical fiber 2, the optical fiber 2 can be prevented from being damaged by the laser beam 4. Further, as shown in FIG. 11B, since the optical fiber 2 is fixed in a state of being positioned by the lower concave structure 62, occurrence of a position error when the optical fiber 2 is fixed to the fixing base 6 is suppressed. be able to.
日本国公開特許公報「特開2005-122129号公報(2005年5月12日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-122129 (published May 12, 2005)” 日本国公開特許公報「特開昭62-19811号公報(1987年1月28日公開)」Japanese Patent Publication “Japanese Patent Laid-Open Publication No. 62-19811 (published Jan. 28, 1987)”
 上述のように、従来、半田プリフォーム及びファイバマウントの少なくとも何れかを特殊な形状に加工することによって、光ファイバをファイバマウント上に固定する際に生じ得る位置誤差の発生の抑制が図られていた。 As described above, conventionally, at least one of the solder preform and the fiber mount is processed into a special shape, thereby suppressing the occurrence of a position error that may occur when the optical fiber is fixed on the fiber mount. It was.
 一方で、近年需要が高まっている高出力のレーザモジュールにおいては、光ファイバを固定する半田としてAu80Sn20が最も頻繁に用いられている。Au80Sn20は高融点の鉛フリー半田であり、半田固定の信頼性が高い。ただし、脆性崩壊を起こし易く加工が難しいという側面を有している。このため、特許文献1に記載のように、ハンダプリフォーム200に溝212を形成することは容易なことではなく、歩留まりの低下やコストの増大といった問題を招来してしまう。 On the other hand, Au80Sn20 is most frequently used as a solder for fixing an optical fiber in a high-power laser module whose demand is increasing in recent years. Au80Sn20 is a high-melting-point lead-free solder and has a high reliability of solder fixing. However, it has the aspect that brittle collapse is likely to occur and processing is difficult. For this reason, as described in Patent Document 1, it is not easy to form the groove 212 in the solder preform 200, which causes problems such as a decrease in yield and an increase in cost.
 また、特許文献2に記載の方法では、光ファイバをファイバマウントに固着する工程の前に、ファイバマウントの上面に溝を形成する工程が必要になるため、工程数が増大し、コストの増大を招来してしまう。 In addition, the method described in Patent Document 2 requires a step of forming a groove on the upper surface of the fiber mount before the step of fixing the optical fiber to the fiber mount, thereby increasing the number of steps and increasing the cost. I will be invited.
 また、半導体レーザモジュールにおいては、レーザ素子の信頼性を低下させることがないよう、通常、半田はフラックスレスで用いられるが、フラックスレスであることにより、半田表面に元々存在する酸化膜および半田が溶融した際に半田の表面に形成される酸化膜を除去できず、半田の濡れ性が低下し、半田固定の信頼性が低下し易いという問題がある。特許文献1及び特許文献2に開示された技術では、レーザ光を直接半田に照射するので、レーザ光が当たっている箇所の半田表面温度が局所的に融点よりも格段に高くなり、その部分の酸化膜の形成速度が著しく上昇する。したがって半田の濡れ性を向上させることができず、信頼性の高い半田固定を行うことが容易ではないという問題がある。 Also, in a semiconductor laser module, solder is usually used in a fluxless manner so as not to reduce the reliability of the laser element. However, since fluxless is used, an oxide film and solder originally present on the solder surface are not present. There is a problem that the oxide film formed on the surface of the solder when melted cannot be removed, the wettability of the solder is lowered, and the reliability of the solder fixing is easily lowered. In the techniques disclosed in Patent Document 1 and Patent Document 2, since the laser beam is directly irradiated onto the solder, the solder surface temperature at the location where the laser beam is hit is locally much higher than the melting point, The formation rate of the oxide film is remarkably increased. Therefore, there is a problem that solder wettability cannot be improved and it is not easy to perform highly reliable solder fixing.
 本発明は、上記の問題に鑑みて、発明者によって得られた知見に基づいてなされたものであり、その目的は、コストを抑制しつつ、信頼性の高い半田固定を行うことのできる光ファイバ固定方法を実現することにある。 The present invention has been made based on the knowledge obtained by the inventor in view of the above problems, and an object thereof is an optical fiber capable of performing highly reliable solder fixing while suppressing cost. It is to realize the fixing method.
 上記の課題を解決するために、本発明に係る光ファイバ固定方法は、光ファイバを支持部材に固定するための光ファイバ固定方法であって、上記光ファイバを、上記支持部材の上面に沿って保持する保持ステップと、上記支持部材の上面に、フラックスレス半田よりなる半田プリフォームを載置する載置ステップと、上記支持部材の表面上に設定されたレーザ光照射領域にレーザ光を照射し、該レーザ光照射領域からの熱伝導によって上記半田プリフォームを溶融させる溶融ステップとを含んでおり、上記載置ステップにて載置された上記半田プリフォームは、上記保持ステップにて保持された上記光ファイバの片脇に位置し、上記保持ステップにて保持された上記光ファイバの表面と上記支持部材の上面との距離をHとし、上記光ファイバの直径をDとし、上記載置ステップにて載置された上記半田プリフォームの高さをLとしたとき、H+D<Lを満たしている、ことを特徴としている。 In order to solve the above problems, an optical fiber fixing method according to the present invention is an optical fiber fixing method for fixing an optical fiber to a support member, and the optical fiber is disposed along an upper surface of the support member. A holding step for holding, a placing step for placing a solder preform made of fluxless solder on the upper surface of the support member, and a laser light irradiation region set on the surface of the support member is irradiated with laser light. A melting step of melting the solder preform by heat conduction from the laser beam irradiation region, and the solder preform placed in the placing step is held in the holding step. The distance between the surface of the optical fiber that is located on one side of the optical fiber and held in the holding step and the upper surface of the support member is H, and the optical fiber The diameter is D, when the height of the solder preform is placed at the top the placing step is L, and satisfies the H + D <L, it is characterized in that.
 上記の光ファイバ固定方法によれば、上記載置ステップにて載置された上記半田プリフォームは、上記保持ステップにて保持された上記光ファイバの片脇に位置するものであれば足りるので、上記半田プリフォームの形状を上記光ファイバを跨ぐような形状にする必要もなく、上記支持部材に凹部を形成する必要もない。このため、上記半田プリフォーム及び上記ファイバマウントの形状を単純なものとすることができる。したがって、上記半田プリフォーム及び上記支持部材の加工費を節約することができるので、コストが抑制される。 According to the optical fiber fixing method, the solder preform placed in the placing step is sufficient if it is located on one side of the optical fiber held in the holding step. The shape of the solder preform need not be a shape that straddles the optical fiber, and there is no need to form a recess in the support member. For this reason, the shape of the solder preform and the fiber mount can be simplified. Therefore, the processing cost of the solder preform and the support member can be saved, and the cost is suppressed.
 また、上記の光ファイバ固定方法によれば、フラックスレス半田よりなる半田プリフォームを用いるので、光ファイバ及びその周辺に配置され得る光学素子にフラックスが吸着することによる信頼性の低下を招来することなく、半田固定を行うことができる。 Further, according to the above-described optical fiber fixing method, since the solder preform made of fluxless solder is used, the reliability is lowered due to the flux adsorbing to the optical fiber and the optical element that can be arranged around the optical fiber. And soldering can be performed.
 また、上記の光ファイバ固定方法によれば、上記支持部材の表面上に設定されたレーザ光照射領域にレーザ光を照射し、該レーザ光照射領域からの熱伝導によって上記半田プリフォームを溶融させるので、半田プリフォームに直接レーザ光を照射する場合に生じ得る半田の酸化を招来することがなく、半田固定の信頼性が向上する。さらに、溶融した半田が、加熱された支持部材の表面上に供給されることにより、支持部材が加熱されていない場合に比べて半田の濡れ性が増すので、フラックスレス半田を用いつつ安定的に半田固定を行うことができる。 Further, according to the optical fiber fixing method, the laser light irradiation region set on the surface of the support member is irradiated with laser light, and the solder preform is melted by heat conduction from the laser light irradiation region. Therefore, the solder oxidation that may occur when the laser beam is directly irradiated onto the solder preform is not caused, and the reliability of the solder fixing is improved. Furthermore, since the molten solder is supplied onto the surface of the heated support member, the wettability of the solder is increased as compared with the case where the support member is not heated. Solder fixation can be performed.
 また、上記の光ファイバ固定方法によれば、一個体として形成された上記半田プリフォームを溶融させるので、例えばリールに巻かれた糸半田の一部分のみを溶融させる方法等に比べて、溶融させる半田の量を所望の量に保つことができる。このため、信頼性の高い半田固定ができる。また、リールに巻かれた糸半田を送り出す装置等が不要であるため、コストを抑制することができる。 In addition, according to the above optical fiber fixing method, the solder preform formed as a single piece is melted, so that the solder to be melted is compared with a method of melting only a part of the thread solder wound around the reel, for example. Can be kept at the desired amount. For this reason, highly reliable solder fixation is possible. Further, since a device for sending out the thread solder wound around the reel is unnecessary, the cost can be suppressed.
 また、上記保持ステップにて保持された上記光ファイバの表面と上記支持部材の上面との距離をHとし、上記光ファイバの直径をDとし、上記載置ステップにて載置された上記半田プリフォームの高さをLとしたとき、H+D<Lを満たしているので、溶融した半田が重力によって上記光ファイバと上記支持部材との間に向かって勢いよく流れ、上記光ファイバを包み込む。これにより信頼性の高い半田固定を行うことができる。 Further, the distance between the surface of the optical fiber held in the holding step and the upper surface of the support member is H, the diameter of the optical fiber is D, and the solder plug placed in the placing step is used. When the height of the reform is L, since H + D <L is satisfied, the melted solder flows vigorously between the optical fiber and the support member due to gravity, and wraps the optical fiber. Thereby, soldering with high reliability can be performed.
 なお、上記光ファイバの表面と上記支持部材の上面との距離とは、上記光ファイバの表面から上記支持部材の上面までの最短距離のことを指す。また、「上記光ファイバを、上記支持部材の上面に沿って保持する」とは、上記光ファイバを上記支持部材の表面から離間させて保持してもよいし、上記光ファイバを上記支持部材の表面に接触させて保持してもよいことを指す。 The distance between the surface of the optical fiber and the upper surface of the support member refers to the shortest distance from the surface of the optical fiber to the upper surface of the support member. In addition, “holding the optical fiber along the upper surface of the support member” may hold the optical fiber separated from the surface of the support member, or may hold the optical fiber of the support member. It means that it may be held in contact with the surface.
 また、本発明に係るレーザモジュールの製造方法は、光ファイバと、該光ファイバを支持するための支持部材とを備えたレーザモジュールを製造する製造方法であって、上記光ファイバ固定方法を用いて、上記光ファイバと上記支持部材とを固定する、ことを特徴としている。 A method for manufacturing a laser module according to the present invention is a method for manufacturing a laser module including an optical fiber and a support member for supporting the optical fiber, and uses the optical fiber fixing method. The optical fiber and the support member are fixed.
 上記の製造方法によれば、コストを抑制しつつ、信頼性の高い半田固定を用いて、レーザモジュールを製造することができる。 According to the above manufacturing method, it is possible to manufacture a laser module using highly reliable solder fixing while suppressing cost.
 以上のように、本発明に係る光ファイバ固定方法によれば、コストを抑制しつつ、信頼性の高い半田固定を安定的に行うことができる。 As described above, according to the optical fiber fixing method of the present invention, it is possible to stably perform highly reliable solder fixing while suppressing costs.
本発明の実施形態に係る光ファイバ固定方法を説明するための図であって、(a)は、光ファイバ、ファイバマウント、及び半田プリフォームの配置を示す斜視図であり、(b)は、光ファイバ、ファイバマウント、及び半田プリフォームの、光ファイバの延在方向に垂直な面に沿った断面図である。It is a figure for demonstrating the optical fiber fixing method which concerns on embodiment of this invention, Comprising: (a) is a perspective view which shows arrangement | positioning of an optical fiber, a fiber mount, and a solder preform, (b) It is sectional drawing along the surface perpendicular | vertical to the extending direction of an optical fiber of an optical fiber, a fiber mount, and a solder preform. 本発明の実施形態に係る光ファイバ固定方法に含まれる工程を示すフローチャートである。It is a flowchart which shows the process included in the optical fiber fixing method which concerns on embodiment of this invention. 本発明の実施形態に係る光ファイバ固定方法を説明するための図であって、(a)~(e)は、図2のステップS103にてファイバマウントの表面上のレーザ照射領域にレーザ光を照射した後、半田プリフォームが溶融し再凝固する様子を時間の経過と共に示す図である。FIGS. 5A and 5B are diagrams for explaining an optical fiber fixing method according to an embodiment of the present invention, wherein FIGS. It is a figure which shows a mode that solder preform melt | dissolves and resolidifies after irradiation over time. 本発明の実施形態に係る光ファイバ固定方法に用いることのできる半田プリフォームの形状の具体例を示す図であって、(a)は、板状の半田プリフォームを示しており、(b)は、円柱状の半田プリフォームを示している。It is a figure which shows the specific example of the shape of the solder preform which can be used for the optical fiber fixing method which concerns on embodiment of this invention, Comprising: (a) has shown the plate-shaped solder preform, (b) Indicates a cylindrical solder preform. 半田プリフォームの形状の具体例を示す表であって、半田プリフォームの各形状(円柱1、円柱2、板1、板2)についてのサイズを、C÷H(mm)、及びS÷V(mm-1)の各値と共に示す表である。It is a table | surface which shows the specific example of the shape of a solder preform, Comprising: The size about each shape (Cylinder 1, Column 2, board 1, board 2) of a solder preform is represented by C / H (mm) and S / V It is a table | surface shown with each value of (mm <-1> ). 本発明の実施形態に係る光ファイバ固定方法を説明するための図であって、(a)、(b)、(c)、及び(d)は、それぞれ、半田プリフォームの形状を、図5に示す「円柱1」、「円柱2」、「板1」、及び「板2」とした場合の、再凝固後の半田の形状を示す実写図である。FIGS. 5A and 5B are diagrams for explaining an optical fiber fixing method according to an embodiment of the present invention, in which FIGS. 5A and 5B show the shape of a solder preform, respectively. 3 is a real photograph showing the shape of solder after re-solidification in the case of “Cylinder 1”, “Cylinder 2”, “Plate 1”, and “Plate 2” shown in FIG. 本発明の実施形態に係る光ファイバ固定方法の一適用対象としての、半導体レーザモジュールの要部構成を示す図である。It is a figure which shows the principal part structure of a semiconductor laser module as one application object of the optical fiber fixing method which concerns on embodiment of this invention. 本発明の実施形態の変形例に係る光ファイバ固定方法を説明するための図であって、(a)~(c)は、半田プリフォームに対してファイバマウンドに向けて荷重を印加する工程の手順を示す図である。FIGS. 8A and 8B are diagrams for explaining an optical fiber fixing method according to a modification of the embodiment of the present invention, wherein FIGS. It is a figure which shows a procedure. 本発明の実施形態の変形例に係る光ファイバ固定方法を説明するための図であって、(a)~(e)は、ファイバマウントの表面上のレーザ照射領域にレーザ光を照射した後、半田プリフォームが溶融し再凝固する様子を時間の経過と共に示す図である。FIGS. 5A and 5B are diagrams for explaining an optical fiber fixing method according to a modification of the embodiment of the present invention, wherein FIGS. It is a figure which shows a mode that a solder preform melt | dissolves and resolidifies with progress of time. 特許文献1に記載の半田固定を説明するための図であって、(a)は、溝が形成されたハンダプリフォームを示しており、(b)は、ファイバマウントの上面(不図示)に配置されたハンダプリフォーム、及び、ハンダプリフォームの溝内に配置された光ファイバの正面図である。It is a figure for demonstrating the solder fixation of patent document 1, Comprising: (a) has shown the solder preform in which the groove | channel was formed, (b) is on the upper surface (not shown) of a fiber mount. It is a front view of the optical fiber arrange | positioned in the solder | pewter preform arrange | positioned and the groove | channel of a solder preform. 特許文献2に記載の半田固定を説明するための図であって、(a)は、上部凹構及び下部凹構が形成された固定台、及び、下部凹構に嵌めこまれた光ファイバのレーザ光照射前の状態を示す断面図であり、(b)は、レーザ光照射後の状態を示す断面図である。It is a figure for demonstrating the solder fixation of patent document 2, Comprising: (a) is the fixed base in which the upper concave structure and the lower concave structure were formed, and the optical fiber fitted by the lower concave structure It is sectional drawing which shows the state before laser beam irradiation, (b) is sectional drawing which shows the state after laser beam irradiation.
 本発明の一実施形態について図1~図9に基づいて説明すれば、以下の通りである。 An embodiment of the present invention will be described with reference to FIGS. 1 to 9 as follows.
 以下の説明では、板状部材を構成する6つの面のうち、最大の面積をもつ2つの面を「主面」とも表記し、主面を除く4つの面を「端面」とも表記する。また、2つの主面を互いに区別する必要があるときには、一方の主面を「上面」と表記し、他方の主面を「下面」と表記する。ここで、上面は、板状部材を含む装置が通常の設置状態にあるときに上方を向く方の主面のことを指し、下面は、板状部材を含む装置が通常の設置状態にあるときに下方を向く方の主面のことを指す。 In the following description, of the six surfaces constituting the plate-like member, two surfaces having the largest area are also expressed as “main surface”, and four surfaces excluding the main surface are also expressed as “end surfaces”. When it is necessary to distinguish two main surfaces from each other, one main surface is expressed as “upper surface” and the other main surface is expressed as “lower surface”. Here, the upper surface refers to the main surface facing upward when the apparatus including the plate member is in a normal installation state, and the lower surface is when the apparatus including the plate member is in a normal installation state. Refers to the main surface facing downward.
 図1(a)は、本実施形態に係る光ファイバ固定方法を説明するための図であって、光ファイバ101、ファイバマウント102、及び半田プリフォーム103の配置を示す斜視図である。図1(a)に示すように、光ファイバ101は、ファイバマウント102の上面に沿って保持されており、その片脇に半田プリフォーム103が載置されている。 FIG. 1A is a diagram for explaining an optical fiber fixing method according to this embodiment, and is a perspective view showing the arrangement of the optical fiber 101, the fiber mount 102, and the solder preform 103. FIG. As shown in FIG. 1A, the optical fiber 101 is held along the upper surface of the fiber mount 102, and a solder preform 103 is placed on one side thereof.
 本実施形態に係る光ファイバ固定方法は、光ファイバ(図1(a)における光ファイバ101)を支持部材(図1(a)におけるファイバマウント102)に対して半田を用いて固定するための方法である。ファイバマウント102の具体的な材質は本実施形態を限定するものではないが、後述するレーザ光300の波長を吸収し易い素材であることが好ましく、また、熱伝導率の低い素材であることが好ましい。そのような素材の例として、ZrO2(ジルコニア)等を挙げることができる。このような熱伝導性の低い素材を用いることによって、半田固定を容易に行うことができるという利点がある。一方で、Cu(銅)やAlN(窒化アルミニウム)、CuW(銅タングステン)などの熱伝導性の高い素材を用いることもできる。このような熱伝導性の高い素材を用いることによって、レーザモジュールを駆動させている時に生じる漏れ光を吸収して発生した熱を逃がし易いという利点がある。 The optical fiber fixing method according to the present embodiment is a method for fixing an optical fiber (optical fiber 101 in FIG. 1A) to a support member (fiber mount 102 in FIG. 1A) using solder. It is. The specific material of the fiber mount 102 is not limited to this embodiment, but is preferably a material that easily absorbs the wavelength of a laser beam 300 to be described later, and is a material having low thermal conductivity. preferable. Examples of such materials include ZrO 2 (zirconia). By using such a material having low thermal conductivity, there is an advantage that the solder can be fixed easily. On the other hand, materials having high thermal conductivity such as Cu (copper), AlN (aluminum nitride), and CuW (copper tungsten) can also be used. By using such a material having high thermal conductivity, there is an advantage that heat generated by absorbing leakage light generated when the laser module is driven can be easily released.
 また、半田プリフォーム103の具体的な組成は本実施形態を限定するものではないが、Au80Sn20(金80錫20)等の高融点鉛フリー半田を用いることができる。また、半田プリフォーム103としては、フラックスレスの半田を用いることが好ましい。これにより、光ファイバ101及びその周辺に配置され得る光学素子にフラックスが吸着することによる信頼性の低下を招来することなく、半田固定を行うことができる。 The specific composition of the solder preform 103 is not limited to this embodiment, but high melting point lead-free solder such as Au80Sn20 (gold 80 tin 20) can be used. Further, as the solder preform 103, it is preferable to use fluxless solder. Thereby, solder fixation can be performed without inviting a decrease in reliability due to the flux adsorbing to the optical fiber 101 and the optical elements that can be disposed in the vicinity thereof.
 図1(b)は、光ファイバ101、ファイバマウント102、及び半田プリフォーム103の、光ファイバ101の延在方向に垂直な面に沿った断面図である。 FIG. 1B is a cross-sectional view of the optical fiber 101, the fiber mount 102, and the solder preform 103 along a plane perpendicular to the extending direction of the optical fiber 101.
 図1(b)において、Hは、ファイバマウント102の上面から、光ファイバ101の表面までの最短距離を表しており、Dは、光ファイバ101の直径を表しており、Lは、半田プリフォーム103の高さ、すなわち、半田プリフォーム103の、ファイバマウント102の上面に直交する方向に沿った長さを表している。図1(b)に示すように、本実施形態において、不等式H+D<Lが満たされている。この不等式が満たされているため、後述するように、溶融した半田が重力によって、光ファイバ101とファイバマウント102との間に向かって勢いよく流れ、光ファイバ101を包み込む。また、図1(b)におけるUは、光ファイバ101と半田プリフォーム103との離間距離を表している。 In FIG. 1B, H represents the shortest distance from the upper surface of the fiber mount 102 to the surface of the optical fiber 101, D represents the diameter of the optical fiber 101, and L represents a solder preform. The height of 103, that is, the length of the solder preform 103 along the direction orthogonal to the upper surface of the fiber mount 102 is shown. As shown in FIG. 1B, the inequality H + D <L is satisfied in the present embodiment. Since this inequality is satisfied, as will be described later, the molten solder flows vigorously between the optical fiber 101 and the fiber mount 102 due to gravity, and wraps the optical fiber 101. Further, U in FIG. 1B represents a separation distance between the optical fiber 101 and the solder preform 103.
 なお、D、H及びUの具体的な値は本実施形態を限定するものではないが、例えば、D=125μm(マイクロメートル)であり、H=150μmであり、U=100~150μmである。ただし、Uの最適値は、一般に、後述するファイバマウント102の上面に設定されたメタライズ領域のサイズに依存し得る。U=100~150μmは、当該メタライズ領域のサイズが0.8mm×0.8mmである場合に好適なものであり、当該メタライズ領域のサイズがより大きい場合には、Uの値もより大きなものとしてもよい。また、本実施形態に係る光ファイバ固定方法においては、上記Uの値を一定に保っておくことが好ましい。すなわち、量産時に、複数の光ファイバ101を複数のファイバマウント102に対してそれぞれ固定する状況においても、Uの値として同一のものを用いることが好ましい。これにより、溶融した半田が光ファイバ101を包み込む際のファイバの変位量を一定に保つことができるので、固定精度のばらつきを抑制することができる。 Note that specific values of D, H, and U do not limit the present embodiment. For example, D = 125 μm (micrometer), H = 150 μm, and U = 100 to 150 μm. However, the optimum value of U can generally depend on the size of the metallized region set on the upper surface of the fiber mount 102 described later. U = 100 to 150 μm is suitable when the size of the metallized region is 0.8 mm × 0.8 mm. When the size of the metallized region is larger, the value of U is larger. Also good. Moreover, in the optical fiber fixing method according to the present embodiment, it is preferable to keep the value of U constant. That is, it is preferable to use the same value for U even in a situation where a plurality of optical fibers 101 are fixed to a plurality of fiber mounts 102 at the time of mass production. Thereby, since the amount of displacement of the fiber when the molten solder wraps the optical fiber 101 can be kept constant, variations in fixing accuracy can be suppressed.
 また、図1(a)~(b)に示すように、ファイバマウント102の上面には、メタライズ領域が設定され、当該メタライズ領域にはメタライズ層102aが被着されている。同様に、光ファイバ101の表面のうち、上記メタライズ領域に対応する部分には、メタライズ層101aが被着されている。 Further, as shown in FIGS. 1A to 1B, a metallized region is set on the upper surface of the fiber mount 102, and a metallized layer 102a is attached to the metallized region. Similarly, a metallized layer 101a is deposited on a portion of the surface of the optical fiber 101 corresponding to the metallized region.
 メタライズ層102a及び101aは、何れも金属の薄膜であり、例えば、スパッタリング法や無電解メッキなどを用いて形成される。メタライズ層を構成する材質は本実施形態を限定するものではないが、Au(金)、Pt(白金)、Ti(チタン)、Ni(ニッケル)等を用いることができる。メタライズ層102a及び101aを被着しておくことによって、溶融した半田が、濡れ広がり易くなるため、半田による固定の信頼性を高めることができる。なお、メタライズ層102a及び101aの厚みは、上述のD及びLに比べて十分に小さい。 The metallized layers 102a and 101a are both metal thin films, and are formed using, for example, a sputtering method or electroless plating. Although the material which comprises a metallization layer does not limit this embodiment, Au (gold), Pt (platinum), Ti (titanium), Ni (nickel) etc. can be used. By applying the metallized layers 102a and 101a, the melted solder is easily spread by wetting, so that the reliability of fixing by the solder can be improved. Note that the thickness of the metallized layers 102a and 101a is sufficiently smaller than D and L described above.
 また、図1(a)~(b)に示すように、ファイバマウント102の上面には、レーザ光照射領域102bが設定されており、このレーザ光照射領域102bに対して、レーザ光300が照射される。レーザ光300が照射され温度が上昇したレーザ照射領域102bからの熱伝導によって、半田プリフォーム103の下部の温度が上昇し、半田プリフォーム103が溶融する。 Further, as shown in FIGS. 1A and 1B, a laser beam irradiation region 102b is set on the upper surface of the fiber mount 102, and the laser beam 300 is irradiated to the laser beam irradiation region 102b. Is done. Due to the heat conduction from the laser irradiation region 102b that has been irradiated with the laser beam 300 and the temperature has increased, the temperature of the lower portion of the solder preform 103 rises and the solder preform 103 melts.
 このように、本実施形態では、レーザ光を半田プリフォームに直接照射することがないので、半田の酸化が抑制され、高い信頼性にて光ファイバの固定を行うことができる。また、レーザ光を光ファイバに誤って照射し光ファイバを損傷させてしまうリスクを低減させることができる。更に、レーザ光照射領域102bからの熱伝導によって半田プリフォームを溶融させるので、溶融温度の制御を容易に行うことができ、歩留まりを向上させることができる。さらに、溶融した半田が、加熱されたファイバマウント102の表面上に供給されることにより、ファイバマウント102が加熱されていない場合に比べて半田の濡れ性が増すので、フラックスレス半田を用いつつ安定的に半田固定を行うことができる。 Thus, in this embodiment, since the laser beam is not directly irradiated onto the solder preform, the oxidation of the solder is suppressed and the optical fiber can be fixed with high reliability. Further, it is possible to reduce a risk that the optical fiber is accidentally irradiated with the laser light and the optical fiber is damaged. Furthermore, since the solder preform is melted by heat conduction from the laser beam irradiation region 102b, the melting temperature can be easily controlled, and the yield can be improved. Furthermore, since the molten solder is supplied onto the surface of the heated fiber mount 102, the wettability of the solder is increased as compared with the case where the fiber mount 102 is not heated. Soldering can be performed.
 また、本実施形態では、一個体として形成された上記半田プリフォーム103を溶融させるので、例えばリールに巻かれた糸半田の一部のみを溶融させる方法等に比べて、溶融させる半田の量を所望の量に保つことができる。これにより、信頼性の高い半田固定ができる。また、リールに巻かれた糸半田を送り出す装置等が不要であるため、コストを抑制することができる。 In this embodiment, since the solder preform 103 formed as a single piece is melted, the amount of solder to be melted is smaller than, for example, a method in which only a part of thread solder wound on a reel is melted. The desired amount can be kept. Thereby, highly reliable solder fixation can be performed. Further, since a device for sending out the thread solder wound around the reel is unnecessary, the cost can be suppressed.
 なお、図1(a)~(b)に示すように、レーザ光照射領域102bは、ファイバマウント102の上面において、半田プリフォーム103から見て光ファイバ101とは反対側に設定されていることが好ましい。これにより、レーザ光により発生した熱を、半田を溶融させるために有効に利用することができる。 As shown in FIGS. 1A to 1B, the laser light irradiation region 102b is set on the upper surface of the fiber mount 102 on the side opposite to the optical fiber 101 when viewed from the solder preform 103. Is preferred. Thereby, the heat generated by the laser beam can be effectively used to melt the solder.
 図2は、本実施形態に係る光ファイバ固定方法に含まれる工程を示すフローチャートである。図2に示すように、本実施形態に係る光ファイバ固定方法には、以下のステップが含まれる。 FIG. 2 is a flowchart showing steps included in the optical fiber fixing method according to the present embodiment. As shown in FIG. 2, the optical fiber fixing method according to the present embodiment includes the following steps.
 (ステップS101)
 光ファイバ101を、ファイバマウント102の上面に沿って保持する。
(Step S101)
The optical fiber 101 is held along the upper surface of the fiber mount 102.
 (ステップS102)
 半田プリフォーム103を、ファイバマウント102の上面に載置する。
(Step S102)
The solder preform 103 is placed on the upper surface of the fiber mount 102.
 (ステップS103)
 ファイバマウント102の表面上のレーザ照射領域102bにレーザ光300を照射し、レーザ光300が照射されることにより温度が上昇したレーザ照射領域102bからの熱伝導によって半田プリフォーム103を溶融させる。
(Step S103)
The laser irradiation region 102b on the surface of the fiber mount 102 is irradiated with the laser beam 300, and the solder preform 103 is melted by heat conduction from the laser irradiation region 102b whose temperature has been increased by irradiation with the laser beam 300.
 ここで、本実施形態に係る光ファイバ固定方法においては、光ファイバ101をファイバマウント102の上面に沿って保持(ステップS101)したうえで、半田プリフォーム103をファイバマウント102の上面に載置(ステップS102)してもよいし、半田プリフォーム103をファイバマウント102の上面に載置(ステップS102)した後に、光ファイバ101をファイバマウント102の上面に沿って保持(ステップS101)してもよい。 Here, in the optical fiber fixing method according to the present embodiment, the optical fiber 101 is held along the upper surface of the fiber mount 102 (step S101), and then the solder preform 103 is placed on the upper surface of the fiber mount 102 ( The optical fiber 101 may be held along the upper surface of the fiber mount 102 (step S101) after the solder preform 103 is placed on the upper surface of the fiber mount 102 (step S102). .
 また、光ファイバ101を、レーザ素子(例えば後述する半導体レーザチップ33)に対して位置合わせした後に固定する場合には、本実施形態に係る光ファイバ固定方法は、ステップS103の工程を行う前に、光ファイバ101を該レーザ素子に対して調心するステップを含んでいてもよい。 When the optical fiber 101 is fixed after being aligned with a laser element (for example, a semiconductor laser chip 33 to be described later), the optical fiber fixing method according to the present embodiment is performed before performing the step S103. A step of aligning the optical fiber 101 with respect to the laser element may be included.
 また、ステップS102にて載置された半田プリフォーム103は、図1(a)~(b)に示すように、ステップS101にて保持された光ファイバ101の片脇に位置する。逆の言い方をすれば、本実施形態において、半田プリフォーム103は、光ファイバ101の片脇に載置すれば足りるため、半田プリフォーム103の形状を光ファイバ101を跨ぐような形状にする必要もなく、ファイバマウント102に凹部を形成する必要もない。このため、半田プリフォーム103及びファイバマウント102の形状を単純なものとすることができる。このことは、半田プリフォーム103として脆性崩壊を起こし易いAu80Sn20などを用いる場合に大きな利点となる。また、半田プリフォーム103及びファイバマウント102の加工費を節約することができるので、コストが抑制される。 Also, the solder preform 103 placed in step S102 is positioned on one side of the optical fiber 101 held in step S101, as shown in FIGS. In other words, in this embodiment, it is sufficient that the solder preform 103 is placed on one side of the optical fiber 101. Therefore, it is necessary to make the shape of the solder preform 103 so as to straddle the optical fiber 101. There is no need to form a recess in the fiber mount 102. For this reason, the shapes of the solder preform 103 and the fiber mount 102 can be simplified. This is a great advantage when Au80Sn20 or the like that easily causes brittle collapse is used as the solder preform 103. Moreover, since the processing cost of the solder preform 103 and the fiber mount 102 can be saved, the cost is suppressed.
 図3(a)~(e)は、ステップS103にてファイバマウント102の表面上のレーザ照射領域102bにレーザ光300を照射した後、半田プリフォームが溶融し再凝固する様子を時間の経過と共に示す図である。 3 (a) to 3 (e) show how the solder preform melts and re-solidifies as time elapses after the laser irradiation region 102b on the surface of the fiber mount 102 is irradiated in step S103. FIG.
 図3(a)に示すように、レーザ照射領域102bにレーザ光300が照射されると、レーザ照射領域102bからの熱伝導によって、半田プリフォーム103の下部の温度が融点を越え、図3(b)に示すように、半田プリフォーム103が下部から溶融し始める。溶融した当該下部は、メタライズ層102aの上面に沿って濡れ広がり始める。その後、熱伝導により半田プリフォーム103の上部の温度が融点を超え、当該上部は、図3(c)に示すように、表面張力の影響により球形へと変化しつつ重力によりファイバマウント102に向けて落下する。このようにして半田プリフォーム103の全体が溶融する。溶融した半田は、表面張力の影響により、自身の表面積を最小化すべく略半球状へと変形し始め、図3(d)に示すように、光ファイバ101を包み込み始める。その後、図3(e)に示すように、光ファイバ101を包み込み、略半球状となった半田は、レーザ光300による加熱が終了し、ファイバマウント102の温度が半田融点を下回るにつれて再凝固する。(以下では、再凝固後の半田を半田103’とも表記する)。これにより、光ファイバ101が、ファイバマウント102上に固定される。 As shown in FIG. 3A, when the laser irradiation region 102b is irradiated with the laser beam 300, the temperature below the solder preform 103 exceeds the melting point due to heat conduction from the laser irradiation region 102b. As shown in b), the solder preform 103 starts to melt from the lower part. The melted lower part begins to spread along the upper surface of the metallized layer 102a. Thereafter, the temperature of the upper portion of the solder preform 103 exceeds the melting point due to heat conduction, and the upper portion is directed to the fiber mount 102 due to gravity while changing to a spherical shape due to the influence of surface tension, as shown in FIG. Fall. In this way, the entire solder preform 103 is melted. The melted solder begins to be deformed into a substantially hemispherical shape to minimize its surface area due to the influence of surface tension, and starts to envelop the optical fiber 101 as shown in FIG. Thereafter, as shown in FIG. 3E, the solder that wraps around the optical fiber 101 and becomes substantially hemispherical is solidified again when the heating by the laser beam 300 is finished and the temperature of the fiber mount 102 falls below the solder melting point. . (Hereinafter, the re-solidified solder is also referred to as solder 103 '). Thereby, the optical fiber 101 is fixed on the fiber mount 102.
 続いて、半田プリフォーム103の好ましい形状及びサイズについて、図4(a)~(b)から図6(a)~(d)を参照して説明する。以下に説明する半田プリフォーム103の好ましい形状及びサイズは、実験を繰り返すことによって得られた発明者の知見に基づくものである。 Subsequently, a preferable shape and size of the solder preform 103 will be described with reference to FIGS. 4 (a) to (b) to FIGS. 6 (a) to (d). The preferable shape and size of the solder preform 103 described below are based on the inventor's knowledge obtained by repeating experiments.
 図4(a)~(b)は、本実施形態における、半田プリフォーム103の形状の具体例を示している。図4(a)に示すように、半田プリフォーム103として、板状のものを用いてもよいし、図4(b)に示すように、円柱状のものを用いてもよい。 FIGS. 4A to 4B show specific examples of the shape of the solder preform 103 in the present embodiment. As shown in FIG. 4A, a plate-like thing may be used as the solder preform 103, and a cylindrical thing may be used as shown in FIG. 4B.
 半田プリフォーム103の形状及びサイズは、以下の(条件1)及び(条件2)を満たすものであることが好ましい。 It is preferable that the shape and size of the solder preform 103 satisfy the following (Condition 1) and (Condition 2).
 (条件1):S÷V<Th1
 ここで、S(mm2)(平方ミリメートル)及びV(mm3)は、それぞれ、半田プリフォーム103の表面積及び体積を表しており、Th1=16.5(mm-1)である。
(Condition 1): S ÷ V <Th1
Here, S (mm 2 ) (square millimeter) and V (mm 3 ) represent the surface area and volume of the solder preform 103, respectively, and Th1 = 16.5 (mm −1 ).
 (条件2):C÷H>Th2
 ここで、C(mm2)、及びH(mm)は、それぞれ、半田プリフォーム103とファイバマウント102とが接触する接触面積、及び半田プリフォームの高さを表しており、Th2=0.05(mm)である。
(Condition 2): C ÷ H> Th2
Here, C (mm 2 ) and H (mm) represent the contact area where the solder preform 103 and the fiber mount 102 are in contact with each other, and the height of the solder preform, respectively, and Th2 = 0.05. (Mm).
 図5は、半田プリフォーム103の各形状(円柱1、円柱2、板1、板2)についてのサイズ、C÷H(mm)、及びS÷V(mm-1)の各値を示す表である。図5においては、ファイバマウント102のメタライズ領域は略0.8mm×0.8mmである。図5に示すように、「円柱1」及び「板1」は、何れも条件1及び条件2を満たしている。一方で、「円柱2」は、条件2を満たしておらず、「板2」は、条件1を満たしていない。 FIG. 5 is a table showing each value of size, C ÷ H (mm), and S ÷ V (mm −1 ) for each shape (column 1, column 2, plate 1, plate 2) of the solder preform 103. It is. In FIG. 5, the metallized area of the fiber mount 102 is approximately 0.8 mm × 0.8 mm. As shown in FIG. 5, “Cylinder 1” and “Plate 1” both satisfy Condition 1 and Condition 2. On the other hand, “Cylinder 2” does not satisfy Condition 2, and “Plate 2” does not satisfy Condition 1.
 図6(a)、(b)、(c)、及び(d)は、それぞれ、半田プリフォーム103の形状を、図5に示す「円柱1」、「円柱2」、「板1」、及び「板2」とした場合の、再凝固後の半田の形状を示す実写図である。図6(a)及び(c)は、半田の上面図であり、図6(b)及び(d)は、半田の斜視図である。なお、図6(a)~(d)では、ファイバマウント102上のメタライズ領域の形状を正方形としている。 6 (a), 6 (b), 6 (c), and 6 (d) respectively show the shapes of the solder preforms 103 as “column 1”, “column 2”, “plate 1”, and FIG. FIG. 6 is a real photograph showing the shape of solder after re-solidification in the case of “plate 2”. 6A and 6C are top views of the solder, and FIGS. 6B and 6D are perspective views of the solder. In FIGS. 6A to 6D, the shape of the metallized region on the fiber mount 102 is a square.
 図6(b)に示すように、半田プリフォーム103の形状が「円柱2」である場合には、半田プリフォーム103の溶け残りが生じてしまう。これは、「円柱2」の形状及びサイズが、条件2を満たしていないためである。より具体的には、半田プリフォーム103の高さHが大きいわりに、接触面積Cが小さいため、レーザ照射領域102bからの熱が半田プリフォーム103の上部まで十分に伝わらず、溶け残りが生じるためである。 As shown in FIG. 6B, when the shape of the solder preform 103 is “column 2”, unmelted solder preform 103 is generated. This is because the shape and size of the “column 2” do not satisfy the condition 2. More specifically, since the contact area C is small although the height H of the solder preform 103 is large, heat from the laser irradiation region 102b is not sufficiently transmitted to the upper part of the solder preform 103, and unmelted portions are generated. It is.
 半田プリフォーム103の溶け残りが生じると、半田が再凝固する際の光ファイバ101の動きを制御することができず、光ファイバ101の固定精度が低下してしまう。また、半田プリフォーム103の溶け残った部分の影響により熱応力(歪み)を有したまま半田が再凝固してしまうので、再凝固した半田が漏れ光等の影響によって加熱された場合に、当該熱応力が開放され、光ファイバ101の軸ずれが発生してしまう。このような問題は、高出力(具体的には、例えば5W以上)の半導体レーザを用いたレーザモジュールにおいて光ファイバの固定を行う場合に顕著となる。なぜなら、そのような高出力レーザモジュールにおいては、漏れ光の強度も強いため、再凝固した半田が加熱され易いからである。後述するように、半田プリフォーム103の形状及びサイズを上記条件2を満たすようにすれば、このような問題が生じることはない。 If the solder preform 103 remains unmelted, the movement of the optical fiber 101 when the solder re-solidifies cannot be controlled, and the fixing accuracy of the optical fiber 101 decreases. In addition, since the solder re-solidifies with the thermal stress (distortion) due to the influence of the unmelted portion of the solder preform 103, when the re-solidified solder is heated by the influence of leakage light or the like, The thermal stress is released and the optical fiber 101 is misaligned. Such a problem becomes conspicuous when an optical fiber is fixed in a laser module using a semiconductor laser having a high output (specifically, for example, 5 W or more). This is because in such a high-power laser module, the intensity of leakage light is strong, and the re-solidified solder is easily heated. As will be described later, if the shape and size of the solder preform 103 satisfy the above condition 2, such a problem does not occur.
 また、図6(d)に示すように、半田プリフォーム103の形状が「板2」である場合には、再凝固後の半田の形状が、光ファイバ101の延在方向に関して左右非対称となってしまう。これは、「板2」の形状及びサイズが、条件1を満たしていないためである。より具体的には、半田プリフォーム103の体積Vが小さいわりに、表面積Sが大きいため、半田の表面に形成される酸化膜の影響により半田の濡れ性が低下し、半田が左右非対称な形状のまま再凝固してしまうためである。 In addition, as shown in FIG. 6D, when the shape of the solder preform 103 is “plate 2”, the shape of the solder after re-solidification is asymmetrical with respect to the extending direction of the optical fiber 101. End up. This is because the shape and size of the “plate 2” do not satisfy the condition 1. More specifically, since the surface area S is large although the volume V of the solder preform 103 is small, the wettability of the solder is lowered due to the influence of the oxide film formed on the surface of the solder, and the solder has an asymmetrical shape. This is because it resolidifies as it is.
 再凝固後の半田の形状が、光ファイバ101の延在方向に関して左右非対称になると、半田が再凝固する際の光ファイバ101の動きを制御することができず、光ファイバ101の固定精度が低下してしまう。また、左右非対称であることの結果として、熱応力(歪み)を有したまま半田が再凝固してしまうので、再凝固した半田が漏れ光等の影響によって加熱された場合に、当該熱応力が開放され、光ファイバ101の軸ずれが発生してしまう。このような問題は、高出力(具体的には、例えば5W以上)の半導体レーザを用いたレーザモジュールにおいて光ファイバの固定を行う場合に顕著となる。なぜなら、そのような高出力レーザモジュールにおいては、漏れ光の強度も強いため、再凝固した半田が加熱され易いからである。後述するように、半田プリフォーム103の形状及びサイズを上記条件1を満たすようにすれば、このような問題が生じることはない。 When the shape of the solder after re-solidification becomes asymmetrical with respect to the extending direction of the optical fiber 101, the movement of the optical fiber 101 when the solder re-solidifies cannot be controlled, and the fixing accuracy of the optical fiber 101 is reduced. Resulting in. In addition, as a result of being asymmetrical, the solder re-solidifies with thermal stress (strain). Therefore, when the re-solidified solder is heated by the influence of leakage light, the thermal stress is It is opened, and the axis deviation of the optical fiber 101 occurs. Such a problem becomes conspicuous when an optical fiber is fixed in a laser module using a semiconductor laser having a high output (specifically, for example, 5 W or more). This is because in such a high-power laser module, the intensity of leakage light is strong, and the re-solidified solder is easily heated. As will be described later, if the shape and size of the solder preform 103 satisfy the above condition 1, such a problem will not occur.
 一方で、図6(a)及び(c)に示すように、半田プリフォーム103の形状が、条件1及び2を共に満たす「円柱1」「板1」である場合には、再凝固後の半田の形状は左右対称であり、また、半田の溶け残りも生じない。 On the other hand, as shown in FIGS. 6A and 6C, when the shape of the solder preform 103 is “column 1” and “plate 1” satisfying both conditions 1 and 2, The shape of the solder is symmetrical, and no unmelted solder is produced.
 したがって、半田プリフォーム103の形状及びサイズを、条件1及び2を共に満たすものとすれば、光ファイバ101を、ファイバマウント102に対して、位置誤差の発生を抑制しつつ固定することができる。 Therefore, if the shape and size of the solder preform 103 satisfy both the conditions 1 and 2, the optical fiber 101 can be fixed to the fiber mount 102 while suppressing the occurrence of position errors.
 (適用例)
 以下では、本実施形態に係る光ファイバ固定方法の一適用対象としての、半導体レーザモジュールについて図7を参照して説明する。
(Application example)
Hereinafter, a semiconductor laser module as an application target of the optical fiber fixing method according to the present embodiment will be described with reference to FIG.
 図7は、半導体レーザモジュール1の全体像を示す斜視図である。半導体レーザモジュール1は、光ファイバ101の末端に装着されるレーザモジュールであり、図7に示すように、基板10、CoS(Chip on Submount)30、ファイバマウント102、及びケース50を備えている。なお、図7においては、半導体レーザモジュール1の内部構造を明らかにするために、ケース50の天板及び側板の一部を省略している。 FIG. 7 is a perspective view showing the whole image of the semiconductor laser module 1. The semiconductor laser module 1 is a laser module attached to the end of the optical fiber 101, and includes a substrate 10, a CoS (Chip on Submount) 30, a fiber mount 102, and a case 50, as shown in FIG. In FIG. 7, in order to clarify the internal structure of the semiconductor laser module 1, a part of the top plate and the side plate of the case 50 is omitted.
 図7に示すように、ファイバマウント102の上面には、本実施形態に係る光ファイバ固定方法を用いて、半田103’により光ファイバ101が固定されている。光ファイバ101は、図7に示すように、ケース50に形成された挿通パイプ51を通して半導体レーザモジュール1の内部に引き込まれている。 As shown in FIG. 7, the optical fiber 101 is fixed to the upper surface of the fiber mount 102 by solder 103 'using the optical fiber fixing method according to this embodiment. As shown in FIG. 7, the optical fiber 101 is drawn into the semiconductor laser module 1 through an insertion pipe 51 formed in the case 50.
 光ファイバ101は、楔状に加工された先端101aが半導体レーザチップ33の端面33aに正対するように配置される。半導体チップ33の端面33aから発せられたレーザ光は、先端101aから光ファイバ101に入射し、光ファイバ101内を伝搬する。 The optical fiber 101 is arranged so that the tip 101a processed into a wedge shape faces the end surface 33a of the semiconductor laser chip 33. Laser light emitted from the end face 33 a of the semiconductor chip 33 enters the optical fiber 101 from the tip 101 a and propagates through the optical fiber 101.
 基板10は、半導体レーザモジュール1の底板である。本適用例においては、基板10として、主面が角丸矩形の板状部材を用いる。基板10は、半導体レーザモジュール1の内部(特にCoS30)で発生した熱を半導体レーザモジュール1の外部に放熱するためのヒートシンクとして機能する。このため、基板10は、熱伝導率の高い材料、例えば、例えばCu(銅)によって形成される。 The substrate 10 is a bottom plate of the semiconductor laser module 1. In this application example, as the substrate 10, a plate-like member having a rectangular main surface is used. The substrate 10 functions as a heat sink for dissipating heat generated inside the semiconductor laser module 1 (particularly CoS 30) to the outside of the semiconductor laser module 1. For this reason, the substrate 10 is formed of a material having high thermal conductivity, for example, Cu (copper).
 基板10の上面には、図7に示すように、CoS30とファイバマウント102とが載置される。基板10の上面において、ファイバマウント102は、光ファイバ101が引き出される側に配置され、CoS30は、光ファイバ101が引き出される側と反対側に配置される。 As shown in FIG. 7, the CoS 30 and the fiber mount 102 are placed on the upper surface of the substrate 10. On the upper surface of the substrate 10, the fiber mount 102 is arranged on the side from which the optical fiber 101 is drawn, and the CoS 30 is arranged on the side opposite to the side from which the optical fiber 101 is drawn.
 CoS30は、レーザマウント31と半導体レーザチップ33とが一体化されたものである。 CoS 30 is obtained by integrating a laser mount 31 and a semiconductor laser chip 33.
 レーザマウント31は、半導体レーザチップ31を支持する支持体である。本実施形態においては、図7に示すように、レーザマウント31として、主面が矩形状の板状部材を用い、このレーザマウント31を、その下面が基板10の上面と平行になり、かつ、その主面の長辺がサブマウント20の主面の長辺と平行になるように配置する。レーザマウント31は、その下面と基板10の上面との間に広がった半田62によって、基板10の上面に接合される。 The laser mount 31 is a support that supports the semiconductor laser chip 31. In the present embodiment, as shown in FIG. 7, a plate-shaped member having a rectangular main surface is used as the laser mount 31, and the lower surface of the laser mount 31 is parallel to the upper surface of the substrate 10, and The long side of the main surface is arranged so as to be parallel to the long side of the main surface of the submount 20. The laser mount 31 is bonded to the upper surface of the substrate 10 by solder 62 that spreads between the lower surface of the laser mount 31 and the upper surface of the substrate 10.
 レーザマウント31の上面には、図7に示すように、半導体レーザチップ30が載置される。半導体レーザチップ33は、その端面33からレーザ光を発するレーザ光源である。本実施形態においては、主にGaAs(ガリウム砒素)からなる、3mm以上のキャビティ長を有する高出力半導体レーザを用いる。半導体レーザチップ33は、図7に示すように、その延在方向がレーザマウント31の主面の長辺と平行になるように配置され、CuW(銅タングステン)層32を介してレーザマウント31に接合されている。また、半導体レーザチップ33は、図7に示すように、ワイヤ34を介してレーザマウント31の上面に形成された回路に接続されており、この回路から供給された電流によって駆動される。 As shown in FIG. 7, a semiconductor laser chip 30 is placed on the upper surface of the laser mount 31. The semiconductor laser chip 33 is a laser light source that emits laser light from its end face 33. In the present embodiment, a high-power semiconductor laser mainly made of GaAs (gallium arsenide) and having a cavity length of 3 mm or more is used. As shown in FIG. 7, the semiconductor laser chip 33 is arranged so that its extending direction is parallel to the long side of the main surface of the laser mount 31, and is attached to the laser mount 31 via a CuW (copper tungsten) layer 32. It is joined. Further, as shown in FIG. 7, the semiconductor laser chip 33 is connected to a circuit formed on the upper surface of the laser mount 31 via a wire 34, and is driven by a current supplied from this circuit.
 (変形例)
 以下では、本実施形態の変形例について図8(a)~(c)及び図9(a)~(e)を参照してより説明する。
(Modification)
Hereinafter, modified examples of the present embodiment will be described with reference to FIGS. 8A to 8C and FIGS. 9A to 9E.
 本変形例においては、上述したステップS103が、以下のステップS203に置き換わる。 In this modification, step S103 described above is replaced with the following step S203.
 (ステップS203)
 半田プリフォーム103に対してファイバマウンド102に向けて荷重を印加しつつ、ファイバマウント102の表面上のレーザ照射領域102bにレーザ光300を照射し、レーザ光300が照射されることにより温度が上昇したレーザ照射領域102bからの熱伝導によって半田プリフォーム103を溶融させる。
(Step S203)
While applying a load toward the fiber mound 102 to the solder preform 103, the laser irradiation region 102b on the surface of the fiber mount 102 is irradiated with the laser beam 300, and the laser beam 300 is irradiated, so that the temperature rises. The solder preform 103 is melted by heat conduction from the laser irradiation region 102b.
 図8(a)~(c)は、半田プリフォーム103に対してファイバマウンド102に向けて荷重を印加する工程例の手順を示す図である。この工程例においては、図8(a)に示すように、半田ガイド201を用いる。半田ガイド201は、ファイバマウント102の上面に半田プリフォーム103を載置すると共に、載置された半田プリフォーム103の上面に対して荷重を印加するために用いられる冶具であり、ガイド部201a及び支持部201bより構成される。ガイド部201aには、半田プリフォーム103が貫通可能なガイド孔が形成されている。 FIGS. 8A to 8C are diagrams showing a procedure of a process example in which a load is applied toward the fiber mound 102 with respect to the solder preform 103. FIG. In this process example, a solder guide 201 is used as shown in FIG. The solder guide 201 is a jig used for placing the solder preform 103 on the upper surface of the fiber mount 102 and applying a load to the upper surface of the placed solder preform 103. It is comprised from the support part 201b. A guide hole through which the solder preform 103 can pass is formed in the guide portion 201a.
 まず、図8(a)に示すように、ケース50の一部に支持部201aを嵌め込むことによって、ガイド部201aをファイバマウント102に対して固定する。 First, as shown in FIG. 8A, the guide part 201 a is fixed to the fiber mount 102 by fitting the support part 201 a into a part of the case 50.
 続いて、図8(b)に示すように、ガイド部201aのガイド孔に半田プリフォーム103を落としこみ、半田プリフォーム103を、ファイバマウント102のメタライズ領域上の所定の位置に載置する。 Subsequently, as shown in FIG. 8B, the solder preform 103 is dropped into the guide hole of the guide portion 201 a, and the solder preform 103 is placed at a predetermined position on the metallized region of the fiber mount 102.
 続いて、図8(c)に示すように、ガイド部201aのガイド孔に半田押棒202を挿入し、この半田押棒202を介して、半田プリフォーム103の上面に、ファイバマウント102に向けた荷重を印加する。 Subsequently, as shown in FIG. 8C, a solder push rod 202 is inserted into the guide hole of the guide portion 201 a, and the load directed to the fiber mount 102 on the upper surface of the solder preform 103 through the solder push rod 202. Is applied.
 また、図示は省略するが、半田プリフォーム103の上面にファイバマウント102に向けた荷重を印加した状態で、ケース50を調芯装置にセットし、調芯を行った後、レーザ照射領域102bにレーザ300を照射する。これにより半田プリフォーム103が溶融及び再凝固することによって、光ファイバ101がファイバマウント102の上面に固定される。 Although not shown in the figure, the case 50 is set on the aligning device with the load applied to the fiber mount 102 applied to the upper surface of the solder preform 103, and after aligning, the laser irradiation area 102b The laser 300 is irradiated. As a result, the solder preform 103 is melted and re-solidified, whereby the optical fiber 101 is fixed to the upper surface of the fiber mount 102.
 図9(a)~(e)は、ステップS203にてファイバマウント102の表面上のレーザ照射領域102bにレーザ光300を照射した後、半田プリフォームが溶融し再凝固する様子を時間の経過と共に示す図である。 FIGS. 9A to 9E show how the solder preform melts and re-solidifies as time elapses after the laser irradiation region 102b on the surface of the fiber mount 102 is irradiated in step S203. FIG.
 図9(a)に示すように、レーザ照射領域102bにレーザ光300が照射されると、レーザ照射領域102bからの熱伝導によって、半田プリフォーム103の下部の温度が融点を越え、図9(b)に示すように、半田プリフォーム103が下部から溶融し始める。溶融した当該下部は、メタライズ層102aの上面に沿って濡れ広がり始める。本変形例においては、半田プリフォーム103には、ファイバマウント102に向けた荷重が印加されているため、半田プリフォーム103が、ファイバマウント102に向けて勢いよく押し出される。押し出された半田プリフォーム103の上部の温度は、熱伝導により融点を超え、当該上部は、図9(c)に示すように、表面張力の影響により球形へと変化しつつ重力によりファイバマウント102に向けて落下する。このようにして半田プリフォーム103の全体が溶融する。溶融した半田は、表面張力の影響により、自身の表面積を最小化すべく略半球状へと変形し始め、図9(d)に示すように、光ファイバ101を包み込み始める。その後、図9(e)に示すように、光ファイバ101を包み込み、略半球状となった半田は、レーザ光300による加熱が終了し、ファイバマウント102の温度が半田融点を下回るにつれて再凝固する。これにより、光ファイバ101が、ファイバマウント102上に固定される。 As shown in FIG. 9A, when the laser irradiation region 102b is irradiated with the laser beam 300, the temperature below the solder preform 103 exceeds the melting point due to heat conduction from the laser irradiation region 102b. As shown in b), the solder preform 103 starts to melt from the lower part. The melted lower part begins to spread along the upper surface of the metallized layer 102a. In the present modification, since the load toward the fiber mount 102 is applied to the solder preform 103, the solder preform 103 is pushed out toward the fiber mount 102. The temperature of the upper part of the extruded solder preform 103 exceeds the melting point due to heat conduction, and the upper part changes into a spherical shape due to the influence of surface tension as shown in FIG. Fall towards the. In this way, the entire solder preform 103 is melted. The melted solder starts to be deformed into a substantially hemispherical shape to minimize its surface area due to the influence of surface tension, and starts to envelop the optical fiber 101 as shown in FIG. Thereafter, as shown in FIG. 9E, the solder that wraps around the optical fiber 101 and becomes substantially hemispherical is solidified again when the heating by the laser beam 300 is finished and the temperature of the fiber mount 102 falls below the solder melting point. . Thereby, the optical fiber 101 is fixed on the fiber mount 102.
 なお、図9(a)~(e)においては、半田押棒202の下端がファイバマウント102の上面まで到達せずに途中で止まる構造を例示したが、これは本実施形態を限定するものではない。例えば、半田押棒202の下端を一旦ファイバマウント102の上面に到達させ、半田が溶融状態のときに半田押棒202を上方に引き抜き、その後レーザ300の照射を止めることにより半田を再凝固させてもよい。 9A to 9E exemplify a structure in which the lower end of the solder push rod 202 does not reach the upper surface of the fiber mount 102 and stops halfway, this is not intended to limit the present embodiment. . For example, the lower end of the solder push rod 202 may once reach the upper surface of the fiber mount 102, the solder push rod 202 may be pulled upward when the solder is in a molten state, and then the laser 300 may be stopped to resolidify the solder. .
 本変形例においては、荷重が印加された半田プリフォーム103がファイバマウント102に向けて勢いよく押し出されるため、荷重が印加されない場合に比べて、半田プリフォーム103の溶け残りが生じづらい。 In this modification, the solder preform 103 to which a load is applied is pushed out toward the fiber mount 102, so that it is difficult for the solder preform 103 to remain undissolved as compared to the case where no load is applied.
 また、荷重が印加された半田プリフォーム103がファイバマウント102に向けて勢いよく押し出されるため、溶融後の半田に生じる内部流及び表面流が大きな流速を持つ。このため、荷重が印加されない場合に比べて、半田の表面に酸化膜が形成されにくい。また、例え、酸化膜が形成されたとしても、内部から湧き上がる流れによって酸化膜が破られる。このように、本変形例においては、溶融した半田の表面に形成され得る酸化膜の影響を受けにくいので、荷重を印加しない場合に比べて、凝固後の半田103’が光ファイバ101の延存在方向に関して左右非対称になるといった問題が生じにくい。 In addition, since the solder preform 103 to which a load is applied is pushed out toward the fiber mount 102, the internal flow and the surface flow generated in the solder after melting have a large flow velocity. For this reason, it is more difficult to form an oxide film on the surface of the solder than when no load is applied. Moreover, even if an oxide film is formed, the oxide film is broken by the flow that rises from the inside. As described above, in the present modification, the solder 103 ′ after solidification is present in the extension of the optical fiber 101 as compared with the case where no load is applied because it is not easily affected by the oxide film that can be formed on the surface of the molten solder. Problems such as left-right asymmetry with respect to direction are less likely to occur.
 以上のように、本変形例においては、半田プリフォーム103の形状及びサイズが、上述の(条件1)及び(条件2)の少なくとも何れかを満たしていない場合であっても、再凝固後の半田の形状が左右対称となり、また、半田の溶け残りも生じない。 As described above, in this modified example, even when the shape and size of the solder preform 103 does not satisfy at least one of the above (Condition 1) and (Condition 2), The shape of the solder is left-right symmetric, and there is no unmelted solder.
 このため、本変形例においては、半田プリフォーム103の形状及びサイズが、上述の(条件1)及び(条件2)の少なくとも何れかを満たしていない場合であっても、光ファイバ101を、ファイバマウント102に対して、位置誤差の発生を抑制しつつ固定することができる。 For this reason, in this modification, even if the shape and size of the solder preform 103 do not satisfy at least one of the above (Condition 1) and (Condition 2), the optical fiber 101 It can be fixed to the mount 102 while suppressing the occurrence of position errors.
 以上のように、本発明に係る光ファイバ固定方法は、光ファイバを支持部材に固定するための光ファイバ固定方法であって、上記光ファイバを、上記支持部材の上面に沿って保持する保持ステップと、上記支持部材の上面に、フラックスレス半田よりなる半田プリフォームを載置する載置ステップと、上記支持部材の表面上に設定されたレーザ光照射領域にレーザ光を照射し、該レーザ光照射領域からの熱伝導によって上記半田プリフォームを溶融させる溶融ステップとを含んでおり、上記載置ステップにて載置された上記半田プリフォームは、上記保持ステップにて保持された上記光ファイバの片脇に位置し、上記保持ステップにて保持された上記光ファイバの表面と上記支持部材の上面との距離をHとし、上記光ファイバの直径をDとし、上記載置ステップにて載置された上記半田プリフォームの高さをLとしたとき、H+D<Lを満たしている、ことを特徴としている。 As described above, the optical fiber fixing method according to the present invention is an optical fiber fixing method for fixing an optical fiber to a support member, and holds the optical fiber along the upper surface of the support member. A placing step of placing a solder preform made of fluxless solder on the upper surface of the support member; and irradiating a laser beam onto a laser beam irradiation region set on the surface of the support member; A melting step of melting the solder preform by heat conduction from the irradiation region, and the solder preform placed in the placing step is formed of the optical fiber held in the holding step. The distance between the surface of the optical fiber held at the holding step and the upper surface of the support member is H, and the diameter of the optical fiber is D. , When the height of the solder preform is placed at the top the placing step is L, and satisfies the H + D <L, it is characterized in that.
 上記の光ファイバ固定方法によれば、上記載置ステップにて載置された上記半田プリフォームは、上記保持ステップにて保持された上記光ファイバの片脇に位置するものであれば足りるので、上記半田プリフォームの形状を上記光ファイバを跨ぐような形状にする必要もなく、上記支持部材に凹部を形成する必要もない。このため、上記半田プリフォーム及び上記ファイバマウントの形状を単純なものとすることができる。したがって、上記半田プリフォーム及び上記支持部材の加工費を節約することができるので、コストが抑制される。 According to the optical fiber fixing method, the solder preform placed in the placing step is sufficient if it is located on one side of the optical fiber held in the holding step. The shape of the solder preform need not be a shape that straddles the optical fiber, and there is no need to form a recess in the support member. For this reason, the shape of the solder preform and the fiber mount can be simplified. Therefore, the processing cost of the solder preform and the support member can be saved, and the cost is suppressed.
 また、上記の光ファイバ固定方法によれば、フラックスレス半田よりなる半田プリフォームを用いるので、光ファイバ及びその周辺に配置され得る光学素子にフラックスが吸着することによる信頼性の低下を招来することなく、半田固定を行うことができる。 Further, according to the above-described optical fiber fixing method, since the solder preform made of fluxless solder is used, the reliability is lowered due to the flux adsorbing to the optical fiber and the optical element that can be arranged around the optical fiber. And soldering can be performed.
 また、上記の光ファイバ固定方法によれば、上記支持部材の表面上に設定されたレーザ光照射領域にレーザ光を照射し、該レーザ光照射領域からの熱伝導によって上記半田プリフォームを溶融させるので、半田プリフォームに直接レーザ光を照射する場合に生じ得る半田の酸化を招来することがなく、半田固定の信頼性が向上する。さらに、溶融した半田が、加熱された支持部材の表面上に供給されることにより、支持部材が加熱されていない場合に比べて半田の濡れ性が増すので、フラックスレス半田を用いつつ安定的に半田固定を行うことができる。 Further, according to the optical fiber fixing method, the laser light irradiation region set on the surface of the support member is irradiated with laser light, and the solder preform is melted by heat conduction from the laser light irradiation region. Therefore, the solder oxidation that may occur when the laser beam is directly irradiated onto the solder preform is not caused, and the reliability of the solder fixing is improved. Furthermore, since the molten solder is supplied onto the surface of the heated support member, the wettability of the solder is increased as compared with the case where the support member is not heated. Solder fixation can be performed.
 また、上記の光ファイバ固定方法によれば、一個体として形成された上記半田プリフォームを溶融させるので、例えばリールに巻かれた糸半田の一部分のみを溶融させる方法等に比べて、溶融させる半田の量を所望の量に保つことができる。このため、信頼性の高い半田固定ができる。また、リールに巻かれた糸半田を送り出す装置等が不要であるため、コストを抑制することができる。 In addition, according to the above optical fiber fixing method, the solder preform formed as a single piece is melted, so that the solder to be melted is compared with a method of melting only a part of the thread solder wound around the reel, for example. Can be kept at the desired amount. For this reason, highly reliable solder fixation is possible. Further, since a device for sending out the thread solder wound around the reel is unnecessary, the cost can be suppressed.
 また、上記保持ステップにて保持された上記光ファイバの表面と上記支持部材の上面との距離をHとし、上記光ファイバの直径をDとし、上記載置ステップにて載置された上記半田プリフォームの高さをLとしたとき、H+D<Lを満たしているので、溶融した半田が重力によって上記光ファイバと上記支持部材との間に向かって勢いよく流れ、上記光ファイバを包み込む。これにより信頼性の高い半田固定を行うことができる。 Further, the distance between the surface of the optical fiber held in the holding step and the upper surface of the support member is H, the diameter of the optical fiber is D, and the solder plug placed in the placing step is used. When the height of the reform is L, since H + D <L is satisfied, the melted solder flows vigorously between the optical fiber and the support member due to gravity, and wraps the optical fiber. Thereby, soldering with high reliability can be performed.
 なお、上記光ファイバの表面と上記支持部材の上面との距離とは、上記光ファイバの表面から上記支持部材の上面までの最短距離のことを指す。また、「上記光ファイバを、上記支持部材の上面に沿って保持する」とは、上記光ファイバを上記支持部材の表面から離間させて保持してもよいし、上記光ファイバを上記支持部材の表面に接触させて保持してもよいことを指す。 The distance between the surface of the optical fiber and the upper surface of the support member refers to the shortest distance from the surface of the optical fiber to the upper surface of the support member. In addition, “holding the optical fiber along the upper surface of the support member” may hold the optical fiber separated from the surface of the support member, or may hold the optical fiber of the support member. It means that it may be held in contact with the surface.
 また、本発明に係る光ファイバ固定方法においては、上記半田プリフォームの表面積を上記半田プリフォームの体積で除算して得られる値が、ミリメートルの逆数を単位として16.5未満である、ことが好ましい。 Further, in the optical fiber fixing method according to the present invention, the value obtained by dividing the surface area of the solder preform by the volume of the solder preform is less than 16.5 with the reciprocal of millimeter as a unit. preferable.
 上記の光ファイバ固定方法によれば、上記半田プリフォームの体積に比して表面積が小さいので、上記溶融ステップにおいて溶融した半田の表面に形成される酸化膜の影響が抑制され、凝固後の半田の形状が、光ファイバの延存方向に関して左右対称の形状となる。このため、上記光ファイバを上記支持部材に対して、高い位置精度で固定することができる。 According to the above optical fiber fixing method, since the surface area is smaller than the volume of the solder preform, the influence of the oxide film formed on the surface of the molten solder in the melting step is suppressed, and the solidified solder The shape is symmetrical with respect to the extending direction of the optical fiber. For this reason, the optical fiber can be fixed to the support member with high positional accuracy.
 また、本発明に係る光ファイバ固定方法においては、上記半田プリフォームと上記支持部材とが接触する接触面積を、上記半田プリフォームの高さで除算して得られる値が、ミ
リメートルを単位として0.05よりも大きい、ことが好ましい。
In the optical fiber fixing method according to the present invention, the value obtained by dividing the contact area where the solder preform and the supporting member are in contact with each other by the height of the solder preform is 0 in millimeters. Greater than .05.
 上記の光ファイバ固定方法によれば、上記半田プリフォームの高さに比して、上記半田プリフォームと上記支持部材とが接触する接触面積が大きいので、上記溶融ステップにてレーザ光がレーザ光照射領域からの熱伝導により、半田プリフォームを十分に溶融させることができる。このため、半田プリフォームの溶け残りが生じることがなく、上記光ファイバを上記支持部材に対して、高い位置精度で固定することができる。 According to the above optical fiber fixing method, the contact area between the solder preform and the support member is larger than the height of the solder preform. The solder preform can be sufficiently melted by heat conduction from the irradiation region. For this reason, the unmelted solder preform does not occur, and the optical fiber can be fixed to the support member with high positional accuracy.
 また、本発明に係る光ファイバ固定方法においては、上記溶融ステップは、上記半田プリフォームに対して、上記支持部材に向けて荷重を印加しつつ、上記半田プリフォームを溶融させる、ことが好ましい。 In the optical fiber fixing method according to the present invention, it is preferable that the melting step melts the solder preform while applying a load toward the support member with respect to the solder preform.
 上記の光ファイバ固定方法によれば、半田プリフォームに荷重を印加しつつ半田プリフォームを溶融させることによって、溶融後の半田に生じる内部流及び表面流が大きな流速を持つ。このため、荷重が印加されない場合に比べて、溶融した半田の表面に酸化膜が形成されにくい。また、例え、酸化膜が形成されたとしても、内部から湧き上がる流れによって酸化膜が破られる。このように、上記の光ファイバ固定方法によれば、溶融した半田の表面に形成され得る酸化膜の影響が更に抑制され、上記光ファイバを上記支持部材に対して、高い位置精度で固定することができる。 According to the above optical fiber fixing method, the internal flow and the surface flow generated in the solder after melting have a large flow velocity by melting the solder preform while applying a load to the solder preform. For this reason, compared with the case where a load is not applied, an oxide film is hard to be formed on the surface of the molten solder. Moreover, even if an oxide film is formed, the oxide film is broken by the flow that rises from the inside. Thus, according to the above optical fiber fixing method, the influence of the oxide film that can be formed on the surface of the molten solder is further suppressed, and the optical fiber is fixed to the support member with high positional accuracy. Can do.
 また、本発明に係る光ファイバ固定方法においては、上記レーザ光照射領域は、上記支持部材の上面において、上記半田プリフォームから見て上記光ファイバとは反対側に設定されている、ことが好ましい。 In the optical fiber fixing method according to the present invention, it is preferable that the laser light irradiation region is set on the upper surface of the support member on the side opposite to the optical fiber as viewed from the solder preform. .
 上記の光ファイバ固定方法によれば、上記レーザ光照射領域を、上記半田プリフォームから見て上記光ファイバと同じ側に設定する場合に比べて、レーザ光を光ファイバに誤って照射し光ファイバを損傷させてしまうリスクを低減させることができると共に、レーザ光により発生した熱を、上記半田プリフォームを溶融させるために有効に活用することができる。 According to the above optical fiber fixing method, the optical fiber is mistakenly irradiated with the laser light as compared with the case where the laser light irradiation region is set on the same side as the optical fiber when viewed from the solder preform. The risk of damaging the solder preform can be reduced, and the heat generated by the laser beam can be effectively used to melt the solder preform.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明は、光ファイバをファイバマウントに固定するために好適に適用することができる。また、半導体レーザモジュールを製造する際の光ファイバの固定工程に好適に適用することができる。 The present invention can be suitably applied to fix an optical fiber to a fiber mount. Moreover, it can apply suitably for the fixing process of the optical fiber at the time of manufacturing a semiconductor laser module.
1      半導体レーザモジュール
101    光ファイバ
101a   メタライズ層
102    ファイバマウント(支持部材)
102a   メタライズ層
102b   レーザ光照射領域
103    半田プリフォーム
 
DESCRIPTION OF SYMBOLS 1 Semiconductor laser module 101 Optical fiber 101a Metallized layer 102 Fiber mount (support member)
102a Metallized layer 102b Laser light irradiation region 103 Solder preform

Claims (6)

  1.  光ファイバを支持部材に固定するための光ファイバ固定方法であって、
     上記光ファイバを、上記支持部材の上面に沿って保持する保持ステップと、
     上記支持部材の上面に、フラックスレス半田よりなる半田プリフォームを載置する載置ステップと、
     上記支持部材の表面上に設定されたレーザ光照射領域にレーザ光を照射し、該レーザ光照射領域からの熱伝導によって上記半田プリフォームを溶融させる溶融ステップと
    を含んでおり、
     上記載置ステップにて載置された上記半田プリフォームは、上記保持ステップにて保持された上記光ファイバの片脇に位置し、
     上記保持ステップにて保持された上記光ファイバの表面と上記支持部材の上面との距離をHとし、上記光ファイバの直径をDとし、上記載置ステップにて載置された上記半田プリフォームの高さをLとしたとき、H+D<Lを満たしている、
    ことを特徴とする光ファイバ固定方法。
    An optical fiber fixing method for fixing an optical fiber to a support member,
    Holding the optical fiber along the upper surface of the support member;
    A mounting step of mounting a solder preform made of fluxless solder on the upper surface of the support member;
    Irradiating a laser beam irradiation region set on the surface of the support member with a laser beam, and melting the solder preform by heat conduction from the laser beam irradiation region,
    The solder preform placed in the placing step is located on one side of the optical fiber held in the holding step,
    The distance between the surface of the optical fiber held in the holding step and the upper surface of the support member is H, the diameter of the optical fiber is D, and the solder preform placed in the placing step is When the height is L, H + D <L is satisfied.
    An optical fiber fixing method.
  2.  上記半田プリフォームの表面積を上記半田プリフォームの体積で除算して得られる値が、ミリメートルの逆数を単位として16.5未満である、
    ことを特徴とする請求項1に記載の光ファイバ固定方法。
    The value obtained by dividing the surface area of the solder preform by the volume of the solder preform is less than 16.5 in units of the reciprocal of millimeters.
    The optical fiber fixing method according to claim 1.
  3.  上記半田プリフォームと上記支持部材とが接触する接触面積を、上記半田プリフォームの高さで除算して得られる値が、ミリメートルを単位として0.05よりも大きい、
    ことを特徴とする請求項1または2に記載の光ファイバ固定方法。
    The value obtained by dividing the contact area where the solder preform and the support member are in contact with each other by the height of the solder preform is greater than 0.05 in millimeters.
    The optical fiber fixing method according to claim 1, wherein the optical fiber is fixed.
  4.  上記溶融ステップは、上記半田プリフォームに対して、上記支持部材に向けて荷重を印加しつつ、上記半田プリフォームを溶融させる、
    ことを特徴とする請求項1から3の何れか1項に記載の光ファイバ固定方法。
    The melting step melts the solder preform while applying a load toward the support member with respect to the solder preform.
    The optical fiber fixing method according to any one of claims 1 to 3, wherein:
  5.  上記レーザ光照射領域は、上記支持部材の上面において、上記半田プリフォームから見て上記光ファイバとは反対側に設定されている、
    ことを特徴とする請求項1から4の何れか1項に記載の光ファイバ固定方法。
    The laser light irradiation region is set on the upper surface of the support member on the side opposite to the optical fiber as viewed from the solder preform.
    The optical fiber fixing method according to any one of claims 1 to 4, wherein the optical fiber is fixed.
  6.  光ファイバと、該光ファイバを支持するための支持部材とを備えたレーザモジュールを製造する製造方法であって、
     請求項1から5の何れか1項に記載の光ファイバ固定方法を用いて、上記光ファイバと上記支持部材とを固定する、
    ことを特徴とする製造方法。
    A manufacturing method for manufacturing a laser module comprising an optical fiber and a support member for supporting the optical fiber,
    Using the optical fiber fixing method according to any one of claims 1 to 5, the optical fiber and the support member are fixed.
    The manufacturing method characterized by the above-mentioned.
PCT/JP2012/059151 2011-06-07 2012-04-04 Method for fixing optical fiber, and method for manufacturing laser module WO2012169275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-127681 2011-06-07
JP2011127681A JP5111644B2 (en) 2011-06-07 2011-06-07 Optical fiber fixing method and laser module manufacturing method

Publications (1)

Publication Number Publication Date
WO2012169275A1 true WO2012169275A1 (en) 2012-12-13

Family

ID=47295846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059151 WO2012169275A1 (en) 2011-06-07 2012-04-04 Method for fixing optical fiber, and method for manufacturing laser module

Country Status (2)

Country Link
JP (1) JP5111644B2 (en)
WO (1) WO2012169275A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE037959T2 (en) * 2014-12-12 2018-09-28 Ceppi & Partners S R L Method of and system for brazing metal components
CN112521000B (en) * 2018-07-26 2022-06-10 杭州富通通信技术股份有限公司 Fusion welding device for optical fiber preform and auxiliary rod

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326448A (en) * 1993-05-17 1994-11-25 Hitachi Ltd Fluxless solder joint method and device of electronic circuit
JP2005182014A (en) * 2003-12-16 2005-07-07 Matsushita Electric Ind Co Ltd Optimizing alignment of optical fiber to optical output port

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326448A (en) * 1993-05-17 1994-11-25 Hitachi Ltd Fluxless solder joint method and device of electronic circuit
JP2005182014A (en) * 2003-12-16 2005-07-07 Matsushita Electric Ind Co Ltd Optimizing alignment of optical fiber to optical output port

Also Published As

Publication number Publication date
JP2012255846A (en) 2012-12-27
JP5111644B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
US8475056B2 (en) Semiconductor device assembly
KR101142561B1 (en) Laser light source module
WO2012172855A1 (en) Laser module
JP5511944B2 (en) Laser equipment
WO2010110068A1 (en) Semiconductor laser module and manufacturing method therefor
US20120027352A1 (en) Semiconductor laser module and optical module
WO2014017250A1 (en) Light emitting device, method for manufacturing same, and package member
JP4494587B2 (en) Optical semiconductor device package and optical semiconductor device module using the package
US8553736B2 (en) Laser device and method for manufacturing same
JP5111644B2 (en) Optical fiber fixing method and laser module manufacturing method
US20040195297A1 (en) Reliability of heat sink mounted laser diode bars
JP2007258480A (en) Semiconductor laser module
AU2010363044A1 (en) Photonics module and method of manufacturing
US20100118909A1 (en) Miniature high-power laser diode device
JP2009152339A (en) Optical device, and its manufacturing method
JP5281122B2 (en) Joining method and manufacturing method
JP2010073758A (en) Semiconductor laser module
JP2007258479A (en) Semiconductor laser module, and manufacturing method thereof
WO2012114785A1 (en) Fiber mount device, optical module using same, and optical module manufacturing method
JP2015022023A (en) Base and manufacturing method for laser module
JP5589112B2 (en) Joining method
JP2003075691A (en) Optical assembly for opto-electronic package
JP2007256665A (en) Semiconductor laser module
JP2015004740A (en) Manufacturing method of laser module, and laser module
WO2020116172A1 (en) Semiconductor laser chip mounting submount, method of manufacturing same, and semiconductor laser module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796178

Country of ref document: EP

Kind code of ref document: A1