WO2012169169A1 - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
WO2012169169A1
WO2012169169A1 PCT/JP2012/003654 JP2012003654W WO2012169169A1 WO 2012169169 A1 WO2012169169 A1 WO 2012169169A1 JP 2012003654 W JP2012003654 W JP 2012003654W WO 2012169169 A1 WO2012169169 A1 WO 2012169169A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
input power
input
power
value
Prior art date
Application number
PCT/JP2012/003654
Other languages
French (fr)
Japanese (ja)
Inventor
澤田 大輔
藤井 裕二
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013519380A priority Critical patent/JP5895175B2/en
Publication of WO2012169169A1 publication Critical patent/WO2012169169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like

Definitions

  • the present invention relates to an induction heating cooker that performs power control according to a set value of input power.
  • FIG. 15 is a circuit diagram showing a configuration of an induction heating cooker according to the prior art.
  • the induction heating cooker according to the prior art includes a DC power supply circuit 41, a parallel resonance circuit including a heating coil 44, a resonance capacitor 45 and a load (pan) 60, and a high-frequency current to the heating coil 44.
  • the switching elements 46 and 47 to be supplied and a flywheel diode are provided.
  • the 15 has a circuit configuration of a voltage resonance type inverter, and by turning on and off the switching elements 46 and 47, a resonance current is generated in the parallel resonance circuit, and heating is performed by a high frequency magnetic field generated in the heating coil 44.
  • the load 60 is induction-heated by eddy current loss generated in the load 60 placed on the coil 44.
  • the power control method used is a frequency at which the current flowing through the heating coil is changed according to the value of the time during which the switching elements 46 and 47 are turned on (on time), and the high-frequency current applied to the pan is controlled to vary the power. Control.
  • the next energization is performed from a state where the flyback voltage (collector-emitter voltage) due to resonance has completely decreased to 0 V, and the load current (collector) As a current), a negative flywheel current flows through the flywheel diode.
  • the switching element is turned on before the flyback voltage falls below 0V, so that the on-loss is remarkably increased, and the element is deteriorated or destroyed. There was a drawback of inviting.
  • Patent Document 1 when the input power set value is greater than a certain value, the operating frequency of the switching element is changed according to the input power set value (a continuous operation control method using frequency control is used). .) When the input power set value is less than a certain value, the ratio of the heating time and the stop time is changed according to the input power set value (intermittent operation control method (hereinafter referred to as “inverter circuit energization and stop”). , Referred to as duty control)).
  • inverter circuit energization and stop referred to as duty control
  • Duty control is an energization operation with a predetermined set power by alternately switching between an energized state and a stopped state according to a predetermined energized time and a stopped time, and an energized time with respect to a predetermined cycle time (energized time + stopped time).
  • This is a control method for obtaining a desired average power by changing the ratio (duty ratio).
  • power control is performed by frequency control so that the input power to the load is equivalent to the set power.
  • the switching element is set for each set power.
  • the operating frequency cannot be determined uniquely.
  • the power is operated at an operating frequency far away from the resonant frequency of the resonant circuit (resonance frequency ⁇ operating frequency) to set the low power state, and the operating frequency is gradually brought closer to the resonant frequency.
  • a method soft start control
  • the input power is increased to control the power up to the set power.
  • the longer the required time the shorter the remaining energization time (the time for energization corresponding to the set power), and the average power per cycle time also decreases, so the average input power between the average value and the set power The difference increases.
  • the object of the present invention is to solve the above problems and to provide an induction heating cooker that can reduce the difference between the average input power and the set power as compared with the prior art when performing power control by duty control. It is in.
  • the induction heating cooker according to the first invention is A resonance circuit comprising a heating coil for induction heating the pan, and a resonance capacitor connected in parallel to the heating coil; A switching element connected in series to the resonant capacitor; An input current detection circuit for detecting an input current input to the resonance circuit from an AC power supply via a rectifier circuit; Input power setting means for selecting one input power setting value from a plurality of input power setting values to the resonant circuit;
  • In the induction heating cooker provided with a control circuit for controlling the switching element to repeat the energized state and the stopped state at a predetermined duty cycle, The control circuit integrates the detected input current in each duty cycle period, and an average value of the input current after the integration of each duty cycle period corresponds to the selected input power setting value.
  • the energization time of the switching element is controlled so as to have a preset value.
  • the induction heating cooker according to the second invention is A resonance circuit comprising a heating coil for induction heating the pan, and a resonance capacitor connected in parallel to the heating coil; A switching element connected in series to the resonant capacitor; Input power setting means for selecting one input power setting value from a plurality of input power setting values to the resonant circuit; A pot material determining means for determining the material of the pot; In the induction heating cooker provided with a control circuit for controlling the switching element to repeat the energized state and the stopped state at a predetermined duty cycle, The control circuit determines the switching based on the determined material of the pan so that an average value of input power in each duty cycle period is a value corresponding to the selected input power setting value. The energization time of the element is set.
  • the difference between the average input power and the set power can be reduced as compared with the prior art, and the usability can be improved by suppressing variations in cooking performance due to load differences.
  • the induction heating cooker when power control is performed by duty control, the energized state and the stopped state are alternately switched at a predetermined duty cycle, and the switching from the energized state to the stopped state is performed. Since the average value of the input current to the resonance circuit during the duty cycle reaches a preset value corresponding to the input power setting value, the input power average value and the setting corresponding to the input power setting value are set. It is possible to prevent the difference between the power and the load from becoming large depending on the load, and to suppress the variation in the cooking performance due to the load difference, thereby improving the usability.
  • the induction heating cooker is A resonance circuit comprising a heating coil for induction heating the pan, and a resonance capacitor connected in parallel to the heating coil; A switching element connected in series to the resonant capacitor; An input current detection circuit for detecting an input current input to the resonance circuit from an AC power supply via a rectifier circuit; Input power setting means for selecting one input power setting value from a plurality of input power setting values to the resonant circuit;
  • In the induction heating cooker provided with a control circuit for controlling the switching element to repeat the energized state and the stopped state at a predetermined duty cycle, The control circuit integrates the detected input current in each duty cycle period, and an average value of the input current after the integration of each duty cycle period corresponds to the selected input power setting value.
  • the energization time of the switching element is controlled so as to have a preset value.
  • the energization time can be varied according to the load. Therefore, the difference between the average input power and the set power can be reduced as compared with the prior art regardless of the load.
  • the induction heating cooker according to the second aspect is the heating cooker according to the second aspect, It further comprises a pan material judging means for judging the material of the pan, The control circuit controls an energization time of the switching element according to the determined material of the pan.
  • the load current has a length from the start of operation until the input current reaches a predetermined integrated input power for switching between the energized state and the stopped state from the start of energization, and occurs during the required time.
  • the energization time can be varied according to the load. For this reason, the difference between the average input power and the set power can be reduced as compared with the prior art regardless of the load.
  • the induction heating cooker is A resonance circuit comprising a heating coil for induction heating the pan, and a resonance capacitor connected in parallel to the heating coil; A switching element connected in series to the resonant capacitor; Input power setting means for selecting one input power setting value from a plurality of input power setting values to the resonant circuit; A pot material determining means for determining the material of the pot; In the induction heating cooker provided with a control circuit for controlling the switching element to repeat the energized state and the stopped state at a predetermined duty cycle, The control circuit determines the switching based on the determined material of the pan so that an average value of input power in each duty cycle period is a value corresponding to the selected input power setting value. The energization time of the element is set.
  • the input power itself when performing the duty control operation changes, and even when a difference occurs between the set power and the actual average input power, this corresponds to the set power. Since the time ratio (ratio of energization time to duty cycle time) at which the average input power can be obtained can be set according to the material of the load, the average input power The difference from the set power can be reduced.
  • FIG. 1 is a circuit diagram showing a configuration of an induction heating cooker according to Embodiment 1 of the present invention.
  • the induction heating cooker includes a heating coil 1, a resonant capacitor 2, a switching element 4, a flyhole diode 5, a rectifying element 6, a choke coil 7, and a smoothing capacitor 8. And a control circuit 9, which is a microcomputer, a switching element drive circuit 10, a power supply circuit 11, a zero volt pulse detection circuit 12, an input current detection circuit 13, and an input power setting means 16.
  • the control circuit 9 includes a pulse number adding circuit 14 and an input current adding circuit 15.
  • the heating coil 1 and the resonance capacitor 2 connected in parallel to the heating coil 1 constitute a resonance circuit.
  • the pan 3 as a load is disposed in the vicinity of the heating coil 1.
  • the switching element 4 is connected in series to the resonance circuit, and supplies a high-frequency current to the resonance circuit together with the flywheel diode 5 connected in parallel to the switching element 4.
  • the power rectified by the rectifying element 6 that rectifies the AC power from the AC power supply is smoothed by a smoothing circuit including the choke coil 7 and the smoothing capacitor 8 and supplied to the resonance circuit and the switching element 4.
  • the rectifier element 6, the choke coil 7, and the smoothing capacitor 8 constitute a rectifier circuit.
  • control circuit 9 controls the entire induction heating cooker, and the switching element driving circuit 10 drives the switching element 4 at a high speed according to a command from the control circuit 9. Furthermore, the power supply circuit 11 supplies a DC stabilized power supply to the entire induction heating cooker.
  • the zero volt pulse detection circuit 12 detects the zero volt timing of the AC voltage from the AC power supply, generates a zero volt pulse at the detection timing, and outputs the zero volt pulse to the pulse number adding circuit 14.
  • the input current detection circuit 13 uses a current transformer to detect an input current input to the resonance circuit from the AC power supply via the rectifier circuit, and inputs a detection signal having a voltage level corresponding to the detected input current. This is output to the current adding circuit 15.
  • the pulse number adding circuit 14 counts the zero volt pulse from the zero volt pulse detecting circuit 12, and stores data indicating the count result as stored data. Further, the input current adding circuit 15 adds (accumulates) the input current detected by the input current detecting circuit 13 by accumulating values corresponding to the voltage levels of the detection signals from the input current detecting circuit 13, and integrates them. Data indicating the result is stored as stored data.
  • the current detected by the input current detection circuit 13 corresponds to the input power
  • the stored data of the input current integration circuit 15 corresponds to the integration power.
  • the user operates the input power setting means 16 to select and set one input power setting value from among a plurality of input power setting values to the resonance circuit.
  • the control method during the heating operation during duty control is the same as that of the induction heating cooker according to the prior art. is there.
  • the pan 3 is induction-heated by eddy current loss generated in the pan 3 placed on the heating coil 1 by a high-frequency magnetic field generated in the heating coil 1.
  • the power control method used is a frequency at which the current flowing through the heating coil 1 is changed according to the value of the time (on time) when the switching element 4 is turned on, and the high frequency current applied to the pan 3 is controlled to vary the power. Control.
  • the determination method of the input power set value when the control method is switched between frequency control and duty control is the same as the determination method according to the prior art. Specifically, for the purpose of preventing the occurrence of a significant increase in the on-loss of the switching element 4 in the low power state, based on the minimum input power that can avoid the destruction of the switching element 4 by the cooling configuration, The range of the input power set value for frequency control is determined.
  • the range of the input power set value for frequency control is determined.
  • FIG. 2 is a flowchart of the duty control process according to Embodiment 1 of the present invention when the input power set value is set to 1.
  • FIG. 3 is a table showing a relationship among the input power set value, the set power, and the power control method according to Embodiment 1 of the present invention.
  • FIG. 4 is a graph showing the relationship between the input power to the pan 3 and the voltage level Y of the detection signal from the input current detection circuit 13 in Embodiment 1 of the present invention.
  • the user uses the input power setting means 16 to select among the input power setting values in five stages from the input power setting values “1” to “5”. Select and set the desired input power setpoint.
  • the set power corresponding to the input power set value “1” is 100 W
  • the set power corresponding to the input power set value “2” is 300 W
  • the input power set value “3”. Is set to 600 W
  • the set power corresponding to the input power set value “4” is 900 W
  • the set power corresponding to the input power set value “5” is 1200 W.
  • control circuit 9 performs continuous operation by frequency control in the input power set value range from “3” to “5”, and in the input power set value range of “1” and “2”, the input power set value “ With the set power (600 W) corresponding to “3”, the duty cycle time is set to 6 seconds and the duty control operation is performed.
  • the control circuit 9 when the input power setting value is set to “1” by the input power setting means 16, the control circuit 9 receives a signal including the input power setting value “1” from the input power setting means 16 (S1). ). In response to this, the control circuit 9 first resets the stored data of the pulse number adding circuit 14 and the input current adding circuit 15 in the control circuit 9 to 0 (in S2 and S3, the initial value 0 is set). set).
  • control circuit 9 sets 720 to the period time reachability determination value of the stored data of the pulse number adding circuit 14 (S4), and sets 15120 to the energization time reachability determination value of the stored data of the input current adding circuit 15.
  • Set (S5) A method for setting the period time reachability determination value and the energization time reachability determination value will be described later.
  • control circuit 9 transmits a drive signal to the switching element drive circuit 10 to drive the switching element 4 at a predetermined switching cycle sufficiently shorter than the duty cycle, shifts to an energized state, and heats the pan 3 Is started (S6).
  • the zero volt pulse detection circuit 12 detects the zero volt timing of the AC voltage from the AC power source, that is, the inversion timing of the positive / negative voltage, and generates a zero volt pulse at the detection timing.
  • the zero volt pulse detection circuit 12 transmits a zero volt pulse to the control circuit 9 when the zero volt timing is detected.
  • the control circuit 9 adds 1 to the stored data immediately before the pulse number adding circuit 14 in the control circuit 9 (S8). For example, when the immediately preceding stored data is 0, 1 is set in the pulse number adding circuit 14 after the addition.
  • the input current detection circuit 13 detects an input current (power supply current) from an AC power source using a current transformer, converts the detected input current into a detection signal having a voltage level corresponding to the input current, and controls the control circuit. Output to 9.
  • the control circuit 9 After detecting the zero volt pulse, the control circuit 9 receives the detection signal from the input current detection circuit 13 and sets a value (digit) corresponding to the voltage level of the detection signal to the stored data immediately before the input current addition circuit 15. (S9).
  • the operation when starting the heating operation, the operation is performed at an operating frequency far away from the resonance frequency of the resonance circuit (resonance frequency ⁇ operating frequency) to achieve a low power state (soft start control).
  • the control circuit 9 adds a value corresponding to the voltage level of the detection signal from the input current detection circuit 13 to the storage data of the input current addition circuit 15, and then the storage data of the input current addition circuit 15 determines whether or not the energization time has been reached. It is determined whether or not (15120) has been reached (S10).
  • the set power corresponding to the input power set value “1” is 100 W
  • the set power corresponding to the input power set value “2” is 300 W
  • the input power set values “1” and “2” The duty control operation is performed by setting the duty cycle time to 6 seconds with the set power (600 W) corresponding to the input power set value “3”.
  • the control is performed such that the average power is set to 100 W by setting the input power to 600 W, energizing for 1 second, and stopping energization for 5 seconds.
  • the control circuit 9 performs the addition process to the stored data of the input current adding circuit 15 after detecting the zero volt pulse, the addition process to the stored data of the input current adding circuit 15 in 6 seconds is performed.
  • the control circuit 9 determines whether or not the data stored in the input current adding circuit 15 has reached the energization time reachability determination value (15120) (S10), and if it has reached the energization time reachability determination value. If not (NO in S10), the energized state is continued according to the flowchart of FIG. 2, while if the energization time reachability determination value is reached (YES in S10), the energized state is shifted to the stopped state, that is, the switching element is driven. A stop signal is transmitted to the circuit 10 to stop the switching element 4, and the heating operation to the pan 3 is stopped (S11).
  • a zero volt pulse is transmitted from the zero volt pulse detection circuit 12 to the control circuit 9.
  • the control circuit 9 adds 1 to the stored data immediately before the pulse number adding circuit 14 (S13).
  • the control circuit 9 determines whether or not the stored data of the pulse number adding circuit 14 has reached the period time reachability determination value (720) (S14).
  • the period time reachability determination value of the stored data of the pulse number adding circuit 14 is set to a value corresponding to 6 seconds, which is the period time of the duty control.
  • the control circuit 9 determines whether or not the data stored in the pulse number adding circuit 14 has reached the cycle time arrival determination value, and if it has not reached the cycle time arrival determination value (NO in S14), is shown in FIG. The stop state is continued according to the flowchart.
  • the stored data of the pulse number adding circuit 14 has reached the cycle time reachability determination value (YES in S14)
  • the stored data of the pulse number adding circuit 14 and the input current adding circuit 15 are reset to 0.
  • Initial value 0 is set in S2 and S3
  • transition from the stopped state to the energized state that is, a drive signal is transmitted to the switching element drive circuit 10 to switch the switching element 4 at a predetermined switching cycle sufficiently shorter than the duty cycle It drives, it transfers to an energization state and the heating operation
  • the series of operations (S2 to S14) described so far are repeated until the end of the heating operation is selected using the input power setting means 16.
  • the control circuit 9 controls the switching element 4 to repeat the energization state and the stop state at a predetermined duty cycle
  • the input current detected by the input current detection circuit 13 is determined. Integration is performed in each duty cycle period, and the average value of the input current after integration in each duty cycle period is set to a value set in advance so as to correspond to the input power setting value selected using the input power setting means 16.
  • the energization time (corresponding to the energization time reachability determination value) of the switching element 4 is controlled.
  • FIG. 5 is a graph showing the time change of the input power during duty control in Embodiment 1 of the present invention, and shows the time change of the input power when the heating operation control according to the flowchart of FIG. 2 is performed.
  • the heating coil 1 that generates a high-frequency magnetic field and heats the pan 3, and the heating coil 1
  • a resonance capacitor 2 constituting a resonance circuit, a switching element 4 connected to the resonance circuit to generate a resonance current, an input current detection circuit 13 for detecting an input current to the resonance circuit, and a detection result by the input current detection circuit 13
  • the input current adding circuit 15 is configured to add, the control circuit 9 for arbitrarily changing the ON time of the switching element 4 to output predetermined power, and the input power setting means 16.
  • control circuit 9 continuously heats the pan 3 when the input power set value set by the input power setting means 16 is greater than or equal to a predetermined value, while when the input power set value is less than the predetermined value. Performs an intermittent operation in which the heating operation and the stop are repeated at a predetermined duty cycle, and in the intermittent operation, the stored data of the addition result by the input current adding circuit 15 is set to a predetermined energization time reachability determination value for each input power setting value. When it reaches, the state is changed from the heating operation to the stop.
  • the duty control when the input power set value is less than a predetermined value (3 in the present embodiment) is based on the data stored in the pulse number adding circuit 14 and the duty cycle time is 6 seconds. Done. Further, switching from the energized state to the stopped state at the time of duty control is performed by a predetermined energization corresponding to the integrated current when the stored data of the input current adding circuit 15 is energized for 6 seconds with the set power corresponding to the input power set value. This is performed when the time reachability determination value is reached. For this reason, even if there is a difference in the average power during the required time from the start of energization until the input power reaches the set power, the energization time can be varied according to the load. Therefore, the difference between the average input power and the set power can be reduced as compared with the prior art regardless of the load.
  • the input power set value has five stages from “1” to “5”, the set power corresponding to the input power set value “1” is 100 W, and the input power set value “2”. ”Is 300 W, the set power corresponding to the input power set value“ 3 ”is 600 W, the set power corresponding to the input power set value“ 4 ”is 900 W, and the input power set value“ The set power corresponding to “5” was 1200 W.
  • control circuit 9 performs continuous operation by frequency control in the input power set value range from “3” to “5”, and in the input power set value range of “1” and “2”, the input power set value “
  • the duty control operation was performed with the set power (600 W) corresponding to “3” and the duty cycle time set to 6 seconds, the present invention is not limited to this. Needless to say, the same effects as those of the present embodiment can be obtained without being limited to the number of steps of the input power set value and the set power corresponding thereto.
  • the duty cycle time is set to 6 seconds with the set power (600 W) corresponding to the input power set value “3”.
  • the period time reachability determination value of the stored data of the adder circuit 14 is set to 720, the present invention is not limited to this. Needless to say, the same effect as the present embodiment can be obtained without being limited to the energization time reachability determination value and the cycle time reachability determination value described above.
  • continuous operation is performed by frequency control in the input power setting value range of setting values “3” to “5”.
  • the input power can be changed by changing the conduction ratio while the operating frequency is fixed. It goes without saying that the same effect as in the present embodiment can be obtained even when the conduction ratio control for controlling the above is performed.
  • FIG. 6 is a circuit diagram showing a configuration of an induction heating cooker according to Embodiment 2 of the present invention.
  • the induction heating cooker includes a heating coil 1, a resonant capacitor 2, a switching element 4, a flyhole diode 5, a rectifying element 6, a choke coil 7, and a smoothing capacitor 8.
  • the control circuit 9 includes a pulse number adding circuit 14, an input current adding circuit 15, and a pan material determining circuit 18.
  • the heating coil 1 and the resonance capacitor 2 connected in parallel to the heating coil 1 constitute a resonance circuit.
  • the pan 3 as a load is disposed in the vicinity of the heating coil 1.
  • the switching element 4 is directly connected to the resonance circuit, and supplies a high-frequency current to the resonance circuit together with the flywheel diode 5 connected in parallel to the switching element 4.
  • the power rectified by the rectifying element 6 that rectifies the AC power from the AC power supply is smoothed by a smoothing circuit including the choke coil 7 and the smoothing capacitor 8 and supplied to the resonance circuit and the switching element 4.
  • the rectifier element 6, the choke coil 7, and the smoothing capacitor 8 constitute a rectifier circuit.
  • control circuit 9 controls the entire induction heating cooker, and the switching element driving circuit 10 drives the switching element 4 at a high speed according to a command from the control circuit 9. Furthermore, the power supply circuit 11 supplies a DC stabilized power supply to the entire induction heating cooker.
  • the zero volt pulse detection circuit 12 detects the zero volt timing of the AC voltage from the AC power supply, generates a zero volt pulse at the detection timing, and outputs the zero volt pulse to the pulse number adding circuit 14.
  • the input current detection circuit 13 uses a current transformer to detect an input current input to the resonance circuit from the AC power supply via the rectifier circuit, and inputs a detection signal having a voltage level corresponding to the detected input current. It outputs to the current addition circuit 15 and the pan material determination circuit 18.
  • the pulse number adding circuit 14 counts the zero volt pulse from the zero volt pulse detecting circuit 12, and stores data indicating the count result as stored data.
  • the input current adding circuit 15 adds (accumulates) the input current detected by the input current detecting circuit 13 by accumulating values corresponding to the voltage levels of the detection signals from the input current detecting circuit 13, and integrates them. Data indicating the result is stored as stored data.
  • the current detected by the input current detection circuit 13 corresponds to the input power
  • the stored data of the input current integration circuit 15 corresponds to the integration power.
  • the resonance voltage detection circuit 17 detects the resonance voltage generated in the resonance capacitor, and the pot material determination circuit 18 uses the detection results of the input current detection circuit 13 and the resonance voltage detection circuit 17 to determine the material of the pot 3. Determine.
  • the input current detection circuit 13, the resonance voltage detection circuit 17, and the pot material determination circuit 18 constitute a pot material determination unit that determines the material of the pot 3.
  • the user operates the input power setting means 16 to select and set one input power setting value from among a plurality of input power setting values to the resonance circuit.
  • the control method during the heating operation during duty control is the same as that of the induction heating cooker according to the prior art. is there.
  • the pan 3 is induction-heated by eddy current loss generated in the pan 3 placed on the heating coil 1 by a high-frequency magnetic field generated in the heating coil 1.
  • the power control method used is a frequency at which the current flowing through the heating coil 1 is changed according to the value of the time (on time) when the switching element 4 is turned on, and the high frequency current applied to the pan 3 is controlled to vary the power. Control.
  • the determination method of the input power set value when the control method is switched between frequency control and duty control is the same as the determination method according to the prior art. Specifically, for the purpose of preventing the occurrence of a significant increase in the on-loss of the switching element 4 in the low power state, based on the minimum input power that can avoid the destruction of the switching element 4 by the cooling configuration, The range of the input power set value for frequency control is determined.
  • the pot material determination circuit 18 determines the material of the pot 3 based on the detection results of the input current detection circuit 13 and the resonance voltage detection circuit 17 using a known technique. Specifically, the pan material determination circuit 18 uses, for example, that the input current detected by the input current detection circuit 13 and the resonance voltage detected by the resonance voltage detection circuit 17 differ greatly depending on the material of the pan 3. Then, it is determined whether the material of the pan 3 is iron or nonmagnetic stainless steel.
  • movement, and setting method as the induction heating cooking appliance which concerns on a prior art is abbreviate
  • FIGS. 7A, 7B, 8 and 9 are flowcharts of the duty control process in the second embodiment of the present invention when the input power set value is set to 1.
  • FIG. 8 is a table showing the relationship between the input power set value, the set power, and the power control method according to Embodiment 2 of the present invention.
  • FIG. 9 is a graph showing the relationship between the input power to the pan 3 and the voltage level Y of the detection signal from the input current detection circuit 13 in Embodiment 2 of the present invention.
  • the user uses the input power setting means 16 to select among the input power setting values in five stages from the input power setting values “1” to “5”. Select and set the desired input power setpoint.
  • the set power corresponding to the input power set value “1” is 100 W
  • the set power corresponding to the input power set value “2” is 300 W
  • the input power set value “3”. Is set to 600 W
  • the set power corresponding to the input power set value “4” is 900 W
  • the set power corresponding to the input power set value “5” is 1200 W.
  • control circuit 9 performs continuous operation by frequency control in the input power set value range from “3” to “5”, and in the input power set value range of “1” and “2”, the input power set value “ With the set power (600 W) corresponding to “3”, the duty cycle time is set to 6 seconds and the duty control operation is performed.
  • the control circuit 9 when the input power setting value is set to “1” by the input power setting means 16, the control circuit 9 receives a signal including the input power setting value “1” from the input power setting means 16 (S1). ). In response to this, the control circuit 9 first resets the stored data of the pulse number adding circuit 14 and the input current adding circuit 15 in the control circuit 9 to 0 (in S2 and S3, the initial value 0 is set). set).
  • control circuit 9 sets 720 to the period time reachability determination value of the stored data of the pulse number adding circuit 14 (S4). A method for setting the period time reachability determination value will be described later.
  • control circuit 9 transmits a drive signal to the switching element drive circuit 10 to drive the switching element 4 at a predetermined switching cycle sufficiently shorter than the duty cycle, shifts to an energized state, and heats the pan 3 Is started (S6).
  • control circuit 9 receives the detection signal from the input current detection circuit 13 and the detection signal from the resonance voltage detection circuit 17, and determines the material of the pot 3 by the pot material determination circuit 18 in the control circuit 9. (S21), the energization time reachability determination value of the stored data of the input current adding circuit 15 is set according to the determination result (S22 and S32).
  • the input current detection circuit 13 detects an input current (power supply current) from an AC power supply using a current transformer, converts the detected input current into a voltage corresponding to the input current, and peaks the peak voltage of the voltage.
  • a detection signal detected by the hold circuit and having a voltage level as a detection result is output to the control circuit 9.
  • the control circuit 9 (microcomputer) converts the detection signal from the input current detection circuit 13 into a digital value of 0 to 255 digits according to the voltage level (analog value).
  • the maximum input power set value of the induction heating cooker according to the embodiment of the present invention is “5”, that is, the maximum set power is “1200 W”.
  • the set power corresponding to the input power set value “1” is 100 W
  • the set power corresponding to the input power set value “2” is 300 W
  • the input power set values “1” and “2” The duty control operation is performed by setting the duty cycle time to 6 seconds with the set power (600 W) corresponding to the value “3”.
  • the control is performed such that the average power is set to 100 W by setting the input power to 600 W, energizing for 1 second, and stopping energization for 5 seconds. .
  • the control circuit 9 performs the addition process to the storage data of the input current addition circuit 15 after detecting the zero volt pulse, the total number of addition processes to the storage data of the input current addition circuit 15 in 6 seconds is: Equivalent to the number of occurrences of zero volt timing in 6 seconds.
  • the zero volt pulse detection circuit 12 detects the zero volt timing of the alternating voltage from the alternating current power source, that is, the inversion timing of the positive / negative voltage, and generates the zero volt pulse at the detection timing.
  • 15120 is set as the energization time reachability determination value of the stored data of the input current adding circuit 15 (S22). ).
  • 45360 is set as the energization time reachability determination value of the stored data of the input current adding circuit 15 as in the case of the input power set value “1” (FIG. 8). reference.).
  • a nonmagnetic stainless steel (nonmagnetic SUS (Steel Use Stainless)) pan (hereinafter referred to as a nonmagnetic stainless steel pan), which is a typical nonmagnetic material pan, is set to “3”.
  • the energization time is 6 ⁇ (15120/127) /720 ⁇ 0.99 seconds for a time of 6 seconds.
  • using the energization time reachability determination value of the stored data of the input current addition circuit 15 made of iron is equivalent to energizing the energization time when heating the enamel pan.
  • the average power is 640 ⁇ 0.99 / 6 ⁇ 106 W, and a difference from the set power (100 W) occurs.
  • the energization time reachability determination value may be changed between the case of the nonmagnetic stainless steel pan and the case of the enamel pan.
  • the average power is 640 ⁇ (14400/127) / 720 ⁇ 101 W, and the difference between the average input power and the set power (100 W) can be substantially eliminated.
  • 43200 is set as the energization time reachability determination value of the stored data of the input current adding circuit 15 as in the case of the input power set value “1” (FIG. 8). reference.).
  • the zero volt pulse detection circuit 12 detects the zero volt timing, it transmits a zero volt pulse to the control circuit 9.
  • the control circuit 9 adds 1 to the stored data immediately before the pulse number adding circuit 14 in the control circuit 9 (S24 and S34). For example, when the immediately preceding stored data is 0, 1 is set in the pulse number adding circuit 14 after the addition.
  • the control circuit 9 After detecting the zero volt pulse, the control circuit 9 receives the detection signal from the input current detection circuit 13 and sets a value (digit) corresponding to the voltage level of the detection signal to the stored data immediately before the input current addition circuit 15. Are added (S25 and S35).
  • the operation when starting the heating operation, the operation is performed at an operating frequency far away from the resonance frequency of the resonance circuit (resonance frequency ⁇ operating frequency) to achieve a low power state (soft start control).
  • the control circuit 9 determines that the stored data of the input current adding circuit 15 is the energization time reachability determination value (15120 when the material of the pan 3 is iron, and 14400 when the material of the pan 3 is nonmagnetic stainless steel. (S26 and S36). If the energization time reachability determination value has not been reached, the energization state is continued according to the flowchart of FIG. 7A, while the energization time arrival determination value is reached. If it has reached, it shifts from the energized state to the stopped state, that is, a stop signal is transmitted to the switching element drive circuit 10 to stop the switching element 4, and the heating operation to the pan 3 is stopped (S11).
  • a zero volt pulse is transmitted from the zero volt pulse detection circuit 12 to the control circuit 9.
  • the control circuit 9 adds 1 to the stored data immediately before the pulse number adding circuit 14 (S13).
  • the control circuit 9 determines whether or not the stored data of the pulse number adding circuit 14 has reached the period time reachability determination value (720) (S14).
  • the period time reachability determination value of the stored data of the pulse number adding circuit 14 is set to a value corresponding to 6 seconds, which is the period time of the duty control.
  • the control circuit 9 determines whether or not the data stored in the pulse number adding circuit 14 has reached the period time reachability determination value, and if it has not reached the period time reachability determination value (NO in S14), FIG. 7A. And the stop state is continued according to the flowchart of FIG. 7B.
  • the stored data of the pulse number adding circuit 14 has reached the cycle time reachability determination value (YES in S14)
  • the stored data of the pulse number adding circuit 14 and the input current adding circuit 15 are reset to 0.
  • Initial value 0 is set in S2 and S3
  • transition from the stopped state to the energized state that is, a drive signal is transmitted to the switching element drive circuit 10 to switch the switching element 4 at a predetermined switching cycle sufficiently shorter than the duty cycle It drives, it transfers to an energization state and the heating operation
  • the series of operations (S2 to S14) described so far are repeated until the end of the heating operation is selected using the input power setting means 16.
  • the control circuit 9 is detected by the input current detection circuit 13 when controlling the switching element 4 to repeat the energized state and the stopped state at a predetermined duty cycle.
  • the input current is integrated in each duty cycle period, and the average value of the input current after the integration of each duty period is set in advance so as to correspond to the input power setting value selected using the input power setting means 16
  • the energization time of the switching element 4 (corresponding to the energization time reachability determination value) is controlled so as to be a value.
  • the control circuit 9 controls the energization time of the switching element 4 according to the material of the pan 3.
  • the rectifying element 6 that converts AC power from an AC power source into DC power
  • the heating coil 1 that generates a high-frequency magnetic field and heats the pan 3, and the heating coil 1.
  • a resonance capacitor 2 constituting a resonance circuit
  • a switching element 4 connected to the resonance circuit to generate a resonance current
  • an input current detection circuit 13 for detecting an input current to the resonance circuit
  • the resonance capacitor 2 From the resonance voltage detection circuit 17 that detects the generated resonance voltage, the input current addition circuit 15 that adds the detection results of the input current detection circuit 13, and the detection results of the input current detection circuit 13 and the resonance voltage detection circuit 17
  • the pot material determination circuit 18 which is a pot material determination means for determining the pot material, and the on-time of the switching element 4 to output predetermined power And a control circuit 9 to change, and and an input power setting means 16.
  • the control circuit 9 continuously heats the pan 3 when the input power set value set by the input power setting means 16 is a predetermined value or more, while the input power set value is less than the predetermined value.
  • an intermittent operation is performed in which the heating operation and the stop are repeated at a predetermined duty cycle.
  • the storage data of the addition result by the input current addition circuit 15 is determined for each input power set value and the pan material determination circuit The state is changed from the heating operation to the stop when the energization time reachability determination value which is a different value depending on the determination result by 18 is reached.
  • the duty control when the input power set value is less than a predetermined value (3 in the present embodiment) is based on the data stored in the pulse number adding circuit 14 and the duty cycle time is 6 seconds. Do more. Further, switching from the energized state to the stopped state at the time of duty control is performed by a predetermined energization corresponding to the integrated current when the stored data of the input current adding circuit 15 is energized for 6 seconds with the set power corresponding to the input power set value. This is performed when the time reachability determination value is reached, and further, the arrival determination condition for the average power (energization time reachability determination value) is changed even with the same set power according to the material (type) of the load.
  • the length of time required from the start of operation until the input current reaches the predetermined integrated input power for switching between the energized state and the stopped state from the start of energization is increased or decreased depending on the load. Even if there is a difference in the average power generated during the required time, or when the input power itself in the energized state varies depending on the power control method during continuous operation, the energization time can be varied according to the load. Can respond. For this reason, the difference between the average input power and the set power can be reduced as compared with the prior art regardless of the load.
  • the input power set value has five stages from “1” to “5”, the set power corresponding to the input power set value “1” is 100 W, and the input power set value “2”. ”Is 300 W, the set power corresponding to the input power set value“ 3 ”is 600 W, the set power corresponding to the input power set value“ 4 ”is 900 W, and the input power set value“ The set power corresponding to “5” was 1200 W.
  • control circuit 9 performs continuous operation by frequency control in the input power set value range from “3” to “5”, and in the input power set value range of “1” and “2”, the input power set value “
  • the duty control operation was performed with the set power (600 W) corresponding to “3” and the duty cycle time set to 6 seconds, the present invention is not limited to this. Needless to say, the same effects as those of the present embodiment can be obtained without being limited to the number of steps of the input power set value and the set power corresponding thereto.
  • the duty cycle time is set to 6 seconds with the set power (600 W) corresponding to the input power set value “3”.
  • the reachability determination value of the stored data of the input current adding circuit 15 for determining the switching from the energized state to the stopped state is set to 15120
  • the nonmagnetic stainless steel pan nonmagnetic (Made of stainless steel) was set to 14400.
  • the reachability determination value of the stored data of the pulse number adding circuit 14 for detecting the cycle time of 6 seconds is set to 720.
  • the present invention is not limited to this. Needless to say, the same effect as the present embodiment can be obtained without being limited to the energization time reachability determination value and the cycle time reachability determination value described above.
  • continuous operation is performed by frequency control in the input power setting value range of setting values “3” to “5”.
  • the input power can be changed by changing the conduction ratio while the operating frequency is fixed. It goes without saying that the same effect as in the present embodiment can be obtained even when the conduction ratio control for controlling the above is performed.
  • the pan material determination circuit 18 determined whether the material of the pan 3 is either two types of materials, iron and nonmagnetic stainless steel, this invention is not limited to this. .
  • the pan material determination circuit 18 may be further determined that it is aluminum, and the same effect as this embodiment can be obtained regardless of the determination contents of the pot material determination circuit 18. It goes without saying that it is possible.
  • FIG. 10 is a circuit diagram showing a configuration of an induction heating cooker according to Embodiment 3 of the present invention.
  • the induction heating cooker includes a heating coil 1, a resonant capacitor 2, a switching element 4, a flyhole diode 5, a rectifying element 6, a choke coil 7, and a smoothing capacitor 8.
  • the control circuit 9 includes a pulse number adding circuit 14 and a pan material determining circuit 18.
  • the heating coil 1 and the resonance capacitor 2 connected in parallel to the heating coil 1 constitute a resonance circuit.
  • the pan 3 as a load is disposed in the vicinity of the heating coil 1.
  • the switching element 4 is connected in series to the resonance circuit, and supplies a high-frequency current to the resonance circuit together with the flywheel diode 5 connected in parallel to the switching element 4.
  • the power rectified by the rectifying element 6 that rectifies the AC power from the AC power supply is smoothed by a smoothing circuit including the choke coil 7 and the smoothing capacitor 8 and supplied to the resonance circuit and the switching element 4.
  • the rectifier element 6, the choke coil 7, and the smoothing capacitor 8 constitute a rectifier circuit.
  • control circuit 9 controls the entire induction heating cooker, and the switching element driving circuit 10 drives the switching element 4 at a high speed according to a command from the control circuit 9. Furthermore, the power supply circuit 11 supplies a DC stabilized power supply to the entire induction heating cooker.
  • the zero volt pulse detection circuit 12 detects the zero volt timing of the AC voltage from the AC power supply, generates a zero volt pulse at the detection timing, and outputs the zero volt pulse to the pulse number adding circuit 14.
  • the input current detection circuit 13 uses a current transformer to detect an input current input to the resonance circuit from the AC power supply via the rectifier circuit, and generates a detection signal having a voltage level corresponding to the detected input current. This is output to the material judgment circuit 18.
  • the pulse number adding circuit 14 counts the zero volt pulse from the zero volt pulse detecting circuit 12, and stores data indicating the count result as stored data.
  • the resonance voltage detection circuit 17 detects the resonance voltage generated in the resonance capacitor, and the pot material determination circuit 18 uses the detection results of the input current detection circuit 13 and the resonance voltage detection circuit 17 to determine the material of the pot 3. Determine.
  • the input current detection circuit 13, the resonance voltage detection circuit 17, and the pot material determination circuit 18 constitute a pot material determination unit that determines the material of the pot 3.
  • the user operates the input power setting means 16 to select and set one input power setting value from among a plurality of input power setting values to the resonance circuit.
  • the control method during the heating operation during duty control is the same as that of the induction heating cooker according to the prior art. is there.
  • the pan 3 is induction-heated by eddy current loss generated in the pan 3 placed on the heating coil 1 by a high-frequency magnetic field generated in the heating coil 1.
  • the power control method used is a frequency at which the current flowing through the heating coil 1 is changed according to the value of the time (on time) when the switching element 4 is turned on, and the high frequency current applied to the pan 3 is controlled to vary the power. Control.
  • the determination method of the input power set value when the control method is switched between frequency control and duty control is the same as the determination method according to the prior art. Specifically, for the purpose of preventing the occurrence of a significant increase in the on-loss of the switching element 4 in the low power state, based on the minimum input power that can avoid the destruction of the switching element 4 by the cooling configuration, The range of the input power set value for frequency control is determined.
  • the pot material determination circuit 18 determines the material of the pot 3 based on the detection results of the input current detection circuit 13 and the resonance voltage detection circuit 17 using a known technique. Specifically, the pan material determination circuit 18 uses, for example, that the input current detected by the input current detection circuit 13 and the resonance voltage detected by the resonance voltage detection circuit 17 differ greatly depending on the material of the pan 3. Then, it is determined whether the material of the pan 3 is iron or nonmagnetic stainless steel.
  • movement, and setting method as the induction heating cooking appliance which concerns on a prior art is abbreviate
  • FIGS. 11A, 11B, 12 and 13 are flowcharts of the duty control process in the third embodiment of the present invention when the input power set value is set to 1.
  • FIG. 12 is a table showing the relationship between the input power set value, the set power, and the power control method according to Embodiment 3 of the present invention.
  • FIG. 13 is a graph showing the relationship between the input power to the pan 3 and the voltage level Y of the detection signal from the input current detection circuit 13 in Embodiment 3 of the present invention.
  • the user uses the input power setting means 16 to select among the input power setting values in five stages from the input power setting values “1” to “5”. Select and set the desired input power setpoint.
  • the set power corresponding to the input power set value “1” is 100 W
  • the set power corresponding to the input power set value “2” is 300 W
  • the input power set value “3”. Is set to 600 W
  • the set power corresponding to the input power set value “4” is 900 W
  • the set power corresponding to the input power set value “5” is 1200 W.
  • control circuit 9 performs continuous operation by frequency control in the input power set value range from “3” to “5”, and in the input power set value range of “1” and “2”, the input power set value “ With the set power (600 W) corresponding to “3”, the duty cycle time is set to 6 seconds and the duty control operation is performed.
  • the control circuit 9 when the input power setting value is set to “1” by the input power setting means 16 (S1), the control circuit 9 receives a signal including the input power setting value “1” from the input power setting means 16. To do. In response to this, the control circuit 9 first resets the stored data of the pulse number adding circuit 14 and the input current adding circuit 15 in the control circuit 9 to 0 (sets the initial value 0 in S2). .
  • control circuit 9 sets 720 to the period time reachability determination value of the stored data of the pulse number adding circuit 14 (S4). A method for setting the period time reachability determination value will be described later.
  • control circuit 9 transmits a drive signal to the switching element drive circuit 10 to drive the switching element 4 at a predetermined switching cycle sufficiently shorter than the duty cycle, shifts to an energized state, and heats the pan 3 Is started (S6).
  • control circuit 9 receives the detection signal from the input current detection circuit 13 and the detection signal from the resonance voltage detection circuit 17, and determines the material of the pot 3 by the pot material determination circuit 18 in the control circuit 9.
  • the energization time reachability determination value of the stored data of the pulse number adding circuit 14 is set according to the determination result (S41 and S43).
  • the input current detection circuit 13 detects an input current (power supply current) from an AC power supply using a current transformer, converts the detected input current into a voltage corresponding to the input current, and peaks the peak voltage of the voltage.
  • a detection signal detected by the hold circuit and having a voltage level as a detection result is output to the control circuit 9.
  • the control circuit 9 (microcomputer) converts the detection signal from the input current detection circuit 13 into a digital value of 0 to 255 digits according to the voltage level (analog value).
  • the maximum input power set value of the induction heating cooker according to the embodiment of the present invention is “5”, that is, the maximum set power is “1200 W”.
  • the input power is originally obtained based on the effective value and phase of the input current and the effective value and phase of the input voltage. Even if the maximum value of the input current is the same, the effective value of the input current is different. In some cases, the input power will not be the same. For example, when the nonmagnetic stainless steel pan is heated so that the input power setting value is set to “3” and the voltage level of the detection signal from the input current detection circuit 13 is 128 digits, the actual input power becomes 640 W, and 1.06 times the set power 600 W corresponding to the input power set value “3” is input (see FIG. 9). Accordingly, as shown in FIG.
  • the set power corresponding to the input power set value “1” is 100 W
  • the set power corresponding to the input power set value “2” is 300 W
  • the input power set values “1” and “2” The duty control operation is performed by setting the duty cycle time to 6 seconds with the set power (600 W) corresponding to the input power set value “3”.
  • the control is performed such that the average power is set to 100 W by setting the input power to 600 W, energizing for 1 second, and stopping energization for 5 seconds. .
  • the energization time reachability determination value may be changed between the case of the nonmagnetic stainless steel pan and the case of the enamel pan.
  • the energization time in the case of a non-magnetic stainless steel pan is a time considering the input power ratio of 1.06 with respect to the optimal energization time of 1 second in the case of an enamel pan. .94 seconds should be set.
  • the zero volt pulse detection circuit 12 detects the zero volt timing of the alternating voltage from the alternating current power source, that is, the inversion timing of the positive / negative voltage, and generates the zero volt pulse at the detection timing.
  • the energization time reachability determination value is set to 360, and if it is determined to be non-magnetic stainless steel, 338 is set to the energization time reachability determination value of the data stored in the pulse number adding circuit 14 (see FIG. 12). .
  • the zero volt pulse detection circuit 12 detects the zero volt timing, it transmits a zero volt pulse to the control circuit 9.
  • the control circuit 9 adds 1 to the stored data immediately before the pulse number adding circuit 14 in the control circuit 9 (S24 and S34). For example, when the immediately preceding stored data is 0, 1 is set in the pulse number adding circuit 14 after the addition.
  • the control circuit 9 determines that the stored data of the pulse number adding circuit 14 is an energization time reachability determination value (120 when the material of the pan 3 is iron and 113 when the material of the pan 3 is nonmagnetic stainless steel. 11) (S42 and S44). If the energization time reachability determination value has not been reached, the energization state is continued according to the flowchart of FIG. 11A, while the energization time reachability determination value is reached. If it has reached
  • a zero volt pulse is transmitted from the zero volt pulse detection circuit 12 to the control circuit 9.
  • the control circuit 9 adds 1 to the stored data immediately before the pulse number adding circuit 14 (S13).
  • the control circuit 9 determines whether or not the stored data of the pulse number adding circuit 14 has reached the period time reachability determination value (720) (S14).
  • the period time reachability determination value of the stored data of the pulse number adding circuit 14 is set to a value corresponding to 6 seconds, which is the period time of the duty control.
  • the control circuit 9 determines whether or not the data stored in the pulse number adding circuit 14 has reached the period time reachability determination value (S14). If it has not reached the period time reachability determination value (NO in S14). ) The stop state is continued according to the flowcharts of FIGS. 7A and 7B.
  • the stored data in the pulse number adding circuit 14 is reset to 0 (initial value 0 in S2).
  • the transition from the stop state to the energized state that is, the drive signal is transmitted to the switching element drive circuit 10 to drive the switching element 4 at a predetermined switching cycle sufficiently shorter than the duty cycle, the transition to the energized state,
  • the heating operation to the pan 3 is started (S6).
  • the series of operations (S2 to S14) described so far are repeated until the end of the heating operation is selected using the input power setting means 16.
  • each duty is determined based on the material of the pan 3.
  • the energization time of the switching element 4 (the energization time reachability determination value is determined in advance) so that the average value of the input power in the cycle period becomes a value corresponding to the input power setting value selected using the input power setting means 16. Corresponding).
  • FIG. 14 is a graph showing a time change of input power during duty control in the third embodiment of the present invention, and shows a time change of input power when the heating operation control according to the flowcharts of FIGS. 11A and 11B is performed.
  • the input power setting is performed regardless of the length of the period from when the stored data of the pulse number adding circuit 14 is reset to zero until the input power reaches 600 W.
  • the integrated input power (area A in FIG. 14) within the duty control period (6 seconds) when the value is “1” is the duty at the set power (100 W) corresponding to the input power set value “1”. It is equal to the integrated input power (area B in FIG. 14) when energized continuously for the control cycle time. That is, the average input power when the input power set value is “1” is equal to the average input power when the power is continuously energized with the set power of 100 W.
  • the heating coil 1 that generates a high-frequency magnetic field and heats the pan 3, and the heating coil 1
  • a resonance capacitor 2 constituting a resonance circuit, a switching element 4 connected to the resonance circuit to generate a resonance current, an input current detection circuit 13 for detecting an input current to the resonance circuit, and a resonance voltage generated in the resonance capacitor 2
  • a resonance voltage detection circuit 17 for detecting the pot
  • a pan material determination circuit 18 for determining the pot material from the detection results of the input current detection circuit 13 and the resonance voltage detection circuit 17, and the switching element 4 being turned on to output predetermined power
  • the control circuit 9 is formed by arbitrarily changing the time, and the input power setting means 16 is provided.
  • control circuit 9 continuously heats the pan 3 when the input power set value set by the input power setting means 16 is greater than or equal to a predetermined value, while when the input power set value is less than the predetermined value. Performs an intermittent operation in which the heating operation and the stop are repeated at a time ratio according to the input power set value, and in the intermittent operation, the time ratio is changed at the same input power set value according to the determination result by the pan material determination circuit 18.
  • the input power itself when performing the duty control operation changes, and there is a difference between the set power and the actual average input power.
  • the time ratio ratio of energization time to duty cycle time
  • the difference between the average input power and the set power can be reduced.
  • the input power set value has five stages from “1” to “5”, the set power corresponding to the input power set value “1” is 100 W, and the input power set value “2”. ”Is 300 W, the set power corresponding to the input power set value“ 3 ”is 600 W, the set power corresponding to the input power set value“ 4 ”is 900 W, and the input power set value“ The set power corresponding to “5” was 1200 W.
  • control circuit 9 performs continuous operation by frequency control in the input power set value range from “3” to “5”, and in the input power set value range of “1” and “2”, the input power set value “
  • the duty control operation was performed with the set power (600 W) corresponding to “3” and the duty cycle time set to 6 seconds, the present invention is not limited to this. Needless to say, the same effects as those of the present embodiment can be obtained without being limited to the number of steps of the input power set value and the set power corresponding thereto.
  • the duty cycle time is set at the set power (600 W) corresponding to the input power set value “3”.
  • Set to 6 seconds perform duty control operation, set the energization time when the input power setting value is “1” to 1 second for enamel pan (iron material), and nonmagnetic stainless steel pan (nonmagnetic material)
  • the energization time reachability determination value of the stored data of the pulse number adding circuit 14 is set to 120 and 113, respectively.
  • the reachability determination value of the stored data of the pulse number adding circuit 14 for detecting the cycle time of 6 seconds is set to 720.
  • the present invention is not limited to this. Needless to say, the same effect as the present embodiment can be obtained without being limited to the energization time reachability determination value and the cycle time reachability determination value described above.
  • continuous operation is performed by frequency control in the input power setting value range of setting values “3” to “5”.
  • the input power can be changed by changing the conduction ratio while the operating frequency is fixed. It goes without saying that the same effect as in the present embodiment can be obtained even when the conduction ratio control for controlling the above is performed.
  • the pan material determination circuit 18 determined whether the material of the pan 3 is either two types of materials, iron and nonmagnetic stainless steel, this invention is not limited to this. .
  • the pan material determination circuit 18 may be further determined that it is aluminum, and the same effect as this embodiment can be obtained regardless of the determination contents of the pot material determination circuit 18. It goes without saying that it is possible.
  • the induction heating cooker according to the present invention when power control is performed by duty control, the energized state and the stopped state are alternately switched at a predetermined duty cycle, and the energized state is stopped. Is switched when the average value of the input current to the resonance circuit for each duty cycle period reaches a preset value corresponding to the input power setting value. It is possible to prevent the difference between the set power corresponding to the set value from becoming large depending on the load, and to suppress the variation in the cooking performance due to the load difference, thereby improving the usability. Therefore, the induction heating cooker according to the present invention can be applied not only to the induction heating cooker but also to all devices that perform induction heating and perform a duty control operation.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

An input current detection circuit (13) detects an input current inputted from a direct-current power supply into a resonance circuit including a heating coil (1) and a resonant capacitor (2). A control circuit (9) integrates the input current detected by the input current detection circuit (13) for each duty cycle period, and controls the electrification time of a switching element (4) so that an average value of the input current after the integration corresponds to an input power setting value selected using an input power setting means (16).

Description

誘導加熱調理器Induction heating cooker
 本発明は、入力電力の設定値に応じて電力制御を行う誘導加熱調理器に関する。 The present invention relates to an induction heating cooker that performs power control according to a set value of input power.
 図15を参照して、特許文献1記載の従来技術に係る誘導加熱調理器を説明する。図15は、従来技術に係る誘導加熱調理器の構成を示す回路図である。図15に示すように、従来技術に係る誘導加熱調理器は、直流電源回路41と、加熱コイル44、共振コンデンサ45および負荷(鍋)60からなる並列共振回路と、加熱コイル44に高周波電流を供給するスイッチング素子46および47とフライホイールダイオードとを備えて構成される。図15の誘導加熱調理器は電圧共振型インバータの回路構成を有し、スイッチング素子46および47をオンオフすることによって並列共振回路に共振電流を発生させ、加熱コイル44に発生する高周波磁界により、加熱コイル44上に載置された負荷60に発生する渦電流損によって負荷60を誘導加熱する。また、用いられる電力制御方法は、スイッチング素子46および47をオンする時間(オン時間)の値によって加熱コイルに流れる電流を変化させて、鍋に与えられる高周波電流を制御して電力を可変させる周波数制御である。この方法によれば、適正インピーダンスの負荷(鍋)60の場合は、共振によるフライバック電圧(コレクタ・エミッタ間電圧)が完全に0Vに低下した状態から次の通電が行なわれ、負荷電流(コレクタ電流)としてフライホイールダイオードにマイナスのフライホイール電流が流れる。しかし、出力電力を下げるためにオン時間を短くしていくと、フライバック電圧が0V以下に下がる前にスイッチング素子がオンしてしまうため、オン損失が著しく増大することとなり、素子の劣化や破壊を招くという欠点があった。 Referring to FIG. 15, an induction heating cooker according to the prior art described in Patent Document 1 will be described. FIG. 15 is a circuit diagram showing a configuration of an induction heating cooker according to the prior art. As shown in FIG. 15, the induction heating cooker according to the prior art includes a DC power supply circuit 41, a parallel resonance circuit including a heating coil 44, a resonance capacitor 45 and a load (pan) 60, and a high-frequency current to the heating coil 44. The switching elements 46 and 47 to be supplied and a flywheel diode are provided. The induction heating cooker of FIG. 15 has a circuit configuration of a voltage resonance type inverter, and by turning on and off the switching elements 46 and 47, a resonance current is generated in the parallel resonance circuit, and heating is performed by a high frequency magnetic field generated in the heating coil 44. The load 60 is induction-heated by eddy current loss generated in the load 60 placed on the coil 44. In addition, the power control method used is a frequency at which the current flowing through the heating coil is changed according to the value of the time during which the switching elements 46 and 47 are turned on (on time), and the high-frequency current applied to the pan is controlled to vary the power. Control. According to this method, in the case of a load (pan) 60 having an appropriate impedance, the next energization is performed from a state where the flyback voltage (collector-emitter voltage) due to resonance has completely decreased to 0 V, and the load current (collector) As a current), a negative flywheel current flows through the flywheel diode. However, if the on-time is shortened in order to reduce the output power, the switching element is turned on before the flyback voltage falls below 0V, so that the on-loss is remarkably increased, and the element is deteriorated or destroyed. There was a drawback of inviting.
 これらの問題を解決するために、特許文献1では、入力電力設定値がある値以上の場合は入力電力設定値に応じてスイッチング素子の動作周波数を変化させ(周波数制御による連続動作制御方法を用いる。)、入力電力設定値がある値以下の場合は入力電力設定値に応じて加熱時間と停止時間の比を変化させる(インバータ回路への通電および停止を周期的に繰り返す間欠動作制御方法(以下、デューティ制御という。)を用いる。)。 In order to solve these problems, in Patent Document 1, when the input power set value is greater than a certain value, the operating frequency of the switching element is changed according to the input power set value (a continuous operation control method using frequency control is used). .) When the input power set value is less than a certain value, the ratio of the heating time and the stop time is changed according to the input power set value (intermittent operation control method (hereinafter referred to as “inverter circuit energization and stop”). , Referred to as duty control)).
特開昭63-040291号公報Japanese Unexamined Patent Publication No. Sho 63-040291
 しかしながら、前記従来技術に係る誘導加熱調理器は、デューティ制御により電力制御を行う場合に、負荷によっては、負荷への入力電力の平均電力と設定電力との間の差が大きくなるという課題を有している。これは以下の理由によるものである。デューティ制御とは、所定の設定電力での通電動作を、所定の通電時間および停止時間により通電状態と停止状態を交互に切り替えることにより行い、所定の周期時間(通電時間+停止時間)に対する通電時間の比(デューティ比)を変化させることにより、所望の平均電力を得る制御方法である。ここで、通電状態では負荷への入力電力が設定電力相当の入力電力となるよう周波数制御により電力制御されるが、このときのスイッチング素子の動作状態は負荷により異なるため、設定電力ごとにスイッチング素子の動作周波数を一意に決定することができない。このため、一般的には、動作開始時には共振回路の共振周波数から大きく離れた動作周波数(共振周波数<動作周波数とする)で動作させて低電力状態とし、少しずつ動作周波数を共振周波数に近づけることで入力電力を増加させて設定電力相当まで制御する方法(ソフトスタート制御)が用いられる。このとき、動作開始から、入力電力が設定電力相当に到達するまでの所要時間は負荷により異なり、且つこの時間は先に述べた通電時間に含まれる。このため所要時間が長い負荷ほど残りの通電時間(設定電力相当で通電する時間)が短くなり、周期時間当たりの平均電力も小さくなるため、実際の入力電力の平均値と設定電力との間の差が大きくなる。 However, the induction heating cooker according to the related art has a problem that, when performing power control by duty control, the difference between the average power of the input power to the load and the set power becomes large depending on the load. is doing. This is due to the following reason. Duty control is an energization operation with a predetermined set power by alternately switching between an energized state and a stopped state according to a predetermined energized time and a stopped time, and an energized time with respect to a predetermined cycle time (energized time + stopped time). This is a control method for obtaining a desired average power by changing the ratio (duty ratio). Here, in the energized state, power control is performed by frequency control so that the input power to the load is equivalent to the set power. However, since the operation state of the switching element at this time varies depending on the load, the switching element is set for each set power. The operating frequency cannot be determined uniquely. For this reason, in general, at the start of operation, the power is operated at an operating frequency far away from the resonant frequency of the resonant circuit (resonance frequency <operating frequency) to set the low power state, and the operating frequency is gradually brought closer to the resonant frequency. Then, a method (soft start control) is used in which the input power is increased to control the power up to the set power. At this time, the time required from the start of operation until the input power reaches the set power level differs depending on the load, and this time is included in the energization time described above. For this reason, the longer the required time, the shorter the remaining energization time (the time for energization corresponding to the set power), and the average power per cycle time also decreases, so the average input power between the average value and the set power The difference increases.
 本発明の目的は以上の問題を解決し、デューティ制御により電力制御を行うときに、従来技術に比較して平均入力電力と設定電力との間の差を小さくできる誘導加熱調理器を提供することにある。 The object of the present invention is to solve the above problems and to provide an induction heating cooker that can reduce the difference between the average input power and the set power as compared with the prior art when performing power control by duty control. It is in.
 第1の発明に係る誘導加熱調理器は、
 鍋を誘導加熱する加熱コイルと、当該加熱コイルに並列に接続された共振コンデンサとを備えた共振回路と、
 前記共振コンデンサに直列に接続されたスイッチング素子と、
 交流電源から整流回路を介して前記共振回路に入力される入力電流を検出する入力電流検出回路と、
 前記共振回路への複数の入力電力設定値の中から1つの入力電力設定値を選択するための入力電力設定手段と、
 前記スイッチング素子を、所定のデューティ周期で通電状態と停止状態を繰り返すように制御する制御回路とを備えた誘導加熱調理器において、
 前記制御回路は、前記検出される入力電流を前記各デューティ周期期間において積算し、当該各デューティ周期期間の積算後の入力電流の平均値が、前記選択された入力電力設定値に対応するように予め設定された値になるように、前記スイッチング素子の通電時間を制御することを特徴とする。
The induction heating cooker according to the first invention is
A resonance circuit comprising a heating coil for induction heating the pan, and a resonance capacitor connected in parallel to the heating coil;
A switching element connected in series to the resonant capacitor;
An input current detection circuit for detecting an input current input to the resonance circuit from an AC power supply via a rectifier circuit;
Input power setting means for selecting one input power setting value from a plurality of input power setting values to the resonant circuit;
In the induction heating cooker provided with a control circuit for controlling the switching element to repeat the energized state and the stopped state at a predetermined duty cycle,
The control circuit integrates the detected input current in each duty cycle period, and an average value of the input current after the integration of each duty cycle period corresponds to the selected input power setting value. The energization time of the switching element is controlled so as to have a preset value.
 第2の発明に係る誘導加熱調理器は、
 鍋を誘導加熱する加熱コイルと、当該加熱コイルに並列に接続された共振コンデンサとを備えた共振回路と、
 前記共振コンデンサに直列に接続されたスイッチング素子と、
 前記共振回路への複数の入力電力設定値の中から1つの入力電力設定値を選択するための入力電力設定手段と、
 前記鍋の材質を判定する鍋材質判定手段と、
 前記スイッチング素子を、所定のデューティ周期で通電状態と停止状態を繰り返すように制御する制御回路とを備えた誘導加熱調理器において、
 前記制御回路は、前記判定された鍋の材質に基づいて、前記各デューティ周期期間における入力電力の平均値が前記選択された入力電力設定値に対応する値になるように予め決定された前記スイッチング素子の通電時間を設定することを特徴とする。
The induction heating cooker according to the second invention is
A resonance circuit comprising a heating coil for induction heating the pan, and a resonance capacitor connected in parallel to the heating coil;
A switching element connected in series to the resonant capacitor;
Input power setting means for selecting one input power setting value from a plurality of input power setting values to the resonant circuit;
A pot material determining means for determining the material of the pot;
In the induction heating cooker provided with a control circuit for controlling the switching element to repeat the energized state and the stopped state at a predetermined duty cycle,
The control circuit determines the switching based on the determined material of the pan so that an average value of input power in each duty cycle period is a value corresponding to the selected input power setting value. The energization time of the element is set.
 従って、デューティ制御により電力制御を行うときに、従来技術に比較して平均入力電力と設定電力との間の差を小さくでき、負荷の相違による調理性能のバラツキを抑えて使い勝手を向上できる。 Therefore, when power control is performed by duty control, the difference between the average input power and the set power can be reduced as compared with the prior art, and the usability can be improved by suppressing variations in cooking performance due to load differences.
 本発明に係る誘導加熱調理器によれば、デューティ制御により電力制御を行うときに、所定のデューティ周期で通電状態と停止状態を交互に切り替えて、且つ通電状態から停止状態への切り替えは、各デューティ周期期間の共振回路への入力電流の平均値が入力電力設定値に対応するように予め設定された値に到達した時点で行うので、入力電力平均値と、入力電力設定値に対応する設定電力との間の差が負荷によっては大きくなってしまうことを防止して、負荷の相違による調理性能のバラツキを抑えて使い勝手を向上できる。 According to the induction heating cooker according to the present invention, when power control is performed by duty control, the energized state and the stopped state are alternately switched at a predetermined duty cycle, and the switching from the energized state to the stopped state is performed. Since the average value of the input current to the resonance circuit during the duty cycle reaches a preset value corresponding to the input power setting value, the input power average value and the setting corresponding to the input power setting value are set. It is possible to prevent the difference between the power and the load from becoming large depending on the load, and to suppress the variation in the cooking performance due to the load difference, thereby improving the usability.
本発明の実施の形態1に係る誘導加熱調理器の構成を示す回路図である。It is a circuit diagram which shows the structure of the induction heating cooking appliance which concerns on Embodiment 1 of this invention. 入力電力設定値が1に設定されたときの本発明の実施の形態1に係るデューティ制御処理のフローチャートである。It is a flowchart of the duty control process which concerns on Embodiment 1 of this invention when an input electric power setting value is set to 1. 本発明の実施の形態1に係る入力電力設定値と、設定電力と、電力制御方法との関係を示すテーブルである。It is a table which shows the relationship between the input power setting value which concerns on Embodiment 1 of this invention, setting power, and a power control method. 本発明の実施の形態1における鍋3への入力電力と入力電流検出回路13からの検出信号の電圧レベルYとの関係を示すグラフである。It is a graph which shows the relationship between the input power to the pan 3 in Embodiment 1 of this invention, and the voltage level Y of the detection signal from the input current detection circuit 13. 本発明の実施の形態1におけるデューティ制御中の入力電力の時間変化を示すグラフである。It is a graph which shows the time change of the input electric power during duty control in Embodiment 1 of this invention. 本発明の実施の形態2に係る誘導加熱調理器の構成を示す回路図である。It is a circuit diagram which shows the structure of the induction heating cooking appliance which concerns on Embodiment 2 of this invention. 入力電力設定値が1に設定されたときの本発明の実施の形態2に係るデューティ制御処理の第1の部分のフローチャートである。It is a flowchart of the 1st part of the duty control process which concerns on Embodiment 2 of this invention when an input electric power setting value is set to 1. 入力電力設定値が1に設定されたときの本発明の実施の形態2に係るデューティ制御処理の第2の部分のフローチャートである。It is a flowchart of the 2nd part of the duty control process which concerns on Embodiment 2 of this invention when an input power setting value is set to 1. 本発明の実施の形態2に係る入力電力設定値と、設定電力と、電力制御方法との関係を示すテーブルである。It is a table which shows the relationship between the input power setting value which concerns on Embodiment 2 of this invention, setting power, and a power control method. 本発明の実施の形態2における鍋3への入力電力と入力電流検出回路13からの検出信号の電圧レベルYとの関係を示すグラフである。It is a graph which shows the relationship between the input electric power to the pan 3 in Embodiment 2 of this invention, and the voltage level Y of the detection signal from the input current detection circuit 13. 本発明の実施の形態3に係る誘導加熱調理器の構成を示す回路図である。It is a circuit diagram which shows the structure of the induction heating cooking appliance which concerns on Embodiment 3 of this invention. 入力電力設定値が1に設定されたときの本発明の実施の形態3に係るデューティ制御処理の第1の部分のフローチャートである。It is a flowchart of the 1st part of the duty control process which concerns on Embodiment 3 of this invention when an input power setting value is set to 1. 入力電力設定値が1に設定されたときの本発明の実施の形態3に係るデューティ制御処理の第2の部分のフローチャートである。It is a flowchart of the 2nd part of the duty control process which concerns on Embodiment 3 of this invention when an input electric power setting value is set to 1. 本発明の実施の形態3に係る入力電力設定値と、設定電力と、電力制御方法との関係を示すテーブルである。It is a table which shows the relationship between the input power setting value which concerns on Embodiment 3 of this invention, setting power, and a power control method. 本発明の実施の形態3における鍋3への入力電力と入力電流検出回路13からの検出信号の電圧レベルYとの関係を示すグラフである。It is a graph which shows the relationship between the input electric power to the pan 3 in Embodiment 3 of this invention, and the voltage level Y of the detection signal from the input current detection circuit 13. 本発明の実施の形態3におけるデューティ制御中の入力電力の時間変化を示すグラフである。It is a graph which shows the time change of the input electric power during duty control in Embodiment 3 of this invention. 従来技術に係る誘導加熱調理器の構成を示す回路図である。It is a circuit diagram which shows the structure of the induction heating cooking appliance which concerns on a prior art.
 第1の態様に係る誘導加熱調理器は、
 鍋を誘導加熱する加熱コイルと、当該加熱コイルに並列に接続された共振コンデンサとを備えた共振回路と、
 前記共振コンデンサに直列に接続されたスイッチング素子と、
 交流電源から整流回路を介して前記共振回路に入力される入力電流を検出する入力電流検出回路と、
 前記共振回路への複数の入力電力設定値の中から1つの入力電力設定値を選択するための入力電力設定手段と、
 前記スイッチング素子を、所定のデューティ周期で通電状態と停止状態を繰り返すように制御する制御回路とを備えた誘導加熱調理器において、
 前記制御回路は、前記検出される入力電流を前記各デューティ周期期間において積算し、当該各デューティ周期期間の積算後の入力電流の平均値が、前記選択された入力電力設定値に対応するように予め設定された値になるように、前記スイッチング素子の通電時間を制御することを特徴とする。
The induction heating cooker according to the first aspect is
A resonance circuit comprising a heating coil for induction heating the pan, and a resonance capacitor connected in parallel to the heating coil;
A switching element connected in series to the resonant capacitor;
An input current detection circuit for detecting an input current input to the resonance circuit from an AC power supply via a rectifier circuit;
Input power setting means for selecting one input power setting value from a plurality of input power setting values to the resonant circuit;
In the induction heating cooker provided with a control circuit for controlling the switching element to repeat the energized state and the stopped state at a predetermined duty cycle,
The control circuit integrates the detected input current in each duty cycle period, and an average value of the input current after the integration of each duty cycle period corresponds to the selected input power setting value. The energization time of the switching element is controlled so as to have a preset value.
 従って、通電開始から、入力電力が設定電力に到達するまでの所要時間に、負荷によって長短が発生して、この間の平均電力に差が生じた場合にも、負荷に応じて通電時間を可変させて対応することができるため、負荷によらずに、従来技術に比較して平均入力電力と設定電力との間の差を小さくできる。 Therefore, even if there is a difference in the average power during the required time from the start of energization until the input power reaches the set power, the energization time can be varied according to the load. Therefore, the difference between the average input power and the set power can be reduced as compared with the prior art regardless of the load.
 第2の態様に係る誘導加熱調理器は、第2の態様に係る加熱調理器において、
 前記鍋の材質を判定する鍋材質判定手段をさらに備え、
 前記制御回路は、前記判定された鍋の材質に応じて前記スイッチング素子の通電時間を制御することを特徴とする。
The induction heating cooker according to the second aspect is the heating cooker according to the second aspect,
It further comprises a pan material judging means for judging the material of the pan,
The control circuit controls an energization time of the switching element according to the determined material of the pan.
 従って、動作開始から、入力電流が通電開始から、通電状態と停止状態を切り替えるための所定の積算入力電力に到達するまでの所要時間に、負荷によって長短が発生して、所要時間中に発生する平均電力に差が生じた場合や、連続動作時の電力制御方法如何によっては通電状態の入力電力そのものが異なる場合にも、負荷に応じて通電時間を可変させて対応することができる。このため、負荷によらずに、従来技術に比較して平均入力電力と設定電力との間の差を小さくできる。 Accordingly, the load current has a length from the start of operation until the input current reaches a predetermined integrated input power for switching between the energized state and the stopped state from the start of energization, and occurs during the required time. Even when there is a difference in average power or when the input power itself in the energized state varies depending on the power control method during continuous operation, the energization time can be varied according to the load. For this reason, the difference between the average input power and the set power can be reduced as compared with the prior art regardless of the load.
 第3の態様に係る誘導加熱調理器は、
 鍋を誘導加熱する加熱コイルと、当該加熱コイルに並列に接続された共振コンデンサとを備えた共振回路と、
 前記共振コンデンサに直列に接続されたスイッチング素子と、
 前記共振回路への複数の入力電力設定値の中から1つの入力電力設定値を選択するための入力電力設定手段と、
 前記鍋の材質を判定する鍋材質判定手段と、
 前記スイッチング素子を、所定のデューティ周期で通電状態と停止状態を繰り返すように制御する制御回路とを備えた誘導加熱調理器において、
 前記制御回路は、前記判定された鍋の材質に基づいて、前記各デューティ周期期間における入力電力の平均値が前記選択された入力電力設定値に対応する値になるように予め決定された前記スイッチング素子の通電時間を設定することを特徴とする。
The induction heating cooker according to the third aspect is
A resonance circuit comprising a heating coil for induction heating the pan, and a resonance capacitor connected in parallel to the heating coil;
A switching element connected in series to the resonant capacitor;
Input power setting means for selecting one input power setting value from a plurality of input power setting values to the resonant circuit;
A pot material determining means for determining the material of the pot;
In the induction heating cooker provided with a control circuit for controlling the switching element to repeat the energized state and the stopped state at a predetermined duty cycle,
The control circuit determines the switching based on the determined material of the pan so that an average value of input power in each duty cycle period is a value corresponding to the selected input power setting value. The energization time of the element is set.
 従って、鍋の材質によってはデューティ制御動作を行うときの入力電力そのものが変化してしまい、設定電力と実際の平均入力電力との間に差が発生してしまう場合にも、設定電力に相当する平均入力電力を得ることができる時間比(デューティ周期時間に対する通電時間の比)を負荷の材質に応じて設定することができるため、負荷によらずに、従来技術に比較して平均入力電力と設定電力との間の差を小さくできる。 Accordingly, depending on the material of the pan, the input power itself when performing the duty control operation changes, and even when a difference occurs between the set power and the actual average input power, this corresponds to the set power. Since the time ratio (ratio of energization time to duty cycle time) at which the average input power can be obtained can be set according to the material of the load, the average input power The difference from the set power can be reduced.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
 (実施の形態1)
 図1は、本発明の実施の形態1に係る誘導加熱調理器の構成を示す回路図である。
(Embodiment 1)
FIG. 1 is a circuit diagram showing a configuration of an induction heating cooker according to Embodiment 1 of the present invention.
 図1において、本実施の形態に係る誘導加熱調理器は、加熱コイル1と、共振コンデンサ2と、スイッチング素子4と、フライホールダイオード5と、整流素子6と、チョークコイル7と、平滑コンデンサ8と、マイクロコンピュータである制御回路9と、スイッチング素子駆動回路10と、電源回路11と、ゼロボルトパルス検出回路12と、入力電流検出回路13と、入力電力設定手段16とを備えて構成される。また、制御回路9は、パルス回数加算回路14と、入力電流加算回路15とを含む。 In FIG. 1, the induction heating cooker according to the present embodiment includes a heating coil 1, a resonant capacitor 2, a switching element 4, a flyhole diode 5, a rectifying element 6, a choke coil 7, and a smoothing capacitor 8. And a control circuit 9, which is a microcomputer, a switching element drive circuit 10, a power supply circuit 11, a zero volt pulse detection circuit 12, an input current detection circuit 13, and an input power setting means 16. The control circuit 9 includes a pulse number adding circuit 14 and an input current adding circuit 15.
 加熱コイル1と、当該加熱コイル1に並列に接続された共振コンデンサ2とは、共振回路を構成している。負荷としての鍋3は加熱コイル1の近傍に配置される。スイッチング素子4は共振回路に直列に接続され、スイッチング素子4に並列に接続されたフライホイールダイオード5とともに共振回路に高周波電流を供給する。交流電源からの交流電力を整流する整流素子6で整流された電力は、チョークコイル7及び平滑コンデンサ8により構成される平滑回路で平滑され、共振回路とスイッチング素子4に供給される。ここで、整流素子6と、チョークコイル7と、平滑コンデンサ8とは、整流回路を構成する。また、制御回路9は、誘導加熱調理器全体を制御し、スイッチング素子駆動回路10は、制御回路9からの命令に従ってスイッチング素子4を高速で駆動する。さらに、電源回路11は、誘導加熱調理器全体に直流安定化電源を供給する。ゼロボルトパルス検出回路12は、交流電源からの交流電圧のゼロボルトタイミングを検出し、当該検出タイミングにおいてゼロボルトパルスを発生してパルス回数加算回路14に出力する。入力電流検出回路13は、カレントトランスを用いて、交流電源から整流回路を介して共振回路に入力される入力電流を検出し、当該検出された入力電流に対応する電圧レベルを有する検出信号を入力電流加算回路15に出力する。また、パルス回数加算回路14は、ゼロボルトパルス検出回路12からのゼロボルトパルスをカウントし、カウント結果を示すデータを格納データとして格納する。さらに、入力電流加算回路15は、入力電流検出回路13からの検出信号の電圧レベルに対応する値を積算することにより、入力電流検出回路13によって検出された入力電流を加算(積算)し、積算結果を示すデータを格納データとして格納する。なお、入力電流検出回路13によって検出される電流は入力電力に対応しており、入力電流積算回路15の格納データは積算電力に対応している。使用者は、入力電力設定手段16を操作して、共振回路への複数の入力電力設定値の中から1つの入力電力設定値を選択して設定する。 The heating coil 1 and the resonance capacitor 2 connected in parallel to the heating coil 1 constitute a resonance circuit. The pan 3 as a load is disposed in the vicinity of the heating coil 1. The switching element 4 is connected in series to the resonance circuit, and supplies a high-frequency current to the resonance circuit together with the flywheel diode 5 connected in parallel to the switching element 4. The power rectified by the rectifying element 6 that rectifies the AC power from the AC power supply is smoothed by a smoothing circuit including the choke coil 7 and the smoothing capacitor 8 and supplied to the resonance circuit and the switching element 4. Here, the rectifier element 6, the choke coil 7, and the smoothing capacitor 8 constitute a rectifier circuit. Further, the control circuit 9 controls the entire induction heating cooker, and the switching element driving circuit 10 drives the switching element 4 at a high speed according to a command from the control circuit 9. Furthermore, the power supply circuit 11 supplies a DC stabilized power supply to the entire induction heating cooker. The zero volt pulse detection circuit 12 detects the zero volt timing of the AC voltage from the AC power supply, generates a zero volt pulse at the detection timing, and outputs the zero volt pulse to the pulse number adding circuit 14. The input current detection circuit 13 uses a current transformer to detect an input current input to the resonance circuit from the AC power supply via the rectifier circuit, and inputs a detection signal having a voltage level corresponding to the detected input current. This is output to the current adding circuit 15. The pulse number adding circuit 14 counts the zero volt pulse from the zero volt pulse detecting circuit 12, and stores data indicating the count result as stored data. Further, the input current adding circuit 15 adds (accumulates) the input current detected by the input current detecting circuit 13 by accumulating values corresponding to the voltage levels of the detection signals from the input current detecting circuit 13, and integrates them. Data indicating the result is stored as stored data. The current detected by the input current detection circuit 13 corresponds to the input power, and the stored data of the input current integration circuit 15 corresponds to the integration power. The user operates the input power setting means 16 to select and set one input power setting value from among a plurality of input power setting values to the resonance circuit.
 以上説明したように構成された誘導加熱調理器について、以下その動作および作用を説明する。なお、本実施の形態に係る誘導加熱調理器と、図15を参照して説明した特許文献1記載の従来技術に係る誘導加熱調理器との間の相違点は、入力電力設定手段16によって設定された入力電力設定値が所定値未満の場合の制御方法、すなわち鍋3への加熱動作と停止を所定のデューティ周期により繰り返す(すなわち、スイッチング素子4をデューティ周期より十分に短い所定のスイッチング周期で駆動する通電状態と、スイッチング素子4をオフする停止状態とを、所定のデューティ周期により繰り返す。)デューティ制御(間欠動作)による制御方法のみである。それ以外の場合、例えば入力電力設定手段16によって設定された入力電力設定値が所定値以上の場合、およびデューティ制御中の加熱動作時の制御方法は、従来技術に係る誘導加熱調理器と同様である。具体的には、電圧共振形インバータを用いて、加熱コイル1に発生する高周波磁界により加熱コイル1上に載置された鍋3に発生する渦電流損によって鍋3を誘導加熱する。また、用いられる電力制御方法は、スイッチング素子4をオンする時間(オン時間)の値によって加熱コイル1に流れる電流を変化させて、鍋3に与えられる高周波電流を制御して電力を可変させる周波数制御である。さらに、制御方法を周波数制御とデューティ制御との間で切り替えるときの入力電力設定値の決定方法は、従来技術に係る決定方法と同様である。具体的には、低電力状態でのスイッチング素子4のオン損失の著しい増加の発生を防止することを目的として、冷却構成によりスイッチング素子4の破壊を回避することができる最小入力電力に基づいて、周波数制御を行う入力電力設定値の範囲を決定する。以下、従来技術に係る誘導加熱調理器と同様の構成、動作及び設定方法についての詳細な説明は省略し、本実施の形態に係る誘導加熱調理器と従来技術に係る誘導加熱調理器との間の相違点のみを説明する。 The operation and action of the induction heating cooker configured as described above will be described below. Note that the difference between the induction heating cooker according to the present embodiment and the induction heating cooker according to the prior art described in Patent Document 1 described with reference to FIG. 15 is set by the input power setting means 16. The control method in the case where the set input power value is less than the predetermined value, that is, the heating operation and the stop of the pan 3 are repeated at a predetermined duty cycle (that is, the switching element 4 is switched at a predetermined switching cycle sufficiently shorter than the duty cycle). The energization state for driving and the stop state for turning off the switching element 4 are repeated at a predetermined duty cycle.) Only the control method by duty control (intermittent operation) is used. In other cases, for example, when the input power set value set by the input power setting means 16 is a predetermined value or more, and the control method during the heating operation during duty control is the same as that of the induction heating cooker according to the prior art. is there. Specifically, using a voltage resonance type inverter, the pan 3 is induction-heated by eddy current loss generated in the pan 3 placed on the heating coil 1 by a high-frequency magnetic field generated in the heating coil 1. Further, the power control method used is a frequency at which the current flowing through the heating coil 1 is changed according to the value of the time (on time) when the switching element 4 is turned on, and the high frequency current applied to the pan 3 is controlled to vary the power. Control. Furthermore, the determination method of the input power set value when the control method is switched between frequency control and duty control is the same as the determination method according to the prior art. Specifically, for the purpose of preventing the occurrence of a significant increase in the on-loss of the switching element 4 in the low power state, based on the minimum input power that can avoid the destruction of the switching element 4 by the cooling configuration, The range of the input power set value for frequency control is determined. Hereinafter, detailed description of the same configuration, operation, and setting method as those of the induction heating cooker according to the prior art will be omitted, and the induction heating cooker according to the present embodiment and the induction heating cooker according to the prior art will be omitted. Only the differences will be described.
 入力電力設定手段16によって設定された入力電力設定値が所定値未満の場合の制御方法について、図2~図4を用いて説明する。図2は、入力電力設定値が1に設定されたときの本発明の実施の形態1に係るデューティ制御処理のフローチャートである。図3は、本発明の実施の形態1に係る入力電力設定値と、設定電力と、電力制御方法との関係を示すテーブルである。図4は、本発明の実施の形態1における鍋3への入力電力と入力電流検出回路13からの検出信号の電圧レベルYとの関係を示すグラフである。 A control method when the input power set value set by the input power setting means 16 is less than a predetermined value will be described with reference to FIGS. FIG. 2 is a flowchart of the duty control process according to Embodiment 1 of the present invention when the input power set value is set to 1. FIG. 3 is a table showing a relationship among the input power set value, the set power, and the power control method according to Embodiment 1 of the present invention. FIG. 4 is a graph showing the relationship between the input power to the pan 3 and the voltage level Y of the detection signal from the input current detection circuit 13 in Embodiment 1 of the present invention.
 本発明の実施の形態1に係る誘導加熱調理器によれば、使用者は、入力電力設定手段16により、入力電力設定値「1」から「5」までの5段階の入力電力設定値のうち所望の入力電力設定値を選択して設定する。ここで、図3に示すように、入力電力設定値「1」に対応する設定電力は100Wであり、入力電力設定値「2」に対応する設定電力は300Wであり、入力電力設定値「3」に対応する設定電力は600Wであり、入力電力設定値「4」に対応する設定電力は900Wであり、入力電力設定値「5」に対応する設定電力は1200Wである。また、制御回路9は、「3」から「5」までの入力電力設定値範囲では周波数制御による連続動作を行い、「1」および「2」の入力電力設定値範囲では、入力電力設定値「3」に対応する設定電力(600W)で、デューティ周期時間を6秒に設定して、デューティ制御動作を行う。 According to the induction heating cooker according to the first embodiment of the present invention, the user uses the input power setting means 16 to select among the input power setting values in five stages from the input power setting values “1” to “5”. Select and set the desired input power setpoint. Here, as shown in FIG. 3, the set power corresponding to the input power set value “1” is 100 W, the set power corresponding to the input power set value “2” is 300 W, and the input power set value “3”. Is set to 600 W, the set power corresponding to the input power set value “4” is 900 W, and the set power corresponding to the input power set value “5” is 1200 W. Further, the control circuit 9 performs continuous operation by frequency control in the input power set value range from “3” to “5”, and in the input power set value range of “1” and “2”, the input power set value “ With the set power (600 W) corresponding to “3”, the duty cycle time is set to 6 seconds and the duty control operation is performed.
 図2において、入力電力設定手段16により入力電力設定値が「1」に設定されると、制御回路9は、入力電力設定値「1」を含む信号を入力電力設定手段16から受信する(S1)。これに応答して、制御回路9は、まず始めに、制御回路9内のパルス回数加算回路14および入力電流加算回路15の各格納データを0にリセットする(S2およびS3において、初期値0をセットする)。 In FIG. 2, when the input power setting value is set to “1” by the input power setting means 16, the control circuit 9 receives a signal including the input power setting value “1” from the input power setting means 16 (S1). ). In response to this, the control circuit 9 first resets the stored data of the pulse number adding circuit 14 and the input current adding circuit 15 in the control circuit 9 to 0 (in S2 and S3, the initial value 0 is set). set).
 次に、制御回路9は、パルス回数加算回路14の格納データの周期時間到達可否判定値に720をセットし(S4)、入力電流加算回路15の格納データの通電時間到達可否判定値に15120をセットする(S5)。なお、周期時間到達可否判定値および通電時間到達可否判定値の設定方法は、後述する。 Next, the control circuit 9 sets 720 to the period time reachability determination value of the stored data of the pulse number adding circuit 14 (S4), and sets 15120 to the energization time reachability determination value of the stored data of the input current adding circuit 15. Set (S5). A method for setting the period time reachability determination value and the energization time reachability determination value will be described later.
 次に、制御回路9は、スイッチング素子駆動回路10に駆動信号を送信してスイッチング素子4をデューティ周期より十分に短い所定のスイッチング周期で駆動させ、通電状態に移行し、鍋3への加熱動作を開始する(S6)。 Next, the control circuit 9 transmits a drive signal to the switching element drive circuit 10 to drive the switching element 4 at a predetermined switching cycle sufficiently shorter than the duty cycle, shifts to an energized state, and heats the pan 3 Is started (S6).
 ゼロボルトパルス検出回路12は、交流電源からの交流電圧のゼロボルトタイミング、すなわち正負電圧の反転タイミングを検出し、当該検出タイミングにおいてゼロボルトパルスを発生する。例えば、交流電源が単相3線式の200V/60Hzの商用周波電源である場合は、ゼロボルトパルス検出回路12は、交流電源からの交流電圧の1周期(1/(60×2)=約16ミリ秒)でゼロボルトタイミングを2回検出する。 The zero volt pulse detection circuit 12 detects the zero volt timing of the AC voltage from the AC power source, that is, the inversion timing of the positive / negative voltage, and generates a zero volt pulse at the detection timing. For example, when the AC power source is a single-phase three-wire 200 V / 60 Hz commercial frequency power source, the zero volt pulse detection circuit 12 has one cycle of AC voltage from the AC power source (1 / (60 × 2) = about 16 Detect zero volt timing twice in milliseconds.
 ゼロボルトパルス検出回路12は、ゼロボルトタイミングを検出すると制御回路9にゼロボルトパルスを送信する。制御回路9は、ゼロボルトパルスを検出すると(S7でYES)、制御回路9内のパルス回数加算回路14の直前の格納データに対して1を加算する(S8)。例えば、直前の格納データが0であるときは、加算後はパルス回数加算回路14に1がセットされる。 The zero volt pulse detection circuit 12 transmits a zero volt pulse to the control circuit 9 when the zero volt timing is detected. When detecting the zero volt pulse (YES in S7), the control circuit 9 adds 1 to the stored data immediately before the pulse number adding circuit 14 in the control circuit 9 (S8). For example, when the immediately preceding stored data is 0, 1 is set in the pulse number adding circuit 14 after the addition.
 入力電流検出回路13は、交流電源からの入力電流(電源電流)を、カレントトランスを用いて検出し、検出した入力電流を当該入力電流に対応する電圧レベルを有する検出信号に変換して制御回路9に出力する。制御回路9(マイクロコンピュータ)は、入力電流検出回路13からの検出信号を電圧レベル(アナログ値)に応じて0から255ディジットまでのデジタル値に変換する。前述のとおり、本実施の形態における誘導加熱調理器の最大入力電力設定値は「5」、すなわち最大設定電力は「1200W」であるため、制御回路9は、加熱停止状態(入力電力0W=入力電流0A)での入力電流検出回路13からの検出信号の電圧レベルを0ディジットに変換し、最大設定値「5」(入力電力1200W)での入力電流検出回路13からの検出信号の電圧レベルを255ディジットに変換する。さらに、0Wから1200Wまでの入力電力においては、入力電力をXとし、入力電流検出回路13からの検出信号の電圧レベルをYとした場合に、Y=0.2125Xなる線形性を有するように、鍋3への入力電力と電圧レベルYとの関係を設定する(図4参照。)。 The input current detection circuit 13 detects an input current (power supply current) from an AC power source using a current transformer, converts the detected input current into a detection signal having a voltage level corresponding to the input current, and controls the control circuit. Output to 9. The control circuit 9 (microcomputer) converts the detection signal from the input current detection circuit 13 into a digital value of 0 to 255 digits according to the voltage level (analog value). As described above, since the maximum input power set value of the induction heating cooker in this embodiment is “5”, that is, the maximum set power is “1200 W”, the control circuit 9 is in a heating stop state (input power 0 W = input). The voltage level of the detection signal from the input current detection circuit 13 at current 0A) is converted to 0 digits, and the voltage level of the detection signal from the input current detection circuit 13 at the maximum set value “5” (input power 1200 W) is Convert to 255 digits. Further, in the input power from 0 W to 1200 W, when the input power is X and the voltage level of the detection signal from the input current detection circuit 13 is Y, the linearity is Y = 0.2125X. The relationship between the input power to the pan 3 and the voltage level Y is set (see FIG. 4).
 制御回路9は、ゼロボルトパルスの検出後、入力電流検出回路13から検出信号を受信し、当該検出信号の電圧レベルに対応する値(ディジット)を、入力電流加算回路15の直前の格納データに対して加算する(S9)。ここで、加熱動作開始時は、共振回路の共振周波数から大きく離れた動作周波数(共振周波数<動作周波数とする)で動作させて低電力状態とするため(ソフトスタート制御)、例えば、加熱動作開始時の入力電力を200Wに設定した場合には、入力電流検出回路13からの検出信号の電圧レベルは前述の線形式によりY=0.2125×200≒43ディジットとなり、直前の格納データは0であったため入力電流加算回路15に43がセットされる。 After detecting the zero volt pulse, the control circuit 9 receives the detection signal from the input current detection circuit 13 and sets a value (digit) corresponding to the voltage level of the detection signal to the stored data immediately before the input current addition circuit 15. (S9). Here, when starting the heating operation, the operation is performed at an operating frequency far away from the resonance frequency of the resonance circuit (resonance frequency <operating frequency) to achieve a low power state (soft start control). When the input power at that time is set to 200 W, the voltage level of the detection signal from the input current detection circuit 13 is Y = 0.2125 × 200≈43 digits according to the above-described line format, and the immediately preceding stored data is 0. Therefore, 43 is set in the input current adding circuit 15.
 制御回路9は、入力電流加算回路15の格納データに入力電流検出回路13からの検出信号の電圧レベルに対応する値を加算した後、入力電流加算回路15の格納データが通電時間到達可否判定値(15120)に到達したか否かを判定する(S10)。 The control circuit 9 adds a value corresponding to the voltage level of the detection signal from the input current detection circuit 13 to the storage data of the input current addition circuit 15, and then the storage data of the input current addition circuit 15 determines whether or not the energization time has been reached. It is determined whether or not (15120) has been reached (S10).
 以下、パルス回数加算回路14の格納データの周期時間到達可否判定値及び入力電流加算回路15の格納データの通電時間到達可否判定値の設定方法について説明する。前述のとおり、入力電力設定値「1」に対応する設定電力は100Wであり、入力電力設定値「2」に対応する設定電力は300Wであり、入力電力設定値「1」および「2」では、入力電力設定値「3」に対応する設定電力(600W)で、デューティ周期時間を6秒に設定してデューティ制御動作を行う。簡単にいうと、例えば入力電力設定値「1」の場合には、入力電力を600Wに設定して1秒間だけ通電させて5秒間だけ通電を停止させることにより平均電力100Wを得るという制御を行う。言い換えれば、6秒ごとの平均電力は、入力電力100Wで連続動作させた場合の平均電力と全く同じである(デューティ制御での平均電力は、600×1/6=100Wであり、連続動作時の平均電力は100×6/6=100Wである。)。 Hereinafter, a method for setting the period time reachability determination value of the stored data of the pulse number adding circuit 14 and the energization time reachability determining value of the stored data of the input current adding circuit 15 will be described. As described above, the set power corresponding to the input power set value “1” is 100 W, the set power corresponding to the input power set value “2” is 300 W, and the input power set values “1” and “2” The duty control operation is performed by setting the duty cycle time to 6 seconds with the set power (600 W) corresponding to the input power set value “3”. In short, for example, when the input power set value is “1”, the control is performed such that the average power is set to 100 W by setting the input power to 600 W, energizing for 1 second, and stopping energization for 5 seconds. . In other words, the average power every 6 seconds is exactly the same as the average power when operated continuously at an input power of 100 W (the average power under duty control is 600 × 1/6 = 100 W, The average power is 100 × 6/6 = 100 W.)
 パルス回数加算回路14の格納データの周期時間到達可否判定値は、通電と通電停止の繰り返しのデューティ周期時間(6秒)に対応する値に設定される。具体的には、パルス回数加算回路14の格納データの周期時間到達可否判定値は、6秒間でのゼロボルトタイミングの発生回数に等しく、2回×60Hz×6秒=720回に設定される。また、入力電流加算回路15の格納データの通電時間到達可否判定値はスイッチング素子4の(通電)時間に対応しており、入力電力設定値に対応する設定電力で、上述した繰り返しデューティ周期時間だけ連続して通電したときの入力電流加算回路15の格納データの値に設定される。具体的には、前述のとおり制御回路9はゼロボルトパルスの検出後に入力電流加算回路15の格納データへの加算処理を行うため、6秒間での入力電流加算回路15の格納データへの加算処理の総回数は6秒間でのゼロボルトタイミングの発生回数に等しく、2回×60Hz×6秒=720回となる。また、入力電力が100Wの場合、入力電流検出回路13からの検出信号の受信電圧レベルYはY=0.2125×100≒21ディジットであり、入力電力を100Wに設定して6秒間だけ連続動作させた場合の入力電流加算回路15の格納データの加算結果は21×720=15120ディジットとなる。従って、入力電力を600Wに設定してデューティ制御を行う場合にも、通電開始から6秒経過したときの入力電流加算回路15の格納データの加算結果が15120ディジットであれば、平均電力は100Wとなる。従って、入力電力設定値が「1」の場合には、入力電流加算回路15の格納データの通電時間到達可否判定値に15120をセットする。入力電力設定値「2」の場合についても、入力電力設定値「1」の場合と同様に、入力電流加算回路15の格納データの通電時間到達可否判定値に45360をセットする(図3参照。)。 The cycle time reachability determination value of the stored data of the pulse number adding circuit 14 is set to a value corresponding to the duty cycle time (6 seconds) of repeated energization and deenergization. Specifically, the period time reachability determination value of the stored data of the pulse number adding circuit 14 is equal to the number of occurrences of zero volt timing in 6 seconds, and is set to 2 × 60 Hz × 6 seconds = 720 times. Further, the energization time reachability determination value of the stored data of the input current adding circuit 15 corresponds to the (energization) time of the switching element 4, and is the set power corresponding to the input power set value, and only the above-described repetitive duty cycle time. It is set to the value of the stored data of the input current adding circuit 15 when energized continuously. Specifically, as described above, since the control circuit 9 performs the addition process to the stored data of the input current adding circuit 15 after detecting the zero volt pulse, the addition process to the stored data of the input current adding circuit 15 in 6 seconds is performed. The total number of times is equal to the number of occurrences of zero volt timing in 6 seconds, which is 2 times × 60 Hz × 6 seconds = 720 times. When the input power is 100 W, the reception voltage level Y of the detection signal from the input current detection circuit 13 is Y = 0.2125 × 100≈21 digits, and the input power is set to 100 W and is continuously operated for 6 seconds. In this case, the result of adding the stored data of the input current adding circuit 15 is 21 × 720 = 15120 digits. Therefore, even when duty control is performed with the input power set to 600 W, if the addition result of the stored data of the input current adder circuit 15 when 6 seconds have elapsed from the start of energization is 15120 digits, the average power is 100 W. Become. Accordingly, when the input power set value is “1”, 15120 is set as the energization time reachability determination value of the stored data of the input current adding circuit 15. Also in the case of the input power set value “2”, 45360 is set as the energization time reachability determination value of the stored data of the input current adding circuit 15 as in the case of the input power set value “1” (see FIG. 3). ).
 図2において、制御回路9は、入力電流加算回路15の格納データが通電時間到達可否判定値(15120)に到達したか否かを判定し(S10)、もし通電時間到達可否判定値に到達していなければ(S10でNO)図2のフローチャートに従って通電状態を継続する一方、通電時間到達可否判定値に到達していれば(S10でYES)通電状態から停止状態に移行し、すなわちスイッチング素子駆動回路10に停止信号を送信してスイッチング素子4を停止させ、鍋3への加熱動作を停止する(S11)。 In FIG. 2, the control circuit 9 determines whether or not the data stored in the input current adding circuit 15 has reached the energization time reachability determination value (15120) (S10), and if it has reached the energization time reachability determination value. If not (NO in S10), the energized state is continued according to the flowchart of FIG. 2, while if the energization time reachability determination value is reached (YES in S10), the energized state is shifted to the stopped state, that is, the switching element is driven. A stop signal is transmitted to the circuit 10 to stop the switching element 4, and the heating operation to the pan 3 is stopped (S11).
 加熱動作を停止後、ゼロボルトパルス検出回路12がゼロボルトタイミングを検出するとゼロボルトパルス検出回路12から制御回路9にゼロボルトパルスが送信される。制御回路9は、ゼロボルトパルスを検出すると(S12でYES)、パルス回数加算回路14の直前の格納データに対して1を加算する(S13)。制御回路9は、パルス回数加算回路14の格納データへの加算後、パルス回数加算回路14の格納データが周期時間到達可否判定値(720)に到達したか否かを判定する(S14)。パルス回数加算回路14の格納データの周期時間到達可否判定値は、デューティ制御の周期時間である6秒に相当する値に設定される。前述したとおり、6秒間でのゼロボルトタイミングの発生回数は2回×60Hz×6秒=720回であり、ゼロボルトタイミングが検出される毎にパルス回数加算回路14の格納データは1ずつ加算されていくため、6秒間の加算結果は720となる。従って、パルス回数加算回路14の格納データの周期時間到達可否判定値は720に設定される。制御回路9は、パルス回数加算回路14の格納データが周期時間到達可否判定値に到達したか否かを判定し、もし周期時間到達判定値に到達していなければ(S14でNO)図2のフローチャートに従って停止状態を継続する。一方、パルス回数加算回路14の格納データが周期時間到達可否判定値に到達していれば(S14でYES)、パルス回数加算回路14および入力電流加算回路15の各格納データを0にリセットした後(S2およびS3において初期値0をセットする)、停止状態から通電状態に移行し、すなわちスイッチング素子駆動回路10に駆動信号を送信してスイッチング素子4をデューティ周期より十分に短い所定のスイッチング周期で駆動させ、通電状態に移行し、鍋3への加熱動作を開始する(S6)。以下、これまで説明した一連の動作(S2~S14)を、入力電力設定手段16を用いて加熱動作の終了が選択されるまで繰り返す。 When the zero volt pulse detection circuit 12 detects the zero volt timing after stopping the heating operation, a zero volt pulse is transmitted from the zero volt pulse detection circuit 12 to the control circuit 9. When detecting the zero volt pulse (YES in S12), the control circuit 9 adds 1 to the stored data immediately before the pulse number adding circuit 14 (S13). After the addition to the stored data of the pulse number adding circuit 14, the control circuit 9 determines whether or not the stored data of the pulse number adding circuit 14 has reached the period time reachability determination value (720) (S14). The period time reachability determination value of the stored data of the pulse number adding circuit 14 is set to a value corresponding to 6 seconds, which is the period time of the duty control. As described above, the number of occurrences of zero volt timing in 6 seconds is 2 times × 60 Hz × 6 seconds = 720 times, and the stored data of the pulse number adding circuit 14 is incremented by 1 each time the zero volt timing is detected. Therefore, the addition result for 6 seconds is 720. Therefore, the period time reachability determination value of the stored data of the pulse number adding circuit 14 is set to 720. The control circuit 9 determines whether or not the data stored in the pulse number adding circuit 14 has reached the cycle time arrival determination value, and if it has not reached the cycle time arrival determination value (NO in S14), is shown in FIG. The stop state is continued according to the flowchart. On the other hand, if the stored data of the pulse number adding circuit 14 has reached the cycle time reachability determination value (YES in S14), the stored data of the pulse number adding circuit 14 and the input current adding circuit 15 are reset to 0. (Initial value 0 is set in S2 and S3), transition from the stopped state to the energized state, that is, a drive signal is transmitted to the switching element drive circuit 10 to switch the switching element 4 at a predetermined switching cycle sufficiently shorter than the duty cycle It drives, it transfers to an energization state and the heating operation | movement to the pan 3 is started (S6). Hereinafter, the series of operations (S2 to S14) described so far are repeated until the end of the heating operation is selected using the input power setting means 16.
 従って、図2の処理によれば、制御回路9は、スイッチング素子4を、所定のデューティ周期で通電状態と停止状態を繰り返すように制御するとき、入力電流検出回路13により検出される入力電流を各デューティ周期期間において積算し、当該各デューティ周期期間の積算後の入力電流の平均値が、入力電力設定手段16を用いて選択された入力電力設定値に対応するように予め設定された値になるように、スイッチング素子4の通電時間(通電時間到達可否判定値に対応する。)を制御する。 Therefore, according to the process of FIG. 2, when the control circuit 9 controls the switching element 4 to repeat the energization state and the stop state at a predetermined duty cycle, the input current detected by the input current detection circuit 13 is determined. Integration is performed in each duty cycle period, and the average value of the input current after integration in each duty cycle period is set to a value set in advance so as to correspond to the input power setting value selected using the input power setting means 16. Thus, the energization time (corresponding to the energization time reachability determination value) of the switching element 4 is controlled.
 図5は、本発明の実施の形態1におけるデューティ制御中の入力電力の時間変化を示すグラフであり、図2のフローチャートに従う加熱動作制御を行ったときの入力電力の時間変化を示す。図5に示すように、本実施の形態によれば、パルス回数加算回路14及び入力電流加算回路15の各格納データがゼロにリセットされるタイミングから入力電力が600Wになるまでの期間の長さによらず、入力電力設定値が「1」であるときのデューティ制御周期(6秒)内での積算入力電力(図5の領域Aの面積)は、入力電力設定値「1」に対応する設定電力(100W)でデューティ制御周期時間だけ連続して通電したときの積算入力電力(図5の領域Bの面積)と等しい。すなわち、入力電力設定値が「1」であるときの平均入力電力は、100Wの設定電力で連続して通電するときの平均入力電力と等しい。 FIG. 5 is a graph showing the time change of the input power during duty control in Embodiment 1 of the present invention, and shows the time change of the input power when the heating operation control according to the flowchart of FIG. 2 is performed. As shown in FIG. 5, according to the present embodiment, the length of the period from when the stored data of the pulse number adding circuit 14 and the input current adding circuit 15 is reset to zero until the input power becomes 600 W Regardless, the integrated input power (area A in FIG. 5) within the duty control period (6 seconds) when the input power set value is “1” corresponds to the input power set value “1”. It is equal to the integrated input power (area B in FIG. 5) when the set power (100 W) is continuously energized for the duty control cycle time. That is, the average input power when the input power set value is “1” is equal to the average input power when the power is continuously energized with the set power of 100 W.
 以上説明したように、本実施の形態においては、交流電源からの交流電力を直流電力に変換する整流素子6と、高周波磁界を発生して鍋3を加熱する加熱コイル1と、加熱コイル1と共に共振回路を構成する共振コンデンサ2と、共振回路に接続されて共振電流を生成するスイッチング素子4と、共振回路への入力電流を検出する入力電流検出回路13と、入力電流検出回路13による検出結果を加算する入力電流加算回路15と、所定の電力を出力するためにスイッチング素子4のオン時間を任意に変更する制御回路9と、入力電力設定手段16とを備えて構成される。ここで、制御回路9は、入力電力設定手段16によって設定された入力電力設定値が所定値以上の場合には鍋3を連続的に加熱する一方、入力電力設定値が所定値未満の場合には加熱動作と停止を所定のデューティ周期により繰り返す間欠動作を行い、且つ間欠動作では入力電流加算回路15による加算結果の格納データが入力電力設定値毎にあらかじめ定められた通電時間到達可否判定値に到達した時点で加熱動作から停止へと状態を変化させる。 As described above, in the present embodiment, together with the rectifying element 6 that converts AC power from an AC power source into DC power, the heating coil 1 that generates a high-frequency magnetic field and heats the pan 3, and the heating coil 1 A resonance capacitor 2 constituting a resonance circuit, a switching element 4 connected to the resonance circuit to generate a resonance current, an input current detection circuit 13 for detecting an input current to the resonance circuit, and a detection result by the input current detection circuit 13 The input current adding circuit 15 is configured to add, the control circuit 9 for arbitrarily changing the ON time of the switching element 4 to output predetermined power, and the input power setting means 16. Here, the control circuit 9 continuously heats the pan 3 when the input power set value set by the input power setting means 16 is greater than or equal to a predetermined value, while when the input power set value is less than the predetermined value. Performs an intermittent operation in which the heating operation and the stop are repeated at a predetermined duty cycle, and in the intermittent operation, the stored data of the addition result by the input current adding circuit 15 is set to a predetermined energization time reachability determination value for each input power setting value. When it reaches, the state is changed from the heating operation to the stop.
 本実施の形態において、入力電力設定値が所定値(本実施の形態では3である。)未満の場合のデューティ制御は、パルス回数加算回路14の格納データに基づいて、デューティ周期時間6秒で行われる。また、デューティ制御時の通電状態から停止状態への切り替えは、入力電流加算回路15の格納データが、入力電力設定値に対応する設定電力で6秒間通電したときの積算電流に対応する所定の通電時間到達可否判定値に到達した時点で行われる。このため、通電開始から、入力電力が設定電力に到達するまでの所要時間に、負荷によって長短が発生して、この間の平均電力に差が生じた場合にも、負荷に応じて通電時間を可変させて対応することができるため、負荷によらずに、従来技術に比較して平均入力電力と設定電力との間の差を小さくできる。 In the present embodiment, the duty control when the input power set value is less than a predetermined value (3 in the present embodiment) is based on the data stored in the pulse number adding circuit 14 and the duty cycle time is 6 seconds. Done. Further, switching from the energized state to the stopped state at the time of duty control is performed by a predetermined energization corresponding to the integrated current when the stored data of the input current adding circuit 15 is energized for 6 seconds with the set power corresponding to the input power set value. This is performed when the time reachability determination value is reached. For this reason, even if there is a difference in the average power during the required time from the start of energization until the input power reaches the set power, the energization time can be varied according to the load. Therefore, the difference between the average input power and the set power can be reduced as compared with the prior art regardless of the load.
 なお、本実施の形態では、入力電力設定値は「1」から「5」までの5段階であり、入力電力設定値「1」に対応する設定電力は100Wであり、入力電力設定値「2」に対応する設定電力は300Wであり、入力電力設定値「3」に対応する設定電力は600Wであり、入力電力設定値「4」に対応する設定電力は900Wであり、入力電力設定値「5」に対応する設定電力は1200Wであった。また、制御回路9は、「3」から「5」までの入力電力設定値範囲では周波数制御による連続動作を行い、「1」および「2」の入力電力設定値範囲では、入力電力設定値「3」に対応する設定電力(600W)で、デューティ周期時間を6秒に設定して、デューティ制御動作を行ったが、本発明はこれに限られない。上述した入力電力設定値の段階数およびそれに対応する設定電力に限定されずとも、本実施の形態と同様の効果が得られるのは言うまでもないことである。 In the present embodiment, the input power set value has five stages from “1” to “5”, the set power corresponding to the input power set value “1” is 100 W, and the input power set value “2”. ”Is 300 W, the set power corresponding to the input power set value“ 3 ”is 600 W, the set power corresponding to the input power set value“ 4 ”is 900 W, and the input power set value“ The set power corresponding to “5” was 1200 W. Further, the control circuit 9 performs continuous operation by frequency control in the input power set value range from “3” to “5”, and in the input power set value range of “1” and “2”, the input power set value “ Although the duty control operation was performed with the set power (600 W) corresponding to “3” and the duty cycle time set to 6 seconds, the present invention is not limited to this. Needless to say, the same effects as those of the present embodiment can be obtained without being limited to the number of steps of the input power set value and the set power corresponding thereto.
 また、本実施の形態では、「1」および「2」の入力電力設定値範囲では、入力電力設定値「3」に対応する設定電力(600W)で、デューティ周期時間を6秒に設定して、デューティ制御動作を行い、通電状態から停止状態への切り替えを判定する入力電流加算回路15の格納データの通電時間到達可否判定値を15120に設定し、周期時間6秒を検出するためのパルス回数加算回路14の格納データの周期時間到達可否判定値を720に設定したが、本発明はこれに限られない。上述した通電時間到達可否判定値および周期時間到達可否判定値に限定されずとも、本実施の形態と同様の効果が得られるのは言うまでもないことである。 In the present embodiment, in the input power set value range of “1” and “2”, the duty cycle time is set to 6 seconds with the set power (600 W) corresponding to the input power set value “3”. The number of pulses for performing duty control operation, setting the energization time reachability determination value of the stored data of the input current adding circuit 15 for determining switching from the energized state to the stopped state to 15120, and detecting the cycle time of 6 seconds Although the period time reachability determination value of the stored data of the adder circuit 14 is set to 720, the present invention is not limited to this. Needless to say, the same effect as the present embodiment can be obtained without being limited to the energization time reachability determination value and the cycle time reachability determination value described above.
 また、本実施の形態では、設定値「3」から「5」の入力電力設定値範囲では周波数制御による連続動作を行ったが、動作周波数を固定した状態で導通比率を変更することにより入力電力を制御する導通比制御を行っても、本実施の形態と同様の効果が得られるのは言うまでもないことである。 In the present embodiment, continuous operation is performed by frequency control in the input power setting value range of setting values “3” to “5”. However, the input power can be changed by changing the conduction ratio while the operating frequency is fixed. It goes without saying that the same effect as in the present embodiment can be obtained even when the conduction ratio control for controlling the above is performed.
 (実施の形態2)
 図6は、本発明の実施の形態2に係る誘導加熱調理器の構成を示す回路図である。
(Embodiment 2)
FIG. 6 is a circuit diagram showing a configuration of an induction heating cooker according to Embodiment 2 of the present invention.
 図6において、本実施の形態に係る誘導加熱調理器は、加熱コイル1と、共振コンデンサ2と、スイッチング素子4と、フライホールダイオード5と、整流素子6と、チョークコイル7と、平滑コンデンサ8と、マイクロコンピュータである制御回路9と、スイッチング素子駆動回路10と、電源回路11と、ゼロボルトパルス検出回路12と、入力電流検出回路13と、入力電力設定手段16と、共振電圧検出回路17とを備えて構成される。また、制御回路9は、パルス回数加算回路14と、入力電流加算回路15と、鍋材質判定回路18とを含む。 6, the induction heating cooker according to the present embodiment includes a heating coil 1, a resonant capacitor 2, a switching element 4, a flyhole diode 5, a rectifying element 6, a choke coil 7, and a smoothing capacitor 8. A control circuit 9, which is a microcomputer, a switching element drive circuit 10, a power supply circuit 11, a zero volt pulse detection circuit 12, an input current detection circuit 13, an input power setting means 16, and a resonance voltage detection circuit 17. It is configured with. The control circuit 9 includes a pulse number adding circuit 14, an input current adding circuit 15, and a pan material determining circuit 18.
 加熱コイル1と、当該加熱コイル1に並列に接続された共振コンデンサ2とは、共振回路を構成している。負荷としての鍋3は加熱コイル1の近傍に配置される。スイッチング素子4は共振回路に直接に接続され、スイッチング素子4に並列に接続されたフライホイールダイオード5とともに共振回路に高周波電流を供給する。交流電源からの交流電力を整流する整流素子6で整流された電力は、チョークコイル7及び平滑コンデンサ8により構成される平滑回路で平滑され、共振回路とスイッチング素子4に供給される。ここで、整流素子6と、チョークコイル7と、平滑コンデンサ8とは、整流回路を構成する。また、制御回路9は、誘導加熱調理器全体を制御し、スイッチング素子駆動回路10は、制御回路9からの命令に従ってスイッチング素子4を高速で駆動する。さらに、電源回路11は、誘導加熱調理器全体に直流安定化電源を供給する。ゼロボルトパルス検出回路12は、交流電源からの交流電圧のゼロボルトタイミングを検出し、当該検出タイミングにおいてゼロボルトパルスを発生してパルス回数加算回路14に出力する。入力電流検出回路13は、カレントトランスを用いて、交流電源から整流回路を介して共振回路に入力される入力電流を検出し、当該検出された入力電流に対応する電圧レベルを有する検出信号を入力電流加算回路15および鍋材質判定回路18に出力する。また、パルス回数加算回路14は、ゼロボルトパルス検出回路12からのゼロボルトパルスをカウントして、カウント結果を示すデータを格納データとして格納する。さらに、入力電流加算回路15は、入力電流検出回路13からの検出信号の電圧レベルに対応する値を積算することにより、入力電流検出回路13によって検出された入力電流を加算(積算)し、積算結果を示すデータを格納データとして格納する。なお、入力電流検出回路13によって検出される電流は入力電力に対応しており、入力電流積算回路15の格納データは積算電力に対応している。またさらに、共振電圧検出回路17は、共振コンデンサに発生する共振電圧を検出し、鍋材質判定回路18は、入力電流検出回路13と共振電圧検出回路17による各検出結果に基づいて鍋3の材質を判定する。なお、入力電流検出回路13と、共振電圧検出回路17と、鍋材質判定回路18とは、鍋3の材質を判定する鍋材質判定手段を構成する。使用者は、入力電力設定手段16を操作して、共振回路への複数の入力電力設定値の中から1つの入力電力設定値を選択して設定する。 The heating coil 1 and the resonance capacitor 2 connected in parallel to the heating coil 1 constitute a resonance circuit. The pan 3 as a load is disposed in the vicinity of the heating coil 1. The switching element 4 is directly connected to the resonance circuit, and supplies a high-frequency current to the resonance circuit together with the flywheel diode 5 connected in parallel to the switching element 4. The power rectified by the rectifying element 6 that rectifies the AC power from the AC power supply is smoothed by a smoothing circuit including the choke coil 7 and the smoothing capacitor 8 and supplied to the resonance circuit and the switching element 4. Here, the rectifier element 6, the choke coil 7, and the smoothing capacitor 8 constitute a rectifier circuit. Further, the control circuit 9 controls the entire induction heating cooker, and the switching element driving circuit 10 drives the switching element 4 at a high speed according to a command from the control circuit 9. Furthermore, the power supply circuit 11 supplies a DC stabilized power supply to the entire induction heating cooker. The zero volt pulse detection circuit 12 detects the zero volt timing of the AC voltage from the AC power supply, generates a zero volt pulse at the detection timing, and outputs the zero volt pulse to the pulse number adding circuit 14. The input current detection circuit 13 uses a current transformer to detect an input current input to the resonance circuit from the AC power supply via the rectifier circuit, and inputs a detection signal having a voltage level corresponding to the detected input current. It outputs to the current addition circuit 15 and the pan material determination circuit 18. Further, the pulse number adding circuit 14 counts the zero volt pulse from the zero volt pulse detecting circuit 12, and stores data indicating the count result as stored data. Further, the input current adding circuit 15 adds (accumulates) the input current detected by the input current detecting circuit 13 by accumulating values corresponding to the voltage levels of the detection signals from the input current detecting circuit 13, and integrates them. Data indicating the result is stored as stored data. The current detected by the input current detection circuit 13 corresponds to the input power, and the stored data of the input current integration circuit 15 corresponds to the integration power. Further, the resonance voltage detection circuit 17 detects the resonance voltage generated in the resonance capacitor, and the pot material determination circuit 18 uses the detection results of the input current detection circuit 13 and the resonance voltage detection circuit 17 to determine the material of the pot 3. Determine. The input current detection circuit 13, the resonance voltage detection circuit 17, and the pot material determination circuit 18 constitute a pot material determination unit that determines the material of the pot 3. The user operates the input power setting means 16 to select and set one input power setting value from among a plurality of input power setting values to the resonance circuit.
 以上説明したように構成された誘導加熱調理器について、以下その動作および作用を説明する。なお、本実施の形態に係る誘導加熱調理器と、図15を参照して説明した特許文献1記載の従来技術に係る誘導加熱調理器との間の相違点は、入力電力設定手段16によって設定された入力電力設定値が所定値未満の場合の制御方法、すなわち鍋3への加熱動作と停止を所定のデューティ周期により繰り返す(すなわち、スイッチング素子4をデューティ周期より十分に短い所定のスイッチング周期で駆動する通電状態と、スイッチング素子4をオフする停止状態とを、所定のデューティ周期により繰り返す。)デューティ制御(間欠動作)による制御方法のみである。それ以外の場合、例えば入力電力設定手段16によって設定された入力電力設定値が所定値以上の場合、およびデューティ制御中の加熱動作時の制御方法は、従来技術に係る誘導加熱調理器と同様である。具体的には、電圧共振形インバータを用いて、加熱コイル1に発生する高周波磁界により加熱コイル1上に載置された鍋3に発生する渦電流損によって鍋3を誘導加熱する。また、用いられる電力制御方法は、スイッチング素子4をオンする時間(オン時間)の値によって加熱コイル1に流れる電流を変化させて、鍋3に与えられる高周波電流を制御して電力を可変させる周波数制御である。さらに、制御方法を周波数制御とデューティ制御との間で切り替えるときの入力電力設定値の決定方法は、従来技術に係る決定方法と同様である。具体的には、低電力状態でのスイッチング素子4のオン損失の著しい増加の発生を防止することを目的として、冷却構成によりスイッチング素子4の破壊を回避することができる最小入力電力に基づいて、周波数制御を行う入力電力設定値の範囲を決定する。 The operation and action of the induction heating cooker configured as described above will be described below. Note that the difference between the induction heating cooker according to the present embodiment and the induction heating cooker according to the prior art described in Patent Document 1 described with reference to FIG. 15 is set by the input power setting means 16. The control method in the case where the set input power value is less than the predetermined value, that is, the heating operation and the stop of the pan 3 are repeated at a predetermined duty cycle (that is, the switching element 4 is switched at a predetermined switching cycle sufficiently shorter than the duty cycle). The energization state for driving and the stop state for turning off the switching element 4 are repeated at a predetermined duty cycle.) Only the control method by duty control (intermittent operation) is used. In other cases, for example, when the input power set value set by the input power setting means 16 is a predetermined value or more, and the control method during the heating operation during duty control is the same as that of the induction heating cooker according to the prior art. is there. Specifically, using a voltage resonance type inverter, the pan 3 is induction-heated by eddy current loss generated in the pan 3 placed on the heating coil 1 by a high-frequency magnetic field generated in the heating coil 1. Further, the power control method used is a frequency at which the current flowing through the heating coil 1 is changed according to the value of the time (on time) when the switching element 4 is turned on, and the high frequency current applied to the pan 3 is controlled to vary the power. Control. Furthermore, the determination method of the input power set value when the control method is switched between frequency control and duty control is the same as the determination method according to the prior art. Specifically, for the purpose of preventing the occurrence of a significant increase in the on-loss of the switching element 4 in the low power state, based on the minimum input power that can avoid the destruction of the switching element 4 by the cooling configuration, The range of the input power set value for frequency control is determined.
 さらに、鍋材質判定回路18は、公知の技術を利用して、入力電流検出回路13と共振電圧検出回路17による各検出結果に基づいて鍋3の材質を判定する。具体的には、鍋材質判定回路18は、例えば鍋3の材質によって入力電流検出回路13によって検出される入力電流と共振電圧検出回路17によって検出される共振電圧とが大きく異なることを利用して、鍋3の材質が、鉄および非磁性ステンレス鋼のいずれであるかを判定する。以下、従来技術に係る誘導加熱調理器と同様の構成、動作及び設定方法についての詳細な説明は省略し、従来技術に係る誘導加熱調理器との間の相違点のみを説明する。 Furthermore, the pot material determination circuit 18 determines the material of the pot 3 based on the detection results of the input current detection circuit 13 and the resonance voltage detection circuit 17 using a known technique. Specifically, the pan material determination circuit 18 uses, for example, that the input current detected by the input current detection circuit 13 and the resonance voltage detected by the resonance voltage detection circuit 17 differ greatly depending on the material of the pan 3. Then, it is determined whether the material of the pan 3 is iron or nonmagnetic stainless steel. Hereinafter, detailed description about the same structure, operation | movement, and setting method as the induction heating cooking appliance which concerns on a prior art is abbreviate | omitted, and only a difference with the induction heating cooking appliance which concerns on a prior art is demonstrated.
 入力電力設定手段16によって設定された入力電力設定値が所定値未満の場合の制御方法について、図7A、図7B、図8及び図9を用いて説明する。図7A及び図7Bは、入力電力設定値が1に設定されたときの本発明の実施の形態2におけるデューティ制御処理のフローチャートである。図8は、本発明の実施の形態2に係る入力電力設定値と、設定電力と、電力制御方法との関係を示すテーブルである。図9は、本発明の実施の形態2における鍋3への入力電力と入力電流検出回路13からの検出信号の電圧レベルYとの関係を示すグラフである。 A control method when the input power set value set by the input power setting means 16 is less than a predetermined value will be described with reference to FIGS. 7A, 7B, 8 and 9. FIG. 7A and 7B are flowcharts of the duty control process in the second embodiment of the present invention when the input power set value is set to 1. FIG. 8 is a table showing the relationship between the input power set value, the set power, and the power control method according to Embodiment 2 of the present invention. FIG. 9 is a graph showing the relationship between the input power to the pan 3 and the voltage level Y of the detection signal from the input current detection circuit 13 in Embodiment 2 of the present invention.
 本発明の実施の形態2に係る誘導加熱調理器によれば、使用者は、入力電力設定手段16により、入力電力設定値「1」から「5」までの5段階の入力電力設定値のうち所望の入力電力設定値を選択して設定する。ここで、図3に示すように、入力電力設定値「1」に対応する設定電力は100Wであり、入力電力設定値「2」に対応する設定電力は300Wであり、入力電力設定値「3」に対応する設定電力は600Wであり、入力電力設定値「4」に対応する設定電力は900Wであり、入力電力設定値「5」に対応する設定電力は1200Wである。また、制御回路9は、「3」から「5」までの入力電力設定値範囲では周波数制御による連続動作を行い、「1」および「2」の入力電力設定値範囲では、入力電力設定値「3」に対応する設定電力(600W)で、デューティ周期時間を6秒に設定して、デューティ制御動作を行う。 According to the induction heating cooker according to the second embodiment of the present invention, the user uses the input power setting means 16 to select among the input power setting values in five stages from the input power setting values “1” to “5”. Select and set the desired input power setpoint. Here, as shown in FIG. 3, the set power corresponding to the input power set value “1” is 100 W, the set power corresponding to the input power set value “2” is 300 W, and the input power set value “3”. Is set to 600 W, the set power corresponding to the input power set value “4” is 900 W, and the set power corresponding to the input power set value “5” is 1200 W. Further, the control circuit 9 performs continuous operation by frequency control in the input power set value range from “3” to “5”, and in the input power set value range of “1” and “2”, the input power set value “ With the set power (600 W) corresponding to “3”, the duty cycle time is set to 6 seconds and the duty control operation is performed.
 図7Aにおいて、入力電力設定手段16により入力電力設定値が「1」に設定されると、制御回路9は、入力電力設定値「1」を含む信号を入力電力設定手段16から受信する(S1)。これに応答して、制御回路9は、まず始めに、制御回路9内のパルス回数加算回路14および入力電流加算回路15の各格納データを0にリセットする(S2およびS3において、初期値0をセットする)。 7A, when the input power setting value is set to “1” by the input power setting means 16, the control circuit 9 receives a signal including the input power setting value “1” from the input power setting means 16 (S1). ). In response to this, the control circuit 9 first resets the stored data of the pulse number adding circuit 14 and the input current adding circuit 15 in the control circuit 9 to 0 (in S2 and S3, the initial value 0 is set). set).
 次に、制御回路9は、パルス回数加算回路14の格納データの周期時間到達可否判定値に720をセットする(S4)。なお、周期時間到達可否判定値の設定方法は、後述する。 Next, the control circuit 9 sets 720 to the period time reachability determination value of the stored data of the pulse number adding circuit 14 (S4). A method for setting the period time reachability determination value will be described later.
 次に、制御回路9は、スイッチング素子駆動回路10に駆動信号を送信してスイッチング素子4をデューティ周期より十分に短い所定のスイッチング周期で駆動させ、通電状態に移行し、鍋3への加熱動作を開始する(S6)。 Next, the control circuit 9 transmits a drive signal to the switching element drive circuit 10 to drive the switching element 4 at a predetermined switching cycle sufficiently shorter than the duty cycle, shifts to an energized state, and heats the pan 3 Is started (S6).
 次に、制御回路9は、入力電流検出回路13からの検出信号および共振電圧検出回路17からの検出信号を受信して、制御回路9内の鍋材質判定回路18により鍋3の材質を判定し(S21)、判定結果に応じて入力電流加算回路15の格納データの通電時間到達可否判定値を設定する(S22およびS32)。 Next, the control circuit 9 receives the detection signal from the input current detection circuit 13 and the detection signal from the resonance voltage detection circuit 17, and determines the material of the pot 3 by the pot material determination circuit 18 in the control circuit 9. (S21), the energization time reachability determination value of the stored data of the input current adding circuit 15 is set according to the determination result (S22 and S32).
 以下、周期時間到達可否判定値および通電時間到達可否判定値の設定方法について説明する。 Hereinafter, a method for setting the period time reachability determination value and the energization time reachability determination value will be described.
 入力電流検出回路13は、交流電源からの入力電流(電源電流)を、カレントトランスを用いて検出し、検出した入力電流を当該入力電流に対応する電圧に変換し、当該電圧のピーク電圧をピークホールド回路により検出し、検出結果の電圧レベルを有する検出信号を制御回路9に出力する。制御回路9(マイクロコンピュータ)は、入力電流検出回路13からの検出信号を電圧レベル(アナログ値)に応じて0から255ディジットまでのデジタル値に変換する。前述のとおり、本発明の実施の形態における誘導加熱調理器の最大入力電力設定値は「5」、すなわち最大設定電力は「1200W」であるため、鉄材質の代表的な鍋であるホーロー鍋(以下、鉄製のホーロー鍋を、ホーロー鍋という。)を加熱動作させた場合において、加熱停止状態(入力電力0W=入力電流0A)での入力電流検出回路13からの検出信号の電圧レベルを0ディジットに変換し、最大設定値「5」(入力電力1200W)での入力電流検出回路13からの検出信号の電圧レベルを255ディジットに変換する。さらに、0Wから1200Wまでの入力電力においては、入力電力をXとし、入力電流検出回路13からの検出信号の電圧レベルをYとした場合に、Y=0.2125Xなる線形性を有するように、鍋3への入力電力と電圧レベルYとの関係を設定する(図9参照。)。 The input current detection circuit 13 detects an input current (power supply current) from an AC power supply using a current transformer, converts the detected input current into a voltage corresponding to the input current, and peaks the peak voltage of the voltage. A detection signal detected by the hold circuit and having a voltage level as a detection result is output to the control circuit 9. The control circuit 9 (microcomputer) converts the detection signal from the input current detection circuit 13 into a digital value of 0 to 255 digits according to the voltage level (analog value). As described above, the maximum input power set value of the induction heating cooker according to the embodiment of the present invention is “5”, that is, the maximum set power is “1200 W”. Hereinafter, when the iron enamel pan is called the enamel pan, the voltage level of the detection signal from the input current detection circuit 13 in the heating stopped state (input power 0 W = input current 0 A) is 0 digit. And the voltage level of the detection signal from the input current detection circuit 13 at the maximum set value “5” (input power 1200 W) is converted into 255 digits. Further, in the input power from 0 W to 1200 W, when the input power is X and the voltage level of the detection signal from the input current detection circuit 13 is Y, the linearity is Y = 0.2125X. The relationship between the input power to the pan 3 and the voltage level Y is set (see FIG. 9).
 入力電力設定値「1」に対応する設定電力は100Wであり、入力電力設定値「2」に対応する設定電力は300Wであり、入力電力設定値「1」および「2」では、入力電力設定値「3」に対応する設定電力(600W)で、デューティ周期時間を6秒に設定してデューティ制御動作を行う。簡単にいうと、例えば入力電力設定値「1」の場合には、入力電力を600Wに設定して1秒間だけ通電させて5秒間だけ通電を停止させることにより平均電力100Wを得るという制御を行う。言い換えれば、6秒ごとの平均電力は、入力電力100Wで連続動作させた場合の平均電力と全く同じである(デューティ制御での平均電力は、600×1/6=100Wであり、連続動作時の平均電力は100×6/6=100Wである。)。後述するが、制御回路9はゼロボルトパルスの検出後に入力電流加算回路15の格納データへの加算処理を行うため、6秒間での入力電流加算回路15の格納データへの加算処理の総回数は、6秒間でのゼロボルトタイミングの発生回数に等しい。 The set power corresponding to the input power set value “1” is 100 W, the set power corresponding to the input power set value “2” is 300 W, and the input power set values “1” and “2” The duty control operation is performed by setting the duty cycle time to 6 seconds with the set power (600 W) corresponding to the value “3”. In short, for example, when the input power set value is “1”, the control is performed such that the average power is set to 100 W by setting the input power to 600 W, energizing for 1 second, and stopping energization for 5 seconds. . In other words, the average power every 6 seconds is exactly the same as the average power when operated continuously at an input power of 100 W (the average power under duty control is 600 × 1/6 = 100 W, The average power is 100 × 6/6 = 100 W.) As will be described later, since the control circuit 9 performs the addition process to the storage data of the input current addition circuit 15 after detecting the zero volt pulse, the total number of addition processes to the storage data of the input current addition circuit 15 in 6 seconds is: Equivalent to the number of occurrences of zero volt timing in 6 seconds.
 ここで、ゼロボルトパルス検出回路12は、交流電源からの交流電圧のゼロボルトタイミング、すなわち正負電圧の反転タイミングを検出し、当該検出タイミングにおいてゼロボルトパルスを発生する。例えば、交流電源が単相3線式の200V/60Hzの商用周波電源である場合は、交流電源からの交流電圧の1周期(1/(60×2)=約16ミリ秒)でゼロボルトタイミングを2回検出する。従って、6秒間でのゼロボルトタイミングの発生回数は2回×60Hz×6秒=720回となる。 Here, the zero volt pulse detection circuit 12 detects the zero volt timing of the alternating voltage from the alternating current power source, that is, the inversion timing of the positive / negative voltage, and generates the zero volt pulse at the detection timing. For example, when the AC power supply is a single-phase three-wire 200 V / 60 Hz commercial frequency power supply, the zero volt timing is set in one cycle of AC voltage from the AC power supply (1 / (60 × 2) = about 16 milliseconds). Detect twice. Therefore, the number of occurrences of zero volt timing in 6 seconds is 2 times × 60 Hz × 6 seconds = 720 times.
 入力電力を100Wに設定してホーロー鍋を加熱するとき、入力電流検出回路13からの検出信号の電圧レベルYはY=0.2125×100≒21ディジットであり、入力電力を100Wに設定して6秒間だけ連続動作させた場合の入力電流加算回路15の格納データの加算結果は21×720=15120ディジットとなる。従って、入力電力を600Wに設定してデューティ制御を行う場合にも、通電開始から6秒経過したときの入力電流加算回路15の格納データが15120ディジットであれば、平均電力は100Wとなる。従って、入力電力設定値が「1」に設定され、かつ鍋3の材質が鉄と判定された場合には入力電流加算回路15の格納データの通電時間到達可否判定値に15120をセットする(S22)。なお、入力電力設定値「2」の場合についても、入力電力設定値「1」の場合と同様に、入力電流加算回路15の格納データの通電時間到達可否判定値に45360をセットする(図8参照。)。 When the enamel pan is heated with the input power set to 100 W, the voltage level Y of the detection signal from the input current detection circuit 13 is Y = 0.2125 × 100≈21 digits, and the input power is set to 100 W. The result of adding the stored data of the input current adding circuit 15 when continuously operating for 6 seconds is 21 × 720 = 15120 digits. Therefore, even when duty control is performed with the input power set to 600 W, the average power is 100 W if the stored data of the input current addition circuit 15 when 6 seconds have elapsed from the start of energization is 15120 digits. Therefore, when the input power set value is set to “1” and the material of the pan 3 is determined to be iron, 15120 is set as the energization time reachability determination value of the stored data of the input current adding circuit 15 (S22). ). In the case of the input power set value “2”, 45360 is set as the energization time reachability determination value of the stored data of the input current adding circuit 15 as in the case of the input power set value “1” (FIG. 8). reference.).
 ところが、本来、入力電力は入力電流の実効値及び位相と、入力電圧の実効値及び位相とに基づいて求められるものであり、入力電流の最大値が同じでも入力電流の実効値が異なる負荷の場合には、入力電力は同じとはならない。例えば、非磁性材質の代表的な鍋である非磁性ステンレス鋼(非磁性SUS(Steel Use Stainless))製の鍋(以下、非磁性ステンレス鍋という。)を、入力電力設定値を「3」に設定して、入力電流検出回路13からの検出信号の電圧レベルが128ディジットになるように加熱した場合には、実際の入力電力は640Wとなり、入力電力設定値「3」に対応する設定電力600Wの1.06倍の電力が入力されてしまう(図9参照。)。従って、図9に示すように、鉄製のホーロー鍋にてY=0.2125Xにて表された鍋3への入力電力と入力電流検出回路13からの検出信号の電圧レベルYとの間の関係は、非磁性ステンレス鍋ではY=0.2Xで表される(0.2≒0.2125/1.06)。 However, the input power is originally obtained based on the effective value and phase of the input current and the effective value and phase of the input voltage. Even if the maximum value of the input current is the same, the effective value of the input current is different. In some cases, the input power will not be the same. For example, a nonmagnetic stainless steel (nonmagnetic SUS (Steel Use Stainless)) pan (hereinafter referred to as a nonmagnetic stainless steel pan), which is a typical nonmagnetic material pan, is set to “3”. When set and heated so that the voltage level of the detection signal from the input current detection circuit 13 is 128 digits, the actual input power is 640 W, and the set power 600 W corresponding to the input power set value “3” 1.06 times as much power is input (see FIG. 9). Accordingly, as shown in FIG. 9, the relationship between the input power to the pan 3 represented by Y = 0.2125X in the iron enamel pan and the voltage level Y of the detection signal from the input current detection circuit 13. Is represented by Y = 0.2X in a non-magnetic stainless steel pan (0.2≈0.2125 / 1.06).
 一方、入力電力を600Wに設定してホーロー鍋を加熱するとき、入力電流検出回路13からの検出信号の制御回路9による受信電圧レベルはY=0.2125×600≒127ディジットであるため、周期時間6秒に対して通電時間は6×(15120/127)/720≒0.99秒になる。非磁性ステンレス鍋を加熱する場合に、鉄材質での入力電流加算回路15の格納データの通電時間到達可否判定値を用いることは、ホーロー鍋を加熱するときの通電時間で通電することと等しいため、平均電力は640×0.99/6≒106Wとなり設定電力(100W)との間の差が発生してしまう。これを防止するためには、非磁性ステンレス鍋の場合と、ホーロー鍋の場合とで、通電時間到達可否判定値を変えればよい。入力電力を100Wに設定して非磁性ステンレス鍋を加熱するとき、入力電流検出回路13からの検出信号の電圧レベルYはY=0.2×100≒20igitであるため、入力電力を100Wに設定して6秒間だけ連続動作させた場合の入力電流加算回路15の格納データの加算結果は20×720=14400ディジットとなる。従って、入力電力設定値が「1」に設定され、かつ鍋3の材質が非磁性ステンレス鋼と判定された場合には、通電時間到達可否判定値に14400をセットする(S32)。この場合、平均電力は640×(14400/127)/720≒101Wとなり、平均入力電力と設定電力(100W)との間の差を実質的になくすことができる。なお、入力電力設定値「2」の場合についても、入力電力設定値「1」の場合と同様に、入力電流加算回路15の格納データの通電時間到達可否判定値に43200をセットする(図8参照。)。 On the other hand, when the input power is set to 600 W and the enamel pan is heated, the reception voltage level of the detection signal from the input current detection circuit 13 by the control circuit 9 is Y = 0.2125 × 600≈127 digits, The energization time is 6 × (15120/127) /720≈0.99 seconds for a time of 6 seconds. When heating a non-magnetic stainless steel pan, using the energization time reachability determination value of the stored data of the input current addition circuit 15 made of iron is equivalent to energizing the energization time when heating the enamel pan. The average power is 640 × 0.99 / 6≈106 W, and a difference from the set power (100 W) occurs. In order to prevent this, the energization time reachability determination value may be changed between the case of the nonmagnetic stainless steel pan and the case of the enamel pan. When the non-magnetic stainless steel pan is heated with the input power set to 100 W, the voltage level Y of the detection signal from the input current detection circuit 13 is Y = 0.2 × 100≈20 digits, so the input power is set to 100 W. Then, the result of adding the stored data of the input current adding circuit 15 when continuously operating for 6 seconds is 20 × 720 = 14400 digits. Therefore, when the input power set value is set to “1” and the material of the pan 3 is determined to be nonmagnetic stainless steel, 14400 is set as the energization time reachability determination value (S32). In this case, the average power is 640 × (14400/127) / 720≈101 W, and the difference between the average input power and the set power (100 W) can be substantially eliminated. In the case of the input power set value “2”, 43200 is set as the energization time reachability determination value of the stored data of the input current adding circuit 15 as in the case of the input power set value “1” (FIG. 8). reference.).
 次に、ゼロボルトパルス検出回路12は、ゼロボルトタイミングを検出すると制御回路9にゼロボルトパルスを送信する。制御回路9は、ゼロボルトパルスを検出すると(S23又はS33でYES)、制御回路9内のパルス回数加算回路14の直前の格納データに対して1を加算する(S24およびS34)。例えば、直前の格納データが0であるときは、加算後はパルス回数加算回路14に1がセットされる。 Next, when the zero volt pulse detection circuit 12 detects the zero volt timing, it transmits a zero volt pulse to the control circuit 9. When detecting the zero volt pulse (YES in S23 or S33), the control circuit 9 adds 1 to the stored data immediately before the pulse number adding circuit 14 in the control circuit 9 (S24 and S34). For example, when the immediately preceding stored data is 0, 1 is set in the pulse number adding circuit 14 after the addition.
 制御回路9は、ゼロボルトパルスの検出後、入力電流検出回路13から検出信号を受信し、当該検出信号の電圧レベルに対応する値(ディジット)を、入力電流加算回路15の直前の格納データに対して加算する(S25およびS35)。ここで、加熱動作開始時は、共振回路の共振周波数から大きく離れた動作周波数(共振周波数<動作周波数とする)で動作させて低電力状態とするため(ソフトスタート制御)、例えば、加熱動作開始時の入力電力を200Wに設定した場合には、入力電流検出回路13からの検出信号の電圧レベルは前述の線形式によりY=0.2125×200≒43ディジットとなり、直前の格納データは0であったため入力電流加算回路15に43がセットされる。 After detecting the zero volt pulse, the control circuit 9 receives the detection signal from the input current detection circuit 13 and sets a value (digit) corresponding to the voltage level of the detection signal to the stored data immediately before the input current addition circuit 15. Are added (S25 and S35). Here, when starting the heating operation, the operation is performed at an operating frequency far away from the resonance frequency of the resonance circuit (resonance frequency <operating frequency) to achieve a low power state (soft start control). When the input power at that time is set to 200 W, the voltage level of the detection signal from the input current detection circuit 13 is Y = 0.2125 × 200≈43 digits according to the above-described line format, and the immediately preceding stored data is 0. Therefore, 43 is set in the input current adding circuit 15.
 次に、制御回路9は、入力電流加算回路15の格納データが通電時間到達可否判定値(鍋3の材質が鉄の場合は15120であり、鍋3の材質が非磁性ステンレス鋼の場合は14400である。)に到達したか否かを判定し(S26およびS36)、もし通電時間到達可否判定値に到達していなければ図7Aのフローチャートに従って通電状態を継続する一方、通電時間到達判定値に到達していれば通電状態から停止状態に移行し、すなわちスイッチング素子駆動回路10に停止信号を送信してスイッチング素子4を停止させ、鍋3への加熱動作を停止する(S11)。 Next, the control circuit 9 determines that the stored data of the input current adding circuit 15 is the energization time reachability determination value (15120 when the material of the pan 3 is iron, and 14400 when the material of the pan 3 is nonmagnetic stainless steel. (S26 and S36). If the energization time reachability determination value has not been reached, the energization state is continued according to the flowchart of FIG. 7A, while the energization time arrival determination value is reached. If it has reached, it shifts from the energized state to the stopped state, that is, a stop signal is transmitted to the switching element drive circuit 10 to stop the switching element 4, and the heating operation to the pan 3 is stopped (S11).
 加熱動作を停止後、ゼロボルトパルス検出回路12がゼロボルトタイミングを検出するとゼロボルトパルス検出回路12から制御回路9にゼロボルトパルスが送信される。制御回路9は、ゼロボルトパルスを検出すると(S12でYES)、パルス回数加算回路14の直前の格納データに対して1を加算する(S13)。制御回路9は、パルス回数加算回路14の格納データへの加算後、パルス回数加算回路14の格納データが周期時間到達可否判定値(720)に到達したか否かを判定する(S14)。パルス回数加算回路14の格納データの周期時間到達可否判定値は、デューティ制御の周期時間である6秒に相当する値に設定される。前述したとおり、6秒間でのゼロボルトタイミングの発生回数は2回×60Hz×6秒=720回であり、ゼロボルトタイミングが検出される毎にパルス回数加算回路14の格納データは1ずつ加算されていくため、6秒間の加算結果は720となる。従って、パルス回数加算回路14の格納データの周期時間到達可否判定値は720に設定される。制御回路9は、パルス回数加算回路14の格納データが周期時間到達可否判定値に到達したか否かを判定し、もし周期時間到達可否判定値に到達していなければ(S14でNO)図7A及び図7Bのフローチャートに従って停止状態を継続する。一方、パルス回数加算回路14の格納データが周期時間到達可否判定値に到達していれば(S14でYES)、パルス回数加算回路14および入力電流加算回路15の各格納データを0にリセットした後(S2およびS3において初期値0をセットする)、停止状態から通電状態に移行し、すなわちスイッチング素子駆動回路10に駆動信号を送信してスイッチング素子4をデューティ周期より十分に短い所定のスイッチング周期で駆動させ、通電状態に移行し、鍋3への加熱動作を開始する(S6)。以下、これまで説明した一連の動作(S2~S14)を、入力電力設定手段16を用いて加熱動作の終了が選択されるまで繰り返す。 When the zero volt pulse detection circuit 12 detects the zero volt timing after stopping the heating operation, a zero volt pulse is transmitted from the zero volt pulse detection circuit 12 to the control circuit 9. When detecting the zero volt pulse (YES in S12), the control circuit 9 adds 1 to the stored data immediately before the pulse number adding circuit 14 (S13). After the addition to the stored data of the pulse number adding circuit 14, the control circuit 9 determines whether or not the stored data of the pulse number adding circuit 14 has reached the period time reachability determination value (720) (S14). The period time reachability determination value of the stored data of the pulse number adding circuit 14 is set to a value corresponding to 6 seconds, which is the period time of the duty control. As described above, the number of occurrences of zero volt timing in 6 seconds is 2 times × 60 Hz × 6 seconds = 720 times, and the stored data of the pulse number adding circuit 14 is incremented by 1 each time the zero volt timing is detected. Therefore, the addition result for 6 seconds is 720. Therefore, the period time reachability determination value of the stored data of the pulse number adding circuit 14 is set to 720. The control circuit 9 determines whether or not the data stored in the pulse number adding circuit 14 has reached the period time reachability determination value, and if it has not reached the period time reachability determination value (NO in S14), FIG. 7A. And the stop state is continued according to the flowchart of FIG. 7B. On the other hand, if the stored data of the pulse number adding circuit 14 has reached the cycle time reachability determination value (YES in S14), the stored data of the pulse number adding circuit 14 and the input current adding circuit 15 are reset to 0. (Initial value 0 is set in S2 and S3), transition from the stopped state to the energized state, that is, a drive signal is transmitted to the switching element drive circuit 10 to switch the switching element 4 at a predetermined switching cycle sufficiently shorter than the duty cycle It drives, it transfers to an energization state and the heating operation | movement to the pan 3 is started (S6). Hereinafter, the series of operations (S2 to S14) described so far are repeated until the end of the heating operation is selected using the input power setting means 16.
 従って、図7Aおよび図7Bの処理によれば、制御回路9は、スイッチング素子4を、所定のデューティ周期で通電状態と停止状態を繰り返すように制御するとき、入力電流検出回路13により検出される入力電流を各デューティ周期期間において積算し、当該各デューティ期間の積算後の入力電流の平均値が、入力電力設定手段16を用いて選択された入力電力設定値に対応するように予め設定された値になるように、スイッチング素子4の通電時間(通電時間到達可否判定値に対応する。)を制御する。さらに、制御回路9は、鍋3の材質に応じてスイッチング素子4の通電時間を制御する。 Therefore, according to the processing of FIGS. 7A and 7B, the control circuit 9 is detected by the input current detection circuit 13 when controlling the switching element 4 to repeat the energized state and the stopped state at a predetermined duty cycle. The input current is integrated in each duty cycle period, and the average value of the input current after the integration of each duty period is set in advance so as to correspond to the input power setting value selected using the input power setting means 16 The energization time of the switching element 4 (corresponding to the energization time reachability determination value) is controlled so as to be a value. Furthermore, the control circuit 9 controls the energization time of the switching element 4 according to the material of the pan 3.
 図7Aおよび図7Bのフローチャートに従う加熱動作制御を行うと、入力電力は、実施の形態1と同様に、図5のように時間変化する。 When the heating operation control according to the flowcharts of FIGS. 7A and 7B is performed, the input power changes with time as shown in FIG. 5 as in the first embodiment.
 以上説明したように、本実施の形態においては、交流電源からの交流電力を直流電力に変換する整流素子6と、高周波磁界を発生して鍋3を加熱する加熱コイル1と、前記加熱コイル1と共に共振回路を構成する共振コンデンサ2と、前記共振回路に接続されて共振電流を生成するスイッチング素子4と、前記共振回路への入力電流を検出する入力電流検出回路13と、前記共振コンデンサ2に発生する共振電圧を検出する共振電圧検出回路17と、前記入力電流検出回路13による検出結果を加算する入力電流加算回路15と、前記入力電流検出回路13と前記共振電圧検出回路17による検出結果から鍋材質を判定する鍋材質判定手段である鍋材質判定回路18と、所定の電力を出力するために前記スイッチング素子4のオン時間を任意に変更する制御回路9と、入力電力設定手段16とを備えて構成される。ここで、前記制御回路9は、前記入力電力設定手段16によって設定された入力電力設定値が所定値以上の場合には鍋3を連続的に加熱する一方、入力電力設定値が所定値未満の場合には加熱動作と停止を所定のデューティ周期により繰り返す間欠動作を行い、更に間欠動作では入力電流加算回路15による加算結果の格納データが、入力電力設定値毎に定められて且つ鍋材質判定回路18による判定結果により異なる値とした通電時間到達可否判定値に到達した時点で加熱動作から停止へと状態を変化させる。 As described above, in the present embodiment, the rectifying element 6 that converts AC power from an AC power source into DC power, the heating coil 1 that generates a high-frequency magnetic field and heats the pan 3, and the heating coil 1. And a resonance capacitor 2 constituting a resonance circuit, a switching element 4 connected to the resonance circuit to generate a resonance current, an input current detection circuit 13 for detecting an input current to the resonance circuit, and the resonance capacitor 2 From the resonance voltage detection circuit 17 that detects the generated resonance voltage, the input current addition circuit 15 that adds the detection results of the input current detection circuit 13, and the detection results of the input current detection circuit 13 and the resonance voltage detection circuit 17 The pot material determination circuit 18 which is a pot material determination means for determining the pot material, and the on-time of the switching element 4 to output predetermined power And a control circuit 9 to change, and and an input power setting means 16. Here, the control circuit 9 continuously heats the pan 3 when the input power set value set by the input power setting means 16 is a predetermined value or more, while the input power set value is less than the predetermined value. In this case, an intermittent operation is performed in which the heating operation and the stop are repeated at a predetermined duty cycle. In addition, in the intermittent operation, the storage data of the addition result by the input current addition circuit 15 is determined for each input power set value and the pan material determination circuit The state is changed from the heating operation to the stop when the energization time reachability determination value which is a different value depending on the determination result by 18 is reached.
 本実施の形態において、入力電力設定値が所定値(本実施の形態では3である。)未満の場合のデューティ制御は、パルス回数加算回路14の格納データに基づいて、デューティ周期時間6秒でより行わる。また、デューティ制御時の通電状態から停止状態への切り替えは、入力電流加算回路15の格納データが、入力電力設定値に対応する設定電力で6秒間通電したときの積算電流に対応する所定の通電時間到達可否判定値に到達した時点で行い、更には負荷の材質(種類)に応じて、同一の設定電力でも平均電力への到達判定条件(通電時間到達可否判定値)を変更する。従って、本実施の形態によれば、動作開始から、入力電流が通電開始から、通電状態と停止状態を切り替えるための所定の積算入力電力に到達するまでの所要時間に、負荷によって長短が発生して、所要時間中に発生する平均電力に差が生じた場合や、連続動作時の電力制御方法如何によっては通電状態の入力電力そのものが異なる場合にも、負荷に応じて通電時間を可変させて対応することができる。このため、負荷によらずに、従来技術に比較して平均入力電力と設定電力との間の差を小さくできる。 In the present embodiment, the duty control when the input power set value is less than a predetermined value (3 in the present embodiment) is based on the data stored in the pulse number adding circuit 14 and the duty cycle time is 6 seconds. Do more. Further, switching from the energized state to the stopped state at the time of duty control is performed by a predetermined energization corresponding to the integrated current when the stored data of the input current adding circuit 15 is energized for 6 seconds with the set power corresponding to the input power set value. This is performed when the time reachability determination value is reached, and further, the arrival determination condition for the average power (energization time reachability determination value) is changed even with the same set power according to the material (type) of the load. Therefore, according to the present embodiment, the length of time required from the start of operation until the input current reaches the predetermined integrated input power for switching between the energized state and the stopped state from the start of energization is increased or decreased depending on the load. Even if there is a difference in the average power generated during the required time, or when the input power itself in the energized state varies depending on the power control method during continuous operation, the energization time can be varied according to the load. Can respond. For this reason, the difference between the average input power and the set power can be reduced as compared with the prior art regardless of the load.
 なお、本実施の形態では、入力電力設定値は「1」から「5」までの5段階であり、入力電力設定値「1」に対応する設定電力は100Wであり、入力電力設定値「2」に対応する設定電力は300Wであり、入力電力設定値「3」に対応する設定電力は600Wであり、入力電力設定値「4」に対応する設定電力は900Wであり、入力電力設定値「5」に対応する設定電力は1200Wであった。また、制御回路9は、「3」から「5」までの入力電力設定値範囲では周波数制御による連続動作を行い、「1」および「2」の入力電力設定値範囲では、入力電力設定値「3」に対応する設定電力(600W)で、デューティ周期時間を6秒に設定して、デューティ制御動作を行ったが、本発明はこれに限られない。上述した入力電力設定値の段階数およびそれに対応する設定電力に限定されずとも、本実施の形態と同様の効果が得られるのは言うまでもないことである。 In the present embodiment, the input power set value has five stages from “1” to “5”, the set power corresponding to the input power set value “1” is 100 W, and the input power set value “2”. ”Is 300 W, the set power corresponding to the input power set value“ 3 ”is 600 W, the set power corresponding to the input power set value“ 4 ”is 900 W, and the input power set value“ The set power corresponding to “5” was 1200 W. Further, the control circuit 9 performs continuous operation by frequency control in the input power set value range from “3” to “5”, and in the input power set value range of “1” and “2”, the input power set value “ Although the duty control operation was performed with the set power (600 W) corresponding to “3” and the duty cycle time set to 6 seconds, the present invention is not limited to this. Needless to say, the same effects as those of the present embodiment can be obtained without being limited to the number of steps of the input power set value and the set power corresponding thereto.
 また、本実施の形態では、「1」および「2」の入力電力設定値範囲では、入力電力設定値「3」に対応する設定電力(600W)で、デューティ周期時間を6秒に設定して、デューティ制御動作を行い、通電状態から停止状態への切り替えを判定する入力電流加算回路15の格納データの到達可否判定値をホーロー鍋(鉄製)では15120に設定し、非磁性ステンレス鍋(非磁性ステンレス鋼製)では14400に設定した。さらに、周期時間6秒を検出するためのパルス回数加算回路14の格納データの到達可否判定値を720に設定した。しかしながら、本発明はこれに限られない。上述した通電時間到達可否判定値および周期時間到達可否判定値に限定されずとも、本実施の形態と同様の効果が得られるのは言うまでもないことである。 In the present embodiment, in the input power set value range of “1” and “2”, the duty cycle time is set to 6 seconds with the set power (600 W) corresponding to the input power set value “3”. In the enamel pan (iron), the reachability determination value of the stored data of the input current adding circuit 15 for determining the switching from the energized state to the stopped state is set to 15120, and the nonmagnetic stainless steel pan (nonmagnetic (Made of stainless steel) was set to 14400. Furthermore, the reachability determination value of the stored data of the pulse number adding circuit 14 for detecting the cycle time of 6 seconds is set to 720. However, the present invention is not limited to this. Needless to say, the same effect as the present embodiment can be obtained without being limited to the energization time reachability determination value and the cycle time reachability determination value described above.
 また、本実施の形態では、設定値「3」から「5」の入力電力設定値範囲では周波数制御による連続動作を行ったが、動作周波数を固定した状態で導通比率を変更することにより入力電力を制御する導通比制御を行っても、本実施の形態と同様の効果が得られるのは言うまでもないことである。 In the present embodiment, continuous operation is performed by frequency control in the input power setting value range of setting values “3” to “5”. However, the input power can be changed by changing the conduction ratio while the operating frequency is fixed. It goes without saying that the same effect as in the present embodiment can be obtained even when the conduction ratio control for controlling the above is performed.
 また、本実施の形態では、鍋材質判定回路18は、鍋3の材質が鉄および非磁性ステンレス鋼の2種類の材質のうちいずれであるかを判定したが、本発明はこれに限られない。例えば、アルミ鍋を加熱可能な誘導加熱調理器の場合は、アルミニウムであることをさらに判定してもよく、鍋材質判定回路18の判定内容によらず、本実施の形態と同様の効果が得られるのは言うまでもないことである。 Moreover, in this Embodiment, although the pan material determination circuit 18 determined whether the material of the pan 3 is either two types of materials, iron and nonmagnetic stainless steel, this invention is not limited to this. . For example, in the case of an induction heating cooker capable of heating an aluminum pan, it may be further determined that it is aluminum, and the same effect as this embodiment can be obtained regardless of the determination contents of the pot material determination circuit 18. It goes without saying that it is possible.
 (実施の形態3)
 図10は、本発明の実施の形態3に係る誘導加熱調理器の構成を示す回路図である。
(Embodiment 3)
FIG. 10 is a circuit diagram showing a configuration of an induction heating cooker according to Embodiment 3 of the present invention.
 図10において、本実施の形態に係る誘導加熱調理器は、加熱コイル1と、共振コンデンサ2と、スイッチング素子4と、フライホールダイオード5と、整流素子6と、チョークコイル7と、平滑コンデンサ8と、マイクロコンピュータである制御回路9と、スイッチング素子駆動回路10と、電源回路11と、ゼロボルトパルス検出回路12と、入力電流検出回路13と、入力電力設定手段16と、共振電圧検出回路17とを備えて構成される。また、制御回路9は、パルス回数加算回路14と、鍋材質判定回路18とを含む。 10, the induction heating cooker according to the present embodiment includes a heating coil 1, a resonant capacitor 2, a switching element 4, a flyhole diode 5, a rectifying element 6, a choke coil 7, and a smoothing capacitor 8. A control circuit 9, which is a microcomputer, a switching element drive circuit 10, a power supply circuit 11, a zero volt pulse detection circuit 12, an input current detection circuit 13, an input power setting means 16, and a resonance voltage detection circuit 17. It is configured with. The control circuit 9 includes a pulse number adding circuit 14 and a pan material determining circuit 18.
 加熱コイル1と、当該加熱コイル1に並列に接続された共振コンデンサ2とは、共振回路を構成している。負荷としての鍋3は加熱コイル1の近傍に配置される。スイッチング素子4は共振回路に直列に接続され、スイッチング素子4に並列に接続されたフライホイールダイオード5とともに共振回路に高周波電流を供給する。交流電源からの交流電力を整流する整流素子6で整流された電力は、チョークコイル7及び平滑コンデンサ8により構成される平滑回路で平滑され、共振回路とスイッチング素子4に供給される。ここで、整流素子6と、チョークコイル7と、平滑コンデンサ8とは、整流回路を構成する。また、制御回路9は、誘導加熱調理器全体を制御し、スイッチング素子駆動回路10は、制御回路9からの命令に従ってスイッチング素子4を高速で駆動する。さらに、電源回路11は、誘導加熱調理器全体に直流安定化電源を供給する。ゼロボルトパルス検出回路12は、交流電源からの交流電圧のゼロボルトタイミングを検出し、当該検出タイミングにおいてゼロボルトパルスを発生してパルス回数加算回路14に出力する。入力電流検出回路13は、カレントトランスを用いて、交流電源から整流回路を介して共振回路に入力される入力電流を検出し、当該検出された入力電流に対応する電圧レベルを有する検出信号を鍋材質判定回路18に出力する。また、パルス回数加算回路14は、ゼロボルトパルス検出回路12からのゼロボルトパルスをカウントして、カウント結果を示すデータを格納データとして格納する。またさらに、共振電圧検出回路17は、共振コンデンサに発生する共振電圧を検出し、鍋材質判定回路18は、入力電流検出回路13と共振電圧検出回路17による各検出結果に基づいて鍋3の材質を判定する。なお、入力電流検出回路13と、共振電圧検出回路17と、鍋材質判定回路18とは、鍋3の材質を判定する鍋材質判定手段を構成する。使用者は、入力電力設定手段16を操作して、共振回路への複数の入力電力設定値の中から1つの入力電力設定値を選択して設定する。 The heating coil 1 and the resonance capacitor 2 connected in parallel to the heating coil 1 constitute a resonance circuit. The pan 3 as a load is disposed in the vicinity of the heating coil 1. The switching element 4 is connected in series to the resonance circuit, and supplies a high-frequency current to the resonance circuit together with the flywheel diode 5 connected in parallel to the switching element 4. The power rectified by the rectifying element 6 that rectifies the AC power from the AC power supply is smoothed by a smoothing circuit including the choke coil 7 and the smoothing capacitor 8 and supplied to the resonance circuit and the switching element 4. Here, the rectifier element 6, the choke coil 7, and the smoothing capacitor 8 constitute a rectifier circuit. Further, the control circuit 9 controls the entire induction heating cooker, and the switching element driving circuit 10 drives the switching element 4 at a high speed according to a command from the control circuit 9. Furthermore, the power supply circuit 11 supplies a DC stabilized power supply to the entire induction heating cooker. The zero volt pulse detection circuit 12 detects the zero volt timing of the AC voltage from the AC power supply, generates a zero volt pulse at the detection timing, and outputs the zero volt pulse to the pulse number adding circuit 14. The input current detection circuit 13 uses a current transformer to detect an input current input to the resonance circuit from the AC power supply via the rectifier circuit, and generates a detection signal having a voltage level corresponding to the detected input current. This is output to the material judgment circuit 18. Further, the pulse number adding circuit 14 counts the zero volt pulse from the zero volt pulse detecting circuit 12, and stores data indicating the count result as stored data. Further, the resonance voltage detection circuit 17 detects the resonance voltage generated in the resonance capacitor, and the pot material determination circuit 18 uses the detection results of the input current detection circuit 13 and the resonance voltage detection circuit 17 to determine the material of the pot 3. Determine. The input current detection circuit 13, the resonance voltage detection circuit 17, and the pot material determination circuit 18 constitute a pot material determination unit that determines the material of the pot 3. The user operates the input power setting means 16 to select and set one input power setting value from among a plurality of input power setting values to the resonance circuit.
 以上説明したように構成された誘導加熱調理器について、以下その動作および作用を説明する。なお、本実施の形態に係る誘導加熱調理器と、図15を参照して説明した特許文献1記載の従来技術に係る誘導加熱調理器との間の相違点は、入力電力設定手段16によって設定された入力電力設定値が所定値未満の場合の制御方法、すなわち鍋3への加熱動作と停止を所定のデューティ周期により繰り返す(すなわち、スイッチング素子4をデューティ周期より十分に短い所定のスイッチング周期で駆動する通電状態と、スイッチング素子4をオフする停止状態とを、所定のデューティ周期により繰り返す。)デューティ制御(間欠動作)による制御方法のみである。それ以外の場合、例えば入力電力設定手段16によって設定された入力電力設定値が所定値以上の場合、およびデューティ制御中の加熱動作時の制御方法は、従来技術に係る誘導加熱調理器と同様である。具体的には、電圧共振形インバータを用いて、加熱コイル1に発生する高周波磁界により加熱コイル1上に載置された鍋3に発生する渦電流損によって鍋3を誘導加熱する。また、用いられる電力制御方法は、スイッチング素子4をオンする時間(オン時間)の値によって加熱コイル1に流れる電流を変化させて、鍋3に与えられる高周波電流を制御して電力を可変させる周波数制御である。さらに、制御方法を周波数制御とデューティ制御との間で切り替えるときの入力電力設定値の決定方法は、従来技術に係る決定方法と同様である。具体的には、低電力状態でのスイッチング素子4のオン損失の著しい増加の発生を防止することを目的として、冷却構成によりスイッチング素子4の破壊を回避することができる最小入力電力に基づいて、周波数制御を行う入力電力設定値の範囲を決定する。 The operation and action of the induction heating cooker configured as described above will be described below. Note that the difference between the induction heating cooker according to the present embodiment and the induction heating cooker according to the prior art described in Patent Document 1 described with reference to FIG. 15 is set by the input power setting means 16. The control method in the case where the set input power value is less than the predetermined value, that is, the heating operation and the stop of the pan 3 are repeated at a predetermined duty cycle (that is, the switching element 4 is switched at a predetermined switching cycle sufficiently shorter than the duty cycle). The energization state for driving and the stop state for turning off the switching element 4 are repeated at a predetermined duty cycle.) Only the control method by duty control (intermittent operation) is used. In other cases, for example, when the input power set value set by the input power setting means 16 is a predetermined value or more, and the control method during the heating operation during duty control is the same as that of the induction heating cooker according to the prior art. is there. Specifically, using a voltage resonance type inverter, the pan 3 is induction-heated by eddy current loss generated in the pan 3 placed on the heating coil 1 by a high-frequency magnetic field generated in the heating coil 1. Further, the power control method used is a frequency at which the current flowing through the heating coil 1 is changed according to the value of the time (on time) when the switching element 4 is turned on, and the high frequency current applied to the pan 3 is controlled to vary the power. Control. Furthermore, the determination method of the input power set value when the control method is switched between frequency control and duty control is the same as the determination method according to the prior art. Specifically, for the purpose of preventing the occurrence of a significant increase in the on-loss of the switching element 4 in the low power state, based on the minimum input power that can avoid the destruction of the switching element 4 by the cooling configuration, The range of the input power set value for frequency control is determined.
 さらに、鍋材質判定回路18は、公知の技術を利用して、入力電流検出回路13と共振電圧検出回路17による各検出結果に基づいて鍋3の材質を判定する。具体的には、鍋材質判定回路18は、例えば鍋3の材質によって入力電流検出回路13によって検出される入力電流と共振電圧検出回路17によって検出される共振電圧とが大きく異なることを利用して、鍋3の材質が、鉄および非磁性ステンレス鋼のいずれであるかを判定する。以下、従来技術に係る誘導加熱調理器と同様の構成、動作及び設定方法についての詳細な説明は省略し、従来技術に係る誘導加熱調理器との間の相違点のみを説明する。 Furthermore, the pot material determination circuit 18 determines the material of the pot 3 based on the detection results of the input current detection circuit 13 and the resonance voltage detection circuit 17 using a known technique. Specifically, the pan material determination circuit 18 uses, for example, that the input current detected by the input current detection circuit 13 and the resonance voltage detected by the resonance voltage detection circuit 17 differ greatly depending on the material of the pan 3. Then, it is determined whether the material of the pan 3 is iron or nonmagnetic stainless steel. Hereinafter, detailed description about the same structure, operation | movement, and setting method as the induction heating cooking appliance which concerns on a prior art is abbreviate | omitted, and only a difference with the induction heating cooking appliance which concerns on a prior art is demonstrated.
 入力電力設定手段16によって設定された入力電力設定値が所定値未満の場合の制御方法について、図11A、図11B、図12および図13を用いて説明する。図11Aおよび図11Bは、入力電力設定値が1に設定されたときの本発明の実施の形態3におけるデューティ制御処理のフローチャートである。図12は、本発明の実施の形態3に係る入力電力設定値と、設定電力と、電力制御方法との関係を示すテーブルである。図13は、本発明の実施の形態3における鍋3への入力電力と入力電流検出回路13からの検出信号の電圧レベルYとの関係を示すグラフである。 A control method when the input power set value set by the input power setting means 16 is less than a predetermined value will be described with reference to FIGS. 11A, 11B, 12 and 13. 11A and 11B are flowcharts of the duty control process in the third embodiment of the present invention when the input power set value is set to 1. FIG. 12 is a table showing the relationship between the input power set value, the set power, and the power control method according to Embodiment 3 of the present invention. FIG. 13 is a graph showing the relationship between the input power to the pan 3 and the voltage level Y of the detection signal from the input current detection circuit 13 in Embodiment 3 of the present invention.
 本発明の実施の形態3に係る誘導加熱調理器によれば、使用者は、入力電力設定手段16により、入力電力設定値「1」から「5」までの5段階の入力電力設定値のうち所望の入力電力設定値を選択して設定する。ここで、図3に示すように、入力電力設定値「1」に対応する設定電力は100Wであり、入力電力設定値「2」に対応する設定電力は300Wであり、入力電力設定値「3」に対応する設定電力は600Wであり、入力電力設定値「4」に対応する設定電力は900Wであり、入力電力設定値「5」に対応する設定電力は1200Wである。また、制御回路9は、「3」から「5」までの入力電力設定値範囲では周波数制御による連続動作を行い、「1」および「2」の入力電力設定値範囲では、入力電力設定値「3」に対応する設定電力(600W)で、デューティ周期時間を6秒に設定して、デューティ制御動作を行う。 According to the induction heating cooker according to the third embodiment of the present invention, the user uses the input power setting means 16 to select among the input power setting values in five stages from the input power setting values “1” to “5”. Select and set the desired input power setpoint. Here, as shown in FIG. 3, the set power corresponding to the input power set value “1” is 100 W, the set power corresponding to the input power set value “2” is 300 W, and the input power set value “3”. Is set to 600 W, the set power corresponding to the input power set value “4” is 900 W, and the set power corresponding to the input power set value “5” is 1200 W. Further, the control circuit 9 performs continuous operation by frequency control in the input power set value range from “3” to “5”, and in the input power set value range of “1” and “2”, the input power set value “ With the set power (600 W) corresponding to “3”, the duty cycle time is set to 6 seconds and the duty control operation is performed.
 図11Aにおいて、入力電力設定手段16により入力電力設定値が「1」に設定されると(S1)、制御回路9は、入力電力設定値「1」を含む信号を入力電力設定手段16から受信する。これに応答して、制御回路9は、まず始めに、制御回路9内のパルス回数加算回路14および入力電流加算回路15の各格納データを0にリセットする(S2において初期値0をセットする)。 11A, when the input power setting value is set to “1” by the input power setting means 16 (S1), the control circuit 9 receives a signal including the input power setting value “1” from the input power setting means 16. To do. In response to this, the control circuit 9 first resets the stored data of the pulse number adding circuit 14 and the input current adding circuit 15 in the control circuit 9 to 0 (sets the initial value 0 in S2). .
 次に、制御回路9は、パルス回数加算回路14の格納データの周期時間到達可否判定値に720をセットする(S4)。なお、周期時間到達可否判定値の設定方法は、後述する。 Next, the control circuit 9 sets 720 to the period time reachability determination value of the stored data of the pulse number adding circuit 14 (S4). A method for setting the period time reachability determination value will be described later.
 次に、制御回路9は、スイッチング素子駆動回路10に駆動信号を送信してスイッチング素子4をデューティ周期より十分に短い所定のスイッチング周期で駆動させ、通電状態に移行し、鍋3への加熱動作を開始する(S6)。 Next, the control circuit 9 transmits a drive signal to the switching element drive circuit 10 to drive the switching element 4 at a predetermined switching cycle sufficiently shorter than the duty cycle, shifts to an energized state, and heats the pan 3 Is started (S6).
 次に、制御回路9は、入力電流検出回路13からの検出信号および共振電圧検出回路17からの検出信号を受信して、制御回路9内の鍋材質判定回路18により鍋3の材質を判定し(S21)、判定結果に応じてパルス回数加算回路14の格納データの通電時間到達可否判定値を設定する(S41およびS43)。 Next, the control circuit 9 receives the detection signal from the input current detection circuit 13 and the detection signal from the resonance voltage detection circuit 17, and determines the material of the pot 3 by the pot material determination circuit 18 in the control circuit 9. (S21) The energization time reachability determination value of the stored data of the pulse number adding circuit 14 is set according to the determination result (S41 and S43).
 以下、周期時間到達可否判定値および通電時間到達可否判定値の設定方法について説明する。 Hereinafter, a method for setting the period time reachability determination value and the energization time reachability determination value will be described.
 入力電流検出回路13は、交流電源からの入力電流(電源電流)を、カレントトランスを用いて検出し、検出した入力電流を当該入力電流に対応する電圧に変換し、当該電圧のピーク電圧をピークホールド回路により検出し、検出結果の電圧レベルを有する検出信号を制御回路9に出力する。制御回路9(マイクロコンピュータ)は、入力電流検出回路13からの検出信号を電圧レベル(アナログ値)に応じて0から255ディジットまでのデジタル値に変換する。前述のとおり、本発明の実施の形態における誘導加熱調理器の最大入力電力設定値は「5」、すなわち最大設定電力は「1200W」であるため、鉄材質の代表的な鍋であるホーロー鍋(以下、鉄製のホーロー鍋を、ホーロー鍋という。)を加熱動作させた場合において、加熱停止状態(入力電力0W=入力電流0A)での入力電流検出回路13からの検出信号の電圧レベルを0ディジットに変換し、最大設定値「5」(入力電力1200W)での入力電流検出回路13からの検出信号の電圧レベルを255ディジットに変換する。さらに、0Wから1200Wまでの入力電力においては、入力電力をXとし、入力電流検出回路13からの検出信号の電圧レベルをYとした場合に、Y=0.2125Xなる線形性を有するように、鍋3への入力電力と電圧レベルYとの関係を設定する(図13参照。)。 The input current detection circuit 13 detects an input current (power supply current) from an AC power supply using a current transformer, converts the detected input current into a voltage corresponding to the input current, and peaks the peak voltage of the voltage. A detection signal detected by the hold circuit and having a voltage level as a detection result is output to the control circuit 9. The control circuit 9 (microcomputer) converts the detection signal from the input current detection circuit 13 into a digital value of 0 to 255 digits according to the voltage level (analog value). As described above, the maximum input power set value of the induction heating cooker according to the embodiment of the present invention is “5”, that is, the maximum set power is “1200 W”. Hereinafter, when the iron enamel pan is called the enamel pan, the voltage level of the detection signal from the input current detection circuit 13 in the heating stopped state (input power 0 W = input current 0 A) is 0 digit. And the voltage level of the detection signal from the input current detection circuit 13 at the maximum set value “5” (input power 1200 W) is converted into 255 digits. Further, in the input power from 0 W to 1200 W, when the input power is X and the voltage level of the detection signal from the input current detection circuit 13 is Y, the linearity is Y = 0.2125X. The relationship between the input power to the pan 3 and the voltage level Y is set (see FIG. 13).
 ところが、本来、入力電力は入力電流の実効値及び位相と、入力電圧の実効値及び位相とに基づいて求められるものであり、入力電流の最大値が同じでも入力電流の実効値が異なる負荷の場合には、入力電力は同じとはならない。例えば、非磁性ステンレス鍋を、入力電力設定値を「3」に設定して、入力電流検出回路13からの検出信号の電圧レベルが128ディジットになるように加熱した場合には、実際の入力電力は640Wとなり、入力電力設定値「3」に対応する設定電力600Wの1.06倍の電力が入力されてしまう(図9参照。)。従って、図9に示すように、鉄製のホーロー鍋にてY=0.2125Xにて表された鍋3への入力電力と入力電流検出回路13からの検出信号の電圧レベルYとの間の関係は、非磁性ステンレス鍋ではY=0.2Xで表される(0.2≒0.2125/1.06)。デューティ制御の場合についても同様である。 However, the input power is originally obtained based on the effective value and phase of the input current and the effective value and phase of the input voltage. Even if the maximum value of the input current is the same, the effective value of the input current is different. In some cases, the input power will not be the same. For example, when the nonmagnetic stainless steel pan is heated so that the input power setting value is set to “3” and the voltage level of the detection signal from the input current detection circuit 13 is 128 digits, the actual input power Becomes 640 W, and 1.06 times the set power 600 W corresponding to the input power set value “3” is input (see FIG. 9). Accordingly, as shown in FIG. 9, the relationship between the input power to the pan 3 represented by Y = 0.2125X in the iron enamel pan and the voltage level Y of the detection signal from the input current detection circuit 13. Is represented by Y = 0.2X in a non-magnetic stainless steel pan (0.2≈0.2125 / 1.06). The same applies to the case of duty control.
 前述のとおり、入力電力設定値「1」に対応する設定電力は100Wであり、入力電力設定値「2」に対応する設定電力は300Wであり、入力電力設定値「1」および「2」では、入力電力設定値「3」に対応する設定電力(600W)で、デューティ周期時間を6秒に設定してデューティ制御動作を行う。簡単にいうと、例えば入力電力設定値「1」の場合には、入力電力を600Wに設定して1秒間だけ通電させて5秒間だけ通電を停止させることにより平均電力100Wを得るという制御を行う。 As described above, the set power corresponding to the input power set value “1” is 100 W, the set power corresponding to the input power set value “2” is 300 W, and the input power set values “1” and “2” The duty control operation is performed by setting the duty cycle time to 6 seconds with the set power (600 W) corresponding to the input power set value “3”. In short, for example, when the input power set value is “1”, the control is performed such that the average power is set to 100 W by setting the input power to 600 W, energizing for 1 second, and stopping energization for 5 seconds. .
 このとき、非磁性ステンレス鍋の場合には、実際には640Wの入力電力でデューティ制御が行われるため、平均電力は640/6≒107Wとなり、実際の入力電力と設定電力との間に差が発生してしまう。これを防止するためには、非磁性ステンレス鍋の場合と、ホーロー鍋の場合とで、通電時間到達可否判定値を変えればよい。具体的には、ホーロー鍋の場合に最適な通電時間1秒に対して、非磁性ステンレス鍋の場合の通電時間を、入力電力比1.06を考慮した時間である1/1.06≒0.94秒に設定すればよい。 At this time, in the case of a non-magnetic stainless steel pan, since duty control is actually performed with an input power of 640 W, the average power is 640 / 6≈107 W, and there is a difference between the actual input power and the set power. Will occur. In order to prevent this, the energization time reachability determination value may be changed between the case of the nonmagnetic stainless steel pan and the case of the enamel pan. Specifically, the energization time in the case of a non-magnetic stainless steel pan is a time considering the input power ratio of 1.06 with respect to the optimal energization time of 1 second in the case of an enamel pan. .94 seconds should be set.
 ここで、ゼロボルトパルス検出回路12は、交流電源からの交流電圧のゼロボルトタイミング、すなわち正負電圧の反転タイミングを検出し、当該検出タイミングにおいてゼロボルトパルスを発生する。例えば、交流電源が単相3線式の200V/60Hzの商用周波電源である場合は、交流電源からの交流電圧の1周期(1/(60×2)=約16ミリ秒)でゼロボルトタイミングを2回検出する。従って、1秒間でのゼロボルトタイミングの発生回数は2回×60Hz×1秒=120回であり、ゼロボルトタイミングが検出される毎にパルス回数加算回路14の格納データは1ずつ加算されていくため、1秒間の加算結果は120となる。同様に、0.94秒間での加算結果は2回×60Hz×0.94秒=113回となる。従って、入力電力設定値が「1」の場合には、鍋材質判定回路18により鍋3の材質が鉄であると判定されたときはパルス回数加算回路14の格納データの通電時間到達可否判定値に120をセットし(S41)、非磁性ステンレス鋼であると判定されたときはパルス回数加算回路14の格納データの通電時間到達可否判定値に113をセットする(S43)。入力電力設定値が「2」の場合には、入力電力設定値が「1」の場合と同様に、鍋3の材質が鉄であると判定されたときはパルス回数加算回路14の格納データの通電時間到達可否判定値に360をセットし、非磁性ステンレス鋼であると判定されたときはパルス回数加算回路14の格納データの通電時間到達可否判定値に338をセットする(図12参照。)。 Here, the zero volt pulse detection circuit 12 detects the zero volt timing of the alternating voltage from the alternating current power source, that is, the inversion timing of the positive / negative voltage, and generates the zero volt pulse at the detection timing. For example, when the AC power supply is a single-phase three-wire 200 V / 60 Hz commercial frequency power supply, the zero volt timing is set in one cycle of AC voltage from the AC power supply (1 / (60 × 2) = about 16 milliseconds). Detect twice. Therefore, the number of occurrences of zero volt timing per second is 2 × 60 Hz × 1 second = 120 times, and the stored data of the pulse number adding circuit 14 is incremented by 1 each time the zero volt timing is detected. The addition result for one second is 120. Similarly, the addition result in 0.94 seconds is 2 times × 60 Hz × 0.94 seconds = 113 times. Therefore, when the input power set value is “1”, when the pot material determination circuit 18 determines that the material of the pot 3 is iron, the energization time reachability determination value of the stored data of the pulse number adding circuit 14 is determined. 120 is set (S41), and if it is determined to be nonmagnetic stainless steel, 113 is set to the energization time reachability determination value of the stored data of the pulse number adding circuit 14 (S43). When the input power set value is “2”, as in the case where the input power set value is “1”, when it is determined that the material of the pan 3 is iron, the stored data of the pulse number adding circuit 14 is stored. The energization time reachability determination value is set to 360, and if it is determined to be non-magnetic stainless steel, 338 is set to the energization time reachability determination value of the data stored in the pulse number adding circuit 14 (see FIG. 12). .
 次に、ゼロボルトパルス検出回路12は、ゼロボルトタイミングを検出すると制御回路9にゼロボルトパルスを送信する。制御回路9は、ゼロボルトパルスを検出すると(S23又はS33でYES)、制御回路9内のパルス回数加算回路14の直前の格納データに対して1を加算する(S24およびS34)。例えば、直前の格納データが0であるときは、加算後はパルス回数加算回路14に1がセットされる。 Next, when the zero volt pulse detection circuit 12 detects the zero volt timing, it transmits a zero volt pulse to the control circuit 9. When detecting the zero volt pulse (YES in S23 or S33), the control circuit 9 adds 1 to the stored data immediately before the pulse number adding circuit 14 in the control circuit 9 (S24 and S34). For example, when the immediately preceding stored data is 0, 1 is set in the pulse number adding circuit 14 after the addition.
 次に、制御回路9は、パルス回数加算回路14の格納データが通電時間到達可否判定値(鍋3の材質が鉄の場合は120であり、鍋3の材質が非磁性ステンレス鋼の場合は113である。)に到達したか否かを判定し(S42およびS44)、もし通電時間到達可否判定値に到達していなければ図11Aのフローチャートに従って通電状態を継続する一方、通電時間到達可否判定値に到達していれば通電状態から停止状態に移行し、すなわちスイッチング素子駆動回路10に停止信号を送信してスイッチング素子4を停止させ、鍋3への加熱動作を停止する(S11)。 Next, the control circuit 9 determines that the stored data of the pulse number adding circuit 14 is an energization time reachability determination value (120 when the material of the pan 3 is iron and 113 when the material of the pan 3 is nonmagnetic stainless steel. 11) (S42 and S44). If the energization time reachability determination value has not been reached, the energization state is continued according to the flowchart of FIG. 11A, while the energization time reachability determination value is reached. If it has reached | attained, it will transfer to a stop state from an energized state, ie, a stop signal will be transmitted to the switching element drive circuit 10, the switching element 4 will be stopped, and the heating operation to the pan 3 will be stopped (S11).
 加熱動作を停止後、ゼロボルトパルス検出回路12がゼロボルトタイミングを検出するとゼロボルトパルス検出回路12から制御回路9にゼロボルトパルスが送信される。制御回路9は、ゼロボルトパルスを検出すると(S12でYES)、パルス回数加算回路14の直前の格納データに対して1を加算する(S13)。制御回路9は、パルス回数加算回路14の格納データへの加算後、パルス回数加算回路14の格納データが周期時間到達可否判定値(720)に到達したか否かを判定する(S14)。パルス回数加算回路14の格納データの周期時間到達可否判定値は、デューティ制御の周期時間である6秒に相当する値に設定される。前述したとおり、6秒間でのゼロボルトタイミングの発生回数は2回×60Hz×6秒=720回であり、ゼロボルトタイミングが検出される毎にパルス回数加算回路14の格納データは1ずつ加算されていくため、6秒間の加算結果は720となる。従って、パルス回数加算回路14の格納データの周期時間到達可否判定値は720に設定される。制御回路9は、パルス回数加算回路14の格納データが周期時間到達可否判定値に到達したか否かを判定し(S14)、もし周期時間到達可否判定値に到達していなければ(S14でNO)図7A及び図7Bのフローチャートに従って停止状態を継続する。一方、パルス回数加算回路14の格納データが周期時間到達可否判定値に到達していれば(S14でYES)、パルス回数加算回路14の格納データを0にリセットした後(S2において初期値0をセットする)、停止状態から通電状態に移行し、すなわちスイッチング素子駆動回路10に駆動信号を送信してスイッチング素子4をデューティ周期より十分に短い所定のスイッチング周期で駆動させ、通電状態に移行し、鍋3への加熱動作を開始する(S6)。以下、これまで説明した一連の動作(S2~S14)を、入力電力設定手段16を用いて加熱動作の終了が選択されるまで繰り返す。 When the zero volt pulse detection circuit 12 detects the zero volt timing after stopping the heating operation, a zero volt pulse is transmitted from the zero volt pulse detection circuit 12 to the control circuit 9. When detecting the zero volt pulse (YES in S12), the control circuit 9 adds 1 to the stored data immediately before the pulse number adding circuit 14 (S13). After the addition to the stored data of the pulse number adding circuit 14, the control circuit 9 determines whether or not the stored data of the pulse number adding circuit 14 has reached the period time reachability determination value (720) (S14). The period time reachability determination value of the stored data of the pulse number adding circuit 14 is set to a value corresponding to 6 seconds, which is the period time of the duty control. As described above, the number of occurrences of zero volt timing in 6 seconds is 2 times × 60 Hz × 6 seconds = 720 times, and the stored data of the pulse number adding circuit 14 is incremented by 1 each time the zero volt timing is detected. Therefore, the addition result for 6 seconds is 720. Therefore, the period time reachability determination value of the stored data of the pulse number adding circuit 14 is set to 720. The control circuit 9 determines whether or not the data stored in the pulse number adding circuit 14 has reached the period time reachability determination value (S14). If it has not reached the period time reachability determination value (NO in S14). ) The stop state is continued according to the flowcharts of FIGS. 7A and 7B. On the other hand, if the data stored in the pulse number adding circuit 14 has reached the cycle time reachability determination value (YES in S14), the stored data in the pulse number adding circuit 14 is reset to 0 (initial value 0 in S2). Set), the transition from the stop state to the energized state, that is, the drive signal is transmitted to the switching element drive circuit 10 to drive the switching element 4 at a predetermined switching cycle sufficiently shorter than the duty cycle, the transition to the energized state, The heating operation to the pan 3 is started (S6). Hereinafter, the series of operations (S2 to S14) described so far are repeated until the end of the heating operation is selected using the input power setting means 16.
 従って、図11Aおよび図11Bの処理よれば、制御回路9は、スイッチング素子4を、所定のデューティ周期で通電状態と停止状態を繰り返すように制御するとき、鍋3の材質に基づいて、各デューティ周期期間における入力電力の平均値が入力電力設定手段16を用いて選択された入力電力設定値に対応する値になるように予め決定されたスイッチング素子4の通電時間(通電時間到達可否判定値に対応する。)を設定する。 Therefore, according to the processing of FIG. 11A and FIG. 11B, when the control circuit 9 controls the switching element 4 to repeat the energized state and the stopped state at a predetermined duty cycle, each duty is determined based on the material of the pan 3. The energization time of the switching element 4 (the energization time reachability determination value is determined in advance) so that the average value of the input power in the cycle period becomes a value corresponding to the input power setting value selected using the input power setting means 16. Corresponding).
 図14は、本発明の実施の形態3におけるデューティ制御中の入力電力の時間変化を示すグラフであり、図11Aおよび図11Bのフローチャートに従う加熱動作制御を行ったときの入力電力の時間変化を示す。図14に示すように、本実施の形態によれば、パルス回数加算回路14の格納データがゼロにリセットされるタイミングから入力電力が600Wになるまでの期間の長さによらず、入力電力設定値が「1」であるときのデューティ制御周期(6秒)内での積算入力電力(図14の領域Aの面積)は、入力電力設定値「1」に対応する設定電力(100W)でデューティ制御周期時間だけ連続して通電したときの積算入力電力(図14の領域Bの面積)と等しい。すなわち、入力電力設定値が「1」であるときの平均入力電力は、100Wの設定電力で連続して通電するときの平均入力電力と等しい。 FIG. 14 is a graph showing a time change of input power during duty control in the third embodiment of the present invention, and shows a time change of input power when the heating operation control according to the flowcharts of FIGS. 11A and 11B is performed. . As shown in FIG. 14, according to the present embodiment, the input power setting is performed regardless of the length of the period from when the stored data of the pulse number adding circuit 14 is reset to zero until the input power reaches 600 W. The integrated input power (area A in FIG. 14) within the duty control period (6 seconds) when the value is “1” is the duty at the set power (100 W) corresponding to the input power set value “1”. It is equal to the integrated input power (area B in FIG. 14) when energized continuously for the control cycle time. That is, the average input power when the input power set value is “1” is equal to the average input power when the power is continuously energized with the set power of 100 W.
 以上説明したように、本実施の形態においては、交流電源からの交流電力を直流電力に変換する整流素子6と、高周波磁界を発生して鍋3を加熱する加熱コイル1と、加熱コイル1と共に共振回路を構成する共振コンデンサ2と、共振回路に接続されて共振電流を生成するスイッチング素子4と、共振回路への入力電流を検出する入力電流検出回路13と、共振コンデンサ2に発生する共振電圧を検出する共振電圧検出回路17と、入力電流検出回路13と共振電圧検出回路17による検出結果から鍋材質を判定する鍋材質判定回路18と、所定の電力を出力するためにスイッチング素子4のオン時間を任意に変更してなる制御回路9と、入力電力設定手段16とを備えて構成される。ここで、制御回路9は、入力電力設定手段16によって設定された入力電力設定値が所定値以上の場合には鍋3を連続的に加熱する一方、入力電力設定値が所定値未満の場合には加熱動作と停止を入力電力設定値に応じた時間比により繰り返す間欠動作を行い、且つ間欠動作では鍋材質判定回路18による判定結果により同一の入力電力設定値において時間比を変化させる。 As described above, in the present embodiment, together with the rectifying element 6 that converts AC power from an AC power source into DC power, the heating coil 1 that generates a high-frequency magnetic field and heats the pan 3, and the heating coil 1 A resonance capacitor 2 constituting a resonance circuit, a switching element 4 connected to the resonance circuit to generate a resonance current, an input current detection circuit 13 for detecting an input current to the resonance circuit, and a resonance voltage generated in the resonance capacitor 2 A resonance voltage detection circuit 17 for detecting the pot, a pan material determination circuit 18 for determining the pot material from the detection results of the input current detection circuit 13 and the resonance voltage detection circuit 17, and the switching element 4 being turned on to output predetermined power The control circuit 9 is formed by arbitrarily changing the time, and the input power setting means 16 is provided. Here, the control circuit 9 continuously heats the pan 3 when the input power set value set by the input power setting means 16 is greater than or equal to a predetermined value, while when the input power set value is less than the predetermined value. Performs an intermittent operation in which the heating operation and the stop are repeated at a time ratio according to the input power set value, and in the intermittent operation, the time ratio is changed at the same input power set value according to the determination result by the pan material determination circuit 18.
 本実施の形態によれば、鍋の材質によってはデューティ制御動作を行うときの入力電力そのものが変化してしまい、設定電力と実際の平均入力電力との間に差が発生してしまう場合にも、設定電力に相当する平均入力電力を得ることができる時間比(デューティ周期時間に対する通電時間の比)を負荷の材質に応じて設定することができるため、負荷によらずに、従来技術に比較して平均入力電力と設定電力との間の差を小さくできる。 According to the present embodiment, depending on the material of the pan, the input power itself when performing the duty control operation changes, and there is a difference between the set power and the actual average input power. Compared to the conventional technology regardless of the load, the time ratio (ratio of energization time to duty cycle time) that can obtain the average input power equivalent to the set power can be set according to the material of the load. Thus, the difference between the average input power and the set power can be reduced.
 なお、本実施の形態では、入力電力設定値は「1」から「5」までの5段階であり、入力電力設定値「1」に対応する設定電力は100Wであり、入力電力設定値「2」に対応する設定電力は300Wであり、入力電力設定値「3」に対応する設定電力は600Wであり、入力電力設定値「4」に対応する設定電力は900Wであり、入力電力設定値「5」に対応する設定電力は1200Wであった。また、制御回路9は、「3」から「5」までの入力電力設定値範囲では周波数制御による連続動作を行い、「1」および「2」の入力電力設定値範囲では、入力電力設定値「3」に対応する設定電力(600W)で、デューティ周期時間を6秒に設定して、デューティ制御動作を行ったが、本発明はこれに限られない。上述した入力電力設定値の段階数およびそれに対応する設定電力に限定されずとも、本実施の形態と同様の効果が得られるのは言うまでもないことである。 In the present embodiment, the input power set value has five stages from “1” to “5”, the set power corresponding to the input power set value “1” is 100 W, and the input power set value “2”. ”Is 300 W, the set power corresponding to the input power set value“ 3 ”is 600 W, the set power corresponding to the input power set value“ 4 ”is 900 W, and the input power set value“ The set power corresponding to “5” was 1200 W. Further, the control circuit 9 performs continuous operation by frequency control in the input power set value range from “3” to “5”, and in the input power set value range of “1” and “2”, the input power set value “ Although the duty control operation was performed with the set power (600 W) corresponding to “3” and the duty cycle time set to 6 seconds, the present invention is not limited to this. Needless to say, the same effects as those of the present embodiment can be obtained without being limited to the number of steps of the input power set value and the set power corresponding thereto.
 また、本実施の形態では、本実施の形態では、「1」および「2」の入力電力設定値範囲では、入力電力設定値「3」に対応する設定電力(600W)で、デューティ周期時間を6秒に設定して、デューティ制御動作を行い、入力電力設定値が「1」のときの通電時間を、ホーロー鍋(鉄材質)では1秒に設定し、非磁性ステンレス鍋(非磁性材質)では0.94秒に設定するために、パルス回数加算回路14の格納データの通電時間到達可否判定値をそれぞれ120および113に設定した。さらに、周期時間6秒を検出するためのパルス回数加算回路14の格納データの到達可否判定値を720に設定した。しかしながら、本発明はこれに限られない。上述した通電時間到達可否判定値および周期時間到達可否判定値に限定されずとも、本実施の形態と同様の効果が得られるのは言うまでもないことである。 In the present embodiment, in the present embodiment, in the input power set value range of “1” and “2”, the duty cycle time is set at the set power (600 W) corresponding to the input power set value “3”. Set to 6 seconds, perform duty control operation, set the energization time when the input power setting value is “1” to 1 second for enamel pan (iron material), and nonmagnetic stainless steel pan (nonmagnetic material) Then, in order to set to 0.94 seconds, the energization time reachability determination value of the stored data of the pulse number adding circuit 14 is set to 120 and 113, respectively. Furthermore, the reachability determination value of the stored data of the pulse number adding circuit 14 for detecting the cycle time of 6 seconds is set to 720. However, the present invention is not limited to this. Needless to say, the same effect as the present embodiment can be obtained without being limited to the energization time reachability determination value and the cycle time reachability determination value described above.
 また、本実施の形態では、設定値「3」から「5」の入力電力設定値範囲では周波数制御による連続動作を行ったが、動作周波数を固定した状態で導通比率を変更することにより入力電力を制御する導通比制御を行っても、本実施の形態と同様の効果が得られるのは言うまでもないことである。 In the present embodiment, continuous operation is performed by frequency control in the input power setting value range of setting values “3” to “5”. However, the input power can be changed by changing the conduction ratio while the operating frequency is fixed. It goes without saying that the same effect as in the present embodiment can be obtained even when the conduction ratio control for controlling the above is performed.
 また、本実施の形態では、鍋材質判定回路18は、鍋3の材質が鉄および非磁性ステンレス鋼の2種類の材質のうちいずれであるかを判定したが、本発明はこれに限られない。例えば、アルミ鍋を加熱可能な誘導加熱調理器の場合は、アルミニウムであることをさらに判定してもよく、鍋材質判定回路18の判定内容によらず、本実施の形態と同様の効果が得られるのは言うまでもないことである。 Moreover, in this Embodiment, although the pan material determination circuit 18 determined whether the material of the pan 3 is either two types of materials, iron and nonmagnetic stainless steel, this invention is not limited to this. . For example, in the case of an induction heating cooker capable of heating an aluminum pan, it may be further determined that it is aluminum, and the same effect as this embodiment can be obtained regardless of the determination contents of the pot material determination circuit 18. It goes without saying that it is possible.
 以上説明したように、本発明に係る誘導加熱調理器によれば、デューティ制御により電力制御を行うときに、所定のデューティ周期で通電状態と停止状態を交互に切り替えて、且つ通電状態から停止状態への切り替えは、各デューティ周期期間の共振回路への入力電流の平均値が入力電力設定値に対応するように予め設定された値に到達した時点で行うので、入力電力平均値と、入力電力設定値に対応する設定電力との間の差が負荷によっては大きくなってしまうことを防止して、負荷の相違による調理性能のバラツキを抑えて使い勝手を向上できる。従って、本発明に係る誘導加熱調理器は、誘導加熱調理器のみならず、誘導加熱を行いかつデューティ制御動作を行う機器全般にも適用できる。 As described above, according to the induction heating cooker according to the present invention, when power control is performed by duty control, the energized state and the stopped state are alternately switched at a predetermined duty cycle, and the energized state is stopped. Is switched when the average value of the input current to the resonance circuit for each duty cycle period reaches a preset value corresponding to the input power setting value. It is possible to prevent the difference between the set power corresponding to the set value from becoming large depending on the load, and to suppress the variation in the cooking performance due to the load difference, thereby improving the usability. Therefore, the induction heating cooker according to the present invention can be applied not only to the induction heating cooker but also to all devices that perform induction heating and perform a duty control operation.
 1 加熱コイル
 2 共振コンデンサ
 3 負荷(鍋)
 4 スイッチング素子
 5 フライホイールダイオード
 6 整流素子
 7 チョークコイル
 8 平滑コンデンサ
 9 制御回路(マイクロコンピュータ)
 10 スイッチング素子駆動回路
 11 電源回路
 12 ゼロボルトパルス検出回路
 13 入力電流検出回路
 14 パルス回数加算回路
 15 入力電流加算回路
 16 入力電力設定手段
 17 共振電圧検出回路
 18 鍋材質判定回路
1 Heating coil 2 Resonant capacitor 3 Load (pan)
4 Switching element 5 Flywheel diode 6 Rectifier 7 Choke coil 8 Smoothing capacitor 9 Control circuit (microcomputer)
DESCRIPTION OF SYMBOLS 10 Switching element drive circuit 11 Power supply circuit 12 Zero volt pulse detection circuit 13 Input current detection circuit 14 Pulse frequency addition circuit 15 Input current addition circuit 16 Input power setting means 17 Resonance voltage detection circuit 18 Pot material judgment circuit

Claims (3)

  1.  鍋を誘導加熱する加熱コイルと、当該加熱コイルに並列に接続された共振コンデンサとを備えた共振回路と、
     前記共振コンデンサに直列に接続されたスイッチング素子と、
     交流電源から整流回路を介して前記共振回路に入力される入力電流を検出する入力電流検出回路と、
     前記共振回路への複数の入力電力設定値の中から1つの入力電力設定値を選択するための入力電力設定手段と、
     前記スイッチング素子を、所定のデューティ周期で通電状態と停止状態を繰り返すように制御する制御回路とを備えた誘導加熱調理器において、
     前記制御回路は、前記検出される入力電流を前記各デューティ周期期間において積算し、当該各デューティ周期期間の積算後の入力電流の平均値が、前記選択された入力電力設定値に対応するように予め設定された値になるように、前記スイッチング素子の通電時間を制御することを特徴とする誘導加熱調理器。
    A resonance circuit comprising a heating coil for induction heating the pan, and a resonance capacitor connected in parallel to the heating coil;
    A switching element connected in series to the resonant capacitor;
    An input current detection circuit for detecting an input current input to the resonance circuit from an AC power supply via a rectifier circuit;
    Input power setting means for selecting one input power setting value from a plurality of input power setting values to the resonant circuit;
    In the induction heating cooker provided with a control circuit for controlling the switching element to repeat the energized state and the stopped state at a predetermined duty cycle,
    The control circuit integrates the detected input current in each duty cycle period, and an average value of the input current after the integration of each duty cycle period corresponds to the selected input power setting value. An induction heating cooker characterized by controlling an energization time of the switching element so as to have a preset value.
  2.  前記鍋の材質を判定する鍋材質判定手段をさらに備え、
     前記制御回路は、前記判定された鍋の材質に応じて前記スイッチング素子の通電時間を制御することを特徴とする請求項1記載の誘導加熱調理器。
    It further comprises a pan material judging means for judging the material of the pan,
    The induction heating cooker according to claim 1, wherein the control circuit controls an energization time of the switching element according to the determined material of the pan.
  3.  鍋を誘導加熱する加熱コイルと、当該加熱コイルに並列に接続された共振コンデンサとを備えた共振回路と、
     前記共振コンデンサに直列に接続されたスイッチング素子と、
     前記共振回路への複数の入力電力設定値の中から1つの入力電力設定値を選択するための入力電力設定手段と、
     前記鍋の材質を判定する鍋材質判定手段と、
     前記スイッチング素子を、所定のデューティ周期で通電状態と停止状態を繰り返すように制御する制御回路とを備えた誘導加熱調理器において、
     前記制御回路は、前記判定された鍋の材質に基づいて、前記各デューティ周期期間における入力電力の平均値が前記選択された入力電力設定値に対応する値になるように予め決定された前記スイッチング素子の通電時間を設定することを特徴とする誘導加熱調理器。
    A resonance circuit comprising a heating coil for induction heating the pan, and a resonance capacitor connected in parallel to the heating coil;
    A switching element connected in series to the resonant capacitor;
    Input power setting means for selecting one input power setting value from a plurality of input power setting values to the resonant circuit;
    A pot material determining means for determining the material of the pot;
    In the induction heating cooker provided with a control circuit for controlling the switching element to repeat the energized state and the stopped state at a predetermined duty cycle,
    The control circuit determines the switching based on the determined material of the pan so that an average value of input power in each duty cycle period is a value corresponding to the selected input power setting value. An induction heating cooker characterized in that the energization time of the element is set.
PCT/JP2012/003654 2011-06-07 2012-06-04 Induction heating cooker WO2012169169A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013519380A JP5895175B2 (en) 2011-06-07 2012-06-04 Induction heating cooker

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011126976 2011-06-07
JP2011-126976 2011-06-07
JP2011127876 2011-06-08
JP2011-127879 2011-06-08
JP2011-127876 2011-06-08
JP2011127879 2011-06-08

Publications (1)

Publication Number Publication Date
WO2012169169A1 true WO2012169169A1 (en) 2012-12-13

Family

ID=47295754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003654 WO2012169169A1 (en) 2011-06-07 2012-06-04 Induction heating cooker

Country Status (2)

Country Link
JP (1) JP5895175B2 (en)
WO (1) WO2012169169A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053255A (en) * 2012-10-15 2015-03-19 アイリスオーヤマ株式会社 Electromagnetic cooker

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330285A (en) * 1989-06-28 1991-02-08 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2007080752A (en) * 2005-09-16 2007-03-29 Hitachi Appliances Inc Induction heating cooking device
JP2010212052A (en) * 2009-03-10 2010-09-24 Panasonic Corp Induction heating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330285A (en) * 1989-06-28 1991-02-08 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2007080752A (en) * 2005-09-16 2007-03-29 Hitachi Appliances Inc Induction heating cooking device
JP2010212052A (en) * 2009-03-10 2010-09-24 Panasonic Corp Induction heating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053255A (en) * 2012-10-15 2015-03-19 アイリスオーヤマ株式会社 Electromagnetic cooker

Also Published As

Publication number Publication date
JP5895175B2 (en) 2016-03-30
JPWO2012169169A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP4258737B2 (en) Induction heating cooker and induction heating cooking method
JPWO2013099056A1 (en) Induction heating cooker and its control method
JP2011253682A (en) Induction heating cooking device
JP4384085B2 (en) Induction heating cooker
JP5958715B2 (en) Induction heating device
JP5641947B2 (en) Induction heating cooker
JP4512525B2 (en) Induction heating cooker
JP5895175B2 (en) Induction heating cooker
JP6931792B2 (en) Induction heating device and its drive control method
JPWO2013061493A1 (en) Induction heating cooker
JP2005222728A (en) Control unit
JP4363355B2 (en) Induction heating device
WO2013094109A1 (en) Induction heating device
JP4193154B2 (en) Induction heating cooker
JP3376227B2 (en) Inverter device
JP4887681B2 (en) Induction heating device
JPH11121159A (en) Induction heating cooker
KR102175634B1 (en) Cooker improving operation stability and operating method thereof
JP4325446B2 (en) Induction heating device
JP6076040B2 (en) Induction heating cooker
JP5895123B2 (en) Induction heating device
JP2010055760A (en) Induction heating device
JP5035099B2 (en) Induction heating cooker
JP2007234278A (en) Induction heating cooker
JP2008300113A (en) Induction heating cooking device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519380

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796346

Country of ref document: EP

Kind code of ref document: A1