WO2012169069A1 - Organic electroluminescence panel - Google Patents

Organic electroluminescence panel Download PDF

Info

Publication number
WO2012169069A1
WO2012169069A1 PCT/JP2011/063379 JP2011063379W WO2012169069A1 WO 2012169069 A1 WO2012169069 A1 WO 2012169069A1 JP 2011063379 W JP2011063379 W JP 2011063379W WO 2012169069 A1 WO2012169069 A1 WO 2012169069A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
light emitting
light
electrode
Prior art date
Application number
PCT/JP2011/063379
Other languages
French (fr)
Japanese (ja)
Inventor
崇人 小山田
大志 辻
敏治 内田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/063379 priority Critical patent/WO2012169069A1/en
Publication of WO2012169069A1 publication Critical patent/WO2012169069A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants

Definitions

  • the present invention relates to an organic electroluminescence panel (hereinafter referred to as an organic EL panel) in which a plurality of organic electroluminescence elements (hereinafter referred to as organic EL elements) are juxtaposed.
  • an organic electroluminescence panel hereinafter referred to as an organic EL panel
  • organic EL elements a plurality of organic electroluminescence elements
  • the organic EL element has a structure in which a plurality of organic material layers using an organic compound having charge transportability (hole or electron mobility) are stacked.
  • organic material layer in addition to the light emitting layer, a layer made of a material having a hole transport ability such as a hole injection layer or a hole transport layer, or a material having an electron transport ability such as an electron transport layer or an electron injection layer The layer which consists of is included.
  • Patent Document 1 In order to reduce the loss of light in a glass substrate, a microlens, a nanoparticle, a multilayer refractive index, a concavo-convex shape, or the like is processed on a substrate on a radiation surface, or a transparent plate obtained by processing them is laminated. Thus, a technique for improving light extraction and improving luminous efficiency is disclosed.
  • Patent Document 2 discloses a technique for reducing the loss of light in the element by introducing these processing techniques into the layer structure of the organic EL element.
  • wet coating is used in order to establish a low-cost production method.
  • wet coating method include a spin method, a dip method, a roll method, and an ink jet method.
  • Inkjet systems that can be finely and easily patterned are drawing attention.
  • a process of forming a bank for each organic EL element may be employed in order to coat a light emitting layer and an organic material layer for each organic EL element on a substrate.
  • an object of the present invention is to provide an organic electroluminescence panel capable of maintaining the light extraction magnification while suppressing the amount of the organic material layer used.
  • the organic electroluminescence panel according to the present invention includes a plurality of organic material layers each including a light emitting layer of at least one kind of light emitting color, which is disposed between a transmissive first electrode and a light reflective second electrode.
  • the organic electroluminescence panel includes a light emitting region in which each of the plurality of organic EL elements is continuously overlapped and laminated with the first electrode, the organic material layer, and the second electrode.
  • the light emitting layer has an area of 0.9 cm 2 to 100 cm 2 .
  • the light extraction efficiency comparable to that of the conventional panel can be improved by using a specific area for the light emitting region of the element while the organic EL element is provided with the light extraction structure.
  • FIG. 1 is a schematic partial cross-sectional view showing an example of the organic EL element of the present embodiment.
  • the organic EL element includes, on a transparent substrate 1 such as glass, a transparent anode 2 (first electrode), a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, in order.
  • the hole blocking layer 6, the electron transport layer 7, the electron injection layer 8, and the cathode 9 (second electrode) made of metal are laminated.
  • the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the hole blocking layer 6, and the electron transport layer 7 are organic material layers OML.
  • the organic material layer OML is disposed between the opposing anode and cathode, and a part of the hole injection layer 3 and the hole transport layer 4 are formed over the substrate 1.
  • the hole injection layer 3 and the hole transport layer 4 prevent a short circuit between the anode 2 and the cathode 9.
  • Any organic material layer such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer may be formed by a dry film formation method such as a vacuum deposition method or a wet coating method such as an ink jet method. Can be formed.
  • the organic EL element 11 has a light extraction structure 10 on the main surface opposite to the main surface that supports the anode 2 of the substrate 1, that is, on the light extraction surface side (front side).
  • the light extraction structure 10 includes, for example, a microlens layer, a pyramid layer, an uneven layer, or a fine particle diffusion layer.
  • Organic EL element 11 includes a light emitting region 15.
  • the light emitting region 15 is a region where the first electrode 2, the organic material layer OML, and the second electrode 9 are continuously overlapped and laminated, and includes the light emitting layer 5.
  • the light emitting region 15 has an area defined by its width W and length (not shown in the direction perpendicular to the drawing) when the anode 2 is rectangular.
  • each layer shown in FIG. 1 is represented by “/”, and anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / electron transport layer 7 / electron injection
  • anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / electron transport layer 7 / electron injection In addition to the configuration of layer 8 / cathode 9 /, although not shown, anode 2, hole injection layer 3, light emitting layer 5, electron transport layer 7, electron injection layer 8, cathode 9 / hole transport layer 4, positive
  • the hole blocking layer 6 is omitted, and although not shown, the anode 2 / hole transport layer 4 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole injection layer 3, hole blocking
  • the layer 6 is omitted, and although not shown, the hole injection layer 3, the hole transport layer 4, the hole blocking layer 6 of the anode 2 / light emitting layer 5
  • the present invention is not limited to these stacked structures, and includes a structure including at least a light-emitting layer or a charge transport layer that can also be used.
  • FIG. 2 is a schematic partial perspective view showing an example of the organic EL panel of the present embodiment.
  • the organic EL panel has a transparent substrate 1 and a plurality of organic EL elements 11 arranged on the substrate.
  • Each of the organic EL elements 11 includes a transmissive first electrode (anode 2) and a light-reflective second electrode (cathode 9), and a plurality of organic material layers OML arranged between the first and second electrodes. And have.
  • the organic material layer OML includes at least one light emitting layer having a light emitting color.
  • the portion of the organic material layer OML including the light emitting layer is disposed at a portion where the striped first electrode and the strip-shaped second electrode intersect.
  • the light emitting region 15 is rectangular or rectangular, but is not limited thereto.
  • the shape of the light emitting region 15 may be a square, a polygon, a circle, an ellipse, or a rectangle, or may be any shape having a long span and a short span as viewed from the front side.
  • the long and short passes are, for example, a long side and a short side in the case of a rectangle, and a long axis and a short axis in the case of an ellipse.
  • Each of the organic EL elements 11 is formed so that the area of the light emitting region 15 is 0.9 cm 2 to 100 cm 2 .
  • the shorter width (shortest span) of the light emitting region 15 is in the range of 0.2 mm to 100 mm.
  • the light extraction structure 10 provided on the transparent substrate 1 is disposed on the main surface opposite to the main surface supporting the first electrode (anode 2) of the substrate 1, that is, on the light extraction surface side (front side).
  • the light extraction structure 10 includes (a) a microlens layer 10a, (b) a pyramid layer 10b, (c) an uneven layer 10c, or (d) a fine particle diffusion layer 10d.
  • substrate As the substrate 1, a quartz or glass plate, a metal plate or a metal foil, a resin substrate to be bent, a plastic film, a sheet, or the like is used. In particular, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL element may be deteriorated by the outside air that has passed through the substrate. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • the anode 2 that supplies holes to the layers up to the light emitting layer is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, or a metal such as indium and / or tin or zinc oxide (ITO or IZO). It is composed of an oxide, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • a metal such as aluminum, gold, silver, nickel, palladium, platinum, or a metal such as indium and / or tin or zinc oxide (ITO or IZO). It is composed of an oxide, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • the anode is usually formed by a sputtering method, a vacuum deposition method, or the like.
  • an appropriate binder resin solution is used.
  • the anode can also be formed by dispersing and coating the substrate.
  • a conductive polymer a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate.
  • the anode usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the thickness of the anode depends on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. If it may be opaque, the thickness of the anode is arbitrary, and the anode may be integrated with the substrate 1. Furthermore, different conductive materials may be laminated.
  • the anode surface is subjected to ultraviolet (UV) treatment or ozone treatment, oxygen plasma or argon plasma surface treatment, etc. It is preferable to do.
  • UV ultraviolet
  • ozone treatment oxygen plasma or argon plasma surface treatment, etc. It is preferable to do.
  • a material used for the cathode 9 for supplying electrons to the layers up to the light emitting layer a material used for the anode can be used.
  • a metal having a low work function is preferable.
  • a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the material of the cathode 9 only 1 type may be used for the material of the cathode 9, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the thickness of the cathode is usually the same as that of the anode.
  • a metal layer having a high work function and stable to the atmosphere because the stability of the device is increased.
  • metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used.
  • these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the material and film thickness are selected so as to be transparent or translucent.
  • the material and film thickness are selected so as to be transparent or translucent.
  • Organic material layer The organic material layer constituting the main components of the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the electron transport layer 6 and the electron injection layer 7 has a charge transport property (hole and / or electron mobility).
  • Examples of phosphorescent organometallic complex compounds used for the light-emitting layer 5 include Bis ⁇ ⁇ ⁇ (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium III, Tris (2-phenylpyridine), which are iridium complexes.
  • Iridium (III) (Ir (ppy) 3), Bis (2-phenylbenzothiazolato) (acetylacetonate) iridium (III), Osmium (II) bis (3-trifluoromethyl -5- (2-pyridyl)- pyrazolate) dimethylphenylphosphine, rare earth compound Tris (dibenzoylmethane) phenanthroline europium (III), platinum complexes 2,3,7,8,12,13,17,18-Octaethyl-21H, 23H- porphine, platinum (II), etc. Can be mentioned.
  • Examples of the organic compound having an electron transporting property as a main component of the light emitting layer and the electron injection layer include polycyclic compounds such as p-terphenyl and quaterphenyl and derivatives thereof, naphthalene, tetracene, pyrene, coronene, chrysene, Condensed polycyclic hydrocarbon compounds such as anthracene, diphenylanthracene, naphthacene, phenanthrene and their derivatives, condensed heterocyclic compounds such as phenanthroline, bathophenanthroline, phenanthridine, acridine, quinoline, quinoxaline, phenazine and their derivatives, fluoro CEJN, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, oxadiazol
  • metal chelate complex compounds particularly metal chelated oxanoid compounds, tris (8-quinolinolato) aluminum, bis (8-quinolinolato) magnesium, bis [benzo (f) -8-quinolinolato ] Zinc, bis (2-methyl-8-quinolinolato) (4-phenyl-phenolato) aluminum, tris (8-quinolinolato) indium, tris (5-methyl-8-quinolinolato) aluminum, 8-quinolinolatolithium, tris Mention may also be made of metal complexes having at least one 8-quinolinolato or a derivative thereof such as (5-chloro-8-quinolinolato) gallium and bis (5-chloro-8-quinolinolato) calcium as a ligand.
  • metal complexes having at least one 8-quinolinolato or a derivative thereof such as (5-chloro-8-quinolinolato) gallium and bis (5-chloro-8-quino
  • organic compounds having electron transport properties oxadiazoles, triazines, stilbene derivatives, distyrylarylene derivatives, styryl derivatives, and diolefin derivatives can also be suitably used.
  • organic compound that can be used as an organic compound having an electron transporting property 2,5-bis (5,7-di-t-benzyl-2-benzoxazolyl) -1,3,4-thiazole, 4, 4'-bis (5,7-t-pentyl-2-benzoxazolyl) stilbene, 4,4'-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazoly Ru] stilbene, 2,5-bis (5.7-di-t-pentyl-2-benzoxazolyl) thiophene, 2,5-bis [5- ( ⁇ , ⁇ -dimethylbenzyl) -2-benzoxa Zolyl] thiophene, 2,5-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazolyl] -3,4-diphenylthiophene, 2,5-bis (5- Methyl-2-benzoxazolyl) thiophene, 4,
  • 1,4-bis (2-methylstyryl) benzene 1,4-bis (3-methylstyryl) benzene, 1,4-bis (4-methylstyryl) benzene, Distyrylbenzene, 1,4-bis (2-ethylstyryl) benzene, 1,4-bis (3-ethylstyryl) benzene, 1,4-bis (2-methylstyryl) -2-methylbenzene, 1,4 There may also be mentioned -bis (2-methylstyryl) -2-ethylbenzene.
  • organic compound having an electron transporting property 2,5-bis (4-methylstyryl) pyrazine, 2,5-bis (4-ethylstyryl) pyrazine, 2,5-bis [2- (1- Naphthyl) vinyl] pyrazine, 2,5-bis (4-methoxystyryl) pyrazine, 2,5-bis [2- (4-biphenyl) vinyl] pyrazine, 2,5-bis [2- (1-pyrenyl) vinyl ] Pyrazine etc. are mentioned.
  • organic compounds having electron transport properties include 1,4-phenylene dimethylidin, 4,4'-phenylene dimethylidin, 2,5-xylylene dimethylidin, and 2,6-naphthylene dimethylidene. Din, 1,4-biphenylenedimethylidin, 1,4-p-terephenylenedimethylidin, 9,10-anthracenediyldimethylidin, 4,4 '-(2,2-di-t-butylphenylvinyl
  • Well-known ones conventionally used for producing organic EL devices such as biphenyl and 4,4 ′-(2,2-diphenylvinyl) biphenyl, can be appropriately used.
  • a metal acid salt compound having an electron donating metal as a counter cation can be provided. This reduces the energy barrier when electrons are injected from the cathode to the organic material layer by doping the organic material layer (electron transport layer or electron injection layer) on the cathode side with an electron-donating metal having a reducing action. This is because the diffusion of the electron donating metal into the organic material layer under high temperature storage can be suppressed.
  • the electron-donating metal is not particularly limited as long as it is an alkali metal such as Cs, an alkaline earth metal such as Mg, or a transition metal containing a rare earth metal.
  • a metal having a work function of 4.0 eV or less can be suitably used. Specific examples include Cs, Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, La, Mg, Sm, Gd, Yb, Etc.
  • the concentration of the metal salt compound in the organic material layer is preferably 0.1 to 40% by weight. If it is less than 0.1% by weight, the concentration of the molecule reduced by the electron donating metal of the metal salt compound is too low, and the effect of doping is small. If it exceeds 40% by weight, the metal salt compound concentration in the film is organic. The molecular concentration is exceeded and the effect of doping is also reduced.
  • the thickness of the organic material layer is not particularly limited, but is preferably 1 nm to 300 nm. If the thickness is less than 1 nm, the amount of reducing molecules present in the vicinity of the electrode interface is small, so that the effect of doping is small. If the thickness exceeds 300 nm, the entire organic layer is too thick, leading to an increase in driving voltage.
  • organic compounds having hole transporting properties include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-di (3-methyl Phenyl) -4,4′-diaminobiphenyl, 2,2-bis (4-di-p-tolylaminophenyl) propane, N, N, N ′, N′-tetra-p-tolyl-4,4′- Diaminobiphenyl, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N′-diphenyl-N, N′-di (4-methoxyphenyl) -4,4′-diaminobiphenyl, N, N, N ′, N′-tetraphenyl-4,4′-diaminodiphenyl ether, 4,4′-bis (diphenylamino) quadriphenyl
  • the hole injection layer, the hole transport layer, and the hole transport light emitting layer those obtained by dispersing the above organic compound in a polymer or those polymerized can be used.
  • So-called ⁇ -conjugated polymers such as polyparaphenylene vinylene and derivatives thereof, hole-transporting non-conjugated polymers represented by poly (N-vinylcarbazole), and sigma-conjugated polymers of polysilanes can also be used.
  • the hole injection layer is not particularly limited, but metal phthalocyanines such as copper phthalocyanine (CuPc: Copper Phthalocyanine) and metal-free phthalocyanines, carbon films, and conductive polymers such as polyaniline can be suitably used.
  • metal phthalocyanines such as copper phthalocyanine (CuPc: Copper Phthalocyanine) and metal-free phthalocyanines, carbon films, and conductive polymers such as polyaniline can be suitably used.
  • the desiccant was sealed with a metal or glass sealing can in a glove box in an inert gas atmosphere from a vacuum vapor deposition machine. Thereafter, a light diffusion film (manufactured by Kimoto Co., Ltd.) was attached to the glass substrate surface (substrate surface opposite to the organic EL element) to complete the element of Example 1.
  • a light diffusion film manufactured by Kimoto Co., Ltd.
  • Example 2 the elements of Examples 2, 3 and 5 having the same configuration as Example 1 were prepared except that the light emitting layer was made of a light emitting layer (60 nm thickness each) made of a light emitting color material shown in Table 3 below.
  • the light emitting layer is a light emitting layer (60 nm thickness) made of a light emitting color material shown in Table 3 below and the area of the rectangular light emitting region is 0.7 cm 2 (the ITO anode stripe is 0.7 cm wide and intersecting Al
  • the element of Example 4 having the same configuration as that of Example 1 was prepared.
  • the light emitting layer is made of a light emitting color material (each 60 nm thick) made of a light emitting color material shown in Table 3 below, and the area of the rectangular light emitting region is 0.04 cm 2 (the ITO anode stripe has a width of 0.2 cm and intersects).
  • the elements of Comparative Examples 1 to 4 having the same configuration as in Example 1 were fabricated.
  • Lambertian indicates the state of the light intensity distribution of the light emission pattern of the surface light source.
  • Table 4 shows the calculation results of the test.
  • the front light extraction magnification and the total luminous flux magnification are normalized by the measured values of 0.04 cm 2 area elements in the elements of Examples 1 to 5 and Comparative Examples 1 to 4.
  • the element of the example having an area of 0.9 cm 2 where the area of the light emitting region is large has a larger front light extraction magnification and a Lambertian divergence coefficient, resulting in a higher total light beam magnification and higher light extraction efficiency. It was found that a high organic EL element can be obtained.
  • Example 1 As in Example 1, except that the light-emitting layer made of a light emitting color material of a light emitting layer in the following Table 5 (the 60nm thick), performed with an area 0.9 cm 2 of the light emitting region having the same structure of Example 1 Devices of Examples 6 to 41 were produced. However, as shown in Table 5, the thickness X of the ITO anode was changed to 70 nm, 110 nm, and 155 nm for each of the RGB emission colors, and the film thickness Y of the electron transport layer (NBphen + CsxMoOx) was 30 nm, 50 nm, And it changed for every Example of 70 nm and each color, and the element was produced.
  • Table 5 the thickness X of the ITO anode was changed to 70 nm, 110 nm, and 155 nm for each of the RGB emission colors
  • the film thickness Y of the electron transport layer (NBphen + CsxMoOx) was 30 nm, 50 nm, And it changed for
  • an organic EL element having a high Lambertian divergence coefficient has a high front light extraction magnification when the light diffusion film is attached. It can also be seen that the total luminous flux ratio tends to be high when the electron transport film thickness Y is 50 nm or more. This is considered to be because the incident angle of light from the glass substrate to the light diffusion film was improved, and the amount of light taken in by the light diffusion film was increased.
  • FIG. 5A shows a plot for calculating the total luminous flux magnification corresponding to the ITO film thickness X
  • FIG. 5B shows a plot for calculating the average value of the total luminous flux magnification corresponding to the ITO film thickness X.
  • Example 3 As in Example 1, the light emitting layer was made of a light emitting layer (each 60 nm thick) made of a light emitting color material shown in Table 6 below, and the area of the light emitting region having the same configuration of Example 1 was 0.9 cm 2. Devices of Examples 42 to 47 were produced. However, as shown in Table 6, the thickness X of the ITO anode was changed to 70 nm and 155 nm for each of the examples of R and B emission colors, and the thickness Y of the electron transport layer (NBphen + CsxMoOx) was 50 nm, respectively. A device using Al or Ag was prepared. The same measurement as in the first experimental example was performed for each. Table 6 shows the measurement results.
  • the front light extraction magnification is normalized for each color element by the measured values of the ITO film thickness of 70 nm and the Al cathode element. Further, the total luminous flux magnification was calculated for each color element by multiplying the value normalized by the front brightness of the ITO film thickness of 70 nm and the Al cathode element by the Lambertian divergence coefficient.
  • the light extraction magnification and the Lambertian divergence coefficient were improved because light loss due to multiple reflection was reduced in the highly reflective Ag cathode, and as a result, the total luminous flux magnification of the device was improved.
  • Example 4 As in Example 1, except that the light-emitting layer made of a light emitting color material of a light emitting layer in the following Table 7 (the 40nm thick), performed with an area 0.9 cm 2 of the light emitting region having the same structure of Example 1 Devices of Examples 48 to 51 were produced. However, as shown in Table 7, the glass substrate thickness d was changed to 0.7 mm and 0.55 mm for each of the examples of R and B emission colors, and the ITO anode film thickness was 155 nm respectively, and the electron transport layer (NBphen + CsxMoOx ) Was made to be 50 nm, and an element using Ag as a cathode was manufactured. Measurements similar to those in the first experimental example were performed.
  • Table 7 shows the measurement results.
  • the front light extraction magnification is standardized by the measured value of the glass substrate 0.7 mm thick element for each color element. Further, the total luminous flux magnification was calculated for each color element by multiplying the value normalized by the front luminance of the glass substrate 0.7 mm thick element by the Lambertian divergence coefficient.
  • the shorter width of the light emitting region (the shortest pass) is preferably 100 mm or less at which the light extraction magnification is saturated.
  • the lower limit of the shorter width (shortest span) of the light emitting region is 0.2 mm or more. This is because in the light emitting region having a width of less than 0.2 mm, the ratio of the gap (non-light emitting portion) between adjacent light emitting regions is increased, leading to deterioration of element characteristics.
  • the maximum value of the area of the light emitting region was set to 100 cm 2 .
  • the shorter width of the cell is set to 100 mm, it is considered as a square, and a cell larger than this exceeds 100 mm in any direction, so the light extraction magnification is saturated, so there is no merit to enlarge the cell.
  • the minimum value of the area of the light emitting region is preferably 0.9 cm 2 as apparent from the above experiment, the light emitting layer of each light emitting region of the organic EL element has an area of 0.9 cm 2 to 100 cm 2. did.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

[Problem] To provide an organic EL panel capable of maintaining a light-extraction magnification while reducing the amount of materials used in an organic material layer. [Solution] An organic electroluminescence panel is provided with: a plurality of organic EL elements having a plurality of organic material layers each being laminated between a transparent first electrode and a light-reflective second electrode and each containing a light-emitting layer having at least one type of light-emitting color; and a transparent substrate for supporting the first electrodes of the organic EL elements. This organic electroluminescence panel is characterized in that each of the plurality of organic EL elements has a light-emitting region in which the first electrode, the organic material layer and the second electrode are continuously laminated so as to completely overlap with one another, and the light-emitting layer of the light-emitting region has a surface area between 0.9 cm2 and 100 cm2.

Description

有機エレクトロルミネッセンスパネルOrganic electroluminescence panel
 本発明は、複数の有機エレクトロルミネッセンス素子(以下、有機EL素子という)が並置された有機エレクトロルミネッセンスパネル(以下、有機ELパネルという)に関する。 The present invention relates to an organic electroluminescence panel (hereinafter referred to as an organic EL panel) in which a plurality of organic electroluminescence elements (hereinafter referred to as organic EL elements) are juxtaposed.
 有機EL素子は電荷輸送性(正孔又は電子の移動性)を有する有機化合物を利用した複数の有機材料層を積層した構造を有している。有機材料層には、発光層の他に、正孔注入層、正孔輸送層などの正孔輸送能を持つ材料からなる層や、電子輸送層、電子注入層などの電子輸送能を持つ材料からなる層などが含まれる。 The organic EL element has a structure in which a plurality of organic material layers using an organic compound having charge transportability (hole or electron mobility) are stacked. For the organic material layer, in addition to the light emitting layer, a layer made of a material having a hole transport ability such as a hole injection layer or a hole transport layer, or a material having an electron transport ability such as an electron transport layer or an electron injection layer The layer which consists of is included.
 有機EL素子の多層構造内部に導波光として閉じ込められていた損失光を、効率良く取り出す外部光取り出し効率にすぐれた素子が求められている。例えば、特許文献1は、ガラス基板内の損失光を軽減させるため、放射面の基板上にマイクロレンズ、ナノ粒子、多層屈折率、凹凸形状などを加工、あるいは、それらを加工した透明板を張り合わせることで光取り出しを改善して発光効率を高める技術を、開示している。 There is a need for an element with excellent external light extraction efficiency that efficiently extracts lost light confined as guided light inside the multilayer structure of an organic EL element. For example, in Patent Document 1, in order to reduce the loss of light in a glass substrate, a microlens, a nanoparticle, a multilayer refractive index, a concavo-convex shape, or the like is processed on a substrate on a radiation surface, or a transparent plate obtained by processing them is laminated. Thus, a technique for improving light extraction and improving luminous efficiency is disclosed.
 また、特許文献2は、これらの加工技術を有機EL素子の層構成の中に導入することにより素子内の損失光を軽減する技術を、開示している。 Patent Document 2 discloses a technique for reducing the loss of light in the element by introducing these processing techniques into the layer structure of the organic EL element.
特開2011-003284号公報JP 2011-003284 A 特開平6-151061号公報JP-A-6-155101
 このような有機EL素子の分野、特に、基板上に配置された複数の有機EL素子を備えた有機ELパネルの製造分野においては、低コスト化された生産方法の確立のために、湿式塗布により膜形成を実施する採用が増えてきている。湿式塗布方式としては、たとえばスピン法、ディップ法、ロール法、インクジェット法などの方式がある。微細かつ容易にパターニングができるインクジェット方式が注目されている。インクジェット法を用いる有機ELパネルの製造方法では、基板上にて有機EL素子ごとの発光層や有機材料層を塗り分けるため、有機EL素子ごとに区切るバンクを形成するプロセスが採用されている場合が多い。 In the field of such organic EL elements, particularly in the field of manufacturing an organic EL panel having a plurality of organic EL elements arranged on a substrate, in order to establish a low-cost production method, wet coating is used. Increasing adoption of film formation is occurring. Examples of the wet coating method include a spin method, a dip method, a roll method, and an ink jet method. Inkjet systems that can be finely and easily patterned are drawing attention. In a method for manufacturing an organic EL panel using an inkjet method, a process of forming a bank for each organic EL element may be employed in order to coat a light emitting layer and an organic material layer for each organic EL element on a substrate. Many.
 しかしながら、特許文献1~2の有機EL素子の関係技術では、有機EL素子単体の損失光については考慮しているものの、有機材料層などの材料損失、有効利用など所謂省エネには考慮していない。 However, in the technologies related to the organic EL elements disclosed in Patent Documents 1 and 2, light loss of the organic EL element alone is taken into consideration, but not so-called energy saving such as material loss of the organic material layer and effective use. .
 そこで、本発明は、有機材料層の材料の使用量を抑制しつつ光取り出し倍率を維持できる有機エレクトロルミネッセンスパネルを提供することを課題の一例としてあげられる。 Therefore, an object of the present invention is to provide an organic electroluminescence panel capable of maintaining the light extraction magnification while suppressing the amount of the organic material layer used.
 本発明による有機エレクトロルミネッセンスパネルは、各々が、透過性の第1電極及び光反射性の第2電極の間に積層配置され且つ少なくとも1種類の発光色の発光層を含む複数の有機材料層を有する複数の有機EL素子と、前記有機EL素子の前記第1電極を支持する透過性の基板と、を含む。当該有機エレクトロルミネッセンスパネルは、前記複数の有機EL素子の各々が前記第1電極、前記有機材料層、前記第2電極が連続して全て重なり積層されている発光領域を有し、前記発光領域の前記発光層は0.9cm~100cmの面積を有することを特徴とする。 The organic electroluminescence panel according to the present invention includes a plurality of organic material layers each including a light emitting layer of at least one kind of light emitting color, which is disposed between a transmissive first electrode and a light reflective second electrode. A plurality of organic EL elements, and a transparent substrate that supports the first electrode of the organic EL element. The organic electroluminescence panel includes a light emitting region in which each of the plurality of organic EL elements is continuously overlapped and laminated with the first electrode, the organic material layer, and the second electrode. The light emitting layer has an area of 0.9 cm 2 to 100 cm 2 .
 このように、本発明によれば、有機EL素子に光取り出し構造を設けた構成ながら、素子の発光領域の面積に特定のものを用いることにより、従来パネルに匹敵する光取り出しの効率を改善できる。 Thus, according to the present invention, the light extraction efficiency comparable to that of the conventional panel can be improved by using a specific area for the light emitting region of the element while the organic EL element is provided with the light extraction structure. .
本発明の実施形態の有機EL素子を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the organic EL element of embodiment of this invention. 本発明の実施形態の有機ELパネルの一例を示す概略部分斜視図である。It is a general | schematic fragmentary perspective view which shows an example of the organic electroluminescent panel of embodiment of this invention. 本発明の実施形態の有機ELパネルの一例を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows an example of the organic electroluminescent panel of embodiment of this invention. 本発明による実験例の矩形の発光領域を有する有機EL素子を示す部分平面図である。It is a fragmentary top view which shows the organic EL element which has the rectangular light emission area | region of the experiment example by this invention. 本発明による実験例の有機EL素子のITO膜厚Xに対応する全光束倍率を算出したプロットを示すグラフ(a)及び当該プロットをフィッティングした曲線を示すグラフ(b)である。It is a graph (a) which shows the plot which calculated the total light beam magnification corresponding to the ITO film thickness X of the organic EL element of the experiment example by this invention, and the graph (b) which shows the curve which fitted the said plot. 本発明による実験例の有機EL素子の円形発光領域径に対応する全光束倍率を算出したプロットを示すグラフである。It is a graph which shows the plot which computed the total light beam magnification corresponding to the circular light emission area | region diameter of the organic EL element of the experiment example by this invention.
 以下に本発明による実施の形態を図面を参照しつつ説明する。
[有機EL素子]
 図1は、本実施形態の有機EL素子の一例を示す概略部分断面図である。図1に示すように、有機EL素子は、ガラスなどの透明基板1上にて、順に、透明な陽極2(第1電極)、正孔注入層3、正孔輸送層4、発光層5、正孔阻止層6、電子輸送層7、電子注入層8及び金属からなる陰極9(第2電極)が積層されて構成される。正孔注入層3、正孔輸送層4、発光層5、正孔阻止層6、及び電子輸送層7は有機材料層OMLである。有機EL素子において、有機材料層OMLは、対向する陽極及び陰極の間に積層配置され、その一部の正孔注入層3と正孔輸送層4は基板1上に亘って形成される。正孔注入層3と正孔輸送層4は陽極2と陰極9の短絡を防止する。なお、正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層のいずれの有機材料層は、真空蒸着法など乾式成膜方法やインクジェット法など湿式塗布方法にて成膜され得る。
Embodiments of the present invention will be described below with reference to the drawings.
[Organic EL device]
FIG. 1 is a schematic partial cross-sectional view showing an example of the organic EL element of the present embodiment. As shown in FIG. 1, the organic EL element includes, on a transparent substrate 1 such as glass, a transparent anode 2 (first electrode), a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, in order. The hole blocking layer 6, the electron transport layer 7, the electron injection layer 8, and the cathode 9 (second electrode) made of metal are laminated. The hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the hole blocking layer 6, and the electron transport layer 7 are organic material layers OML. In the organic EL element, the organic material layer OML is disposed between the opposing anode and cathode, and a part of the hole injection layer 3 and the hole transport layer 4 are formed over the substrate 1. The hole injection layer 3 and the hole transport layer 4 prevent a short circuit between the anode 2 and the cathode 9. Any organic material layer such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer may be formed by a dry film formation method such as a vacuum deposition method or a wet coating method such as an ink jet method. Can be formed.
 有機EL素子11は、基板1の陽極2を支持する主面の反対側の主面すなわち光取り出し面側(正面側)に、光取り出し構造10を有する。光取り出し構造10は、例えば、マイクロレンズ層、ピラミッド層、凹凸層、又は微粒子拡散層などからなる。 The organic EL element 11 has a light extraction structure 10 on the main surface opposite to the main surface that supports the anode 2 of the substrate 1, that is, on the light extraction surface side (front side). The light extraction structure 10 includes, for example, a microlens layer, a pyramid layer, an uneven layer, or a fine particle diffusion layer.
 有機EL素子11は発光領域15を含む。発光領域15は第1電極2、有機材料層OML、第2電極9が連続して全て重なり積層されている領域であって、発光層5を含む領域である。図1に示す例において、発光領域15は陽極2が長方形の場合その幅Wと長さ(紙面垂直方向で図示せず)によって画定される面積を有する。 Organic EL element 11 includes a light emitting region 15. The light emitting region 15 is a region where the first electrode 2, the organic material layer OML, and the second electrode 9 are continuously overlapped and laminated, and includes the light emitting layer 5. In the example shown in FIG. 1, the light emitting region 15 has an area defined by its width W and length (not shown in the direction perpendicular to the drawing) when the anode 2 is rectangular.
 また、図1に示す各層の区切りを「/」で表すものとして、陽極2/正孔注入層3/正孔輸送層4/発光層5/正孔阻止層6/電子輸送層7/電子注入層8/陰極9/の構成の他に、図示しないが、陽極2/正孔注入層3/発光層5/電子輸送層7/電子注入層8/陰極9/の正孔輸送層4、正孔阻止層6を省いた構成や、図示しないが、陽極2/正孔輸送層4/発光層5/電子輸送層7/電子注入層8/陰極9/の正孔注入層3、正孔阻止層6を省いた構成や、図示しないが、陽極2/発光層5/電子輸送層7/電子注入層8/陰極9/の正孔注入層3、正孔輸送層4、正孔阻止層6を省いた構成も本発明に含まれる。また、以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。いずれにしても、これら積層構成に限定されることなく、少なくとも発光層を含み、或いは兼用できる電荷輸送層を含む構成は本発明に含まれる。 Further, the separator of each layer shown in FIG. 1 is represented by “/”, and anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / electron transport layer 7 / electron injection In addition to the configuration of layer 8 / cathode 9 /, although not shown, anode 2, hole injection layer 3, light emitting layer 5, electron transport layer 7, electron injection layer 8, cathode 9 / hole transport layer 4, positive The structure in which the hole blocking layer 6 is omitted, and although not shown, the anode 2 / hole transport layer 4 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole injection layer 3, hole blocking Although not shown, the layer 6 is omitted, and although not shown, the hole injection layer 3, the hole transport layer 4, the hole blocking layer 6 of the anode 2 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / A configuration in which is omitted is also included in the present invention. Moreover, in the layer structure demonstrated above, it is also possible to laminate | stack components other than a board | substrate in reverse order. In any case, the present invention is not limited to these stacked structures, and includes a structure including at least a light-emitting layer or a charge transport layer that can also be used.
 [有機ELパネル]
 図2は、本実施形態の有機ELパネルの一例を示す概略部分斜視図である。
[Organic EL panel]
FIG. 2 is a schematic partial perspective view showing an example of the organic EL panel of the present embodiment.
 図2に示すように、有機ELパネルは、透過性の基板1と、該基板上に配列された複数の有機EL素子11を有する。有機EL素子11の各々は、透過性の第1電極(陽極2)及び光反射性の第2電極(陰極9)と該第1及び2電極の間に積層配置された複数の有機材料層OMLとを有する。有機材料層OMLは少なくとも1種類の発光色の発光層を含む。発光層を含む有機材料層OMLの部分はストライプ状の第1電極と帯状の第2電極の交差する部位に配置される。発光領域15は、図2に示す実施形態の場合は矩形又は長方形であるが、これには限定されない。例えば、発光領域15の形状は正方形、多角形、円、楕円、長方形でも、正面側から見て長い差し渡しと短い差し渡しを有する任意の形状でも良い。長い差し渡しと短い差し渡しは、例えば、長方形であれば長辺と短辺であり、楕円であれば長軸と短軸である。 As shown in FIG. 2, the organic EL panel has a transparent substrate 1 and a plurality of organic EL elements 11 arranged on the substrate. Each of the organic EL elements 11 includes a transmissive first electrode (anode 2) and a light-reflective second electrode (cathode 9), and a plurality of organic material layers OML arranged between the first and second electrodes. And have. The organic material layer OML includes at least one light emitting layer having a light emitting color. The portion of the organic material layer OML including the light emitting layer is disposed at a portion where the striped first electrode and the strip-shaped second electrode intersect. In the embodiment shown in FIG. 2, the light emitting region 15 is rectangular or rectangular, but is not limited thereto. For example, the shape of the light emitting region 15 may be a square, a polygon, a circle, an ellipse, or a rectangle, or may be any shape having a long span and a short span as viewed from the front side. The long and short passes are, for example, a long side and a short side in the case of a rectangle, and a long axis and a short axis in the case of an ellipse.
 各々有機EL素子11は発光領域15の面積が0.9cm~100cmとなるように形成されている。発光領域15の短い方の幅(最も短い差し渡し)を0.2mm~100mmの範囲内としている。 Each of the organic EL elements 11 is formed so that the area of the light emitting region 15 is 0.9 cm 2 to 100 cm 2 . The shorter width (shortest span) of the light emitting region 15 is in the range of 0.2 mm to 100 mm.
 透明基板1に設けられている光取り出し構造10は、基板1の第1電極(陽極2)を支持する主面の反対側の主面すなわち光取り出し面側(正面側)に配置される。光取り出し構造10は、図3に示すように、(a)マイクロレンズ層10a、(b)ピラミッド層10b、(c)凹凸層10c、又は(d)微粒子拡散層10dを含む。 The light extraction structure 10 provided on the transparent substrate 1 is disposed on the main surface opposite to the main surface supporting the first electrode (anode 2) of the substrate 1, that is, on the light extraction surface side (front side). As shown in FIG. 3, the light extraction structure 10 includes (a) a microlens layer 10a, (b) a pyramid layer 10b, (c) an uneven layer 10c, or (d) a fine particle diffusion layer 10d.
 [基板]
 基板1としては、石英やガラスの板、金属板や金属箔、曲げられる樹脂基板、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機EL素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜などを設けてガスバリア性を確保する方法も好ましい方法の一つである。
[substrate]
As the substrate 1, a quartz or glass plate, a metal plate or a metal foil, a resin substrate to be bent, a plastic film, a sheet, or the like is used. In particular, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL element may be deteriorated by the outside air that has passed through the substrate. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
 [陽極及び陰極]
 発光層までの層に正孔を供給する陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金などの金属、インジウム及び/又はスズ、亜鉛の酸化物(ITOやIZO)などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリンなどの導電性高分子などにより構成される。
[Anode and cathode]
The anode 2 that supplies holes to the layers up to the light emitting layer is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, or a metal such as indium and / or tin or zinc oxide (ITO or IZO). It is composed of an oxide, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
 陽極の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などを用いて陽極を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板上に塗布することにより陽極を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成することもできる。 The anode is usually formed by a sputtering method, a vacuum deposition method, or the like. In addition, when forming an anode using fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, or conductive polymer fine powder, an appropriate binder resin solution is used. The anode can also be formed by dispersing and coating the substrate. Further, in the case of a conductive polymer, a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate.
 陽極は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。 The anode usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
 陽極の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極の厚みは通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陽極の厚みは任意であり、陽極は基板1と一体化されたものであってもよい。また、さらには、異なる導電材料が積層されたものであってもよい。 The thickness of the anode depends on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. If it may be opaque, the thickness of the anode is arbitrary, and the anode may be integrated with the substrate 1. Furthermore, different conductive materials may be laminated.
 陽極に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極表面を紫外線(UV)処理又はオゾン処理したり、酸素プラズマ又はアルゴンプラズマ表面処理したりすることが好ましい。 For the purpose of removing impurities adhering to the anode and adjusting the ionization potential to improve the hole injection property, the anode surface is subjected to ultraviolet (UV) treatment or ozone treatment, oxygen plasma or argon plasma surface treatment, etc. It is preferable to do.
 発光層までの層に電子を供給する陰極9の材料としては、陽極に使用される材料を用いることが可能であるが、効率良く電子注入を行うには、仕事関数の低い金属が好ましく、たとえば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金などの低仕事関数合金電極が挙げられる。 As a material of the cathode 9 for supplying electrons to the layers up to the light emitting layer, a material used for the anode can be used. However, in order to perform electron injection efficiently, a metal having a low work function is preferable. A suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
 なお、陰極9の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。陰極の膜厚は、通常、陽極と同様である。 In addition, only 1 type may be used for the material of the cathode 9, and 2 or more types may be used together by arbitrary combinations and a ratio. The thickness of the cathode is usually the same as that of the anode.
 さらに、低仕事関数金属から成る陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、たとえば、アルミニウム、銀、銅、ニッケル、クロム、金、白金などの金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Further, for the purpose of protecting the cathode made of a low work function metal, it is preferable to further stack a metal layer having a high work function and stable to the atmosphere because the stability of the device is increased. For this purpose, for example, metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 さらに、陽極及び陰極は、発光の取り出し側(第1電極)となる場合は、透明又は半透明となるように材料、膜厚を選択する。特に陽極及び陰極のうちどちらかは、有機発光材料から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。これら電極は、必要に応じてパターニングしても良い。 Furthermore, when the anode and the cathode are on the light emission extraction side (first electrode), the material and film thickness are selected so as to be transparent or translucent. In particular, for either the anode or the cathode, it is preferable to select a material having a transmittance of at least 10% at the emission wavelength obtained from the organic light emitting material. These electrodes may be patterned as necessary.
 [有機材料層]
 正孔注入層3、正孔輸送層4、発光層5、電子輸送層6及び電子注入層7の主成分を構成する有機材料層は、電荷輸送性(正孔及び/又は電子の移動性)を有する有機化合物を利用する。
[Organic material layer]
The organic material layer constituting the main components of the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the electron transport layer 6 and the electron injection layer 7 has a charge transport property (hole and / or electron mobility). An organic compound having
 発光層5として用いられる燐光性の有機金属錯体化合物としては、イリジウム錯体であるBis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium III、Tris (2-phenylpyridine) iridium(III) = (Ir(ppy)3)、Bis (2-phenylbenzothiazolato) (acetylacetonate) iridium(III)、オスミウム錯体であるOsmium(II) bis(3-trifluoromethyl -5-(2-pyridyl) -pyrazolate)dimethylphenylphosphine、希土類化合物のTris (dibenzoylmethane) phenanthroline europium(III)、白金錯体である2,3,7,8,12,13,17,18-Octaethyl-21H, 23H- porphine,platinum(II)などを挙げることができる。 Examples of phosphorescent organometallic complex compounds used for the light-emitting layer 5 include Bis ジ ウ ム (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium III, Tris (2-phenylpyridine), which are iridium complexes. ) Iridium (III) = (Ir (ppy) 3), Bis (2-phenylbenzothiazolato) (acetylacetonate) iridium (III), Osmium (II) bis (3-trifluoromethyl -5- (2-pyridyl)- pyrazolate) dimethylphenylphosphine, rare earth compound Tris (dibenzoylmethane) phenanthroline europium (III), platinum complexes 2,3,7,8,12,13,17,18-Octaethyl-21H, 23H- porphine, platinum (II), etc. Can be mentioned.
 また、発光層や電子注入層の主成分の電子輸送性を有する有機化合物としては、p-テルフェニルやクアテルフェニルなどの多環化合物及びそれらの誘導体、ナフタレン、テトラセン、ピレン、コロネン、クリセン、アントラセン、ジフェニルアントラセン、ナフタセン、フェナントレンなどの縮合多環炭化水素化合物及びそれらの誘導体、フェナントロリン、バソフェナントロリン、フェナントリジン、アクリジン、キノリン、キノキサリン、フェナジンなどの縮合複素環化合物及びそれらの誘導体や、フルオロセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、オキシン、アミノキノリン、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、キナクリドン、ルブレンなど及びそれらの誘導体などを挙げることができる。 Examples of the organic compound having an electron transporting property as a main component of the light emitting layer and the electron injection layer include polycyclic compounds such as p-terphenyl and quaterphenyl and derivatives thereof, naphthalene, tetracene, pyrene, coronene, chrysene, Condensed polycyclic hydrocarbon compounds such as anthracene, diphenylanthracene, naphthacene, phenanthrene and their derivatives, condensed heterocyclic compounds such as phenanthroline, bathophenanthroline, phenanthridine, acridine, quinoline, quinoxaline, phenazine and their derivatives, fluoro CEJN, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, oxadiazole, aldazine, bisbenzoxazoline, bissu Lil, pyrazine, cyclopentadiene, oxine, aminoquinoline, imine, diphenylethylene, vinyl anthracene, diaminocarbazole, pyran, may be mentioned thiopyran, polymethine, merocyanine, quinacridone, rubrene, and the like, and the like derivatives thereof.
 さらに、電子輸送性を有する有機化合物として、金属キレート錯体化合物、特に金属キレート化オキサノイド化合物では、トリス(8-キノリノラト)アルミニウム、ビス(8-キノリノラト)マグネシウム、ビス[ベンゾ(f)-8-キノリノラト]亜鉛、ビス(2-メチル-8-キノリノラト)(4-フェニル-フェノラト)アルミニウム、トリス(8-キノリノラト)インジウム、トリス(5-メチル-8-キノリノラト)アルミニウム、8-キノリノラトリチウム、トリス(5-クロロ-8-キノリノラト)ガリウム、ビス(5-クロロ-8-キノリノラト)カルシウムなどの8-キノリノラト或いはその誘導体を配位子として少なくとも一つ有する金属錯体も挙げることができる。 Furthermore, as an organic compound having an electron transporting property, metal chelate complex compounds, particularly metal chelated oxanoid compounds, tris (8-quinolinolato) aluminum, bis (8-quinolinolato) magnesium, bis [benzo (f) -8-quinolinolato ] Zinc, bis (2-methyl-8-quinolinolato) (4-phenyl-phenolato) aluminum, tris (8-quinolinolato) indium, tris (5-methyl-8-quinolinolato) aluminum, 8-quinolinolatolithium, tris Mention may also be made of metal complexes having at least one 8-quinolinolato or a derivative thereof such as (5-chloro-8-quinolinolato) gallium and bis (5-chloro-8-quinolinolato) calcium as a ligand.
 また、電子輸送性を有する有機化合物として、オキサジアゾール類、トリアジン類、スチルベン誘導体及びジスチリルアリーレン誘導体、スチリル誘導体、ジオレフィン誘導体も好適に使用され得る。 As organic compounds having electron transport properties, oxadiazoles, triazines, stilbene derivatives, distyrylarylene derivatives, styryl derivatives, and diolefin derivatives can also be suitably used.
 さらに、電子輸送性を有する有機化合物として使用できる有機化合物として、2,5-ビス(5,7-ジ-t-ベンチル-2-ベンゾオキサゾリル)-1,3,4-チアゾール、4,4’-ビス(5,7-t-ペンチル-2-ベンゾオキサゾリル)スチルベン、4,4’-ビス[5,7-ジ-(2-メチル-2-ブチル)-2-ベンゾオキサゾリル]スチルベン、2,5-ビス(5.7-ジ-t-ペンチル-2-ベンゾオキサゾリル)チオフェン、2,5-ビス[5-(α,α-ジメチルベンジル)-2-ベンゾオキサゾリル]チオフェン、2,5-ビス[5,7-ジ-(2-メチル-2-ブチル)-2-ベンゾオキサゾリル]-3,4-ジフェニルチオフェン、2,5-ビス(5-メチル-2-ベンゾオキサゾリル)チオフェン、4,4’-ビス(2-ベンゾオキサゾリル)ビフェニル、5-メチル-2-{2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル}ベンゾオキサゾール、2-[2-(4-クロロフェニル)ビニル]ナフト(1,2-d)オキサゾールなどのベンゾオキサゾール系、2,2’-(p-フェニレンジピニレン)-ビスベンゾチアゾールなどのベンゾチアゾール系、2-{2-[4-(2-ベンゾイミダゾリル)フェニル]ビニル}ベンゾイミダゾール、2-[2-(4-カルボキシフェニル)ビニル]ベンゾイミダゾールなども挙げられる。 Further, as an organic compound that can be used as an organic compound having an electron transporting property, 2,5-bis (5,7-di-t-benzyl-2-benzoxazolyl) -1,3,4-thiazole, 4, 4'-bis (5,7-t-pentyl-2-benzoxazolyl) stilbene, 4,4'-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazoly Ru] stilbene, 2,5-bis (5.7-di-t-pentyl-2-benzoxazolyl) thiophene, 2,5-bis [5- (α, α-dimethylbenzyl) -2-benzoxa Zolyl] thiophene, 2,5-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazolyl] -3,4-diphenylthiophene, 2,5-bis (5- Methyl-2-benzoxazolyl) thiophene, 4,4 ′ -Bis (2-benzoxazolyl) biphenyl, 5-methyl-2- {2- [4- (5-methyl-2-benzoxazolyl) phenyl] vinyl} benzoxazole, 2- [2- (4 Benzoxazoles such as -chlorophenyl) vinyl] naphtho (1,2-d) oxazole, benzothiazoles such as 2,2 '-(p-phenylenedipinylene) -bisbenzothiazole, 2- {2- [4 There may also be mentioned-(2-benzimidazolyl) phenyl] vinyl} benzimidazole, 2- [2- (4-carboxyphenyl) vinyl] benzimidazole and the like.
 さらに、電子輸送性を有する有機化合物として、1,4-ビス(2-メチルスチリル)ベンゼン、1,4-ビス(3-メチルスチリル)ベンゼン、1,4-ビス(4-メチルスチリル)ベンゼン、ジスチリルベンゼン、1,4-ビス(2-エチルスチリル)ベンゼン、1,4-ビス(3-エチルスチリル)ベンゼン、1,4-ビス(2-メチルスチリル)-2-メチルベンゼン、1,4-ビス(2-メチルスチリル)-2-エチルベンゼンなども挙げられる。 Further, as an organic compound having an electron transporting property, 1,4-bis (2-methylstyryl) benzene, 1,4-bis (3-methylstyryl) benzene, 1,4-bis (4-methylstyryl) benzene, Distyrylbenzene, 1,4-bis (2-ethylstyryl) benzene, 1,4-bis (3-ethylstyryl) benzene, 1,4-bis (2-methylstyryl) -2-methylbenzene, 1,4 There may also be mentioned -bis (2-methylstyryl) -2-ethylbenzene.
 また、さらに、電子輸送性を有する有機化合物として、2,5-ビス(4-メチルスチリル)ピラジン、2,5-ビス(4-エチルスチリル)ピラジン、2,5-ビス[2-(1-ナフチル)ビニル]ピラジン、2,5-ビス(4-メトキシスチリル)ピラジン、2,5-ビス[2-(4-ビフェニル)ビニル]ピラジン、2,5-ビス[2-(1-ピレニル)ビニル]ピラジンなどが挙げられる。 Further, as an organic compound having an electron transporting property, 2,5-bis (4-methylstyryl) pyrazine, 2,5-bis (4-ethylstyryl) pyrazine, 2,5-bis [2- (1- Naphthyl) vinyl] pyrazine, 2,5-bis (4-methoxystyryl) pyrazine, 2,5-bis [2- (4-biphenyl) vinyl] pyrazine, 2,5-bis [2- (1-pyrenyl) vinyl ] Pyrazine etc. are mentioned.
 その他、さらに、電子輸送性を有する有機化合物として、1,4-フェニレンジメチリディン、4,4’-フェニレンジメチリディン、2,5-キシリレンジメチリディン、2,6-ナフチレンジメチリディン、1,4-ビフェニレンジメチリディン、1,4-p-テレフェニレンジメチリディン、9,10-アントラセンジイルジメチリディン、4,4’-(2,2-ジ-t-ブチルフェニルビニル)ビフェニル、4,4’-(2,2-ジフェニルビニル)ビフェニルなど、従来有機EL素子の作製に使用されている公知のものを適宜用いることができる。 Other organic compounds having electron transport properties include 1,4-phenylene dimethylidin, 4,4'-phenylene dimethylidin, 2,5-xylylene dimethylidin, and 2,6-naphthylene dimethylidene. Din, 1,4-biphenylenedimethylidin, 1,4-p-terephenylenedimethylidin, 9,10-anthracenediyldimethylidin, 4,4 '-(2,2-di-t-butylphenylvinyl Well-known ones conventionally used for producing organic EL devices, such as biphenyl and 4,4 ′-(2,2-diphenylvinyl) biphenyl, can be appropriately used.
 有機材料層の界面に接し第2電極と有機材料層の間に積層配置され且つ、電子供与性金属を対カチオンとする金属酸塩化合物がドープされた有機半導体からなる電子輸送性有機材料層を設けることができる。これは、陰極側の有機材料層(電子輸送層又は電子注入層)中に還元作用を持つ電子供与性金属をドーピングすることにより、陰極から有機材料層への電子注入に際するエネルギー障壁を低下させ、高温保存下における電子供与性金属の有機材料層への拡散を抑制することができるからである。ドープされた電子供与性金属を対カチオンとする金属酸塩化合物により、有機材料層は、すでに電子供与性金属により還元された状態なので、電子注入エネルギー障壁が小さく、従来の有機EL素子と比べて駆動電圧を低下できる。この場合、電子供与性金属は、Csなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属であれば特に限定はない。特に、仕事関数が4.0eV以下の金属が好適に使用でき、具体例としてCs、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、La、Mg、Sm、Gd、Yb、などが挙げられる。 An electron transporting organic material layer made of an organic semiconductor that is in contact with the interface of the organic material layer and is laminated between the second electrode and the organic material layer and doped with a metal acid salt compound having an electron donating metal as a counter cation. Can be provided. This reduces the energy barrier when electrons are injected from the cathode to the organic material layer by doping the organic material layer (electron transport layer or electron injection layer) on the cathode side with an electron-donating metal having a reducing action. This is because the diffusion of the electron donating metal into the organic material layer under high temperature storage can be suppressed. Since the organic material layer has already been reduced by the electron donating metal due to the metal salt compound with the doped electron donating metal as a counter cation, the electron injection energy barrier is small, compared with the conventional organic EL device. Drive voltage can be reduced. In this case, the electron-donating metal is not particularly limited as long as it is an alkali metal such as Cs, an alkaline earth metal such as Mg, or a transition metal containing a rare earth metal. In particular, a metal having a work function of 4.0 eV or less can be suitably used. Specific examples include Cs, Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, La, Mg, Sm, Gd, Yb, Etc.
 有機材料層中の金属酸塩化合物の濃度は、0.1~40重量%であることが好ましい。0.1重量%未満では、金属酸塩化合物の電子供与性金属により還元された分子の濃度が低すぎドーピングの効果が小さく、40重量%を超えると、膜中の金属酸塩化合物濃度が有機分子濃度を超え、ドーピングの効果も下がる。また、この有機材料層の厚みは、特に限定されないが1nm~300nmが好ましい。1nm未満では、電極界面近傍に存在する還元分子の量が少ないのでドーピングの効果が小さく、300nmを超えると有機層全体の膜厚が厚すぎ、駆動電圧の上昇を招くので好ましくない。 The concentration of the metal salt compound in the organic material layer is preferably 0.1 to 40% by weight. If it is less than 0.1% by weight, the concentration of the molecule reduced by the electron donating metal of the metal salt compound is too low, and the effect of doping is small. If it exceeds 40% by weight, the metal salt compound concentration in the film is organic. The molecular concentration is exceeded and the effect of doping is also reduced. The thickness of the organic material layer is not particularly limited, but is preferably 1 nm to 300 nm. If the thickness is less than 1 nm, the amount of reducing molecules present in the vicinity of the electrode interface is small, so that the effect of doping is small. If the thickness exceeds 300 nm, the entire organic layer is too thick, leading to an increase in driving voltage.
 一方、正孔輸送性を有する有機化合物として、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル、4,4’-ビス(ジフェニルアミノ)クオードリフェニル、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、1,1-ビス(4-ジ-p-トリアミノフェニル)-シクロヘキサン、1,1-ビス(4-ジ-p-トリアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)-フェニルメタン、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4’-[4(ジ-p-トリルアミノ)スチリル]スチルベン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノ-ビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノ-ビフェニルN-フェニルカルバゾール、4,4’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ビフェニル、4,4’’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]p-ターフェニル、4,4’-ビス[N-(2-ナフチル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(3-アセナフテニル)-N-フェニル-アミノ]ビフェニル、1,5-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ナフタレン、4,4’-ビス[N-(9-アントリル)-N-フェニル-アミノ]ビフェニル、4,4’’-ビス[N-(1-アントリル)-N-フェニル-アミノ]p-ターフェニル、4,4’-ビス[N-(2-フェナントリル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(8-フルオランテニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(2-ピレニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(2-ペリレニル)-N-フェニル-アミノ]ビフェニル、4,4’-ビス[N-(1-コロネニル)-N-フェニル-アミノ]ビフェニル、2,6-ビス(ジ-p-トリルアミノ)ナフタレン、2,6-ビス[ジ-(1-ナフチル)アミノ]ナフタレン、2,6-ビス[N-(1-ナフチル)-N-(2-ナフチル)アミノ]ナフタレン、4.4’’-ビス[N,N-ジ(2-ナフチル)アミノ]ターフェニル、4.4’-ビス{N-フェニル-N-[4-(1-ナフチル)フェニル]アミノ}ビフェニル、4,4’-ビス[N-フェニル-N-(2-ピレニル)-アミノ]ビフェニル、2,6-ビス[N,N-ジ(2-ナフチル)アミノ]フルオレン、4,4’’-ビス(N,N-ジ-p-トリルアミノ)ターフェニル、ビス(N-1-ナフチル)(N-2-ナフチル)アミンなどが挙げられる。 On the other hand, organic compounds having hole transporting properties include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-di (3-methyl Phenyl) -4,4′-diaminobiphenyl, 2,2-bis (4-di-p-tolylaminophenyl) propane, N, N, N ′, N′-tetra-p-tolyl-4,4′- Diaminobiphenyl, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N′-diphenyl-N, N′-di (4-methoxyphenyl) -4,4′-diaminobiphenyl, N, N, N ′, N′-tetraphenyl-4,4′-diaminodiphenyl ether, 4,4′-bis (diphenylamino) quadriphenyl, 4-N, N-diphenylamino- (2-diphenylvinyl) benzene, 3- Toxi-4′-N, N-diphenylaminostilbenzene, N-phenylcarbazole, 1,1-bis (4-di-p-triaminophenyl) -cyclohexane, 1,1-bis (4-di-p- Triaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) -phenylmethane, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino)- 4 ′-[4 (di-p-tolylamino) styryl] stilbene, N, N, N ′, N′-tetra-p-tolyl-4,4′-diamino-biphenyl, N, N, N ′, N ′ -Tetraphenyl-4,4'-diamino-biphenyl N-phenylcarbazole, 4,4'-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl, 4,4 ''-bis [N (1-naphthyl) -N-phenyl-amino] p-terphenyl, 4,4'-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl, 4,4'-bis [N- ( 3-Acenaphthenyl) -N-phenyl-amino] biphenyl, 1,5-bis [N- (1-naphthyl) -N-phenyl-amino] naphthalene, 4,4′-bis [N- (9-anthryl)- N-phenyl-amino] biphenyl, 4,4 ″ -bis [N- (1-anthryl) -N-phenyl-amino] p-terphenyl, 4,4′-bis [N- (2-phenanthryl)- N-phenyl-amino] biphenyl, 4,4′-bis [N- (8-fluoranthenyl) -N-phenyl-amino] biphenyl, 4,4′-bis [N- (2-pyrenyl) -N— Phenyl-amino] biphenyl, 4 , 4′-bis [N- (2-perylenyl) -N-phenyl-amino] biphenyl, 4,4′-bis [N- (1-coronenyl) -N-phenyl-amino] biphenyl, 2,6-bis (Di-p-tolylamino) naphthalene, 2,6-bis [di- (1-naphthyl) amino] naphthalene, 2,6-bis [N- (1-naphthyl) -N- (2-naphthyl) amino] naphthalene 4.4 ″ -bis [N, N-di (2-naphthyl) amino] terphenyl, 4.4′-bis {N-phenyl-N- [4- (1-naphthyl) phenyl] amino} biphenyl 4,4′-bis [N-phenyl-N- (2-pyrenyl) -amino] biphenyl, 2,6-bis [N, N-di (2-naphthyl) amino] fluorene, 4,4 ″- Bis (N, N-di-p-tolylamino) terfeny , Bis (N-1-naphthyl) (N-2-naphthyl) amine.
 さらに、正孔注入層、正孔輸送層、正孔輸送性発光層として、上述の有機化合物をポリマ中に分散したものや、ポリマ化したものも使用できる。ポリパラフェニレンビニレンやその誘導体などのいわゆるπ共役ポリマ、ポリ(N-ビニルカルバゾール)に代表される正孔輸送性非共役ポリマ、ポリシラン類のシグマ共役ポリマも用いることができる。 Further, as the hole injection layer, the hole transport layer, and the hole transport light emitting layer, those obtained by dispersing the above organic compound in a polymer or those polymerized can be used. So-called π-conjugated polymers such as polyparaphenylene vinylene and derivatives thereof, hole-transporting non-conjugated polymers represented by poly (N-vinylcarbazole), and sigma-conjugated polymers of polysilanes can also be used.
 正孔注入層としては、特に限定はないが、銅フタロシアニン(CuPc:Copper Phthalocyanine)などの金属フタロシアニン類及び無金属フタロシアニン類、カーボン膜、ポリアニリンなどの導電性ポリマが好適に使用できる。 The hole injection layer is not particularly limited, but metal phthalocyanines such as copper phthalocyanine (CuPc: Copper Phthalocyanine) and metal-free phthalocyanines, carbon films, and conductive polymers such as polyaniline can be suitably used.
 --実験例--
 下記の表1及び表2に示す材質及び部材を用意した。なお、発光層、正孔輸送層及び電子輸送層の材料はLuminescence Technology社製であった。光取り出し構造としての光取り出し向上膜は光拡散フィルム((株)きもと製、製品名ライトアップNSH)であった。
--- Experimental example-
The materials and members shown in Table 1 and Table 2 below were prepared. The materials for the light emitting layer, the hole transport layer, and the electron transport layer were manufactured by Luminescence Technology. The light extraction improving film as the light extraction structure was a light diffusion film (product name: Light Up NSH, manufactured by Kimoto Co., Ltd.).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [第1実験例]
 ガラス基板(0.7mm板厚)上に、真空蒸着により、ITO陽極(70nm厚)/正孔輸送層(40nm厚)/CBP+Ir(phq)2tpy赤色発光層(60nm厚)/電子輸送層(30nm厚)/Al陰極(100nm厚)からなる構成の実施例1の有機EL素子を作製した。ここで、図4に示すように、ITO陽極2のストライプを幅Wを0.9cmとし、交差するAl陰極9のストライプを幅Xを1.0cmとして、矩形の発光領域15の赤色発光層が面積0.9cmである有機EL素子を作製した。
[First Experimental Example]
An ITO anode (70 nm thickness) / hole transport layer (40 nm thickness) / CBP + Ir (phq) 2 tpy red light emitting layer (60 nm thickness) / electron transport layer (30 nm) on a glass substrate (0.7 mm plate thickness) by vacuum deposition. Thickness) / Al cathode (100 nm thickness) was used to produce the organic EL device of Example 1. Here, as shown in FIG. 4, the stripe of the ITO anode 2 has a width W of 0.9 cm, and the stripe of the intersecting Al cathode 9 has a width X of 1.0 cm. An organic EL element having an area of 0.9 cm 2 was produced.
 各層の成膜後、真空蒸着機から不活性ガス雰囲気のグローブボックス中で乾燥剤を金属製又はガラス製の封止缶で封止した。その後、ガラス基板表面(有機EL素子の反対側の基板表面)に光拡散フィルム((株)きもと製)を貼り付け実施例1の素子を完成した。 After film formation of each layer, the desiccant was sealed with a metal or glass sealing can in a glove box in an inert gas atmosphere from a vacuum vapor deposition machine. Thereafter, a light diffusion film (manufactured by Kimoto Co., Ltd.) was attached to the glass substrate surface (substrate surface opposite to the organic EL element) to complete the element of Example 1.
 同様に、発光層を下記表3に示す発光色材料からなる発光層(各60nm厚)とした以外、実施例1の同一構成となる実施例2、3及び5の素子を作製した。 Similarly, the elements of Examples 2, 3 and 5 having the same configuration as Example 1 were prepared except that the light emitting layer was made of a light emitting layer (60 nm thickness each) made of a light emitting color material shown in Table 3 below.
 同様に、発光層を下記表3に示す発光色材料からなる発光層(60nm厚)とし矩形発光領域の面積0.7cmとした以外(ITO陽極のストライプを幅0.7cmとし、交差するAl陰極のストライプを幅1.0cmとした)、実施例1の同一構成となる実施例4の素子を作製した。 Similarly, except that the light emitting layer is a light emitting layer (60 nm thickness) made of a light emitting color material shown in Table 3 below and the area of the rectangular light emitting region is 0.7 cm 2 (the ITO anode stripe is 0.7 cm wide and intersecting Al The element of Example 4 having the same configuration as that of Example 1 was prepared.
 同様に、発光層を下記表3に示す発光色材料からなる発光層(各60nm厚)とし矩形発光領域の面積0.04cmとした以外(ITO陽極のストライプを幅0.2cmとし、交差するAl陰極のストライプを幅0.2cmとした)、実施例1の同一構成となる比較例1~4の素子を作製した。 Similarly, the light emitting layer is made of a light emitting color material (each 60 nm thick) made of a light emitting color material shown in Table 3 below, and the area of the rectangular light emitting region is 0.04 cm 2 (the ITO anode stripe has a width of 0.2 cm and intersects). The elements of Comparative Examples 1 to 4 having the same configuration as in Example 1 were fabricated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [第1試験] 
 実施例1~5及び比較例1~4の素子を、それぞれ電流値2.5mA/cm、または、7.5mA/cm(Bのみ)で駆動し、発光面正面方向0度(法線)から80度まで、5度ステップの角度位置において色度及び発光輝度を測定した。各素子の色度は、R(CIE:x0.61,y0.39)、O(CIE:x0.57,y0.43)、G(CIE:x0.31,y0.64)、B(CIE:x0.13,y0.15)であった。測定した輝度値より、光拡散フィルム有無での正面方向の光取り出し倍率、ランバーシアン乖離係数、正面の光取り出し倍率を算出した。
[First test]
The devices of Examples 1-5 and Comparative Examples 1-4, the current value 2.5 mA / cm 2, respectively, or to drive at 7.5 mA / cm 2 (B only), the light emitting surface front direction 0 degrees (normal ) To 80 degrees, chromaticity and emission luminance were measured at an angular position of 5 degrees step. The chromaticity of each element is R (CIE: x0.61, y0.39), O (CIE: x0.57, y0.43), G (CIE: x0.31, y0.64), B (CIE: x0.13, y0.15). From the measured luminance value, the light extraction magnification in the front direction, the Lambertian divergence coefficient, and the light extraction magnification in the front direction with and without the light diffusion film were calculated.
 ランバーシアンは、面光源の光放射パターンの光強度分布の状態を示し、発光面に対する法線方向(θ=0°)の光強度をI0とした場合、ランバーシアンの光強度分布I(θ)は、I(θ)=I(0)cosθという仮定の分布(完全拡散面光源)である。 Lambertian indicates the state of the light intensity distribution of the light emission pattern of the surface light source. When the light intensity in the normal direction (θ = 0 °) with respect to the light emitting surface is I0, the Lambertian light intensity distribution I (θ) Is an assumed distribution (completely diffusing surface light source) of I (θ) = I (0) cos θ.
 ランバーシアン乖離係数は、素子法線から角度θの方向における発光強度分布を実測した面光源の光放射パターンが必ずしもランバーシアン分布ではないため、放射パターンをランバーシアン(完全拡散面光源)と仮定し、それからの誤差、すなわちランバーシアンI(θ)=cosθからのずれを係数として計算したものである。 The Lambertian divergence coefficient is assumed to be Lambertian (fully diffuse surface light source) because the light emission pattern of the surface light source measured from the element normal to the angle θ in the direction of angle θ is not necessarily Lambertian distribution. Then, the error from that, that is, the deviation from Lambertian I (θ) = cos θ is calculated as a coefficient.
 表4に試験の算出結果を示す。正面の光取り出し倍率および全光束倍率は、各実施例1~5及び比較例1~4の素子とも0.04cm面積素子の測定値で規格化している。また、ランバーシアン乖離係数は、(実測全光束(=5°ステップ輝度測定値の積算値))/(正面輝度からランバーシアン仮定で算出した全光束)から求めた。 Table 4 shows the calculation results of the test. The front light extraction magnification and the total luminous flux magnification are normalized by the measured values of 0.04 cm 2 area elements in the elements of Examples 1 to 5 and Comparative Examples 1 to 4. The Lambertian divergence coefficient was obtained from (actually measured total luminous flux (= integral value of 5 ° step luminance measurement values)) / (total luminous flux calculated from Lambertian assumption from front luminance).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の結果から、発光領域の面積が大きい面積0.9cmを有する実施例の素子の方が正面光取り出し倍率、ランバーシアン乖離係数が大きく、結果として全光束倍率が高くなり、光取り出し効率の高い有機EL素子を得られることが分かった。 From the above results, the element of the example having an area of 0.9 cm 2 where the area of the light emitting region is large has a larger front light extraction magnification and a Lambertian divergence coefficient, resulting in a higher total light beam magnification and higher light extraction efficiency. It was found that a high organic EL element can be obtained.
 [第2実験例]
 実施例1と同様に、発光層を下記表5に示す発光色材料からなる発光層(各60nm厚)とした以外、実施例1の同一構成となる発光領域の面積0.9cmを有する実施例6~41の素子を作製した。ただし、表5に示すようにRGB発光色の実施例ごとにITO陽極の膜厚Xを70nm、110nm、及び155nmと変化させ、さらに、電子輸送層(NBphen+CsxMoOx)の膜厚Yを30nm、50nm、及び70nmと各色の実施例ごとに変化させ素子を作製した。
[Second Experimental Example]
As in Example 1, except that the light-emitting layer made of a light emitting color material of a light emitting layer in the following Table 5 (the 60nm thick), performed with an area 0.9 cm 2 of the light emitting region having the same structure of Example 1 Devices of Examples 6 to 41 were produced. However, as shown in Table 5, the thickness X of the ITO anode was changed to 70 nm, 110 nm, and 155 nm for each of the RGB emission colors, and the film thickness Y of the electron transport layer (NBphen + CsxMoOx) was 30 nm, 50 nm, And it changed for every Example of 70 nm and each color, and the element was produced.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [第2試験] 
 第1実験例と同様な測定を行い、正面方向の光取り出し倍率、ランバーシアン乖離係数、正面の光取り出し倍率を算出した。表5に測定結果を示す。正面光取り出し倍率は、各色素子とも、ITO膜厚X=70nmおよび電子輸送層膜厚Y=30nmの素子の測定値で規格化している。また、全光束倍率は、各色素子とも、ITO膜厚70nmおよび電子輸送層膜厚30nm素子の正面輝度で規格化した値にランバーシアン乖離係数を乗じて算出した。
[Second test]
The same measurement as in the first experimental example was performed, and the light extraction magnification in the front direction, the Lambertian divergence coefficient, and the light extraction magnification in the front were calculated. Table 5 shows the measurement results. For each color element, the front light extraction magnification is normalized by the measured values of the elements having an ITO film thickness X = 70 nm and an electron transport layer film thickness Y = 30 nm. Further, the total luminous flux magnification was calculated by multiplying the value normalized by the front luminance of the ITO film thickness of 70 nm and the electron transport layer film thickness of 30 nm for each color element by the Lambertian divergence coefficient.
 以上の結果から、ランバーシアン乖離係数が高い有機EL素子が光拡散フィルム貼り付け時の正面の光取り出し倍率が高いことが分かる。また、電子輸送膜厚Y=50nm以上の際に全光束倍率が高い傾向にあることが分かる。このことは、ガラス基板から光拡散フィルムへの光の入射角度が向上し、光拡散フィルムの光取り込み量が増加したためと考えられる。 From the above results, it can be seen that an organic EL element having a high Lambertian divergence coefficient has a high front light extraction magnification when the light diffusion film is attached. It can also be seen that the total luminous flux ratio tends to be high when the electron transport film thickness Y is 50 nm or more. This is considered to be because the incident angle of light from the glass substrate to the light diffusion film was improved, and the amount of light taken in by the light diffusion film was increased.
 表5の測定結果から、ITO膜厚X=70nm及び電子輸送膜厚Y=30nmより全光束倍率が高いランバーシアン乖離係数の範囲は、R色素子では0.82~1.01で、O色素子では0.83~1.04で、G色素子では0.86~1.18で、B色素子では0.80~0.97であることが分かる。よって、ランバーシアン乖離係数の範囲として、好ましくは、0.80~1.18(和集合)、より好ましくは、0.83~1.05(平均)、最も好ましくは、0.86~0.97(積集合)を有する素子が光取り出し効果が高いことが明らかとなった。 From the measurement results in Table 5, the range of the Lambertian divergence coefficient in which the total luminous flux magnification is higher than the ITO film thickness X = 70 nm and the electron transport film thickness Y = 30 nm is 0.82 to 1.01 for the R color element, and the O color. It can be seen that the element is 0.83 to 1.04, the G color element is 0.86 to 1.18, and the B color element is 0.80 to 0.97. Therefore, the range of the Lambertian divergence coefficient is preferably 0.80 to 1.18 (union), more preferably 0.83 to 1.05 (average), and most preferably 0.86 to 0.8. It was revealed that the element having 97 (product set) has a high light extraction effect.
 図5(a)にITO膜厚Xに対応する全光束倍率を算出したプロットを示し、図5(b)にITO膜厚Xに対応する全光束倍率の平均値を算出したプロットと、それをフィッティングした曲線(特に式無し)を示す。図5(a)の測定結果から、ITO膜厚X=40nm~80nmの際に全光束倍率は0.9倍以上となり、ITO膜厚X=60nm~50nmの際に全光束倍率が最も高い値を示すことが明らかとなった。 FIG. 5A shows a plot for calculating the total luminous flux magnification corresponding to the ITO film thickness X, and FIG. 5B shows a plot for calculating the average value of the total luminous flux magnification corresponding to the ITO film thickness X. The fitted curve (no particular formula) is shown. From the measurement results of FIG. 5A, the total luminous flux magnification is 0.9 times or more when the ITO film thickness X = 40 nm to 80 nm, and the total luminous flux magnification is the highest value when the ITO film thickness X = 60 nm to 50 nm. It became clear to show.
 [第3実験例]
 実施例1と同様に、発光層を下記表6に示す発光色材料からなる発光層(各60nm厚)とした以外、実施例1の同一構成となる発光領域の面積0.9cmを有する実施例42~47の素子を作製した。ただし、表6に示すようにR、B発光色の実施例ごとにITO陽極の膜厚Xを70nm及び155nmと変化させ、さらに、電子輸送層(NBphen+CsxMoOx)の膜厚Yをそれぞれ50nmとし、陰極にAl、または、Agを用いた素子を作製した。それぞれにつき第1実験例と同様な測定を行った。表6に測定結果を示す。正面光取り出し倍率は、各色素子とも、ITO膜厚70nmおよびAl陰極の素子の測定値で規格化している。また、全光束倍率は、各色素子とも、ITO膜厚70nmおよびAl陰極の素子の正面輝度で規格化した値にランバーシアン乖離係数を乗じて算出した。
[Example 3]
As in Example 1, the light emitting layer was made of a light emitting layer (each 60 nm thick) made of a light emitting color material shown in Table 6 below, and the area of the light emitting region having the same configuration of Example 1 was 0.9 cm 2. Devices of Examples 42 to 47 were produced. However, as shown in Table 6, the thickness X of the ITO anode was changed to 70 nm and 155 nm for each of the examples of R and B emission colors, and the thickness Y of the electron transport layer (NBphen + CsxMoOx) was 50 nm, respectively. A device using Al or Ag was prepared. The same measurement as in the first experimental example was performed for each. Table 6 shows the measurement results. The front light extraction magnification is normalized for each color element by the measured values of the ITO film thickness of 70 nm and the Al cathode element. Further, the total luminous flux magnification was calculated for each color element by multiplying the value normalized by the front brightness of the ITO film thickness of 70 nm and the Al cathode element by the Lambertian divergence coefficient.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上の結果から、反射性が高いAg陰極において多重反射による光の損失が減少したため光取り出し倍率、ランバーシアン乖離係数が向上し、結果、素子の全光束倍率が向上した。 From the above results, the light extraction magnification and the Lambertian divergence coefficient were improved because light loss due to multiple reflection was reduced in the highly reflective Ag cathode, and as a result, the total luminous flux magnification of the device was improved.
 [第4実験例]
 実施例1と同様に、発光層を下記表7に示す発光色材料からなる発光層(各40nm厚)とした以外、実施例1の同一構成となる発光領域の面積0.9cmを有する実施例48~51の素子を作製した。ただし、表7に示すようにR、B発光色の実施例ごとにガラス基板厚dを0.7mm及び0.55mmと変化させ、さらに、ITO陽極膜厚をそれぞれ155nmとし、電子輸送層(NBphen+CsxMoOx)の膜厚をそれぞれ50nmとし、陰極にAgを用いた素子を作製した。第1実験例と同様な測定を行った。表7に測定結果を示す。正面光取り出し倍率は、各色素子とも、ガラス基板0.7mm厚素子の測定値で規格化している。また、全光束倍率は、各色素子とも、ガラス基板0.7mm厚素子の正面輝度で規格化した値にランバーシアン乖離係数を乗じて算出した。
[Example 4]
As in Example 1, except that the light-emitting layer made of a light emitting color material of a light emitting layer in the following Table 7 (the 40nm thick), performed with an area 0.9 cm 2 of the light emitting region having the same structure of Example 1 Devices of Examples 48 to 51 were produced. However, as shown in Table 7, the glass substrate thickness d was changed to 0.7 mm and 0.55 mm for each of the examples of R and B emission colors, and the ITO anode film thickness was 155 nm respectively, and the electron transport layer (NBphen + CsxMoOx ) Was made to be 50 nm, and an element using Ag as a cathode was manufactured. Measurements similar to those in the first experimental example were performed. Table 7 shows the measurement results. The front light extraction magnification is standardized by the measured value of the glass substrate 0.7 mm thick element for each color element. Further, the total luminous flux magnification was calculated for each color element by multiplying the value normalized by the front luminance of the glass substrate 0.7 mm thick element by the Lambertian divergence coefficient.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上の結果から、ガラス膜厚が薄くなることで、発光層からガラス外部放出面までの放射角度が広くなり、ランバーシアン乖離係数が向上し、結果、素子の全光束倍率が向上した。電子輸送層としてCsxMoOxをドープしたNBphenを用いているので、Agを陰極に用いても、Al陰極と比較して駆動電圧の上昇をほぼゼロにすることができた。 From the above results, as the glass film thickness becomes thinner, the radiation angle from the light emitting layer to the glass external emission surface becomes wider, the Lambertian divergence coefficient is improved, and as a result, the total luminous flux magnification of the device is improved. Since NBphen doped with CsxMoOx is used as the electron transport layer, even when Ag is used as the cathode, the increase in driving voltage can be made almost zero as compared with the Al cathode.
 [第5実験例]
 ITO陽極を円形とし、交差するAl陰極のストライプを幅1.0cmとして、円形の発光領域の赤色発光層を形成した以外、実施例1の素子と同様の素子を作製した。円形発光領域の径を変化させた際の有機EL素子の光取り出し量の比率の変化について検証した。
[Fifth Experimental Example]
A device similar to the device of Example 1 was fabricated except that the ITO anode was circular, the stripes of intersecting Al cathodes were 1.0 cm wide, and the red light emitting layer of the circular light emitting region was formed. The change in the ratio of the light extraction amount of the organic EL element when the diameter of the circular light emitting region was changed was verified.
 図6に円形発光領域径d=0.2mm~150mmに対応する光取り出し倍率を算出したプロットを示す。 FIG. 6 shows a plot in which the light extraction magnification corresponding to the circular light emitting region diameter d = 0.2 mm to 150 mm is calculated.
 上記の結果より、どの円形発光領域径を有する素子でも100mmで光取り出し倍率が飽和する傾向があることが分かる。このことは、これ以上大きな径を有する円形発光領域を形成する事のメリットは無いことを示す。あまり面積の大きな発光領域は、電気的特性、プロセスマージン、発光のムラ等により素子特性の悪化につながることにもなる。よって、発光領域の短い方の幅(最も短い差し渡し)は、光取り出し倍率が飽和する100mm以下が好ましい。発光領域の短い方の幅(最も短い差し渡し)の下限は、0.2mm以上とする。0.2mm未満の幅の発光領域では、隣接する発光領域の間隙(非発光部)の比率が大きくなり素子特性の悪化につながるからである。 From the above results, it can be seen that the light extraction magnification tends to be saturated at 100 mm in any element having a circular light emitting region diameter. This indicates that there is no merit of forming a circular light emitting region having a larger diameter. A light-emitting region having a very large area may lead to deterioration of device characteristics due to electrical characteristics, process margin, uneven light emission, and the like. Therefore, the shorter width of the light emitting region (the shortest pass) is preferably 100 mm or less at which the light extraction magnification is saturated. The lower limit of the shorter width (shortest span) of the light emitting region is 0.2 mm or more. This is because in the light emitting region having a width of less than 0.2 mm, the ratio of the gap (non-light emitting portion) between adjacent light emitting regions is increased, leading to deterioration of element characteristics.
 また、上記の結果より、発光領域の面積の最大値は100cmとした。すなわち、セルの短い方の幅を100mmとした時に、これの正方形と考えて、これ以上大きいセルはどの方向をみても100mmを越えるため、光取り出し倍率が飽和するのでセルを大きくするメリットが無いからである。発光領域の面積の最小値は上記実験から明らかなように0.9cmが好ましいので、以上より、各々有機EL素子の発光領域の発光層は0.9cm~100cmの面積を有することとした。 From the above results, the maximum value of the area of the light emitting region was set to 100 cm 2 . In other words, when the shorter width of the cell is set to 100 mm, it is considered as a square, and a cell larger than this exceeds 100 mm in any direction, so the light extraction magnification is saturated, so there is no merit to enlarge the cell. Because. Since the minimum value of the area of the light emitting region is preferably 0.9 cm 2 as apparent from the above experiment, the light emitting layer of each light emitting region of the organic EL element has an area of 0.9 cm 2 to 100 cm 2. did.
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
 10 光取り出し構造
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Electron injection layer 9 Cathode 10 Light extraction structure

Claims (5)

  1.  各々が、透過性の第1電極及び光反射性の第2電極の間に積層配置され且つ少なくとも1種類の発光色の発光層を含む有機材料層を有する複数の有機EL素子と、
     前記有機EL素子の前記第1電極を支持する透過性の基板と、を含み、
     前記複数の有機EL素子の各々が前記第1電極、前記有機材料層、前記第2電極が連続して全て重なり積層されている発光領域を有し、
     前記発光領域の前記発光層は0.9cm~100cmの面積を有することを特徴とする有機エレクトロルミネッセンスパネル。
    A plurality of organic EL elements each having an organic material layer including a light emitting layer of at least one kind of luminescent color, which is laminated between a transmissive first electrode and a light reflective second electrode;
    A transparent substrate that supports the first electrode of the organic EL element,
    Each of the plurality of organic EL elements has a light emitting region in which the first electrode, the organic material layer, and the second electrode are all continuously stacked.
    The organic electroluminescence panel according to claim 1, wherein the light emitting layer in the light emitting region has an area of 0.9 cm 2 to 100 cm 2 .
  2.  前記発光領域の最も短い差し渡しが0.2mm~100mmの範囲内にあることを特徴とする請求項1記載の有機エレクトロルミネッセンスパネル。 2. The organic electroluminescence panel according to claim 1, wherein the shortest span of the light emitting region is in a range of 0.2 mm to 100 mm.
  3.  マイクロレンズ層、ピラミッド層、凹凸層、又は微粒子拡散層からなり且つ前記基板に設けられた光取り出し構造を有することを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンスパネル。 The organic electroluminescence panel according to claim 1 or 2, wherein the organic electroluminescence panel comprises a microlens layer, a pyramid layer, an uneven layer, or a fine particle diffusion layer and has a light extraction structure provided on the substrate.
  4.  前記有機材料層の界面に接し前記第2電極と前記有機材料層の間に積層配置され且つ、電子供与性金属を対カチオンとする金属酸塩化合物がドープされた有機半導体からなる電子輸送性有機材料層を有することを特徴とする請求項1乃至3のいずれか1に記載の有機エレクトロルミネッセンスパネル。 An electron transporting organic material comprising an organic semiconductor in contact with the interface of the organic material layer and laminated between the second electrode and the organic material layer and doped with a metal salt compound having an electron donating metal as a counter cation The organic electroluminescence panel according to claim 1, further comprising a material layer.
  5.  前記第2電極はAl、Ag又はそれらの合金からなることを特徴とする請求項1乃至4のいずれか1に記載の有機エレクトロルミネッセンスパネル。
     
    The organic electroluminescence panel according to any one of claims 1 to 4, wherein the second electrode is made of Al, Ag, or an alloy thereof.
PCT/JP2011/063379 2011-06-10 2011-06-10 Organic electroluminescence panel WO2012169069A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063379 WO2012169069A1 (en) 2011-06-10 2011-06-10 Organic electroluminescence panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063379 WO2012169069A1 (en) 2011-06-10 2011-06-10 Organic electroluminescence panel

Publications (1)

Publication Number Publication Date
WO2012169069A1 true WO2012169069A1 (en) 2012-12-13

Family

ID=47295669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063379 WO2012169069A1 (en) 2011-06-10 2011-06-10 Organic electroluminescence panel

Country Status (1)

Country Link
WO (1) WO2012169069A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128843A1 (en) * 2013-02-20 2014-08-28 株式会社 日立製作所 Organic light-emitting element, and light source device using same
KR20150018437A (en) * 2013-08-09 2015-02-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260845A (en) * 2001-03-02 2002-09-13 Matsushita Electric Ind Co Ltd Organic electroluminescence element, display device or light-emitting source using the same
JP2003059644A (en) * 2001-08-09 2003-02-28 Matsushita Electric Ind Co Ltd Electroluminescent element
JP2004296437A (en) * 2003-03-12 2004-10-21 Mitsubishi Chemicals Corp Electroluminescent element
JP2008066027A (en) * 2006-09-05 2008-03-21 Fuji Electric Holdings Co Ltd Substrate having concavo-convex front surface, and organic el element using it
JP2009088515A (en) * 2007-09-27 2009-04-23 Osram Opto Semiconductors Gmbh Light-emitting device, illuminating device, and light-emitting material
WO2009110075A1 (en) * 2008-03-05 2009-09-11 パイオニア株式会社 Organic semiconductor element
JP2009245710A (en) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The Gas barrier type film-like base material, organic electroluminescent element sealing structure using it, and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260845A (en) * 2001-03-02 2002-09-13 Matsushita Electric Ind Co Ltd Organic electroluminescence element, display device or light-emitting source using the same
JP2003059644A (en) * 2001-08-09 2003-02-28 Matsushita Electric Ind Co Ltd Electroluminescent element
JP2004296437A (en) * 2003-03-12 2004-10-21 Mitsubishi Chemicals Corp Electroluminescent element
JP2008066027A (en) * 2006-09-05 2008-03-21 Fuji Electric Holdings Co Ltd Substrate having concavo-convex front surface, and organic el element using it
JP2009088515A (en) * 2007-09-27 2009-04-23 Osram Opto Semiconductors Gmbh Light-emitting device, illuminating device, and light-emitting material
WO2009110075A1 (en) * 2008-03-05 2009-09-11 パイオニア株式会社 Organic semiconductor element
JP2009245710A (en) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The Gas barrier type film-like base material, organic electroluminescent element sealing structure using it, and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128843A1 (en) * 2013-02-20 2014-08-28 株式会社 日立製作所 Organic light-emitting element, and light source device using same
KR20150018437A (en) * 2013-08-09 2015-02-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
JP2015144233A (en) * 2013-08-09 2015-08-06 株式会社半導体エネルギー研究所 Light-emitting element, display module, lighting module, light-emitting device, display device, electronic apparatus and lighting system
KR102244374B1 (en) 2013-08-09 2021-04-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
KR20210049051A (en) * 2013-08-09 2021-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 An Organic Electroluminescent Material and A Light-Emitting Element
KR102297222B1 (en) 2013-08-09 2021-09-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 An Organic Electroluminescent Material and A Light-Emitting Element

Similar Documents

Publication Publication Date Title
US8502208B2 (en) Organic light-emitting device
JP6140800B2 (en) Substrates for organic electronic devices
JP6345244B2 (en) Organic electronic equipment
EP1978574A2 (en) Organic electroluminescent device
WO2011010696A1 (en) Organic electroluminescent element
WO2010016101A1 (en) Organic electroluminescent element
KR20130108207A (en) Organic light emitting device
WO2012147208A1 (en) Metal complex composition for organic electroluminescence element organic
US20150207103A1 (en) Light-emitting device
US9373820B2 (en) Substrate for organic electronic device
US9755162B2 (en) Organic light emitting device and display device
US8294360B2 (en) Light-emitting element and display panel
WO2013146350A1 (en) Light emitting apparatus and method for manufacturing light emitting apparatus
KR20140140966A (en) Organic light emitting diode device
JP6282328B2 (en) Light emitting device
JP2007243044A (en) Method for manufacturing organic electroluminescent (el) element
WO2012169069A1 (en) Organic electroluminescence panel
JP6133301B2 (en) Light emitting device
JP6014675B2 (en) Light emitting device
KR102681966B1 (en) Organic light emitting device
KR20130135142A (en) Organic electronic device
JP6466502B2 (en) Light emitting device
KR20200129304A (en) Organic light emitting device
KR20210015222A (en) Organic light emitting device and manufacturing method for same
KR20210067679A (en) Organic electronic device having barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP