WO2012168443A2 - Source d'energie mecanique pour mouvement horloger a couple de sortie predefini - Google Patents

Source d'energie mecanique pour mouvement horloger a couple de sortie predefini Download PDF

Info

Publication number
WO2012168443A2
WO2012168443A2 PCT/EP2012/060920 EP2012060920W WO2012168443A2 WO 2012168443 A2 WO2012168443 A2 WO 2012168443A2 EP 2012060920 W EP2012060920 W EP 2012060920W WO 2012168443 A2 WO2012168443 A2 WO 2012168443A2
Authority
WO
WIPO (PCT)
Prior art keywords
barrel
circular
wheel
drum
satellite
Prior art date
Application number
PCT/EP2012/060920
Other languages
English (en)
Other versions
WO2012168443A3 (fr
Inventor
Pascal Winkler
Original Assignee
Haute Ecole Arc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haute Ecole Arc filed Critical Haute Ecole Arc
Priority to EP12732989.4A priority Critical patent/EP2718769B1/fr
Publication of WO2012168443A2 publication Critical patent/WO2012168443A2/fr
Publication of WO2012168443A3 publication Critical patent/WO2012168443A3/fr

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/22Compensation of changes in the motive power of the mainspring

Definitions

  • the present invention relates to a mechanism, arranged to deliver mechanical energy to a finishing gear of a watch movement in the form of a predefined output torque transmitted to a first mobile of the work train.
  • This mechanism comprises a barrel spring whose one end, internal, is secured to a barrel shaft and an outer end is secured to a barrel drum, a first of these ends being intended to be kinematically connected to the first mobile the finishing gear.
  • the mechanism further comprises a gear train arranged to provide a kinematic connection between the ends of the mainspring and allow a transfer of mechanical energy between them.
  • Such a source of mechanical energy must have a limited footprint but, at the same time, it must be able to store enough mechanical energy to provide a satisfactory power reserve to the corresponding watch movement. Note that the amount of energy that can be stored in a barrel is directly proportional to the volume of the barrel.
  • a main disadvantage of the barrel springs resides in the fact that the output torque delivered by the corresponding barrel is not stable as a function of the state of charge of the spring, that is to say at all. along the winding of the barrel.
  • the barrel spring being intended to supply a mechanical resonator with mechanical energy, to maintain the oscillations by means of a finishing train, a fluctuation of the torque that it delivers causes a fluctuation of the period of the oscillations of the mechanical resonator, an undesirable variation of the accuracy of the watch movement.
  • This counting mechanism controls a switch arranged to control the movements of a rocker for acting on a clutch.
  • the clutch is disposed in a gear train providing a kinematic connection between the barrel drum and the barrel shaft, to allow a transfer of mechanical energy between the two ends of the mainspring, more specifically, a reinjection of the energy delivered by the drum in the mainspring through the barrel shaft.
  • the clutch is either in an engaged configuration, in which a transfer mechanical energy is possible, either in a disengaged configuration, in which the transfer of mechanical energy is not possible.
  • the clutch is in its engaged configuration and a portion of the mechanical energy delivered by the drum is transferred from the outer end of the mainspring to its inner end, through the gear train.
  • the counting mechanism detects that the state of charge of the spring reaches a predefined low value, it is necessary to flip the scale to move the clutch into its disengaged configuration, thereby interrupting the energy transfer. From this moment, all the energy delivered by the drum is sent into the finishing gear of the watch movement.
  • the mechanism described above only partially meets the problem presented above in relation to the variation of the torque delivered by the barrel. It will be noted in particular that, from the moment when the clutch is placed in its disengaged configuration, the described energy source starts operating in the same manner as a conventional energy source, that is to say ie by presenting the same progressive decay of the delivered torque. This gives two operating ranges associated with similar torque variations but respective smaller amplitudes compared to the prior art. It will also be noted that the structure of this mechanism is complex and cumbersome, not only from the point of view of the structure of the counting mechanism of the power reserve, which has arrangements in relation to the state of the art, but also in the implementation of the gear train ensuring the reinjection of mechanical energy to the barrel shaft.
  • a main object of the present invention is to provide a simple structural mechanism, compact and acting directly at the source of mechanical energy, to limit as much as possible the variation of the torque delivered.
  • the present invention relates more particularly to a mechanism of the type mentioned above, characterized in that the gear train comprises a planetary gear having
  • the planetary gear comprises a satellite comprising a first non-circular wheel arranged in engagement with a first non-circular sun gear.
  • the amount of energy reinjected from one end of the mainspring to the other can be controlled.
  • the non-circular wheels may have respective peripheries such that the torque transmitted to the first mobile of the work train is substantially constant.
  • the output torque is transmitted to the gear train from barrel drum, the planetary gear being arranged to allow energy transfer from the outer end of the mainspring to its inner end.
  • the planetary gear preferably comprises a satellite carrier, intended to be kinematically connected to the winding mechanism and carrying the satellite whose first non-circular wheel is secured to a second satellite wheel and coaxial to this last, the first non-circular satellite wheel having a kinematic connection with the barrel drum, while the first non-circular sun wheel has a kinematic connection with the barrel shaft.
  • the first non-circular solar wheel is advantageously coaxial with the barrel shaft being integral with the latter in rotation.
  • the mechanism having the above characteristics makes it possible to reinject a portion of the energy delivered by the barrel drum at its shaft. Thanks to the non-circular shape of the wheels of the planetary gear, the portion of energy taken out of the drum to be reinjected can be adjusted continuously, depending on the state of charge of the mainspring and therefore, depending on the torque delivered to the finishing gear. It is thus possible to take at each moment a quantity of mechanical energy such that the torque actually delivered to the work train is substantially constant.
  • the mechanism preferably comprises a second sun gear rotationally integral with the barrel drum and arranged in engagement with the second satellite wheel.
  • the sun gear may further be arranged to allow energy transfer from the inner end of the mainspring to its outer end or the finishing gear.
  • the drum drum advantageously defines a planet carrier of the planetary gear, the latter bearing the satellite of which the first non-circular wheel is secured to a second non-circular and coaxial satellite wheel to the latter.
  • the first non-circular satellite wheel then has a kinematic connection with the barrel shaft, via the first non-circular sun wheel, the second non-circular satellite wheel being intended to have a kinematic connection with the winding mechanism. by means of a second non-circular solar wheel.
  • the second non-circular sun wheel is preferably coaxial with the barrel shaft being free to rotate relative thereto.
  • the present invention also relates to a watch movement provided with such a mechanism and a timepiece comprising such a watch movement.
  • Figures 1a, 1b and 1c show diagrammatic diagrams illustrating the operation of a mechanism according to a first preferred embodiment of the present invention
  • FIGS. 2a and 2b show views, respectively from above and in cross section, of the mechanism of FIGS. 1a to 1c;
  • FIG. 3 represents a diagram illustrating the result of calculations carried out for the implementation of the mechanism of FIGS. 2a and 2b;
  • FIG. 4 represents a comparative diagram illustrating the effects of the mechanism of FIGS. 2a and 2b with reference to other constructions;
  • - Figure 5 shows a diagram illustrating the behavior of the mechanism of Figures 2a and 2b;
  • FIGS. 6a, 6b and 6c show schematic diagrams illustrating the operation of a mechanism according to a second preferred embodiment of the present invention
  • FIGS. 7a and 7b show views, respectively from above and in cross section, of the mechanism of FIGS. 6a to 6c;
  • FIG. 8 represents a diagram illustrating the result of calculations carried out for the implementation of the mechanism of FIGS. 7a and 7b;
  • FIG. 9 represents a comparative diagram illustrating the effects of the mechanism of FIGS. 7a and 7b with reference to other constructions.
  • Figure 10 shows a diagram illustrating the behavior of the mechanism of Figures 7a and 7b.
  • a basic principle of the present invention lies in the implementation of a planetary gear train in a gear train defining a kinematic connection between the two ends of a mainspring, for reinjecting mechanical energy. taken from one to the other.
  • a mainspring delivers energy to a finishing gear train via a barrel drum and is reloaded by the shaft of the barrel
  • the planetary gear is of the type with two solar wheels and double satellite, and comprises at least two wheels whose periphery is non-circular.
  • Figures 1a, 1b and 1c show diagrammatic diagrams illustrating the operation of a mechanism according to a first embodiment of the invention. preferred embodiment of the present invention. According to this first embodiment, the reinjection of the mechanical energy occurs only unidirectionally, that is to say always from one end of the mainspring to the other.
  • a planetary gear generally comprises three inputs / outputs which have been referenced by A, B and C in FIGS. 1a to 1c, C being a satellite carrier, while the D block schematizes the satellite of the planetary gear. .
  • the mechanism according to the present invention comprises a barrel 1 comprising a drum 2 housing a barrel spring 3, whose outer end is integral with the drum and the inner end is integral with a bung 4, itself integral of a barrel tree 5.
  • the barrel 1 is intended to be associated with a watch movement to maintain the oscillations of a mechanical resonator 6, schematized here by a sprung-balance (whose spiral is not shown) cooperating with an escapement.
  • the transmission of mechanical energy from the barrel drum 2 to the resonator is performed by a gear train not shown here.
  • the watch movement conventionnellennent includes a winding mechanism of the spring 3 barrel, schematized here by a winding rod 7.
  • a and C here represent inputs of the planetary gear, while B represents an output of the planetary gear. More specifically, the inlet A has a kinematic connection with the barrel drum 2, the inlet C with the winding mechanism, and the outlet B with the barrel shaft 5.
  • Figure 1 illustrates the situation corresponding to the winding of the mainspring from the winding mechanism.
  • FIG. 1b illustrates the situation corresponding to the current operation of the watch movement, that is to say when the drum unwinds to maintain the oscillations of the resonator 6. More precisely, FIG. 1b corresponds to the case where the 3 barrel spring is heavily loaded.
  • the carrier is immobilized, for example by a pawl provided in the winding mechanism, while the barrel drum 2 rotates to transmit mechanical energy to the gear train.
  • the rotation of the drum causes that of A which causes that of B via the satellite D.
  • a portion of the mechanical energy delivered by the barrel drum is reinjected at the level of barrel shaft for reloading the barrel spring 3.
  • FIG. 1 c also illustrates a situation corresponding to the current operation of the watch movement, that is to say when the drum unwinds to maintain the oscillations of the resonator 6. More precisely, FIG. 1c corresponds to the case where the barrel spring 3 is weakly loaded.
  • Figures 2a and 2b show views, respectively from above and in cross section along line II-II of Figure 2a, of a mechanism having the characteristics which have just been described in connection with Figures 1a. at 1 tbsp.
  • the first movable wheel of the issage end here a mobile medium 20, has been shown for illustrative purposes in Figures 2a and 2b, the latter comprising a pinion 21, arranged in engagement with the drum 2 of barrel, and a wheel 22, for transmitting the mechanical energy received from the barrel to the rest of the work train.
  • the planetary gear is arranged on the drum 2 and comprises a ratchet 24 (shown partially broken away in FIG. 2a for more clarity) playing the role of the planet carrier C, free to rotate with reference to the bung 4.
  • the ratchet carries a satellite 26 comprising a first non-circular wheel 28 arranged in engagement with a first non-circular solar wheel 30, the latter being coaxial to the barrel shaft 5 and secured to the latter.
  • the satellite further carries a second wheel 32, circular and arranged in engagement with a second sun gear 34, also circular.
  • the wheels 28 and 32 are integral with each other in rotation.
  • the second sun gear here has the shape of a pinion, the latter being integral in rotation with the barrel drum 2.
  • the pinion can for example be driven into the drum.
  • the proportion of the mechanical energy delivered by the drum 2 which is fed back to the plug 4 can be adjusted according to the peripheries of the non-circular wheels 28, 30.
  • these peripheries can advantageously be chosen in such a way that the torque actually delivered by the drum to the work train is constant regardless of the state of charge of the mainspring.
  • the moment of the barrel depends on the angle of the drum ( ⁇ ) and the angle of the plug ( ⁇ ). It can be described by a continuous function f (0 A , ⁇ ⁇ ):
  • this function could be:
  • M armed is the moment when the barrel is fully armed and k is the spring constant (rigidity).
  • PA is the radius of pinion 34, PB that of wheel 30, PSA that of wheel 32, and PSB that of wheel 28.
  • Mbariiiet Marmé - ⁇ ⁇ ( ⁇ - ⁇ ) if ⁇ > ⁇ and 0 otherwise.
  • Marmé The number of turns of development of the spring in the barrel can be fixed;
  • the primitive is in a xy plane.
  • the corresponding wheel can be cut in a flat plate, as opposed to non-circular gears with several turns whose contact line rises in the direction of the z-axis (shaped snail shell);
  • FIG. 4 represents a comparative diagram illustrating the effects of the mechanism of FIGS. 2a and 2b with reference to other constructions, by illustrating the available torque as a function of the angular position of the barrel drum.
  • the conventional M-wheel curve represents the characteristic of the barrel without the reinjection mechanism according to the present invention.
  • the curve M with reinjection represents the torque available to the end gear issage as a function of the angular position of the drum for the particular case calculated previously. It can be seen that the available torque at finishing gear is quite constant. On the other hand, it also shows that the area under the curve, which represents the mechanical energy, is equivalent to that under the curve M r0 conventional creep.
  • the curve M re ssort with reinjection shows that, thanks to the mechanism of the present invention, the barrel spring discharges slowly at the beginning of the discharge (when the torque is high) and faster when disarmed.
  • the abscissa of FIG. 4 represents proportionally the time that passes when the watch movement is a current operating mode.
  • FIG. 5 represents a diagram illustrating the angular position of the bung with respect to the angular position of the barrel drum, during the discharge time of the mainspring (the time being proportional to Otambour).
  • Figures 6a, 6b and 6c show schematic diagrams illustrating the operation of a mechanism according to a second preferred embodiment of the present invention.
  • the reinjection of the mechanical energy is likely to occur bidirectionally, that is to say from one end of the mainspring to the other and vice versa.
  • the planetary gear can advantageously comprise three inputs / outputs, as in the first embodiment, which have been referenced by A, B and C in FIGS. 6a to 6c, C being a satellite carrier, while block D schematizes the satellite of the planetary gear.
  • A here represents an input of the planetary gear
  • B and C represent inputs-outputs of the planetary gear. More specifically, the input A has a kinematic connection with the winding mechanism, while the inputs-outputs B and C have respective kinematic links with the barrel shaft 5 and with the barrel drum 2.
  • Figure 6a illustrates the situation corresponding to the winding of the mainspring from the winding mechanism.
  • FIG. 6b illustrates the situation corresponding to the current operation of the watch movement, that is to say when the barrel is unwound to maintain the oscillations of the resonator 6. More specifically, Figure 6b corresponds to the case where the spring 3 barrel is heavily loaded.
  • A is immobilized, for example by a pawl provided in the winding mechanism, while the barrel drum 2 rotates to transmit mechanical energy to the gear train.
  • the rotation of the drum causes that of C which causes that of B, via the satellite D.
  • a portion of the mechanical energy delivered by the drum drum is reinjected at the level of barrel shaft for reloading the barrel spring 3.
  • Figure 6c also illustrates a situation corresponding to the current operation of the watch movement, that is to say when the barrel unwinds to maintain oscillations of the resonator 6. More precisely, FIG. 6c corresponds to the case where the barrel spring 3 is weakly loaded.
  • Figures 7a and 7b show views, respectively from above and in cross section along the line VII-VII of Figure 7a, of a mechanism having the characteristics which have just been described in relation to Figures 6a to 6c.
  • a first movable wheel end issage here a mobile of high average 120, has been shown for illustrative purposes in Figures 7a and 7b, it comprising a pinion 121, arranged in engagement with the drum 102 of barrel, and a wheel 122, for transmitting mechanical energy received from the barrel to the rest of the work train.
  • the planetary gear is arranged on the drum 102 and comprises a ratchet 124 (shown partially broken away in FIG. 7a for the sake of clarity) mounted free to rotate on the barrel shaft 105.
  • a ratchet 124 shown partially broken away in FIG. 7a for the sake of clarity
  • FIG. 7b shows that the barrel drum 102 plays the role of the planet carrier C, free to rotate with reference to the bung 104.
  • the drum 102 carries a satellite 126 comprising a first non-circular wheel
  • first non-circular solar wheel 130 arranged in engagement with a first non-circular solar wheel 130, the latter being coaxial with the barrel shaft 105 and secured thereto.
  • the satellite further carries a second non-circular wheel 132 and arranged in engagement with a second non-circular sun wheel 134.
  • the latter is intended to have a kinematic connection with the winding mechanism.
  • it is arranged integral in rotation with the ratchet 124 intended to be rotated by the winding mechanism.
  • the wheels 128 and 132 are integral in rotation.
  • FIG. 7b The satellite-carrier configuration is more clearly apparent from FIG. 7b, in which it appears that the satellite is assembled with the barrel drum 102 by a shaft 136.
  • the operation of this mechanism is as described above, in connection with Figures 6a to 6c.
  • the proportion of the mechanical energy delivered by the drum 102 which is reinjected to the plug 104 and the proportion of energy taken from the plug to be reinjected into the work train can be adjusted according to the peripheries of the wheels.
  • these peripheries may advantageously be chosen in such a way that the torque actually delivered by the drum to the work train is constant regardless of the state of charge of the mainspring.
  • this function could be:
  • PA is the radius of the wheel 134, PB that of the wheel 130, PSA that of the wheel 132, and PSB that of the wheel 128.
  • a minimum gear ratio may be imposed between the wheel 128 of the satellite and the wheel 130 secured to the bung. This allows to save space in the center of the wheel 130 to have a hub.
  • FIG. 9 represents a comparative diagram illustrating the effects of the mechanism of FIGS. 7a and 7b with reference to other constructions, by illustrating the available torque as a function of the angular position of the barrel drum.
  • the curve M conventional wheel represents the characteristic of the barrel without the feedback mechanism according to the present invention.
  • the curve M gear with feedback represents the torque available to the work train according to the angular position of the drum for the particular case calculated above. It can be seen that the torque available to the finishing gear is quite constant. On the other hand, it also shows that the area under the curve, which represents the mechanical energy, is equivalent to that under the curve M r0 conventional creep.
  • the curve M spring with feedback shows that, thanks to the mechanism according to the present invention, the mainspring slowly discharges at the beginning of its discharge (when its torque is high) and more quickly when it is disarmed.
  • FIG. 10 represents a diagram, similar to that of FIG. 5, illustrating the angular position of the bung with respect to the position angular of the barrel drum, during the discharge time of the mainspring (the time being proportional to Otambour).
  • non-circular wheels used traverse more than one turn on themselves without departing from the scope of the invention. In this case, these wheels would not be flat, as mentioned above.
  • the shape and the material of the latter can be optimized so as to restore a maximum of energy on this single development tour since the torque available to the finishing gear is controlled.
  • the profiles of the teeth used will be advantageously optimized to reduce the air pressures involved, while usually they are rather optimized to ensure a homogeneous transmission of torque and speed.
  • a stop mechanism of the winding when the mainspring is fully loaded may for example be made directly by a choice of adapted shapes of the peripheries of the non-circular wheels, each of which may have a side intended to cooperate with the side of the other wheel to define a stop.
  • a disengagement device of the automatic winding mechanism could be advantageously provided to limit the stresses applied to the mechanism when the spring is fully loaded, or a device for locking the oscillating mass.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission Devices (AREA)
  • Gears, Cams (AREA)

Abstract

La présente invention concerne un mécanisme, agencé pour délivrer de l'énergie mécanique à un rouage de finissage d'un mouvement horloger sous la forme d'un couple de sortie prédéfini transmis à un premier mobile (20, 120) du rouage de finissage. Le mécanisme comporte un ressort (3) de barillet (1 ), dont une extrémité est solidaire d'un arbre (5, 105) et l'autre extrémité est solidaire d'un tambour (2, 102), l'une d'elles étant destinée à être reliée cinématiquement au rouage de finissage, ainsi qu'un train d'engrenages agencé pour assurer une liaison cinématique entre les extrémités du ressort et permettre un transfert d'énergie mécanique entre elles. Le train d'engrenages comprend un train planétaire (24, 26, 28, 30, 32, 34, 102, 126, 128, 130, 132, 134) présentant une première entrée-sortie (24, 134) destinée à être reliée à un mécanisme de remontage (7) dudit ressort (3) de barillet, une seconde entrée-sortie (34, 102) reliée à une extrémité du ressort de barillet, et une troisième entrée-sortie (30, 130) reliée à l'autre extrémité du ressort de barillet. De plus, le train planétaire comporte un satellite (26, 126) comprenant une première roue non circulaire (28, 128) agencée en prise avec une première roue solaire non circulaire (30, 130).

Description

Description
SOURCE D'ENERGIE MECANIQUE POUR MOUVEMENT HORLOGER
A COUPLE DE SORTIE PREDEFINI
Domaine technique
[0001] La présente invention concerne un mécanisme, agencé pour délivrer de l'énergie mécanique à un rouage de finissage d'un mouvement horloger sous la forme d'un couple de sortie prédéfini transmis à un premier mobile du rouage de finissage. Ce mécanisme comporte un ressort de barillet dont une extrémité, interne, est solidaire d'un arbre de barillet et une extrémité, externe, est solidaire d'un tambour de barillet, une première de ces extrémités étant destinée à être reliée cinématiquement au premier mobile du rouage de finissage. Le mécanisme comporte en outre un train d'engrenages agencé pour assurer une liaison cinématique entre les extrémités du ressort de barillet et permettre un transfert d'énergie mécanique entre elles.
Etat de la technique
[0002] La réalisation de sources d'énergie mécanique pour mouvements horlogers est complexe et nécessite la prise en compte simultanée de plusieurs problématiques plus ou moins liées entre elles.
[0003] Une telle source d'énergie mécanique doit présenter un encombrement limité mais, dans le même temps, elle doit pouvoir emmagasiner suffisamment d'énergie mécanique pour offrir une réserve de marche satisfaisante au mouvement horloger correspondant. On notera que la quantité d'énergie qui peut être stockée dans un barillet est directement proportionnelle au volume de ce dernier.
[0004] Un inconvénient principal des ressorts de barillets réside dans le fait que le couple de sortie délivré par le barillet correspondant n'est pas stable en fonction de l'état de charge du ressort, c'est-à-d ire tout au long du dévidage du barillet. Le ressort de barillet étant destiné à alimenter un résonateur mécanique en énergie mécanique, pour en entretenir les oscillations par l'intermédiaire d'un rouage de finissage, une fluctuation du couple qu'il délivre entraîne une fluctuation de la période des oscillations du résonateur mécanique, soit une variation non souhaitable de la précision de marche du mouvement horloger.
[0005] Il découle de ce qui précède que, de manière générale, une plage d'utilisation du ressort de barillet est définie, dans laquelle la variation de couple entre les états de charge la plus élevée et la plus faible de la plage est jugée satisfaisante. Ceci implique qu'une portion de l'énergie emmagasinée par le ressort de barillet ne peut pas être exploitée.
[0006] Différents mécanismes complexes ont été proposés dans l'art antérieur pour stabiliser le couple délivré à l'oscillateur mécanique, dont notamment des échappements à force constante ou des remontoirs d'égalité.
Toutefois, la construction de ces mécanismes, agencés en aval de la source d'énergie mécanique, est délicate et en limite la mise en œuvre à des modèles de pièces d'horlogerie de très haut de gamme.
[0007] Certaines solutions ont été proposées pour agir plus amont, directement au niveau de la source d'énergie mécanique.
[0008] Un exemple d'un tel mécanisme, destiné notamment à réduire l'amplitude de la variation du couple délivré au rouage de finissage, est décrit dans la demande de brevet EP 2042944 A1. Ce document décrit un mouvement horloger dont la source d'énergie mécanique est réalisée sous la forme d'un barillet logeant un ressort, de manière conventionnelle. Le mouvement comporte par ailleurs un mécanisme de comptage de la réserve de marche permettant de connaître à chaque instant l'état de charge du ressort de barillet.
[0009] Ce mécanisme de comptage contrôle un interrupteur agencé pour commander les déplacements d'une bascule destinée à agir sur un embrayage. L'embrayage est disposé dans un train d'engrenages assurant une liaison cinématique entre le tambour de barillet et l'arbre de barillet, pour permettre un transfert d'énergie mécanique entre les deux extrémités du ressort de barillet, plus précisément, une réinjection de l'énergie délivrée par le tambour dans le ressort de barillet au travers de l'arbre de barillet. Suivant la position angulaire de la bascule, l'embrayage est soit dans une configuration embrayée, dans laquelle un transfert d'énergie mécanique est possible, soit dans une configuration débrayée, dans laquelle le transfert d'énergie mécanique n'est pas possible.
[0010] Ainsi, partant d'un état de charge important du ressort de barillet, l'embrayage est dans sa configuration embrayée et une portion de l'énergie mécanique délivrée par le tambour est transférée depuis l'extrémité externe du ressort de barillet vers son extrémité interne, par l'intermédiaire du train d'engrenages. Lorsque le mécanisme de comptage détecte que l'état de charge du ressort atteint une valeur basse prédéfinie, i l fa i t p ivoter la bascule pour faire passer l'embrayage dans sa configuration débrayée, interrompant de ce fait le transfert d'énergie. A partir de cet instant, la totalité de l'énergie délivrée par le tambour est envoyée dans le rouage de finissage du mouvement horloger.
[001 1] Grâce à ce mécanisme, l'amplitude maximale de variation du couple délivré par le tambour de barillet est plus faible qu'avec une source d'énergie mécanique conventionnelle, notamment parce qu'il permet de limiter la valeur initiale du couple délivré lorsque le ressort de barillet est complètement chargé.
[0012] Deux avantages supplémentaires sont en outre obtenus. D'une part, le couple maximal délivré étant inférieur à celui des sources d'énergie de l'art antérieur, l'usure du rouage de finissage est réduite. D'autre part, le fait de recharger le ressort de barillet avec son trop plein d'énergie, en début de dévidage, permet d'augmenter la réserve de marche du mouvement horloger correspondant.
[0013] Toutefois, le mécanisme décrit ci-dessus ne répond que partiellement au problème présenté plus haut en relation avec la variation du couple délivré par le barillet. On notera en particulier que, à partir du moment où l'embrayage est placé dans sa configuration débrayée, la source d'énergie décrite se met à fonctionner de manière identique à celle d'une source d'énergie conventionnelle, c'est-à-dire en présentant une même décroissance progressive du couple délivré. On obtient ainsi deux plages de fonctionnement associées à des variations de couple similaires mais d'amplitudes respectives réduites par rapport à l'art antérieur. [0014] On relèvera également que la structure de ce mécanisme est complexe et encombrante, non seulement du point de vue de la structure du mécanisme de comptage de la réserve de marche, qui présente des aménagements par rapport à l'état de la technique, mais également dans la mise en œuvre du train d'engrenages assurant la réinjection de l'énergie mécanique vers l'arbre de barillet.
Divulgation de l'invention
[0015] Un but principal de la présente invention est de proposer un mécanisme de structure simple, compact et, agissant directement au niveau de la source d'énergie mécanique, pour limiter autant que possible la variation du couple délivré.
[0016] A cet effet, la présente invention concerne plus particulièrement un mécanisme du type mentionné plus haut, caractérisé par le fait que le train d'engrenages comprend un train planétaire présentant
une première entrée-sortie destinée à être reliée cinématiquement à un mécanisme de remontage du ressort de barillet,
une seconde entrée-sortie reliée cinématiquement à une extrémité du ressort de barillet, et
une troisième entrée-sortie reliée cinématiquement à l'autre extrémité du ressort de barillet.
[0017] Une telle construction permet de simplifier le mécanisme par rapport à celui qui vient d'être décrit en relation avec l'art antérieur, en prévoyant une liaison cinématique permanente entre les deux extrémités du ressort de barillet, grâce à la mise en œuvre d'un train planétaire.
[0018] En outre, le train planétaire comporte un satellite comprenant une première roue non circulaire agencée en prise avec une première roue solaire non circulaire. La quantité d'énergie réinjectée à partir d'une extrémité du ressort de barillet vers l'autre peut ainsi être contrôlée. En particulier, les roues non circulaires peuvent présenter des périphéries respectives telles que le couple transmis au premier mobile du rouage de finissage est sensiblement constant.
[0019] Suivant une première variante de réalisation, on peut avantageusement prévoir que le couple de sortie est transmis au rouage de finissage à partir du tambour de barillet, le train planétaire étant agencé pour permettre un transfert d'énergie depuis l'extrémité externe du ressort de barillet vers son extrémité interne.
[0020] Dans ce cas, le train planétaire comporte préférablement un porte- satellite, destiné à être relié cinématiquement au mécanisme de remontage et, portant le satellite dont la première roue non circulaire est solidaire d'une seconde roue de satellite et coaxiale à cette dernière, la première roue non circulaire de satellite présentant une liaison cinématique avec le tambour de barillet, tandis que la première roue solaire non circulaire présente une liaison cinématique avec l'arbre de barillet. En outre, la première roue solaire non circulaire est avantageusement coaxiale à l'arbre de barillet en étant solidaire de ce dernier en rotation.
[0021] Grâce à ces caractéristiques, peu de modifications sont nécessaires, partant d'un barillet conventionnel, pour mettre en œuvre le mécanisme selon l'invention. Le mécanisme répondant aux caractéristiques ci-dessus permet de réinjecter une portion de l'énergie délivrée par le tambour de barillet au niveau de son arbre. Grâce à la forme non circulaire des roues du train planétaire, la portion d'énergie prélevée en sortie de tambour pour être réinjectée peut être ajustée de manière continue, en fonction de l'état de charge du ressort de barillet et donc, en fonction du couple délivré au rouage de finissage. Il est ainsi possible de prélever à chaque instant une quantité d'énergie mécanique telle que le couple effectivement délivré au rouage de finissage est sensiblement constant.
[0022] Dans le cas ci-dessus, le mécanisme comprend préférablement une seconde roue solaire solidaire en rotation du tambour de barillet et agencée en prise avec la seconde roue de satellite.
[0023] Suivant un mode de réalisation alternatif, le train planétaire peut en outre être agencé pour permettre un transfert d'énergie depuis l'extrémité interne du ressort de barillet vers son extrémité externe ou le rouage de finissage.
[0024] Dans ce cas, le tambour de barillet définit avantageusement un porte- satellite du train planétaire, celui-ci portant le satellite dont la première roue non circulaire est solidaire d'une seconde roue de satellite non circulaire et coaxiale à cette dernière. La première roue non circulaire de satellite présente alors une liaison cinématique avec l'arbre de barillet, par l'intermédiaire de la première roue solaire non circulaire, la seconde roue non circulaire de satellite étant destinée à présenter une liaison cinématique avec le mécanisme de remontage, par l'intermédiaire d'une seconde roue solaire non circulaire.
[0025] La seconde roue solaire non circulaire est préférablement coaxiale à l'arbre de barillet en étant libre de tourner par rapport à ce dernier.
[0026] Grâce à ces caractéristiques, on obtient un effet supplémentaire en référence au premier mode de réalisation décrit plus haut, du fait que de l'énergie peut, non seulement, être réinjectée à l'arbre de barillet lorsque le couple de sortie délivré par le tambour est supérieur aux besoins, mais peut également être prélevée au niveau de l'arbre de barillet lorsque le couple de sortie délivré par le tambour de barillet devient insuffisant.
[0027] La présente invention concerne également un mouvement horloger muni d'un tel mécanisme ainsi qu'une pièce d'horlogerie comprenant un tel mouvement horloger.
Brève description des dessins
[0028] D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description détaillée de modes de réalisation préférés qui suit, faite en référence aux dessins annexés donnés à titre d'exemples non limitatifs et dans lesquels:
[0029] - les figures 1a, 1 b et 1 c représentent des diagrammes schématiques illustrant le fonctionnement d'un mécanisme selon un premier mode de réalisation préféré de la présente invention;
[0030] - les figures 2a et 2b représentent des vues, respectivement de dessus et en coupe transversale, du mécanisme des figures 1a à 1 c;
[0031] - la figure 3 représente un diagramme illustrant le résultat de calculs réalisés pour la mise en œuvre du mécanisme des figures 2a et 2b;
[0032] - la figure 4 représente un diagramme comparatif illustrant les effets du mécanisme des figures 2a et 2b en référence à d'autres constructions; [0033] - la figure 5 représente un diagramme illustrant le comportement du mécanisme des figures 2a et 2b;
[0034] - les figures 6a, 6b et 6c représentent des diagrammes schématiques illustrant le fonctionnement d'un mécanisme selon un second mode de réalisation préféré de la présente invention;
[0035] - les figures 7a et 7b représentent des vues, respectivement de dessus et en coupe transversale, du mécanisme des figures 6a à 6c;
[0036] - la figure 8 représente un diagramme illustrant le résultat de calculs réalisés pour la mise en œuvre du mécanisme des figures 7a et 7b;
[0037] - la figure 9 représente un diagramme comparatif illustrant les effets du mécanisme des figures 7a et 7b en référence à d'autres constructions, et
[0038] - la figure 10 représente un diagramme illustrant le comportement du mécanisme des figures 7a et 7b.
Mode(s) de réalisation de l'invention
[0039] Un principe de base de la présente invention réside dans la mise en œuvre d'un train planétaire dans un train d'engrenages définissant une liaison cinématique entre les deux extrémités d'un ressort de barillet, pour réinjecter de l'énergie mécanique prélevée de l'une vers l'autre.
[0040] Dans les modes de réalisation qui vont être décrits en relation avec les figures, à titre illustratif non limitatif, un ressort de barillet délivre de l'énergie à un rouage de finissage par l'intermédiaire d'un tambour de barillet et est rechargé par l'arbre du barillet, tandis que le train planétaire est du type à deux roues solaires et double satellite, et comprend au moins deux roues dont la périphérie est non circulaire. Deux modes de réalisation préférés répondant à ces caractéristiques vont être décrits, étant entendu que l'homme du métier pourra adapter l'enseignement du présent texte en fonction de ses propres besoins, sans sortir du cadre de la présente invention. Par exemple, il est possible de mettre en œuvre des constructions dans lesquelles le ressort est rechargé par le tambour et relié au rouage de finissage par l'arbre de barillet.
[0041] Les figures 1 a, 1 b et 1 c représentent des diagrammes schématiques illustrant le fonctionnement d'un mécanisme selon un premier mode de réalisation préféré de la présente invention. Selon ce premier mode de réalisation, la réinjection de l'énergie mécanique n'intervient que de manière unidirectionnelle, c'est-à-dire toujours d'une même extrémité du ressort de barillet vers l'autre.
[0042] Un train planétaire comporte en principe trois entrées/sorties qui ont été référencées par A, B et C sur les figures 1 a à 1 c, C étant un porte-satellite, tandis que le bloc D schématise le satellite du train planétaire.
[0043] Le mécanisme selon la présente invention comporte un barillet 1 comprenant un tambour 2 logeant un ressort 3 de barillet, dont l'extrémité externe est solidaire du tambour et l'extrémité interne est solidaire d'une bonde 4, elle-même solidaire d'un arbre 5 de barillet.
[0044] Le barillet 1 est destiné à être associé à un mouvement horloger pour entretenir les oscillations d'un résonateur mécanique 6, schématisé ici par un balancier-spiral (dont le spiral n'est pas représenté) coopérant avec un échappement. La transmission de l'énergie mécanique depuis le tambour 2 de barillet jusqu'au résonateur est réalisée par un rouage de finissage non représenté ici.
[0045] Le mouvement horloger comprend conventionnellennent un mécanisme de remontage du ressort 3 de barillet, schématisé ici par une tige de remontoir 7.
[0046] Comme cela ressortira des figures 2a et 2b, A et C représentent ici des entrées du train planétaire, tandis que B représente une sortie du train planétaire. Plus précisément, l'entrée A présente une liaison cinématique avec le tambour 2 de barillet, l'entrée C avec le mécanisme de remontage, et la sortie B avec l'arbre 5 de barillet.
[0047] La figure 1 a illustre la situation correspondant au remontage du ressort de barillet à partir du mécanisme de remontage.
[0048] Dans ce cas, on peut considérer qu'en cours de remontage, le tambour de barillet est fixe, donc que A est fixe, ce qui est schématisé par des traits discontinus. L'actionnement du mécanisme de remontage entraîne une rotation du porte-satellite C et du même coup de B, par l'intermédiaire du satellite D, ce qui a pour effet de recharger le ressort 3 de barillet, de manière similaire à un mécanisme conventionnel. [0049] La figure 1 b illustre la situation correspondant au fonctionnement courant du mouvement horloger, c'est-à-dire lorsque le barillet se dévide pour entretenir les oscillations du résonateur 6. Plus précisément, la figure 1 b correspond au cas où le ressort 3 de barillet est fortement chargé.
[0050] Dans ce cas, le porte-satellite est immobilisé, par exemple par un cliquet prévu dans le mécanisme de remontage, tandis que le tambour 2 de barillet tourne pour transmettre de l'énergie mécanique au rouage de finissage. La rotation du tambour entraîne celle de A qui entraîne celle de B par l'intermédiaire du satellite D. Ainsi, comme schématisé sur la figure 1 b, une partie de l'énergie mécanique délivrée par le tambour de barillet est réinjectée au niveau de l'arbre de barillet pour recharger le ressort 3 de barillet.
[0051] La figure 1 c illustre également une situation correspondant au fonctionnement courant du mouvement horloger, c'est-à-dire lorsque le barillet se dévide pour entretenir les oscillations du résonateur 6. Plus précisément, la figure 1 c correspond au cas où le ressort 3 de barillet est faiblement chargé.
[0052] Dans ce cas, il ressort de la figure 1 c que la quantité d'énergie réinjectée dans le barillet par son arbre est réduite par rapport à la situation de la figure 1 b. Lorsque le barillet se dévide davantage, sans être remonté, le transfert d'énergie mécanique du tambour vers l'arbre peut être réduit fortement pour permettre la poursuite des oscillations du résonateur 6.
[0053] Les figures 2a et 2b représentent des vues, respectivement de dessus et en coupe transversale selon la ligne ll-ll de la figure 2a, d'un mécanisme présentant les caractéristiques qui viennent d'être décrites en relation avec les figures 1 a à 1 c.
[0054] U n premier mobile du rouage de fin issage, ici un mobile de grande moyenne 20, a été représenté à titre illustratif sur les figures 2a et 2b, celui-ci comportant un pignon 21 , agencé en prise avec le tambour 2 de barillet, et une roue 22, destinée à transmettre l'énergie mécanique reçue du barillet au reste du rouage de finissage.
[0055] Le train planétaire est agencé sur le tambour 2 et comprend un rochet 24 (représenté en étant partiellement arraché sur la figure 2a pour plus de clarté) jouant le rôle du porte-satellite C, libre de tourner en référence à la bonde 4. Le rochet porte u n satellite 26 comprenant une première roue non circulaire 28 agencée en prise avec une première roue solaire non circulaire 30, cette dernière étant coaxiale à l'arbre 5 de barillet et solidaire de ce dernier.
[0056] Le satellite porte en outre une seconde roue 32, circulaire et agencée en prise avec une seconde roue solaire 34, également circulaire. Les roues 28 et 32 sont solidaires l'une de l'autre en rotation.
[0057] Cette construction ressort plus clairement de la figure 2b, sur laquelle il apparaît que la seconde roue solaire présente ici la forme d'un pignon, celui-ci étant solidaire en rotation du tambour 2 de barillet. Le pignon peut par exemple être chassé dans le tambour.
[0058] Le fonctionnement de ce mécanisme est tel qu'il a été décrit plus haut, en relation avec les figures 1 a à 1 c.
[0059] La proportion de l'énergie mécanique délivrée par le tambour 2 qui est réinjectée à la bonde 4 peut être ajustée en fonction des périphéries des roues non circulaires 28, 30. En particulier, ces périphéries peuvent avantageusement être choisies de telle manière que le couple effectivement délivré par le tambour au rouage de finissage est constant quel que soit l'état de charge du ressort de barillet.
[0060] En effet, il est possible de définir un système d'équations différentielles régissant le fonctionnement du mécanisme qui vient d'être décrit.
[0061 ] Le moment du barillet ( Mbariiiet) dépend de l'angle du tambour (ΘΑ) et de l'angle de la bonde (ΘΒ). Il peut être décrit par une fonction continue f(0A, ΘΒ):
[0062] MbariUet = f(eA,eB)
[0063] Par exemple, cette fonction pourrait être:
Figure imgf000012_0001
[0065] où Marmé est le moment lorsque le barillet est complètement armé et k est la constante du ressort (rigidité).
[0066] A l'équilibre, la somme des forces agissant sur le satellite est nulle: [0068] où px , est le rayon primitif du mobile x, au point de contact.
[0069] A tout moment du fonctionnement, les différentes roues dentées doivent rouler sans glissement les unes sur les autres. Cela se tradu it par des vitesses circonférentielles identiques:
Figure imgf000013_0001
[0071 ] Cette dernière équation peut également s'écrire sous la forme différentielle:
Figure imgf000013_0002
[0073] A tout moment du fonctionnement, les différentes roues dentées doivent rester en contact deux à deux sur leur ligne des centres. Cela se traduit par le fait que la somme des rayons primitifs est égale à l'entraxe (e):
Figure imgf000013_0003
[0075] et
[0076] pB + pSB = e
[0077] Dans ces équations, PA est le rayon du pignon 34, PB celui de la roue 30, PSA celui de la roue 32, et PSB celui de la roue 28.
[0078] Les équations ci-dessus constituent un système d'équations différentielles.
La résolution de ce système d'équations permet d'obtenir les formes (primitives) que doivent avoir les roues dentées pour obtenir le couple Mrouage à partir d'un barillet présentant un couple Mbariiiet = Î(0A, ΘΒ).
L'existence d'une solution analytique dépend de la fonction Mbariiiet = Î(0A, ΘΒ). D'autre part, il faut introduire quelques conditions supplémentaires sur la géométrie des roues dentées pour restreindre les solutions à des formes réalisables.
[0079] En effet, il est possible de considérer différentes conditions particulières alternatives ou cumulatives pour résoudre le système d'équations ci- dessus:
a) on veut, selon une réalisation préférée, que le moment disponible pour le rouage (Mrouage) soit constant;
b) en vertu du principe de conservation de l'énergie, on peut imposer q ue la va leur de Mrouage soit égale à l'énergie stockée dans le barillet divisée par l'angle total de rotation du tambour. En effet, l'énergie vaut E=f Md9;
c) on peut fixer l'entraxe;
d) on peut imposer que Mbariiiet = Marmé - Ι<(ΘΑ-ΘΒ) si ΘΑ > ΘΒ et 0 sinon. On peut fixer Marmé. On peut fixer le nombre de tours de développement du ressort dans le barillet;
e) on veut préférablement utiliser des engrenages circulaires à un tour, c'est-à-dire que la primitive est dans un plan xy. Autrement dit, la roue correspondante peut être découpée dans une plaque plane, par opposition à des engrenages non circulaires à plusieurs tours dont la ligne de contact s'élève selon la direction de l'axe z (en forme de coquille d'escargot);
f) on peut imposer que le pignon 34 est circulaire;
g) on impose que le rayon de la roue 30 est inférieur à l'entraxe; h) on peut imposer une valeur minimale du rapport d'engrenage entre la roue 28 du satellite et la roue 30 solidaire de la bonde. Cela permet de ménager de l'espace au centre de la roue 30 pour y disposer un moyeu.
[0080] En introduisant l'ensemble des conditions posées ci-dessus dans le système d'équations exposé plus haut, on peut résoudre les équations et obtenir des primitives pour les différentes roues dentées du train planétaire.
[0081 ] Ces primitives sont illustrées à titre non limitatif sur la figure 3. La détermination de ces primitives permet ensuite la réalisation des roues telles qu'elles sont représentées sur les figures 2a et 2b.
[0082] La figure 4 représente un diagramme comparatif illustrant les effets du mécanisme des figures 2a et 2b en référence à d'autres constructions, par illustration du couple disponible en fonction de la position angulaire du tambour de barillet.
[0083] La courbe M rouage conventionnel représente la caractéristique du barillet sans le mécanisme de réinjection selon la présente invention.
[0084] La courbe M rouage avec réinjection représente le couple disponible au rouage de fin issage en fonction de la position angu laire du tambour pour le cas particulier calculé précédemment. On constate que le couple disponible au rouage de finissage est bien constant. D'autre part, on constate également que l'aire située sous la courbe, qui représente l'énergie mécanique, est équivalente à celle située sous la courbe Mr0uage conventionnel.
[0085] La courbe Mressort avec réinjection montre que, grâce au mécanisme selon la présente invention, le ressort de barillet se décharge lentement au début de sa décharge (lorsque son couple est élevé) et plus rapidement lorsqu'il est désarmé.
[0086] I l convient également de remarquer que, comme le tambour tourne à vitesse constante, l'abscisse de la figure 4 représente proportionnellement le temps qui passe lorsque le mouvement horloger est un mode de fonctionnement courant.
[0087] Enfin, la courbe MEDT illustre de manière schématique l'évolution du couple disponible au rouage de finissage avec la mise en œuvre du mécanisme mentionné plus haut en relation avec l'art antérieur (EP 2042944 A1 ).
[0088] La figure 5 représente un diagramme illustrant la position angulaire de la bonde par rapport à la position angulaire du tambour de barillet, au cours du temps de décharge du ressort de barillet (le temps étant proportionnel à Otambour).
[0089] On constate sur la figure 5 qu'en début de décharge du ressort de barillet, la vitesse de la bonde (pente de la courbe) est maximale et que cette vitesse tend à s'annuler lorsque le barillet est déchargé. Ce comportement s'explique par le fait que la puissance réinjectée à la bonde est importante lorsque le ressort est fortement armé et quasi-nulle lorsque le ressort est désarmé.
[0090] Les figures 6a, 6b et 6c représentent des diagrammes schématiques illustrant le fonctionnement d'un mécanisme selon un second mode de réalisation préféré de la présente invention. Selon ce second mode de réalisation, la réinjection de l'énergie mécanique est susceptible d'intervenir de manière bidirectionnelle, c'est-à-dire d'une extrémité du ressort de barillet vers l'autre et inversement.
[0091] Les mêmes signes de référence que sur les figures 1 a à 1 c ont été maintenus sur les figures 6a à 6c, pour en simplifier la compréhension. [0092] Ainsi, le train planétaire peut avantageusement comporter trois entrées/sorties, comme dans le premier mode de réalisation, qui ont été référencées par A, B et C sur les figures 6a à 6c, C étant un porte-satellite, tandis que le bloc D schématise le satellite du train planétaire.
[0093] Comme cela ressortira des figures 7a et 7b, A représente ici une entrée du train planétaire, tandis que B et C représentent des entrées-sorties du train planétaire. Plus précisément, l'entrée A présente une liaison cinématique avec le mécanisme de remontage, tandis que les entrées- sorties B et C présentent des liaisons cinématiques respectives avec l'arbre 5 de barillet et avec le tambour 2 de barillet.
[0094] La figure 6a illustre la situation correspondant au remontage du ressort de barillet à partir du mécanisme de remontage.
[0095] Dans ce cas, on peut considérer qu'en cours de remontage, le tambour de barillet est fixe, donc que C est fixe, ce qui est schématisé par des traits discontinus. L'actionnement du mécanisme de remontage entraîne une rotation du satellite D et du même coup de B, ce qui a pour effet de recharger le ressort 3 de barillet, de manière similaire à un mécanisme conventionnel.
[0096] La figure 6b illustre la situation correspondant au fonctionnement courant du mouvement horloger, c'est-à-dire lorsque le barillet se dévide pour entretenir les oscillations du résonateur 6. Plus précisément, la figure 6b correspond au cas où le ressort 3 de barillet est fortement chargé.
[0097] Dans ce cas, A est immobilisée, par exemple par un cliquet prévu dans le mécanisme de remontage, tandis que le tambour 2 de barillet tourne pour transmettre de l'énergie mécanique au rouage de finissage. La rotation du tambour entraîne celle de C qui entraîne celle de B, par l'intermédiaire du satellite D. Ainsi, comme schématisé sur la figure 6b, une partie de l'énergie mécanique délivrée par le tambour de barillet est réinjectée au niveau de l'arbre de barillet pour recharger le ressort 3 de barillet.
[0098] La figure 6c illustre également une situation correspondant au fonctionnement courant du mouvement horloger, c'est-à-dire lorsque le barillet se dévide pour entretenir les oscillations du résonateur 6. Plus précisément, la figure 6c correspond au cas où le ressort 3 de barillet est faiblement chargé.
[0099] Dans ce cas, il ressort de la figure 6c que de l'énergie mécanique peut être prélevée par B au niveau de l'arbre de barillet pour être réinjectée dans le rouage de finissage, par l'intermédiaire du porte-satellite C.
[00100] Les figures 7a et 7b représentent des vues, respectivement de dessus et en coupe transversale selon la ligne VII-VII de la figure 7a, d'un mécanisme présentant les caractéristiques qui viennent d'être décrites en relation avec les figures 6a à 6c.
[00101] U n premier mobile du rouage de fin issage, ici un mobile de grande moyenne 120, a été représenté à titre illustratif sur les figures 7a et 7b, celui-ci comportant un pignon 121 , agencé en prise avec le tambour 102 de barillet, et une roue 122, destinée à transmettre l'énergie mécanique reçue du barillet au reste du rouage de finissage.
[00102] Le train planétaire est agencé sur le tambour 102 et comprend un rochet 124 (représenté en étant partiellement arraché sur la figure 7a pour plus de clarté) monté libre en rotation sur l'arbre de barillet 105. Il ressort en particulier de la figure 7b que le tambour 102 de barillet joue le rôle du porte-satellite C, libre de tourner en référence à la bonde 104. Le tambour 102 porte un satellite 126 comprenant une première roue non circulaire
128 agencée en prise avec une première roue solaire non circulaire 130, cette dernière étant coaxiale à l'arbre 105 de barillet et solidaire de ce dernier.
[00103] Le satellite porte en outre une seconde roue 132 non circulaire et agencée en prise avec une seconde roue solaire non circulaire 134. Cette dernière est destinée à présenter une liaison cinématique avec le mécanisme de remontage. Dans ce but, elle est agencée solidaire en rotation du rochet 124 destiné à être entraîné en rotation par le mécanisme de remontage. Les roues 128 et 132 sont solidaires en rotation.
[00104] La configuration en porte-satellite ressort plus clairement de la figure 7b, sur laquelle il apparaît que le satellite est assemblé au tambour 102 de barillet par un arbre 136. [00105] Le fonctionnement de ce mécanisme est tel qu'il a été décrit plus haut, en relation avec les figures 6a à 6c.
[00106] La proportion de l'énergie mécanique délivrée par le tambour 102 qui est réinjectée à la bonde 104 et la proportion d'énergie prélevée à la bonde pour être réinjectée dans le rouage de finissage peuvent être ajustées en fonction des périphéries des roues non circulaires 128, 130, 132 et 1 34. En particulier, ces périphéries peuvent avantageusement être choisies de telle manière que le couple effectivement délivré par le tambour au rouage de finissage est constant quel que soit l'état de charge du ressort de barillet.
[00107] En effet, il est possible de définir un autre système d'équations différentielles régissant le fonctionnement du mécanisme selon le second mode de réalisation préféré de l'invention.
[00108] Le moment du barillet {MbariUet ) dépend de l'angle du tambour ( 6C ) et de l'angle de la bonde ( ΘΒ ). I l peut être décrit par u ne fonction continue f(0c,eB) :
[00109] MbariUet = f(ec,eB)
[001 10] Par exemple, cette fonction pourrait être:
Figure imgf000018_0001
[001 1 1 ] où Marmé est le moment lorsque le barillet est complètement armé et k est la constante du ressort (rigidité).
[001 12] A l'équilibre, la somme des forces agissant sur le satellite est nulle:
[001 13] {MbariUet - Mrouage ) = MbariUet (1 -
Figure imgf000018_0002
[001 14] où px , est le rayon primitif du mobile x, au point de contact.
[001 15] A tout moment du fonctionnement, les différentes roues dentées doivent rouler sans glissement les unes sur les autres. Cela se traduit par des vitesses circonférentielles identiques:
[001 16] ΘΒ pB pSA + ec (pA pSB - pB pSA) = 0
[001 17] Cette dernière équation peut également s'écrire sous la forme différentielle:
[001 18] άθΒ pB pSA + d0c (pA pSB - Pb Psa) = 0 [00119] A tout moment du fonctionnement, les différentes roues dentées doivent rester en contact deux à deux sur leur ligne des centres. Cela se traduit par le fait que la somme des rayons primitifs est égale à l'entraxe (e):
Figure imgf000019_0001
[00121] Et
[00122] PB + PSB =e
[00123] Dans ces équations, PA est le rayon de la roue 134, PB celui de la roue 130, PSA celui de la roue 132, et PSB celui de la roue 128.
[00124] Les équations ci-dessus constituent un système d'équations différentielles.
La résolution de ce système d'équations permet d'obtenir les formes (primitives) que doivent avoir les roues dentées pour obtenir le couple Mrouage à partir d'un barillet présentant un couple Mbariiiet = f(0c, ΘΒ). L'existence d'une solution analytique dépend de la fonction Mbariiiet = ί(θο, θβ). D'autre part, il faut introduire quelques conditions supplémentaires sur la géométrie des roues dentées pour restreindre les solutions à des formes réalisables.
[00125] Il est possible de considérer différentes conditions particulières alternatives ou cumulatives pour résoudre le système d'équations ci- dessus:
a) on veut, selon une réalisation préférée, que le moment disponible pour le rouage (Mrouage) soit constant;
b) en vertu du principe de conservation de l'énergie, on peut imposer que la valeur de Mrouage soit égale à la moyenne du moment du barillet; c) on peut fixer l'entraxe;
d) on peut imposer que Mbariiiet = Marmé- Ι<(ΘΟ-ΘΒ) si 0c > ΘΒ et 0 sinon. On peut fixer Marmé;
e) on veut préférablement utiliser des engrenages circulaires à un tour;
f) on peut imposer que la roue 134 soit identique à la roue 128;
g) on peut imposer que la bonde se retrouve dans sa position initiale (ressort complètement armé) lorsque le tambour est à la fin de sa course (ressort complètement désarmé);
h) on peut imposer une valeur minimale du rapport d'engrenage entre la roue 128 du satellite et la roue 130 solidaire de la bonde. Cela permet de ménager de l'espace au centre de la roue 130 pour y disposer un moyeu.
[00126] En introduisant l'ensemble des conditions posées ci-dessus dans le système d'équations exposé plus haut, on peut résoudre les équations et obten ir des prim itives pour les différentes roues dentées du train planétaire.
[00127] Ces primitives sont illustrées à titre non limitatif sur la figure 8. La détermination de ces primitives permet ensuite la réalisation des roues telles qu'elles sont représentées sur les figures 7a et 7b.
[00128] La figure 9 représente un diagramme comparatif illustrant les effets du mécanisme des figures 7a et 7b en référence à d'autres constructions, par illustration du couple disponible en fonction de la position angulaire du tambour de barillet.
[00129] La courbe M rouage conventionnel représente la caractéristique du barillet sans le mécanisme de réinjection selon la présente invention.
[00130] La courbe M rouage avec réinjection représente le couple disponible au rouage de finissage en fonction de la position angulaire du tambour pour le cas particulier calculé précédemment. On constate que le couple disponible au rouage de finissage est bien constant. D'autre part, on constate également que l'aire située sous la courbe, qui représente l'énergie mécanique, est équivalente à celle située sous la courbe Mr0uage conventionnel.
[00131] La courbe M ressort avec réinjection montre que, grâce au mécanisme selon la présente invention, le ressort de barillet se décharge lentement au début de sa décharge (lorsque son couple est élevé) et plus rapidement lorsqu'il est désarmé.
[00132] Il convient également de remarquer que, comme le tambour tourne à vitesse constante, l'abscisse de la figure 9 représente proportionnellement le temps qui passe lorsque le mouvement horloger est un mode de fonctionnement courant.
[00133] La figure 10 représente un diagramme, similaire à celui de la figure 5, illustrant la position angulaire de la bonde par rapport à la position angulaire du tambour de barillet, au cours du temps de décharge du ressort de barillet (le temps étant proportionnel à Otambour).
[00134] On constate sur la figure 10 qu'en début de décharge du ressort de barillet, la vitesse de la bonde est maximale et que cette vitesse s'annule lorsque Mbariiiet = Mrouage. Le sens de rotation de la bonde s'inverse lorsque le barillet est déchargé (Mbariiiet < Mrouage), de manière à injecter de la puissance dans le rouage par la bonde. Ce comportement s'explique par le fait que la puissance réinjectée à la bonde est positive et importante lorsque le ressort est fortement armé et négative (prélèvement) lorsque le ressort est désarmé. Contrairement au mécanisme de réinjection unidirectionnelle, selon le premier mode de réalisation, le sens de rotation de la bonde peut s'inverser dans le présent mécanisme de réinjection bidirectionnelle.
[00135] La description qui précède s'attache à décrire des modes de réalisation particuliers à titre d'illustration non limitative et, l'invention n'est pas limitée à la mise en œuvre de certaines caractéristiques particulières qui viennent d'être décrites, comme par exemple les formes spécifiquement illustrées et décrites pour les dentures des différentes roues, notamment le fait qu'elles soient de type interne ou de type externe. En effet, il est possible de remplacer les roues solaires par des couronnes à denture interne sans sortir du cadre de la présente invention.
[00136] L'homme du métier ne rencontrera pas de difficulté particulière pour adapter le contenu de la présente divulgation à ses propres besoins et mettre en œuvre un mécanisme de régulation du couple délivré au rouage de finissage répondant seulement en partie aux caractéristiques qui viennent d'être présentées, sans sortir du cadre de la présente invention.
[00137] A titre d'exemple, il est possible de prévoir que les roues non circulaires mises en œuvre parcourent plus d'un tour sur elles-mêmes sans sortir du cadre de l'invention. Dans ce cas, ces roues ne seraient pas planes, comme mentionné plus haut.
[00138] On notera que, dans le cas d'un mécanisme fonctionnant avec un seul tour de développement du ressort de barillet, la forme et le matériau de ce dernier peuvent être optimisés de manière à restituer un maximum d'énergie sur ce seul tour de développement puisque le couple disponible au rouage de finissage est contrôlé.
[00139] Bien entendu, les profils des dentures utilisées seront avantageusement optimisés pour réduire les pressions hertziennes en jeu, alors qu'habituellement, ils sont plutôt optimisés pour assurer une transmission homogène du couple et de la vitesse.
[00140] De manière avantageuse, on pourra prévoir un mécanisme d'arrêtage du remontage lorsque le ressort de barillet est pleinement chargé. Un tel mécanisme d'arrêtage pourra par exemple être réalisé directement par un choix de formes adaptées des périphéries des roues non circulaires, dont chacune pourrait présenter un flanc destiné à coopérer avec le flanc de l'autre roue pour définir une butée.
[00141] De manière similaire, un dispositif de débrayage du mécanisme de remontage automatique pourrait être avantageusement prévu pour limiter les contraintes appliquées au mécanisme lorsque le ressort est complètement chargé, voire un dispositif de verrouillage de la masse oscillante.
[00142] Par ailleurs, on notera que plusieurs mécanismes selon la présente invention peuvent être montés en série dans un mouvement horloger, permettant ainsi d'augmenter la réserve de marche sans pour autant avoir un couple disponible au rouage de finissage trop important.

Claims

Mécanisme, agencé pour délivrer de l'énergie mécanique à un rouage de finissage d'un mouvement horloger sous la forme d'un couple de sortie prédéfini transmis à un premier mobile (20, 120) du rouage de finissage, le mécanisme comportant
un ressort (3) de barillet (1 ) dont une extrémité, interne, est solidaire d'un arbre de barillet (5, 105) et une extrémité, externe, est solidaire d'un tambour (2, 102) de barillet, une première desdites extrémités étant destinée à être reliée cinématiquement au premier mobile du rouage de finissage,
un train d'engrenages agencé pour assurer une liaison cinématique entre lesdites extrémités dudit ressort de barillet et permettre un transfert d'énergie mécanique entre elles,
caractérisé en ce que ledit train d'engrenages comprend u n train planétaire (24, 26, 28, 30, 32, 34, 102, 126, 128, 130, 132, 134) présentant une première entrée-sortie (24 , 1 34 ) destinée à être reliée cinématiquement à un mécanisme de remontage (7) dudit ressort (3) de barillet,
une seconde entrée-sortie (34, 102) reliée cinématiquement à une extrémité dudit ressort de barillet, et
une troisième entrée-sortie (30, 130) reliée cinématiquement à l'autre extrémité dudit ressort de barillet, et
en ce que ledit train planétaire (24, 26, 28, 30, 32, 34, 102, 126, 128, 130, 132, 134) comporte un satellite (26, 126) comprenant une première roue non circulaire (28, 128) agencée en prise avec une première roue solaire non circulaire (30, 130).
Mécanisme selon la revendication 1 , caractérisé en ce que lesdites roues non circulaires (28, 30, 128, 130) présentent des périphéries respectives telles que le couple transmis au premier mobile (20, 120) du rouage de finissage est sensiblement constant.
Mécanisme selon la revendication 1 ou 2, caractérisé en ce que ledit couple de sortie est transmis au rouage de finissage à partir dudit tambour (2, 102) de barillet (1 ), ledit train planétaire (24, 26, 28, 30, 32, 34, 102, 126, 128, 130, 132, 134) étant agencé pour permettre un transfert d'énergie depuis ladite extrémité externe dudit ressort (3) de barillet vers ladite extrémité interne.
4. Mécanisme selon la revend ication 3, caractérisé en ce q u e led it train planétaire (24, 26, 28, 30, 32, 34) comporte un porte-satellite (24), destiné à être relié cinématiquement au mécanisme de remontage (7) et, portant ledit satellite (26) dont ladite première roue non circulaire (28) est solidaire d'une seconde roue de satellite (32) et coaxiale à cette dernière, ladite première roue non circulaire de satellite (28) présentant u ne liaison cinématique avec ledit tambour (2) de barillet, ladite première roue solaire non circulaire (30) présentant une liaison cinématique avec ledit arbre (5) de barillet.
5. Mécanisme selon la revendication 4, caractérisé en ce que ladite première roue solaire non circulaire (30) est coaxiale audit arbre (5) de barillet en étant solidaire de ce dernier en rotation.
6. Mécanisme selon la revendication 4 ou 5, caractérisé en ce qu'il comprend une seconde roue solaire (34) solidaire en rotation dudit tambour (2) de barillet et agencée en prise avec ladite seconde roue de satellite (32).
7. Mécanisme selon la revendication 3, caractérisé en ce que ledit train planétaire (102, 126, 128, 130, 132, 134) est en outre agencé pour permettre un transfert d'énergie depuis ladite extrémité interne dudit ressort (3) de barillet vers ladite extrémité externe ou le rouage de finissage.
8. Mécanisme selon la revendication 7, caractérisé en ce que ledit tambour (102) de barillet définit un porte-satellite dudit train planétaire, celui-ci portant ledit satellite (126) dont ladite première roue non circulaire (128) est solidaire d'une seconde roue de satellite non circulaire (132) et coaxiale à cette dernière, ladite première roue non circulaire de satellite (128) présentant une liaison cinématique avec ledit arbre (105) de barillet, par l'intermédiaire de ladite première roue solaire non circulaire (130), ladite seconde roue non circulaire de satellite (132) étant destinée à présenter une liaison cinématique avec le mécanisme de remontage (7), par l'intermédiaire d'une seconde roue solaire non circulaire (134).
9. Mécanisme selon la revendication 8, caractérisé en ce que lad ite seconde roue solaire non circulaire (134) est coaxiale audit arbre (105) de barillet en étant libre de tourner par rapport à ce dernier.
10. Mouvement horloger comportant un mécanisme selon l'une quelconque des revendications précédentes.
1 1. Pièce d'horlogerie comportant un mouvement horloger selon la revendication 10.
PCT/EP2012/060920 2011-06-10 2012-06-08 Source d'energie mecanique pour mouvement horloger a couple de sortie predefini WO2012168443A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12732989.4A EP2718769B1 (fr) 2011-06-10 2012-06-08 Source d'energie mecanique pour mouvement horloger a couple de sortie predefini

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00987/11 2011-06-10
CH00987/11A CH705079A1 (fr) 2011-06-10 2011-06-10 Source d'énergie mécanique pour mouvement horloger à couple de sortie prédéfini.

Publications (2)

Publication Number Publication Date
WO2012168443A2 true WO2012168443A2 (fr) 2012-12-13
WO2012168443A3 WO2012168443A3 (fr) 2013-01-31

Family

ID=47296539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/060920 WO2012168443A2 (fr) 2011-06-10 2012-06-08 Source d'energie mecanique pour mouvement horloger a couple de sortie predefini

Country Status (3)

Country Link
EP (1) EP2718769B1 (fr)
CH (1) CH705079A1 (fr)
WO (1) WO2012168443A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871537A1 (fr) * 2013-11-06 2015-05-13 ETA SA Manufacture Horlogère Suisse Montre à réserve de marche améliorée
EP3070535A1 (fr) * 2015-03-18 2016-09-21 Glashütter Uhrenbetrieb GmbH Barillet ayant un couple de rotation essentiellement constant
EP3112949A1 (fr) 2015-07-01 2017-01-04 Cartier International AG Source d'energie mecanique pour mouvement horloger
EP3182217A1 (fr) * 2015-12-18 2017-06-21 Montres Breguet S.A. Mécanisme de réglage de rapport de couple entre des mobiles d'horlogerie
CN110953306A (zh) * 2019-12-17 2020-04-03 清华大学 一种基于非圆行星齿轮的非线性弹簧机构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042944A2 (fr) 2007-09-28 2009-04-01 Seiko Epson Corporation Dispositif de ressort et pièce d'horlogerie

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914604A1 (fr) * 2006-10-19 2008-04-23 Girard-Perregaux S.A. Mouvement horloger avec transmission d'energie à couple constant entre la source d'energie et l'oscillateur mécanique
US7832924B2 (en) * 2007-03-27 2010-11-16 Seiko Epson Corporation Timepiece
CN201199317Y (zh) * 2008-03-31 2009-02-25 天津海鸥表业集团有限公司 机械手表定时制动摆轮机构
EP2264551B1 (fr) * 2009-06-16 2013-08-07 Samep S.A. - Montres Emile Pequignet Engrenage differentiel pour mouvement horloger
CN201464813U (zh) * 2009-07-03 2010-05-12 天津海鸥表业集团有限公司 差动输出条盒轮
JP2011169799A (ja) * 2010-02-19 2011-09-01 Citizen Holdings Co Ltd ゼンマイトルク補正機構付き時計

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042944A2 (fr) 2007-09-28 2009-04-01 Seiko Epson Corporation Dispositif de ressort et pièce d'horlogerie

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871537A1 (fr) * 2013-11-06 2015-05-13 ETA SA Manufacture Horlogère Suisse Montre à réserve de marche améliorée
CN104635466A (zh) * 2013-11-06 2015-05-20 Eta瑞士钟表制造股份有限公司 具有改进的动力储存的手表
US9063515B2 (en) 2013-11-06 2015-06-23 Eta Sa Manufacture Horlogere Suisse Watch with improved power reserve
EP3070535A1 (fr) * 2015-03-18 2016-09-21 Glashütter Uhrenbetrieb GmbH Barillet ayant un couple de rotation essentiellement constant
US9671754B2 (en) 2015-03-18 2017-06-06 Glashütter Uhrenbetrieb GmbH Barrel with substantially constant torque
EP3112949A1 (fr) 2015-07-01 2017-01-04 Cartier International AG Source d'energie mecanique pour mouvement horloger
EP3182217A1 (fr) * 2015-12-18 2017-06-21 Montres Breguet S.A. Mécanisme de réglage de rapport de couple entre des mobiles d'horlogerie
US10222744B2 (en) 2015-12-18 2019-03-05 Montres Breguet S.A. Mechanism for regulating the torque ratio between time-piece wheel sets
CN110953306A (zh) * 2019-12-17 2020-04-03 清华大学 一种基于非圆行星齿轮的非线性弹簧机构

Also Published As

Publication number Publication date
EP2718769B1 (fr) 2016-04-06
EP2718769A2 (fr) 2014-04-16
WO2012168443A3 (fr) 2013-01-31
CH705079A1 (fr) 2012-12-14

Similar Documents

Publication Publication Date Title
EP2076821B1 (fr) Mouvement horloger avec transmission d&#39;energie a couple constant entre la source d&#39;energie et l&#39;oscillateur mecanique
EP2871537B1 (fr) Montre à réserve de marche améliorée
EP2718769B1 (fr) Source d&#39;energie mecanique pour mouvement horloger a couple de sortie predefini
EP3764168B1 (fr) Mécanisme d&#39;affichage d&#39;horlogerie à aiguille élastique
EP2515186B1 (fr) Rouage de finissage pour pièce d&#39;horlogerie
EP1884841A1 (fr) Mouvement d&#39;horlogerie permettant de commander un organe d&#39;affichage suivant une trajectoire complexe et pièce d&#39;horlogerie comportant un tel mouvement
WO2012168773A1 (fr) Mecanisme evitant les variations de marche dues a la gravitation sur un dispositif reglant a balancier-spiral et piece d&#39;horlogerie incorporant ce perfectionnement
EP2376986B1 (fr) Mouvement horloger a remontage automatique et a echappement mobile
EP3182217B1 (fr) Mécanisme de réglage de rapport de couple entre des mobiles d&#39;horlogerie
EP2313812B1 (fr) Mouvement pour piece d&#39;horlogerie a dispositif de remontage automatique embarque
EP3382468B1 (fr) Mouvement avec prolongateur de réserve de marche
CH716800A2 (fr) Mécanisme d&#39;affichage d&#39;horlogerie à aiguille élastique.
CH705938B1 (fr) Pièce d&#39;horlogerie à rouage planétaire.
EP2515185B1 (fr) Moteur à moment de force constant
EP2137578B1 (fr) Organe moteur avec ressort helicoidal
CH699056B1 (fr) Mouvement pour pièce d&#39;horlogerie à remontoir d&#39;égalité
WO2018202746A1 (fr) Mouvement d&#39;horlogerie
CH712597B1 (fr) Mécanisme pour mouvement horloger comportant deux organes régulateurs.
EP2860590B1 (fr) Dispositif de remontage automatique pour une pièce d&#39;horlogerie.
CH711916B1 (fr) Système automatique de stockage d&#39;énergie mécanique pour mouvement horloger.
WO2023046841A1 (fr) Mouvement d&#39;horlogerie
CH708817A2 (fr) Mouvement mécanique d&#39;horlogerie avec réinjection de couple dans le barillet par prélèvement sur le rouage de finissage.
EP3112949B1 (fr) Source d&#39;energie mecanique pour mouvement horloger
CH719508A1 (fr) Mécanisme de force constante.
CH716126A2 (fr) Mécanisme de force constante pour pièce d&#39;horlogerie.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732989

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012732989

Country of ref document: EP