WO2012168352A1 - Reacteur solide / gaz caloporteur et reactif comprenant un conduit helicoïdal dans lequel le solide et le gaz circulent a contre-courant - Google Patents

Reacteur solide / gaz caloporteur et reactif comprenant un conduit helicoïdal dans lequel le solide et le gaz circulent a contre-courant Download PDF

Info

Publication number
WO2012168352A1
WO2012168352A1 PCT/EP2012/060787 EP2012060787W WO2012168352A1 WO 2012168352 A1 WO2012168352 A1 WO 2012168352A1 EP 2012060787 W EP2012060787 W EP 2012060787W WO 2012168352 A1 WO2012168352 A1 WO 2012168352A1
Authority
WO
WIPO (PCT)
Prior art keywords
helical
solid
duct
reactor
inlet
Prior art date
Application number
PCT/EP2012/060787
Other languages
English (en)
Inventor
Joël WYTTENBACH
Philippe Papillon
Gwennyn TANGUY
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to US14/123,524 priority Critical patent/US9513068B2/en
Priority to EP12729071.6A priority patent/EP2717990A1/fr
Publication of WO2012168352A1 publication Critical patent/WO2012168352A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/10Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by imparting a pulsating motion to the flow, e.g. by sonic vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/16Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with particles being subjected to vibrations or pulsations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • F28C3/14Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material moving by gravity, e.g. down a tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00292Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/0084Stationary elements inside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/00849Stationary elements outside the bed, e.g. baffles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to the field of solid / heat transfer gas and reactive reactors, in which there is provided a chemical or physical reaction between a solid and a gas, such as for example a thermochemical reaction or a physical adsorption / reaction reaction. desorption.
  • a chemical or physical reaction between a solid and a gas, such as for example a thermochemical reaction or a physical adsorption / reaction reaction. desorption.
  • the gas from an external circuit serves as coolant and reagent, the heat exchange then operating by convection during the endothermic / exothermic reaction.
  • the subject of the invention is a solid reactor / heat-transfer and reactive gas, comprising:
  • a helical duct having an inlet and an outlet, said duct defining a helical bottom track on which a solid reagent is adapted to slide from the inlet to the outlet of said helical duct;
  • the reactor incorporates a solid reagent reservoir beneath said helical conduit outlet, as well as a conveyor for conveying the reagent solid from a low point of the reservoir to said means for feeding the solid reagent to the reactor. inlet of said helical conduit.
  • the helical nature of the duct makes it possible to obtain a long residence time for the gas and the solid in the reactor, while maintaining a limited space requirement. This allows to promote heat exchange and mass transfer, further enhanced by the countercurrent flow of gas and solid in the reactor.
  • the reactor can advantageously be used for inter-seasonal storage of heat. Indeed, in winter, the water vapor that enters the tank reacts with the dehydrated salt to form a hydrated salt and heat. Conversely, in summer, hot, dry air reacts with the previously hydrated salt to regenerate it. Thus, the reservoir comprising the reactive solid serves for storing said heat.
  • the conveyor can take the form of a worm, or any other device known to those skilled in the art.
  • said helical duct comprises a plurality of passages each opening on the one hand on said helical lower track, at a given turn of said duct, and on the other hand in the directly lower turn of the latter.
  • passages can thus be borrowed by a portion of the reactive solid sliding on the lower track, to join the directly lower turn.
  • each part of the solid derived by one of these passages thus impacts, leaving this passage, the bed of reactive solid circulating in the lower turn.
  • deflectors may be provided on the inner slip track of the solid.
  • said helical conduit is designed so that the reactive solid slides by gravity on said helical bottom track.
  • a vertical orientation of the axis of the duct is then preferred, even if an inclination with respect to this vertical direction could be retained, without departing from the scope of the invention.
  • This solution gravity slip is interesting because it requires no energy input for the setting in motion of the reactive solid, and thus contributes to obtaining good performance of the reactor.
  • the reactor comprises means for vibrating said helical conduit, in order to slide the reactive solid on said lower helical track. It may for example be a vibrating pot, or similar means.
  • the reactor integrates a heat exchanger supplied with the heat transfer gas from the inlet of said helical conduit. This makes it possible to obtain a reactor-exchanger of reduced size.
  • said helical conduit is formed by a helix traversed by an inner cylinder and wrapped by an outer cylinder.
  • it may be a first tube shaped helical.
  • This solution has the advantage of being easily achievable, for example by means of a straight tube rolled hot to give it its helical shape, the turns being able to be in contact with each other, or well spaced.
  • the particular shape of this duct also makes it possible to simplify modeling / simulations of flows and heat exchanges.
  • the section of this tube is preferably circular.
  • the reactor comprises a second tube, also shaped as a helix, into which the first tube is inserted so as to define between them a space intended to be traversed by a heat transfer fluid, allowing a heat exchange with said heat transfer gas circulating in the first tube.
  • the two tubes of the reactor then form an integrated heat exchanger, very compact.
  • the invention also relates to a solid reaction method / heat transfer gas implemented using a reactor as mentioned above.
  • This method consists of sliding the reactive solid on the helical bottom track from the inlet to the outlet of said helical conduit, and circulating the heat transfer gas against the current in said helical conduit, from the outlet to the inlet of this leads.
  • the solid reagent is a powder whose grains preferably have a mean diameter of between 0.1 and 2 mm.
  • FIG. 1 shows a sectional view in the median plane of a solid reactor / heat transfer gas according to a first preferred embodiment of the present invention
  • FIG. 2 represents an enlarged front view of a part of the reactor shown in the previous figure
  • FIG. 3 is a sectional view of the reactor of the previous figure, taken along line 111 - 111;
  • FIG. 4 represents a sectional view of a solid reactor / heat transfer gas according to a second preferred embodiment of the present invention
  • FIG. 5 shows a sectional view of a solid reactor / heat transfer gas according to a third preferred embodiment of the present invention
  • FIG. 6 represents a perspective view of a part of the reactor tube shown in the previous figure, according to an alternative embodiment
  • Figure 7 shows a perspective view showing a passage between two turns of the helical conduit of the reactor shown in Figure 5;
  • Figure 8 is a perspective view of a solid reactor / heat transfer gas according to a fourth preferred embodiment of the present invention.
  • - Figure 9 shows an enlarged view of a portion of the reactor shown in the previous figure.
  • FIG. 1 there is shown a reactor 1 solid / heat transfer gas, according to a first preferred embodiment of the present invention.
  • Figure 1 it shows the reactor 1 oriented vertically, in a position as adopted in operation. From bottom to top in this vertical direction and in the operating position of the reactor, the latter comprises a solid reagent reservoir 2 4, the body of the reactor 6, and an air / liquid heat exchanger 7, the liquid being preferentially the water.
  • a vertical conveyor 8 travels vertically between the bottom of the tank and the top of the reactor body.
  • the reservoir 2 takes a generally cylindrical shape, of circular section. It can be produced using a stainless steel side sheet 10, for example of the order of 1.5 mm thick, which is rolled so as to have a diameter of the order of 800 mm. Some plastics may also be considered in place of stainless steel.
  • the upper part of the tank is open on the lower part of the reactor body 6, while its lower part has a slope 14 for moving the solid by gravity to a low point 16 of the tank, from which the conveyor extends.
  • vertical screw-shaped 8, or device performing a similar function is open on the lower part of the reactor body 6, while its lower part has a slope 14 for moving the solid by gravity to a low point 16 of the tank, from which the conveyor extends.
  • the body 6 of the reactor is in the form of a helical duct 20 having a vertical axis 22.
  • a propeller 24 is firstly provided forming several turns 24a-24c about the axis 22.
  • Each spiral coil extends over a complete revolution, that is to say 360 °, and is formed for example by means of a split ring in stainless steel, the ends of which are vertically offset from each other.
  • the length of this shift is a function of the slope sought for the helix 24, which here is preferably of the order of 10 ° relative to any horizontal plane.
  • the crowns assembled end-to-end form the helix 24, whose upper surface forms a helical bottom track 26 of the conduit, on which the reactive solid is intended to slide by gravity between an inlet 28 and an outlet 30 of this conduit.
  • this track 26 has a low friction coating to promote gravity slip, this coating may be hard chrome.
  • passages 40 through the helix 24 are preferentially vertical.
  • Each passage 40 is therefore through, namely that it opens on the one hand on the lower helical track 26 at a turn 20a-20c of the conduit, and opens on the other hand in the directly lower duct turn.
  • a part of the reactive solid sliding on one of the helical turns 24a-24c is caused to pass through one of the passages 40, through which it rejoins the directly lower helix turn without making any movement. of revolution on the track 26 she left, but simply falling by gravity through the passage 40 concerned.
  • the passages 40 have a cylindrical shape, with a diameter of between 0.5 and 8 mm. They are preferably distributed along lines orthogonal to the helical direction of the flow of solid sliding on the track 26. As shown in FIG. 3, 4 lines can be provided per spiral turn 24a-24c, and 1 to 6 passages by line.
  • the helix 24 is traversed internally by an inner cylinder 32, for example 240 mm in diameter, and enveloped by an outer cylinder 34, corresponding to the continuity of the side plate 10 of the tank. Moreover, these two elements 34, 10 preferentially form a single cylinder, made in one piece.
  • the inner edge of the helix 24 matches the inner cylinder 32 on which it is preferentially welded, just as the outer edge of this helix matches the outer cylinder 34 on which it is also preferably welded.
  • the outlet 30 of the reactor body 6 opens above the tank 2, so that the reactive solid automatically falls by gravity into the latter, after having slid over the entire helical track 26.
  • the inlet 28 is covered by a filter 42 which can be formed by a wire mesh or polymer, stretched by a rigid frame.
  • the filter 42 there is the exchanger 7 air / liquid, the outlet 44 of heat transfer gas, preferably dry air, is circular in section about 200 mm in diameter.
  • another output of this exchanger 7 supplies a heating system 46.
  • the reactor comprises means for bringing the solid reagent 4 to the inlet 28 of the helical conduit 20, these means here taking the form of a simple opening 50 at the upper end of the sheath 52 housing the Conveyor 8. At the exit of this conveyor, the solid 4 is thus projected directly into the inlet 28, passing through the opening 50.
  • a connecting piece could nevertheless be used between the opening 50 and the inlet 28, without depart from the scope of the invention.
  • the reactor 1 comprises means 54 for circulating a coolant gas in the helical conduit 20, from the outlet 30 to the inlet 28 of this conduit, above the solid reagent sliding to against the current.
  • means 54 are conventional and known to those skilled in the art. It may be for example a pump, a fan or the like.
  • the solid reagent 4 is placed in the tank 2, then passes continuously through the vertical conveyor 8 to enter the body of the reactor, via the inlet 28 of the conduit 20. It then slides on the track 26, and therefore a helical movement in which it marries the heat transfer gas injected against the current from the exit 30. It is during this flow against the current that the chemical / physical reactions occur, allowing the gas, for example to humid air at atmospheric pressure, to be reheated or cooled.
  • the heat transfer gas leaving the inlet 28 of the duct 20 then joins the exchanger 7 via the filter 42, this exchanger can supply the heating circuit 46 and deliver hot dry air through its outlet 44, according to the one of the modes of operation envisaged.
  • the reactive solid 4 in the form of powder whose grain size can be between 0.1 and 2 mm in diameter, can be made in the following materials: Strontium bromide SrBr 2 , sodium metasilicate a2Si03, Alum ammonium NH 4 Al (SO4) 2, potassium Alum KA1 (SO4) 2, or any other reactive solid deemed favorable for thermochemical reactions solid / heat transfer gas.
  • the reactive solid is introduced with a flow rate of about 4.5 kg / h, while the coolant and reactive gas is injected with a flow rate of the order of 400 kg / h.
  • FIG. 4 there is shown a reactor 1 according to a second preferred embodiment of the present invention.
  • This second embodiment is similar to the previous one.
  • the elements bearing the same reference numerals correspond to identical or similar elements.
  • this second embodiment differs from the previous by the integration of a vibratory pot 56 coupled to the helical conduit 20.
  • This pot 56 is capable of creating a rotary acceleration along the axis 22, to generate an asymmetrical vibration. Indeed, it is expected a stronger acceleration in one direction of rotation than in the other, so that the reactive solid 4 slides while it is carried away by the movement in the opposite direction, so that the reactive solid moves in one direction on the runway 26.
  • This feature reduces the slope of the helix 24, which can be lowered to a value of about 3 °, which nevertheless confers simultaneously low gravity slip. This results in a reduced vertical size of the reactor.
  • the vibratory pot 56 is partially integrated in the inner cylinder 32 to which it is attached.
  • another part of this pot is attached to the top of the outer cylinder 34, by side members 58.
  • the outer edge of the helix 24 is no longer welded to the outer cylinder 34, to allow the vibration of this propeller.
  • An elastic seal (not referenced) is preferably provided between these two elements 24, 34, to allow the desired vibration while allowing aeraulic sealing.
  • FIG. 5-7 there is shown a reactor 1 according to a third preferred embodiment of the present invention.
  • This third embodiment incorporates a vibratory pot 56 as the previous one, but could alternatively be based on a solution with gravitational sliding of the reactive solid, without departing from the scope of the invention.
  • the helical conduit 20 which here takes the form of a simple tube shaped helical.
  • the tube is for example made of plastic or chromed stainless steel.
  • the tube 20, of circular section is for example obtained simply with the aid of a straight tube rolled hot around a cylinder to give it its helical shape.
  • the conduit turns 20a-20c are in contact with each other, which gives maximum compactness.
  • the lower helical track 26 on which the solid 4 slides is made by the bottoms 24a-24c of the duct turns 20a-20c.
  • An intermediate piece 60 here connects the inlet 28 of the duct 20 and the opening 50 made to the end of the sleeve 52 of the conveyor 8.
  • the part 60 is thus an integral part of said means for bringing the solid reagent 4 to the inlet 28 of the helical conduit 20.
  • a piece 62 extends the outlet 30 of the conduit 20 , so as to pour the reactive solid at the center of the tank 2.
  • the helical track 26 is equipped with deflectors 64 to generate delamination in the granular bed of reactive solid 4 sliding on this track.
  • the deflectors 64 aluminum, stainless steel or plastic, can take any form and any dimension deemed appropriate for the skilled person. This is for example a V-shaped or chevron, with the tip oriented upstream relative to the direction of the helical flow of the reactive solid 4.
  • the angle of these baffles may be between 15 and 20 ° .
  • FIG 7 there is shown one of the passages 40 connecting the conduit coil 20a to the lower conduit coil 20b.
  • This passage is made by passing through the lower wall of the duct turn 20a, and passing through the upper wall of the duct turn 20b, the two orifices then being aligned and in continuity with one another.
  • the conduit turns 20a-20c are spaced from each other, channels connecting the two orifices can be assembled.
  • FIGS. 8 and 9 there is shown the reactor body 6 of a reactor 1 according to a fourth preferred embodiment of the present invention.
  • This fourth embodiment integrating or not a vibrating pot, always has the tube 20 forming the helical conduit.
  • the particularity here lies in the presence of a second tube 70 of larger diameter, also helically shaped, into which the first tube 20 is inserted.
  • the two tubes 20, 70 inserted into each other define between them an annular space 72 intended to be traversed by a coolant, allowing a heat exchange with the heat transfer gas flowing in the first tube.
  • the two tubes 20, 70 then form an integrated heat exchanger, very compact.
  • the first tube 20 is preferably made of stainless steel, and equipped with inner fins thermal conduction 74, made by thin aluminum sheets. These fins, preferably radially oriented, are situated in the upper part of the duct 20, where the heat-exchange gas circulates, preferably in the same direction of circulation as that of the fluid in the annular space 72, the thickness of which can be of the order of 1 to 2 mm.
  • the second tube 70 may be of circular section or other, for example fluted, with helical internal grooves for intensifying the heat exchange with the heat transfer gas, by turbulence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

L'invention se rapporte à un réacteur solide / gaz caloporteur et réactif (1), comprenant: un conduit hélicoïdal (20) présentant une entrée (28) et une sortie (30), le conduit définissant une piste inférieure hélicoïdale (26) sur laquelle un réactif solide (4) est destiné à glisser de l'entrée vers la sortie dudit conduit hélicoïdal; des moyens (50) permettant d'amener le réactif solide à l'entrée du conduit (20); et des moyens (54) permettant de faire circuler un gaz caloporteur dans le conduit hélicoïdal (20), de la sortie (30) vers l'entrée (28) de ce conduit. De plus, le réacteur intègre un réservoir (2) de réactif solide (4) sous la sortie (30) du conduit hélicoïdale (20), ainsi qu'un convoyeur (8) permettant d'acheminer le réactif d'un point bas (16) du réservoir, vers les moyens (50).

Description

REACTEUR SOLIDE / GAZ CALOPORTEUR ET REACTIF COMPRENANT UN CONDUIT HELICOÏDAL DANS LEQUEL LE SOLIDE ET LE GAZ CIRCULENT A CONTRE-COURANT
DESCRIPTION
L' invention se rapporte au domaine des réacteurs solide / gaz caloporteur et réactif, au sein desquels il est prévu une réaction chimique ou physique entre un solide et un gaz, comme par exemple une réaction thermochimique ou encore une réaction physique d' adsorption / de désorption. Dans ce type de réacteurs, le gaz provenant d'un circuit externe sert de caloporteur et de réactif, l'échange thermique s' opérant alors par convection lors de la réaction endothermique / exothermique.
Ce type de réacteur, relativement récent, a déjà fait l'objet de quelques développements. Néanmoins, la conception et les performances de ces réacteurs restent à optimiser.
Dans ce but, l'invention a pour objet un réacteur solide / gaz caloporteur et réactif, comprenant :
un conduit hélicoïdal présentant une entrée et une sortie, ledit conduit définissant une piste inférieure hélicoïdale sur laquelle un réactif solide est destiné à glisser de l'entrée vers la sortie dudit conduit hélicoïdal ;
- des moyens permettant d'amener le réactif solide à l'entrée dudit conduit hélicoïdal ; et - des moyens permettant de faire circuler un gaz caloporteur dans ledit conduit hélicoïdal, de la sortie vers l'entrée de ce conduit.
De plus, le réacteur intègre un réservoir de réactif solide sous ladite sortie du conduit hélicoïdale, ainsi qu'un convoyeur permettant d'acheminer le solide réactif d'un point bas du réservoir, vers lesdits moyens permettant d'amener le réactif solide à l'entrée dudit conduit hélicoïdal.
La nature hélicoïdale du conduit permet d'obtenir un temps de séjour important du gaz et du solide dans le réacteur, tout en conservant un encombrement limité. Cela permet de favoriser les échanges thermiques et le transfert de masse, encore renforcés par la circulation à contre-courant du gaz et du solide dans le réacteur.
Le gaz caloporteur étant destiné à circuler dans le conduit au-dessus du réactif solide glissant sur la piste inférieure, les pertes de charges sont relativement faibles. Cela augmente les performances du réacteur, et diminue la puissance nécessaire à la circulation du gaz caloporteur au sein du conduit hélicoïdal. De plus, cette configuration permet de faire face, lors du fonctionnement du réacteur, aux changements de volumes du solide réactif qui gonfle puis se rétracte lors des deux réactions réciproques.
La conception originale proposée par la présente invention permet de bénéficier d'une densité importante de solide réactif au sein du réacteur, et ne requiert que des besoins limités en filtration du gaz, ce qui évite l'encrassement et facilite la maintenance. En outre, avec la présence du réservoir, le réacteur peut avantageusement servir au stockage intersaisonnier de chaleur. En effet, en hiver, la vapeur d'eau qui entre dans le réservoir réagit avec le sel déshydraté pour former un sel hydraté et de la chaleur. A l'inverse, l'été, l'air chaud et sec réagit avec le sel précédemment hydraté pour le régénérer. Ainsi, le réservoir comprenant le solide réactif sert au stockage de ladite chaleur. Il est noté que le convoyeur peut prendre la forme d'une vis sans fin, ou de tout autre dispositif connu de l'homme du métier.
De préférence, ledit conduit hélicoïdal comporte une pluralité de passages chacun débouchant d'une part sur ladite piste inférieure hélicoïdale, au niveau d'une spire donnée dudit conduit, et d'autre part dans la spire directement inférieure de ce dernier .
Ces passages peuvent ainsi être empruntés par une partie du solide réactif glissant sur la piste inférieure, afin de rejoindre la spire directement inférieure. Dans ce cas, chaque partie du solide dérivée par l'un de ces passages impacte donc, en sortant de ce passage, le lit de solide réactif circulant dans la spire inférieure. Ces impacts assurent un fractionnement et une dé-stratification du lit de solide réactif, ce qui renforce encore davantage les échanges thermiques et le transfert de masse. Dans le même but, des déflecteurs peuvent être prévus sur la piste intérieure de glissement du solide.
De préférence, ledit conduit hélicoïdal est conçu de sorte que le solide réactif glisse par gravité sur ladite piste inférieure hélicoïdale. Une orientation verticale de l'axe du conduit est alors préférée, même si une inclinaison par rapport à cette direction verticale pourrait être retenue, sans sortir du cadre de l'invention. Cette solution à glissement gravitaire est intéressante car elle ne nécessite aucun apport d'énergie pour la mise en mouvement du solide réactif, et concourt donc à l'obtention des bonnes performances du réacteur.
Selon un autre mode de réalisation, le réacteur comprend des moyens permettant de faire vibrer ledit conduit hélicoïdal, afin de faire glisser le solide réactif sur ladite piste inférieure hélicoïdale. Il peut par exemple s'agir d'un pot vibrant, ou de moyens similaires.
Cette solution à système vibrant peut naturellement être combinée à la solution à glissement gravitaire exposée ci-dessus.
De préférence, le réacteur intègre un échangeur de chaleur alimenté par le gaz caloporteur provenant de l'entrée dudit conduit hélicoïdal. Cela permet d'obtenir un réacteur-échangeur d'encombrement réduit .
De préférence, ledit conduit hélicoïdal est réalisé par une hélice traversée par un cylindre intérieur et enveloppée par un cylindre extérieur.
Alternativement, il peut s'agir d'un premier tube conformé en hélice. Cette solution présente l'avantage d'être facilement réalisable, par exemple à l'aide d'un tube droit roulé à chaud afin de lui donner sa forme d'hélice, les spires pouvant être au contact les unes de autres, ou bien espacées. La forme particulière de ce conduit permet par ailleurs de simplifier les modélisations/simulations des écoulements et des échanges thermiques.
La section de ce tube est préférentiellement circulaire.
Alternativement, le réacteur comprend un second tube également conformé en hélice, dans lequel est inséré le premier tube de manière à définir entre eux deux un espace destiné à être traversé par un fluide caloporteur, permettant un échange thermique avec ledit gaz caloporteur circulant dans le premier tube. Les deux tubes du réacteur forment alors un échangeur thermique intégré, à encombrement très réduit.
L'invention a aussi pour objet un procédé de réaction solide / gaz caloporteur mis en œuvre à l'aide d'un réacteur tel que mentionné ci-dessus. Ce procédé consiste à faire glisser le solide réactif sur la piste inférieure hélicoïdale de l'entrée vers la sortie dudit conduit hélicoïdal, et à faire circuler le gaz caloporteur à contre-courant dans ledit conduit hélicoïdal, de la sortie vers l'entrée de ce conduit.
Enfin, il est noté que le réactif solide est une poudre, dont les grains présentent préférentiellement un diamètre moyen compris entre 0,1 et 2 mm .
D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous. Cette description sera faite au regard des dessins annexés parmi lesquels ;
- la figure 1 représente une vue en coupe dans le plan médian d'un réacteur solide / gaz caloporteur selon un premier mode de réalisation préféré de la présente invention ;
- la figure 2 représente une vue agrandie de face d'une partie du réacteur montré sur la figure précédente ;
- la figure 3 est une vue en coupe du réacteur de la figure précédente, prise selon la ligne 111 - 111 ;
- la figure 4 représente une vue en coupe d'un réacteur solide / gaz caloporteur selon un second mode de réalisation préféré de la présente invention ;
- la figure 5 représente une vue en coupe d'un réacteur solide / gaz caloporteur selon un troisième mode de réalisation préféré de la présente invention ;
- la figure 6 représente une vue en perspective d'une partie du tube du réacteur montré sur la figure précédente, selon une alternative de réalisation ;
la figure 7 représente une vue en perspective montrant un passage entre deux spires du conduit hélicoïdal du réacteur montré sur la figure 5 ;
la figure 8 représente une vue en perspective d'un réacteur solide / gaz caloporteur selon un quatrième mode de réalisation préféré de la présente invention ; et - la figure 9 représente une vue agrandie d'une partie du réacteur montré sur la figure précédente .
En référence tout d' abord aux figures 1 à 3, il est représenté un réacteur 1 solide / gaz caloporteur, selon un premier mode de réalisation préféré de la présente invention.
Sur la figure 1, il est montré le réacteur 1 orienté à la verticale, dans une position telle qu'adoptée en fonctionnement. De bas en haut selon cette direction verticale et en position de fonctionnement du réacteur, ce dernier comprend un réservoir 2 de réactif solide 4, le corps du réacteur 6, puis un échangeur de chaleur air/liquide 7, le liquide étant préférentiellement de l'eau. De plus, un convoyeur vertical 8 chemine verticalement entre le bas du réservoir et le haut du corps de réacteur.
Le réservoir 2 prend une forme globalement cylindrique, de section circulaire. Il peut être réalisé à l'aide d'une tôle latérale 10 en acier inoxydable, par exemple de l'ordre de 1,5 mm d'épaisseur, qui est roulée de façon à présenter un diamètre de l'ordre de 800 mm. Certaines matières plastiques peuvent également être envisagées à la place de l'acier inoxydable.
La partie haute du réservoir est ouverte sur la partie basse du corps de réacteur 6, tandis que sa partie basse présente une pente 14 permettant d'amener le solide par gravité vers un point bas 16 du réservoir, à partir duquel s'étend le convoyeur vertical 8 en forme de vis sans fin, ou de dispositif remplissant une fonction similaire.
En référence plus spécifiquement aux figures 2 et 3, le corps 6 du réacteur se présente sous la forme d'un conduit hélicoïdal 20, d'axe vertical 22. Pour réaliser ce conduit, il est tout d'abord prévu une hélice 24 formant plusieurs spires 24a-24c autour de l'axe 22. Chaque spire d'hélice s'étend sur une révolution complète, c'est-à-dire sur 360°, et est formée par exemple à l'aide d'une couronne fendue en acier inoxydable, dont les extrémités sont décalées verticalement l'une de l'autre. La longueur de ce décalage est fonction de la pente recherchée pour l'hélice 24, qui est ici préférentiellement de l'ordre de 10° par rapport à tout plan horizontal.
Les couronnes assemblées bout-à-bout forment l'hélice 24, dont la surface supérieure forme une piste inférieure hélicoïdale 26 du conduit, sur laquelle le solide réactif est destiné à glisser par gravité entre une entrée 28 et une sortie 30 de ce conduit. D'ailleurs, cette piste 26 présente un revêtement à faible coefficient de frottement pour favoriser le glissement gravitaire, ce revêtement pouvant être en chrome dur.
L'une des particularités de la présente invention réside dans la présence de passages 40 à travers l'hélice 24, ces passages étant préférentiellement verticaux. Chaque passage 40 est donc traversant, à savoir qu'il débouche d'une part sur la piste inférieure hélicoïdale 26 au niveau d'une spire 20a-20c du conduit, et débouche d'autre part dans la spire de conduit directement inférieure. En d'autres termes, une partie du solide réactif glissant sur l'une des spires d'hélice 24a-24c est amenée à emprunter l'un des passages 40, par lequel elle rejoint la spire d'hélice directement inférieure sans effectuer de mouvement de révolution sur la piste 26 qu'elle à quittée, mais en tombant simplement par gravité à travers le passage 40 concerné. Les impacts provoqués par ces bifurcations d'une partie du solide réactif assurent un fractionnement et une dé-stratification du lit de solide réactif glissant sur ladite spire d'hélice directement inférieure, ce qui procure des avantages conséquents en termes d'échanges thermiques et le transfert de masse. Dans le même but, des déflecteurs pourraient être prévus sur la piste intérieure de glissement 26.
Les passages 40 présentent une forme cylindrique, de diamètre compris entre 0,5 et 8 mm. Ils sont préférentiellement repartis selon des lignes orthogonales à la direction hélicoïdale du flux de solide glissant sur la piste 26. Comme cela est montré sur la figure 3, il peut être prévu 4 lignes par spire d'hélice 24a-24c, et 1 à 6 passages par ligne.
Par ailleurs, l'hélice 24 est traversée intérieurement par un cylindre intérieur 32, par exemple de 240 mm de diamètre, et enveloppée par un cylindre extérieur 34, correspondant à la continuité de la tôle latérale 10 du réservoir. D'ailleurs, ces deux éléments 34, 10 forment préférentiellement un seul et unique cylindre, réalisé d'une seule pièce. Le chant intérieur de l'hélice 24 épouse le cylindre intérieur 32 sur lequel il est préférentiellement soudé, de même que le chant extérieur de cette hélice épouse le cylindre extérieur 34 sur lequel il est aussi préférentiellement soudé.
La sortie 30 du corps de réacteur 6 débouche au-dessus du réservoir 2, de sorte que le solide réactif tombe automatiquement par gravité dans ce dernier, après avoir glissé sur toute la piste hélicoïdale 26. L'entrée 28 est recouverte par un filtre 42, qui peut être formé par une toile métallique ou en polymère, tendue par un cadre rigide. Au-dessus du filtre 42, se trouve l'échangeur 7 air/liquide, dont la sortie 44 de gaz caloporteur, de préférence de l'air sec, est de section circulaire d'environ 200 mm de diamètre. De plus, une autre sortie de cet échangeur 7 permet d'alimenter un système de chauffage 46.
En outre, le réacteur comprend des moyens permettant d'amener le réactif solide 4 à l'entrée 28 du conduit hélicoïdal 20, ces moyens prenant ici la forme d'une simple ouverture 50 au niveau de l'extrémité supérieure du fourreau 52 logeant le convoyeur 8. En sortie de ce convoyeur, le solide 4 est donc projeté directement dans l'entrée 28, en passant par l'ouverture 50. Une pièce de liaison pourrait néanmoins être utilisée entre l'ouverture 50 et l'entrée 28, sans sortir du cadre de l'invention.
Enfin, le réacteur 1 comprend des moyens 54 permettant de faire circuler un gaz caloporteur dans le conduit hélicoïdal 20, de la sortie 30 vers l'entrée 28 de ce conduit, au-dessus du solide réactif glissant à contre-courant. Ces moyens 54 sont conventionnels, et connus de l'homme du métier. Il peut s'agir par exemple d'une pompe, d'un ventilateur ou similaire.
En fonctionnement, le solide réactif 4 est placé dans le réservoir 2, puis transite en continu par le convoyeur vertical 8 pour pénétrer dans le corps du réacteur, via l'entrée 28 du conduit 20. Il glisse ensuite sur la piste 26, et suis donc un mouvement hélicoïdal au cours duquel il épouse le gaz caloporteur injecté à contre-courant depuis la sortie 30. C'est lors de cette circulation à contre-courant que les réactions chimiques / physiques se produisent, en permettant au gaz, par exemple de l'air humide à pression atmosphérique, d'être réchauffé ou refroidi. Le gaz caloporteur sortant par l'entrée 28 du conduit 20 rejoint ensuite l'échangeur 7 en passant par le filtre 42, cet échangeur pouvant alimenter le circuit de chauffage 46 et délivrer de l'air sec et chaud par sa sortie 44, selon l'un des modes de fonctionnement envisagés.
Ce fonctionnement s'opère en continu, le solide réactif étant destiné à transiter plusieurs fois par le corps du réacteur 6. D'ailleurs, le solide réactif 4, sous forme de poudre dont la taille des grains peut être comprise entre 0,1 et 2 mm de diamètre, peut être réalisé dans les matériaux suivants : Bromure de Strontium SrBr2, Métasilicate de sodium a2Si03, Alun d'ammonium NH4A1(S04)2, Alun de potassium KA1(S04)2, ou tout autre solide réactif réputé favorable pour les réactions thermochimiques solide / gaz caloporteur. A titre d'exemple indicatif, le solide réactif est introduit avec un débit d'environ 4,5 kg/h, tandis que le gaz caloporteur et réactif est injecté avec un débit de l'ordre de 400 kg/h.
En référence à la figure 4, il est représenté un réacteur 1 selon un second mode de réalisation préféré de la présente invention. Ce second mode de réalisation est similaire au précédent. A cet égard, il est noté que sur toutes les figures, les éléments portant les mêmes références numériques correspondent à des éléments identiques ou similaires.
Ainsi, on peut apercevoir que ce second mode de réalisation diffère du précédent par l'intégration d'un pot vibrant 56 accouplé au conduit hélicoïdal 20. Ce pot 56 est capable de créer une accélération rotative selon l'axe 22, afin d'engendrer une vibration asymétrique. En effet, il est prévu une accélération plus forte dans un sens de rotation que dans l'autre, afin que le solide réactif 4 glisse alors qu'il est emporté par le mouvement dans le sens inverse, de sorte que ce solide réactif se déplace dans une seule direction sur la piste 26. Cette particularité permet de diminuer la pente de l'hélice 24, qui peut ainsi être abaissée à une valeur de l'ordre de 3°, qui confère néanmoins, simultanément, un faible glissement gravitaire. Il en découle un encombrement vertical réduit du réacteur.
Pour ce faire, le pot vibrant 56 est partiellement intégré dans le cylindre intérieur 32 auquel il est fixé. Par ailleurs, une autre partie de ce pot est fixée sur le dessus du cylindre extérieur 34, par des longerons 58. En revanche, le chant extérieur de l'hélice 24 n'est plus soudé à ce cylindre extérieur 34, afin de permettre la vibration de cette hélice. Un joint élastique (non référencé) est de préférence prévu entre ces deux éléments 24, 34, pour permettre les vibrations souhaitées tout en permettant une étanchéité aéraulique.
En référence à présent aux figures 5 à 7, il est représenté un réacteur 1 selon un troisième mode de réalisation préféré de la présente invention. Ce troisième mode de réalisation intègre un pot vibrant 56 comme le précédent, mais pourrait alternativement être basé sur une solution à glissement gravitaire du solide réactif, sans sortir du cadre de l'invention.
La différence essentielle avec les modes de réalisation précédents réside dans la conception du conduit hélicoïdal 20, qui prend ici la forme d'un simple tube conformé en hélice. Le tube est par exemple réalisé en matière plastique ou en inox chromé.
Le tube 20, de section circulaire, est par exemple obtenu simplement à l'aide d'un tube droit roulé à chaud au tour d'un cylindre afin de lui donner sa forme d'hélice. Dans le mode de réalisation représenté, les spires de conduit 20a-20c sont au contact les unes de autres, ce qui confère une compacité maximale. De plus, dans ce mode de réalisation préféré, la piste inférieure hélicoïdale 26 sur laquelle glisse le solide 4 est réalisée par les fonds 24a-24c des spires de conduit 20a-20c.
Une pièce intermédiaire 60 relie ici l'entrée 28 du conduit 20 et l'ouverture 50 pratiquée à l'extrémité du fourreau 52 du convoyeur 8. La pièce 60 fait ainsi partie intégrante desdits moyens permettant d'amener le réactif solide 4 à l'entrée 28 du conduit hélicoïdal 20. De même, une pièce 62 prolonge la sortie 30 du conduit 20, de manière à déverser le solide réactif au centre du réservoir 2.
Sur la figure 6, la piste hélicoïdale 26 est équipée de déflecteurs 64 permettant de générer des déstratifications dans le lit granulaire de solide réactif 4 glissant sur cette piste. Les déflecteurs 64, en aluminium, en acier inoxydable ou en matière plastique, peuvent prendre toute forme et toute dimension réputée appropriée pour l'homme du métier. Il s'agit par exemple d'une forme en V ou de chevron, avec la pointe orientée vers l'amont par rapport au sens du flux hélicoïdal du solide réactif 4. L'angle de ces déflecteurs peut être compris entre 15 et 20°.
Sur la figure 7, il a été représenté l'un des passages 40 reliant la spire de conduit 20a à la spire de conduit inférieure 20b. Ce passage est réalisé par traversée de la paroi inférieure de la spire de conduit 20a, et par traversée de la paroi supérieure de la spire de conduit 20b, les deux orifices étant alors alignés et dans la continuité l'un de l'autre. Dans le cas où les spires de conduit 20a-20c sont espacées les unes des autres, des canaux reliant les deux orifices peuvent être assemblés.
Enfin, en référence aux figures 8 et 9, il est représenté le corps de réacteur 6 d'un réacteur 1 selon un quatrième mode de réalisation préféré de la présente invention. Ce quatrième mode de réalisation, intégrant ou non un pot vibrant, présente toujours le tube 20 formant le conduit hélicoïdal.
La particularité réside ici dans la présence d'un second tube 70 de diamètre plus important, également conformé en hélice, dans lequel est inséré le premier tube 20.
Les deux tubes 20, 70 insérés l'un dans l'autre définissent entre eux un espace annulaire 72 destiné à être traversé par un fluide caloporteur, permettant un échange thermique avec le gaz caloporteur circulant dans le premier tube. Les deux tubes 20, 70 forment alors un échangeur thermique intégré, à encombrement très réduit. Pour favoriser les échanges thermiques, le premier tube 20 est de préférence réalisé en acier inoxydable, et équipé d'ailettes intérieures de conduction thermique 74, réalisée par de fines feuilles d'aluminium. Ces ailettes, de préférence orientées radialement, sont situées dans la partie supérieure du conduit 20, là où circule le gaz caloporteur, de préférence dans le même sens de circulation que celui du fluide dans l'espace annulaire 72, dont l'épaisseur peut être de l'ordre de 1 à 2 mm.
Le second tube 70 peut être de section circulaire ou autre, par exemple cannelé, avec des cannelures intérieures hélicoïdales permettant d' intensifier les échanges de chaleur avec le gaz caloporteur, par turbulences.
Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à l'invention qui vient d'être décrite, uniquement à titre d'exemples non limitatifs.

Claims

REVENDICATIONS
1. Réacteur solide / gaz caloporteur et réactif (1), caractérisé en ce qu'il comprend :
- un conduit hélicoïdal (20) présentant une entrée (28) et une sortie (30), ledit conduit définissant une piste inférieure hélicoïdale (26) sur laquelle un réactif solide (4) est destiné à glisser de l'entrée vers la sortie dudit conduit hélicoïdal ;
- des moyens (50) permettant d'amener le réactif solide à l'entrée dudit conduit hélicoïdal ; et des moyens (54) permettant de faire circuler un gaz caloporteur dans ledit conduit hélicoïdal (20), de la sortie (30) vers l'entrée (28) de ce conduit,
et en ce que le réacteur intègre un réservoir (2) de réactif solide (4) sous ladite sortie (30) du conduit hélicoïdale (20), ainsi qu'un convoyeur (8) permettant d'acheminer le solide réactif (4) d'un point bas (16) du réservoir, vers lesdits moyens (50) permettant d'amener le réactif solide à l'entrée dudit conduit hélicoïdal.
2. Réacteur selon la revendication 1, caractérisé en ce que ledit conduit hélicoïdal (20) comporte une pluralité de passages (40) chacun débouchant d'une part sur ladite piste inférieure hélicoïdale (26), au niveau d'une spire donnée dudit conduit, et d'autre part dans la spire directement inférieure de ce dernier.
3. Réacteur selon la revendication 1 ou la revendication 2, caractérisé en ce que ledit conduit hélicoïdal (20) est conçu de sorte que le solide réactif (4) glisse par gravité sur ladite piste inférieure hélicoïdale (26) .
4. Réacteur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des moyens (56) permettant de faire vibrer ledit conduit hélicoïdal (20), afin de faire glisser le solide réactif (4) sur ladite piste inférieure hélicoïdale (26).
5. Réacteur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il intègre un échangeur de chaleur (7) alimenté par le gaz caloporteur provenant de l'entrée dudit conduit hélicoïdal .
6. Réacteur selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit conduit hélicoïdal (20) présente un axe vertical (22) .
7. Réacteur selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit conduit hélicoïdal (20) est réalisé par une hélice (24) traversée par un cylindre intérieur (32) et enveloppée par un cylindre extérieur (34) .
8. Réacteur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit conduit hélicoïdal est réalisé par un premier tube (20) conformé en hélice.
9. Réacteur selon la revendication 8, caractérisé en ce qu'il comprend un second tube (70) également conformé en hélice, dans lequel est inséré le premier tube (20) de manière à définir entre eux deux un espace (72) destiné à être traversé par un fluide caloporteur, permettant un échange thermique avec ledit gaz caloporteur circulant dans le premier tube.
10. Procédé de réaction solide / gaz caloporteur mis en œuvre à l'aide d'un réacteur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste à faire glisser le solide réactif (4) sur la piste inférieure hélicoïdale (26) de l'entrée (28) vers la sortie (30) dudit conduit hélicoïdal (20), et à faire circuler le gaz caloporteur à contre-courant dans ledit conduit hélicoïdal (20), de la sortie vers l'entrée de ce conduit.
11. Procédé selon la revendication 10, caractérisé en ce que le réactif solide est une poudre.
PCT/EP2012/060787 2011-06-07 2012-06-07 Reacteur solide / gaz caloporteur et reactif comprenant un conduit helicoïdal dans lequel le solide et le gaz circulent a contre-courant WO2012168352A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/123,524 US9513068B2 (en) 2011-06-07 2012-06-07 Reactive solid/heat-transport gas reactor including a helical duct in which the solid and the gas flow in opposite directions
EP12729071.6A EP2717990A1 (fr) 2011-06-07 2012-06-07 Reacteur solide / gaz caloporteur et reactif comprenant un conduit helicoïdal dans lequel le solide et le gaz circulent a contre-courant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1154962 2011-06-07
FR1154962A FR2976192B1 (fr) 2011-06-07 2011-06-07 Reacteur solide / gaz caloporteur et reactif comprenant un conduit helicoidal dans lequel le solide et le gaz circulent a contre-courant

Publications (1)

Publication Number Publication Date
WO2012168352A1 true WO2012168352A1 (fr) 2012-12-13

Family

ID=46331271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/060787 WO2012168352A1 (fr) 2011-06-07 2012-06-07 Reacteur solide / gaz caloporteur et reactif comprenant un conduit helicoïdal dans lequel le solide et le gaz circulent a contre-courant

Country Status (4)

Country Link
US (1) US9513068B2 (fr)
EP (1) EP2717990A1 (fr)
FR (1) FR2976192B1 (fr)
WO (1) WO2012168352A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150276325A1 (en) * 2012-11-01 2015-10-01 Skanska Sverige Ab Energy storage
BE1022706B1 (fr) * 2015-02-02 2016-08-18 Bureau D'etudes Solaires Sprl Réacteur respectivement exothermique et endothermique de physi- ou chimisorption entre un gaz et un solide granuleux
US9518787B2 (en) 2012-11-01 2016-12-13 Skanska Svergie Ab Thermal energy storage system comprising a combined heating and cooling machine and a method for using the thermal energy storage system
US9823026B2 (en) 2012-11-01 2017-11-21 Skanska Sverige Ab Thermal energy storage with an expansion space

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113244730B (zh) * 2021-06-29 2021-10-01 山东赛马力发电设备有限公司 一种燃气发电机组箱体顶部废气排放设备
WO2023176406A1 (fr) * 2022-03-14 2023-09-21 住友重機械工業株式会社 Réacteur d'accumulation de chaleur chimique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2983051A (en) * 1957-10-28 1961-05-09 Dravo Corp Apparatus for cooling particulate materials
FR1519552A (fr) * 1965-07-09 1968-04-05 Finacalor Ag Procédé et moyen d'échange de chaleur entre des milieux gazeux, à l'état de vapeur, liquides, ou solides et de petites particules de caloporteurs et leurs applications
DE3931027A1 (de) * 1988-09-21 1990-03-22 Cew Industrieberatung Vorrichtung zur durchfuehrung verfahrenstechnischer prozesse
US5992041A (en) * 1997-12-12 1999-11-30 Thermo Power Corporation Raining bed heat exchanger and method of use
WO2009138577A1 (fr) * 2008-05-16 2009-11-19 Eurecat S.A. Procede de sulfuration ou presulfuration de particules solides d'un catalyseur ou d'un adsorbant

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US320642A (en) * 1885-06-23 eistwick
US329198A (en) * 1885-10-27 milne
US2069192A (en) * 1936-01-29 1937-01-26 Yorktown Electric Roaster Mfg Automatic roaster
US2614824A (en) * 1948-10-11 1952-10-21 Phillips Petroleum Co Pebble heat exchanger
US2700830A (en) * 1950-09-15 1955-02-01 Mark A Wolfe Grain drier or the like
GB1154041A (en) * 1965-07-09 1969-06-04 Finacalor Ag Improvements relating to Heat Exchangers
GB1251572A (fr) * 1969-09-02 1971-10-27
US3742614A (en) * 1970-10-02 1973-07-03 Leybold Heraeus Verwaltung Thermal treatment of powdered or granular material
BE823966A (fr) * 1974-01-29 1975-04-16 Procede pour l'execution de reactions entre des substances pulverulentes et des substances gazeuses
DE2547521A1 (de) * 1975-10-23 1977-04-28 Linde Ag Vorrichtung zum abkuehlen von gegenstaenden
FR2452689A1 (fr) * 1979-03-27 1980-10-24 Saint Gobain Procede de recuperation de chaleur sur des fumees
US4255129A (en) * 1979-07-11 1981-03-10 Thomas N. DePew Apparatus and method for processing organic materials into more useful states
DE3202954A1 (de) * 1982-01-29 1983-08-11 Ruhrchemie Ag, 4200 Oberhausen Vorrichtung zum erwaermen oder kuehlen und insbesondere zum trocknen feinteiliger feststoffe
US4896717A (en) * 1987-09-24 1990-01-30 Campbell Jr Walter R Fluidized bed reactor having an integrated recycle heat exchanger
DE3835941A1 (de) * 1988-06-09 1990-04-26 Artur Richard Greul Verfahren der kunststoffpyrolyse im sandkoker
DE3918718C2 (de) * 1989-06-08 1994-02-17 Nukem Gmbh Vorrichtung zur thermischen Behandlung von organischen und anorganischen Stoffen
US4978076A (en) * 1990-03-28 1990-12-18 Gmd Engineered Systems, Inc. Method for separating hazardous substances in waste foundry sands
NL9102072A (nl) * 1991-12-11 1993-07-01 Beijer Raadgevend Tech Bureau Warmteaccumulator, werkwijze voor de vervaardiging daarvan, alsmede energiesysteem voorzien van een dergelijke warmteaccumulator.
SG104251A1 (en) * 1998-01-26 2004-06-21 Kankyo Co Ltd Method and apparatus for dehumidifying air
US7575043B2 (en) * 2002-04-29 2009-08-18 Kauppila Richard W Cooling arrangement for conveyors and other applications
US20060196356A1 (en) * 2005-02-04 2006-09-07 Henderson Terry D Single tower gas dryer with flowing desiccant stream
FR2934037B1 (fr) 2008-07-16 2014-09-05 Commissariat Energie Atomique Aide au chargement d'une chaudiere a combustible solide couplee a un systeme d'accumulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2983051A (en) * 1957-10-28 1961-05-09 Dravo Corp Apparatus for cooling particulate materials
FR1519552A (fr) * 1965-07-09 1968-04-05 Finacalor Ag Procédé et moyen d'échange de chaleur entre des milieux gazeux, à l'état de vapeur, liquides, ou solides et de petites particules de caloporteurs et leurs applications
DE3931027A1 (de) * 1988-09-21 1990-03-22 Cew Industrieberatung Vorrichtung zur durchfuehrung verfahrenstechnischer prozesse
US5992041A (en) * 1997-12-12 1999-11-30 Thermo Power Corporation Raining bed heat exchanger and method of use
WO2009138577A1 (fr) * 2008-05-16 2009-11-19 Eurecat S.A. Procede de sulfuration ou presulfuration de particules solides d'un catalyseur ou d'un adsorbant

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MAURAN S ET AL: "Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60kWh by a solid/gas reaction", SOLAR ENERGY, PERGAMON PRESS. OXFORD, GB, vol. 82, no. 7, 1 July 2008 (2008-07-01), pages 623 - 636, XP022679675, ISSN: 0038-092X, [retrieved on 20080221], DOI: 10.1016/J.SOLENER.2008.01.002 *
N'TSOUKPOE K E ET AL: "A review on long-term sorption solar energy storage", RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, ELSEVIERS SCIENCE, NEW YORK, NY, US, vol. 13, no. 9, 1 December 2009 (2009-12-01), pages 2385 - 2396, XP026495339, ISSN: 1364-0321, [retrieved on 20090630], DOI: 10.1016/J.RSER.2009.05.008 *
See also references of EP2717990A1 *
SHARMA A ET AL: "Review on thermal energy storage with phase change materials and applications", RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, ELSEVIERS SCIENCE, NEW YORK, NY, US, vol. 13, no. 2, 1 February 2009 (2009-02-01), pages 318 - 345, XP025815806, ISSN: 1364-0321, [retrieved on 20071217], DOI: 10.1016/J.RSER.2007.10.005 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150276325A1 (en) * 2012-11-01 2015-10-01 Skanska Sverige Ab Energy storage
US9518787B2 (en) 2012-11-01 2016-12-13 Skanska Svergie Ab Thermal energy storage system comprising a combined heating and cooling machine and a method for using the thermal energy storage system
US9657998B2 (en) 2012-11-01 2017-05-23 Skanska Sverige Ab Method for operating an arrangement for storing thermal energy
US9791217B2 (en) * 2012-11-01 2017-10-17 Skanska Sverige Ab Energy storage arrangement having tunnels configured as an inner helix and as an outer helix
US9823026B2 (en) 2012-11-01 2017-11-21 Skanska Sverige Ab Thermal energy storage with an expansion space
BE1022706B1 (fr) * 2015-02-02 2016-08-18 Bureau D'etudes Solaires Sprl Réacteur respectivement exothermique et endothermique de physi- ou chimisorption entre un gaz et un solide granuleux

Also Published As

Publication number Publication date
EP2717990A1 (fr) 2014-04-16
US20140096933A1 (en) 2014-04-10
FR2976192A1 (fr) 2012-12-14
FR2976192B1 (fr) 2016-07-29
US9513068B2 (en) 2016-12-06

Similar Documents

Publication Publication Date Title
EP2717990A1 (fr) Reacteur solide / gaz caloporteur et reactif comprenant un conduit helicoïdal dans lequel le solide et le gaz circulent a contre-courant
EP3405723B1 (fr) Echangeur de chaleur à condensation muni d'un dispositif d'échanges thermiques
WO2013164282A1 (fr) Enceinte de vulcanisation de la partie interieure d'un pneumatique contenant un ventilateur
FR2855766A1 (fr) Procedes et appareils de distillation notamment pour produire de l'eau douce
FR2913105A1 (fr) "echangeur de chaleur a condensation comprenant deux faisceaux primaires et un faisceau secondaire"
WO2004016995A1 (fr) Echangeur de chaleur a condensation a double faisceau de tubes
EP0567393B1 (fr) Evaporateur à plaques à hautes performances thermiques fonctionnant en régime d'ébullition nucléée
EP2810011A1 (fr) Echangeur thermique, notamment pour vehicule comprenant un moteur thermique
FR2654502A1 (fr) Procede et dispositif d'echange thermique avec film ruisselant.
FR2993647A1 (fr) Absorbeur a echangeur a plaques avec element de repartition poreux
FR2914413A1 (fr) Refroidisseur modulaire en aluminium
FR2647198A1 (fr) Echangeur thermique a conduits a plaques
FR2516229A1 (fr) Matrice pour echangeur de chaleur regenerateur, destine a servir notamment de ventilateur, et echangeur de chaleur regenerateur equipe de la matrice
EP0148695B1 (fr) Chauffe-eau solaire pour le chauffage et le stockage par passage direct de l'eau et son procédé de fabrication
EP0481842B1 (fr) Dispositif de chauffage d'un liquide de lave-glace, notamment pour véhicule automobile
EP3246651B1 (fr) Échangeur thermique à au moins trois fluides à efficacité améliorée
FR2501846A1 (fr) Tube pour echangeur thermique et application de ce tube
FR2492956A1 (fr) Capteur d'energie solaire sous vide, de grandes dimensions
EP3524914B1 (fr) Appareil de chauffage thermodynamique a condenseur micro canaux optimise pour une charge minimale en fluide frigorigene
FR2494830A1 (fr) Element d'echange de chaleur forme de tubes en forme de serpentins en matiere plastique et recuperateur de chaleur le mettant en oeuvre
FR2561362A1 (fr) Absorbeur plan pour capteur solaire, capteur solaire equipe d'un tel absorbeur et applications dudit absorbeur
WO2003081159A1 (fr) Echangeur de chaleur, notamment pour un vehicule automobile, constitue d'elements tubulaires empiles
FR3066262B1 (fr) Echangeur de chaleur constitutif d'un circuit de fluide refrigerant
WO2016120283A1 (fr) Batterie thermique à matériau à changement de phase encapsulé
FR3026171A1 (fr) Dispositif de conditionnement thermique d'un fluide pour vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12729071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14123524

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE