WO2012167734A1 - 下行临时块流的信道分配方法和装置 - Google Patents

下行临时块流的信道分配方法和装置 Download PDF

Info

Publication number
WO2012167734A1
WO2012167734A1 PCT/CN2012/076578 CN2012076578W WO2012167734A1 WO 2012167734 A1 WO2012167734 A1 WO 2012167734A1 CN 2012076578 W CN2012076578 W CN 2012076578W WO 2012167734 A1 WO2012167734 A1 WO 2012167734A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
pdchs
pdch
channel
tbf
Prior art date
Application number
PCT/CN2012/076578
Other languages
English (en)
French (fr)
Inventor
杨凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12796082.1A priority Critical patent/EP2709402B1/en
Priority to BR112013031489-3A priority patent/BR112013031489B1/pt
Publication of WO2012167734A1 publication Critical patent/WO2012167734A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a channel allocation method and apparatus for a downlink temporary block stream TBF.
  • a Packet Data Channel (PDCH) is a bearer logical entity of a wireless packet data on an air interface
  • TBF temporary block flow
  • Flow is a connection between the user equipment and the access side of the radio access network (hereinafter referred to as the access network side), and the user equipment and the access network side transmit packet service data on the PDCH through the TBF.
  • One TBF can be assigned one or more PDCHs, and one PDCH can carry multiple TBFs.
  • the PDCH allocation mode of the TBF is as follows: 1. The access network side determines the number of PDCHs to be allocated according to the multi-slot capability of the user equipment user. 2. From all PDCHs, according to the degree of multiplexing of the PDCH and the number of PDCHs to be allocated. And selecting a group of channel groups with better carrying capacity and lower multiplexing degree to be allocated to the TBF; then, the access network side sends the selected channel group and the specified time to the user through a Downlink Assignment (Message Downlink Assignment) message. The device, the user equipment switches to the assigned channel group to receive the downlink packet service data at a specified time. If the user equipment receives the downlink packet service data, the downlink TBF is considered to be successfully established.
  • the inventors of the present invention found that although the PDCH allocation method of the above TBF can equally divide the TBF into each PDCH, so that each PDCH carries
  • the number of TBFs is basically balanced, but the balance of the number of TBFs carried by each PDCH cannot guarantee the individual PDCHs.
  • the data traffic sent is balanced.
  • the data traffic between the PDCHs may be unbalanced.
  • some PDCH resources are vacant, and some PDCHs send too much data traffic, causing these to send too much data traffic.
  • the user experience of the TBF hosted by the PDCH is degraded.
  • Embodiments of the present invention provide a channel allocation method for a downlink temporary block stream, and a corresponding device.
  • a channel allocation method for a downlink temporary block stream includes:
  • the access network side acquires the respective ones according to the buffer data amount of each downlink TBF that is carried on each packet data channel PDCH and the corresponding relationship between each downlink TBF and the PDCH.
  • a PDCH load amount selecting a PDCH having a smaller load amount from the respective PDCHs as the first PDCH;
  • a channel allocation method for a downlink temporary block stream includes:
  • the second assignment message Transmitting, to the user equipment corresponding to the downlink TBF that has a larger amount of buffered data, the second assignment message, where the second assignment message carries information of the second PDCH and information of the downlink TBF having a larger amount of buffered data, so that the The user equipment learns that the access network side adjusts the channel for carrying the downlink TBF with a larger amount of buffered data to the second PDCH.
  • a channel allocation method for a downlink temporary block stream includes:
  • the access network side obtains the number of PDCHs that can form a large continuous arrangement relationship according to the arrangement relationship between the respective packet data channels PDCH;
  • the number of PDCHs capable of forming a larger continuous arrangement relationship is greater than the number of PDCHs that can be assigned to the downlink TBF determined by the multi-slot capability of the user equipment, according to the energy determined by the multi-slot capability of the user equipment
  • the number of PDCHs assigned to the downlink TBF is combined into a plurality of different channel groups, and the PDCHs in each channel group are in a continuous arrangement relationship;
  • the number of PDCHs that can form a larger continuous arrangement relationship is less than or equal to the number of PDCHs that can be assigned to the downlink TBF determined by the multi-slot capability of the user equipment, according to the PDCH capable of forming a large continuous arrangement relationship
  • the number of the PDCHs is combined into a plurality of different channel groups, and the PDCHs in each of the channel groups are in a continuous arrangement relationship;
  • a channel allocation method for a downlink temporary block stream includes:
  • the access network side obtains the corresponding data of the downlink data volume of each downlink TBF and the downlink TBF and the PDCH.
  • the load difference between the PDCHs exceeds the load difference of the second threshold, the number of PDCHs that can form a large continuous arrangement relationship is obtained according to the arrangement relationship between the PDCHs;
  • the number of PDCHs that can form a larger continuous arrangement relationship is greater than the number of PDCHs that can be assigned to the downlink TBF determined by the multi-slot capability of the user equipment, according to the multi-slot capability determined by the user equipment.
  • the PDCHs that can be assigned to the downlink TBF are combined into a plurality of different channel groups, and the PDCHs in each channel group are in a continuous arrangement relationship;
  • the number of PDCHs that can form a larger continuous arrangement relationship is less than or equal to the number of PDCHs that can be assigned to the downlink TBF determined by the multi-slot capability of the user equipment, according to the PDCH capable of forming a large continuous arrangement relationship
  • the number of the PDCHs is combined into a plurality of different channel groups, and the PDCHs in each channel group are in a continuous arrangement relationship;
  • a channel allocation device for a downlink temporary block stream is applied to the access network side, and includes:
  • a first selection channel unit configured to: when the downlink packet service data reaches the access network side, the access network side according to the buffer data amount of each downlink TBF carried on each packet data channel PDCH and the each downlink TBF and Corresponding relationship of the PDCH, the load amount of each PDCH is obtained, and a PDCH with a smaller load amount is selected as the first PDCH from the respective PDCHs;
  • a first sending unit configured to send, to the user equipment, a first assignment message that carries the information of the first PDCH, so that the user equipment receives the downlink on the first PDCH according to the first assignment message Group business data.
  • a channel allocation device for a downlink temporary block stream is applied to the access network side, and includes:
  • a second selection channel unit configured to perform channel reconfiguration on the downlink TBFs that are carried on the respective packet data channels, the downlink TBFs, and each of the downlink TBFs Corresponding relationship with the PDCH, obtaining a load amount of the respective PDCHs; if a load amount difference between the respective PDCHs has a load amount difference exceeding a first threshold value, selecting a load amount from the respective PDCHs to be d, PDCH as the second PDCH; a second sending unit, configured to send, to the user equipment, a second assignment message to the user equipment of the downlink packet service data corresponding to the downlink TBF that has a larger amount of buffered data, where the second assignment message carries the second PDCH And the information of the downlink TBF having a larger amount of buffered data, so that the user equipment learns that the access network side adjusts the channel for carrying the downlink TBF with a larger amount of buffered data to the second PDCH.
  • a channel allocation device for a downlink temporary block stream is applied to the access network side, and includes:
  • the first allocation channel group unit is configured to: when the downlink packet service data reaches the access network side, the access network side obtains the number of PDCHs that can form a large continuous arrangement relationship according to the arrangement relationship between the respective packet data channels PDCH If the number of PDCHs that can form a larger continuous arrangement relationship is greater than the number of PDCHs that can be assigned to the downlink TBF determined by the multi-slot capability of the user equipment, according to the multi-slot capability determined by the user equipment.
  • the PDCHs that can be assigned to the downlink TBF are combined into a plurality of different channel groups, and the PDCHs in each channel group are in a continuous arrangement relationship; if the PDCH can form a large continuous arrangement relationship
  • the number of PDCHs that can be assigned to the downlink TBF which is determined by the multi-slot capability of the user equipment, is combined into a number of PDCHs according to the number of PDCHs that can form a large continuous arrangement relationship.
  • a different channel group each of which is in a continuous arrangement relationship between PDCHs;
  • a first selection channel group unit configured to acquire, according to a buffer data amount of each downlink TBF that is carried on each of the PDCHs, and a corresponding relationship between each downlink TBF and a PDCH, obtain a load quantity of each of the channel groups, Selecting, from each of the channel groups, a channel group having a smaller load amount as the first channel group; a first sending message unit, configured to send, to the user equipment, a third assignment message that carries information about the first channel group, so that the user equipment receives the first channel group according to a third assignment message.
  • the downlink packet service data configured to acquire, according to a buffer data amount of each downlink TBF that is carried on each of the PDCHs, and a corresponding relationship between each downlink TBF and a PDCH, obtain a load quantity of each of the channel groups, Selecting, from each of the channel groups, a channel group having a smaller load amount as the first channel group; a first sending message unit, configured to send, to the user equipment,
  • a channel allocation device for a downlink temporary block stream is applied to the access network side, and includes:
  • a second allocation channel group unit configured to perform channel reconfiguration on a downlink TBF that has been carried on each PDCH, and the access network side according to the amount of cache data of each downlink TBF that has been carried on each of the PDCHs and each of the Corresponding relationship between the downlink TBF and the PDCH acquires the load quantity of the respective PDCHs; if the load quantity difference between the respective PDCHs has a load quantity difference exceeding the second threshold value, according to the arrangement relationship between the respective PDCHs Obtaining a number of PDCHs that can form a larger continuous arrangement relationship; and if the number of PDCHs that can form a larger continuous arrangement relationship is greater than a PDCH that can be assigned to the downlink TBF by the multi-slot capability of the user equipment The number, according to the number of PDCHs that can be assigned to the downlink TBF by the multi-slot capability of the user equipment, combines the respective PDCHs into a plurality of different channel groups, and the PD
  • a second selection channel group unit configured to acquire a load quantity of each of the channel groups according to a load quantity of each of the PDCHs, and select a channel group with a smaller load amount as the second channel group from the channel group;
  • a second sending message unit configured to send a fourth assignment message to the user equipment corresponding to the downlink TBF that has a larger amount of buffered data, where the fourth assignment message carries the information of the second channel group and the downlink with a larger amount of buffered data
  • the TBF information is such that the user equipment learns that the access network side adjusts the channel for carrying the downlink TBF with a larger amount of buffered data to the second channel group.
  • the access network side when the downlink packet service data reaches the access network side, the access network side may be configured according to the buffered data volume of each downlink TBF carried on each PDCH and each downlink TBF carried on each PDCH.
  • Corresponding relationship of the packet data channel PDCH acquires the load of each PDCH, selects a PDCH with a smaller load amount as the first PDCH in each PDCH, and then sends a first assignment message to the user equipment, where the first assignment message carries the first The information of the PDCH, the user equipment switches to the first PDCH according to the first assignment message to receive the downlink packet service data.
  • the technical solution provided by the embodiment of the present invention can distribute the data amount to each PDCH as much as possible when the channel is allocated, improve the resource utilization of the PDCH, reduce the multiplexing of the high-data packet service on the PDCH, and improve the service experience of the user.
  • FIG. 1 is a schematic flowchart of an embodiment of a channel allocation method for a downlink temporary block stream according to an embodiment of the present invention
  • 2 is a schematic flowchart of another embodiment of a channel allocation method for a downlink temporary block stream according to an embodiment of the present invention
  • FIG. 3 is another embodiment of a channel allocation method for a downlink temporary block stream according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of another embodiment of a channel allocation method for a downlink temporary block stream according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an embodiment of a channel allocation device for a downlink temporary block stream according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram showing the logical structure of another embodiment of a channel allocation apparatus for downlink temporary block flow according to an embodiment of the present invention
  • FIG. 7 is a channel allocation apparatus for downlink temporary block stream according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram showing the logical structure of another embodiment of a channel allocation apparatus for a downlink temporary block stream according to an embodiment of the present invention.
  • an embodiment of the present invention provides a channel allocation method for a downlink temporary block stream, and an embodiment of the present invention further provides a corresponding device. The details are described below separately. Referring to FIG. 1 , an embodiment of the present invention provides an embodiment of a channel allocation method for a downlink temporary block stream, where the specific process includes:
  • the access network side acquires the buffer data amount of each downlink TBF carried on each PDCH and the corresponding relationship between each downlink TBF and PDCH carried on each PDCH.
  • the downlink TBF is used to carry the packet service between the access network side and the user equipment. Only when the user equipment and the access network side need to transmit data, the user equipment and the access network side will establish a downlink TBF, and the downlink TBF. The established process is controlled by the access network side.
  • the access network side acquires the buffer data amount of each downlink TBF carried on each PDCH and the bearer on each PDCH.
  • the corresponding relationship between each downlink TBF and the PDCH needs to be described. If a certain PDCH is in an idle state, the amount of buffered data of each downlink TBF that has been carried on the PDCH is zero.
  • the amount of buffered data of the downlink TBFs that are carried on each PDCH refers to the downlink TBFs that are received by the access network and are not sent by the downlink TBFs on the PDCHs.
  • the amount of data of the downlink packet service data which is cached on the access network side before being sent to the user equipment.
  • downlink packet service data is passed through the downlink packet industry.
  • the core network After receiving the PDU, the core network transmits the PDU to the access network side.
  • PDU Protocal Data Unit
  • the PDU When the PDU arrives at the access network side, the PDU is not Before being sent to the user equipment, the PDU is buffered on the access network side, and the data volume of the PDU is the buffer data amount of the downlink TBF that has been carried on each PDCH.
  • the access network side may be composed of a base transceiver station (BTS, Base Transceiver Station), a base station controller (BSC, Base Station Controller), and a packet control unit (PCU), in this scenario.
  • BTS Base Transceiver Station
  • BSC Base Station Controller
  • PCU packet control unit
  • the access network side may obtain the load quantity of each PDCH according to the buffered data volume of each downlink TBF that is carried on each PDCH obtained in step 101 and the corresponding relationship between each downlink TBF and the PDCH that are carried on each PDCH.
  • a PDCH having a small load amount is selected from the respective PDCHs as the first PDCH.
  • the load of each PDCH is the sum of the buffered data of all downlink TBFs it carries.
  • the first PDCH may be a PDCH having a minimum load amount in each PDCH, or may be any PDCH below a certain threshold in each PDCH.
  • the first PDCH is a channel allocated by the access network side for the TBF to be established in this embodiment, and does not represent any order or identification of the PDCH.
  • the first assignment message carrying information of the first PDCH to the user equipment. After the first PDCH is selected by the access network, the first assignment message carrying the information of the first PDCH is sent to the user equipment, so that the user equipment receives the downlink packet service data on the first PDCH according to the first assignment message. It should be noted that the first assignment message is used for the user equipment to receive the downlink packet service data on the allocated channel according to the first assignment message, and does not represent any order or identifier limitation on the assignment message.
  • the assignment message may be a Packet Downlink Assignment message, and the access network side sends the allocated PDCH to the user equipment by using a Packet Downlink Assignment message.
  • the downlink packet channel assignment message also carries the specified time information.
  • the user equipment After receiving the downlink packet channel assignment message, the user equipment receives the downlink packet service data from the PDCH allocated by the access network side at a specified time, when the user equipment starts to receive the message. Downstream packet service data, the downlink TBF is successfully established.
  • the access network side when the downlink packet service data reaches the access network side, the access network side according to the buffer data amount of each downlink TBF carried on each PDCH and each downlink TBF and packet data that has been carried on each PDCH.
  • an embodiment of the present invention further provides another embodiment of a channel allocation method for a downlink temporary block stream, which is specifically as follows:
  • the access network side may perform channel reconfiguration for the downlink TBFs already carried on the respective PDCHs. For example, after the downlink TBF is established for the downlink packet service data, that is, after the steps 101 to 103 are performed, the channel reconfiguration operation is performed on the downlink TBFs that are carried on the PDCHs, and the access network side is performed. The operation of performing channel reconfiguration on the downlink TBFs carried on the respective PDCHs may be performed when the load of the downlink TBFs that are carried on the PDCHs is consumed. In this embodiment, the access network side reconfigures the PDCH for carrying the downlink TBF with a larger amount of buffered data.
  • the access network side obtains the buffered data volume of each downlink TBF that has been carried on each PDCH and the correspondence between each downlink TBF and PDCH that has been carried on each PDCH. relationship.
  • the access network side acquires the load amount of each PDCH according to the buffered data volume of each downlink TBF carried on each PDCH and the corresponding relationship between each downlink TBF and the PDCH carried on each PDCH. 203. Acquire a load difference between each PDCH, and determine whether there is a load difference exceeding the first threshold. If yes, execute step 204. If no, execute step 205.
  • the access network side obtains the load difference between the PDCHs according to the load of each PDCH in all the PDCHs, and determines whether there is a load difference exceeding the first threshold. For example, assume 4 of the carrier frequencies.
  • the channel is PDCH, which is TS0 ⁇ TS1, TS5-TS7, respectively.
  • the access network side can judge the load difference between TS0 and TS1, TS0 and TS5, TS0 and TS7, TS1 and TS5, TS1 and TS7, TS5 and TS7. Whether the value has at least one load exceeding the first threshold value.
  • the first threshold value may be obtained according to actual needs, or obtained according to the channel traffic condition according to the simulation.
  • the access network side needs to perform channel reconfiguration for the downlink TBFs that are carried on the respective PDCHs.
  • the network side adjusts the channel for carrying the downlink TBF with a larger amount of buffered data, and the access network side performs step 204.
  • the access network side does not need to perform channel reconfiguration for the downlink TBFs already carried on the respective PDCHs, and is performed on the access network side. Step 205.
  • the access network side When the access network side needs to perform channel reconfiguration for the downlink TBFs that are carried on the respective PDCHs, the access network side selects the PDCH with a smaller load amount as the second PDCH, and has a larger amount of buffered data.
  • the user equipment corresponding to the TBF sends a second assignment message, where the second assignment message carries the information of the second PDCH and the information of the downlink TBF with a larger amount of buffered data, so that the user equipment knows that the access network side will be used for the bearer.
  • the channel of the downlink TBF with a larger amount of buffered data is adjusted to the second PDCH.
  • the second PDCH may be a PDCH having a minimum load amount in each PDCH, or may be any PDCH below a certain threshold in each PDCH; a downlink TBF having a larger buffered data amount. It can be a downlink TBF with the largest amount of buffered data, or it can be any downlink TBF above a certain threshold.
  • the second PDCH is a channel for re-allocating the downlink TBF with a larger amount of buffered data in the access network side in this embodiment, and does not represent any order or identification of the PDCH.
  • the second assignment message is a channel for the user equipment to learn to carry the downlink TBF reallocation with a larger amount of buffered data, and does not represent any order or identification of the assignment message.
  • the access network side When the access network side does not need to perform channel reconfiguration for the downlink TBF that is carried on each PDCH, the access network side maintains the channel configuration of the downlink TBF that has been carried on each PDCH.
  • the access network side in the load difference between the PDCHs, when there is a load difference exceeding the first threshold, the access network side needs to perform channel reconfiguration for the downlink TBFs already carried on the respective PDCHs.
  • the access network side allocates a PDCH with a small amount of load to a downlink TBF for carrying a large amount of buffered data.
  • the technical solution provided by the embodiment of the present invention can carry the downlink that has been carried on each PDCH.
  • the channel configuration of the TBF is adjusted to basically keep all data amounts spread to each PDCH, making full use of PDCH resources.
  • the access network side may allocate multiple PDCHs for one TBF, which may specifically include:
  • the access network side obtains the number of PDCHs that can form a large continuous arrangement relationship according to the arrangement relationship between the PDCHs;
  • the GSM adopts packet switching technology.
  • the channel provided by the carrier frequency can be occupied by voice or by packet service data, but voice and packet service data cannot occupy the same channel at the same time.
  • the channel can transmit data in packets, which are PDCH.
  • a carrier frequency can provide 8 channels, which are represented by channel numbers (TS, Time Slot) 0 ⁇ 7. According to the continuous relationship of channel numbers, PDCH will have different arrangement relationships among 8 channels. For example, TS0 and TS1 do not have When occupied by voice, the channel can transmit data in packets.
  • TS0 and TS1 are PDCH
  • the channel numbers of TSO and TS1 are continuous
  • the arrangement relationship between TS0 and TS1 is a continuous arrangement relationship.
  • TS1 is occupied by voice.
  • TS0 and TS2 are not occupied by voice
  • the channel can transmit data in a packet form
  • TS0 and TS2 are PDCH
  • the channel numbers of TSO and TS2 are spaced
  • the arrangement relationship between TS0 and TS2 is an interval arrangement relationship.
  • the access network side obtains the number of PDCHs that can form a large continuous arrangement relationship according to the arrangement relationship between the PDCHs, for example:
  • the five channels of TSO and TS4 ⁇ TS7 are PDCH, and the number of PDCHs that can form a large continuous arrangement relationship is 4.
  • This large continuous arrangement relationship is formed by TS4 ⁇ TS7, that is, PDCH with more channel numbers consecutive. The continuous arrangement of the formation.
  • the number of PDCHs that can form a large continuous arrangement relationship may be the number of PDCHs that can form a maximum continuous arrangement relationship, or may be a PDCH that can form a continuous arrangement relationship higher than a certain threshold value. Number.
  • step 302 determining whether the number of PDCHs that can be determined by the multi-slot capability of the user equipment can be the downlink TBF; if yes, go to step 303, if no, go to step 304;
  • the downlink packet service data transmission rate can be increased.
  • the downlink TBF is expected to allocate as many PDCHs as possible, but multiple PDCHs allocated by one downlink TBF must be continuously.
  • the access network side determines, in all the PDCHs, whether the number of PDCHs that can form a larger continuous arrangement relationship is greater than the number of PDCHs that can be assigned to the downlink TBF by the multi-slot capability of the user equipment. Assuming that the user equipment is a mobile phone, the number of PDCHs that can be assigned to the downlink TBF determined by the multi-slot capability of the mobile phone is 4.
  • the number of PDCHs that can form a larger continuous arrangement relationship is greater than the number of PDCHs that can be assigned to the downlink TBF by the multi-slot capability of the user equipment, and a downlink TBF can
  • the number of allocated PDCHs is the number of PDCHs that can be assigned to the downlink TBF by the multi-slot capability of the user equipment, and the access network side performs step 303; If not, the number of PDCHs that can form a larger continuous arrangement relationship is less than or equal to the number of PDCHs that can be assigned to the downlink TBF by the multi-slot capability of the user equipment, and the PDCH that can be allocated by one downlink TBF.
  • the number is the number of PDCHs that can form a large continuous arrangement relationship, and the access network side performs step 304.
  • all the 8 channels in the carrier frequency are PDCH, and the number of PDCHs that can be assigned to the downlink TBF determined by the multi-slot capability of the user equipment (taking the mobile phone as an example) is 4, and 5 channel groups can be combined in all PDCHs. They are TS0 ⁇ TS3, TS1-TS4, TS2 ⁇ TS5 TS3-TS6, TS4 ⁇ TS7, and the PDCH in each channel group is in a continuous arrangement relationship.
  • the four channels in the carrier frequency are PDCH, which are respectively TS0 ⁇ TS1, TS5-TS7, and the number of PDCHs that can form a large continuous arrangement relationship is 3, and the multi-slot capability of the user equipment (taking the mobile phone as an example)
  • the number of PDCHs that can be assigned to the downlink TBF is 4, and one channel group can be combined in all PDCHs, which is TS5 ⁇ TS7.
  • each downlink TBF carried on each PDCH is obtained.
  • Corresponding relationship between the amount of stored data and each downlink TBF and PDCH carried on each PDCH, according to the amount of buffered data of each downlink TBF carried on each PDCH and the correspondence between each downlink TBF and PDCH carried on each PDCH The load quantity of each combined channel group is obtained, and a channel group with a smaller load amount is selected from each channel group as the first channel group.
  • the first channel group with a smaller load may be the first channel group with the smallest load, or any one of the channel groups below a certain threshold.
  • the first channel group is a channel group allocated by the access network side for the downlink TBF to be established in this embodiment, and does not represent any order or identification of the channel group.
  • the access network side sends a third assignment message to the user equipment, where the third assignment message carries the information of the first channel group, so that the user equipment switches to the first channel group to receive the downlink packet service data according to the third assignment message.
  • the third assignment message is a channel group for letting the user equipment know as the downlink TBF to be established, and does not represent any order or identification of the assignment message.
  • the access network side obtains the number of PDCHs that can form a large continuous arrangement relationship according to the arrangement relationship between the PDCHs, and the number of PDCHs that can form a large continuous arrangement relationship with the user equipment.
  • the multi-slot capability determines the size relationship of the number of PDCHs that can be assigned to the downlink TBF.
  • each PDCH a plurality of different channel groups consisting of consecutive PDCHs are combined, and a channel group with a smaller load amount is allocated as to be established.
  • the channel group of the downlink TBF the technical solution provided by the embodiment of the present invention can not only distribute the data amount to each PDCH as much as possible when allocating channels for the downlink TBF.
  • the resource utilization of the PDCH is improved, the multiplexing of the high-data packet service is reduced on the PDCH, and the service experience of the user is improved.
  • the access network side allocates a channel group for the downlink TBF, which can increase the transmission rate of the downlink packet service data.
  • FIG. 4 another embodiment of a method for channel allocation of a downlink temporary block stream is provided in this embodiment of the present invention.
  • the access network side performs channel re-adjustment on the downlink TBF carried on each PDCH, so that the network is The PDCH resources are more fully utilized.
  • the specific process of this embodiment includes:
  • the access network side may perform channel reconfiguration for the downlink TBFs already carried on the respective PDCHs. For example, after the downlink TBF is established for the downlink packet service data, that is, after the steps 301 to 306 are performed, the channel reconfiguration operation is performed on the downlink TBFs that are carried on the PDCHs, and the access network side is performed. The operation of performing channel reconfiguration on the downlink TBFs carried on the respective PDCHs may be performed when the load of the downlink TBFs that are carried on the PDCHs is consumed. The access network side adjusts the PDCH of the downlink TBF with a larger amount of buffered data.
  • the downlink TBF with a larger amount of buffered data may be the downlink TBF with the largest amount of buffered data, or Is any downlink TBF above a certain threshold.
  • the access network side obtains the buffered data volume of each downlink TBF that has been carried on each PDCH and the correspondence between each downlink TBF and PDCH that has been carried on each PDCH. relationship.
  • the access network side obtains the load amount of each PDCH according to the buffer data amount of each downlink TBF carried on each PDCH and the corresponding relationship between each downlink TBF and PDCH carried on each PDCH;
  • step 402 according to the load amount of each PDCH to obtain the load difference between each PDCH, determine whether there is a load difference exceeding the second threshold, and if so, then perform steps 403 ⁇ 407; if not, proceed to step 409;
  • the second threshold value can be obtained by debugging according to actual needs, or obtained according to the channel traffic condition according to the simulation.
  • the access network side After completing the combination of the channel groups, the access network side acquires the load amount of each channel group according to the load amount of each PDCH acquired in step 401, and selects the channel group with the smaller load amount as the second channel group from the channel group.
  • the second channel group with a smaller load amount may be the second channel with the smallest load.
  • a group can also be any channel group below a certain threshold.
  • the second channel group is a channel group that is re-allocated in the access network side for the established downlink TBF in this embodiment, and does not represent any order or identification of the channel group.
  • the fourth assignment message carries the information of the second channel group and the information of the downlink TBF with a larger amount of buffered data, so that the user equipment learns that the access network side adjusts the channel for carrying the downlink TBF with a larger amount of buffered data to Second channel group.
  • the fourth assignment message is a channel group for the user equipment to be known as the reestablished downlink TBF re-allocation, and does not represent any order or identification of the assignment message.
  • the access network side When the access network side does not need to perform channel reconfiguration for the downlink TBF that is carried on each PDCH, the access network side maintains the channel configuration of the downlink TBF that has been carried on each PDCH.
  • the access network side needs to perform channel reconfiguration for the downlink TBFs already carried on the PDCHs.
  • the access network side selects, in each channel group, a second channel group with a smaller amount of load, which is configured to carry a downlink TBF redistributed channel with a larger amount of buffered data, and the technical solution provided by the embodiment of the present invention can
  • the channel of the downlink TBF carried by each PDCH is adjusted to maintain substantially all data amounts. All are allocated to each PDCH to make full use of PDCH resources.
  • the channel allocation method of the downlink temporary block stream in the embodiment of the present invention will be described below by taking two specific application scenarios as an example. For the two application scenarios, refer to steps 301 to 306 and steps 401 to 409.
  • the first application scenario is as follows: When the downlink packet service data reaches the access network side, the access network side allocates a channel group to the downlink TBF to be established, as follows:
  • the eight channels TS0 ⁇ TS7 of the carrier frequency are both PDCHs, and the access network side obtains the buffer data amount of each downlink TBF carried on each PDCH and the corresponding relationship between each downlink TBF and PDCH carried on each PDCH, according to The corresponding data of each downlink TBF and the PDCH that are carried on each PDCH and the corresponding relationship between each downlink TBF and the PDCH are obtained.
  • the specific load is: TS0 ⁇ TS3 carries two downlink TBFs, respectively It is a downlink TBF-and a downlink TBF 2.
  • TS4-TS7 carries two downlink TBFs, which are downlink TBF 3 and downlink TBF 4.
  • the downlink TBF-cache data volume is 1200 Kbytes, and the downlink TBF 2 cache data volume is 3600 Kbytes, TS0 ⁇
  • the buffered data volume of downlink TBF3 is 400Kbytes
  • the buffered data volume of downlink TBF4 is 800Kbytes
  • the access network side obtains the number of PDCHs that can form a large continuous arrangement relationship according to the arrangement relationship between the PDCHs.
  • the user equipment is a mobile phone, and the multi-slot capability determined by the user equipment can be
  • the number of PDCHs assigned to the downlink TBF is 4, and the number of PDCHs that can be formed in a larger continuous arrangement is greater than the number of PDCHs that can be assigned to the downlink TBF as determined by the multi-slot capability of the user equipment.
  • the number of PDCHs that can be assigned to the downlink TBF determined by the multi-slot capability combines several different channel groups in all PDCHs.
  • the PDCHs in each channel group are continuous and can be combined into five channel groups in the PDCH. They are TS0 ⁇ TS3, TS1 ⁇ TS4, TS2 ⁇ TS5, TS3 ⁇ TS6, TS4 ⁇ TS7.
  • the access network side After the access network side obtains the five channel groups, according to the load amount of each PDCH, the load of the channels JLTSO-TS3, TS1-TS4, TS2 ⁇ TS5, TS3-TS6, TS4 ⁇ TS7 is obtained, respectively.
  • J is 4800 Kbytes, 3900 Kbytes, 3000 Kbytes, 2100 Kbytes, 1200 Kbytes, select the channel group with smaller load: TS4 ⁇ TS7, the access network side sends downlink channel assignment information to the mobile phone, so that the mobile phone is in channel group TS4 ⁇ TS7 Receive downlink packet service data.
  • the access network side obtains the number of PDCHs that can form a large continuous arrangement relationship according to the arrangement relationship between the PDCHs, and determines the number of PDCHs that can form a large continuous arrangement relationship and the multi-slot capability of the user equipment.
  • the network group allocates a channel group for the downlink TBF, which can increase the transmission rate of the downlink packet service data.
  • the second application scenario is as follows: In order to make the PDCH resources of the network fully utilized, the access network side performs channel re-adjustment on the downlink TBFs carried on the PDCHs.
  • the eight channels TS0 ⁇ TS7 of the carrier frequency are all PDCHs.
  • the access network side obtains the corresponding data of the buffered data volume of the downlink TBFs carried on each PDCH and the corresponding downlink TBF and PDCH carried in each PDCH.
  • TS0 ⁇ TS3 carries three downlink TBFs, which are divided into downlink TBF5 and TBF6 and TBF7.
  • TS4 ⁇ TS7 carries two downlink TBFs, which are downlink TBF8 and downlink TBF9, and downlink TBF5 cache data.
  • the downlink TBF6 cache data volume is 1200Kbytes
  • the downlink TBF7 cache data volume is 4000Kbytes
  • the downlink TBF8 cache data volume is 800Kbytes
  • the downlink TBF9 cache data volume is 400Kbytes.
  • the load quantity of each PDCH is obtained according to the buffer data amount of each downlink TBF that is carried on each PDCH and the corresponding relationship between each downlink TBF and PDCH that are carried on each PDCH, specifically:
  • the load of each PDCH between TS0 ⁇ TS3 is:
  • the load of each PDCH between TS4 and TS7 is:
  • the access network obtains a large continuous row according to the arrangement relationship between the PDCHs.
  • the number of PDCHs in the column relationship is 8, and the user equipment is the mobile phone.
  • the number of PDCHs that can be assigned to the downlink TBF by the multi-slot capability of the user equipment is 4, and the acquisition can be formed according to the arrangement relationship between the PDCHs.
  • the number of PDCHs in the larger consecutive relationship is greater than the number of PDCHs that can be assigned to the downlink TBF determined by the multi-slot capability of the user equipment.
  • the access network side can determine the downlink TBF according to the multi-slot capability of the user equipment.
  • the number of assigned PDCHs combines several different channel groups in all PDCHs.
  • the PDCH in each channel group is continuous.
  • 5 channel groups can be combined, and the other 'J is TS0 ⁇ TS3, TS1-TS4. , TS2 ⁇ TS5, TS3-TS6, TS4 ⁇ TS7.
  • the access network side After the access network side obtains the five channel groups, the access network side obtains the load of each channel group, and the load corresponding to the channel groups TS0 ⁇ TS3, TS1-TS4, TS2 ⁇ TS5, TS3-TS6, TS4 ⁇ TS7 8800Kbytes, 6900 Kbytes, 5000 Kbytes, 3100 Kbytes, 1200 Kbytes, select the channel group TS4 ⁇ TS7 with smaller load capacity, and select the mobile phone that transmits the downlink packet service data through the downlink TBF seven with larger buffer data amount.
  • the network side sends a downlink packet channel assignment message to the mobile phone, so that the mobile phone learns that the access network side adjusts the channel of the downlink TBF seven to the channel group TS4 ⁇ TS7.
  • the access network side In the load difference between the PDCHs, when there is a load difference exceeding the threshold, the access network side needs to perform channel reconfiguration for the downlink TBFs already carried on the respective PDCHs, and the access network side is in each In the channel group, the channel group with a smaller amount of load is selected to be used for carrying the downlink TBF redistributed channel with a larger amount of buffered data, so that the channel of the downlink TBF that has been carried by each PDCH can be adjusted to basically keep all the data. The amount is spread to each PDCH to make full use of PDCH resources. Referring to FIG.
  • an embodiment of a channel allocation apparatus for downlink temporary block flow in the embodiment of the present invention is applied to an access network side, and the apparatus in this embodiment may be used to implement the method provided in steps 101-103. For example, each action implemented by the access network side in the method is performed.
  • the first selection channel unit 501 is configured to: when the downlink packet service data reaches the access network side, the access network side according to the buffer data amount of each downlink TBF carried on each packet data channel PDCH and each downlink TBF and PDCH Corresponding relationship acquires the load of each PDCH, and selects a PDCH with a smaller load amount from each PDCH as the first PDCH;
  • the first sending unit 502 is configured to send, to the user equipment, a first assignment message carrying the information of the first PDCH, so that the user equipment receives the downlink packet service data on the first PDCH according to the first assignment message.
  • the channel allocation device of the downlink temporary block stream provided in this embodiment may be a base station controller.
  • the apparatus for establishing the downlink temporary block stream can allocate the data amount to each PDCH as much as possible when allocating channels for the downlink TBF to be established, improve the resource utilization of the PDCH, and reduce the high data volume packet service on the PDCH. Reuse, improve the user's business experience.
  • FIG. 6 another embodiment of a channel allocation apparatus for a downlink temporary block stream in the embodiment of the present invention is applied to an access network side, and the apparatus in this embodiment may be used to implement the methods provided in steps 201-205.
  • Embodiments, that is, performing the actions implemented by the access network side in the method. Includes:
  • a second selection channel unit 601 configured to carry the downlink carried on each packet data channel PDCH
  • the load amount of each PDCH is obtained according to the buffer data amount of each downlink TBF that is carried on each PDCH and the correspondence between each downlink TBF and the PDCH.
  • a PDCH with a smaller load amount is selected as the second PDCH from each PDCH;
  • the second sending unit 602 is configured to send, to the user equipment corresponding to the downlink TBF that has a larger amount of buffered data, the second assignment message, where the second assignment message carries the information of the second PDCH and the amount of the larger buffered data.
  • the downlink TBF information is obtained, so that the user equipment learns that the access network side adjusts the channel for carrying the downlink TBF with a larger amount of buffered data to the second PDCH.
  • the channel allocation device of the downlink temporary block stream provided in this embodiment may be a base station controller.
  • the channel allocation device of the downlink temporary block stream can adjust the channel allocated by the downlink TBF that is carried on each PDCH, and basically keeps all data amounts spread to each PDCH, and fully utilizes the PDCH resource.
  • FIG. 7 another embodiment of the channel allocation apparatus for the downlink temporary block stream in the embodiment of the present invention is applied to the access network side, and the apparatus in this embodiment may be used to implement the methods provided in steps 301-306.
  • Embodiments, that is, performing the actions implemented by the access network side in the method. Includes:
  • the first allocation channel group unit 701 is configured to: when the downlink packet service data reaches the access network side, the access network side obtains the PDCHs that can form a large continuous arrangement relationship according to the arrangement relationship between the respective packet data channels PDCH Number; if the number of PDCHs capable of forming a large continuous arrangement relationship is large And determining, according to the multi-slot capability of the user equipment, the number of PDCHs that can be assigned to the downlink TBF, according to the number of PDCHs that can be assigned to the downlink TBF by the multi-slot capability of the user equipment, combining the PDCHs In a plurality of different channel groups, the PDCHs in each channel group are in a continuous arrangement relationship; if the number of PDCHs capable of forming a large continuous arrangement relationship is less than or equal to that determined by the multi-slot capability of the user equipment The number of PDCHs that can be assigned to the downlink TBF, the respective PDCHs are combined into a plurality of different
  • the first selection channel group unit 702 is configured to acquire, according to the buffer data amount of each downlink TBF that is carried on the respective PDCHs, and the corresponding relationship between each downlink TBF and the PDCH, obtain the load of each of the channel groups. And selecting, from each of the channel groups, a channel group having a smaller load amount as the first channel group, where the first sending message unit 703 is configured to send, to the user equipment, a third assignment message that carries information of the first channel group. And causing the user equipment to receive the downlink packet service data on the first channel group according to the third assignment message.
  • the channel allocation apparatus of the downlink temporary block stream can not only distribute the data amount to each PDCH as much as possible when allocating channels for the downlink TBF to be established, improve the resource utilization of the PDCH, and reduce the high data volume packet service in the PDCH.
  • the multiplexing is performed to improve the service experience of the user, and the access network side allocates a channel group for the downlink TBF to be established, which can increase the transmission rate of the downlink packet service data.
  • FIG. 8 another embodiment of a channel allocation apparatus for a downlink temporary block stream in the embodiment of the present invention is applied to an access network side, and the apparatus in this embodiment may be used to implement the method provided in steps 401-409.
  • Embodiments, that is, performing the actions implemented by the access network side in the method. include:
  • a second allocation channel group unit 801 configured to perform channel reconfiguration on the downlink TBFs that are carried on the respective PDCHs, and the access network side according to the buffer data amount of each downlink TBF that has been carried on the respective PDCHs and the foregoing Corresponding relationship between the downlink TBFs and the PDCHs, the load amount of the respective PDCHs is obtained; if the load difference between the respective PDCHs has a load amount difference exceeding the second threshold value, according to the arrangement between the respective PDCHs Relationship, obtain the number of PDCHs that can form a large continuous arrangement relationship;
  • the number of PDCHs capable of forming a larger continuous arrangement relationship is greater than the number of PDCHs that can be assigned to the downlink TBF determined by the multi-slot capability of the user equipment, according to the energy determined by the multi-slot capability of the user equipment
  • the number of PDCHs assigned to the downlink TBF is combined into a plurality of different channel groups, and the PDCHs in each channel group are in a continuous arrangement relationship;
  • the number of PDCHs that can form a larger continuous arrangement relationship is less than or equal to the number of PDCHs that can be assigned to the downlink TBF determined by the multi-slot capability of the user equipment, according to the PDCH capable of forming a large continuous arrangement relationship
  • the number of the PDCHs is combined into a plurality of different channel groups, and the PDCHs in each channel group are in a continuous arrangement relationship;
  • a second selection channel group unit 802 configured to acquire a load quantity of each of the channel groups according to a load quantity of each of the PDCHs, and select a channel group with a smaller load amount as the second channel group from the channel group;
  • the second sending message unit 803 is configured to send a fourth assignment message to the user equipment corresponding to the downlink TBF that has a larger amount of buffered data, where the fourth assignment message carries the information of the second channel group and the amount of the buffered data.
  • the downlink TBF information is obtained, so that the user equipment learns that the access network side adjusts the channel for carrying the downlink TBF with a larger amount of buffered data to the second channel group.
  • the channel allocation apparatus of the downlink temporary block stream can adjust the channel allocated to each downlink TBF that each PDCH has carried, and basically keeps all data amounts spread to each PDCH, and fully utilizes the PDCH resources.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供了一种建立下行临时块流的方法,本发明实施例还提供一种相应的建立下行临时块流的装置,该装置应用于接入网侧。当下行分组业务数据到达接入网侧时,接入网侧获取各个PDCH上已承载的每个下行TBF的緩存数据量和各个PDCH上已承载的每个下行TBF与PDCH的对应关系,计算每个PDCH的负载量,在各个PDCH中选择负载量较小的PDCH作为第一PDCH,然后向用户设备发送第一指配消息,使得用户设备在第一PDCH上接收下行分组业务数据。本技术方案能够在分配信道时,尽量将数据量均摊到各个PDCH,提高PDCH的资源利用率,减少高数据量分组业务在PDCH上的复用,提高用户的业务体验。

Description

下行临时块流的信道分配方法和装置
技术领域
本发明涉及无线通信技术领域, 具体涉及一种下行临时块流 TBF的信道 分配方法和装置。
背景技术
在全球移动通信系统( GSM, Global System for Mobile Communications ) 分组传输过程中, 分组数据信道(PDCH, Packet Data Channel )是无线分组数 据在空中接口上的承载逻辑实体, 临时块流(TBF, Temporary Block Flow ) 是用户设备和无线接入接入网侧(以下筒称接入网侧 )之间的连接, 用户设备 和接入网侧通过 TBF在 PDCH上传输分组业务数据。
一个 TBF可以分配一个或多个 PDCH, 并且一个 PDCH 可以 载多个 TBF。
目前, TBF的 PDCH分配方式为: 1、 接入网侧根据用户设备用户的多时 隙能力确定需要分配的 PDCH数目, 2、 从所有的 PDCH中, 根据 PDCH的复 用度和需要分配的 PDCH数目, 选择一组承载能力较好的、 复用度较低的信 道组分配给 TBF;然后接入网侧将所选择的信道组和指定的时间通过下行信道 指派( Packet Downlink Assignment )消息发送给用户设备, 用户设备在指定的 时间切换到所指派的信道组接收下行分组业务数据,如果用户设备接收到下行 分组业务数据, 则认为下行 TBF建立成功。 在对现有技术的研究和实践过程中,本发明的发明人发现, 虽然上述 TBF 的 PDCH分配方式能将 TBF均分到各个 PDCH中, 使得各个 PDCH承载的
TBF数目基本平衡,但是各个 PDCH承载的 TBF数目平衡不能保证各个 PDCH 发送的数据流量一定平衡, 可能出现各个 PDCH之间的数据流量不均衡的情 况, 由此会导致某些 PDCH的资源空置, 另外一些 PDCH发送的数据流量却 过多, 使得这些发送过多数据流量的 PDCH承载的 TBF的用户体验下降。 发明内容
本发明实施例提供一种下行临时块流的信道分配方法, 以及相应的装置。 一种下行临时块流的信道分配方法, 包括:
当下行分组业务数据到达接入网侧时, 接入网侧根据各个分组数据信道 PDCH上已承载的每个下行 TBF的緩存数据量和所述每个下行 TBF与 PDCH的 对应关系获取所述各个 PDCH的负载量, 从所述各个 PDCH中选择负载量较小 的 PDCH作为第一 PDCH;
向用户设备发送携带所述第一 PDCH的信息的第一指配消息, 使得所述用 户设备根据所述第一指配消息在所述第一 PDCH上接收所述下行分组业务数 据。
一种下行临时块流的信道分配方法, 包括:
为各个分组数据信道 PDCH上已承载的下行 TBF进行信道重配置时, 根据 所述各个 PDCH上已承载的每个下行 TBF的緩存数据量和所述每个下行 TBF与 PDCH的对应关系, 获取所述各个 PDCH的负载量;
如果所述各个 PDCH之间的负载量差存在超过第一门限值的负载量差, 从 所述各个 PDCH中选择负载量较小的 PDCH作为第二 PDCH;
向具有较大緩存数据量的下行 TBF对应的用户设备发送第二指配消息,所 述第二指配消息携带第二 PDCH的信息和具有较大緩存数据量的下行 TBF的信 息, 使得所述用户设备获知接入网侧将用于承载具有较大緩存数据量的下行 TBF的信道调整为第二 PDCH。
一种下行临时块流的信道分配方法, 包括:
当下行分组业务数据到达接入网侧时, 接入网侧按照各个分组数据信道 PDCH之间的排列关系, 获取能形成较大连续排列关系的 PDCH的个数;
如果所述能形成较大连续排列关系的 PDCH的个数大于由用户设备的多 时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述由用户设备的多 时隙能力所确定的能为下行 TBF指配的 PDCH数目, 将所述各个 PDCH组合成 若干个不相同的信道组, 每个信道组中 PDCH之间是连续排列关系;
如果所述能形成较大连续排列关系的 PDCH的个数小于或者等于由用户 设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述能形成 较大连续排列关系的 PDCH的个数, 将所述各个 PDCH组合成若干个不相同的 信道组, 每个所述信道组中的 PDCH之间是连续排列关系;
根据所述各个 PDCH上已承载的每个下行 TBF的緩存数据量和所述每个下 行 TBF与 PDCH的对应关系, 获取每个所述信道组的负载量, 从每个所述信道 组中选择负载量较小信道组作为第一信道组; 向所述用户设备发送携带所述第一信道组的信息的第三指配消息,使得所 述用户设备根据第三指配消息在所述第一信道组上接收所述下行分组业务数 据。
一种下行临时块流的信道分配方法, 包括:
为各个 PDCH上已承载的下行 TBF进行信道重配置时, 接入网侧根据所述 各个 PDCH上已承载的每个下行 TBF的緩存数据量和所述每个下行 TBF与 PDCH的对应关系获取所述各个 PDCH的负载量;
如果所述各个 PDCH之间的负载量差存在超过第二门限值的负载量差, 则 按照所述各个 PDCH之间的排列关系, 获取能形成较大连续排列关系的 PDCH 的个数;
且如果所述能形成较大连续排列关系的 PDCH的个数大于由用户设备的 多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述由用户设备的 多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 将所述各个 PDCH组合 成若干个不相同的信道组, 每个信道组中 PDCH之间是连续排列关系;
如果所述能形成较大连续排列关系的 PDCH的个数小于或者等于由用户 设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述能形成 较大连续排列关系的 PDCH的个数, 将所述各个 PDCH组合成若干个不相同的 信道组, 每个信道组中的 PDCH之间是连续排列关系;
按照所述各个 PDCH的负载量获取每个所述信道组的负载量, 从所述信道 组中选择负载量较小信道组作为第二信道组;
向具有较大緩存数据量的下行 TBF对应的用户设备发送第四指配消息, 第 四指配消息携带第二信道组的信息和具有较大緩存数据量的下行 TBF的信息, 使得所述用户设备获知接入网侧将用于承载具有较大緩存数据量的下行 TBF 的信道调整为第二信道组。
一种下行临时块流的信道分配装置, 应用于接入网侧, 包括:
第一选择信道单元, 用于当下行分组业务数据到达接入网侧时,接入网侧 根据各个分组数据信道 PDCH上已承载的每个下行 TBF的緩存数据量和所述每 个下行 TBF与 PDCH的对应关系获取所述各个 PDCH的负载量, 从所述各个 PDCH中选择负载量较小的 PDCH作为第一 PDCH;
第一发送单元, 用于向用户设备发送携带所述第一 PDCH的信息的第一指 配消息, 使得所述用户设备根据所述第一指配消息在所述第一 PDCH上接收所 述下行分组业务数据。
一种下行临时块流的信道分配装置, 应用于接入网侧, 包括:
第二选择信道单元, 用于为各个分组数据信道 PDCH上已承载的下行 TBF 进行信道重配置时, 根据所述各个 PDCH上已承载的每个下行 TBF的緩存数据 量和所述每个下行 TBF与 PDCH的对应关系, 获取所述各个 PDCH的负载量; 如果所述各个 PDCH之间的负载量差存在超过第一门限值的负载量差, 从所述 各个 PDCH中选择负载量较 d、的 PDCH作为第二 PDCH; 第二发送单元,用于向具有较大緩存数据量的下行 TBF对应的下行分组业 务数据的用户设备, 向所述用户设备发送第二指配消息, 所述第二指配消息携 带第二 PDCH的信息和具有较大緩存数据量的下行 TBF的信息, 使得所述用户 设备获知接入网侧将用于承载具有较大緩存数据量的下行 TBF的信道调整为 第二 PDCH。
一种下行临时块流的信道分配装置, 应用于接入网侧, 包括:
第一分配信道组单元, 用于当下行分组业务数据到达接入网侧时,接入网 侧按照各个分组数据信道 PDCH之间的排列关系, 获取能形成较大连续排列关 系的 PDCH的个数; 如果所述能形成较大连续排列关系的 PDCH的个数大于由 用户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述由 用户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 将所述各个 PDCH组合成若干个不相同的信道组, 每个信道组中 PDCH之间是连续排列关 系; 如果所述能形成较大连续排列关系的 PDCH的个数小于或者等于由用户设 备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述能形成较 大连续排列关系的 PDCH的个数, 将所述各个 PDCH组合成若干个不相同的信 道组, 每个所述信道组中的 PDCH之间是连续排列关系;
第一选择信道组单元, 用于根据所述各个 PDCH上已承载的每个下行 TBF 的緩存数据量和所述每个下行 TBF与 PDCH的对应关系, 获取每个所述信道组 的负载量, 从每个所述信道组中选择负载量较小信道组作为第一信道组; 第一发送消息单元,用于向所述用户设备发送携带所述第一信道组的信息 的第三指配消息,使得所述用户设备根据第三指配消息在所述第一信道组上接 收所述下行分组业务数据。
一种下行临时块流的信道分配装置, 应用于接入网侧, 包括:
第二分配信道组单元, 用于为各个 PDCH上已承载的下行 TBF进行信道重 配置时, 接入网侧根据所述各个 PDCH上已承载的每个下行 TBF的緩存数据量 和所述每个下行 TBF与 PDCH的对应关系获取所述各个 PDCH的负载量; 如果 所述各个 PDCH之间的负载量差存在超过第二门限值的负载量差, 则按照所述 各个 PDCH之间的排列关系, 获取能形成较大连续排列关系的 PDCH的个数; 且如果所述能形成较大连续排列关系的 PDCH的个数大于由用户设备的多时 隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述由用户设备的多时 隙能力所确定的能为下行 TBF指配的 PDCH数目, 将所述各个 PDCH组合成若 干个不相同的信道组, 每个信道组中 PDCH之间是连续排列关系; 如果所述能 形成较大连续排列关系的 PDCH的个数小于或者等于由用户设备的多时隙能 力所确定的能为下行 TBF指配的 PDCH数目, 按照所述能形成较大连续排列关 系的 PDCH的个数, 将所述各个 PDCH组合成若干个不相同的信道组, 每个信 道组中的 PDCH之间是连续排列关系;
第二选择信道组单元, 用于按照所述各个 PDCH的负载量获取每个所述信 道组的负载量, 从所述信道组中选择负载量较小信道组作为第二信道组; 第二发送消息单元,用于向具有较大緩存数据量的下行 TBF对应的用户设 备发送第四指配消息,第四指配消息携带第二信道组的信息和具有较大緩存数 据量的下行 TBF的信息,使得所述用户设备获知接入网侧将用于承载具有较大 緩存数据量的下行 TBF的信道调整为第二信道组。 本发明实施例中, 当下行分组业务数据到达接入网侧时,接入网侧可以按 照各个 PDCH上已承载的每个下行 TBF的緩存数据量和各个 PDCH上已承载的 每个下行 TBF与分组数据信道 PDCH的对应关系获取每个 PDCH的负载量, 在 各个 PDCH中选择负载量较小的 PDCH作为第一 PDCH,然后向用户设备发送第 一指配消息, 第一指配消息携带第一 PDCH的信息, 用户设备按照第一指配消 息切换到第一 PDCH接收下行分组业务数据。 本发明实施例提供的技术方案能 够在分配信道时, 尽量将数据量均摊到各个 PDCH, 提高 PDCH的资源利用率, 减少高数据量分组业务在 PDCH上的复用, 提高用户的业务体验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 图 1 是本发明实施例中一种下行临时块流的信道分配方法的一个实施例 的流程示意图; 图 2是本发明实施例中一种下行临时块流的信道分配方法的另一个实施 例的流程示意图; 图 3 是本发明实施例中一种下行临时块流的信道分配方法的另一个实施 例的流程示意图;
图 4是本发明实施例中一种下行临时块流的信道分配方法的另一个实施 例的流程示意图; 图 5是本发明实施例中一种下行临时块流的信道分配装置的一个实施例的 逻辑结构示意图; 图 6是本发明实施例中一种下行临时块流的信道分配装置的另一个实施例 的逻辑结构示意图; 图 7是本发明实施例中一种下行临时块流的信道分配装置的一个实施例的 逻辑结构示意图; 图 8是本发明实施例中一种下行临时块流的信道分配装置的另一个实施例的 逻辑结构示意图。
具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 本发明实施例提供一种下行临时块流的信道分配方法,本发明实施例还提 供相应的装置。 以下分别进行详细说明。 请参阅图 1 , 本发明实施例提供下行临时块流的信道分配方法的一个实施 例, 具体流程包括:
101、 当下行分组业务数据到达接入网侧时, 接入网侧获取各个 PDCH上 已承载的每个下行 TBF的緩存数据量和各个 PDCH上已承载的每个下行 TBF与 PDCH的对应关系。
下行 TBF用于在接入网侧和用户设备之间承载分组业务,只有当用户设备 和接入网侧之间需要传输数据的时候, 用户设备和接入网侧才会建立下行 TBF, 下行 TBF建立的流程受到接入网侧的控制。
在本步骤中,当目的地址为某一用户设备的下行分组业务数据到达接入网 侧时, 接入网侧获取各个 PDCH上已承载的每个下行 TBF的緩存数据量和各个 PDCH上已承载的每个下行 TBF与 PDCH的对应关系, 需要说明的是, 若某一 PDCH为空闲状态, 该 PDCH上已承载的每个下行 TBF的緩存数据量为零。
在本文中, 各个 PDCH上已承载的下行 TBF的緩存数据量指的是在接入网 侧收到的、 由核心网下发的、 还没有通过各个 PDCH上已承载的下行 TBF发送 给用户设备的下行分组业务数据的数据量,该下行分组业务数据在未发送给用 户设备之前, 先在接入网侧緩存。 例如, 下行分组业务数据是通过下行分组业 务的协议数据单元(PDU, Protocal Data Unit ) 的形式传输的, 核心网接收到 PDU之后, 会将该 PDU传输到接入网侧, 当该 PDU到达接入网侧时, 在未将该 PDU发送给用户设备之前, 将该 PDU在接入网侧緩存, 该 PDU的数据量就是前 述的各个 PDCH上已承载的下行 TBF的緩存数据量。
在本实施例中, 接入网侧可以由基站收发台 ( BTS , Base Transceiver Station ), 基站控制器( BSC, Base Station Controller )和分组控制单元( PCU, Package Control Unit )组成, 在此场景下, 本实施例的步骤可以由基站控制器 来执行。
102、 从各个 PDCH中选择负载量较小的 PDCH作为第一 PDCH。
接入网侧可以按照步骤 101中获取的各个 PDCH上已承载的每个下行 TBF 的緩存数据量和各个 PDCH上已承载的每个下行 TBF与 PDCH的对应关系, 获 取每个 PDCH的负载量, 从各个 PDCH中选择负载量较小的 PDCH作为第一 PDCH。 在本文中, 每个 PDCH的负载量是其承载的所有下行 TBF的緩存数据 量的总和。
在本实施例中, 第一 PDCH可以是在各个 PDCH中, 具有最小负载量的 PDCH, 也可以是在各个 PDCH中, 低于某一阈值的任意一个 PDCH。
需要说明的是, 第一 PDCH是在本实施例中接入网侧为将要建立的 TBF分 配的信道, 并不代表对 PDCH的任何顺序或者标识上的限定。
103、 向用户设备发送携带第一 PDCH的信息的第一指配消息。 当接入网侧选择了第一 PDCH之后, 向用户设备发送携带第一 PDCH的信 息的第一指配消息, 使得用户设备按照第一指配消息在第一 PDCH上接收下行 分组业务数据。 需要说明的是,第一指配消息是用于让用户设备根据第一指配消息在分配 的信道上接收下行分组业务数据,并不代表对指配消息的任何顺序或者标识上 的限定。
指配消息可以是下行信道指派( Packet Downlink Assignment )消息, 接入 网侧将所分配的 PDCH通过下行信道指派( Packet Downlink Assignment )消息 发送给用户设备。 通常, 下行分组信道指派消息还会携带指定的时间信息, 用 户设备收到下行分组信道指派消息后,在指定的时间从接入网侧分配的 PDCH 接收下行分组业务数据, 当用户设备开始接收到下行分组业务数据, 下行 TBF 建立成功。 本实施例中, 当下行分组业务数据到达接入网侧时, 接入网侧按照各个 PDCH上已承载的每个下行 TBF的緩存数据量和各个 PDCH上已承载的每个下 行 TBF与分组数据信道 PDCH的对应关系获取每个 PDCH的负载量, 选择负载 量较小的第一 PDCH, 然后向用户设备发送第一指配消息, 第一指配消息携带 第一 PDCH的信息, 用户设备按照第一指配消息在第一 PDCH上接收下行分组 业务数据。本发明实施例提供的技术方案能够在分配信道时,尽量将数据量均 摊到各个 PDCH, 提高 PDCH的资源利用率, 减少高数据量分组业务在 PDCH 上的复用, 提高用户的业务体验。 请参阅图 2, 本发明实施例还提供下行临时块流的信道分配方法的另一个 实施例, 具体如下:
201、 为各个 PDCH上已 7 载的下行 TBF进行信道重配置时, 获取各个 PDCH上已承载的每个下行 TBF的緩存数据量和各个 PDCH上已承载的每个下 行 TBF与 PDCH的对应关系。
在本实施例中, 为了更加充分的利用 PDCH资源, 接入网侧可以为各个 PDCH上已承载的下行 TBF进行信道重配置。 例如, 接入网侧可以在为下行分 组业务数据建立完下行 TBF (即执行完步骤 101~103 )之后, 随即执行为各个 PDCH上已承载的下行 TBF进行信道重配置的操作, 接入网侧也可以在各个 PDCH上已承载的下行 TBF发生负载消耗的时候, 执行为各个 PDCH上已承载 的下行 TBF进行信道重配置的操作。 在本实施例中, 接入网侧重配置的是用于 承载具有较大緩存数据量的下行 TBF的 PDCH。
当为各个 PDCH上已承载的下行 TBF进行信道重配置时, 接入网侧获取各 个 PDCH上已承载的每个下行 TBF的緩存数据量和各个 PDCH上已承载的每个 下行 TBF与 PDCH的对应关系。
202、 获取每个 PDCH的负载量。
接入网侧按照各个 PDCH上已承载的每个下行 TBF的緩存数据量和各个 PDCH上已承载的每个下行 TBF与 PDCH的对应关系, 获取每个 PDCH的负载 量。 203、 获取各个 PDCH相互之间的负载量差, 判断是否存在超过第一门限 值的负载量差, 若是, 则执行步骤 204, 若否, 则执行步骤 205。
接入网侧在所有的 PDCH中,按照各个 PDCH的负载量获取各个 PDCH相互 之间的负载量差, 判断是否存在超过第一门限值的负载量差, 例如, 假设载频 中的 4个信道是 PDCH, 分别为, TS0~TS1 , TS5-TS7, 接入网侧可以判断 TS0 和 TS1、 TS0和 TS5、 TS0和 TS7、 TS1和 TS5、 TS1和 TS7、 TS5和 TS7之间的负 载量差值是否存在至少一个负载量超值超过第一门限值, 通常, 第一门限值可 以根据实际需要进行调试获得, 或根据仿真按照信道业务情况获得。
若在各个 PDCH之间的负载量差中, 存在超过第一门限值的负载量差, 接 入网侧需要为各个 PDCH上已承载的下行 TBF进行信道重配置,在本实施例中, 接入网侧调整的是用于承载具有较大緩存数据量的下行 TBF的信道,接入网侧 执行步骤 204。
若在各个 PDCH之间的负载量差中, 不存在超过第一门限值的负载量差, 接入网侧不需要为各个 PDCH上已承载的下行 TBF进行信道重配置, 接入网侧 执行步骤 205。
204、 选择负载量较小的 PDCH作为第二 PDCH, 向具有较大緩存数据量的 下行 TBF对应的用户设备发送第二指配消息。
当接入网侧需要为各个 PDCH上已承载的下行 TBF进行信道重配置时, 接 入网侧选择负载量较小的 PDCH作为第二 PDCH, 向具有较大緩存数据量的下 行 TBF对应的用户设备发送第二指配消息, 第二指配消息携带第二 PDCH的信 息和具有较大緩存数据量的下行 TBF的信息,使得用户设备获知接入网侧将用 于承载具有较大緩存数据量的下行 TBF的信道调整为第二 PDCH。
在本实施例中, 第二 PDCH可以是在各个 PDCH中, 具有最小负载量的 PDCH, 也可以是在各个 PDCH中, 低于某一阈值的任意一个 PDCH; 具有较大 緩存数据量的下行 TBF可以是具有最大緩存数据量的下行 TBF , 也可以是高于 某一阈值的任意一个下行 TBF。
需要说明的是, 第二 PDCH是在本实施例中接入网侧为用于承载具有较大 緩存数据量的下行 TBF重分配的信道, 并不代表对 PDCH的任何顺序或者标识 上的限定。第二指配消息是用于让用户设备获知为用于承载具有较大緩存数据 量的下行 TBF重分配的信道,并不代表对指配消息的任何顺序或者标识上的限 定。
205、 保持各个 PDCH上已承载的下行 TBF的信道配置。
当接入网侧不需要为各个 PDCH上已承载的下行 TBF进行信道重配置时, 接入网侧保持各个 PDCH上已承载的下行 TBF的信道配置。
本实施例中, 在各个 PDCH相互之间的负载量差中, 当存在超过第一门限 值的负载量差时, 接入网侧需要为各个 PDCH上已承载的下行 TBF进行信道重 配置, 接入网侧将负载量较小的 PDCH分配给用于承载具有较大緩存数据量的 下行 TBF, 本发明实施例提供的技术方案能够对各个 PDCH上已承载的下行 TBF的信道配置进行调整, 基本保持所有数据量均摊到各个 PDCH, 充分利用 PDCH资源。 请参阅图 3, 为下行临时块流的信道分配方法的另一个实施例, 在本实施 例中, 接入网侧可以为一个 TBF分配多个 PDCH, 具体可以包括:
301、 当下行分组业务数据到达接入网侧时, 接入网侧在按照各个 PDCH 之间的排列关系, 获取能形成较大连续排列关系的 PDCH的个数;
GSM采用分组交换技术, 载频提供的信道既可以被话音占用, 也可以被 分组业务数据占用, 但是话音和分组业务数据不能同时占用相同的信道, 当 GSM载频提供的信道没有被话音占用时, 信道就可以以分组形式传送数据, 这些信道即为 PDCH。 一个载频可以提供 8个信道, 分别用信道号 (TS, Time Slot ) 0~7来表示, 按照信道号的连续关系 PDCH在 8个信道中会有不同的排列关系, 例如, TS0和 TS1没有被话音占用时, 信道可以以分组形式传送数据, TS0和 TS1为 PDCH, TSO和 TSl的信道号是连续的, TS0和 TS1之间的排列关系为连续排列关系, 再 例如, TS1被话音占用, TS0和 TS2没有被话音占用时, 信道可以以分组形式传 送数据, TS0和 TS2为 PDCH, TSO和 TS2的信道号是间隔的, TS0和 TS2之间的 排列关系为间隔排列关系。 在本步骤中, 当下行分组业务数据到达接入网侧时, 接入网侧按照各个 PDCH之间的排列关系, 获取能形成较大连续排列关系的 PDCH的个数, 例如: TSO和 TS4~TS7这五个信道是 PDCH,能形成较大连续排列关系的 PDCH的个数 为 4, 这个较大连续排列关系是由 TS4~TS7形成的, 即由较多信道号连续的 PDCH形成的连续排列关系。
在本实施例中, 能形成较大连续排列关系的 PDCH的个数可以是能形成最 大连续排列关系的 PDCH的个数, 也可以是能形成高于某一界限值的连续排列 关系的 PDCH的个数。
302、 判断是否大于由用户设备的多时隙能力所确定的能为下行 TBF指配 的 PDCH数目; 若是, 执行步骤 303, 若否, 执行步骤 304;
当一个 TBF分配多个 PDCH时, 可以增加下行分组业务数据的发送速率, 在建立下行 TBF时, 下行 TBF期望能够尽可能的分配到更多的 PDCH, 但是一 个下行 TBF分配的多个 PDCH必须是连续的。
在本步骤中, 接入网侧在所有的 PDCH中, 判断能形成较大连续排列关系 的 PDCH的个数是否大于由用户设备的多时隙能力所确定的能为下行 TBF指配 的 PDCH数目, 假设用户设备是手机, 由手机的多时隙能力所确定的能为下行 TBF指配的 PDCH数目为 4。
若是, 则说明在所有的 PDCH中, 能形成较大连续排列关系的 PDCH的个 数大于由用户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 此 时一个下行 TBF所能分配的 PDCH数目为由用户设备的多时隙能力所确定的能 为下行 TBF指配的 PDCH数目, 接入网侧执行步骤 303; 若否, 则说明能形成较大连续排列关系的 PDCH的个数小于或者等于由用 户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 此时一个下行 TBF所能分配的 PDCH数目为能形成较大连续排列关系的 PDCH的个数, 接入 网侧执行步骤 304。
303、 按照由用户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH 数目, 将各个 PDCH组合成若干个不相同的信道组;
假设载频中的 8个信道都是 PDCH, 用户设备 (以手机为例) 的多时隙能 力所确定的能为下行 TBF指配的 PDCH数目为 4, 在所有 PDCH中可以组合 5个 信道组, 分别是 TS0~ TS3 , TS1- TS4, TS2~ TS5 TS3- TS6, TS4~ TS7, 每个 信道组中 PDCH之间是连续排列关系。
304、 按照能形成较大连续排列关系的 PDCH的个数, 将各个 PDCH组合成 若干个不相同的信道组;
假设载频中的 4个信道是 PDCH, 分别为, TS0~TS1 , TS5-TS7, 能形成较 大连续排列关系的 PDCH的个数为 3 , 用户设备(以手机为例) 的多时隙能力 所确定的能为下行 TBF指配的 PDCH数目为 4, 在所有 PDCH中可以组合一个信 道组, 是 TS5~TS7。
305、 获取每个信道组的负载量, 从每个信道组中选择负载量较小信道组 作为第一信道组。
当接入网侧组合完信道组后, 获取各个 PDCH上承载的每个下行 TBF的緩 存数据量和各个 PDCH上承载的每个下行 TBF与 PDCH的对应关系, 按照各个 PDCH上已承载的每个下行 TBF的緩存数据量和各个 PDCH上已承载的每个下 行 TBF与 PDCH的对应关系获取每个组合而成的信道组的负载量, 从每个信道 组中选择负载量较小信道组作为第一信道组。
在本实施例中, 负载量较小的第一信道组可以是负载量最小的第一信道 组, 也可以是低于某一阈值的任意一个信道组。
需要说明的是, 第一信道组是在本实施例中接入网侧为将要建立的下行 TBF分配的信道组, 并不代表对信道组的任何顺序或者标识上的限定。
306、 向用户设备发送第三指配消息。
接入网侧向用户设备发送第三指配消息,第三指配消息携带第一信道组的 信息,使得用户设备按照第三指配消息切换到第一信道组接收下行分组业务数 据。 第三指配消息是用于让用户设备获知为将要建立的下行 TBF分配的信道 组, 并不代表对指配消息的任何顺序或者标识上的限定。
本实施例中, 接入网侧按照各个 PDCH之间的排列关系, 获取能形成较大 连续排列关系的 PDCH的个数, 按照能形成较大连续排列关系的 PDCH的个数 与由用户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目的大小关 系, 在所有 PDCH中组合若干个不相同的由连续的 PDCH组成的信道组, 将负 载量较小的信道组分配为将要建立的下行 TBF的信道组,本发明实施例提供的 技术方案不仅能够在为下行 TBF分配信道时,尽量将数据量均摊到各个 PDCH, 提高 PDCH的资源利用率, 减少高数据量分组业务在 PDCH上的复用, 提高用 户的业务体验, 而且接入网侧为下行 TBF分配的是信道组, 能够增加下行分组 业务数据的发送速率。 请参阅图 4, 本发明实施例提供下行临时块流的信道分配方法的另一个实 施例, 本实施例描述的是接入网侧对各个 PDCH上己承载的下行 TBF进行信道 重调整,使得网络的 PDCH资源更加得到充分利用,本实施例的具体流程包括:
401、 为各个 PDCH上已 7 载的下行 TBF进行信道重配置时, 获取各个 PDCH上已承载每个下行 TBF的緩存数据量和各个 PDCH上已承载的每个下行 TBF与 PDCH的对应关系, 获取每个 PDCH的负载量;
在本实施例中, 为了更加充分的利用 PDCH资源, 接入网侧可以为各个 PDCH上已承载的下行 TBF进行信道重配置。 例如, 接入网侧可以在为下行分 组业务数据建立完下行 TBF (即执行完步骤 301~306 )之后, 随即执行为各个 PDCH上已承载的下行 TBF进行信道重配置的操作, 接入网侧也可以在各个 PDCH上已承载的下行 TBF发生负载消耗的时候, 执行为各个 PDCH上已承载 的下行 TBF进行信道重配置的操作。接入网侧调整的是用于承载具有较大緩存 数据量的下行 TBF的 PDCH, 在本实施例中, 具有较大緩存数据量的下行 TBF 可以是具有最大緩存数据量的下行 TBF,也可以是高于某一阈值的任意一个下 行 TBF。 当为各个 PDCH上已承载的下行 TBF进行信道重配置时, 接入网侧获取各 个 PDCH上已承载的每个下行 TBF的緩存数据量和各个 PDCH上已承载的每个 下行 TBF与 PDCH的对应关系。
接入网侧按照各个 PDCH上已承载的每个下行 TBF的緩存数据量和各个 PDCH上已承载的每个下行 TBF与 PDCH的对应关系获取每个 PDCH的负载量;
402、 按照各个 PDCH的负载量获取各个 PDCH相互之间的负载量差, 判断 是否存在超过第二门限值的负载量差, 若是, 则执行步骤 403~407; 若否, 则 执行步骤 409;
通常, 第二门限值可以根据实际需要进行调试获得, 或根据仿真按照信道 业务情况获得。
403、 按照各个 PDCH之间的排列关系, 获取能形成较大连续排列关系的 PDCH的个数;
404-406, 同步骤 302~304, 此处不再赞述。
407、 按照每个 PDCH的负载量获取每个信道组的负载量, 从信道组中选 择负载量较小信道组作为第二信道组;
接入网侧在完成信道组的组合之后, 按照步骤 401中获取的每个 PDCH的 负载量获取每个信道组的负载量,从信道组中选择负载量较小信道组作为第二 信道组。
在本实施例中, 负载量较小的第二信道组可以是负载量最小的第二信道 组, 也可以是低于某一阈值的任意一个信道组。
需要说明的是,第二信道组是在本实施例中接入网侧为已建立的下行 TBF 重分配的信道组, 并不代表对信道组的任何顺序或者标识上的限定。
408、 向具有较大緩存数据量的下行 TBF对应的用户设备发送第四指配消 接入网侧向用户设备发送第四指配消息,该用户设备是通过具有较大緩存 数据量的下行 TBF传输下行分组业务数据。第四指配消息携带第二信道组的信 息和具有较大緩存数据量的下行 TBF的信息,使得用户设备获知接入网侧将用 于承载具有较大緩存数据量的下行 TBF的信道调整为第二信道组。
第四指配消息是用于让用户设备获知为已建立的下行 TBF重分配的信道 组, 并不代表对指配消息的任何顺序或者标识上的限定。
409、 保持各个 PDCH上已承载的下行 TBF的信道配置。
当接入网侧不需要为各个 PDCH上已承载的下行 TBF进行信道重配置时, 接入网侧保持各个 PDCH上已承载的下行 TBF的信道配置。
本实施例中, 在各个 PDCH相互之间的负载量差中, 当存在超过第二门限 值的负载量差时, 接入网侧需要为各个 PDCH上已承载的下行 TBF进行信道重 配置,接入网侧在每个信道组中,选取负载量较小的第二信道组设置为用于承 载具有较大緩存数据量的下行 TBF重分配的信道,本发明实施例提供的技术方 案能够对各个 PDCH已承载的下行 TBF的信道进行调整, 基本保持所有数据量 均摊到各个 PDCH, 充分利用 PDCH资源。 为了便于理解, 下面将以两个具体的应用场景为例,对本发明实施例中下 行临时块流的信道分配方法进行阐述。这两个应用场景可以参考步骤 301~306、 以及步骤 401~409。
第一个应用场景是: 当下行分组业务数据到达接入网侧时,接入网侧对将 要建立的下行 TBF分配信道组, 具体如下:
载频的 8个信道 TS0~TS7都是 PDCH, 接入网侧获取各个 PDCH上已承载的 每个下行 TBF的緩存数据量和各个 PDCH上已承载的每个下行 TBF和 PDCH的 对应关系, 按照各个 PDCH上已承载的每个下行 TBF的緩存数据量和各个 PDCH上已承载的每个下行 TBF和 PDCH的对应关系获取各个 PDCH的负载量, 具体为: TS0~ TS3承载两个下行 TBF,分别是下行 TBF—和下行 TBF二, TS4- TS7承载两个下行 TBF, 分别是下行 TBF三和下行 TBF四, 下行 TBF—的緩存数 据量为 1200Kbytes,下行 TBF二的緩存数据量为 3600Kbytes, TS0~ TS3中各个 PDCH的负载量为: 1200Kbytes/4+3600Kbytes/4=1200Kbytes , 下行 TBF三的緩 存数据量为 400Kbytes,下行 TBF四的緩存数据量为 800Kbytes, TS4~ TS7中各 个 PDCH的负载量为: 400Kbytes/4+800Kbytes/4=300Kbytes。
接入网侧按照各个 PDCH之间的排列关系, 获取能形成较大连续排列关系 的 PDCH的个数为 8, 用户设备为手机, 用户设备的多时隙能力所确定的能为 下行 TBF指配的 PDCH数目为 4, 由于能形成较大连续排列关系的 PDCH的个数 大于用户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 接入网 侧按照用户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目在所有 PDCH中组合若干个不相同的信道组, 每个信道组中 PDCH是连续的, 可以在 PDCH中组合成 5个信道组,分别是 TS0~ TS3, TS1~ TS4, TS2~ TS5 , TS3~ TS6, TS4~ TS7。
当接入网侧获得这 5个的信道组后, 按照每个 PDCH的负载量, 获取信道 JLTSO- TS3, TS1- TS4, TS2~ TS5 , TS3- TS6, TS4~ TS7的负载量, 分另' J为 4800 Kbytes, 3900 Kbytes, 3000 Kbytes, 2100 Kbytes, 1200 Kbytes, 选取负 载量较小的信道组: TS4~ TS7,接入网侧向手机发送下行信道指派信息,使得 手机在信道组 TS4~ TS7接收下行分组业务数据。
接入网侧按照各个 PDCH之间的排列关系, 获取能形成较大连续排列关系 的 PDCH的个数, 按照能形成较大连续排列关系的 PDCH的个数与由用户设备 的多时隙能力所确定的能为下行 TBF指配的 PDCH数目的大小关系, 在所有 PDCH中组合若干个不相同的由连续的 PDCH组成的信道组, 将负载量较小的 信道组分配为将要建立的下行 TBF的信道组, 因此不仅能够在为下行 TBF分配 信道时, 尽量将数据量均摊到各个 PDCH, 提高 PDCH的资源利用率, 减少高 数据量分组业务在 PDCH上的复用, 提高用户的业务体验, 而且接入网侧为下 行 TBF分配的是信道组, 能够增加下行分组业务数据的发送速率。 第二个应用场景是: 为了能够使得网络的 PDCH资源得到充分利用, 接入 网侧对各个 PDCH上己承载的下行 TBF进行信道重调整。
载频的 8个信道 TS0~TS7都是 PDCH, 接入网侧获取各个 PDCH上已承载的 下行 TBF的緩存数据量和各个 PDCH上已承载的每个下行 TBF和 PDCH的对应 关系,具体为: TS0~ TS3承载三个下行 TBF,分另' J是下行 TBF五和 TBF六和 TBF 七, TS4~ TS7承载两个下行 TBF, 分别是下行 TBF八和下行 TBF九, 下行 TBF 五的緩存数据量为 3600Kbytes, 下行 TBF六的緩存数据量为 1200Kbytes, 下行 TBF七的緩存数据量为 4000Kbytes, 下行 TBF八的緩存数据量为 800Kbytes, 下 行 TBF九的緩存数据量为 400Kbytes。
按照各个 PDCH上已承载的每个下行 TBF的緩存数据量和各个 PDCH上已 承载的每个下行 TBF与 PDCH的对应关系获取各个 PDCH的负载量, 具体为:
TS0~TS3之间的各个 PDCH的负载量为:
1200Kbytes/4+3600Kbytes/4+4000Kbytes/4=2200Kbytes ,
TS4~TS7之间的各个 PDCH的负载量为:
400Kbytes/4+800Kbytes/4=300Kbytes,
设定门限值为 1500Kbytes , 在所有的 PDCH中, 按照各个 PDCH的负载量 接入网侧获取各个 PDCH之间负载量差, 在各个 PDCH之间的负载量差中存在 超过门限值的负载量差。
接入网侧获取到按照各个 PDCH之间的排列关系, 获取能形成较大连续排 列关系的 PDCH的个数为 8, 用户设备为手机, 根由用户设备的多时隙能力所 确定的能为下行 TBF指配的 PDCH数目为 4, 由于按照各个 PDCH之间的排列关 系, 获取能形成较大连续排列关系的 PDCH的个数大于由用户设备的多时隙能 力所确定的能为下行 TBF指配的 PDCH数目, 接入网侧按照由用户设备的多时 隙能力所确定的能为下行 TBF指配的 PDCH数目在所有 PDCH中组合若干个不 相同的信道组,每个信道组中 PDCH是连续的,在 PDCH中可以组合 5个信道组, 分另' J是 TS0~ TS3, TS1- TS4, TS2~ TS5 , TS3- TS6, TS4~ TS7。
当接入网侧获得这 5个信道组后, 接入网侧获取各个信道组的负载量, 信 道组 TS0~ TS3, TS1- TS4, TS2~ TS5 , TS3- TS6, TS4~ TS7对应的负载量分 别为 8800Kbytes, 6900 Kbytes, 5000 Kbytes, 3100 Kbytes, 1200 Kbytes, 选 择负载量较小的信道组 TS4~ TS7, 选择通过具有较大緩存数据量的下行 TBF 七传输下行分组业务数据的手机, 接入网侧向手机发送下行分组信道指派消 息, 使得手机获知接入网侧将下行 TBF七的信道调整为信道组 TS4~ TS7。
在各个 PDCH相互之间的负载量差中, 当存在超过门限值的负载量差时, 接入网侧需要为各个 PDCH上已承载的下行 TBF进行信道重配置, 接入网侧在 每个信道组中,选取负载量较小的信道组设置为用于承载具有较大緩存数据量 的下行 TBF重分配的信道, 因此能够对各个 PDCH已承载的下行 TBF的信道进 行调整, 基本保持所有数据量均摊到各个 PDCH, 充分利用 PDCH资源。 请参照图 5,本发明实施例中下行临时块流的信道分配装置的一个实施例, 该装置应用于接入网侧, 本实施例中的装置可用于实现步骤 101~103所提供的 方法实施例, 即执行该方法中由接入网侧实现的各动作。 包括:
第一选择信道单元 501 , 用于当下行分组业务数据到达接入网侧时, 接入 网侧根据各个分组数据信道 PDCH上已承载的每个下行 TBF的緩存数据量和每 个下行 TBF与 PDCH的对应关系获取各个 PDCH的负载量,从各个 PDCH中选择 负载量较小的 PDCH作为第一 PDCH;
第一发送单元 502, 用于向用户设备发送携带所述第一 PDCH的信息的第 一指配消息, 使得用户设备根据第一指配消息在第一 PDCH上接收下行分组业 务数据。
本实施例提供的下行临时块流的信道分配装置, 可以是基站控制器。
在本实施例中,建立下行临时块流的装置能够在为将要建立的下行 TBF分 配信道时, 尽量将数据量均摊到各个 PDCH, 提高 PDCH的资源利用率, 减少 高数据量分组业务在 PDCH上的复用, 提高用户的业务体验。 请参照图 6, 本发明实施例中下行临时块流的信道分配装置的另一个实施 例, 该装置应用于接入网侧, 本实施例中的装置可用于实现步骤 201~205所提 供的方法实施例, 即执行该方法中由接入网侧实现的各动作。 包括:
第二选择信道单元 601, 用于为各个分组数据信道 PDCH上已承载的下行 TBF进行信道重配置时, 根据各个 PDCH上已承载的每个下行 TBF的緩存数据 量和每个下行 TBF与 PDCH的对应关系, 获取各个 PDCH的负载量;
如果各个 PDCH之间的负载量差存在超过第一门限值的负载量差, 从各个 PDCH中选择负载量较小的 PDCH作为第二 PDCH;
第二发送单元 602, 用于向具有较大緩存数据量的下行 TBF对应的用户设 备发送第二指配消息, 所述第二指配消息携带第二 PDCH的信息和具有较大緩 存数据量的下行 TBF的信息,使得所述用户设备获知接入网侧将用于承载具有 较大緩存数据量的下行 TBF的信道调整为第二 PDCH。
本实施例提供的下行临时块流的信道分配装置, 可以是基站控制器。 本实施例中, 下行临时块流的信道分配装置能够对各个 PDCH上已承载的 下行 TBF所分配的信道进行调整, 基本保持所有数据量均摊到各个 PDCH, 充 分利用 PDCH资源。 请参照图 7, 本发明实施例中下行临时块流的信道分配装置的另一个实施 例, 该装置应用于接入网侧, 本实施例中的装置可用于实现步骤 301~306所提 供的方法实施例, 即执行该方法中由接入网侧实现的各动作。 包括:
第一分配信道组单元 701 , 用于当下行分组业务数据到达接入网侧时, 接 入网侧按照各个分组数据信道 PDCH之间的排列关系, 获取能形成较大连续排 列关系的 PDCH的个数; 如果所述能形成较大连续排列关系的 PDCH的个数大 于由用户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所 述由用户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 将所述 各个 PDCH组合成若干个不相同的信道组, 每个信道组中 PDCH之间是连续排 列关系; 如果所述能形成较大连续排列关系的 PDCH的个数小于或者等于由用 户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述能形 成较大连续排列关系的 PDCH的个数, 将所述各个 PDCH组合成若干个不相同 的信道组, 每个所述信道组中的 PDCH之间是连续排列关系;
第一选择信道组单元 702, 用于根据所述各个 PDCH上已承载的每个下行 TBF的緩存数据量和所述每个下行 TBF与 PDCH的对应关系, 获取每个所述信 道组的负载量, 从每个所述信道组中选择负载量较小信道组作为第一信道组; 第一发送消息单元 703 , 用于向所述用户设备发送携带第一信道组的信息 的第三指配消息,使得所述用户设备根据第三指配消息在第一信道组上接收所 述下行分组业务数据。
本实施例中,下行临时块流的信道分配装置不仅能够在为将要建立的下行 TBF分配信道时, 尽量将数据量均摊到各个 PDCH, 提高 PDCH的资源利用率, 减少高数据量分组业务在 PDCH上的复用, 提高用户的业务体验, 而且接入网 侧为将要建立的下行 TBF分配的是信道组, 能够增加下行分组业务数据的发送 速率。 请参照图 8 , 本发明实施例中下行临时块流的信道分配装置的另一个实施 例, 该装置应用于接入网侧, 本实施例中的装置可用于实现步骤 401~409所提 供的方法实施例, 即执行该方法中由接入网侧实现的各动作。 包括:
第二分配信道组单元 801 ,用于为各个 PDCH上已承载的下行 TBF进行信道 重配置时, 接入网侧根据所述各个 PDCH上已承载的每个下行 TBF的緩存数据 量和所述每个下行 TBF与 PDCH的对应关系获取所述各个 PDCH的负载量; 如果所述各个 PDCH之间的负载量差存在超过第二门限值的负载量差, 则 按照所述各个 PDCH之间的排列关系, 获取能形成较大连续排列关系的 PDCH 的个数;
如果所述能形成较大连续排列关系的 PDCH的个数大于由用户设备的多 时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述由用户设备的多 时隙能力所确定的能为下行 TBF指配的 PDCH数目, 将所述各个 PDCH组合成 若干个不相同的信道组, 每个信道组中 PDCH之间是连续排列关系;
如果所述能形成较大连续排列关系的 PDCH的个数小于或者等于由用户 设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述能形成 较大连续排列关系的 PDCH的个数, 将所述各个 PDCH组合成若干个不相同的 信道组, 每个信道组中的 PDCH之间是连续排列关系;
第二选择信道组单元 802, 用于按照所述各个 PDCH的负载量获取每个所 述信道组的负载量, 从所述信道组中选择负载量较小信道组作为第二信道组; 第二发送消息单元 803, 用于向具有较大緩存数据量的下行 TBF对应的用 户设备发送第四指配消息,第四指配消息携带第二信道组的信息和具有较大緩 存数据量的下行 TBF的信息,使得所述用户设备获知接入网侧将用于承载具有 较大緩存数据量的下行 TBF的信道调整为第二信道组。
本实施例中, 下行临时块流的信道分配装置能够对各个 PDCH已承载的每 个下行 TBF所分配的信道进行调整, 基本保持所有数据量均摊到各个 PDCH, 充分利用 PDCH资源。 本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读 存储介质中, 存储介质可以包括: ROM、 RAM, 磁盘或光盘等。
以上对本发明实施例所提供的下行临时块流的信道分配方法以及相应的 了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同 时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用 范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims

权利要求
1、 一种下行临时块流 TBF的信道分配方法, 其特征在于, 包括: 当下行分组业务数据到达接入网侧时, 接入网侧根据各个分组数据信道 PDCH上已承载的每个下行 TBF的緩存数据量和所述每个下行 TBF与 PDCH的 对应关系获取所述各个 PDCH的负载量, 从所述各个 PDCH中选择负载量较小 的 PDCH作为第一 PDCH;
向用户设备发送携带所述第一 PDCH的信息的第一指配消息, 使得所述用 户设备根据所述第一指配消息在所述第一 PDCH上接收所述下行分组业务数 据。
2、 根据权利要求 1所述的方法, 其特征在于, 所述向所述用户设备发送携 带所述第一 PDCH的信息的发送第一指配消息, 具体包括:
向所述用户设备发送携带所述第一 PDCH的信息的下行分组信道指派 Packet Downlink Assignment消息。
3、 一种下行临时块流 TBF的信道分配方法, 其特征在于, 包括: 为各个分组数据信道 PDCH上已承载的下行 TBF进行信道重配置时, 根据 所述各个 PDCH上已承载的每个下行 TBF的緩存数据量和所述每个下行 TBF与 PDCH的对应关系, 获取所述各个 PDCH的负载量;
如果所述各个 PDCH之间的负载量差存在超过第一门限值的负载量差, 从 所述各个 PDCH中选择负载量较小的 PDCH作为第二 PDCH; 向具有较大緩存数据量的下行 TBF对应的用户设备发送第二指配消息,所 述第二指配消息携带所述第二 PDCH的信息和具有较大緩存数据量的下行 TBF 的信息,使得所述用户设备获知接入网侧将用于承载所述具有较大緩存数据量 的下行 TBF的信道调整为所述第二 PDCH。
4、 根据权利要求 3所述的方法, 其特征在于, 所述向具有较大緩存数据量 的下行 TBF对应的用户设备发送第二指配消息, 具体包括:
向具有较大緩存数据量的下行 TBF对应的用户设备发送下行分组信道指 派 Packet Downlink Assignment消息。
5、 一种下行临时块流 TBF的信道分配方法, 其特征在于, 包括: 当下行分组业务数据到达接入网侧时, 接入网侧按照各个分组数据信道 PDCH之间的排列关系, 获取能形成较大连续排列关系的 PDCH的个数;
如果所述能形成较大连续排列关系的 PDCH的个数大于由用户设备的多 时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述由用户设备的多 时隙能力所确定的能为下行 TBF指配的 PDCH数目, 将所述各个 PDCH组合成 若干个不相同的信道组,其中,每个所述信道组中 PDCH之间是连续排列关系; 如果所述能形成较大连续排列关系的 PDCH的个数小于或者等于由用户 设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述能形成 较大连续排列关系的 PDCH的个数, 将所述各个 PDCH组合成若干个不相同的 信道组, 其中, 每个所述信道组中的 PDCH之间是连续排列关系; 根据所述各个 PDCH上已承载的每个下行 TBF的緩存数据量和所述每个下 行 TBF与 PDCH的对应关系, 获取每个所述信道组的负载量, 从所述信道组中 选择负载量较小信道组作为第一信道组;
向所述用户设备发送携带所述第一信道组的信息的第三指配消息,使得所 述用户设备根据第三指配消息在所述第一信道组上接收所述下行分组业务数 据。
6、 根据权利要求 5所述的方法, 其特征在于, 所述向向所述用户设备发送 携带所述第一信道组的信息的第三指配消息, 具体包括:
向所述用户设备发送下行分组信道指派 Packet Downlink Assignment消息, 所述下行分组信道指派消息携带所述第一信道组的信息。
7、 一种下行临时块流 TBF的信道分配方法, 其特征在于, 包括: 为各个 PDCH上已承载的下行 TBF进行信道重配置时, 接入网侧根据所述 各个 PDCH上已承载的每个下行 TBF的緩存数据量和所述每个下行 TBF与 PDCH的对应关系获取所述各个 PDCH的负载量;
如果所述各个 PDCH之间的负载量差存在超过第二门限值的负载量差, 则 按照所述各个 PDCH之间的排列关系, 获取能形成较大连续排列关系的 PDCH 的个数;
如果所述能形成较大连续排列关系的 PDCH的个数大于由用户设备的多 时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述由用户设备的多 时隙能力所确定的能为下行 TBF指配的 PDCH数目, 将所述各个 PDCH组合成 若干个不相同的信道组,其中,每个所述信道组中 PDCH之间是连续排列关系; 如果所述能形成较大连续排列关系的 PDCH的个数小于或者等于由用户 设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述能形成 较大连续排列关系的 PDCH的个数, 将所述各个 PDCH组合成若干个不相同的 信道组, 其中, 每个所述信道组中的 PDCH之间是连续排列关系;
按照所述各个 PDCH的负载量获取每个所述信道组的负载量, 从所述信道 组中选择负载量较小信道组作为第二信道组;
向具有较大緩存数据量的下行 TBF对应的用户设备发送第四指配消息,所 述第四指配消息携带所述第二信道组的信息和所述具有较大緩存数据量的下 行 TBF的信息,使得所述用户设备获知接入网侧将用于承载所述具有较大緩存 数据量的下行 TBF的信道调整为所述第二信道组。
8、 根据权利要求 7所述的方法, 其特征在于,
所述第四指配消息为下行分组信道指派 Packet Downlink Assignment消息。
9、 一种下行临时块流 TBF的信道分配装置, 应用于接入网侧, 其特征在 于, 包括:
第一选择信道单元, 用于当下行分组业务数据到达接入网侧时,接入网侧 根据各个分组数据信道 PDCH上已承载的每个下行 TBF的緩存数据量和所述每 个下行 TBF与 PDCH的对应关系获取所述各个 PDCH的负载量, 从所述各个 PDCH中选择负载量较小的 PDCH作为第一 PDCH;
第一发送单元, 用于向用户设备发送携带所述第一 PDCH的信息的第一指 配消息, 使得所述用户设备根据所述第一指配消息在所述第一 PDCH上接收所 述下行分组业务数据。
10、 一种下行临时块流 TBF的信道分配装置, 应用于接入网侧, 其特征在 于, 包括:
第二选择信道单元, 用于为各个分组数据信道 PDCH上已承载的下行 TBF 进行信道重配置时, 根据所述各个 PDCH上已承载的每个下行 TBF的緩存数据 量和所述每个下行 TBF与 PDCH的对应关系, 获取所述各个 PDCH的负载量; 如果所述各个 PDCH之间的负载量差存在超过第一门限值的负载量差, 从所述 各个 PDCH中选择负载量较 d、的 PDCH作为第二 PDCH;
第二发送单元,用于向具有较大緩存数据量的下行 TBF对应的用户设备发 送第二指配消息, 所述第二指配消息携带所述第二 PDCH的信息和具有较大緩 存数据量的下行 TBF的信息,使得所述用户设备获知接入网侧将用于承载具有 较大緩存数据量的下行 TBF的信道调整为所述第二 PDCH。
11、 一种下行临时块流 TBF的信道分配装置, 应用于接入网侧, 其特征在 于, 包括:
第一分配信道组单元, 用于当下行分组业务数据到达接入网侧时,接入网 侧按照各个分组数据信道 PDCH之间的排列关系, 获取能形成较大连续排列关 系的 PDCH的个数; 如果所述能形成较大连续排列关系的 PDCH的个数大于由 用户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述由 用户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 将所述各个 PDCH组合成若干个不相同的信道组, 其中, 每个所述信道组中 PDCH之间是 连续排列关系; 如果所述能形成较大连续排列关系的 PDCH的个数小于或者等 于由用户设备的多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所 述能形成较大连续排列关系的 PDCH的个数, 将所述各个 PDCH组合成若干个 不相同的信道组, 其中, 每个所述信道组中的 PDCH之间是连续排列关系; 第一选择信道组单元, 用于根据所述各个 PDCH上已承载的每个下行 TBF 的緩存数据量和所述每个下行 TBF与 PDCH的对应关系, 获取每个所述信道组 的负载量, 从所述信道组中选择负载量较小信道组作为第一信道组;
第一发送消息单元,用于向所述用户设备发送携带所述第一信道组的信息 的第三指配消息,使得所述用户设备根据第三指配消息在所述第一信道组上接 收所述下行分组业务数据。
12、 一种下行临时块流 TBF的信道分配装置, 应用于接入网侧, 其特征在 于, 包括:
第二分配信道组单元, 用于为各个 PDCH上已承载的下行 TBF进行信道重 配置时, 接入网侧根据所述各个 PDCH上已承载的每个下行 TBF的緩存数据量 和所述每个下行 TBF与 PDCH的对应关系获取所述各个 PDCH的负载量; 如果 所述各个 PDCH之间的负载量差存在超过第二门限值的负载量差, 则按照所述 各个 PDCH之间的排列关系, 获取能形成较大连续排列关系的 PDCH的个数; 如果所述能形成较大连续排列关系的 PDCH的个数大于由用户设备的多时隙 能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述由用户设备的多时隙 能力所确定的能为下行 TBF指配的 PDCH数目, 将所述各个 PDCH组合成若干 个不相同的信道组, 其中, 每个所述信道组中 PDCH之间是连续排列关系; 如 果所述能形成较大连续排列关系的 PDCH的个数小于或者等于由用户设备的 多时隙能力所确定的能为下行 TBF指配的 PDCH数目, 按照所述能形成较大连 续排列关系的 PDCH的个数,将所述各个 PDCH组合成若干个不相同的信道组, 其中, 每个所述信道组中的 PDCH之间是连续排列关系;
第二选择信道组单元, 用于按照所述各个 PDCH的负载量获取每个所述信 道组的负载量, 从所述信道组中选择负载量较小信道组作为第二信道组;
第二发送消息单元,用于向具有较大緩存数据量的下行 TBF对应的用户设 备发送第四指配消息,所述第四指配消息携带所述第二信道组的信息和具有较 大緩存数据量的下行 TBF的信息,使得所述用户设备获知接入网侧将用于承载 所述具有较大緩存数据量的下行 TBF的信道调整为所述第二信道组。
PCT/CN2012/076578 2011-06-07 2012-06-07 下行临时块流的信道分配方法和装置 WO2012167734A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12796082.1A EP2709402B1 (en) 2011-06-07 2012-06-07 Method and apparatus for allocating channels for downlink temporary block flow
BR112013031489-3A BR112013031489B1 (pt) 2011-06-07 2012-06-07 Método e aparelho para atribuir canais a fluxos de blocos temporários de enlace descendente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110151373.5 2011-06-07
CN201110151373.5A CN102223721B (zh) 2011-06-07 2011-06-07 下行临时块流的信道分配方法和装置

Publications (1)

Publication Number Publication Date
WO2012167734A1 true WO2012167734A1 (zh) 2012-12-13

Family

ID=44780111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076578 WO2012167734A1 (zh) 2011-06-07 2012-06-07 下行临时块流的信道分配方法和装置

Country Status (4)

Country Link
EP (1) EP2709402B1 (zh)
CN (1) CN102223721B (zh)
BR (1) BR112013031489B1 (zh)
WO (1) WO2012167734A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974263A (zh) * 2013-01-28 2014-08-06 中国移动通信集团浙江有限公司 一种pdch信道配置方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223721B (zh) * 2011-06-07 2014-09-03 上海华为技术有限公司 下行临时块流的信道分配方法和装置
CN103096481B (zh) * 2011-11-08 2016-04-27 中国移动通信集团四川有限公司 分组数据信道的分配方法及装置
CN103858473B (zh) * 2013-11-26 2018-02-02 华为技术有限公司 信道管理方法、装置及基站控制器
CN103686856B (zh) * 2013-12-12 2017-09-29 京信通信系统(中国)有限公司 一种分组数据业务的信道分配方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026204A1 (en) * 2001-06-05 2003-02-06 Nidham Ben Rached Method and apparatus for controlling the sending of data blocks
CN1396746A (zh) * 2001-07-14 2003-02-12 华为技术有限公司 通用分组无线业务分组信道分配时间自适应的方法
CN101827397A (zh) * 2010-03-04 2010-09-08 华为技术有限公司 建立临时块流的方法和装置
CN101848522A (zh) * 2010-05-04 2010-09-29 中国人民解放军信息工程大学 Underlay认知无线Mesh网络信道分配方法
CN102223721A (zh) * 2011-06-07 2011-10-19 上海华为技术有限公司 下行临时块流的信道分配方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118490A1 (en) * 2005-04-29 2006-11-09 Telefonaktiebolaget Lm Ericsson (Publ) Method, mobile station and base station system for transmitting data packets in a packet data communication system
EP1783963B1 (en) * 2005-11-02 2010-10-06 Nokia Siemens Networks GmbH & Co. KG Method for the early establishment of uplink TBFs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026204A1 (en) * 2001-06-05 2003-02-06 Nidham Ben Rached Method and apparatus for controlling the sending of data blocks
CN1396746A (zh) * 2001-07-14 2003-02-12 华为技术有限公司 通用分组无线业务分组信道分配时间自适应的方法
CN101827397A (zh) * 2010-03-04 2010-09-08 华为技术有限公司 建立临时块流的方法和装置
CN101848522A (zh) * 2010-05-04 2010-09-29 中国人民解放军信息工程大学 Underlay认知无线Mesh网络信道分配方法
CN102223721A (zh) * 2011-06-07 2011-10-19 上海华为技术有限公司 下行临时块流的信道分配方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2709402A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974263A (zh) * 2013-01-28 2014-08-06 中国移动通信集团浙江有限公司 一种pdch信道配置方法和装置
CN103974263B (zh) * 2013-01-28 2017-11-21 中国移动通信集团浙江有限公司 一种pdch信道配置方法和装置

Also Published As

Publication number Publication date
CN102223721B (zh) 2014-09-03
EP2709402A1 (en) 2014-03-19
BR112013031489A2 (pt) 2016-12-20
BR112013031489B1 (pt) 2022-02-08
EP2709402B1 (en) 2017-08-09
EP2709402A4 (en) 2014-06-18
CN102223721A (zh) 2011-10-19

Similar Documents

Publication Publication Date Title
US9860899B2 (en) Carrier aggregation scheduling apparatus, carrier aggregation scheduling method, and base station
CN101238743B (zh) 信道分配方法、无线通信系统以及无线区间的信道结构
JP4986998B2 (ja) エンハンストアップリンクデータ伝送に対する方法及び装置
CN101312551B (zh) 数据传输方法和无线网络控制器、基站及用户终端
JP2016532403A (ja) 低レイテンシ・バックホールのためのモバイル・クラウドについてのスケジューリング仮想化
US20100284364A1 (en) Semi-persistent scheduling method and apparatus based on statistically multiplexing in time and frequency resources
KR101368417B1 (ko) 상향 링크 제어 채널 자원 할당 방법, 설비 및 시스템
CN107248906A (zh) 辅助主小区的调整方法以及基站
JP6603790B2 (ja) ユーザ機器、ネットワーク装置、及びデータ送信方法
JP2010527567A (ja) Ackチャネルをユーザに割り当てるための方法、装置、及びシステム
JP7191202B2 (ja) スケジューリング要求リソースを決定および構成するための方法、デバイスおよび記憶媒体
CN106658719B (zh) 数据分流方法和装置
US8547919B2 (en) Method for allocating communication bandwidth and associated apparatuses
US20150189570A1 (en) Resource scheduling method, device, and communications system
WO2012167734A1 (zh) 下行临时块流的信道分配方法和装置
KR20220049002A (ko) 논리 채널 우선순위를 처리하는 방법 및 장치, 저장 매체 및 단말
WO2016082115A1 (zh) 一种业务调度方法及设备
WO2019000873A1 (zh) 一种调制编码方式的调整方法及基站
WO2014172892A1 (zh) 业务分流方法、装置及系统
CN102026284B (zh) 一种多载频系统能力协商的方法、装置
CN109041241A (zh) Sr资源分配方法及装置
JP2017163599A (ja) ユーザ装置及びアップリンクデータ送信方法
WO2016149916A1 (zh) 一种数据传输的方法及装置
CN104284367B (zh) 一种临时块流的信道分配方法及装置
WO2012048649A1 (zh) 一种数据调度方法及系统以及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012796082

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012796082

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013031489

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013031489

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131206