WO2012167587A1 - 滑膜间充质干细胞亲和多肽、其筛选方法和应用 - Google Patents

滑膜间充质干细胞亲和多肽、其筛选方法和应用 Download PDF

Info

Publication number
WO2012167587A1
WO2012167587A1 PCT/CN2011/084337 CN2011084337W WO2012167587A1 WO 2012167587 A1 WO2012167587 A1 WO 2012167587A1 CN 2011084337 W CN2011084337 W CN 2011084337W WO 2012167587 A1 WO2012167587 A1 WO 2012167587A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesenchymal stem
phage
polypeptide
synovial mesenchymal
screening
Prior art date
Application number
PCT/CN2011/084337
Other languages
English (en)
French (fr)
Inventor
敖英芳
邵振兴
皮彦斌
张辛
周春燕
Original Assignee
北京大学第三医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学第三医院 filed Critical 北京大学第三医院
Publication of WO2012167587A1 publication Critical patent/WO2012167587A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids

Definitions

  • the invention belongs to the field of biomedicine, and particularly relates to an amino acid sequence, screening method and application of a synovial mesenchymal stem cell affinity polypeptide.
  • Tissue Engineering has been widely used in various clinical fields, including bone tissue, cartilage, nerves, blood vessels, skin, and regeneration and repair of the gastrointestinal and genitourinary systems.
  • tissue engineering continuous improvement and update of the support of various organizations is the key, including the updating of materials, the improvement of production methods and the continuous innovation of construction concepts.
  • Another recent obvious change in the concept of tissue engineering is to "make it simple", that is, to simulate the composition of normal tissues as much as possible by various complicated means and techniques in vitro, and then implant In the body, it is better to provide a self-repairing stent for the human body, so that the natural "bioreactor" of the human body is attached to the stent for self-repair.
  • the matrix surrounding the cells plays an important role in the biological function of the cells.
  • the functional domains of the proteins or polypeptide molecules in the matrix bind to the cell surface receptors, activate the complex signaling pathways in the cells, and express the genes of the cells.
  • Biological functions such as adhesion, migration, proliferation, and differentiation are regulated, and these domains may be only a few amino acid fragments in length.
  • This regulation method provides us with a theoretical basis for constructing active polypeptide sequences and surface modification of tissue engineering scaffolds to simulate the regulation function of the surrounding cells on the cells themselves. Modification of the scaffold with different types of polypeptides also confers different biological functions to the scaffold.
  • the modification of the scaffold by the cell-specific affinity polypeptide sequence can increase the adhesion rate of the corneal epithelial cells to the scaffold, and induce the stratification of the corneal cells on the scaffold, and the tissue structure similar to the physiological condition appears.
  • the modification of the scaffold by the polypeptide can also regulate the aggregation of the protein molecule on the tissue engineering scaffold.
  • Ryadnov et al. use a small molecular protein constructed by a plurality of polypeptide fragments to modify the scaffold, and use the polypeptide to exhibit a pro-specific molecular molecule.
  • the stent When the degree of modification is 5% -10% At the 4th week after implantation, the stent still exerts an excellent sustained release function of growth factors. And most importantly, there was no significant difference in the final repair of cartilage defects between the explants of exogenous TGF- ⁇ and the scaffolds that were not transfected with exogenous TGF- ⁇ , suggesting that the TGF- ⁇ affinity peptide modified scaffold, In the absence of exogenous growth factors, endogenous TGF- ⁇ growth factor can be enriched in a large amount, and the microenvironment in the scaffold can be improved to achieve the function of inducing differentiation of stem cells into cartilage.
  • Synovial mesenchymal stem cells a new member of the mesenchymal stem cell (MSC) family, were first successfully extracted from synovial tissue by De Bari et al. in 2001. After nearly a decade of research. Synovial mesenchymal stem cells have similar multipotential differentiation potential to mesenchymal stem cells, which have been confirmed by numerous experiments, and synovial mesenchymal stem cells have stronger proliferative activity than mesenchymal stem cells derived from other tissues. The multi-directional differentiation potential is also relatively less affected by the donor age, the number of passages, and the preservation and preservation methods. The site of the multi-directional differentiation is also relatively broad. More importantly, a large number of studies have shown that synovial mesenchymal stem cells are compared with other Tissue-derived mesenchymal stem cells have a greater potential to differentiate into chondrocytes.
  • the object of the present invention is to provide a screening method for synovial mesenchymal stem affinity polypeptide capable of improving the specific affinity of biomaterials for synovial mesenchymal stem cells in view of the above-mentioned drawbacks of the prior art.
  • Another object of the invention is to provide an amino acid sequence of a synovial mesenchymal stem cell affinity polypeptide.
  • a further object of the invention is to provide the use of a synovial mesenchymal stem cell affinity polypeptide.
  • a method for screening a synovial mesenchymal stem cell affinity polypeptide capable of enhancing the specific affinity of a biomaterial for synovial mesenchymal stem cells using improved phage display technology comprising the steps of:
  • Human synovial mesenchymal stem cells and primary culture of human fibroblasts Primary cultured cells were obtained by primary culture of human synovial mesenchymal stem cells and passed through one generation; primary cultured by human fibroblasts and Passing more than ten generations, obtaining negative screening cells;
  • Negative screening a phage library is added to the negative screening cells to remove the polypeptide fragment bound to the P10 generation ACL fibroblasts in the phage library;
  • Phage amplification The synovial mesenchymal stem cells obtained in the step 3 are extracted, the cell lysate is prepared, and the phage titer in the cell is amplified;
  • Another technical solution of the present invention is an application of a synovial mesenchymal affinity peptide modification to a human scaffold and a modification method thereof, comprising the following steps: 3' of the selected synovial mesenchymal stem cell affinity polypeptide At the C-terminus, a cysteine (C) is attached, and the cysteine (C) residue is covalently coupled to the surface-NH 2 after the amination of the polycaprolactone (PCL) electrospinning membrane.
  • the PCL nanofiber membrane scaffold has the property of specifically enriching synovial mesenchymal stem cells.
  • PCL nanofiber membrane was placed in 10% w/v 1,6-hexanediamine in an isopropyl alcohol configuration at 37 ° C for 1 h;
  • the surface of the PCL nanofiber membrane is modified by covalently coupling the affinity polypeptide fragment with the PCL electrospinning membrane to specifically enrich the synovial mesenchymal stem cells, so that the material acts as a scaffold
  • the synovial mesenchymal stem cells can be continuously adhered and a normal extracellular matrix (ECM) is produced, thereby achieving a better repair effect.
  • ECM extracellular matrix
  • the polypeptide has no obvious species specificity, so the affinity polypeptide sequence can be widely used in various cytological experiments and animal experiments as a
  • the affinity carrier for screening synovial mesenchymal stem cells can screen and purify synovial mesenchymal stem cells more efficiently.
  • Example 1 is a diagram showing the results of primary culture of human synovial mesenchymal stem cells provided in Example 1 of the present invention
  • 2a, 2b, and 2c are the results of the phage blue spot assay provided in the phage titer assay of Example 1 of the present invention; 10 ⁇ l of the phage diluted 10 ⁇ 1 was added to 200 ⁇ l of Escherichia coli to incubate 1 After 5 minutes, the top medium was added and rapidly mixed, and the tetracycline-resistant LB-tet plate was plated at 37 ° C, 5% CO 2 overnight to calculate the number of phage blue spots on the plate. This number is then multiplied by the dilution factor to obtain the plaque forming unit (pfu) titer per 10 ⁇ phage. A single blue spot was picked up and amplified in LB/E. coli culture medium, and phage DNA sequencing was performed.
  • Figure 2a The number of blue spots is 10°
  • Figure 2b The number of blue spots is 10 1
  • Figure 2c The number of blue spots is 10 2 .
  • Figure 3 is a graph showing the recovery rate of four rounds of screened phage provided in the screening of phage affinity polypeptides of Example 1 of the present invention
  • Figure 4a is a graph showing the results of flow cytometry of human MSC affinity polypeptides provided in Example 2 of the present invention
  • Figure 4b is a graph showing the results of quantitative analysis of the fluorescence intensity of Figure 4a;
  • InM's FITC fluorescein isothiocyanate, fluorescein isothiocyanate
  • SMSC-affinity peptide sequence synaptic mesenchymal stem cell affinity peptide
  • Scramble peptide mismatched peptide
  • FITC-labeled mismatched peptides were incubated with synovial mesenchymal stem cells with an average fluorescence intensity of 5;
  • FITC-labeled affinity peptides Incubation with synovial mesenchymal stem cells, the average fluorescence intensity was 174, the fluorescence intensity of the affinity peptide group (174) was much higher than that of the mismatched peptide group (5);
  • Figure 5a is a graph showing the results of flow cytometry of a rat MSC affinity polypeptide provided in Example 2 of the present invention
  • Figure 5b is a graph showing the results of quantitative analysis of the fluorescence intensity of Figure 5a;
  • Figure 5c is a graph showing the results of flow cytometry of the MSC affinity polypeptide of rabbits provided in Example 2 of the present invention
  • Figure 5d is a graph showing the results of quantitative analysis of the fluorescence intensity of Figure 5c;
  • rat (Rat) FITC-labeled mismatched polypeptide was incubated with rat synovial mesenchymal stem cells with an average fluorescence intensity of 4; FITC-labeled affinity polypeptide and rat synovial membrane The stem cells were incubated together with an average fluorescence intensity of 99, and the fluorescence intensity of the affinity peptide group (99) was much higher than that of the mismatched peptide group (4);
  • the left peak represents the mismatched polypeptide and the right peak represents the affinity polypeptide.
  • Counts is the quantity.
  • the average fluorescence intensity in Figure 4b, Figure 5b, and Figure 5d is the average fluorescence intensity.
  • Figure 6 is a result of laser confocal microscopy observation provided by Example 2 of the present invention; the affinity polypeptide and the mismatched polypeptide labeled with FITC are respectively incubated with synovial mesenchymal stem cells for lh, phalloidin counterstained cytoskeleton, navalest complex The nucleus was stained by laser confocal microscopy.
  • the results showed that the affinity polypeptide sequence (LTHPRWP) had a higher affinity for synovial mesenchymal stem cells than the mismatched peptide (PRHLPTW).
  • Figure 7 is a schematic view showing the attachment of an affinity polypeptide fragment to the surface of a polycaprolactone (PCL) nanoelectrospun fiber membrane by covalent bonding according to Example 3 of the present invention
  • Figure 8 is a diagram showing the polypeptide linkage of a PCL nanoelectrospun fiber membrane modified by a synovial mesenchymal stem cell-specific polypeptide according to Example 3 of the present invention under a laser confocal microscope;
  • PCL Polycaprolactone
  • LTHPRWP FITC-labeled affinity peptide fragments
  • FIGS. 9a and 9b are the synovial mesenchymal stem cell-specific polypeptide-modified PCL nano-electrospins provided in Example 3 of the present invention.
  • the effect of the silk scaffold is a fragment of the synovial mesenchymal stem cell affinity polypeptide;
  • Figure 9b is a mismatched polypeptide fragment;
  • PCL Polycaprolactone
  • LTHPRWP synovial mesenchymal stem cell affinity peptide fragment
  • PRHLPTW mismatched polypeptide fragment
  • Phage display technology for screening synaptic mesenchymal stem cell affinity polypeptide sequences :
  • the synovial tissue from the supracondylar sac of the knee was obtained from the patients undergoing total knee arthroplasty (TKA). The tissue was washed twice in PBS (0.01M, pH 7.4) and the synovial tissue was cut with ophthalmic scissors.
  • DMEM is a medium containing various amino acids and glucose.
  • ACL human anterior cruciate ligament
  • TKA total knee arthroplasty
  • PBS 0.01M, pH 7.4
  • PBS 0.2% type I collagenase
  • Negative screening removal of polypeptide fragments that bind to P10 ACL fibroblasts: a. Take a P10 generation ACL fibroblast, wash it with trypsin, PBS (0. 01M, pH 7. 4) for 2 ⁇ 3 times; add blocking buffer (closed buffer, 0. 1M NaC0 3 ( ⁇ 8 ⁇ 6), 5mg/ml BSA, 0.02% NaN 3 ) resuspended in 1ml EP tube, blocked at 4 ° C for 1h, reducing non-specific binding;
  • step (2) to obtain the negatively screened phage polypeptide library bacterial solution, and leave it at room temperature for 30 min;
  • Phage amplification see PH. D. -7TM PHage Display Peptide Library Kit: a. Prepare the cell lysate from the positively screened cells obtained in step (3), and expand the phage titer in the cell. 5 ⁇ ; The cell lysate was added to a solution of the ER2738 (in the early-log), shaking at 37 ° C, incubated for 4.5 hours;
  • step 1) The culture solution in step 1) is added to a centrifuge tube, centrifuged at 10, OOO rpm for 10 minutes at 4 ° C, the supernatant is transferred to a new tube, and centrifuged again (10, OOO rpm, lOmin);
  • the phage pellet was resuspended in lml TBS (50 mM Tris-HCl (pH 7.5), 150 mM NaCl) and centrifuged at 4 ° C for 5 minutes.
  • Phage titer determination (see PH. D. -7TM PHage Display Peptide Library Kit): a. Inoculate 51 «738 single colonies in 5-10 1111 LB medium, incubate at 37 ° C, 250 rpm shaker To the middle of the logarithm (0D 6 . . . ⁇ 0. 5).
  • the upper layer of agar is heated and melted in a microwave oven and divided into 3 ml/part into a sterile test tube, one tube of each dilution of the phage. Store at 45 ° C for later use.
  • the phage was diluted 10 fold in LB medium. Recommended dilution range: Amplified phage culture supernatant:
  • the phage-infected E. coli broth was added to a 45 °C pre-warmed top agar culture tube, mixed one time at a time, and immediately poured onto a pre-warmed LB/IPTG/Xgal plate at 37 °C. Properly tilt the plate to spread the upper agar evenly.
  • Plaque amplification Escherichia coli amplified bacterial solution (0D: 0.5) was diluted 1:100 with LB medium, and each plaque clone to be sequenced was dispensed into a tube, 1 ml/tube. ;
  • phage bacterial solution was transferred to a centrifuge tube and centrifuged for 30 seconds. The supernatant is transferred to a new tube and centrifuged. Pipette 80% of the supernatant into a new centrifuge tube. This is a solution for amplifying the phage. It can be stored at 4 °C for several weeks without much effect on the titer. Long-term storage application of sterile glycerol 1: 1 dilution, storage at -20 ° C; e. From the above amplified monoclonal phage liquid, absorb 500 ⁇ into a new centrifuge tube;
  • the pellet is resuspended in 20 ⁇ double distilled water, which is a phage template DNA solution;
  • Phage affinity peptide screening A total of 4 rounds of screening were performed using a phage display library (PH. D. -7TM PHage Display Peptide Library Kit; New England Biolabs). After each screening, the phage titer was obtained and multiplied by The total volume of the bacterial liquid is the total amount of phage recovered after screening, and the selected phage is amplified, and the amplified phage is used for the next round of screening.
  • the first round of screening Add phage stock solution (titer: 1 X10 13 PFU/10 1), after lysing the cells, extract the phage titer to 1X10 3 PFU /10 ⁇ 1, and after the extracted phage is amplified, the phage titer is 1X10 U PFU/I0 1;
  • the second round of screening Adding the amplified phage 10 ⁇ 1 , after screening, the recovered phage titer is 5.3 ⁇ 10 4 PFU /10 ⁇ 1, and the titer after amplification is 1 X 10 U PFU/10 ⁇ 1;
  • the third round of screening After screening, the recovered phage titer is 1.2 ⁇ 10 6 PFU /10 ⁇ 1, and the titer after amplification is 6.0 ⁇ 1 ( ⁇ /10 ⁇ 1 ; the fourth round of screening: after screening, the recovered phage titer is 9.0 X10 5 PFU /10 ⁇ 1.
  • the synovial mesenchymal stem cell affinity phage (LTHPRWP) was obtained after four rounds of screening, and the phage recovery rate was calculated and compared with the phage stock solution.
  • Phage recovery rate of affinity-containing polypeptide 1.50E-05; Recovery of phage stock solution: 1.00E-09.
  • the obtained synovial mesenchymal stem cell affinity phage has a 15,000-fold increase in affinity for synovial mesenchymal stem cells compared with the phage primitive phase (1.50E-06/1.00E-09)
  • phage liquid obtained by screening was used for titer determination. 20 colonies were randomly picked from xgal culture plates with the number of blue spots between 10 and 100, and each was amplified in 1 ml of E. coli bacteria, and extracted. Phage DNA was sequenced. After four rounds of screening, a set of polypeptide sequences with high affinity for synovial mesenchymal stem cells were obtained: LTHPRWP (Table 2).
  • the polypeptide sequence of the two clones is: LTHPRWP; of the 20 phage clones determined in the third round, the polypeptide sequences of the three clones are : LTHPRWP; of the 20 phage clones determined in the fourth round, the polypeptide sequence of 11 clones is: LTHPRWP.
  • the first round of screening results lacked specificity, so the polypeptide fragments carried by the phage in the eluate were not detected. Therefore, after four rounds of screening, a polypeptide sequence with high affinity for synovial mesenchymal stem cells was obtained: LTHPRWP.
  • RESULTS Human-derived synovial mesenchymal stem cells were cultured on 60 mm plates. When the cell fusion rate was greater than 90%, they were combined with InM FITC-labeled synovial mesenchymal stem cell affinity peptide (FITC-LTHPRWPC) and mismatched peptides. (FITC-PRHLPTWC) After 1 hour of incubation, flow cytometry was performed. The mismatched peptide was used as a blank control group with an average fluorescence intensity of 5; the primary synovial mesenchymal stem cells incubated with the synovial mesenchymal stem cell affinity polypeptide had an average fluorescence intensity of 174.
  • the fluorescence intensity of the synovial mesenchymal stem cell affinity peptide group was 34.8 times that of the mismatched polypeptide, indicating that the synovial mesenchymal stem cell affinity polypeptide has significant affinity for human-derived synovial mesenchymal stem cell cells ( See Figure 4a and Figure 4b).
  • RESULTS Cell slides of synovial mesenchymal stem cells were prepared, fixed in 4% paraformaldehyde for 10 min, washed 3 times with PBS (0.01 M, pH 7.4), labeled with FITC affinity peptide and mismatched polypeptide and cells, respectively. Climbing tablets were incubated for 1 h. At 37 °C, the cytoskeleton was counterstained with phalloidin, and the nuclei were counterstained at room temperature for 10 min. The binding of cells to peptides was observed by laser confocal microscopy.
  • RESULTS Cell slides were prepared from human-derived synovial mesenchymal stem cells, fixed in 4% paraformaldehyde for 10 min, washed three times with PBS, and FITC-conjugated polypeptide and mismatched polypeptide were incubated with cell slides for 1 h, 37 °C. Next, the phalloidin complex counterstained the cytoskeleton lh, harness counterstained the nucleus for 10 min at room temperature, observed the binding of cells and peptides by laser confocal microscopy, and observed the distribution of FITC green fluorescence in synovial mesenchymal stem cells.
  • synovial mesenchymal stem cell affinity polypeptides can accumulate in large amounts around and inside synovial mesenchymal stem cells, while only a small number of mismatched random polypeptides are randomly endocytosed by synovial mesenchymal stem cells. This indicates that the synovial mesenchymal stem cell affinity polypeptide has a high affinity for human-derived synovial mesenchymal stem cells (see Figure 6).
  • the affinity peptide fragment LTHPRWP and the mismatched polypeptide fragment PRHLPTW were ligated to the surface of the polycaprolactone (PCL) nano-electrospinning scaffold by covalent binding (see Figure 7) and placed in the synovial mesenchymal stem cell suspension. , co-cultivation.
  • PCL nanofiber membrane to which the affinity polypeptide was linked was more favorable for the adhesion and growth of the synovial mesenchymal stem cells than the PCL nanofiber membrane to which the mismatched polypeptide was ligated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了一种滑膜间充质干细胞亲和多肽、所述多肽的筛选方法及应用。所述筛选方法包括以下步骤:采用噬菌体展示技术分别进行人成纤维细胞阴性筛选和滑膜间充质干细胞的阳性筛选;筛选之后,提取滑膜间充质干细胞,裂解细胞,再提取与滑膜间充质干细胞特异性亲和的噬菌体片段,对其进行测序,获得对滑膜间充质干细胞具有高度亲和性的多肽片段。

Description

滑膜间充质干细胞亲和多肽、 其筛选方法和应用
技术领域
本发明属于生物医学领域, 特别涉及一种滑膜间充质亲干细胞亲和多肽的氨基酸序列、 筛选方法及应用。
背景技术
经过近 20年的发展, 组织工程 (Tissue Engineering, TE) 术已经广泛地应用于临床的 各个领域, 包括骨组织、 软骨、 神经、 血管、 皮肤以及胃肠道和泌尿生殖系统的再生和修复。 在组织工程的发展过程中, 针对各种组织的支架的不断书改进和更新是关键, 包括材料的更新、 制作方法的改进以及构建理念的不断创新。 而近期组织工程学另一个比较明显的理念上的转 变, 就是 "化繁为简" , 即与其在体外通过各种复杂的手段和技术来尽可能地去模拟正常组 织的组成, 然后再植入体内, 不如为人体提供一个自我修复的支架, 让人体这个天然的 "生 物反应器"依附这个支架来进行自我修复。 因为人体内环境是十分复杂的, 所以才会导致很 多实验设想与结果相差很大, 并且支架植入步骤的繁复也会限制其在临床上的推广和应用。 但这样的支架就要求根据需要来进行特定的修饰, 从而起到诱导特定细胞粘附、 增殖和分化 的作用。
正常组织中, 细胞周围基质对细胞的生物功能具有重要的意义, 通过基质中的蛋白或多 肽分子的功能结构域与细胞表面受体结合, 激活细胞内复杂的信号通路, 对细胞的基因表达、 粘附、 迁移、 增殖以及分化等生物学功能进行调控, 而这些功能域也许仅仅只有几个氨基酸 片段的长度。 这种调控方式, 为我们构建活性多肽序列, 对组织工程支架进行表面修饰, 以 模拟细胞周围基质对细胞本身的调控功能提供了理论依据。 采用不同类型的多肽对支架进行 修饰, 也赋予支架不同的生物功能。 有研究表明, 采用细胞周围基质蛋白对人工支架进行表 面修饰, 可提高细胞对支架的贴附率和增殖率, 进一步的研究发现, 在这些细胞周围基质蛋 白中, 纤粘连蛋白 (fibronectin)是促进细胞贴附、 迁移的主要成分。 实际上, 真正影响细 胞生物功能的只是纤粘连蛋白中几个氨基酸片段构成的功能域。 例如, 采用 RGD多肽对支架 进行修饰, 即可提高肌细胞对支架的贴附率, 也提高了细胞的增殖效率, 说明仅需三个氨基 酸片段长度的结构域就能对细胞功能产生显著影响。 Duan 等 4人也有类似的发现, 利用角膜 细胞特异亲和性多肽序列对支架进行修饰后, 可提高角膜上皮细胞对支架的贴附率, 并诱导 角膜细胞在支架上分层排列, 出现类似于生理情况下的组织结构。 同时, 利用多肽对支架进 行修饰, 也可调控蛋白分子在组织工程支架上的聚集, Ryadnov 等人利用多种多肽片段构建 的小分子蛋白对支架进行修饰, 利用多肽对特定蛋白分子表现出的亲和性, 赋予支架捕获这 些蛋白分子的功能, 使蛋白分子在支架周围富集, 进而调控支架内细胞的生物学功能。 Shah 等人利用 TGF- β高度亲和的多肽序列对多肽兼性分子纳米支架 (PA)进行修饰, 极大提高了 支架对软骨缺损的修复效果, 这种支架对干细胞向软骨定向分化的诱导能力大大增强, 粘多 糖的表达程度也显著提高。 说明多肽修饰后的支架, 可装载、 保护, 并缓释生长因子, 这种 缓释作用, 与支架的降解时间以及亲和多肽对支架的修饰程度密切相关, 当修饰程度为 5 % -10 %时, 植入体内第 4周后, 支架仍能发挥优良的生长因子缓释功能。 而且最关键的是, 装 载外源性 TGF- β和没有转载外源性 TGF- β的支架对软骨缺损的最终修复效果没有显著差别, 这说明这种 TGF- β亲和多肽修饰后的支架, 在没有装载外源性生长因子的情况下, 可大量富 集内源性的 TGF- β生长因子, 改善支架内的微环境, 实现诱导干细胞向软骨分化的功能。
滑膜间充质干细胞 (SMSC) 作为间充质干细胞 (MSC) 家族中的新成员, 最早由 De Bari et al.在 2001年首次从滑膜组织中成功提取出来, 经过了近十年的研究, 滑膜间充质干细胞 具有与间充质干细胞类似的多向分化潜能已经被众多的实验所证实, 并且滑膜间充质干细胞 相较其他组织来源的间充质干细胞具有更强的增殖活性, 其多向分化潜能受供体年龄、 传代 次数以及保存保存方式的影响也相对较小, 取材部位也较为宽泛, 更为重要的是大量研究结 果显示, 滑膜间充质干细胞相较于其他组织来源的间充质干细胞具有更强的向软骨细胞分化 的潜能。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题: 现有技术中还没有一 种滑膜间充质亲干细胞亲和多肽的筛选方法, 该方法能够提高生物材料对于滑膜间充质干细 胞特异性亲和能力, 在组织工程软骨修复领域里有着深远的意义和广泛的应用前景。 发明内容
本发明实施例的目的是针对上述现有技术的缺陷, 提供一种能够提高生物材料对于滑膜 间充质干细胞特异性亲和能力的滑膜间充质亲干细胞亲和多肽的筛选方法。
本发明另一目的提供滑膜间充质亲干细胞亲和多肽的氨基酸序列。
本发明又一目的提供滑膜间充质亲干细胞亲和多肽的应用。
为了实现上述目的本发明采取的技术方案是: 一种利用改进的噬菌体展示技术筛选能够提高生物材料对于滑膜间充质干细胞特异性亲 和能力的滑膜间充质亲干细胞亲和多肽的方法, 包括以下步骤:
( 1 ) 人滑膜间充质干细胞以及人成纤维细胞原代培养: 通过人滑膜间充质干细胞的原 代培养并传一代, 获得阳性筛选细胞; 通过人成纤维细胞的原代培养并传十代以上, 获得阴 性筛选细胞;
( 2) 阴性筛选: 在阴性筛选细胞中加入噬菌体文库, 去除噬菌体文库中与 P10代 ACL成 纤维细胞结合的多肽片段;
( 3) 阳性筛选: 在阳性筛选细胞中加入步骤 (2 ) 中阴性筛选后得到的噬菌体多肽文库 菌液, 获得经阳性筛选后的滑膜间充质干细胞, 该细胞结合了噬菌体文库中与其特异性结合 的亲和多肽片段;
(4) 噬菌体扩增: 提取步骤 3所得滑膜间充质干细胞, 制备细胞裂解液, 对其内的噬菌 体滴度进行扩增;
( 5) 测量扩增后的噬菌体提取液的滴度, 4°C保存;
以上 (1 ) 〜 (5)步骤重复 4轮, 第 1轮筛选加入噬菌体文库原液, 以后每轮加入前一 轮细胞裂解液扩增后的噬菌体提取液;
(6) 提取每一轮所得的和滑膜间充质干细胞特异性亲和的噬菌体 DNA片段, 进行测序, 筛选出对滑膜间充质干细胞具有高度亲和性的多肽序列: 即序列表中的 SEQ ID NO. 1 : LTHPRWP , 其 DNA序列如序列表中的 SEQ ID NO. 2 所示: CTTACGCATCCTCGTTGGCCT。
本发明的另一技术方案是滑膜间充质亲干细胞亲和多肽修饰植入人体支架的应用及其修 饰方法, 包括以下步骤: 将选出的滑膜间充质干细胞亲和多肽的 3' C末端, 连接一个半胱氨 酸(C), 利用该半胱氨酸 (C)残基与聚己内酯 (PCL) 电纺丝膜经氨化后的表面 -NH2共价耦联, 使得 PCL纳米纤维膜支架具有特异性富集滑膜间充质干细胞的性能。
具体包括以下步骤:
1 ) 将 PCL纳米纤维膜置于异丙醇配置的 10%w/v的 1,6 -己二胺中, 37°C, 放置 lh;
2 ) 通 过 交 联齐 U ( 4- (N-maleimidomethyl) cyclohexane-l-carboxylate (sulfo-SMCC) ) 4- [N-马来酰亚胺基甲基]环己烷 -1-羧基磺基琥珀酰亚胺将 PCL 纳米纤维 膜表面的氨基和亲和多肽相连接。
更具体的步骤为:
1 )将 PCL纳米纤维膜修剪成与 24孔板的孔面积相等的圆形, 然后将其放入 24孔板的孔 内, 每孔加入 500 μ 1的 10%w/v的 1, 6 -己二胺 /异丙醇溶液, 37°C, 放置 lh; 2 ) 去离子水漂洗 3〜5遍, 双蒸水漂洗 3〜5遍, PBS (磷酸盐缓冲液, 0. 01M, pH 7. 4) 冲洗 3遍;
3 ) 每孔加入 400 μ 1 的交联剂 4- (Ν-马来酰亚胺基甲基)环己烷 -1-羧酸 -3-磺基琥珀酰 亚胺酯 (lmg/ml SMCC, Thermo公司), 室温下放置 lh;
4) 用含 EDTA (乙二胺四乙酸) 的缓冲液 ( 500ml 0. 01Μ/ρΗ 7· 4的 PBS+18. 612gEDTA, pH 7. 2〜7· 5 ) 冲洗 3遍;
5 ) 加入 0. lmg/ml的多肽溶液(用上述含 EDTA的缓冲液配置), 每孔 400 μ 1, 4°C过夜;
6 ) 去离子水漂洗 3遍, -20°C预冻, 真空冻干后 4°C保存。
本发明实施例提供的技术方案带来的有益效果是:
1、通过噬菌体展示技术获得滑膜间充质干细胞特异性的亲和多肽片段, 使之能够靶向性 地和滑膜间充质干细胞高度亲合。
2、通过将亲和多肽片段与 PCL电纺丝膜进行共价耦联, 从而对 PCL纳米纤维膜表面进行 修饰, 使之能够特异性地富集滑膜间充质干细胞, 使得该材料作为支架在体内进行软骨再生 修复的时候, 能够持续性地粘附滑膜间充质干细胞, 并产生正常细胞外基质 (ECM) , 从而达 到更好的修复效果。
3、在对该多肽进行种属特异性鉴定的过程中发现该多肽并无明显的种属特异性, 所以该 亲和多肽序列还可广泛应用于各种细胞学实验和动物实验中, 作为一种筛选滑膜间充质干细 胞的亲和载体, 可以更加高效地筛选、 纯化滑膜间充质干细胞。 附图说明
图 1是本发明实施例 1中提供的人滑膜间充质干细胞原代培养结果图;
图 2a、图 2b和图 2c是本发明实施例 1的噬菌体滴度测定中提供的噬菌体蓝斑实验结果; 将倍比稀释后的噬菌体 10 μ 1加入 200 μ 1大肠杆菌菌液中孵育 1一 5分钟, 加入顶层培养基 迅速混匀, 平铺四环素抗性的 LB-tet培养板上, 37°C, 5%C02过夜, 计算平板上的噬菌体蓝 斑数。 然后用此数目乘以稀释因子即得到每 10 μ ΐ噬菌体的空斑形成单位 (pfu) 滴度。 并 挑取单个蓝斑在 LB/大肠杆菌培养液中扩增, 提取噬菌体 DNA测序。 图 2a: 蓝斑数量 10°; 图 2b: 蓝斑数量 101; 图 2c: 蓝斑数量 102
图 3是本发明实施例 1的噬菌体亲和多肽筛选中提供的四轮筛选的噬菌体的回收率; 图 4a是本发明实施例 2提供的人的 MSC亲和多肽的流式细胞检测结果图;
图 4b是针对图 4a的的荧光强度的定量分析结果图; 参见图 4a和图 4b, InM的 FITC ( fluorescein isothiocyanate, 异硫氰酸荧光素) 荧光标记的滑膜间充质干细胞亲和多肽 (SMSC-affinity peptide sequence ) 和错配多肽 ( Scramble peptide ) 分别与滑膜间充质干细胞孵育 1小时后, 进行流式细胞分析; 由图 4b 可见, FITC标记的错配多肽与滑膜间充质干细胞共同孵育, 平均荧光强度为 5; FITC标记 的亲和多肽与滑膜间充质干细胞共同孵育,平均荧光强度为 174,亲和多肽组的荧光强度(174) 远高于错配多肽组的荧光强度 (5 );
图 5a是是本发明实施例 2提供的大鼠的 MSC亲和多肽的流式细胞检测结果图; 图 5b是针对图 5a的的荧光强度的定量分析结果图;
图 5c是是本发明实施例 2提供的家兔的 MSC亲和多肽的流式细胞检测结果图; 图 5d是针对图 5c的的荧光强度的定量分析结果图;
参见图 5a和图 5b, 大鼠 (Rat ): FITC标记的错配多肽与大鼠滑膜间充质干细胞共同孵 育, 平均荧光强度为 4; FITC标记的亲和多肽与大鼠滑膜间充质干细胞共同孵育, 平均荧光 强度为 99, 亲和多肽组的荧光强度 (99)远高于错配多肽组的荧光强度 (4);
参见图 5c和 5d, 家兔(Rabbit ): FITC标记的错配多肽与家兔滑膜间充质干细胞共同孵 育, 平均荧光强度为 5; FITC标记的亲和多肽与家兔滑膜间充质干细胞共同孵育, 平均荧光 强度为 92, 亲和多肽组的荧光强度 (92)远高于错配多肽组的荧光强度 (5);
其中, 图 4a、 图 5a和图 5c中, 左边的峰代表的是错配多肽, 右边的峰代表的是亲和多 肽。 Counts为数量。
图 4b、 图 5b禾卩图 5d中的 Average fluorescence intensity 为平均荧光强度。
图 6是本发明实施例 2提供的激光共聚焦显微镜观察结果;标记 FITC的亲和多肽和错配 多肽分别与滑膜间充质干细胞共同孵育 lh, 鬼笔环肽复染细胞骨架, hochest复染胞核, 激 光共聚焦显微镜观察细胞与多肽结合情况; 结果显示亲和多肽序列(LTHPRWP)对于滑膜间充 质干细胞的亲和力显著高于错配多肽 (PRHLPTW);
图 7是本发明实施例 3提供的利用共价结合方式,将亲和多肽片段连接到聚己内酯(PCL) 纳米电纺丝纤维膜表面的示意图;
图 8是本发明实施例 3提供的滑膜间充质干细胞特异性多肽修饰的 PCL纳米电纺丝纤维 膜在激光共聚焦显微镜下观察的多肽连接;
图中显示: 连接了 FITC标记的亲和多肽片段 (LTHPRWP) 的聚己内酯 (PCL) 纳米纤维, 可见绿色荧光强度较高, 提示较高的连接效率;
图 9a和图 9b是本发明实施例 3提供的滑膜间充质干细胞特异性多肽修饰 PCL纳米电纺 丝支架的效果; 图 9a为连接了滑膜间充质干细胞亲和多肽片段; 图 9b为连接了错配多肽片 段;
分别将连接了滑膜间充质干细胞亲和多肽片段 (LTHPRWP) 和错配多肽片段 (PRHLPTW) 的聚己内酯(PCL)纳米纤维膜置于滑膜间充质干细胞悬液中, 共同培养, 结果显示: 连接了 亲和多肽的 PCL纳米纤维膜相较连接错配多肽的 PCL纳米纤维膜更有利于滑膜间充质干细胞 的粘附和生长。 (蓝色 1: hochest—胞核; 绿色 2: 连接多肽的 PCL纳米纤维膜; 红色 3: 鬼 笔环肽一细胞骨架)。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作进 一步地详细描述。
实施例 1
噬菌体展示技术筛选滑膜间充质干细胞亲和多肽序列:
(1) 人滑膜间充质干细胞以及人成纤维细胞原代培养:
a. 人滑膜间充质干细胞原代培养及传代
从接受全膝关节置换 (TKA) 的患者手术过程中获取膝关节髌上囊中的滑膜组织, 放入 PBS (0.01M, pH 7.4) 中洗涤 2次, 将滑膜组织用眼科剪剪碎, 加入胰酶, 37°C消化 30min 去除膜性组织; 离心, PBS (0.01M, pH7.4) 洗涤, 弃上清液, 加入 0.2% I型胶原酶 37°C 消化 2小时; 离心, PBS (0.01M, pH 7.4) 洗涤 2遍, 加入含 10%FBS的 DMEM (LG) 完全培 养基, 2〜3天换一次培养液, 并传一代, 作为阳性筛选细胞 (参见图 1)。 其中 DMEM是一种 含各种氨基酸和葡萄糖的培养基。
b. 人成纤维细胞原代培养及传代
从接受全膝关节置换(TKA)的患者手术过程中获取 ACL (人前交叉韧带)组织, PBS (0.01M, PH7.4)冲洗, 去除表面的膜性组织及血凝块, 用眼科剪将其剪碎, 37°C下用胰酶消化 30min 去除杂质, 加入完全培养基中止消化, PBS (0.01M, pH 7.4) 洗涤 2次, 再加入 0.2% I型 胶原酶 (用 DMEM配制), 37°C消化 2— 3小时, 每小时置 37°C恒温振荡箱振荡 5min, 直到组织 块大部分呈肉眼可见的絮状物, 倒置显微镜下观察细胞大部分分离后, 以弯头吸管轻轻吹打, 加入等体积的完全培养基以中和胶原酶, 消化后的细胞悬液经离心, 弃上清液后, 用完全培 养基重悬、 铺板, 并传十代以上。 作为阴性筛选细胞。
(2) 阴性筛选 (去除与 P10代 ACL成纤维细胞结合的多肽片段): a. 取一皿 P10代 ACL成纤维细胞, 用胰酶消化、 PBS (0. 01M, pH 7. 4) 洗涤 2〜3遍; 加入 blocking buffer (封闭缓冲液, 0. 1M NaC03 (ρΗ8· 6), 5mg/ml BSA, 0. 02%NaN3) 重悬 于 lml EP管中, 4°C封闭 lh, 减少非特异性结合;
b. 离心 ( 1500rpm, 5min), 弃上清液, 加入 0. 5ml的无血清 DMEM (HG), 细胞计数 ( 2 X 106);
c 加入 Ι μ ΐ 的噬菌体文库 (PH. D. -7TM PHage Display Library, NEB) ( I X 1011 PFU /ΙΟ μ Ι噬菌体原液, 100 μ 1 ), 室温放置 30min;
d. 离心 (lOOOOrpm, 5min), 吸取上清液, 得到阴性筛选后的噬菌体多肽文库菌液, 移 至新 EP管中备用;
( 3) 阳性筛选:
a. 取一皿 PI代人来源 SMSC (滑膜间充质干细胞), 用胰酶消化, PBS (0. 01M, pH 7. 4) 洗涤 2〜3遍; 加入 blocking buffer重悬于 lml EP管中, 4°C封闭 lh, 减少非特异性结合; b. 离心, 弃上清液, 加入 0. 5ml的无血清 DMEM (HG), 细胞计数 (2 X 106);
c 加入步骤 (2) 所得阴性筛选后的噬菌体多肽文库菌液, 室温放置 30min;
d. 离心, 弃上清液, PBS洗涤 2〜3遍, 得到阳性筛选后的细胞;
(4) 噬菌体扩增 (参见 PH. D. -7TM PHage Display Peptide Library Kit操作手册): a. 将步骤 (3) 所得阳性筛选后的细胞制备细胞裂解液, 对其内的噬菌体滴度进行扩增: 将细胞裂解提取液加入 20ml ER2738培养液中 (处于 early-log), 在 37°C摇晃, 孵育 4. 5小 时;
b. 将步骤 1 ) 中的培养液加入离心管中, 4°C下, 10, OOOrpm离心 10分钟, 将上清移入 新管中, 再次离心 ( 10, OOOrpm, lOmin);
c. 抽取 80%上清, 移到新离心管中, 加入 1/6体积的 PEG/NaCl , 让噬菌体在 4°C下沉淀 过夜;
d. 次日, 10, OOOrpm, 4°C下, 将噬菌体菌液离心, 15分钟, 弃上清, 再次离心 (10, OOOrpm, lOmin), 弃上清液;
e 用 lml TBS ( 50mM Tris-HCl (pH7. 5) , 150mM NaCl ) 重新悬浮噬菌体沉淀, 4°C下, 离 心 5分钟。
f. 将上清移到新离心管中,用 1/6体积的 PEG/NaCl再次沉淀。在冰上孵育 60分钟。 4°C, 10, OOOrpm离心 10分钟, 弃上清液, 重新短暂离心, 再次弃上清。
g. 用 200 μ 1的 TBS (ρΗ7. 5, 含 0. 02%NaN3) 重新悬浮沉淀, 离心 1分钟, 将上清移到 新离心管中。 此即为扩增后的噬菌体提取液。
(5)噬菌体滴度测定 (参见 PH. D. -7TM PHage Display Peptide Library Kit操作手册): a.接种51«738单菌落于5-10 1111 LB培养基中, 37°C, 250rpm摇床孵育至对数中期(0D6。。〜 0. 5)。
b.微波炉加热融化上层琼脂, 分成 3 ml/份分装到灭菌试管中, 每个稀释度的噬菌体一 管。 保存于 45°C备用。
c 37°C预温 LB/IPTG/Xgal平板, 每个噬菌体稀释梯度取一个平板备用。
d.用 LB培养液对噬菌体进行 10倍比列稀释。建议稀释范围: 扩增的噬菌体培养物上清:
108-10u; 未扩增的淘选洗脱物: ΙΟ^ΙΟ^ 每个稀释度换一新鲜吸头, 建议使用带滤芯吸头以 避免交叉污染。
e当大肠杆菌菌液达对数中期, 分成 200 μ ΐ/等份于微量离心管中, 每个噬菌体稀释度 用一管。
f.每管大肠杆菌菌液中分别加入 10 μ ΐ不同稀释倍数的噬菌体, 快速震荡混匀, 室温温 育 1-5 min。
g.将噬菌体感染的大肠杆菌菌液加入 45°C预温的顶层琼脂培养管中, 每次一管, 快速混 匀, 立即倾注于 37°C预温的 LB/IPTG/Xgal平板上。 适当倾斜平板将上层琼脂均匀铺开。
h.待平板冷却 5 min后, 倒置于 37°C孵箱, 培养过夜。
i检查平板, 计数有 ~102个噬菌斑的平板上的斑数 (参见图 2a、 图 2b和图 2c)。 然后, 用此数目乘以稀释因子即得到每 10 μ ΐ噬菌体的空斑形成单位 (pfu) 滴度。
以上(1)〜 (5)步骤重复 4轮, 然后对每一轮的噬菌体提取液进行测序。
(6)噬菌体多肽片段测序 (参见 PH. D. -7TM PHage Display Peptide Library Kit操作手 册):
a.噬菌斑的扩增: 将大肠杆菌扩增菌液 (0D: 0. 5) 按 1 : 100用 LB培养液稀释, 每个待 测序的噬菌斑克隆分装一管, 1ml/管;
b.用灭菌牙签或吸头, 在菌斑数在 10— 100之间的平皿内挑取单克隆蓝色菌斑, 放入上 述 1 ml培养管中。 共挑取 20个单克隆。
c 37 °C , 250rpm摇床, 孵育 4. 5-5 h;
d.孵育后的噬菌体菌液转入离心管中, 离心 30 秒。 上清移入新管, 再离心。 吸取 80% 上清液转入新离心管, 此即为扩增噬菌体贮液, 可以 4°C贮存几个星期而对滴度影响不大。 长期贮存应用灭菌甘油 1: 1稀释后, -20°C贮存; e.从上述扩增的单克隆噬菌体菌液中, 吸取 500 μΐ到新离心管中;
f.加 200 μ 1 PEG/NaCl, 颠倒混匀, 室温放置 10 min;
g.离心 10 min, 弃上清液, 再次短暂离心 (lOOOOrpm, 30sec) 吸去残余上清液; h.噬菌体沉淀彻底重悬于 100 μ 1碘化物缓冲液中, 加入 250 μ 1乙醇。室温孵育 10 min i.离心 10 min, 弃上清液。 用 70%的乙醇洗沉淀, 短暂真空干燥;
j.沉淀重悬于 20 μΐ 双蒸水中, 即为噬菌体模版 DNA溶液;
k.测序, 经过四轮筛选, 得到一组对滑膜间充质干细胞具有高度亲和性的多肽序列。 本发明实施例试验结果:
a、 噬菌体亲和多肽筛选: 利用噬菌体展示文库 (PH. D. -7TM PHage Display Peptide Library Kit; New England Biolabs) , 一共进行了 4轮筛选, 每次筛选后, 测定获取噬菌 体滴度, 乘以菌液总体积, 即为筛选后回收的噬菌体总量, 同时, 将筛选后的噬菌体进行扩 增, 采用扩增后的噬菌体进行下一轮筛选。 第一轮筛选: 加入 Ιμΐ的噬菌体原液 (滴度: 1 X1013PFU/10 1), 裂解细胞后, 提取噬菌体滴度为 1X103 PFU /10μ1, 将提取的噬菌体扩 增后, 噬菌体滴度为 1X10UPFU/I0 1; 第二轮筛选: 加入扩增后的噬菌体 10 μ 1, 筛选后, 回收噬菌体滴度为 5.3X104 PFU /10μ1, 扩增后滴度为 1 X 10UPFU/10 μ 1; 第三轮筛选: 筛 选后, 回收噬菌体滴度为 1.2X106 PFU /10μ1, 扩增后滴度为 6.0Χ1(Αψυ/10μ1; 第四轮 筛选: 筛选后, 回收噬菌体滴度为 9.0X105 PFU /10μ1。
Table 1: 噬菌体回收率:
加 入 噬 菌 体 回 收 噬 菌体 回收率
(pfu) (pfu)
第一轮 1.0E+ 13 1.0E+3 1.0E-9
第二轮 1.0E+11 5.3E+4 5.3E-7
第三轮 1.0E+11 1.2E+6 1.2E-5
第四轮 6.0E+10 9.0E+5 1.5E-5
亲和倍数 1.5E-5/1.0E- 9 = 15000
参见图 3, 经四轮筛选后获取包含滑膜间充质干细胞亲和噬菌体 (LTHPRWP), 计算噬菌 体回收率, 并与噬菌体原液进行比较。 含亲和多肽噬菌体回收率: 1.50E-05; 噬菌体原液的 回收率: 1.00E-09。 获取的滑膜间充质干细胞亲和噬菌体体与噬菌体原液相比较, 对滑膜间 充质干细胞的亲和性提高了 15000倍 (1.50E-06/1.00E-09)
b、 多肽序列筛选结果 每轮筛选之后, 采用筛选获取的噬菌体菌液进行滴度测定, 从蓝斑数在 10〜100之间的 xgal培养板上随机挑取 20个菌落各在 1ml大肠杆菌菌液中扩增, 提取噬菌体 DNA进行测序。 经过四轮筛选, 得到一组对滑膜间充质干细胞具有高度亲和性的多肽序列: LTHPRWP (表 2)。
表 2 多肽序列筛选结果
Figure imgf000011_0001
SLDALLS/
AGTCTTGATGCGCTGCTTTCG
TQLLEPT/
ACGCAGCTGTTGGAGCCGACG
ARPRNIT/
GCTCGTCCGCGGAATATTACG
由上表的测序结果可知, 其中第二轮测定的 20个噬菌体单克隆中, 2个克隆的多肽序列为: LTHPRWP; 第三轮测定的 20个噬菌体单克隆中, 3个克隆的多肽序列为: LTHPRWP; 第四轮测 定的 20个噬菌体单克隆中, 11个克隆的多肽序列为: LTHPRWP。第一轮筛选结果缺乏特异性, 所以未检测洗脱液中的噬菌体所携带的多肽片段。 因此, 四轮筛选后, 获得对滑膜间充质干 细胞具有高度亲和性的多肽序列: LTHPRWP。
实施例 2
滑膜间充质干细胞亲和多肽对人以及大鼠和家兔来源滑膜间充质干细胞的亲和性鉴定 细胞层面亲和性鉴定:
( 1 ) 流式细胞分析
方法: 取一皿滑膜间充质干细胞, 用 0. 05%胰蛋白酶一 0. 02%EDTA, 消化 5分钟, 直到 细胞完全脱落, 收集悬液, 1000rpm, 离心 5分钟, 弃上清液, 再次用 PBS (0. 01M, pH 7. 4) 悬浮细胞,重复 3次, 400目滤网过滤细胞后,再次离心(2000rpm, 5min),弃上清液, 0. ImlPBS (0. 01M, pH 7. 4) 重新悬浮细胞后, 加入 InM的 SMSC亲和多肽(FITC- LTHPRWPC) 和错配多 肽 (FITC- PRHLPTWC), 室温孵育 lh, 离心 ( 2000rpm, 5min), PBS (0. 01M, pH 7. 4) 洗涤 3 遍, 0. 5ml PBS (0. 01M, pH 7. 4) 重新悬浮细胞后移入流式细胞管内, 进行流式细胞分析。
结果: 人来源滑膜间充质干细胞在 60mm平皿上原代培养, 当细胞融合率大于 90%后, 分别与 InM FITC 标记的滑膜间充质干细胞亲和多肽(FITC-LTHPRWPC ) 和错配多肽 (FITC-PRHLPTWC)孵育 1小时后, 做流式细胞分析。 错配多肽作为空白对照组, 平均荧光强 度为 5; 与滑膜间充质干细胞亲和多肽孵育的原代滑膜间充质干细胞, 平均荧光强度为 174。 滑膜间充质干细胞亲和多肽组的荧光强度为错配多肽的 34. 8倍,说明滑膜间充质干细胞亲和 多肽对人来源滑膜间充质干细胞细胞具有显著的亲和性 (参见图 4a和图 4b)。
同样, 用大鼠和家兔来源的滑膜间充质干细胞进行流式细胞分析, 通过在大鼠和家兔中 的实验结果, 说明获取的亲和多肽序列没有种属特异性, 不但对人来源的滑膜间充质干细胞 具有亲和性, 对大鼠和家兔来源的滑膜间充质干细胞也表现出很高的亲和性 (参见图 5a、 图 5b、 图 5c和图 5d)。
( 2) 激光共聚焦显微镜观察
方法: 制作滑膜间充质干细胞的细胞爬片, 4%多聚甲醛固定 10min, PBS (0. 01M, pH 7. 4) 洗涤 3遍, 标记 FITC的亲和多肽和错配多肽分别与细胞爬片共同孵育 lh, 37°C下, 鬼笔环 肽复染细胞骨架 lh, hochest复染胞核,室温放置 10min, 通过激光共聚焦显微镜观察细胞与 多肽结合情况。
结果:用人来源滑膜间充质干细胞制作细胞爬片, 4%多聚甲醛固定 10min, PBS洗涤 3遍, 标记 FITC的亲和多肽和错配多肽分别与细胞爬片共同孵育 lh, 37°C下, 鬼笔环肽复染细胞 骨架 lh, 室温下, hochest复染胞核 10min, 通过激光共聚焦显微镜观察细胞与多肽结合情 况, 观察 FITC绿色荧光在滑膜间充质干细胞细胞中的分布情况,可见滑膜间充质干细胞亲和 多肽可大量聚集在滑膜间充质干细胞周围和内部, 而错配的随机多肽则仅有非常少量被滑膜 间充质干细胞细胞随机内吞。 说明滑膜间充质干细胞亲和多肽对人来源的滑膜间充质干细胞 具有很高的亲和性 (参见图 6)。
实施例 3
滑膜间充质干细胞特异性多肽修饰 PCL纳米电纺丝纤维膜
( 1 ) 多肽合成: 分别合成筛选获得的滑膜间充质干细胞亲和多肽 LTHPRWPC以及错配多 肽 PRHLPTWC (对照) (Scilight- peptide Inc, China), 采用 FITC荧光染料对多肽进行标记, 同时为了对材料表面进行共价修饰, 在多肽的 3' 链接一个半胱氨酸残基 (C) 以利于同各材 料亚氨基 (_NH2)共价结合;
( 2) 将 PCL纳米电纺丝纤维膜修剪成与 24孔板的孔面积相等的圆形, 然后将其放入 24孔板的孔内, 每孔加入 500 μ 1的 10%w/v的 1, 6 -己二胺 /异丙醇溶液中, 37°C, 放置 lh;
( 3) 去离子水漂洗 3〜5遍, 双蒸水漂洗 3〜5遍, PBS (0. 01M, PH 7. 4) 冲洗 3遍;
(4)每孔加入 400 μ 1的交联剂 4- (Ν-马来酰亚胺基甲基)环己烷 -1-羧酸 -3-磺基琥珀酰 亚胺酯 (lmg/ml SMCC, Thermo公司), 室温下放置 lh;
( 5) 用含 EDTA的缓冲液 ( 500ml 0. 01Μ/ρΗ 7· 4的 PBS+18. 612gEDTA, pH 7. 2〜7· 5 ) 冲洗 3遍;
(6) 加入 0. lmg/ml的多肽溶液 (用上述含 EDTA的缓冲液配置), 每孔 400 μ 1, 4°C过 夜;
( 7) 去离子水漂洗 3遍, -20°C预冻, 真空冻干后 4°C保存; ( 8 ) 激光共聚焦显微镜下观察多肽连接情况 (参见图 8)。
滑膜间充质干细胞特异性多肽修饰 PCL纳米电纺丝支架试验结果:
利用共价结合方式, 将亲和多肽片段 LTHPRWP以及错配多肽片段 PRHLPTW连接到聚己内 酯 (PCL) 纳米电纺丝支架表面 (参见图 7), 置于滑膜间充质干细胞悬液中, 共同培养。 结 果显示: 连接了亲和多肽的 PCL纳米纤维膜相较于连接错配多肽的 PCL纳米纤维膜更有利于 滑膜间充质干细胞的粘附和生长。 (参见图 9a和图 9b )
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则之 内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
序 歹 ij 表
〈110〉 北京大学第三医院
〈120〉 滑膜间充质亲干细胞亲和多肽的氨基酸序列、 筛选方法及应用
〈130〉 11SG1F0320
〈160〉 2
< 170> Patent ln version 3. 4
〈210〉 1
〈211〉 7
〈212〉 PRT
〈213〉 噬菌体(M13 Phage)
〈400〉 1
LTHPRWP 7
〈210〉 2
〈211〉 21
〈212〉 DNA
〈213〉 噬菌体(M13 Phage)
〈400〉 2
CTTACGCATC CTCGTTGGCC T 21

Claims

权 利 要 求 书
1、 一种滑膜间充质亲干细胞亲和多肽氨基酸序列, 其特征在于, 所述氨基酸序列为序列 表中的 SEQ ID NO. 1。
2、 一种如权利要求 1所述的滑膜间充质亲干细胞亲和多肽氨基酸序列的筛选方法, 其特 征在于, 包括以下步骤:
采用噬菌体展示技术分别进行人成纤维细胞的阴性筛选和滑膜间充质干细胞的阳性筛 选; 筛选之后, 提取滑膜间充质干细胞, 裂解细胞, 再提取和滑膜间充质干细胞特异性亲和 的噬菌体 DNA片段, 对其进行测序, 即可获取对滑膜间充质干细胞具有高度亲和性的多肽氨 基酸序列。
3、根据权利要求 2所述的滑膜间充质亲干细胞亲和多肽的筛选方法, 其特征在于, 具体 包括以下步骤:
( 1 ) 人滑膜间充质干细胞以及人成纤维细胞原代培养: 通过人滑膜间充质干细胞的原 代培养并传一代, 获得阳性筛选细胞; 通过人成纤维细胞的原代培养并传十代以上, 获得阴 性筛选细胞;
( 2)阴性筛选: 在阴性筛选细胞中加入噬菌体文库, 去除噬菌体文库中与 P10代 ACL细 胞结合的多肽片段;
( 3) 阳性筛选: 在阳性筛选细胞中加入步骤 (2) 中阴性筛选后得到的噬菌体多肽文库 菌液, 获得阳性筛选后的滑膜间充质干细胞, 该细胞结合了噬菌体文库中与其特异性结合的 亲和多肽片段;
(4) 噬菌体扩增: 提取步骤 (3) 所得滑膜间充质干细胞, 制备细胞裂解液, 对其内的 噬菌体滴度进行扩增;
( 5) 测量扩增后的噬菌体 提取液的滴度, 4°C保存;
以上 (1 ) 〜 (5)步骤重复 4轮, 第 1轮筛选加入噬菌体文库原液, 以后每轮加入前一 轮细胞裂解液扩增后的噬菌体提取液;
(6) 提取每一轮所得的和滑膜间充质干细胞特异性亲和的噬菌体 DNA片段, 进行测序, 筛选出对滑膜间充质干细胞具有高度亲和性的多肽序列: LTHPRWP 。
4、 一种如权利要求 1 所述的滑膜间充质亲干细胞亲和多肽用于修饰植入人体支架的应 用。
5、 一种用如权利要求 1所述的滑膜间充质亲干细胞亲和多肽修饰植入人体支架的方法, 其特征在于, 包括以下步骤: 将选出的滑膜间充质干细胞亲和多肽的 3' C末端, 连接一个半 胱氨酸 (C), 利用该半胱氨酸 (C)残基与聚己内酯 (PCL) 电纺丝膜经氨化后的表面 -NH2共价 耦联, 使得 PCL纳米纤维膜支架具有特异性富集滑膜间充质干细胞的性能。
6、 一种权利要求 5所述的方法, 其特征在于, 包括以下步骤:
1 ) 将 PCL纳米纤维膜置于异丙醇配置的 10%w/v的 1,6 -己二胺中, 37°C, 放置 lh;
2) 通过交联剂 4- (N-马来酰亚胺基甲基)环己烷 -1-羧酸 -3-磺基琥珀酰亚胺酯将 PCL纳 米纤维膜表面的氨基和亲和多肽相连接。
7、 一种权利要求 5所述的方法, 其特征在于, 包括以下步骤:
1 )将 PCL纳米纤维膜修剪成与 24孔板的孔面积相等的圆形, 然后将其放入 24孔板的孔 内, 每孔加入 500 μ 1的 10%w/v的 1, 6 -己二胺 /异丙醇溶液, 37°C, 放置 lh;
2) 去离子水漂洗 3〜5遍, 双蒸水漂洗 3〜5遍, PBS冲洗 3遍;
3) 每孔加入 400 μ 1 的交联剂 4- (Ν-马来酰亚胺基甲基)环己烷 -1-羧酸 -3-磺基琥珀酰 亚胺酯, 室温下放置 lh;
4) PBS冲洗 3遍;
5) 加入 0. lmg/ml的多肽溶液, 每孔 400 μ 1, 4°C过夜;
6) 去离子水漂洗 3遍, -20°C预冻, 真空冻干后 4°C保存。
PCT/CN2011/084337 2011-06-09 2011-12-21 滑膜间充质干细胞亲和多肽、其筛选方法和应用 WO2012167587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110153632 CN102229647B (zh) 2011-06-09 2011-06-09 滑膜间充质干细胞亲和多肽修饰植入人体支架的方法
CN201110153632.8 2011-06-09

Publications (1)

Publication Number Publication Date
WO2012167587A1 true WO2012167587A1 (zh) 2012-12-13

Family

ID=44842261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084337 WO2012167587A1 (zh) 2011-06-09 2011-12-21 滑膜间充质干细胞亲和多肽、其筛选方法和应用

Country Status (2)

Country Link
CN (1) CN102229647B (zh)
WO (1) WO2012167587A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102229647B (zh) * 2011-06-09 2013-02-20 北京大学第三医院 滑膜间充质干细胞亲和多肽修饰植入人体支架的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026218A2 (en) * 2007-08-17 2009-02-26 University Of Illinois Identification and use of peptide inhibitors of protein synthesis
CN102229647A (zh) * 2011-06-09 2011-11-02 北京大学第三医院 滑膜间充质亲干细胞亲和多肽的氨基酸序列、筛选方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2439943T3 (es) * 2005-09-02 2014-01-27 ED. Geistlich Söhne AG für Chemische Industrie Método de reparación de desgarros de menisco

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026218A2 (en) * 2007-08-17 2009-02-26 University Of Illinois Identification and use of peptide inhibitors of protein synthesis
CN102229647A (zh) * 2011-06-09 2011-11-02 北京大学第三医院 滑膜间充质亲干细胞亲和多肽的氨基酸序列、筛选方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDO, W. ET AL.: "Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells.", BIOMATERIALS, vol. 28, no. 36, December 2007 (2007-12-01), pages 5462 - 5470 *
ZHAO, H. ET AL.: "Peptide-binding motif prediction by using phage display library for SasaUBA*0301, a resistance haplotype of MHC class I molecule from Atlantic Salmon (Salmo salar).", MOLECULAR IMMUNOLOGY., vol. 45, no. 6, March 2008 (2008-03-01), pages 1658 - 1664 *

Also Published As

Publication number Publication date
CN102229647A (zh) 2011-11-02
CN102229647B (zh) 2013-02-20

Similar Documents

Publication Publication Date Title
Qiu et al. Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio-and osteogenesis
Yan et al. Enhanced osteogenesis of bone marrow‐derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair
AU2018211308B2 (en) Methods and compositions for in vitro and in vivo chondrogenesis
WO2012167588A1 (zh) 骨髓间充质干细胞亲和多肽的氨基酸序列、筛选方法及应用
Baiguera et al. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering
Ning et al. Preparation and characterization of decellularized tendon slices for tendon tissue engineering
Bhardwaj et al. Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering
Sinthuvanich et al. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior
Qiu et al. Cyclic tension promotes fibroblastic differentiation of human MSCs cultured on collagen‐fibre scaffolds
Wang et al. Self‐assembled peptide‐based hydrogels as scaffolds for proliferation and multi‐differentiation of mesenchymal stem cells
Meng et al. Microfracture combined with functional pig peritoneum-derived acellular matrix for cartilage repair in rabbit models
Li et al. Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits
Shao et al. Surface modification on polycaprolactone electrospun mesh and human decalcified bone scaffold with synovium‐derived mesenchymal stem cells‐affinity peptide for tissue engineering
US20130101635A1 (en) Method of preparing self-assembled extracellular matrices and use of self-assembled extracellular matrices formed by using the method
Lee et al. Injectable gel with synthetic collagen-binding peptide for enhanced osteogenesis in vitro and in vivo
Pan et al. A novel peptide‐modified and gene‐activated biomimetic bone matrix accelerating bone regeneration
Olvera et al. Spatial presentation of tissue-specific extracellular matrix components along electrospun scaffolds for tissue engineering the bone–ligament interface
Liu et al. Immunomodulatory hybrid micro-nanofiber scaffolds enhance vascular regeneration
Gao et al. Directing osteogenic differentiation of BMSCs by cell-secreted decellularized extracellular matrixes from different cell types
Chen et al. Synergistic effects of mechanical stimulation and crimped topography to stimulate natural collagen development for tendon engineering
Niu et al. Comparative study of three types of polymer materials co-cultured with bone marrow mesenchymal stem cells for use as a myocardial patch in cardiomyocyte regeneration
Xie et al. Construction of bioengineered corneal stromal implants using an allogeneic cornea-derived matrix
Bai et al. Bioprinted living tissue constructs with layer-specific, growth factor-loaded microspheres for improved enthesis healing of a rotator cuff
US20220054706A1 (en) Scaffolds from self-assembling tetrapeptides support 3d spreading, osteogenic differentiation and angiogenesis of mesenchymal stem cells
KR101906557B1 (ko) 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867486

Country of ref document: EP

Kind code of ref document: A1