WO2012165918A2 - Resin composition for optical film and optical film using the same - Google Patents

Resin composition for optical film and optical film using the same Download PDF

Info

Publication number
WO2012165918A2
WO2012165918A2 PCT/KR2012/004370 KR2012004370W WO2012165918A2 WO 2012165918 A2 WO2012165918 A2 WO 2012165918A2 KR 2012004370 W KR2012004370 W KR 2012004370W WO 2012165918 A2 WO2012165918 A2 WO 2012165918A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
resin composition
meth
film
acrylate
Prior art date
Application number
PCT/KR2012/004370
Other languages
French (fr)
Korean (ko)
Other versions
WO2012165918A3 (en
Inventor
강병일
한창훈
이대우
서재범
김범석
최은정
김준식
이남정
김수경
성다은
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20120051944A external-priority patent/KR101508038B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2014508304A priority Critical patent/JP2014514611A/en
Priority to US14/009,488 priority patent/US20140046016A1/en
Priority to CN201280017567.9A priority patent/CN103459490B/en
Publication of WO2012165918A2 publication Critical patent/WO2012165918A2/en
Publication of WO2012165918A3 publication Critical patent/WO2012165918A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a resin composition for an optical film and an optical film using the same, and more particularly, to a resin composition for an optical film having a low dimensional change rate due to optical properties, heat resistance and temperature change, and an optical film using the same.
  • the most widely used polymer film for display is a triacetyl cellulose film (TAC), which is used as a polarizer protective film, and the TAC film has a low polarization degree when used for a long time in a high temperature or high humidity atmosphere. There is a problem that the film is separated or the optical properties are degraded.
  • TAC film polystyrene, acrylic such as methyl methacrylate, or polycarbonate-based polymer films having excellent heat resistance have been proposed. These polymer films have an advantage of excellent heat resistance, but when applied to a display device because birefringence occurs during film formation, there is a problem that the optical properties of the display device are lowered by the film birefringence.
  • a method of copolymerizing or blending a monomer or polymer having a positive birefringence with a monomer or a polymer having a negative birefringence as a material for a polymer film having excellent heat resistance and low retardation value has been proposed.
  • Typical examples of these methods include copolymers of benzyl methacrylate and methyl methacrylate.
  • the present invention is to solve the above problems, and provides a resin composition for an optical film and an optical film using the same as well as excellent optical properties and heat resistance, low dimensional change rate due to temperature changes.
  • the present invention includes an alkyl (meth) acrylate unit, a (meth) acrylate unit containing a benzene ring, a (meth) acrylic acid unit as an essential component, and optionally, a unit represented by the following formula (I)
  • a resin composition for an optical film comprising a copolymer further comprising a, wherein the residual monomer content in the resin composition provides a resin composition for an optical film of 2000 ppm or less.
  • X is N or O
  • R 1 and R 2 are each hydrogen, C 1 ⁇ 10 alkyl, C 3 ⁇ 20 cycloalkyl or C 3 ⁇ 20 aryl group.
  • the present invention provides an optical film made of the resin composition for an optical film and a polarizing plate including the optical film as a protective film.
  • the optical film using the resin composition for optical films according to the present invention is not only excellent in optical properties and heat resistance, but also has a low coefficient of thermal expansion and is suitable for use as a polarizing plate protective film.
  • the inventors of the present invention in order to develop a material for an optical film not only excellent in optical properties and heat resistance, but also have a low coefficient of thermal expansion, have been studied.
  • (meth) acryl containing an alkyl (meth) acrylate and a benzene ring When the residual monomer content in the resin composition copolymerized with the rate and the (meth) acrylic acid monomer was adjusted to a specific content, it was found that an optical film having excellent thermal resistance and low thermal expansion coefficient could be formed with a phase difference value close to zero.
  • the present invention has been completed.
  • the resin composition for an optical film of the present invention includes an alkyl (meth) acrylate unit, a (meth) acrylate unit containing a benzene ring, and a (meth) acrylic acid unit as essential components, and is optionally represented by the following Chemical Formula 1 It includes a copolymer containing a unit which becomes.
  • X is N or O
  • R 1 and R 2 are each hydrogen, C 1 ⁇ 10 alkyl, C 3 ⁇ 20 cycloalkyl or C 3 ⁇ 20 aryl group.
  • the alkyl (meth) acrylate means both alkyl acrylate and alkyl methacrylate, but is not limited thereto, in view of optical transparency, compatibility, processability and productivity, It is preferable that carbon number of the alkyl group of alkyl (meth) acrylate is about 1-10, It is more preferable that it is about 1-4 carbon atoms, It is most preferable that it is a methyl group or an ethyl group.
  • the (meth) acrylate containing the benzene ring is to impart a suitable retardation value to the optical film of the present invention and at the same time to impart compatibility between alkyl (meth) acrylate and (meth) acrylic acid, for example Benzyl methacrylate, benzyl acrylate, 1-phenylethyl methacrylate, 2-phenoxyethyl methacrylate, 2-phenylethyl methacrylate, 3-phenylpropyl methacrylate, 3-phenylpropyl acrylate and It may be one or more selected from the group consisting of 2-phenoxyethyl acrylate, but is not limited thereto. Among these, benzyl methacrylate, benzyl acrylate, and the like are particularly preferable, and benzyl methacrylate is most preferable.
  • the (meth) acrylic acid improves heat resistance and serves to lower the coefficient of thermal expansion by introducing a polar group, for example, acrylic acid, methacrylic acid, methylacrylic acid, methylmethacrylic acid, ethylacrylic acid, ethyl methacryl Acid, butylacrylic acid or butyl methacrylic acid, particularly methacrylic acid.
  • a polar group for example, acrylic acid, methacrylic acid, methylacrylic acid, methylmethacrylic acid, ethylacrylic acid, ethyl methacryl Acid, butylacrylic acid or butyl methacrylic acid, particularly methacrylic acid.
  • the unit represented by the formula (1) is to improve the phase difference value and the coefficient of thermal expansion more, for example, glutaric anhydride, glutaric acid imide and the like.
  • glutaric anhydride is especially preferable.
  • the coefficient of thermal expansion of the polymer can be lowered.
  • the coefficient of thermal expansion may be lowered, but birefringence may be exhibited by stretching, which may cause problems in optical properties.
  • the copolymer containing the unit represented by the formula (1) it was shown that the coefficient of thermal expansion can be effectively lowered without adversely affecting the optical properties.
  • the resin composition of the present invention is a ternary copolymer resin composed of an alkyl (meth) acrylate unit, a (meth) acrylate unit containing a benzene ring, and a (meth) acrylic acid unit
  • the alkyl (meth) in the copolymer The content ratio of the acrylate unit, the (meth) acrylate unit containing the benzene ring, and the (meth) acrylic acid unit is preferably 70 to 95: 2 to 10: 3 to 20 by weight ratio. This is because a preferable retardation value, glass transition temperature and coefficient of thermal expansion can be obtained when the content ratio of each component is within the above range.
  • the resin composition of the present invention is a quaternary copolymer resin composed of an alkyl (meth) acrylate unit, a (meth) acrylate unit containing a benzene ring, a (meth) acrylic acid unit and a unit of formula (1)
  • the content ratio of the alkyl (meth) acrylate unit, the (meth) acrylate unit including the benzene ring, the (meth) acrylic acid unit and the unit represented by the formula (1) in the copolymer is 60 to 90: 2 to 10 by weight ratio: It is preferable that it is 3-10: about 5-20. This is because a preferable retardation value, glass transition temperature and coefficient of thermal expansion can be obtained when the content ratio of each component is within the above range.
  • the resin composition of the present invention is characterized in that the content of the unreacted residual monomer in the composition is 2000 ppm or less, preferably 1500 ppm or less, and most preferably 1000 ppm or less.
  • the inventors of the present invention found that when the content of the unreacted residual monomer in the composition exceeds 2000 ppm, the glass transition temperature of the resin composition is lowered, thereby lowering the heat resistance, It has been found that contamination and / or bubbles are likely to occur, thereby degrading optical properties.
  • the extruder vacuum vent portion is easily clogged, and the residual monomers are generally in the monomer or oligomer state. Due to its low thermal stability, bubbles are generated during film formation, making product production difficult. On the other hand, such bubble generation tends to be somewhat alleviated when the film forming temperature is lowered. However, when the film is formed at a low temperature, the pressure in the extruder is increased, so that the ejection is not smooth and the productivity is sharply worsened. There is a problem that the stain is not generated enough does not appear on the film appearance.
  • the content of residual monomers should be kept below a specific content.
  • the content of the residual monomer is 1000ppm or less, there is an advantage that the generation of bubbles significantly during film film formation.
  • the resin composition of the present invention having a low content of residual monomers as described above may be prepared by mixing the monomers of each component and polymerizing them, followed by drying the product for a specific time in a specific temperature range.
  • the method for producing a resin composition of the present invention comprises the steps of: (1) copolymerizing an alkyl (meth) acrylate monomer, a (meth) acrylate monomer containing a benzene ring and a (meth) acrylic acid monomer, and (2) And drying the copolymerization reaction product at 240 ° C. to 270 ° C. for 30 minutes to 2 hours.
  • the copolymerization step may be used a copolymerization method well known in the art, for example, solution polymerization, bulk polymerization, suspension polymerization or emulsion polymerization method, and among these, it is particularly preferred to be made by a bulk polymerization method.
  • a drying step is carried out to control the residual monomer content in the resin product. At this time, it is preferable that drying temperature is about 240 degreeC-270 degreeC, and it is preferable that drying time is about 30 minutes-about 2 hours.
  • drying temperature is less than 240 °C volatilization of the residual monomer does not occur properly, it is difficult to control the content of the residual monomer, and if it exceeds 270 °C, it may cause thermal deformation of the resin composition due to high temperature.
  • the drying time is less than 30 minutes, volatilization of the residual monomer does not occur properly, and it is difficult to control the content of the residual monomer, and if it exceeds 2 hours, thermal deformation, thermal decomposition, etc. of the resin occur and serious productivity decreases. Because it can cause.
  • the discharge amount in the drying step is preferably about 3kg / hr to 6kg / hr based on a 20 liter pilot reactor. If the discharge amount is less than 3 kg / hr, the resin is deteriorated to cause a decrease in transparency, and when the discharge amount is less than 6 kg / hr, a large amount of residue is contained without sufficient drying.
  • the resin composition of the present invention prepared by the above method is about 120 ° C to 500 ° C, preferably 125 ° C to 500 ° C, more preferably 125 ° C to 200 ° C, and most preferably 130 ° C to 200 ° C It has a transition temperature.
  • the weight average molecular weight of the resin composition of the present invention is preferably 50,000 to 500,000, more preferably about 100,000 to 500,000.
  • the resin composition of the present invention has excellent optical properties with a haze value of about 0.1 to 3%, a light transmittance of 90% or more, and a yellow index of 4 or less on an injection specimen having a thickness of 3 mm.
  • the present invention relates to an optical film comprising the resin composition of the present invention.
  • the optical film may be prepared in the form of a film according to a method well known in the art, such as a solution caster method or an extrusion method. In view of economics, it is more preferable to use an extrusion method. In some cases, during the film production process, an additive such as a modifier may be further added within a range that does not impair the physical properties of the film, and a uniaxial or biaxial stretching step may be further performed.
  • the stretching step may be performed in the longitudinal direction (MD) stretching or in the transverse direction (TD) stretching, or both.
  • either stretching may be performed first and then stretched in the other direction, or both directions may be stretched simultaneously.
  • the stretching may be performed in one step or may be performed in multiple steps.
  • longitudinal stretching stretching by the speed difference between the rolls can be performed, and in the case of transverse stretching, a tenter can be used.
  • the starting angle of the tenter is usually within 10 degrees to suppress the bowing phenomenon occurring during the lateral stretching, and to control the angle of the optical axis regularly. Even when the transverse stretching is carried out in multiple stages, the anti-boeing effect can be obtained.
  • the stretching when the glass transition temperature of the resin composition is Tg, it is preferably carried out in the temperature range of (Tg-20 ° C) ⁇ (Tg + 30 ° C), the temperature range is the storage elastic modulus is lowered And thus the temperature ranges from the temperature at which the loss modulus becomes greater than the storage modulus to the temperature at which the orientation of the polymer chain is relaxed and lost.
  • the glass transition temperature of the resin composition can be measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the temperature at the time of the stretching step is more preferably the glass transition temperature of the resin composition.
  • the stretching speed is preferably in the range of 1 to 100 mm / min for the universal testing machine (Zwick Z010) and within the range of 0.1 to 2 m / min for the pilot stretching equipment.
  • the drawing ratio is preferably about 5 to 300%.
  • the optical film of the present invention prepared by the above method has a surface direction phase value (R in ) of about 0 to 10nm, preferably 0 to 5nm at a wavelength of 580nm, thickness direction retardation value (R th ) is About -5 to 10 nm, preferably -5 to 5 nm.
  • the surface direction retardation value refers to a value defined by Equation 1 below
  • the thickness direction retardation value refers to a value defined by Equation 2 below.
  • n x is the refractive index of the direction of the largest refractive index in the plane direction of the film
  • n y is the vertical direction of the n x direction in the plane direction of the film It is refractive index
  • n z is a refractive index of the thickness direction
  • d is the thickness of a film.
  • the thermal expansion coefficient of the optical film containing the resin composition of this invention is about 40-80 ppm / K, Preferably it is about 50-65 ppm / K.
  • the optical film of the present invention has a low coefficient of thermal expansion, curling may be minimized when the optical film of the present invention is used as a polarizing plate protective film.
  • the optical film of this invention is 20-200 micrometers, Preferably it is 40-120 micrometers, It is preferable that transparency is about 0.1 to 3%, and light transmittance is 90% or more. It is because it is suitable to be used as a polarizing plate protective film when the thickness, transparency, and transmittance of a film exist in the said range.
  • the content of the residual monomer in the film of the optical film of this invention is 700 ppm or less.
  • the residual monomer content in the film exceeds 700ppm, not only defects such as fish eyes are likely to occur due to the residual monomer, but also residual monomers may be migrated in the lamination process with a polarizer requiring high temperature (80 to 90 degrees). migration) to degrade the adhesiveness to the polarizer, and may cause defects such as bubbles generated between the polarizer and the optical film.
  • the present invention relates to a polarizer comprising a polarizer and an optical film according to the present invention provided on at least one surface of the polarizer as a protective film.
  • the optical film according to the present invention may be provided on both sides of the polarizer, or may be provided only on one surface.
  • a polarizer protective film well known in the art for example, TAC film, PET film, COP film, PC film, norbornene-based film, etc. Among them, in consideration of economics and the like, TAC film is particularly preferred.
  • the coefficient of thermal expansion of the optical film of the present invention is similar to that of the TAC film, when the TAC film is attached to one side of the polarizer and the optical film of the present invention is attached to the other side, the curl phenomenon caused by the difference in coefficient of thermal expansion is minimized. Can be.
  • the attachment of the polarizer and the optical film and / or protective film of the present invention after coating the adhesive on the surface of the film or polarizer using a roll coater, gravure coater, bar coater, knife coater or capillary coater, etc. ,
  • the protective film and the polarizer may be carried out by laminating by heating with a lamination roll, or laminating by pressing at room temperature.
  • adhesives used in the art for example, polyvinyl alcohol-based adhesives, polyurethane-based adhesives, acrylic adhesives and the like can be used without limitation.
  • the present invention relates to an image display device including the polarizing plate of the present invention.
  • the image display device may be, for example, a liquid crystal display (LCD), a plasma display (PDP), an electroluminescent device (LED), or the like.
  • the physical property evaluation method is as follows.
  • Glass transition temperature (Tg) Measured using a differential scanning calorimeter (DSC) of TA Instrument.
  • Retardation value (Rin, Rth): The film was stretched at the glass transition temperature, and then measured using Axoscan, Axometrics.
  • Coefficient of thermal expansion (ppm / ° C.): The film was biaxially stretched by (stretching ratio substrate), and then measured by TMA, a TA instrument, a linear coefficient of thermal expansion measurement.
  • Yellowness (Yellow Index, ASTM D 1925): The yellowness of the injection specimen with a thickness of 3 mm was measured by a colorimeter.
  • Residual monomer content 5 g of the sample was dissolved in acetone and then precipitated with methanol and measured by GC / FID (device name EQC-0248).
  • the resin was prepared into an optical film using a T-die extruder, and then the retardation value, thermal expansion coefficient and residual monomer content of the prepared optical film were measured.
  • the measurement results are shown in [Table 1] and [Table 2].
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Drying condition Drying temperature (°C) 270 270 240 240 Drying time (hr) 2 1.5 One 2 One Discharge amount (kg / hr) 3.2 3.8 4.4 3.2 4.4 Resin properties Tg (°C) 132 132 131 130 130 YI 4.0 3.4 2.4 2.8 1.4 Residual Monomer (ppm) 400 550 950 1050 1350 Film properties Phase difference (Rin / Rth) 0.1 / -2.1 0.3 / -1.8 0.2 / -1.0 0.2 / -1.4 0.6 / -1.0 Thermal expansion coefficient (ppm / °C) 60 60 60 60 61 Residual monomer (ppm) 200 230 330 430 520
  • Example 10 Drying condition Drying temperature (°C) 240 250 260 270 260 Drying time (hr) 0.5 One One 0.5 1.5 Discharge amount (kg / hr) 5.0 4.4 4.4 5 3.8 Resin properties Tg (°C) 129 130 130 130 130 YI 0.8 1.7 2.0 1.5 3.1 Residual Monomer (ppm) 1950 1250 1050 1450 810 Film properties Phase difference (Rin / Rth) 0.2 / 2.0 0.5 / 1.0 0.3 / -1.1 0.2 / -1.0 0.6 / -1.0 Thermal expansion coefficient (ppm / °C) 64 62 60 62 61 Residual monomer (ppm) 630 500 460 600 520 .
  • the resin was prepared into an optical film using a T-die extruder, and then the retardation value, thermal expansion coefficient and residual monomer content of the prepared optical film were measured.
  • the measurement results are shown in [Table 3].

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention relates to an optical film and a composition for the optical film which includes a copolymer including an alkyl (meth)acrylate unit, a (meth)acrylate unit including a benzene ring, and a (meth)acrylic acid, wherein residual monomer content in the resin composition is lower than 2000ppm.

Description

광학 필름용 수지 조성물 및 이를 이용한 광학 필름Resin composition for optical film and optical film using same
본 발명은 광학 필름용 수지 조성물 및 이를 이용한 광학 필름에 관한 것으로, 보다 구체적으로는, 광학 특성, 내열성 및 온도 변화에 따른 치수 변화율이 낮은 광학 필름용 수지 조성물 및 이를 이용한 광학 필름에 관한 것이다.The present invention relates to a resin composition for an optical film and an optical film using the same, and more particularly, to a resin composition for an optical film having a low dimensional change rate due to optical properties, heat resistance and temperature change, and an optical film using the same.
최근 광학 기술의 발전에 따라 종래의 브라운관(CRT)를 대체하는 플라즈마 디스플레이(PDP), 액정 디스플레이(LCD), 유기 EL 디스플레이(LED) 등과 같은 다양한 디스플레이 기술이 제안되고 시판되고 있다. 한편, 이러한 디스플레이 장치들에는 편광필름, 편광자 보호 필름, 위상차 필름, 도광판, 플라스틱 기판과 같은 다양한 폴리머 필름들이 사용되고 있으며, 이러한 디스플레이용 폴리머 소재는 그 요구 특성이 한층 고도화되고 있는 추세이다.Recently, with the development of optical technology, various display technologies, such as plasma display (PDP), liquid crystal display (LCD), organic EL display (LED), etc., replacing conventional CRTs, have been proposed and marketed. Meanwhile, various polymer films, such as polarizing films, polarizer protective films, retardation films, light guide plates, and plastic substrates, are used in these display devices, and the display polymer material has a trend of being further advanced.
현재 디스플레이용 폴리머 필름으로 가장 많이 사용되고 있는 것은, 편광판 보호 필름 등으로 사용되는 트리아세틸 셀룰로오스 필름(TriAcetyl Cellulose, TAC)이나, TAC 필름은 고온 또는 고습의 분위기 하에서 장시간 사용할 경우, 편광도가 저하되고 편광자와 필름이 분리되거나 광 특성이 저하되는 문제점이 있다. 이러한 문제점을 해결하기 위해서, TAC 필름의 대안으로, 내열성이 우수한 폴리스티렌, 메틸 메타크릴레이트와 같은 아크릴, 또는 폴리카보네이트 계열의 폴리머 필름들이 제안되었다. 이들 폴리머 필름들의 경우, 내열성이 우수하다는 장점은 있으나, 필름 형성 시에 복굴절이 발생하기 때문에 디스플레이 장치에 적용될 경우, 필름 복굴절에 의해 디스플레이 장치의 광학 특성이 저하된다는 문제점이 있다.Currently, the most widely used polymer film for display is a triacetyl cellulose film (TAC), which is used as a polarizer protective film, and the TAC film has a low polarization degree when used for a long time in a high temperature or high humidity atmosphere. There is a problem that the film is separated or the optical properties are degraded. In order to solve this problem, as an alternative to the TAC film, polystyrene, acrylic such as methyl methacrylate, or polycarbonate-based polymer films having excellent heat resistance have been proposed. These polymer films have an advantage of excellent heat resistance, but when applied to a display device because birefringence occurs during film formation, there is a problem that the optical properties of the display device are lowered by the film birefringence.
이와 같은 문제점을 해결하기 위해, 내열성이 우수하면서도 위상차값이 낮은 폴리머 필름용 소재로 양의 복굴절을 갖는 단량체 또는 폴리머와, 음의 복굴절을 갖는 단량체 또는 폴리머를 공중합하거나 블렌드하는 방법이 제안되었다. 이러한 방법 중 대표적인 것으로 벤질 메타크릴레이트와 메틸 메타크릴레이트의 공중합체를 들 수 있다. 그러나 벤질 메타크릴레이트와 메틸 메타크릴레이트의 경우 위상차값이 0에 가까워 광학 특성이 우수하지만, 온도 변화에 따른 치수 변화율, 즉 열팽창계수가 높기 때문에, 편광 필름과 합지한 후에 심하게 휘어지거나 뒤틀리는 컬 현상이 발생한다는 문제점이 있다. 이와 같은 편광판 컬 현상이 발생하면, 편광판에 빛샘 현상이 야기되어 디스플레이의 품질이 떨어질 뿐 아니라, 디스플레이 패널 내의 액정을 손상시킬 수 있기 때문에 개선이 시급한 상황이다.In order to solve such a problem, a method of copolymerizing or blending a monomer or polymer having a positive birefringence with a monomer or a polymer having a negative birefringence as a material for a polymer film having excellent heat resistance and low retardation value has been proposed. Typical examples of these methods include copolymers of benzyl methacrylate and methyl methacrylate. However, in the case of benzyl methacrylate and methyl methacrylate, the retardation value is close to 0, which is excellent in optical properties.However, due to the high dimensional change rate due to temperature change, that is, the coefficient of thermal expansion, the curl phenomenon that is severely bent or warped after laminating with the polarizing film There is a problem that this occurs. When such a polarizing plate curl phenomenon occurs, light leakage occurs in the polarizing plate, and the quality of the display is not only degraded, but also the liquid crystal in the display panel may be damaged.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 광학 특성과 내열성이 우수할 뿐 아니라, 온도 변화에 따른 치수 변화율이 낮은 광학 필름용 수지 조성물 및 이를 이용한 광학 필름을 제공한다.The present invention is to solve the above problems, and provides a resin composition for an optical film and an optical film using the same as well as excellent optical properties and heat resistance, low dimensional change rate due to temperature changes.
일 측면에서, 본 발명은 알킬 (메트)아크릴레이트 단위, 벤젠 고리를 포함하는 (메트)아크릴레이트 단위, (메트)아크릴산 단위를 필수 구성요소로 포함하고, 선택적으로, 하기 화학식 I로 표시되는 단위를 더 포함하는 공중합체를 포함하는 광학 필름용 수지 조성물로, 상기 수지 조성물 내의 잔류 모노머 함량이 2000ppm 이하인 광학 필름용 수지 조성물을 제공한다. In one aspect, the present invention includes an alkyl (meth) acrylate unit, a (meth) acrylate unit containing a benzene ring, a (meth) acrylic acid unit as an essential component, and optionally, a unit represented by the following formula (I) A resin composition for an optical film comprising a copolymer further comprising a, wherein the residual monomer content in the resin composition provides a resin composition for an optical film of 2000 ppm or less.
[화학식 I][Formula I]
[규칙 제26조에 의한 보정 20.09.2012] 
Figure WO-DOC-FIGURE-9
[Revision 20.09.2012 under Rule 26]
Figure WO-DOC-FIGURE-9
상기 화학식 1에서, X는 N 또는 O이며,In Formula 1, X is N or O,
R1 및 R2는 각각 수소, C1~10알킬, C3 ~ 20 시클로알킬 또는 C3 ~20아릴이다.R 1 and R 2 are each hydrogen, C 1 ~ 10 alkyl, C 3 ~ 20 cycloalkyl or C 3 ~ 20 aryl group.
다른 측면에서, 본 발명은 상기 광학 필름용 수지 조성물로 제조된 광학 필름 및 상기 광학 필름을 보호 필름으로 포함하는 편광판을 제공한다.In another aspect, the present invention provides an optical film made of the resin composition for an optical film and a polarizing plate including the optical film as a protective film.
본 발명에 따른 광학 필름용 수지 조성물을 이용한 광학 필름은 광학 특성 및 내열성이 뛰어날 뿐 아니라, 열팽창계수가 낮아, 편광판 보호 필름으로 사용되기에 적합하다.The optical film using the resin composition for optical films according to the present invention is not only excellent in optical properties and heat resistance, but also has a low coefficient of thermal expansion and is suitable for use as a polarizing plate protective film.
이하, 본 발명을 보다 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 발명자들은 광학 특성 및 내열성이 우수할 뿐 아니라, 열팽창계수가 낮은 광학 필름용 재료를 개발하기 위해, 연구를 거듭한 결과, 알킬 (메트)아크릴레이트, 벤젠 고리를 포함하는 (메트)아크릴레이트, (메트)아크릴산 단량체를 공중합한 수지 조성물 내의 잔류 모노머 함량을 특정 함량으로 조절할 경우, 0에 가까운 위상차값을 가지면서 내열성이 우수하고, 열팽창계수가 낮은 광학 필름을 형성할 수 있음을 알아내고, 본 발명을 완성하였다. The inventors of the present invention, in order to develop a material for an optical film not only excellent in optical properties and heat resistance, but also have a low coefficient of thermal expansion, have been studied. As a result, (meth) acryl containing an alkyl (meth) acrylate and a benzene ring When the residual monomer content in the resin composition copolymerized with the rate and the (meth) acrylic acid monomer was adjusted to a specific content, it was found that an optical film having excellent thermal resistance and low thermal expansion coefficient could be formed with a phase difference value close to zero. The present invention has been completed.
본 발명의 광학 필름용 수지 조성물은 알킬 (메트)아크릴레이트 단위, 벤젠 고리를 포함하는 (메트)아크릴레이트 단위, (메트)아크릴산 단위를 필수구성요소로 포함하며, 선택적으로, 하기 화학식 1로 표시되는 단위를 포함하는 공중합체를 포함한다. The resin composition for an optical film of the present invention includes an alkyl (meth) acrylate unit, a (meth) acrylate unit containing a benzene ring, and a (meth) acrylic acid unit as essential components, and is optionally represented by the following Chemical Formula 1 It includes a copolymer containing a unit which becomes.
[화학식 1][Formula 1]
[규칙 제26조에 의한 보정 20.09.2012] 
Figure WO-DOC-FIGURE-22
[Revision 20.09.2012 under Rule 26]
Figure WO-DOC-FIGURE-22
이때, 상기 화학식 1에서, X는 N 또는 O이며, R1 및 R2는 각각 수소, C1~10알킬, C3 ~ 20 시클로알킬 또는 C3 ~20아릴이다.In this case, in Formula 1, X is N or O, R 1 and R 2 are each hydrogen, C 1 ~ 10 alkyl, C 3 ~ 20 cycloalkyl or C 3 ~ 20 aryl group.
본 발명의 수지 조성물에 있어서, 상기 알킬 (메타)아크릴레이트는 알킬 아크릴레이트 및 알킬 메타크릴레이트를 모두 의미하는 것으로, 이로써 한정되는 것은 아니나, 광학적 투명성, 상용성, 가공성 및 생산성을 고려할 때, 상기 알킬 (메타)아크릴레이트의 알킬기의 탄소수는 1 ~ 10 정도인 것이 바람직하며, 탄소수 1 ~ 4 정도인 것이 더 바람직하며, 메틸기 또는 에틸기인 것이 가장 바람직하다. In the resin composition of the present invention, the alkyl (meth) acrylate means both alkyl acrylate and alkyl methacrylate, but is not limited thereto, in view of optical transparency, compatibility, processability and productivity, It is preferable that carbon number of the alkyl group of alkyl (meth) acrylate is about 1-10, It is more preferable that it is about 1-4 carbon atoms, It is most preferable that it is a methyl group or an ethyl group.
한편, 상기 벤젠 고리를 포함하는 (메타)아크릴레이트는 본 발명의 광학 필름에 적절한 위상차값을 부여하는 동시에 알킬 (메타)아크릴레이트와 (메타)아크릴산 간의 상용성을 부여하기 위한 것으로, 예를 들면, 벤질 메타크릴레이트, 벤질 아크릴레이트, 1-페닐에틸 메타크릴레이트, 2-페녹시에틸 메타크릴레이트, 2-페닐에틸 메타크릴레이트, 3-페닐프로필 메타크릴레이트, 3-페닐프로필 아크릴레이트 및 2-페녹시에틸 아크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. 이 중에서도 특히, 벤질 메타크릴레이트, 벤질 아크릴레이트 등이 바람직하며, 벤질 메타크릴레이트인 것이 가장 바람직하다. On the other hand, the (meth) acrylate containing the benzene ring is to impart a suitable retardation value to the optical film of the present invention and at the same time to impart compatibility between alkyl (meth) acrylate and (meth) acrylic acid, for example Benzyl methacrylate, benzyl acrylate, 1-phenylethyl methacrylate, 2-phenoxyethyl methacrylate, 2-phenylethyl methacrylate, 3-phenylpropyl methacrylate, 3-phenylpropyl acrylate and It may be one or more selected from the group consisting of 2-phenoxyethyl acrylate, but is not limited thereto. Among these, benzyl methacrylate, benzyl acrylate, and the like are particularly preferable, and benzyl methacrylate is most preferable.
한편, 상기 (메타)아크릴산은 내열성을 향상시키고, 극성기를 도입하여 열팽창계수를 낮추는 역할을 하는 것으로, 예를 들면, 아크릴산, 메타크릴산, 메틸아크릴산, 메틸메타크릴산, 에틸아크릴산, 에틸메타크릴산, 부틸아크릴산 또는 부틸 메타크릴산일 수 있으며, 특히 메타크릴산인 것이 바람직하다.On the other hand, the (meth) acrylic acid improves heat resistance and serves to lower the coefficient of thermal expansion by introducing a polar group, for example, acrylic acid, methacrylic acid, methylacrylic acid, methylmethacrylic acid, ethylacrylic acid, ethyl methacryl Acid, butylacrylic acid or butyl methacrylic acid, particularly methacrylic acid.
상기 화학식 1로 표시되는 단위는 위상차 값 및 열 팽창계수 특성을 보다 향상시키기 위한 것으로, 예를 들면, 글루타르산 무수물, 글루타르산 이미드 등일 수 있다. 이 중에서도 글루타르산 무수물이 특히 바람직하다. 일반적으로, 고분자 사슬 회전(chain conformation)을 억제하는 벌키한 관능기를 고분자 주쇄에 도입할 경우, 고분자의 열팽창계수를 낮출 수 있다. 그러나, 예를 들면, 스티렌이나 폴리카보네이트와 같이 벌키한 관능기를 포함하는 폴리머들을 사용할 경우, 열팽창계수를 낮출 수는 있으나, 연신에 의해 복굴절성이 발현되어 광학 특성에 문제가 발생할 수 있다. 그러나, 본 발명자들의 연구 결과, 화학식 1로 표시되는 단위가 포함된 공중합체의 경우, 광학 특성에 악영향을 미치지 않으면서 열팽창계수를 효과적으로 낮출 수 있는 것으로 나타났다. The unit represented by the formula (1) is to improve the phase difference value and the coefficient of thermal expansion more, for example, glutaric anhydride, glutaric acid imide and the like. Among these, glutaric anhydride is especially preferable. In general, when a bulky functional group that inhibits polymer chain conformation is introduced into the polymer backbone, the coefficient of thermal expansion of the polymer can be lowered. However, for example, when using polymers containing bulky functional groups such as styrene or polycarbonate, the coefficient of thermal expansion may be lowered, but birefringence may be exhibited by stretching, which may cause problems in optical properties. However, the results of the present inventors, the copolymer containing the unit represented by the formula (1), it was shown that the coefficient of thermal expansion can be effectively lowered without adversely affecting the optical properties.
한편, 본 발명의 수지 조성물이 알킬 (메트)아크릴레이트 단위, 벤젠 고리를 포함하는 (메트)아크릴레이트 단위 및 (메트)아크릴산 단위로 이루어진 3원 공중합체 수지인 경우, 상기 공중합체 내의 알킬 (메트)아크릴레이트 단위, 벤젠 고리를 포함하는 (메트)아크릴레이트 단위 및 (메트)아크릴산 단위의 함량 비율은 중량비로 70~95 : 2~10: 3~20 정도인 것이 바람직하다. 각 성분의 함량 비가 상기 범위 내에 있을 때, 바람직한 위상차값, 유리전이온도 및 열팽창계수를 얻을 수 있기 때문이다.On the other hand, when the resin composition of the present invention is a ternary copolymer resin composed of an alkyl (meth) acrylate unit, a (meth) acrylate unit containing a benzene ring, and a (meth) acrylic acid unit, the alkyl (meth) in the copolymer The content ratio of the acrylate unit, the (meth) acrylate unit containing the benzene ring, and the (meth) acrylic acid unit is preferably 70 to 95: 2 to 10: 3 to 20 by weight ratio. This is because a preferable retardation value, glass transition temperature and coefficient of thermal expansion can be obtained when the content ratio of each component is within the above range.
한편, 본 발명의 수지 조성물이 알킬 (메트)아크릴레이트 단위, 벤젠 고리를 포함하는 (메트)아크릴레이트 단위, (메트)아크릴산 단위 및 화학식 1의 단위로 이루어진 4원 공중합체 수지인 경우에는, 상기 공중합체 내의 알킬 (메트)아크릴레이트 단위, 벤젠 고리를 포함하는 (메트)아크릴레이트 단위, (메트)아크릴산 단위 및 상기 화학식 1로 표시되는 단위의 함량 비율은 중량비로 60~90 : 2~10: 3~10 : 5~20 정도인 것이 바람직하다. 각 성분의 함량 비가 상기 범위 내에 있을 때, 바람직한 위상차값, 유리전이온도 및 열팽창계수를 얻을 수 있기 때문이다.On the other hand, when the resin composition of the present invention is a quaternary copolymer resin composed of an alkyl (meth) acrylate unit, a (meth) acrylate unit containing a benzene ring, a (meth) acrylic acid unit and a unit of formula (1), The content ratio of the alkyl (meth) acrylate unit, the (meth) acrylate unit including the benzene ring, the (meth) acrylic acid unit and the unit represented by the formula (1) in the copolymer is 60 to 90: 2 to 10 by weight ratio: It is preferable that it is 3-10: about 5-20. This is because a preferable retardation value, glass transition temperature and coefficient of thermal expansion can be obtained when the content ratio of each component is within the above range.
또한, 본 발명의 상기 수지 조성물은 조성물 내의 미반응 잔류 모노머의 함량이 2000ppm 이하, 바람직하게는 1500ppm 이하, 가장 바람직하게는 1000ppm 이하인 것을 특징으로 한다. 본 발명의 발명자들은 연구 결과, 조성물 내의 미반응 잔류 모노머의 함량이 2000ppm을 초과할 경우, 수지 조성물의 유리전이온도가 낮아져 내열성이 저하될 뿐 아니라, 필름 제조 시에 필름 외관의 잔류물 흡착으로 인한 오염 및/또는 기포가 발생하기 쉽고, 그로 인해 광학 특성이 열화됨을 알아내었다. 보다 구체적으로 설명하자면, 용융 압출 방식으로 제조되는 필름에 있어서, 원료인 수지 조성물 내의 잔류 모노머의 함량이 높으면 압출기 진공 벤트(vent) 부분이 쉽게 막히는 문제점이 있으며, 일반적으로 잔류 모노머들은 모노머 또는 올리고머 상태로 존재하기 때문에 열 안정성이 낮아 필름 제막시에 기포를 발생시켜 제품 생산을 어렵게 한다. 한편, 이와 같은 기포 발생은 제막 온도를 낮추면 다소 완화되는 경향이 있으나, 낮은 온도에서 필름을 제막할 경우 압출기 내의 압력이 높아져 토출이 원활하지 않고 생산성이 급격히 나빠지는 문제가 발생할 뿐 아니라, 잔류 모노머가 충분히 제거되지 않아 필름 외관에 얼룩이 발생하는 문제점이 있다. In addition, the resin composition of the present invention is characterized in that the content of the unreacted residual monomer in the composition is 2000 ppm or less, preferably 1500 ppm or less, and most preferably 1000 ppm or less. The inventors of the present invention found that when the content of the unreacted residual monomer in the composition exceeds 2000 ppm, the glass transition temperature of the resin composition is lowered, thereby lowering the heat resistance, It has been found that contamination and / or bubbles are likely to occur, thereby degrading optical properties. More specifically, in the film produced by the melt extrusion method, when the content of the residual monomer in the resin composition as a raw material is high, there is a problem that the extruder vacuum vent portion is easily clogged, and the residual monomers are generally in the monomer or oligomer state. Due to its low thermal stability, bubbles are generated during film formation, making product production difficult. On the other hand, such bubble generation tends to be somewhat alleviated when the film forming temperature is lowered. However, when the film is formed at a low temperature, the pressure in the extruder is increased, so that the ejection is not smooth and the productivity is sharply worsened. There is a problem that the stain is not generated enough does not appear on the film appearance.
따라서, 우수한 광학 특성, 즉, 0에 가까운 위상차값을 가지면서, 내열성이 좋고, 열팽창계수를 낮게 유지하기 위해서는 잔류 모노머의 함량을 특정 함량 이하로 유지하여야 한다. 특히, 잔류 모노머의 함량이 1000ppm 이하일 경우, 필름 제막 시에 기포 발생이 현저하게 줄어드는 장점이 있다. Therefore, in order to maintain excellent optical properties, i.e., a phase difference value close to zero, good heat resistance, and a low coefficient of thermal expansion, the content of residual monomers should be kept below a specific content. In particular, when the content of the residual monomer is 1000ppm or less, there is an advantage that the generation of bubbles significantly during film film formation.
한편, 상기와 같이 잔류 모노머의 함량이 낮은 본 발명의 수지 조성물은, 각 성분의 단량체들을 혼합하여 중합한 후에, 그 생성물을 특정 온도 범위에서 특정 시간동안 건조시키는 단계를 수행함으로써 제조할 수 있다. 보다 구체적으로는, 본 발명의 수지 조성물 제조 방법은, (1)알킬 (메트)아크릴레이트 단량체, 벤젠 고리를 포함하는 (메트)아크릴레이트 단량체 및 (메트)아크릴산 단량체를 공중합하는 단계 및 (2) 상기 공중합 반응 생성물을 240℃~270℃에서 30분 내지 2시간 동안 건조시키는 단계를 포함한다. 이때, 상기 공중합 단계는 당해 기술 분야에 잘 알려진 공중합법, 예를 들면, 용액 중합, 괴상 중합, 현탁 중합 또는 유화 중합법 등이 사용될 수 있으며, 이 중에서도 특히 괴상 중합법에 의해 이루어지는 것이 바람직하다. 공중합 반응이 완료되면, 수지 생성물 내의 잔류 모노머 함량을 조절하기 위한 건조 단계를 실시한다. 이때 건조 온도는 240℃~270℃ 정도인 것이 바람직하며, 건조 시간은 30분 내지 2시간 정도인 것이 바람직하다. 건조 온도가 240℃ 미만이면 잔류 모노머의 휘발이 제대로 일어나지 않아, 잔류 모노머의 함량을 조절하기가 어렵고, 270℃를 초과할 경우, 고온으로 인해 수지 조성물의 열 변형을 유발할 수 있기 때문이다. 또한, 건조 시간이 30분 미만이면, 잔류 모노머의 휘발이 제대로 일어나지 않아, 잔류 모노머의 함량을 조절하기가 어렵고, 2시간을 초과할 경우에는 수지의 열변형, 열분해 등이 발생하여 생산성의 심각한 저하를 유발할 수 있기 때문이다.Meanwhile, the resin composition of the present invention having a low content of residual monomers as described above may be prepared by mixing the monomers of each component and polymerizing them, followed by drying the product for a specific time in a specific temperature range. More specifically, the method for producing a resin composition of the present invention comprises the steps of: (1) copolymerizing an alkyl (meth) acrylate monomer, a (meth) acrylate monomer containing a benzene ring and a (meth) acrylic acid monomer, and (2) And drying the copolymerization reaction product at 240 ° C. to 270 ° C. for 30 minutes to 2 hours. In this case, the copolymerization step may be used a copolymerization method well known in the art, for example, solution polymerization, bulk polymerization, suspension polymerization or emulsion polymerization method, and among these, it is particularly preferred to be made by a bulk polymerization method. Once the copolymerization reaction is complete, a drying step is carried out to control the residual monomer content in the resin product. At this time, it is preferable that drying temperature is about 240 degreeC-270 degreeC, and it is preferable that drying time is about 30 minutes-about 2 hours. If the drying temperature is less than 240 ℃ volatilization of the residual monomer does not occur properly, it is difficult to control the content of the residual monomer, and if it exceeds 270 ℃, it may cause thermal deformation of the resin composition due to high temperature. In addition, if the drying time is less than 30 minutes, volatilization of the residual monomer does not occur properly, and it is difficult to control the content of the residual monomer, and if it exceeds 2 hours, thermal deformation, thermal decomposition, etc. of the resin occur and serious productivity decreases. Because it can cause.
한편, 상기 건조 단계에서의 토출량은 20리터 파일로트(pilot) 반응기를 기준으로 3kg/hr 내지 6kg/hr 정도인 것이 바람직하다. 토출량이 3kg/hr 미만인 경우에는 수지의 열화가 일어나 투명성이 저하되며, 6kg/hr를 초과하면 충분한 건조가 되지 않고 잔류물이 많이 포함되게 된다. On the other hand, the discharge amount in the drying step is preferably about 3kg / hr to 6kg / hr based on a 20 liter pilot reactor. If the discharge amount is less than 3 kg / hr, the resin is deteriorated to cause a decrease in transparency, and when the discharge amount is less than 6 kg / hr, a large amount of residue is contained without sufficient drying.
상기와 같은 방법으로 제조된 본 발명의 수지 조성물은 120℃ 내지 500℃정도, 바람직하게는 125℃ 내지 500℃, 더 바람직하게는 125℃ 내지 200℃, 가장 바람직하게는 130℃ 내지 200℃의 유리전이온도를 갖는다. 또한, 가공성, 내열성 및 생산성 측면에서 본 발명의 수지 조성물의 중량평균분자량은 5만 내지 50만, 더 바람직하게는 10만 내지 50만 정도인 것이 좋다.The resin composition of the present invention prepared by the above method is about 120 ° C to 500 ° C, preferably 125 ° C to 500 ° C, more preferably 125 ° C to 200 ° C, and most preferably 130 ° C to 200 ° C It has a transition temperature. In addition, in terms of processability, heat resistance and productivity, the weight average molecular weight of the resin composition of the present invention is preferably 50,000 to 500,000, more preferably about 100,000 to 500,000.
또한, 본 발명의 수지 조성물은 헤이즈 값이 0.1 내지 3%정도, 광선 투과율은 90% 이상, 두께 3mm의 사출 시편에서의 황색도(Yellow index)가 4 이하로, 우수한 광학 특성을 갖는다. In addition, the resin composition of the present invention has excellent optical properties with a haze value of about 0.1 to 3%, a light transmittance of 90% or more, and a yellow index of 4 or less on an injection specimen having a thickness of 3 mm.
다른 측면에서 본 발명은 상기 본 발명의 수지 조성물을 포함하는 광학 필름에 관한 것이다. In another aspect, the present invention relates to an optical film comprising the resin composition of the present invention.
상기 광학 필름은 상기 수지 조성물을 용액 캐스터법이나 압출법과 같은 당해 기술 분야에 잘 알려진 방법에 따라 필름 형태로 제조할 수 있다. 경제적인 면을 고려할 때 압출법을 사용하는 것이 더 바람직하다. 경우에 따라 필름 제조 공정 시에, 필름의 물성을 해하지 않는 범위 내에서 개량제와 같은 첨가제를 추가로 첨가할 수 있으며, 일축 또는 이축 연신 단계가 추가로 수행될 수 있다. The optical film may be prepared in the form of a film according to a method well known in the art, such as a solution caster method or an extrusion method. In view of economics, it is more preferable to use an extrusion method. In some cases, during the film production process, an additive such as a modifier may be further added within a range that does not impair the physical properties of the film, and a uniaxial or biaxial stretching step may be further performed.
연신 공정은 종 방향(MD) 연신, 횡 방향(TD) 연신을 각각 수행할 수도 있고, 모두 수행할 수도 있다. 또한, 종 방향 연신과 횡 방향 연신을 모두 수행하는 경우에, 어느 한 쪽을 먼저 연신한 후에 다른 방향으로 연신할 수도 있고, 두 방향을 동시에 연신할 수도 있다. 또한, 상기 연신은 한 단계로 수행될 수도 있고, 다단계에 걸쳐 이루어질 수도 있다. 종 방향 연신의 경우, 롤 사이의 속도 차에 의한 연신을 수행할 수 있으며, 횡 방향 연신의 경우 텐타를 사용할 수 있다. 텐타의 레일 개시각은 통상 10도 이내로 하여, 횡 방향 연신 시에 생기는 보잉(Bowing) 현상을 억제하고 광학 축의 각도를 규칙적으로 제어한다. 횡 방향 연신을 다 단계로 수행할 경우에도 보잉 억제 효과를 얻을 수 있다. The stretching step may be performed in the longitudinal direction (MD) stretching or in the transverse direction (TD) stretching, or both. In addition, in the case where both longitudinal stretching and transverse stretching are performed, either stretching may be performed first and then stretched in the other direction, or both directions may be stretched simultaneously. In addition, the stretching may be performed in one step or may be performed in multiple steps. In the case of longitudinal stretching, stretching by the speed difference between the rolls can be performed, and in the case of transverse stretching, a tenter can be used. The starting angle of the tenter is usually within 10 degrees to suppress the bowing phenomenon occurring during the lateral stretching, and to control the angle of the optical axis regularly. Even when the transverse stretching is carried out in multiple stages, the anti-boeing effect can be obtained.
한편, 상기 연신은, 상기 수지 조성물의 유리전이온도를 Tg라 할 때, (Tg-20℃) ~ (Tg+30℃)의 온도범위에서 수행되는 것이 바람직하며, 상기 온도 범위는 저장 탄성율이 저하되기 시작하고, 이에 따라 손실 탄성율이 저장 탄성율보다 커지게 되는 온도부터, 고분자 사슬의 배향이 완화되어 소실되는 온도까지의 영역을 가리키는 것이다. 수지 조성물의 유리전이온도는 시차주사형 열량계(DSC)에 의해 측정될 수 있다. 상기 연신 공정시의 온도는 수지 조성물의 유리전이온도인 것이 더 바람직하다. On the other hand, the stretching, when the glass transition temperature of the resin composition is Tg, it is preferably carried out in the temperature range of (Tg-20 ° C) ~ (Tg + 30 ° C), the temperature range is the storage elastic modulus is lowered And thus the temperature ranges from the temperature at which the loss modulus becomes greater than the storage modulus to the temperature at which the orientation of the polymer chain is relaxed and lost. The glass transition temperature of the resin composition can be measured by a differential scanning calorimeter (DSC). The temperature at the time of the stretching step is more preferably the glass transition temperature of the resin composition.
연신 속도는 소형 연신기(universal testing machine, Zwick Z010)의 경우는 1 내지 100mm/min의 범위 내에서, 그리고 파일로트 연신 장비의 경우는 0.1 내지 2m/min의 범위 내에서 연신 조작을 행하는 것이 바람직하며, 연신 배율은 5 내지 300% 정도인 것이 바람직하다.The stretching speed is preferably in the range of 1 to 100 mm / min for the universal testing machine (Zwick Z010) and within the range of 0.1 to 2 m / min for the pilot stretching equipment. The drawing ratio is preferably about 5 to 300%.
한편, 상기와 같은 방법으로 제조된 본 발명의 광학 필름은 파장 580nm에서 면 방향 위상값(Rin)이 0 내지 10nm 정도, 바람직하게는 0 내지 5nm 정도이고, 두께 방향 위상차값(Rth)이 -5 내지 10nm 정도, 바람직하게는 -5 ~ 5nm 이다. 여기서, 상기 면 방향 위상차값은 하기 수학식 1로 정의된 값을 말하며, 두께 방향 위상차값은 하기 수학식 2로 정의된 값을 말한다.On the other hand, the optical film of the present invention prepared by the above method has a surface direction phase value (R in ) of about 0 to 10nm, preferably 0 to 5nm at a wavelength of 580nm, thickness direction retardation value (R th ) is About -5 to 10 nm, preferably -5 to 5 nm. Here, the surface direction retardation value refers to a value defined by Equation 1 below, and the thickness direction retardation value refers to a value defined by Equation 2 below.
[수학식 1][Equation 1]
Rin=(nx-ny)×dR in = (n x -n y ) × d
[수학식 2][Equation 2]
Rth=(nz-ny)×dR th = (n z -n y ) × d
상기 [수학식 1] 및 [수학식 2]에서, nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고, ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며, nz는 두께 방향의 굴절율이고, d는 필름의 두께이다.In [Equation 1] and [Equation 2], n x is the refractive index of the direction of the largest refractive index in the plane direction of the film, n y is the vertical direction of the n x direction in the plane direction of the film It is refractive index, n z is a refractive index of the thickness direction, d is the thickness of a film.
또한, 본 발명의 수지 조성물을 포함하는 광학 필름의 열팽창계수는 40 ~ 80ppm/K 정도, 바람직하게는, 50 ~ 65ppm/K 정도이다. 이와 같이, 본 발명의 광학 필름은 열팽창계수가 낮기 때문에, 본 발명의 광학 필름을 편광판 보호 필름으로 사용할 경우 컬 발생을 최소화할 수 있다.Moreover, the thermal expansion coefficient of the optical film containing the resin composition of this invention is about 40-80 ppm / K, Preferably it is about 50-65 ppm / K. As such, since the optical film of the present invention has a low coefficient of thermal expansion, curling may be minimized when the optical film of the present invention is used as a polarizing plate protective film.
또한, 본 발명의 광학 필름은 그 두께가 20 ~ 200㎛, 바람직하게는 40 ~ 120㎛이며, 투명도는 0.1 내지 3% 정도이며, 광 투과도가 90% 이상인 것이 바람직하다. 필름의 두께, 투명도 및 투과도가 상기 범위 내일 때 편광판 보호 필름으로 사용되기 적합하기 때문이다. Moreover, the optical film of this invention is 20-200 micrometers, Preferably it is 40-120 micrometers, It is preferable that transparency is about 0.1 to 3%, and light transmittance is 90% or more. It is because it is suitable to be used as a polarizing plate protective film when the thickness, transparency, and transmittance of a film exist in the said range.
또한, 본 발명의 광학 필름은 그 필름 내의 잔류 모노머의 함량이 700ppm이하인 것이 바람직하다. 필름 내의 잔류 모노머 함량이 700ppm을 초과할 경우, 잔류 모노머로 인해 피쉬 아이 등의 결점이 발생하기 쉬울 뿐 아니라, 고온(80 ~90도)이 요구되는 편광자와의 합지 공정에서 잔류 모노머들이 미그레이션(migration)되어 편광자와의 접착성을 저하시키고, 편광자와 광학 필름 사이에 기포가 발생하는 등의 불량을 발생시킬 수 있다. Moreover, it is preferable that the content of the residual monomer in the film of the optical film of this invention is 700 ppm or less. When the residual monomer content in the film exceeds 700ppm, not only defects such as fish eyes are likely to occur due to the residual monomer, but also residual monomers may be migrated in the lamination process with a polarizer requiring high temperature (80 to 90 degrees). migration) to degrade the adhesiveness to the polarizer, and may cause defects such as bubbles generated between the polarizer and the optical film.
또 다른 측면에서 본 발명은 편광자 및 상기 편광자의 적어도 일면에 보호 필름으로 구비된 본 발명에 따른 광학 필름을 포함하는 편광판에 관한 것이다. 본 발명에 따른 광학 필름은 편광자의 양면에 구비될 수도 있고, 일면에만 구비될 수도 있다. 본 발명의 광학 필름이 편광자의 일면에 구비될 경우, 다른 한 면에는, 당해 기술 분야에 잘 알려진 편광자 보호 필름, 예를 들면, TAC 필름, PET 필름, COP필름, PC 필름, 노보넨계 필름 등이 구비될 수 있으며, 이 중에서도 경제성 등을 고려할 때, TAC 필름이 특히 바람직하다. 본 발명의 광학 필름은 열팽창계수가 TAC 필름과 유사하기 때문에, 편광자 일면에 TAC 필름이 부착되고, 다른 면에 본원 발명의 광학 필름이 부착되는 경우, 열팽창계수 차이로 인해 발생하는 컬 현상을 최소화할 수 있다. In another aspect, the present invention relates to a polarizer comprising a polarizer and an optical film according to the present invention provided on at least one surface of the polarizer as a protective film. The optical film according to the present invention may be provided on both sides of the polarizer, or may be provided only on one surface. When the optical film of the present invention is provided on one side of the polarizer, on the other side, a polarizer protective film well known in the art, for example, TAC film, PET film, COP film, PC film, norbornene-based film, etc. Among them, in consideration of economics and the like, TAC film is particularly preferred. Since the coefficient of thermal expansion of the optical film of the present invention is similar to that of the TAC film, when the TAC film is attached to one side of the polarizer and the optical film of the present invention is attached to the other side, the curl phenomenon caused by the difference in coefficient of thermal expansion is minimized. Can be.
한편, 상기 편광자와 본 발명의 광학 필름 및/또는 보호 필름의 부착은, 롤 코터, 그라비어 코터, 바 코터, 나이프 코터 또는 캐필러리 코터 등을 사용하여 필름 또는 편광자의 표면에 접착제를 코팅한 후, 보호 필름과 편광자를 합지 롤로 가열 합지하거나, 상온 압착하여 합지하는 방법에 의해 수행될 수 있다. 한편, 상기 접착제로는 당해 기술 분야에서 사용되는 접착제들, 예를 들면, 폴리비닐알코올계 접착제, 폴리우레탄계 접착제, 아크릴계 접착제 등이 제한 없이 사용될 수 있다. On the other hand, the attachment of the polarizer and the optical film and / or protective film of the present invention, after coating the adhesive on the surface of the film or polarizer using a roll coater, gravure coater, bar coater, knife coater or capillary coater, etc. , The protective film and the polarizer may be carried out by laminating by heating with a lamination roll, or laminating by pressing at room temperature. On the other hand, as the adhesive, adhesives used in the art, for example, polyvinyl alcohol-based adhesives, polyurethane-based adhesives, acrylic adhesives and the like can be used without limitation.
또 다른 측면에서 본 발명은 상기 본 발명의 편광판이 포함된 화상표시장치에 관한 것이다. 이때 상기 화상표시장치는, 예를 들면, 액정표시장치(LCD), 플라즈마 디스플레이(PDP), 전계발광장치(LED) 등일 수 있다.In another aspect, the present invention relates to an image display device including the polarizing plate of the present invention. In this case, the image display device may be, for example, a liquid crystal display (LCD), a plasma display (PDP), an electroluminescent device (LED), or the like.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시에는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to specific examples. The following examples are merely examples to help understanding of the present invention, but the scope of the present invention is not limited thereto.
본 발명에 있어서, 물성 평가 방법은 하기와 같다.In the present invention, the physical property evaluation method is as follows.
1. 유리전이온도(Tg): TA Instrument사의 시차주사열량체(DSC)를 이용하여 측정하였다.1. Glass transition temperature (Tg): Measured using a differential scanning calorimeter (DSC) of TA Instrument.
2. 위상차값(Rin, Rth): 필름을 유리전이온도에서 연신한 후, Axometrics 사의 Axoscan을 사용하여 측정하였다.2. Retardation value (Rin, Rth): The film was stretched at the glass transition temperature, and then measured using Axoscan, Axometrics.
3. 열팽창계수(ppm/℃): 필름을 (연신 배율 기재)으로 이축 연신한 후, 선형 열팽창계수 측정 장치인 TA instrument사의 TMA로 측정하였다.3. Coefficient of thermal expansion (ppm / ° C.): The film was biaxially stretched by (stretching ratio substrate), and then measured by TMA, a TA instrument, a linear coefficient of thermal expansion measurement.
4. 황색도(Yellow Index, ASTM D 1925): 두께 3mm의 사출 시편의 황색도를 색차계로 측정하였다. 4. Yellowness (Yellow Index, ASTM D 1925): The yellowness of the injection specimen with a thickness of 3 mm was measured by a colorimeter.
5. 잔류 모노머 함량: 시료 5g을 아세톤에 용해시킨 다음, 메탄올로 침전시켜 GC/FID(기기명 EQC-0248)로 측정하였다.5. Residual monomer content: 5 g of the sample was dissolved in acetone and then precipitated with methanol and measured by GC / FID (device name EQC-0248).
<실시예 1 ~ 10><Examples 1 to 10>
메틸 메타크릴레이트 단량체 85 중량부, 메타크릴산 단량체 10 중량부, 벤질 메타크릴레이트 단량체 5 중량부를 중합 용매인 톨루엔에 혼합한 후, 중합 개시제, 산화 방지제 및 분자량 조절제를 첨가한 후, 연속 괴상 중합법으로 중합하였다. 그런 다음, 상기 중합 반응에 의해 생성된 생성물을 건조 반응기에서 하기 [표 1] 및 [표 2]에 기재된 온도, 시간 및 토출량으로 건조시켜 수지 조성물을 제조하였다. 제조된 수지의 유리전이온도, 잔류 모노머 함량 및 황색도를 측정하여 [표 1] 및 [표 2]에 나타내었다. After mixing 85 weight part of methyl methacrylate monomers, 10 weight part of methacrylic acid monomers, and 5 weight part of benzyl methacrylate monomers with toluene which is a polymerization solvent, after adding a polymerization initiator, antioxidant, and a molecular weight modifier, continuous block polymerization is carried out. Polymerized by the method. Then, the product produced by the polymerization reaction was dried in a drying reactor at the temperature, time and discharge amount shown in the following [Table 1] and [Table 2] to prepare a resin composition. The glass transition temperature, residual monomer content and yellowness of the prepared resin were measured and shown in [Table 1] and [Table 2].
그런 다음, 상기 수지를 T-다이 압출기를 이용하여 광학 필름으로 제조한 다음, 제조된 광학 필름의 위상차값, 열팽창계수 및 잔류 모노머 함량을 측정하였다. 측정 결과는 [표 1] 및 [표 2]에 도시하였다.Then, the resin was prepared into an optical film using a T-die extruder, and then the retardation value, thermal expansion coefficient and residual monomer content of the prepared optical film were measured. The measurement results are shown in [Table 1] and [Table 2].
표 1
실시예1 실시예2 실시예3 실시예4 실시예5
건조조건 건조온도(℃) 270 270 270 240 240
건조시간(hr) 2 1.5 1 2 1
토출량(kg/hr) 3.2 3.8 4.4 3.2 4.4
수지 물성 Tg(℃) 132 132 131 130 130
YI 4.0 3.4 2.4 2.8 1.4
잔류모노머(ppm) 400 550 950 1050 1350
필름 물성 위상차(Rin/Rth) 0.1/-2.1 0.3/-1.8 0.2/-1.0 0.2/-1.4 0.6/-1.0
열팽창계수(ppm/℃) 60 60 60 60 61
잔류 모노머(ppm) 200 230 330 430 520
Table 1
Example 1 Example 2 Example 3 Example 4 Example 5
Drying condition Drying temperature (℃) 270 270 270 240 240
Drying time (hr) 2 1.5 One 2 One
Discharge amount (kg / hr) 3.2 3.8 4.4 3.2 4.4
Resin properties Tg (℃) 132 132 131 130 130
YI 4.0 3.4 2.4 2.8 1.4
Residual Monomer (ppm) 400 550 950 1050 1350
Film properties Phase difference (Rin / Rth) 0.1 / -2.1 0.3 / -1.8 0.2 / -1.0 0.2 / -1.4 0.6 / -1.0
Thermal expansion coefficient (ppm / ℃) 60 60 60 60 61
Residual monomer (ppm) 200 230 330 430 520
표 2
실시예 6 실시예7 실시예8 실시예9 실시예 10
건조조건 건조온도(℃) 240 250 260 270 260
건조시간(hr) 0.5 1 1 0.5 1.5
토출량(kg/hr) 5.0 4.4 4.4 5 3.8
수지 물성 Tg(℃) 129 130 130 130 130
YI 0.8 1.7 2.0 1.5 3.1
잔류모노머(ppm) 1950 1250 1050 1450 810
필름 물성 위상차(Rin/Rth) 0.2/2.0 0.5/1.0 0.3/-1.1 0.2/-1.0 0.6/-1.0
열팽창계수(ppm/℃) 64 62 60 62 61
잔류 모노머(ppm) 630 500 460 600 520
TABLE 2
Example 6 Example 7 Example 8 Example 9 Example 10
Drying condition Drying temperature (℃) 240 250 260 270 260
Drying time (hr) 0.5 One One 0.5 1.5
Discharge amount (kg / hr) 5.0 4.4 4.4 5 3.8
Resin properties Tg (℃) 129 130 130 130 130
YI 0.8 1.7 2.0 1.5 3.1
Residual Monomer (ppm) 1950 1250 1050 1450 810
Film properties Phase difference (Rin / Rth) 0.2 / 2.0 0.5 / 1.0 0.3 / -1.1 0.2 / -1.0 0.6 / -1.0
Thermal expansion coefficient (ppm / ℃) 64 62 60 62 61
Residual monomer (ppm) 630 500 460 600 520
<비교예 1 ~ 6><Comparative Examples 1 to 6>
메틸 메타크릴레이트 단량체 85 중량부, 메타크릴산 단량체 10 중량부, 벤질 메타크릴레이트 단량체 5 중량부를 중합 용매인 톨루엔에 혼합한 후, 중합 개시제, 산화 방지제 및 분자량 조절제를 첨가한 후, 연속괴상 중합법으로 중합하였다. 그런 다음, 상기 중합 반응에 의해 생성된 생성물을 건조 반응기에서 하기 [표 3]에 기재된 온도, 시간 및 토출량으로 건조시켜 수지 조성물을 제조하였다. 제조된 수지의 유리전이온도, 잔류 모노머 함량 및 황색도를 측정하여 [표 3]에 나타내었다. After mixing 85 weight part of methyl methacrylate monomers, 10 weight part of methacrylic acid monomers, and 5 weight part of benzyl methacrylate monomers with toluene which is a polymerization solvent, after adding a polymerization initiator, antioxidant, and a molecular weight modifier, continuous block polymerization is carried out. Polymerized by the method. Then, the product produced by the polymerization reaction was dried in a drying reactor at the temperature, time and discharge amount shown in the following [Table 3] to prepare a resin composition. The glass transition temperature, residual monomer content and yellowness of the prepared resin were measured and shown in [Table 3].
그런 다음, 상기 수지를 T-다이 압출기를 이용하여 광학 필름으로 제조한 다음, 제조된 광학 필름의 위상차값, 열팽창계수 및 잔류 모노머 함량을 측정하였다. 측정 결과는 [표 3]에 도시하였다.Then, the resin was prepared into an optical film using a T-die extruder, and then the retardation value, thermal expansion coefficient and residual monomer content of the prepared optical film were measured. The measurement results are shown in [Table 3].
표 3
비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 비교예6
건조조건 건조온도(℃) 270 240 250 270 280 230
건조시간(hr) 2.5 0.3 3.0 3.0 2.0 0.3
토출량(kg/hr) 2.3 5.3 5.3 1.6 3.2 5.3
수지 물성 Tg(℃) 130 117 126 118 114 111
YI 6.4 0.4 4.6 8.0 8.5 1.2
잔류모노머(ppm) 2850 3750 3450 4300 8310 7250
필름 물성 위상차(Rin/Rth) 2.2/-3.0 2.8/4.0 1.4/-3.4 0.2/-6.0 0.6/-8.1 0.4/1.4
열팽창계수(ppm/℃) 69 85 64 65 93 88
잔류 모노머(ppm) 1380 1980 1960 2010 3130 3940
TABLE 3
Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6
Drying condition Drying temperature (℃) 270 240 250 270 280 230
Drying time (hr) 2.5 0.3 3.0 3.0 2.0 0.3
Discharge amount (kg / hr) 2.3 5.3 5.3 1.6 3.2 5.3
Resin properties Tg (℃) 130 117 126 118 114 111
YI 6.4 0.4 4.6 8.0 8.5 1.2
Residual Monomer (ppm) 2850 3750 3450 4300 8310 7250
Film properties Phase difference (Rin / Rth) 2.2 / -3.0 2.8 / 4.0 1.4 / -3.4 0.2 / -6.0 0.6 / -8.1 0.4 / 1.4
Thermal expansion coefficient (ppm / ℃) 69 85 64 65 93 88
Residual monomer (ppm) 1380 1980 1960 2010 3130 3940
상기 [표 1] ~ [표 3]를 통해, 수지 조성물 내의 잔류 모노머의 함량이 2000ppm을 초과할 경우, 내열성, 황색도 및 열팽창계수 중 어느 하나의 특성이 떨어짐을 알 수 있다. 또한, 건조온도가 240도 미만이거나, 체류 시간이 짧을 경우, 잔류 모노머의 함량이 높아지고, 건조 온도가 270도를 초과하거나, 체류시간이 길 경우, 유리전이온도, 열팽창계수 및 엘로우 인덱스 특성이 떨어짐을 알 수 있다.[Table 1] to [Table 3], when the content of the residual monomer in the resin composition exceeds 2000ppm, it can be seen that the characteristics of any one of the heat resistance, yellowness and coefficient of thermal expansion is inferior. In addition, if the drying temperature is less than 240 degrees, or the residence time is short, the content of the residual monomer is high, if the drying temperature exceeds 270 degrees, or the residence time is long, the glass transition temperature, the coefficient of thermal expansion and the yellow index are inferior It can be seen.

Claims (20)

  1. 알킬 (메트)아크릴레이트 단위;Alkyl (meth) acrylate units;
    벤젠 고리를 포함하는 (메트)아크릴레이트 단위; 및(Meth) acrylate units containing a benzene ring; And
    (메트)아크릴산 단위를 포함하는 공중합체를 포함하는 광학 필름용 수지 조성물로, 상기 수지 조성물 내의 잔류 모노머 함량이 2000ppm 이하인 광학 필름용 수지 조성물.The resin composition for optical films containing the copolymer containing a (meth) acrylic acid unit, The resin composition for optical films whose residual monomer content in the said resin composition is 2000 ppm or less.
  2. [규칙 제26조에 의한 보정 25.07.2012]
    제1항에 있어서,
    상기 공중합체는 하기 화학식 I로 표시되는 단위를 더 포함하는 광학 필름용 수지 조성물.
    [화학식 I]
    Figure WO-DOC-FIGURE-c2
    상기 화학식 1에서, X는 N 또는 O이며,
    R1 및 R2는 각각 수소, C1~10알킬, C3 ~ 20 시클로알킬 또는 C3 ~20아릴임.
    [Revision 25.07.2012 under Rule 26]
    The method of claim 1,
    The copolymer is a resin composition for an optical film, further comprising a unit represented by the following formula (I).
    [Formula I]
    Figure WO-DOC-FIGURE-c2
    In Formula 1, X is N or O,
    R 1 and R 2 are each hydrogen, C 1 ~ 10 alkyl, C 3 ~ 20 cycloalkyl or C 3 ~ 20 aryl.
  3. 제1항에 있어서,The method of claim 1,
    상기 공중합체 내의 알킬 (메트)아크릴레이트 단위, 벤젠 고리를 포함하는 (메트)아크릴레이트 단위 및 (메트)아크릴산 단위의 함량 비율은 중량비로 70~95 : 2~10: 3~20인 광학 필름용 수지 조성물.The content ratio of the alkyl (meth) acrylate unit, the (meth) acrylate unit containing the benzene ring and the (meth) acrylic acid unit in the copolymer is 70 to 95: 2 to 10: 3 to 20 by weight ratio. Resin composition.
  4. 제2항에 있어서,The method of claim 2,
    상기 공중합체 내의 알킬 (메트)아크릴레이트 단위, 벤젠 고리를 포함하는 (메트)아크릴레이트 단위, (메트)아크릴산 단위 및 상기 화학식 1로 표시되는 단위의 함량 비율은 중량비로 60~90 : 2~10: 3~10 : 5~20 인 광학 필름용 수지 조성물.The content ratio of the alkyl (meth) acrylate unit, the (meth) acrylate unit including the benzene ring, the (meth) acrylic acid unit and the unit represented by the formula (1) in the copolymer is 60 to 90: 2 to 10 by weight ratio. : 3-10: Resin composition for optical films which is 5-20.
  5. 제1항에 있어서,The method of claim 1,
    상기 알킬 (메트)아크릴레이트의 알킬 기는 탄소수가 1 ~ 10인 광학 필름용 수지 조성물.The alkyl group of the said alkyl (meth) acrylate has a C1-C10 resin composition for optical films.
  6. 제5항에 있어서,The method of claim 5,
    상기 알킬 (메트)아크릴레이트 단위는 메틸 메타크릴레이트인 광학 필름용 수지 조성물.Resin composition for optical films whose said alkyl (meth) acrylate unit is methyl methacrylate.
  7. 제1항에 있어서,The method of claim 1,
    상기 벤젠 고리를 포함하는 (메트)아크릴레이트 단위는 벤질 메타크릴레이트, 벤질 아크릴레이트, 1-페닐에틸 메타크릴레이트, 2-페녹시에틸 메타크릴레이트, 2-페닐에틸 메타크릴레이트, 3-페닐프로필 메타크릴레이트, 3-페닐프로필 아크릴레이트 및 2-페녹시에틸 아크릴레이트로 이루어진 군으로부터 선택된 1종 이상인 광학 필름용 수지 조성물.The (meth) acrylate unit containing the benzene ring is benzyl methacrylate, benzyl acrylate, 1-phenylethyl methacrylate, 2-phenoxyethyl methacrylate, 2-phenylethyl methacrylate, 3-phenyl A resin composition for an optical film, which is at least one member selected from the group consisting of propyl methacrylate, 3-phenylpropyl acrylate and 2-phenoxyethyl acrylate.
  8. 제1항에 있어서,The method of claim 1,
    상기 (메트)아크릴산은 아크릴산, 메타크릴산, 메틸아크릴산, 메틸메타크릴산, 에틸아크릴산, 에틸메타크릴산, 부틸아크릴산 및 부틸 메타크릴산으로 이루어진 군으로부터 선택되는 광학 필름용 수지 조성물.The (meth) acrylic acid is an optical film resin composition selected from the group consisting of acrylic acid, methacrylic acid, methyl acrylic acid, methyl methacrylic acid, ethyl acrylic acid, ethyl methacrylic acid, butyl acrylic acid and butyl methacrylic acid.
  9. 제2항에 있어서,The method of claim 2,
    상기 화학식 I로 표시되는 화합물은 글루타르산 무수물인 광학 필름용 수지 조성물.The compound represented by the formula (I) is a resin composition for an optical film, which is glutaric anhydride.
  10. 제1항에 있어서,The method of claim 1,
    상기 광학 필름용 수지는 유리전이온도가 120℃ 내지 500℃인 광학 필름용 수지 조성물.The resin for an optical film has a glass transition temperature of 120 ° C to 500 ° C.
  11. 제1항에 있어서,The method of claim 1,
    상기 광학 필름용 수지는 중량평균분자량이 10 ~ 50만인 광학 필름용 수지 조성물.The resin for an optical film has a weight average molecular weight of 10 to 500,000 resin composition for an optical film.
  12. 제1항에 있어서,The method of claim 1,
    상기 광학 필름용 수지 조성물은 3mm 두께의 사출 시편에서의 옐로우 인덱스가 4 이하인 광학 필름용 수지 조성물.The resin composition for an optical film is a resin composition for an optical film having a yellow index of 4 or less in an injection specimen having a thickness of 3 mm.
  13. 청구항 1 내지 12 중 어느 한 항의 광학 필름용 수지 조성물을 포함하는 광학 필름.The optical film containing the resin composition for optical films of any one of Claims 1-12.
  14. 제13항에 있어서,The method of claim 13,
    상기 광학 필름은 파장 580nm에서 하기 수학식 1로 표시되는 면 방향 위상차값이 0 내지 5nm이고, 하기 수학식 2로 표시되는 두께 방향 위상차값이 -5 내지 5nm인 광학 필름.The optical film has an optical direction retardation value of 0 to 5 nm represented by the following Equation 1 at a wavelength of 580 nm, and an optical film having a thickness direction retardation value represented by the following Equation 2 to −5 to 5 nm.
    [수학식 1][Equation 1]
    Rin=(nx-ny)×dR in = (n x -n y ) × d
    [수학식 2][Equation 2]
    Rth=(nz-ny)×dR th = (n z -n y ) × d
    상기 수학식 1 및 수학식 2에서,In Equations 1 and 2,
    nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고,n x is a refractive index of the direction of the largest refractive index in the plane direction of the film,
    ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며,n y is a refractive index in the vertical direction in the n x direction in the plane direction of the film,
    nz는 두께 방향의 굴절율이며,n z is the refractive index in the thickness direction,
    d는 필름의 두께임.d is the thickness of the film.
  15. 제13항에 있어서,The method of claim 13,
    상기 광학 필름은 선형 열팽창계수가 40 ~ 80ppm/℃인 광학 필름.The optical film has a linear thermal expansion coefficient of 40 ~ 80ppm / ℃.
  16. 제13항에 있어서,The method of claim 13,
    상기 광학 필름 내의 잔류 모너머의 함량이 700ppm 이하인 광학 필름.An optical film having a content of residual monomer in the optical film of 700 ppm or less.
  17. 제13항에 있어서,The method of claim 13,
    상기 광학 필름은 파장 580nm에서 하기 수학식 1로 표시되는 면 방향 위상차값이 0 내지 5nm이고, 하기 수학식 2로 표시되는 두께 방향 위상차값이 -5 내지 5nm이고, 열팽창계수가 50 ~ 65ppm/℃이며, 필름 내 잔류 모노머의 함량이 700ppm 이하인 광학 필름.The optical film has a surface direction retardation value represented by the following Equation 1 at a wavelength 580 nm of 0 to 5 nm, a thickness direction retardation value represented by the following Equation 2 at −5 to 5 nm, and a thermal expansion coefficient of 50 to 65 ppm / ° C. And an amount of residual monomer in the film is 700 ppm or less.
    [수학식 1][Equation 1]
    Rin=(nx-ny)×dR in = (n x -n y ) × d
    [수학식 2][Equation 2]
    Rth=(nz-ny)×dR th = (n z -n y ) × d
    상기 수학식 1 및 수학식 2에서,In Equations 1 and 2,
    nx는 필름의 면 방향에 있어서, 가장 굴절율이 큰 방향의 굴절율이고,n x is a refractive index of the direction of the largest refractive index in the plane direction of the film,
    ny는 필름의 면 방향에 있어서, nx 방향의 수직 방향의 굴절율이며,n y is a refractive index in the vertical direction in the n x direction in the plane direction of the film,
    nz는 두께 방향의 굴절율이며,n z is the refractive index in the thickness direction,
    d는 필름의 두께임.d is the thickness of the film.
  18. 편광자 및 상기 편광자의 적어도 일면에 보호 필름으로 청구항 13의 광학 필름을 포함하는 편광판.A polarizer and a polarizing plate comprising the optical film of claim 13 as a protective film on at least one surface of the polarizer.
  19. (1)알킬 (메트)아크릴레이트 단량체, 벤젠 고리를 포함하는 (메트)아크릴레이트 단량체 및 (메트)아크릴산 단량체를 공중합하는 단계; 및 (1) copolymerizing an alkyl (meth) acrylate monomer, a (meth) acrylate monomer comprising a benzene ring and a (meth) acrylic acid monomer; And
    (2) 상기 공중합 반응 생성물을 240℃~270℃에서 30분 내지 2시간 동안 건조시키는 단계를 포함하는 광학 필름용 수지 조성물의 제조 방법.(2) A method for producing a resin composition for an optical film, comprising the step of drying the copolymerization reaction product at 240 ° C to 270 ° C for 30 minutes to 2 hours.
  20. 제19항에 있어서,The method of claim 19,
    상기 건조 단계에서의 토출량은 20리터 파일로트(pilot) 반응기를 기준으로 3kg/hr 내지 6kg/hr인 광학 필름용 수지 조성물의 제조 방법. The discharge amount in the drying step is a method for producing a resin composition for an optical film of 3kg / hr to 6kg / hr based on a 20 liter pilot reactor.
PCT/KR2012/004370 2011-06-01 2012-06-01 Resin composition for optical film and optical film using the same WO2012165918A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014508304A JP2014514611A (en) 2011-06-01 2012-06-01 Optical film resin composition and optical film using the same
US14/009,488 US20140046016A1 (en) 2011-06-01 2012-06-01 Resin composition for optical film and optical film using the same
CN201280017567.9A CN103459490B (en) 2011-06-01 2012-06-01 Blooming resin combination and use the blooming of this resin combination

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110052907 2011-06-01
KR10-2011-0052907 2011-06-01
KR10-2012-0051944 2012-05-16
KR20120051944A KR101508038B1 (en) 2011-06-01 2012-05-16 Resin composition for optical film and optical film using the same

Publications (2)

Publication Number Publication Date
WO2012165918A2 true WO2012165918A2 (en) 2012-12-06
WO2012165918A3 WO2012165918A3 (en) 2013-03-28

Family

ID=47260123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004370 WO2012165918A2 (en) 2011-06-01 2012-06-01 Resin composition for optical film and optical film using the same

Country Status (1)

Country Link
WO (1) WO2012165918A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064575A1 (en) * 2013-10-28 2015-05-07 株式会社クラレ Plate-like molded body
CN113917589A (en) * 2021-09-10 2022-01-11 明基材料有限公司 Polarizing plate with full-circumference curved surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357613A (en) * 1986-08-28 1988-03-12 Asahi Chem Ind Co Ltd Methacrylate resin and its production
EP0264508B1 (en) * 1985-05-02 1991-09-11 Sumitomo Chemical Company, Limited Process for the production of heat resistant thermoplastic copolymer
JP2000330272A (en) * 1999-05-21 2000-11-30 Negami Kogyo Kk Photosensitive resin composition for photosensitive film and photosensitive film
KR20100064971A (en) * 2008-12-05 2010-06-15 제일모직주식회사 Method of preparing methacrylic resin having good heat-resistance and methacrylic resin prepared thereby
KR20100104518A (en) * 2009-03-18 2010-09-29 주식회사 엘지화학 Acryl-based copolymer, optical film and liquid crystal display comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0264508B1 (en) * 1985-05-02 1991-09-11 Sumitomo Chemical Company, Limited Process for the production of heat resistant thermoplastic copolymer
JPS6357613A (en) * 1986-08-28 1988-03-12 Asahi Chem Ind Co Ltd Methacrylate resin and its production
JP2000330272A (en) * 1999-05-21 2000-11-30 Negami Kogyo Kk Photosensitive resin composition for photosensitive film and photosensitive film
KR20100064971A (en) * 2008-12-05 2010-06-15 제일모직주식회사 Method of preparing methacrylic resin having good heat-resistance and methacrylic resin prepared thereby
KR20100104518A (en) * 2009-03-18 2010-09-29 주식회사 엘지화학 Acryl-based copolymer, optical film and liquid crystal display comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064575A1 (en) * 2013-10-28 2015-05-07 株式会社クラレ Plate-like molded body
JPWO2015064575A1 (en) * 2013-10-28 2017-03-09 株式会社クラレ Plate-shaped molded product
CN113917589A (en) * 2021-09-10 2022-01-11 明基材料有限公司 Polarizing plate with full-circumference curved surface

Also Published As

Publication number Publication date
WO2012165918A3 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
KR101914815B1 (en) Resin compositions for optical film, optical films formed by using the same, polarizing plate and display device comprising the same
WO2010079920A2 (en) Optical film and liquid crystal display device comprising the same
WO2010024573A2 (en) In-plane switching mode liquid crystal display
WO2009088239A2 (en) Optical film and electronic information device employing the same
WO2009134098A2 (en) Optical film, and an electronic information device comprising the same
WO2009134097A2 (en) Resin composition and an optical film formed through use of the same
US9494712B2 (en) Resin composition for optical film and optical film using the same
WO2013005964A2 (en) Retardation film, manufacturing method thereof, and liquid crystal display device including same
WO2013180504A1 (en) Resin composition, optical film formed using same, and polarizer and liquid crystal display device comprising same
WO2009088237A2 (en) Transparent resin composition
KR20120040964A (en) Resin compositions for optical films and optical films formed by using the same
KR20120009864A (en) Preparation of resin composition for optical film using acryl based resin
KR20130018967A (en) Method for producing acryl-based copolymer for optical film and method for producing optical film using the same
WO2010062133A2 (en) Retardation film and a liquid-crystal display device comprising the same
WO2013051814A2 (en) Resin composition and optical film formed by using same
WO2012141413A1 (en) Resin composition for optical film and optical film using the same
KR101508038B1 (en) Resin composition for optical film and optical film using the same
WO2012165918A2 (en) Resin composition for optical film and optical film using the same
WO2012141453A2 (en) Method of preparing resin composition for optical film by using continuous bulk polymerization and methods of preparing optical film and polarizing plate using the resin composition
WO2015047005A1 (en) Resin composition for optical film, optical film formed using same, and polarizing plate and image display device comprising same
KR101514111B1 (en) Optical film having improved stability at a high temperature and a polarizing plate comprising the same
WO2010151036A2 (en) Antiglare film, and polarizing plate and display device comprising same
KR101521682B1 (en) Optical film having improved storage stability at a low temperature and a polarizing plate comprising the same
KR101627975B1 (en) Acryl-based optical film having excellent toughness and slim polarizing plate comprising the same
WO2012141422A1 (en) Method for preparing acrylic copolymer resin for optical film and method for fabricating optical film using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792830

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase in:

Ref document number: 2014508304

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14009488

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792830

Country of ref document: EP

Kind code of ref document: A2