WO2012165877A2 - 향상된 물리하향링크제어채널영역을 검색하는 방법 - Google Patents

향상된 물리하향링크제어채널영역을 검색하는 방법 Download PDF

Info

Publication number
WO2012165877A2
WO2012165877A2 PCT/KR2012/004304 KR2012004304W WO2012165877A2 WO 2012165877 A2 WO2012165877 A2 WO 2012165877A2 KR 2012004304 W KR2012004304 W KR 2012004304W WO 2012165877 A2 WO2012165877 A2 WO 2012165877A2
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
legacy
transmitted
information
allocated
Prior art date
Application number
PCT/KR2012/004304
Other languages
English (en)
French (fr)
Other versions
WO2012165877A3 (ko
Inventor
장지웅
정재훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/123,173 priority Critical patent/US9419763B2/en
Publication of WO2012165877A2 publication Critical patent/WO2012165877A2/ko
Publication of WO2012165877A3 publication Critical patent/WO2012165877A3/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information

Definitions

  • the present invention relates to a wireless access system, and more particularly, to a method for searching an enhanced physical downlink control channel (E-PDCCH) and an apparatus supporting the same.
  • the present invention relates to a method for searching for an enhanced E-PDCCH based on an allocation position of a legacy PDCCH.
  • Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (0FDMA) systems, and SC-FDMAC sin. le carrier frequency division multiple access) systems.
  • E-PDCCH enhanced physical downlink control channel
  • Another object of the present invention is to allow the UE to reduce the E-PDCCH search time. As a method, even if only the legacy legacy PDCCH is searched, a method for acquiring the location of the E-PDCCH without additional searching or delay is provided.
  • Another object of the present invention is to provide an apparatus supporting the above-described methods.
  • the present invention discloses a method for searching an enhanced physical downlink control channel (E-PDCCH) and apparatuses supporting the same.
  • E-PDCCH enhanced physical downlink control channel
  • a method for searching for an enhanced physical downlink control channel (E-PDCCH) in a wireless access system includes: searching a legacy physical downlink control channel (PDCCH) by blind decoding a control channel region and searching The method may include searching for the E-PDCCH based on a legacy PDCCH.
  • the legacy PDCCH is preferably allocated using all of the first symbol to the third symbol in the subframe to which the E-PDCCH is allocated.
  • the method may further include obtaining allocation location information of the E-PDCCH using at least one of end position information and size information, and searching the E-PDCCH using the allocation location information of the E-PDCCH in the E-PDCCH retrieval step.
  • the E-PDCCH is allocated to the data channel region rather than the control channel region.
  • an improved physical downlink control channel in a wireless access system As another aspect of the present invention, an improved physical downlink control channel in a wireless access system
  • the UE for searching for the (E-PDCCH) may include a processor for searching for a transmission module, reception modules, and the E-PDCCH.
  • the processor may blindly decode the control channel region to search the legacy physical downlink control channel (PDCCH) and search the E-PDCCH based on the searched legacy PDCCH.
  • the legacy PDCCH is preferably allocated using all of the first to third symbols of the subframe in the subframe to which the E-PDCCH is allocated.
  • the processor acquires allocation position information of the E-PDCCH using at least one of start position information, end position information, and size information of the allocation area of the legacy PDCCH, and allocates the position of the E-PDCCH in the E-PDCCH retrieval step.
  • the E-PDCCH is searched using the information, but the E-PDCCH is allocated to the data channel region instead of the control channel region.
  • the legacy PDCCH signal transmitted on the legacy PDCCH may be masked and transmitted with a terminal specific cyclic redundancy check (CRC) bit.
  • CRC terminal specific cyclic redundancy check
  • the E-PDCCH signal transmitted through the E-PDCCH may be masked and transmitted through a common CRC.
  • the E-PDCCH signal transmitted through the E-PDCCH may be masked and transmitted by the UE-specific CRC.
  • the allocation position information is i enh is calculated using a function f (' d , s ' eg ),
  • the UE can efficiently obtain an enhanced physical downlink control channel (E-PDCCH). That is, even if the UE searches only the legacy legacy PDCCH, the UE may reduce the E-PDCCH search time by acquiring the location of the E-PDCCH without additional search or delay. Secondly, the UE may acquire information of the E-PDCCH at the same time without changing the existing PDCCH format in the base station or the network.
  • E-PDCCH enhanced physical downlink control channel
  • the E-PDCCH may be allocated to the PDSCH region without changing the existing PDSCH region in the base station or the network.
  • 1 is a view showing the structure of a radio frame that can be used in embodiments of the present invention.
  • 2 is a diagram illustrating a resource grid for one downlink slot that may be used in embodiments of the present invention.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe that can be used in embodiments of the present invention.
  • FIG. 4 is a diagram illustrating an example of an uplink subframe structure that can be used in embodiments of the present invention.
  • FIG. 5 is a diagram illustrating an example of a pilot symbol structure according to the number of transmit antennas that can be used in embodiments of the present invention.
  • FIG. 6 shows an example of a method of shifting pilot symbols in subcarrier units when using one transmit antenna.
  • FIG. 7 shows an example of how control channels that can be used in embodiments of the present invention are allocated to a downlink subframe.
  • FIG 8 is a diagram illustrating an example of a form in which a PCFICH signal is transmitted among control channels that can be used in embodiments of the present invention.
  • FIG. 9 shows a PHICH signal of control channels that can be used in embodiments of the present invention. It is a figure which shows an example of the form to be transmitted.
  • FIG. 10 illustrates a resource unit used to configure a control channel in embodiments of the present invention.
  • FIG 11 shows an example in which a PHICH is allocated in a control region in embodiments of the present invention.
  • FIG. 12 is a view for explaining the structure of the terminal that can be used in embodiments of the present invention and the SC-FDMA scheme and 0FDMA scheme.
  • FIG. 13 is a diagram illustrating a signal mapping scheme in a frequency domain for satisfying a single carrier characteristic in a frequency domain usable in embodiments of the present invention.
  • FIG. 14 is a block diagram illustrating a transmission process of a reference signal (RS) for demodulating a transmission signal according to the SC-FDMA scheme.
  • RS reference signal
  • FIG. 15 is a diagram illustrating symbol positions to which a reference signal (RS) is mapped in a subframe structure according to the SOFDMA scheme.
  • RS reference signal
  • FIG. 16 is a diagram illustrating a signal processing procedure in which DFT process output samples are mapped to a single carrier in a cluster SC-FDMA.
  • 17 and 18 illustrate a signal processing procedure in which DFT process output samples are mapped to multi-carriers in a cluster SC-FDMA.
  • 19 is a diagram illustrating a signal processing procedure of segmented SC—FDMA.
  • 20 is a diagram illustrating an example of an allocation position of an E-PDCCH used in embodiments of the present invention.
  • 21 is a diagram illustrating an example of a state in which an E-PDCCH is allocated to a PDSCH region according to an embodiment of the present invention.
  • FIG. 22 is a diagram illustrating another example of a state in which an E-PDCCH is allocated to a PDSCH region according to an embodiment of the present invention.
  • the apparatus described with reference to FIG. 23 is a means by which the methods described with reference to FIGS. 1 to 22 may be implemented.
  • Embodiments of the Invention provide an overview of a method for searching for an Enhanced Physical Downlink Control Channel (E-PDCCH) used in a wireless access system and devices supporting the same.
  • E-PDCCH Enhanced Physical Downlink Control Channel
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • embodiments of the present invention have been described based on data transmission / reception relations between a base station and a mobile station.
  • the base station communicates directly with the mobile station. It is meaningful as a terminal node of a running network. Certain operations described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point. '
  • the terminal is a user equipment (UE).
  • UE user equipment
  • MS Mobile Station
  • SS Subscriber Station
  • MSS Mobile Subscriber Station
  • AMS Mobile Terminal
  • MS Mobile Station
  • the transmitting end refers to a fixed and / or mobile node providing a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node receiving a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the IEEE 802.11 system, the 3rd Generat ion Partnership Project (3GPP) system, the 3GPP LTE system, and the 3GPP2 system, which are wireless access systems.
  • Embodiments of the invention include 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213 and 3GPP TS 36.321 It can be supported by documents. That is, obvious steps or portions not described among the embodiments of the present invention may be described with reference to the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced.
  • CDMA code division multiple access
  • FDMA frequency division mult iple access
  • TDMA time division mult iple access
  • OFDMA orthogonal frequency division multiple access
  • SC to FDMA single carrier frequency division multiple access
  • CDMA may be implemented with radio technologies such as UTRA Jniversal Terrestrial Radio Access) or CDMA2000.
  • TDMA may be implemented in a wireless technology such as Global System for Mobile Communications (GSM) / Gene r 1 Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile Communications
  • GPRS Gene r 1 Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of UMTS Jniversal Mobile Telecommunications System (3GPP LTECLong Term Evolution) is part of E-UMTS (Evolved UMTS) using E-UTRA, 0FDMA is adopted in downlink and SC-FDMA is adopted in uplink.
  • the LTE-A (Advanced) system is an improved system of the 3GPP LTE system. In order to clarify the description of the technical features of the present invention, embodiments of the present invention will be described based on the 3GPP LTE / LTE-A system, but can also be applied to IEEE 802.16e / m system and the like.
  • a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • FIG. 1 is a view showing the structure of a radio frame that can be used in embodiments of the present invention.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots.
  • the time taken for one subframe to be transmitted is called a transmission time interval ( ⁇ ).
  • transmission time interval
  • the length of one subframe is 1ms
  • the length of one slot is 0.5ms.
  • One slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain and includes a plurality of Resource Blocks (RBs) in the frequency domain.
  • the 0FDM symbol is for representing one symbol period in a 3GPP LTE system using an Orthogonal Frequency Division Multiplexing Access (0FDMA) scheme in downlink. That is, 0FDM
  • the symbol may be referred to as an SC-FDMA symbol or a symbol interval according to a multiple access scheme.
  • the RB includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • the structure of the radio frame of FIG. 1 is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot that can be used in embodiments of the present invention.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block (RB) includes 12 subcarriers in a frequency domain.
  • Each element on the resource grid is called a resource element (RE), and one resource block (RB) includes 12 ⁇ 7 resource elements (REs).
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe that can be used in embodiments of the present invention.
  • the subframe includes two slots in the time domain. Up to three OFDM symbols of the first slot in the subframe are a control region to which control channels are allocated, and the remaining OFDM symbols are a data region to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared Channel
  • Downlink control channels used in the 3GPP LTE system are PCFICH (Physical Control Format Indicator Channel (PDCCH), Physical Downlink Control Channel (PDCCH), Physical Hybrid-ARQ Indicator Channel (PHICH), etc.
  • the PCFICH signal transmitted in the first OFDM symbol of a subframe is used to transmit the control channel signal in a subframe. It carries information about the number of OFDM symbols (that is, the size of the control region).
  • the PHICH carries an ACK (Acknow 1 edgement) / NACK (None-Acknow 1 edgement) signal for an uplink HARQ (Hybrid Automatic Repeat Request). That is, an ACK / NACK signal for uplink data transmitted by a user equipment (UE) is transmitted on a PHICH.
  • DCI Downlink control information
  • DCI includes resource allocation information and other control information for a UE or UE group. For example, it may include uplink resource allocation information, downlink resource allocation information, and uplink transmission power control command.
  • PDCCH includes transmission format and resource allocation information of downlink shared channel (DL-SCH), transmission format and resource allocation information of uplink shared channel (UL-SCH), paging channel (PCH) Paging information on a channel), system information on a DL-SCH, resource allocation information for a higher layer control message such as a random access response transmitted on a PDSCH, a transmit power control command set for individual UEs within a certain UE group, transmit power It can carry information on control commands, activation of the Voice of Internet Protocol (VoIP), and the like.
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging channel
  • Multiple PDCCHs may be transmitted in one control region, and the UE may monitor multiple PDCCHs.
  • the PDCCH may be transmitted on one or more consecutive control channel elements (CCEs).
  • the CCE uses the PDCCH based on the state of the radio channel.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of available bits of the PDCCH are determined according to the correlation between the coding rate provided in the CCE and the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the UE, and attaches the CRC to the control information.
  • the CRC is masked with a unique identifier (RNTI: Radio Network Temporary Identifier) according to the method of use or owner of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the unique identifier of the UE eg C-RNTI: Cell-RNTI
  • a paging indicator identifier eg, P-RNTI: Paging-RNTI
  • P-RNTI Paging-RNTI
  • S-RNTI system information RNTI
  • Random access RNTKRA-RNTI may be masked to the CRC to indicate a random access response that is a response to the reception of the random access preamble of the UE.
  • the PDCCH may be transmitted through one or more component carriers and may include resource allocation information for one or more component carriers.
  • the PDCCH is transmitted through one component carrier, but may include resource allocation information for one or more PDSCHs and PUSCHs.
  • FIG. 4 is a diagram illustrating an example of an uplink subframe structure that can be used in embodiments of the present invention.
  • the uplink subframe includes a plurality of (eg, two) slots.
  • the slot may include different numbers of SC-FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • data includes a physical uplink shared channel (PUSCH) and is used to transmit a data signal including voice information.
  • the control region includes a PUCCH (Physical Uplink Control Channel) and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • the UE does not simultaneously transmit the PUCCH signal and the PUSCH signal in order to maintain a single carrier characteristic.
  • the PUCCH signal and the PUSCH signal may be simultaneously transmitted in the same subframe according to the transmission mode of the UE, and the PUCCH signal may be piggybacked onto the PUSCH signal and transmitted.
  • PUCCH for one UE is allocated as an RB pair in a subframe, and RBs belonging to the RB pair occupy different subcarriers in each of two slots.
  • This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • PUCCH may be used to transmit the following control information.
  • SR Scheduling Request
  • SR Information used for requesting an uplink UL-SCH resource. It is transmitted using 00K (0n-0ff Keying) method.
  • HARQ ACK / NACK This is a voice response signal for a downlink data packet on a PDSCH or a PDCCH indicating a Semi-Per-Sentent Scheduling (SPS) release. This indicates whether a downlink data packet or a PDCCH indicating SPS release has been successfully received.
  • SPS Semi-Per-Sentent Scheduling
  • One bit of ACK / NACK is transmitted in response to a single downlink codeword, and two baht of ACK / NACK is transmitted in response to two downlink codewords.
  • CQI Channel Quality Indicator
  • CSI Channel State Information
  • the amount of uplink control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for control information transmission.
  • SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports seven formats according to the transmitted information. .
  • Table 1 shows the mapping relationship between PUCCH format and UCI in LTE.
  • FIG. 5 is a diagram illustrating an example of a pilot symbol structure according to the number of transmit antennas that can be used in embodiments of the present invention.
  • Pilot symbols are generally used in the field of data transmission.
  • the pilot symbol is a signal used to obtain timing for a demodulation reference carrier or various channels in a transceiver.
  • a pilot symbol may be used in various terms such as a reference signal (RS).
  • RS reference signal
  • the pilot symbols may be configured to carry out all symbols or signals transmitted at a high output without actual data in order to synchronize channels, synchronize carrier phases, or assist in obtaining base station information. it means.
  • FIG. 5 shows the positions of pilot symbols of each transmitting antenna according to the number of new antennas.
  • Ri represents a pilot symbol of the i th transmit antenna.
  • FIG. 5 (a) uses one transmission antenna
  • FIG. 5 (b) uses two transmission antennas
  • FIG. 5 (c) shows four transmission antennas.
  • each pilot symbol is arranged at a constant frequency interval and time interval. As shown in FIG. 5, when the number of transmit antennas increases, overhead of a pilot symbol may increase.
  • the pilot symbols may be protected by the transition in the subcarrier unit or the OFDM symbol unit in the frequency domain or the time domain so that pilot symbols do not collide with each other.
  • a method of canceling interference by shifting a pilot channel in a subcarrier unit or an OFDM symbol unit will be described.
  • FIG. 6 shows an example of a method of shifting pilot symbols in subcarrier units when using one transmit antenna.
  • each pilot thimble is located at intervals of six subcarriers in the frequency domain. Therefore, when the subcarrier unit transition is performed in the frequency domain, at least five cells may place pilot symbols at different positions. That is, in FIG. 6, it can be seen that several neighboring cells Cell 1 to Cell 6 avoid the stratification of the pilot symbol through the frequency shift.
  • FIG. 7 shows an example of how control channels that can be used in embodiments of the present invention are allocated to a downlink subframe.
  • a subframe consists of 14 OFDM symbols. Of the subframes, the first three OFDM symbols are used as the control region and the remaining 11 OFDM symbols are used as the data region.
  • R0-R3 represents the CRS for the antenna 0-3.
  • the CRS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no CRS is allocated in the control region, and the traffic channel is also allocated to a resource to which no CRS is allocated in the data region.
  • the control channel allocated to the control region includes (1) a physical control format indicator channel used to adjust the number of OFDM symbols for each downlink control channel for each subframe.
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • ACK / NACK downlink acknowledgment information
  • PDCCH physical downlink control channel
  • FIG 8 is a diagram illustrating an example of a form in which a PCFICH signal is transmitted among control channels that can be used in embodiments of the present invention.
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • PCFICH is located in the first OFDM symbol.
  • the PCFICH consists of four REGs, and each REG is distributed in the control region based on the cell ID.
  • One REG consists of four REs.
  • PCFICH has to be transmitted every subframe, has a value of 1 to 3, and is modulated with 16 quadrature phase shift keying (QPSK).
  • QPSK quadrature phase shift keying
  • Table 2 shows a channel format indicator (CFI) transmitted through the PCFICH. '
  • the REG consists of four subcarriers. At this time, used for PCFICH
  • the REG consists of only data subcarriers excluding a reference signal (RS), and generally uses a transmit diversity scheme.
  • the position of the REG is used to be frequency shifted (frequency shifted) so as not to interfere between cells.
  • the terminal or the receiver since the PCFICH is always transmitted in the first OFDM symbol of the subframe, the terminal or the receiver first checks the information of the PCFICH when decoding each subframe, and then receives the information of the PDCCH according to the PCFICH signal.
  • FIG. 9 is a diagram illustrating an example of a form in which a PHICH signal is transmitted among control channels that can be used in embodiments of the present invention.
  • the PHICH is a physical HARQ indicator channel and is used to transmit HARQ ACK / NACK information for uplink data transmission.
  • the PHICH consists of three REGs and is scrambled to be cell specific.
  • the AC / NACK information is indicated by 1 bit, spread by a spreading factor (SF) of 4, and repeated three times. Multiple PHICHs may be mapped to the same resource.
  • PHICH is modulated with binary phase shift keying (BPSK). 9 shows allocation positions of PCFICH and PHICH in a specific bandwidth.
  • the PHICH is for transmitting ACK / NACK information for an uplink data channel, and a plurality of PHICH groups may be created in one subframe, and one PHICH group may include several PHICHs. Therefore, one PHICH group may have multiple terminals PHICH channel is included.
  • PHICH allocation for each UE is allocated using a minimum PRB index of PUSCH resource allocation and a cyclic shift of DMRS transmitted to a UL grant.
  • PHICH resources "known as the index pair (index pair) such as In this case, an index pair (", "r pancreas in 3 ⁇ 4 cw) is PHICH group number, r c" is the orthogonal sequence index within the PHICH group (orthogonal sequence index)
  • Equation 1 shows a method of obtaining an element included in an index pair representing a PHICH resource.
  • Equation i cyclic shift value of DMRS used in UL transmission associated with DMRS PHICH.
  • N S P ⁇ H is the magnitude of the diffusion coefficient used for the PHICH.
  • i ' s " dex is the minimum PRB index for uplink resource allocation.
  • represents the number of PHICH groups configured. The number of PHICH groups used in Equation 1 can be calculated as shown in Equation 2 below. have.
  • N g is represented by 2 bits (N g e ⁇ 1/6, 1/2, 1,2 ⁇ ) transmitted to the PBCH.
  • the PHICH group may be configured with different time domains in one subframe according to the PHICH duration.
  • FIG. 10 illustrates a resource unit used to configure a control channel in embodiments of the present invention.
  • FIG. 10A illustrates a case where the number of transmit antennas is one or two
  • FIG. 10B illustrates a case where the number of transmit antennas is four. Only the CRS pattern is different according to the number of transmit antennas, and the method of setting a resource unit associated with a control channel is the same.
  • a resource unit for a control channel is REG.
  • the REG consists of four neighboring resource elements with the exception of the CRS. REG is shown in bold in the figures.
  • PFICH and PHICH include four REGs and three REGs, respectively.
  • the PDCCH is composed of CCE units, and one CCE includes 9 REGs. Although the figure illustrates that the REGs constituting the CCR are adjacent to each other, it may be distributed to nine REGs constituting the CCR.
  • FIG 11 shows an example in which a PHICH is allocated in a control region in embodiments of the present invention.
  • the allocation of PHICH is influenced by PCFICH. As shown in Table 1, the PCFICH has a different starting position depending on the Sal ID, but the total subcarrier of the first 0FDM symbol is divided into four quarters. It is transmitted using four REGs at even intervals. PHICH is defined for the remaining REG after PCFICH is allocated. For one or more OFDM symbols set by the PHICH duration, a PHICH group is allocated consecutively at a specific starting position by dividing the remaining REGs on each of the 0FTM symbols except the RS and PCFICH (the first OFDM symbol) by three. .
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbol regions of the subframe.
  • PDCCH is allocated in units of CCE, and one CCE includes 9 REGs.
  • the PDCCH informs information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH) which are transport channels, an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • PCH and DL-SCH are transmitted on the PDSCH.
  • the base station and the terminal generally transmit and receive data through the PDSCH except for a specific control signal or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode the PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with an RNTI (Radio Network Temporary Identity) of "A", a radio resource (e.g., frequency location), and a transmission type information (e.g., "C"). It is assumed that information on data transmitted using a transmission block size, a modulation scheme, coding information, etc.
  • RNTI Radio Network Temporary Identity
  • the PDCCH is monitored, and if there is at least one UE having an "A" RNTI, the UE receives the PDCCH and receives the PDSCH indicated by and through the received PDCCH information.
  • uplink signal transmission uses a SC-FDMA (Single Carrier-Frequency Division Multiple Access) scheme unlike the 0FOMA scheme used for downlink signal transmission.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • FIG. 12 is a view for explaining the structure of the terminal that can be used in embodiments of the present invention and the SC-FDMA scheme and 0FDMA scheme.
  • the 3GPP system (eg LTE system) employs 0FDMA in downlink and SC-FDMA in uplink.
  • both a terminal for uplink signal transmission and a base station for downlink signal transmission include a serial-to-parallel converter 1201, a subcarrier mapper 1203, and an M-point IDFT module 1204. ) And Cyclic Prefix additional modules 1206 same.
  • the terminal for transmitting a signal in the SC-FDMA scheme further includes an N-point DFT models 1202.
  • the N-point DFT module 1202 partially offsets the IDFT processing impact of the M-point IDFT models 1204 so that the transmitted signal has a single carrier property.
  • FIG. 13 is a diagram illustrating a signal mapping scheme in a frequency domain for satisfying a single carrier characteristic in a frequency domain usable in embodiments of the present invention.
  • FIG. 13 (a) shows a localized mapping method
  • FIG. 13 (b) shows a distributed mapping method.
  • clustered a modified form of SC-FDMA, divides the DFT process output samples into sub-groups during subcarrier mapping, and discontinuously divides them into the frequency domain (black subcarrier domain). Map it.
  • FIG. 14 is a block diagram illustrating a transmission process of a reference signal (RS) for demodulating a transmission signal according to the SC-FDMA scheme.
  • RS reference signal
  • the data portion is transmitted by IFFT processing after subcarrier mapping after the signal generated in the time domain is converted into a frequency domain signal through DFT processing (see FIG. 12). After the DFT process is omitted, the signal is generated directly in the frequency domain (S1410), mapped onto the subcarrier (S1420), and then transmitted through the IFFT process (S1430) and the CP addition (S1440).
  • FIG. 15 is a diagram illustrating symbol positions to which a reference signal (RS) is mapped in a subframe structure according to the SC-FDMA scheme.
  • FIG. 15 (a) shows that an RS is located in a fourth SC-FDMA heartbeat of each of two slots in one subframe in a normal CP case.
  • FIG. 15 (b) shows that an RS is located in a third SC-FDMA symbol of each of two slots in one subframe in the case of an extended CP.
  • FIG. 16 is a diagram illustrating a signal processing procedure in which DFT process output samples are mapped to a single carrier in a cluster SC-FDMA.
  • 17 and 18 are diagrams illustrating a signal processing procedure in which DFT process output samples are mapped to multi-carriers in a cluster SC-FDMA.
  • FIG. 16 illustrates an example of applying an intra-carrier cluster SOFDMA and FIGS. 17 and 18 correspond to an example of applying an inter-carrier cluster SC—FDMA.
  • FIG. 17 illustrates a case where a signal is generated through a single IFFT block when subcarrier spacing between adjacent component carriers is aligned in a situation in which component carriers are contiguous in the frequency domain.
  • FIG. 18 illustrates a case where a signal is generated through a plurality of IFFT blocks in a situation in which component carriers are allocated non-contiguous in the frequency domain.
  • 19 is a diagram illustrating a signal processing procedure of a segmented SC-FDMA.
  • Segment SOFDMA is simply an extension of the existing SC-FDMA DFT spreading and IFFT frequency subcarrier mapping configuration as the number of IFFTs equal to the number of DFTs is applied and the relationship between the DFT and IFFT has a one-to-one relationship. Or NxDFT-s-OFDMA.
  • the present specification encompasses these segments Call it SC-FDMA. Referring to FIG. 19, the segment SC-FDMA performs a DF process on a group basis by grouping all time domain modulation symbols into N (N is an integer greater than 1) groups in order to alleviate a single carrier characteristic condition. 3.
  • the communication environment considered in the embodiments of the present invention includes a multi-carrier support environment. That is, a multicarrier system or a multi-carrier aggregation system used in the present invention refers to a broadband, and has a bandwidth smaller than a target band when configuring a target broadband to support broadband. Refers to a system that aggregates one or more component carriers (CC).
  • CC component carriers
  • the multi-carrier means the aggregation of carriers (or carrier coupling), and carrier aggregation means not only coupling between adjacent carriers but also coupling between non-adjacent carriers.
  • carrier coupling may be commonly used with terms such as carrier aggregation, bandwidth coupling, and the like.
  • Multicarrier ie carrier aggregation
  • CCs component carriers
  • the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system in order to maintain backward compatibility with the existing IMT system.
  • the existing 3GPP LTE system supports ⁇ 4, 3, 5, 10, 15, 20 ⁇ MHz bandwidth
  • 3GPP LTE_advanced system ie LTE_A
  • LTE 3GPP LTE_advanced system
  • Only bandwidths above can be used to support bandwidths greater than 20 Hz.
  • the multicarrier system used in the present invention may support carrier combining (ie, carrier aggregation, etc.) by defining a new bandwidth regardless of the bandwidth used in the existing system.
  • the LTE-A system uses the concept of a cell to manage radio resources.
  • a cell is defined as a combination of a downlink resource and an uplink resource, and the uplink resource is not an essential element of the cell. Therefore, the SAL may be composed of only downlink resources or downlink resources and uplink resources. If multicarrier (ie, carrier aggregation, or carrier aggregation) is supported, the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource is determined by the system. Can be indicated by information (SIB).
  • SIB information
  • Cells used in the LTE-A system include a primary cell (PCell: Primary Cell) and a secondary cell (SCell: Secondary Cell).
  • the P cell may mean a cell operating on a primary frequency (eg, PCC: primary CO)
  • the S cell may mean a cell operating on a secondary frequency (eg, SCC: secondary CO). Only one Pcell is allocated to the UE, and one or more SCells may be allocated.
  • the Psal is used for the UE to perform an initial connection establishment process or to perform a connection re-establishment process.
  • the Pcell may refer to a cell indicated in the handover process.
  • the SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • P cell and S cell may be used as a serving cell.
  • a serving cell For terminals that are in the RRCLCONNECTED state but carrier aggregation is not set or carrier aggregation is not supported There is only one serving cell consisting of P cells.
  • the UE in the R CLCONNECTED state and the carrier aggregation is configured one or more serving cells may exist, and the entire serving cell includes a P cell and one or more S cells.
  • the E-UTRAN may configure a network including one or more Scells in addition to the Pcells initially configured in the connection establishment process.
  • the Pcell and SCell may operate as respective component carriers (CC).
  • CC component carriers
  • multi-carrier aggregation may be understood as a combination of a PCell and one or more SCells.
  • the primary component carrier (PCC) may be used as the same meaning as Psal
  • the secondary component carrier (SCC) may be used as the same as the SCell.
  • E-PDCCH Enhanced Physical Downlink Control Channel
  • the E-PDCCH Since two or more cells are combined and used in a CA environment, a type of terminal (eg, a D2D terminal, etc.) that does not exist previously is used, and thus more control information transmission and reception is required than in a wireless environment in which only one cell is used. .
  • an additional PDCCH is required in addition to the PDCCH which is an existing downlink control channel. That is, the additional PDCCH is a control channel used in the LTE-A system (eg, Rel-10, Rel-11) and is used differently from the existing PDCCH.
  • the PDCCH used in the existing LTE system will be called a legacy PDCCH
  • the PDCCH additionally used in the LTE-A system will be called an enhanced PDCCH (E-PDCCH).
  • E-PDCCH enhanced PDCCH
  • the E-PDCCH is preferably allocated to the PDSCH allocation region rather than the legacy PDCCH allocation region. Referring to FIG. 20, it can be seen that the E-PDCCH is allocated to a certain region of the legacy PDSCH.
  • the method for the UE to search for the E-PDCCH includes (1) a method of acquiring the allocation region of the E-PDCCH through resource allocation information transmitted through the legacy PDCCH and (2) a separate signaling all without reading the legacy PDCCH. There may be a method of obtaining the location of the E-PDCCH.
  • the legacy PDCCH has location information on the resource to which the E-PDCCH is allocated or information that can help to obtain the corresponding location, the time required for searching the E-PDCCH may be lost or reduced.
  • a new format for the legacy PDCCH is required, which is problematic in compatibility with the LTE system.
  • embodiments of the present invention below can reduce the E-PDCCH search time.
  • the method and methods for acquiring the information of the E-PDCCH at the same time without changing the existing PDCCH format will be described in detail.
  • the allocation position of the E-PDCCH may be determined as follows.
  • the location of the E-PDCCH may be determined as a function of the location of the legacy PDCCH. For example, when the UE searches for the legacy PDCCH, the UE can directly obtain the position of the E-PDCCH from the position of the legacy PDCCH without additional searching.
  • the 10 position of the legacy PDCCH detected by the UE may be a start position, an end position, or both of the E-PDCCH.
  • the UE may also use the size of the legacy PDCCH as a variable for obtaining the position of the E-PDCCH. That is, if the allocation position information of the E-PDCCH is defined as / ⁇ , / ⁇ can be represented as in the following equations (3) to (7).
  • 3 ⁇ 4 is the start position of the legacy PDCCH
  • / is the end position of the legacy PDCCH
  • g is the size of the legacy PDCCH.
  • the s leg may be the size of the CCE standard, the size of the REG standard, the size of the resource element (RE) standard, or the size of the transmission symbol standard.
  • the terminal may detect the allocation position of the E ⁇ PDCCH based on the location information of the legacy PDCCH region. For example, the UE can know from which legacy PDCCH region the E-PDCCH belongs to which PRB group (unit for PDSCH transmission) and where the starting point is.
  • the terminal may obtain information about the allocation position of the E-PDCCH, and may search for the E-PDCCH based on the allocation position information.
  • the terminal may receive a control signal transmitted through the E-PDCCH.
  • the UE When using the E-PDCCH region, a method for reducing a search time or search space for the E-PDCCH of the UE is needed. To this end, it is preferable that the UE obtains allocation information on the E-PDCCH in the legacy PDCCH region and reduces or eliminates a search time for the E-PDCCH based on this information.
  • one of the reasons for the need for the E-PDCCH is to increase the availability of the PDCCH, so the smaller the size of resources occupied by the E-PDCCH in the legacy PDCCH region is better. therefore ,
  • a method for allocating a legacy PDCCH region and a method for allocating and using an E-PDCCH in a UE using an E—PDCCH will be described in detail.
  • a legacy PDCCH and an E-PDCCH are used together in a wireless access system
  • information about an allocation position and size of an E-PDCCH may be transmitted to the terminal through the legacy PDCCH.
  • a PDCCH format for the legacy PDCCH may be used for this purpose.
  • the legacy PDCCH may be configured to always use 3 OFDM symbols.
  • a legacy PDCCH may always be allocated using all of the first OFDM symbol to the third OFDM symbol of each subframe regardless of whether the e-PDCCH is allocated.
  • the number of OFDM symbols used by the legacy PDCCH is always fixed to 3 when the E-PDCCH is used.
  • a legacy PDCCH may be allocated using all of the first OFDM symbol to the third OFDM symbol only in a subframe to which the e-PDCCH is allocated. That is, the legacy PDCCH is allocated in the same manner as the existing LTE system in a subframe to which the e-PDCCH is not allocated, and can be allocated in the subframe to which the e-PDCCH is allocated using the first symbol to the third symbol. have.
  • the UE always has the first symbol to the third symbol of each subframe Blind decoding may be performed on the search space by recognizing that the allocation is for the legacy PDCCH, and searching for the region to which the E-PDCCH is allocated based on the allocation position of the legacy PDCCH, or transmitting the E-PDCCH transmitted through the legacy PDCCH.
  • the legacy PDCCH may be searched using the allocation region information on the allocation position for.
  • channel format indicator 4 transmitted through PCFICH is used.
  • the CFI of the PCFICH is used as shown in Table 4 below.
  • the base station may indicate whether to allocate a new E-PDCCH while using the existing CFI code as it is by using the previously reserved value CFI 4 for the E-PDCCH.
  • the UE using the E-PDCCH region may obtain allocation information on the E-PDCCH region allocated to the UE using only 1 CCE in the legacy PDCCH region at all times. All.
  • the UE can eliminate or reduce the search time in the E-PDCCH region by using the allocation information for the E-PDCCH region.
  • CRC may be applied to each legacy PDCCH region and E-PDCCH region.
  • the CRC may be applied to the legacy PDCCH region and the E-PDCCH region, respectively.
  • the applied CRC may be the same or different.
  • the base station may transmit a legacy PDCCH signal masked with UE specific CRC bits to the terminal in case of legacy PDCCH , and may transmit an E-PDCCH signal masked with a common CRC bit in case of E-PDCCH to the terminal.
  • the UE using the E-PDCCH and the legacy PDCCH region at the same time applies a UE-specific CRC value to the legacy PDCCH region to determine whether the corresponding resource in the legacy PDCCH region is allocated to itself and whether it is properly transmitted. It can be determined whether or not. Thereafter, since the UE knows the location of resources allocated to the E-PDCCH region through the allocation information obtained from the legacy PDCCH region, the UE needs only to determine whether the E-PDCCH is properly transmitted. Therefore, the UE can determine whether the E-PDCCH signal is correctly transmitted by applying a common CRC, not a UE-specific value, to the E-PDCCH region.
  • the base station may transmit the legacy PDCCH signal and the E-PDCCH signal masked with the UE specific CRC in the case of the legacy PDCCH and the E ⁇ PDCCH.
  • the UE may double check whether the resources allocated to the UE are correct by using UE-specific values for the CRC applied to the legacy PDCCH region and the E-PDCCH region. All.
  • the length of CRC in Section 4.2.5 may be 8 bits, 16 bits or 24 bits.
  • the calculation of the CRC according to the length of each CRC can be obtained through the polynomial shown in Equation (8).
  • the length of the CRC in Section 4.2.5 depends on the number of bits transmitted in the E-PDCCH region. Can be.
  • 21 is a diagram illustrating an example of a state in which an E-PDCCH is allocated to a PDSCH region according to an embodiment of the present invention.
  • the E-PDCCH is preferably allocated to a data channel region (for example, a PDSCH region) rather than a control channel region.
  • allocation of E-PDCCH Since the resource type may be different from the allocation type of the legacy PDCCH, the CCE which is a basic unit of legacy PDCCH transmission may not be maintained.
  • the E-PDCCH is preferably allocated in such a manner as to have the least impact on the allocation and transmission of the PDSCH.
  • a resource region is allocated in a PRB unit, and thus, an E-PDCCH may be allocated in a PRB unit, which is an allocation unit of a PDSCH, instead of a CCE unit, which is an allocation unit of a PDCCH. That is, when the PDSCH is allocated in units of 1PRB, 2PRB, or 4PRB, the E-PDCCH may also be allocated in units of 1PRB, 2PRB, or 4PRB. Referring to FIG. 21, it can be seen that the E-PDCCH is allocated to the PDSCH region in units of PRBs.
  • the E-PDCCH may be configured in units of 4, 5, 9, 13, 14, 18, 22, 23, 27, 31, 32, or 36 REG regardless of CCE. 22 is a diagram illustrating another example of a state in which an E-PDCCH is allocated to a PDSCH region according to an embodiment of the present invention.
  • the E-PDCCH resource region may be allocated with a frequency priority or a time priority. Further, the E-PDCCH resource region may be allocated with a frequency priority or a time priority within a specific PRB or PRB group. In the case of FIG. 22, this illustrates a case in which the E-PDCCH is mapped on one PRB. In addition, the region to which the E-PDCCH is allocated may be configured to be allocated only to the first slot of the subframe or only to the second slot. Of course, it can be allocated only in a specific subcarrier area over two slots. 5.
  • the apparatus described with reference to FIG. 23 is a means by which the methods described with reference to FIGS. 1 to 22 may be implemented.
  • a user equipment may operate as a transmitter in uplink and as a receiver in downlink.
  • an eNB eNB: e-Node B
  • eNB e-Node B
  • the terminal and the base station may include transmission modules (Tx module: 2340, 2350) and reception modules (Rx module: 2350, 2370), respectively, to control transmission and reception of information, data, and / or messages.
  • transmission modules Tx module: 2340, 2350
  • reception modules Rx module: 2350, 2370
  • antennas 2300 and 2310 for transmitting and receiving information, data, and / or messages.
  • the terminal and the base station may each include a processor (processor 2320, 2330) for performing the above-described embodiments of the present invention and a memory (2380, 2390) capable of temporarily or continuously storing the processing of the processor, respectively. Can be.
  • processor processor 2320, 2330
  • memory (2380, 2390) capable of temporarily or continuously storing the processing of the processor, respectively.
  • Embodiments of the present invention can be performed using the components and functions of the above-described terminal and base station apparatus.
  • the apparatus described with reference to FIG. 23 may further include the configuration of FIG. 12, 14, or 16 to 17, and preferably, the components may be included in the processor.
  • the processor of the terminal may monitor the search space and receive the PDCCH signal. have.
  • the blind decoding may be performed on the extended CSS to receive the PDCCH without blocking the PDCCH signal with the Darron LTE terminal.
  • the processor of the UE may detect the allocation position of the E-PDCCH based on the allocation position and / or size of the legacy PDCCH after detecting the legacy PDCCH. At this time, the UE can detect the allocation position of the E-PDCCH using the method described in Equations 3 to 7.
  • the E-PDCCH is allocated to the PDSCH region and may be allocated according to the allocation unit of the PDSCH.
  • the transmission and reception modules included in the terminal and the base station include a packet modulation / demodulation function, a high-speed packet channel coding function, an orthogonal frequency division multiple access (OFDMA) packet scheduling, and a time division duplex (TDD). Time Division Duplex) may perform packet scheduling and / or channel multiplexing.
  • the terminal and the base station of FIG. 21 may further include low power RF (Intermediate Frequency) models.
  • a personal digital assistant (PDA) cell phone a personal communication service (PCS) phone, a global system for mobile (GSM) phone, a wideband CDMA (WCDMA) phone, and an MBS Mobile Broadband System phones, hand-held PCs, notebook PCs, smart phones, or multi-mode multi-band ( ⁇ -MB) terminals may be used.
  • PDA personal digital assistant
  • PCS personal communication service
  • GSM global system for mobile
  • WCDMA wideband CDMA
  • MBS Mobile Broadband System phones hand-held PCs, notebook PCs, smart phones, or multi-mode multi-band ( ⁇ -MB) terminals
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal integrating a data communication function such as schedule management, fax transmission and reception, which are functions of a personal portable terminal, in a mobile communication terminal.
  • a multimode multiband terminal is a multi-modem chip that can operate in both portable Internet systems and other mobile communication systems (e.g., CDMA Code Division Multiple Access 2000 system, WCDMA (Wideband CDMA) system, etc.) Speak terminal.
  • Embodiments of the invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may include one or more appli cation specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), and PLDs (r ogr).
  • ASICs appli cation specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs r ogr
  • Ammab 1 e logic devices e logic devices
  • FPGAs yield programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of modules, procedures or functions for performing the functions or operations described above.
  • the software code may be stored in the memory units 2180 and 2190 to be driven by the processors 2120 and 2130.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention can be applied to various wireless access systems.
  • various radio access systems include 3rd Generation Partnership Project (3GPP), 3GPP2 and / or IEEE 802.xx (Institute of Electrical and Electronic Engineers 802) systems.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP2 3rd Generation Partnership Project2
  • IEEE 802.xx Institute of Electrical and Electronic Engineers 802
  • Embodiments of the present invention can be applied not only to the various radio access systems, but also to all technical fields that use the various radio access systems.

Abstract

본 발명은 향상된 물리하향링크제어채널(E-PDCCH)을 검색하는 방법들 및 이를 지원하는 장치들을 개시한다. 본 발명의 일 실시예로서 무선접속시스템에서 향상된 물리하향링크제어채널 (E-PDCCH)을 검색하는 방법은, 제어채널영역을 블라인드 디코딩하여 레거시 물리하향링크제어채널 (PDCCH)을 검색하는 단계와 검색한 레거시 PDCCH를 기반으로 상기 E-PDCCH를 검색하는 단계를 포함할 수 있다. 이때, 레거시 PDCCH는 E-PDCCH가 할당되는 서브프레임에서는 항상 해당 서브프레임의 첫 번째 심볼부터 세 번째 심볼 모두를 사용하여 할당되는 것이 바람직하다.

Description

【명세서】
【발명의 명칭】
향상된 물리하향링크제어채널영역을 검색하는 방법
【기술분야】
본 발명은 무선접속시스템에 관련된 것으로서, 향상된 물리하향링크제어채널 (E-PDCCH: Enhanced Physical Downlink Control Channel)을 검색하는 방법 및 이를 지원하는 장치에 관한 것이다. 특히, 레가시 PDCCH의 할당 위치를 기반으로 향상된 E-PDCCH를 검색하는 방법에 관한 것이다.
【배경기술】
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원 (대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속 (multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA (code division multiple access) 시스템, FDMA( frequency division multiple access) 入)스템, TDMA(t ime division multiple access) 시스템, 0FDMA( orthogonal frequency division multiple access) 시스템, SC-FDMAC sin le carrier frequency division multiple access) 시스템 등이 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 목적은 향상된 물리하향링크제어채널 (E-PDCCH)을 획득하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 단말이 E-PDCCH 검색 시간을 줄일 수 있는 방법으로서, 기존의 레가시 PDCCH만을 검색하더라도 추가적인 검색이나 지연이 없이도 E-PDCCH의 위치를 획득할 수 있는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 기존의 PDCCH 포맷에 변화를 주지 않으면서 동시에 E-PDCCH의 정보를 획득할 수 있는 방법들을 제공하는 것이다.
본 발명의 또 다른 목적은 기존의 PDSCH 영역에 대한 변화를 주지 않으면서
E-PDCCH를 PDSCH 영역에 할당하는 방법들을 제공하는 것이다.
본 발명의 또 다른 목적은 상술한 방법들을 지원하는 장치를 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
【기술적 해결방법】
본 발명은 향상된 물리하향링크제어채널 (E-PDCCH)을 검색하는 방법 및 이를 지원하는 장치들을 개시한다.
본 발명의 일 양태로서 무선접속시스템에서 향상된 물리하향링크제어채널 (E-PDCCH)을 검색하는 방법은, 제어채널영역을 블라인드 디코딩하여 레거시 물리하향링크제어채널 (PDCCH)을 검색하는 단계와 검색한 레거시 PDCCH를 기반으로 상기 E-PDCCH를 검색하는 단계를 포함할 수 있다. 이때, 레거시 PDCCH는 E-PDCCH가 할당되는 서브프레임에서는 항상 해당 서브프레임의 첫 번째 심볼부터 세 번째 심불 모두를 사용하여 할당되는 것이 바람직하다.
상기 일 양태에서, 레거시 PDCCH의 할당 영역에 대한 시작위치정보, 종료위치정보 및 크기정보 중 하나 이상을 이용하여 E-PDCCH의 할당위치정보를 획득하는 단계를 더 포함하고, E-PDCCH 검색 단계에서 E-PDCCH의 할당위치정보를 이용하여 E-PDCCH를 검색하되, E-PDCCH는 제어채널영역이 아닌 데이터채널영역에 할당된다.
본 발명의 다른 양태로서 무선접속시스템에서 향상된 물리하향링크제어채널
(E-PDCCH)을 검색하는 단말은, 송신모돌, 수신모들 및 E-PDCCH를 검색하기 위한 프로세서를 포함할 수 있다. 이때, 프로세서는 제어채널영역을 블라인드 디코딩하여 레거시 물리하향링크제어채널 (PDCCH)올 검색하고, 검색한 레거시 PDCCH를 기반으로 E-PDCCH를 검색할 수 있다. 이때, 레거시 PDCCH는 E-PDCCH가 할당되는 서브프레임에서는 항상 해당 서브프레임의 첫 번째 심볼부터 세 번째 심볼 모두를 사용하여 할당되는 것이 바람직하다.
또한 프로세서는, 레거시 PDCCH의 할당 영역에 대한 시작위치정보, 종료위치정보 및 크기정보 중 하나 이상을 이용하여 E-PDCCH의 할당위치정보를 획득하고, E-PDCCH 검색 단계에서 E-PDCCH의 할당위치정보를 이용하여 E-PDCCH를 검색하되, E-PDCCH는 제어채널영역이 아닌 데이터채널영역에 할당된다.
상기 본 발명의 양태들에서 레거시 PDCCH를 통해 전송되는 레거시 PDCCH 신호는 단말 특정 순환중복검사 (CRC) 비트로 마스킹되어 전송될 수 있다.
이때, E-PDCCH를 통해 전송되는 E-PDCCH 신호는 공용 CRC로 마스킹되어 전송될 수 있다.
또는, E-PDCCH를통해 전송되는 E-PDCCH신호는 단말 특정 CRC로 마스킹되어 전송될 수 있다. 상기 할당위치정보는 ienh 은 함수 f( ' d,s'eg)를 이용하여 계산되되,
/, 는 레가시 PDCCH의 시작위치정보, //e;rf 는 레가시 PDCCH의 종료위치정보, _¾는 레가시 PDCCH의 크기정보이다.
상술한 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
【유리한 효과】
본 발명의 실시예들에 따르면 다음과 같은 효과가 있다.
첫째, 단말은 향상된 물리하향링크제어채널 (E-PDCCH)을 효율적으로 획득할 수 있다. 즉, 단말은 기존의 레가시 PDCCH만을 검색하더라도 추가적인 검색이나 지연이 없이도 E-PDCCH의 위치를 획득함으로써 E-PDCCH 검색 시간을 줄일 수 있다. 둘째, 기지국 또는 네트워크에서 기존의 PDCCH 포맷에 변화를 주지 않으면서도, 단말은 동시에 E-PDCCH의 정보를 획득할 수 있다.
셋째, 기지국 또는 네트워크에서 기존의 PDSCH 영역에 대한 변화를 주지 않으면서도 E-PDCCH를 PDSCH 영역에 할당할 수 있다.
본 발명의 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
【도면의 간단한 설명】
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되고, 첨부된 도면들은 본 발명에 대한 다양한 실시예들을 제공한다. 또한, 첨부된 도면들은 상세한 설명과 함께 본 발명의 실시 형태들을 설명하기 위해 사용된다.
도 1은 본 발명의 실시예들에서 사용될 수 있는 무선 프레임의 구조를 나타내는 도면이다. - 도 2는 발명의 실시예들에서 사용될 수 있는 하나의 하향링크 슬롯에 대한 자원 그리드 (Resource Grid)를 나타내는 도면이다.
도 3은 발명의 실시예들에서 사용될 수 있는 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 발명의 실시예들에서 사용될 수 있는 상향링크 서브프레임 구조의 일례를 나타내는 도면이다.
도 5는 본 발명의 실시예들에서 사용될 수 있는 송신 안테나 개수에 따른 파일럿 심볼 구조의 일례를 나타내는 도면이다.
도 6은 1 개의 송신 안테나를 사용하는 경우, 파일럿 심볼을 부반송파 단위로 천이하는 방법의 일례를 나타낸다.
도 7은 본 발명의 실시예들에서 사용될 수 있는 제어채널들이 하향링크 서브프레임에 할당되는 모습의 일례 나타낸다.
도 8은 본 발명의 실시예들에서 사용될 수 있는 제어채널들 중 PCFICH 신호가 전송되는 형태의 일례를 나타내는 도면이다.
도 9는 본 발명의 실시예들에서 사용될 수 있는 제어채널들 중 PHICH신호가 전송되는 형태의 일례를 나타내는 도면이다.
도 10은 본 발명의 실시예들에서 제어 채널을 구성하는데 사용되는 자원 단위를 나타낸다.
도 11은 본 발명의 실시예들에서 제어 영역 내에서 PHICH가 할당되는 예를 나타낸다.
도 12는 본 발명의 실시예들에서 사용될 수 있는 단말의 구조 및 SC-FDMA 방식과 0FDMA 방식을 설명하기 위한 도면이다.
도 13은 본 발명의 실시예들에서 사용 가능한 주파수 도메인에서 단일 반송파 특성을 만족하기 위한 주파수 도메인상의 신호 맵핑 방식을 설명하는 도면이다.
도 14는 SC-FDMA 방식에 따른 전송 신호를 복조 (demodulation)하기 위한 참조 신호 (RS: Reference Signal)의 송신 처리를 설명하기 위한 블록도이다.
도 15는 SOFDMA방식에 따른 서브프레임 구조에서 참조신호 (RS)가 맵핑되는 심볼 위치를 나타내는 도면이다.
도 16은 클러스터 SC-FDMA에서 DFT 프로세스 출력 샘플들이 단일 캐리어에 맵핑되는 신호 처리 과정을 도시하는 도면이다.
도 17 및 도 18은 클러스터 SC-FDMA에서 DFT 프로세스 출력 샘플들이 멀티캐리어 (multi-carrier)에 맵핑되는 신호 처리 과정을 도시하는 도면이다.
도 19는 세그먼트 (segmented) SC— FDMA의 신호 처리 과정을 도시하는 도면이다.
도 20은 본 발명의 실시예들에서 사용되는 E-PDCCH의 할당 위치의 일례를 나타내는 도면이다. 도 21은 본 발명의 실시예로서 E-PDCCH가 PDSCH 영역에 할당되는 모습의 일례를 나타내는 도면이다.
도 22는 본 발명의 실시예로서 E-PDCCH가 PDSCH 영역에 할당되는 모습의 다른 일례를 나타내는 도면이다.
도 23에서 설명한 장치는 도 1 내지 도 22에서 설명한 방법들이 구현될 수 있는 수단이다.
【발명의 실시를 위한 형태] 본 발명의 실시예들은 무선접속시스템에서 사용되는 향상된 물리하향링크제어채널 (E-PDCCH: Enhanced Physical Downlink Control Channel)을 검색하는 방법 및 이를 지원하는 장치들을 개사한다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
본 명세서에서 본 발명'의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드 (terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드 (upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국 (fixed station), Node B, eNode B(eNB), 발전된 기지국 (ABS: Advanced Base Station)또는 억세스 포인트 (access point)등의 용어에 의해 대체될 수 있다. '
또한, 본 발명의 실시예들에서 단말 (Terminal)은 사용자 기기 (UE: User
Equi ment),이동국 (MS: Mobile Station),가입자 단말 (SS: Subscriber Station),이동 가입자 단말 (MSS: Mobile Subscriber Station), 이동 단말 (Mobile Terminal) 또는 발전된 이동단말 (AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및 /또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및 /또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802. XX 시스템 , 3GPP(3rd Generat ion Partnership Project)시스템, 3GPP LTE시스템 및 3GPP2시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213 및 3GPP TS 36.321 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. 이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정 (特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access) , FDMA( frequency division mult iple access) , TDMA(t ime division mult iple access) , 0FDMA( orthogonal frequency division multiple access) , SC~FDMA( single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
CDMA는 UTRA Jniversal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile c ommun i c a t i ons ) /GPRS ( Gene r a 1 Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA( Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS Jniversal Mobile Telecommunications System)의 일부이다.3GPP LTECLong Term Evolution)은 E-UTRA를 사용하는 E-UMTS( Evolved UMTS)의 일부로써, 하향링크에서 0FDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다. 본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해 , 본 발명의 실시예들을 3GPP LTE/LTE-A시스템을 위주로 기술하지만 IEEE 802.16e/m시스템 등에도 적용될 수 있다.
1. 3GPP LTE/LTE 시스템
무선 접속 시스템에서 단말은 하향링크 (DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크 (UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고 이들이 송수신 하는 정보의 종류 /용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 발명의 실시예들에서 사용될 수 있는 무선 프레임의 구조를 나타내는 도면이다.
무선 프레임 (radio frame)은 10개의 서브프레임 (subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯 (slot)으로 구성된다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 ΤΠ (transmission time interval)이라 한다. 이때, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 이다.
하나의 슬롯은 시간 영역 (time domain)에서 복수의 OFDM (Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록 (RB: Resource Block)을 포함한다. 0FDM 심볼은 하향링크에서 0FDMA( Orthogonal Frequency Division Multiplexing Access) 방식을 사용하는 3GPP LTE시스템에서 하나의 심볼 구간 (symbol period)을 표현하기 위한 것이다. 즉, 0FDM 심볼은 다중접속방식에 따라 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. RB는 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다.
도 1의 무선 프레임의 구조는 예시에 불과하며, 무선 프레임에 포함되는 서브프레임의 수, 서브프레임에 포함되는 슬롯의 수 및 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 발명의 실시예들에서 사용될 수 있는 하나의 하향링크 슬롯에 대한 자원 그리드 (Resource Grid)를 나타내는 도면이다.
하향링크 슬롯은 시간 영역 (time domain)에서 복수의 OFDM심볼을 포함한다. 도 2에서는 하나의 하향링크 슬롯이 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록 (RB: Resource Block)은 주파수 영역에서 12개의 부반송파를 포함하는 것을 예시적으로 기술한다.
자원 그리드 상의 각 요소 (element)를 자원요소 (RE: Resource Element)라 하며 , 하나의 자원블록 (RB)은 12X7개의 자원요소 (RE)를 포함한다. 하향링크 슬롯에 포함되는 자원블록의 수 NDL은 셀에서 설정되는 하향링크 전송 대역폭 (bandwidth)에 종속한다.
도 3은 발명의 실시예들에서 사용될 수 있는 하향링크 서브프레임의 구조를 나타내는 도면이다.
서브 프레임은 시간 영역에서 2개의 슬롯을 포함한다. 서브 프레임 내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심볼들이 제어채널들이 할당되는 제어영역 (control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다.
3GPP LTE 시스템에서 사용되는 하향링크 제어채널들은 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel)등이 있다.서브프레임의 첫번째 OFDM 심볼에서 전송되는 PCFICH 신호는 서브프레임 내에서 제어채널신호의 전송에 사용되는 OFDM 심볼의 수 (즉, 제어영역의 크기)에 관한 정보를 나른다. PHICH는 상향링크 HARQ (Hybrid Automatic Repeat Request)에 대한 ACK ( Acknow 1 edgement ) /NACK (None-Acknow 1 edgement ) 신호를 나른다. 즉, 단말 (UE: User Equipment)이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보 (DCI: Downlink Control Information)라고 한다. DCI는 단말 (UE) 또는 단말 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 및 상향링크 전송 전력 제어명령 등을 포함할 수 있다.
PDCCH는 하향링크 공유채널 (DL-SCH: Downlink Shared Channel)의 전송포맷 및 자원할당정보, 상향링크 공유채널 (UL-SCH: Uplink Shared Channel)의 전송포맷 및 자원할당정보, 페이징 채널 (PCH: Paging Channel) 상의 페이징 정보 DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 임의접속응답과 같은 상위계층 제어 메시지에 대한 자원 할당 정보, 임의의 UE 그룹 내에서 개별 UE들에 대한 전송 전력 제어 명령 집합, 전송 전력 제어 명령, VoIP(Voice of Internet Protocol)의 활성화 등에 대한 정보를 나를 수 있다.
다수의 PDCCH는 하나의 제어 영역에서 전송될 수 있고, UE는 다수의 PDCCH를 모니터할 수 있다. PDCCH는 하나 이상의 연속된 제어채널요소 (CCE: Control Channel Element)들 상에서 전송될 수 있다. CCE는 무선 채널의 상태에 기반하여 PDCCH를 하나의 코딩율로 제공하는데 사용되는 논리적 할당 자원이다. CCE는 다수의 자원요소그룹 (REG)에 대응된다. PDCCH의 포맷 및 상기 PDCCH의 가용한 비트의 개수는 CCE에서 제공되는 코딩율 및 CCE의 개수 간 상관관계에 따라 결정된다. 기지국은 UE에 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC를 붙인다.
CRC는 PDCCH의 사용방법 또는 소유자에 따라 고유의 식별자 (RNTI: Radio Network Temporary Identifier)와 함께 마스크된다. PDCCH가 특정 UE를 위한 것이면, UE의 고유 식별자 (예를 들어, C-RNTI: Cell-RNTI)는 CRC에 마스킹된다. PDCCH가 페이징 메시지를 위한 것이면, 페이징 지시자 식별자 (예를 들어, P-RNTI: Paging-RNTI)가 CRC에 마스킹된다. 또한, PDCCH가 시스템 정보 (특히, 시스템 정보 블록)를 위한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(S-RNTI)가 CRC에 마스킹될 수 있다. UE의 임의접속 프리엠블의 수신에 대한 응답인 임의접속 응답을 지시하기 위해, 임의접속 RNTKRA-RNTI)가 CRC에 마스킹될 수 있다.
반송파 집성 환경에서는 PDCCH는 하나 이상의 컴포년트 캐리어를 통해 전송될 수 있으며, 하나 이상의 컴포넌트 캐리어에 대한 자원할당정보를 포함할 수 있다. 예를 들어, PDCCH는 하나의 컴포넌트 캐리어를 통해 전송되지만, 하나 이상의 PDSCH 및 PUSCH에 대한 자원할당 정보를 포함할 수 있다.
도 4는 발명의 실시예들에서 사용될 수 있는 상향링크 서브프레임 구조의 일례를 나타내는 도면이다.
도 4를 참조하면 , 상향링크 서브프레임은 복수 (예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH(Physical Uplink Shared Channel)를 포함하고 음성 정보를 포함하는 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH(Physical Uplink Control Channel)를 포함하고 상향링크 제어 정보 (UCI: Uplink Control Information)를 전송하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍 (RB pair)을 포함하며 슬롯을 경계로 호핑한다.
LTE 시스템에서 단말은 단일 반송파 특성을 유지하기 위해 PUCCH 신호와 PUSCH 신호를 동시에 전송하지 않는다. 다만, LTE-A 시스템에서는 단말의 전송 모드에 따라 PUCCH 신호 및 PUSCH 신호를 동일 서브프레임에서 동시에 전송할 수 있으며, PUCCH 신호를 PUSCH 신호에 피기백하여 전송할 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 RB 쌍 (pair)으로 할당되고, RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부반송파를 차지한다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계 (slot boundary)에서 주파수 도약 (frequency hopping)된다고 한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR( Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. 00K(0n-0ff Keying) 방식을 이용하여 전송된다.
- HARQ ACK/NACK: PDSCH 상의 하향링크 데이터 패킷 또는 SPS(Semi -Per si stent Scheduling) 해제 (release)를 지시하는 PDCCH에 대한 웅답 신호이다. 하향링크 데이터 패킷 또는 SPS 해제를 지시하는 PDCCH가 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 웅답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 웅답으로 ACK/NACK 2바트가 전송된다. TDD의 경우 다수의 하향링크 서브프레임들에 대한 ACK/NACK 웅답들을 모아져서 번들링 (bundling) 혹은 멀티플랙싱 (multiplexing)을 통하여 하나의 PUCCH에서 전송된다.
一 CQI (Channel Quality Indicator) 또는 CS I (Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIM0(Multiple Input Multiple Output)관련 피드백 정보는 RKRank Indicator)및 PMKPrecoding Matrix Indicator)를 포함한다. 서브프레임 당 20비트가 사용된다. 본 발명의 실시예들에서 CSI는 CQI, RI 및 PMI 값을 모두 포함하는 개념으로 사용될 수 있다.
단말이 서브프레임에서 전송할 수 있는 상향링크 제어 정보 (UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS( Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다. PUCCH는 전송되는 정보에 따라 7개의 포맷을 지원한다. .
표 1은 LTE에서 PUCCH포맷과 UCI의 맵핑 관계를 나타낸다.
【표 1】
Figure imgf000017_0001
Format 2 CQI 및 확장 CP에 대한 1또는 2비트의 HARQ ACK/NACK
Format 2a CQI 및 1 비트의 HARQ ACK/NACK
Format 2b CQI 및 2 비트의 HARQ ACK/NACK 도 5는 본 발명의 실시예들에서 사용될 수 있는 송신 안테나 개수에 따른 파일럿 심볼 구조의 일례를 나타내는 도면이다.
파일럿 심볼은 일반적으로 데이터 전송 분야에서 사용된다. 파일럿 심볼은 송수신단에서 복조용 기준 반송파나 각종 채널에 대한 타이밍을 얻기 위해 사용되는 신호이다. 다양한 통신 시스템에서 파일럿 심볼은 참조신호 (RS: Reference Signal) 등 다양한 용어로 사용될 수 있다. 다만, 본 발명의 실시예들에서 파일럿 심볼은, 채널의 동기를 맞추거나, 반송파의 위상을 동기화하거나 또는 기지국 정보 획득의 도움을 주기 위해 실제 데이터를 가지지 않으며 높은 출력으로 전송되는 모든 심볼 또는 신호를 의미한다.
도 5는 신 안테나의 개수에 따라 각 송신 안테나의 파일럿 심볼의 위치를 나타내고 있다. 도 5에서 Ri는 i 번째 송신안테나의 파일럿 심볼을 나타낸다. 또한, 도 5(a)는 1개의 송신안테나를 사용하고 도 5(b)는 2개의 송신안테나를 사용하고ᅳ 도 5(c)는 4개의 송신안테나를 사용하는 경우를 나타낸다.
도 5에서 각 파일럿 심볼은 일정한 주파수 간격 및 시간 간격으로 배치되어 있음을 알 수 있다. 도 5와 같이 송신 안테나의 개수가 증가하면 파일럿 심볼의 오버헤드가 증가할 수 있다.
만약, 도 5의 파일럿 심볼의 구조가 기지국의 제 1섹터 (Sector 1)를 위해 사용된다면, 제 2섹터 및 게 3섹터에서는 셀 간에 파일럿 심볼이 충돌하지 않도록 주파수 영역 또는 시간 영역에서 부반송파 단위 또는 OFDM 심볼 단위의 천이를 통하여 파일럿 심볼을 보호할 수 있다. 이하, 파일럿 채널을 부반송파 단위 또는 OFDM 심볼 단위의 천이를 통해 간섭을 제거하는 방법을 설명한다.
도 6은 1 개의 송신 안테나를 사용하는 경우, 파일럿 심볼을 부반송파 단위로 천이하는 방법의 일례를 나타낸다.
도 6을 참조하면, 도 6(a)의 송신 안테나 (1 Tx antenna)의 경우 주파수 영역에서 각 파일럿 심블이 6 부반송파 간격으로 위치하고 있음을 알 수 있다. 따라서, 주파수 영역에서 부반송파 단위의 천이를 수행하면, 적어도 5 개의 셀은 다른 위치에 파일럿 심볼을 배치할 수 있다. 즉, 도 6에서 여러 개의 인근 셀들 (Cell 1 내지 Cell 6)이 주파수 천이를 통해 파일럿 심볼의 층돌을 피하는 것을 확인할 수 있다.
도 7은 본 발명의 실시예들에서 사용될 수 있는 제어채널들이 하향링크 서브프레임에 할당되는 모습의 일례 나타낸다.
도 7을 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 중에서 처음 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도 7에서 R0-R3는 안테나 0~3에 대한 CRS를 나타낸다. CRS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 CRS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 CRS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 (1) 하향링크 제어채널올 위한 OFDM 심볼의 개수를 각 서브프레임마다 조정하기 위해 사용되는 물리제어포맷지시자채널 (PCFICH: Physical Control Format Indicator Channel), (2) 하향링크의 수신확인정보 (ACK/NACK)를 전송하는 채널인 물리하이브리드 ARQ지시자채널 (PHICH: Physical Hybrid-ARQ Indicator Channel) 및 (3)하향링크 /상향링크 데얼의 송수신을 위한 제어정보를 전송하기 위한 물리하향링크제어채널 (PDCCH) 등이 있다.
도 8은 본 발명의 실시예들에서 사용될 수 있는 제어채널들 중 PCFICH 신호가 전송되는 형태의 일례를 나타내는 도면이다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치한다. PCFICH는 4개의 REG로 구성되고, 각각의 REG는 셀 ID에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE로 구성된다. PCFICH는 매 서브프레임마다 전송되어야 하며 총 1~3의 값을 가지며, 16 QPSK (Quadrature Phase Shift Keying)로 변조된다.
다음 표 2는 PCFICH를 통해 전송되는 채널포맷지시자 (CFI: Control Format Indicator)를 나타낸다. '
【표 2】
Figure imgf000020_0001
표 2를 참조하면, CFI가 1인 경우는 0번째 0FDM 심볼에만 PD0CH에가 전송됨을 나타내고, CFI가 2 또는 CFI 3을 지시하는 경우에는 각각 0~1 번째 QFDM심볼 또는 0~2번째 OFDM심볼에서 PDCCH가 전송됨을 나타낸다.
물론, 표 2에서 설정한 CFI 값은 대역폭에 따라 다르게 정의 될 수 있다. 예를 들면, 시스템의 대역폭이 특정 임계치 (threshold)보다 작은 경우에 , CFI=1, 2, 3은 각각 2, 3, 4 개의 OFDM심볼이 PDCCH를 위해 사용됨을 나타낼 수 있다.
도 8에서 REG는 4개의 부반송파로 구성된다. 이때, PCFICH를 위해 사용되는
REG에는 참조신호 (RS: Reference Signal)를 제외한 데이터 부반송파로만 구성되어 있으며 일반적으로 송신다이버시티 (transmit diversity) 기법을 적용하여 사용한다. 또한, REG의 위치가 셀간에 간섭을 주지 않도록 주파수 천이 (frequency shift) 되어 사용된다. 추가적으로, PCFICH는 항상 서브프레임의 첫 번째 OFDM 심볼에 전송 되므로 단말 또는 수신기는 각 서브프레임을 디코딩 시 제일 먼저 PCFICH의 정보를 확인하고, PCFICH신호에 따라 그 후 PDCCH의 정보를 수신한다.
도 9는 본 발명의 실시예들에서 사용될 수 있는 제어채널들 중 PHICH신호가 전송되는 형태의 일례를 나타내는 도면이다.
PHICH는 물리 HARQ 지시자 채널로서 상향링크 데이터 전송에 대한 HARQ ACK/NACK 정보를 전송하기 위해 사용된다. PHICH는 3개의 REG로 구성되고, 셀 특정 (eel卜 specific)하게 스크램블링 된다. AC /NACK 정보는 1 비트로 지시되며, 확산계수 (SF: Spreading Factor) 4로 확산되고 3번 반복된다. 복수의 PHICH가 동일한 자원에 매핑될 수 있다. PHICH는 BPSK (Binary phase shift keying)로 변조된다. 도 9는 특정 대역폭에서 PCFICH와 PHICH의 할당 위치를 나타낸다. PHICH는 상향링크 데이터채널에 대한 ACK/NACK 정보를 송신하기 위한 것이며, 하나의 서브프레임에 여러 개의 PHICH그룹이 만들어지고, 하나의 PHICH그룹에는 여러 개의 PHICH가 포함될 수 있다. 따라서, 하나의 PHICH 그룹에는 여러 개의 단말에 대한 PHICH 채널이 포함되어 있다.
도 9에서 도시된 여러 개의 PHICH 그룹에서 각 단말기에 대한 PHICH 할당은 PUSCH 자원할당의 최소 PRB 인덱스와 UL 그랜트 (UL grant)로 전송되는 DMRS의 순환천이 (cyclic shift)를 이용하여 할당한다. PHICH 자원은 (" 와 같은 인덱스 쌍 (index pair)으로써 알려진다. 이때, 인덱스 쌍 (" ," ¾cw)에서 r췌 는 PHICH 그룹 번호, r c„ 는 해당 PHICH 그룹 내에서의 직교시퀀스인덱스 (orthogonal sequence index)를 의미한다. 현재, 3GPP LTE 시스템에서 사용되는 직교 시퀀스의 일례는 다음 표 3과 같다.
【표 3】
시퀀스 인텍스 직교시퀀스
"PHICH Normal cyclic Extended eye lie pref ix prefix
iVsCH =4 WS P F HICH =2
Figure imgf000023_0001
다음 수학식 1은 PHICH 자원을 나타내는 인덱스 쌍에 포함되는 요소를 구하는 방법을 나타낸다.
【수학식 1】 nPHICH ~ ^PRB RA + nDMRS
seq j lowest _index ι r group
PHICH 1 PRB RA 1 ;v PHICH , mod 2N^'CH
수학식 i에서 „ DMRS PHICH와 관련된 UL 전송에서 사용되는 DMRS의 순환 천이 값이다. NS P^H은 PHICH를 위해 사용되는 확산 계수의 크기이다. i' s "dex은 상향링크 자원할당에 대한 최소의 PRB 인덱스이다. Λ 은 구성된 PHICH 그룹의 개수를 나타낸다. 수학식 1에서 사용되는 PHICH그룹의 개수를 나타내며, 다음 수학식 2와 같이 계산될 수 있다.
【수학식 2】 for normal cyclic prefix
group
JV PHICH
for extended cyclic prefix
Figure imgf000024_0001
수학식 2에서 Ng는 PBCH로 전송되는 2 비트 (Nge {1/6, 1/2, 1,2} )로 표현되는
PHICH 자원의 양과 관련된 정보이다. 추가적으로 PHICH 그룹은 PHICH 구간 (duration)에 따라서 하나의 서브프레임 안에서 서로 다른 시간영역으로 구성 될 수 있다.
도 10은 본 발명의 실시예들에서 제어 채널을 구성하는데 사용되는 자원 단위를 나타낸다.
도 10(a)는 송신 안테나의 개수가 1 또는 2개인 경우를 나타내고, 도 10(b)는 송신 안테나의 개수가 4개인 경우를 나타낸다. 송신 안테나의 개수에 따라 CRS 패턴만 상이할 뿐 제어 채널과 관련된 자원 단위의 설정 방법은 동일하다. 도 10(a) (b)를 참조하면, 제어 채널을 위한 자원 단위는 REG이다. REG는 CRS를 제외한 상태에서 이웃한 4개의 자원요소로 구성된다. REG는 도면에 굵은 선으로 도시되었다. PFICH 및 PHICH는 각각 4개의 REG 및 3개의 REG를 포함한다. PDCCH는 CCE 단위로 구성되며, 하나의 CCE는 9개의 REG를 포함한다. 도면은 CCR를 구성하는 REG가 서로 이웃하고 있는 것으로 예시하였지만, CCR를 구성하는 9개의 REG로 분산될 수 있다.
도 11은 본 발명의 실시예들에서 제어 영역 내에서 PHICH가 할당되는 예를 나타낸다.
PHICH의 할당은 PCFICH에 의해 영향을 받는다. PCFICH는 표 1과 같이 샐 ID에 따라 시작 위치는 달라지지만, 첫 번째 0FDM 심볼의 전체 부반송파를 4등분한 균등 간격에 4개 REG를 사용하여 전송된다. PCFICH가 할당되고 남은 REG에 대해 PHICH가 정의된다. PHICH기간 (duration)에 의해 설정된 하나 이상의 OFDM심볼들에 대하여, 각 0FTM 심볼들 상에서 RS 및 PCFICH (첫 번째 OFDM 심볼)을 제외하고 남은 REG들을 3등분하여 특정 시작 위치에서 연속으로 PHICH 그룹이 할당된다.
도 11을 참조하면, 주파수 영역에서 3개의 PHICH 할당 구간으로 나뉘어져 있고, 각각의 할당 구간에는 PHICH 그룹이 연속적으로 할당된 것을 볼 수 있다. 도면에서 동일한 숫자는 동일한 PHICH 그룹에 속하는 것을 나타낸다. PHICH 기간은 제어' 영역의 최대 크기에 의해 제한되며, PHICH 기간은 1-3 OFDM 심볼에 해당한다. 복수의 OFDM 심블이 PHICH에 사용되는 경우, 송신 다이버시티를 위해 동일한 PHICH 그룹에 속한 REG는 서로 다른 OFDM 심볼을 사용하여 전송된다. 다시 도 4를 참조하면, PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼 영역에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시되고, n= 1, 2, 3 이다. PDCCH는 CCE단위로 할당되고, 하나의 CCE는 9개의 REG를 포함한다. PDCCH는 전송 채널인 페이징 채널 (PCH: Paging channel) 및 하향링크 공유채널 (DL-SCH: Downlink-shared channel)의 자원할당과 관련된 정보, 상향링크 스케줄링 그랜트, HARQ 정보 등을 알려준다.
PCH 및 DL-SCH는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어신호 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 송신 및 수신한다. PDSCH의 데이터가 어떤 단말 (하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩을 해야 하는지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI (Radio Network Temporary Identity)로 CRC 마스킹 (masking)되어 있고, 라는 무선자원 (예를 들면 , 주파수 위치 ) 및 "C '라는 전송형식정보 (예를 들면, 전송 블톡 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이렇게 되면, 해당 셀에 있는 하나 이상의 단말들은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 와 에 의해 지시되는 PDSCH를 수신한다. 2. 3GPP LTE-A시스템에서의 상향링크 구조
무선 통신 시스템에서 단말이 상향링크로 신호를 전송하는 경우에는 기지국이 하향링크로 신호를 전송하는 경우에 비해 PAPR(Peak-to-Average Ratio)이 문제된다. 따라서, LTE 시스템 및 LTE-A 시스템에서는 상향링크 신호 전송은 하향링크 신호 전송에 이용되는 0FOMA 방식과 달리 SC-FDMA(S ingle Carrier-Frequency Division Multiple Access) 방식이 이용되고 있다.
도 12는 본 발명의 실시예들에서 사용될 수 있는 단말의 구조 및 SC-FDMA 방식과 0FDMA 방식을 설명하기 위한 도면이다.
3GPP 시스템 (e.g. LTE 시스템)은 하향링크에서 0FDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. 도 12를 참조하면, 상향링크 신호 전송을 위한 단말 및 하향링크 신호 전송을 위한 기지국 모두 직렬 -병렬 변환기 (Serial-to-Parallel Converter: 1201), 부반송파 맵퍼 (1203), M-포인트 IDFT 모들 (1204) 및 CP(Cyclic Prefix) 추가 모들 (1206)을 포함하는 점에 있어서는 동일하다.
다만, SC-FDMA 방식으로 신호를 전송하기 위한 단말은 N-포인트 DFT 모들 (1202)을 추가로 포함한다. N-포인트 DFT 모듈 (1202)은 M-포인트 IDFT 모들 (1204)의 IDFT 처리 영향을 일정 부분 상쇄함으로써 전송 신호가 단일 반송파 특성 (single carrier property)을 가지도록 한다.
도 13은 본 발명의 실시예들에서 사용 가능한 주파수 도메인에서 단일 반송파 특성을 만족하기 위한 주파수 도메인상의 신호 맵핑 방식을 설명하는 도면이다.
도 13(a)는 집중형 맵핑 (localized mapping) 방식을 나타내며, 도 13(b)는 분산형 맵핑 (distributed mapping)방식을 나타낸다. 이때, SC-FDMA의 수정된 형태인 클러스터 (clustered)는 부반송파 맵핑 (mapping) 과정에서 DFT 프로세스 출력 샘플들을 부 그룹 (sub-group)으로 나뉘고, 이들을 주파수 도메인 (흑은 부반송파 도메인)에 불연속적으로 맵핑한다.
도 14는 SC-FDMA 방식에 따른 전송 신호를 복조 (demodulation)하기 위한 참조 신호 (RS: Reference Signal)의 송신 처리를 설명하기 위한 블록도이다.
LTE 표준 (예를 들어, 3GPP release 8)에서는, 데이터 부분은 시간 영역에서 생성된 신호가 DFT 처리를 통해 주파수 영역 신호로 변환된 뒤에 부반송파 맵핑 후 IFFT 처리를 하여 전송되지만 (도 12 참조), RS는 DFT 처리를 생략하고 주파수 영역에서 바로 생성하여 (S1410) 부반송파 상에 맵핑한 후 (S1420) IFFT 처리 (S1430) 및 CP추가 (S1440)를 거쳐 전송되는 것으로 정의하고 있다.
도 15는 SC-FDMA방식에 따른 서브프레임 구조에서 참조신호 (RS)가 맵핑되는 심볼 위치를 나타내는 도면이다. 도 15(a)는 일반 CP 경우에 하나의 서브프레임에서 2 개의 슬롯 각각의 4 번째 SC-FDMA 심불에 RS가 위치하는 것을 도시한다. 도 15(b)는 확장된 CP 경우에 하나의 서브프레임에서 2 개의 슬롯 각각의 3 번째 SC-FDMA 심볼에 RS가 위치하는 것을 도시한다.
도 16은 클러스터 SC-FDMA에서 DFT 프로세스 출력 샘플들이 단일 캐리어에 맵핑되는 신호 처리 과정을 도시하는 도면이다. 또한 도 17 및 도 18은 클러스터 SC-FDMA에서 DFT 프로세스 출력 샘플들이 멀티캐리어 (multi-carrier)에 맵핑되는 신호 처리 과정을 도시하는 도면이다.
도 16은 인트라 캐리어 (intra— carrier) 클러스터 SOFDMA를 적용하는 예이고 도 17 및 도 18은 인터 캐리어 (inter-carrier) 클러스터 SC—FDMA를 적용하는 예에 해당한다. 도 17은 주파수 도메인에서 연속적 (contiguous)으로 컴포넌트 캐리어 (component carrier)가 할당된 상황에서 인접한 컴포넌트 캐리어간의 부반송파 간격 (spacing)이 정렬된 경우 단일 IFFT 블록을 통해 신호를 생성하는 경우를 나타낸다. 도 18은 주파수 도메인에서 비연속적 (non-contiguous)으로 컴포년트 캐리어가 할당된 상황에서 복수의 IFFT 블록을 통해 신호를 생성하는 경우를 나타낸다.
도 19는 세그먼트 (segmented) SC-FDMA의 신호 처리 과정을 도시하는 도면이다.
세그먼트 SOFDMA는 임의 개수의 DFT와 같은 개수의 IFFT가 적용되면서 DFT와 IFFT간의 관계 구성이 일대일 관계를 가짐에 따라 단순히 기존 SC-FDMA의 DFT 확산과 IFFT의 주파수 부반송파 맵핑 구성을 확장한 것으로 NxSC-FDMA 또는 NxDFT-s-OFDMA라고 표현되기도 한다. 본 명세서는 이들을 포괄하여 세그먼트 SC-FDMA라고 명명한다. 도 19을 참조하면, 세그먼트 SC-FDMA는 단일 반송파 특성 조건을 완화하기 위하여 전체 시간 도메인 변조 심볼들을 N(N은 1보다 큰 정수)개의 그룹으로 묶어 그룹 단위로 DF 프로세스를 수행한다. 3. 다중 캐리어 집성 (Mult i -Carrier Aggregation) 환경
본 발명의 실시예들에서 고려하는 통신 환경은 다중 반송파 (Multi-Carrier) 지원 환경을 모두 포함한다. 즉, 본 발명에서 사용되는 멀티캐리어 시스템 또는 다중 반송파 집성 시스템 (mult i -carrier aggregation system)이라 함은 광대역을 지원하기 위해서, 목표로 하는 광대역을 구성할 때 목표 대역보다 작은 대역폭 (bandwidth)을 가지는 1개 이상의 컴포넌트 캐리어 (CC: Component Carrier)를 결합 (aggregation)하여 사용하는 시스템을 말한다.
본 발명에서 멀티 캐리어는 반송파의 집성 (또는, 캐리어 결합)을 의미하며, 이때 반송파 집성은 인접한 캐리어 간의 결합뿐 아니라 비 인접한 캐리어 간의 결합을 모두 의미한다. 또한, 캐리어 결합은 반송파 집성, 대역폭 결합 등과 같은 용어와 흔용되어 사용될 수 있다.
두 개 이상의 컴포넌트 캐리어 (CC)가 결합되어 구성되는 멀티캐리어 (즉, 반송파 집성)는 LTE— A 시스템에서는 100MHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성 (backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다.
예를 들어서 기존의 3GPP LTE 시스템에서는 { 4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며 , 3GPP LTE_advanced 시스템 (즉, LTE_A)에서는 LTE에서 지원하는 상기의 대역폭들만을 이용하여 20駆 z보다 큰 대역폭을 지원하도톡 할 수 있다. 또한, 본 발명에서 사용되는 멀티캐리어 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 결합 (즉, 반송파 집성 등)을 지원하도록 할 수도 있다.
LTE-A 시스템은 무선 자원을 관리하기 위해 셀 (cell)의 개념을 사용한다. 셀은 하향링크 자원과 상향링크 자원의 조합으로 정의되며, 상향링크 자원은 셀의 필수 요소는 아니다. 따라서, 샐은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 멀티캐리어 (즉, 캐리어 병합, 또는 반송파 집성)가 지원되는 경우, 하향링크 자원의 캐리어 주파수 (또는, DL CC)와 상향링크 자원의 캐리어 주파수 (또는, UL CC) 사이의 링키지 (linkage)는 시스템 정보 (SIB)에 의해 지시될 수 있다.
LTE-A 시스템에서 사용되는 셀은 프라이머리 셀 (PCell: Primary Cell) 및 세컨더리 셀 (SCell: Secondary Cell)을 포함한다. P셀은 프라이머리 주파수 (예를 들어, PCC: primary CO상에서 동작하는 셀을 의미하고, S셀은 세컨더리 주파수 (예를 들어, SCC: Secondary CO 상에서 동작하는 셀을 의미할 수 있다. 다만, 특정 단말에는 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다.
P샐은 단말이 초기 연결 설정 (initial connection establishment) 과정올 수행하거나 연결 재 -설정 과정을 수행하는데 사용된다. P셀은 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. S셀은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다.
P셀과 S셀은 서빙 셀로 사용될 수 있다. RRCLCONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P셀로만 구성된 서빙 셀이 단 하나 존재한다. 반면, R CLCONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과 하나 이상의 S셀이 포함된다.
초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S셀을 포함하는 네트워크를 구성할 수 있다. 멀티캐리어 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어 (CC)로서 동작할 수 있다. 즉, 다중 반송파 집성은 P셀과 하나 이상의 S셀의 결합으로 이해될 수 있다. 이하의 실시예에서는 프라이머리 컴포넌트 캐리어 (PCC)는 P샐과 동일한 의미로 사용될 수 있으며, 세컨더리 컴포넌트 캐리어 (SCC)는 S셀과 동일한 의미로 사용될 수 있다.
4. 향상된 물리하향링크제어채널 (E-PDCCH)
이하에서는 E-PDCCH에 대해서 상세히 설명한다. CA 환경에서 둘 이상의 셀들이 결합되어 사용되고 기존에는 존재하지 않았던 타입의 단말 (예를 들어, D2D 단말 등)이 사용되므로, 하나의 셀만이 사용되던 무선 환경에서보다 더 많은 제어정보의 송수신이 요구된다. 이러한 요구에 따라, 기존의 하향링크 제어채널인 PDCCH 이외에 추가적인 PDCCH가 필요로 한다. 즉, 추가적인 PDCCH는 LTE-A 시스템 (예를 들어, Rel-10, Rel-11)에서 사용되는 제어채널로서 기존의 PDCCH와는 다르게 사용된다. 따라서, 이하에서는 기존 LTE시스템에서 사용되는 PDCCH는 레가시 PDCCH로 부르기로 하고, LTE-A 시스템에서 추가적으로 사용되는 PDCCH는 향상된 PDCCH (E-PDCCH)로 부르기로 한다. 도 20은 본 발명의 실시예들에서 사용되는 E-PDCCH의 할당 위치의 일례를 나타내는 도면이다.
기존 LTE 시스템과의 호환성을 위해 E-PDCCH는 레가시 PDCCH가 할당되는 영역이 아닌 PDSCH 할당 영역에 할당되는 것이 바람직하다. 도 20을 참조하면, E-PDCCH는 레가시 PDSCH의 일정 영역에 할당되는 것을 확인할 수 있다.
이때, 단말이 E-PDCCH를 탐색하는 방법은 (1) 레가시 PDCCH를 통해 전송되는 자원할당정보를 통해 E-PDCCH의 할당영역을 획득하는 방법과 (2) 레가시 PDCCH를 읽지 않고 별도의 시그널링올 통해 E-PDCCH의 위치를 획득하는 방법이 있을 수 있다.
이때, 레가시 PDCCH를 읽지 않는 방법의 경우, 레가시 PDCCH에 담겨 있을 수 있는 정보까지 E-PDCCH에 넣어야 하므로 E-PDCCH의 부하가 커지는 문제가 생길 수 있다ᅳ 따라서, 단말은 되도록 레가시 PDCCH를 읽은 후 E— PDCCH를 읽어 추 적인 정보를 얻는 것이 바람직한 방향이다. 그러나, 이러한 경우 레가시 PDCCH를 읽기 위한 검색 (예를 들어, 블라인드 디코딩 (BD)) 이후 E-PDCCH를 읽기 위하여 추가적인 검색 과정이 필요하여 E-PDCCH 획득에 너무 많은 검색 시간과 자원을 사용하여야 한다는 것이 문제가 된다.
또한, 레가시 PDCCH에 E-PDCCH가 할당된 자원에 대한 위치정보 또는 해당 위치를 획득하는데 도움을 줄 수 있는 정보가 있다면 E-PDCCH를 탐색하는데 필요한 시간이 없어지거나 줄어드는 효과를 얻을 수 있다. 그러나, 레가시 PDCCH를 이용하여 E-PDCCH의 위치정보를 단말에 알려주기 위해서는 레가시 PDCCH에 대한 새로운 포맷이 요구되며, 이는 LTE 시스템과의 호환성에 문제가 있다.
따라세 이하의 본 발명의 실시예들은 E-PDCCH 검색 시간을 줄일 수 있는 방법 및 기존의 PDCCH 포맷에 변화를 주지 않으면서 동시에 E-PDCCH의 정보를 획득할 수 있는 방법들에 대해서 상세히 설명한다.
4.1 레가시 PDCCH의 위치에 따른 E-PDCCH의 위치 검색 방법 -1
5 이하에서는 레가시 PDCCH의 위치에 따라 E-PDCCH의 위치를 검색하는 방법에 대해서 설명한다. E-PDCCH의 할당 위치는 다음과 같이 정해질 수 있다.
E-PDCCH의 위치는 레가시 PDCCH의 위치 함수로서 결정될 수 있다. 예를 들어ᅳ 단말은 레가시 PDCCH를 검색하면, 레가시 PDCCH의 위치로부터 E-PDCCH의 위치를 별도의 탐색과정 없이 바로 구할 수 있다. 이때, 단말이 검출하는 레가시 PDCCH의 10 위치는 E-PDCCH의 시작 위치이거나 끝나는 위치 또는 둘 모두 일 수 있다. 또한, 단말은 레가시 PDCCH의 크기 역시 E-PDCCH의 위치를 구하는 변수로 사용할 수 있다. 즉, E-PDCCH의 할당위치정보를 / ^라 정의하면, / ^는 다음 수학식 3 내지 7과같이 나타낼 수 있다.
【수학식 3]
1 J lenh J lleg ''leg ' 13 leg J
【수학식 4】
Knh = fi eg , Sleg )
【수학식 5】
Knh = f^leg, Sleg )
0 【수학식 6】
hnh = fi eg ) 【수학식 7】
수학식 3 내지 7에서 ¾ 는 레가시 PDCCH의 시작위치, /는 레가시 PDCCH의 종료위치, g 는 레가시 PDCCH의 크기이다. 이때, sleg 는 CCE 기준의 크기이거나, REG 기준의 크기이거나, 자원요소 (RE) 기준의 크기이거나, 전송심볼 기준의 크기일 수 있다.
수학식 3 내지 7을 통해, 단말은 레가시 PDCCH 영역의 위치정보를 기반으로 Eᅳ PDCCH의 할당 위치를 검출할 수 있다. 예를 들에 단말은 검출한 레가시 PDCCH 영역으로부터 E-PDCCH가 몇 번째 PRB 그룹 (PDSCH 전송을 위한 단위)에 속하며, 시작점이 어디 인지를 알 수 있다.
따라서, 단말은 E-PDCCH의 할당 위치에 대한 정보를 획득할 수 있으며, 할당위치정보를 기반으로 E-PDCCH를 검색할 수 있다. 또한, 단말은 E-PDCCH를 통해 전송되는 제어 신호를 수신할 수 있다. 4.2 레가시 PDCCH의 위치에 따른 E-PDCCH의 위치 검색 방법 -2
E-PDCCH 영역을 사용하는 경우, 단말 (UE)의 E-PDCCH에 대한 검색 시간 또는 검색 공간 (search space; 서치 스페이스)를 줄이기 위한 방법이 필요하다. 이를 위해서, 단말은 레가시 PDCCH 영역에서 E-PDCCH에 대한 할당 정보를 얻고 이 정보를 기반으로 E-PDCCH에 대한 검색 시간을 줄이거나 없애는 것이 바람직하다. 그러나, E-PDCCH가 필요한 이유 중의 하나가 PDCCH의 가용성을 증가시키는 것이므로 E-PDCCH가 레가시 PDCCH 영역에서 점유하는 자원의 크기가 적을수록 좋다. 그러므로 , 이하에서는 E—PDCCH를 사용하는 단말에 있어서 레가시 PDCCH 영역을 할당하는 방법과 E-PDCCH를 할당 및 이용하기 위한 방법들에 대해서 구체적으로 설명한다.
4.2.1 무선접속시스템에서 레가시 PDCCH와 E-PDCCH가 함께 사용되는 경우, 레가시 PDCCH를 통해 E-PDCCH의 할당 위치 및 크기에 대한 정보가 단말에 전송될 수 있다. 또한, 이를 위하여 레가시 PDCCH를 위한 PDCCH 포맷이 사용될 수 있다.
4.2.2 무선접속시스템에서 레가시 PDCCH와 E-PDCCH가 함께 사용되는 경우, 레가시 PDCCH는 항상 3 OFDM 심볼을 사용하도록 설정할 수 있다.
예를 들어, e-PDCCH가 사용되는 환경 하에서는 레가시 PDCCH는 e-PDCCH의 할당 여부와 관계 없이 항상 각 서브프레임의 첫 번째 OFDM 심볼부터 세 번째 OFDM 심볼 모두를 사용하여 할당될 수 있다.
E-PDCCH를 사용하는 이유 중 하나가 PDCCH의 용량을 증가시키기 위함이므로, E-PDCCH가 사용되는 경우 레가시 PDCCH가 사용하는 OFDM 심볼의 개수를 항상 최대값으로 고정된 3으로 하는 것이 바람직하다.
또 다른 예로세 e-PDCCH가 사용되는 환경에서, 레가시 PDCCH는 e-PDCCH가 할당되는 서브프레임에서만 첫 번째 OFDM 심볼부터 세 번째 OFDM 심볼 모두를 사용하여 할당될 수 있다. 즉 레가시 PDCCH는 e-PDCCH가 할당되지 않는 서브프레임에서는 기존 LTE 시스템과 같은 방식으로 할당되되, e-PDCCH가 할당되는 서브프레임에서는 항상 고정적으로 첫 번째 심볼 내지 세 번째 심볼 모두를 이용하여 할당될 수 있다.
따라서, 단말은 각 서브프레임의 첫 번째 심볼부터 세 번째 심볼까지는 항상 레가시 PDCCH를 위해 할당된 것으로 인식하여 서치스페아스에 대해서 블라인드 디코딩을 수행할 수 있으며, 레가시 PDCCH의 할당 위치를 기반으로 E-PDCCH가 할당된 영역을 검색하거나 또는 레가시 PDCCH를 통해 전송되는 E-PDCCH에 대한 할당 위치에 대한 할당 영역 정보를 이용하여 레가시 PDCCH를 검색할 수 있다.
4.2.3 무선접속시스템에서 레가시 PDCCH와 E-PDCCH가 함께 사용되는 경우, PCFICH를 통해 전송되는 채널포맷지시자 4가사용된다.
예를 들어, 다음 표 4와 같이 PCFICH의 CFI를 사용한다. 기지국은 기존에 예약된 값인 CFI 4를 E-PDCCH를 위해 사용함으로써, 기존의 CFI 코드를 그대로 사용하면서도 새로운 E-PDCCH의 할당 여부를 나타낼 수 있다.
【표 4】
Figure imgf000036_0001
4.2.4무선접속시스템에서 레가시 PDCCH와 E-PDCCH가 함께 사용되고, PDSCH영 역에 E-PDCCH가 할당되는 경우, 레가시 PDCCH영역에서 자원 할당 값을 고정된 값으 로만 사용하고, 나머지 자원은 E-PDCCH 영역에서 할당할 수 있다.
예를 들어, E-PDCCH 영역을 사용하는 단말은 레가시 PDCCH 영역에서 항상 1 CCE 만을 사용하여 자신에게 할당된 E-PDCCH 영역에 대한 할당 정보를 획득할 수 있 다. 또한, 단말은 E-PDCCH영역에 대한 할당 정보를 이용하여 E-PDCCH영역에서의 검 색 시간을 없애거나 줄일 수 있다.
4.2.5무선접속시스템에서 레가시 PDCCH와 E-PDCCH가 함께 사용되는 경우,각 각의 레가시 PDCCH 영역 및 E-PDCCH 영역마다 CRC가 적용될 수 있다.
즉, 레가시 PDCCH영역과 E-PDCCH영역에 CRC가 각각 적용될 수 있다.이때,적 용되는 CRC는 동일할 수도 다를 수도 있다.
예를 들어 , 기지국은 레가시 PDCCH'의 경우 UE 특정 CRC비트로 마스킹된 레가 시 PDCCH 신호를 단말에 전송하고, E-PDCCH 의 경우 공용 CRC 비트로 마스킹된 E-PDCCH 신호를 단말에 전송할 수 있다.
이때, E-PDCCH 와 레가시 PDCCH 영역을 동시에 사용하는 단말은 레가시 PDCCH 영역에는 UE 특정 (UE-Specific)한 CRC 값을 적용하여 레가시 PDCCH 영역에 있는 해 당 자원이 자신에 할당되었는지 여부와 제대로 전송되었는지의 여부를 판단할 수 있다. 이후, 단말은 레가시 PDCCH영역에서 얻은 할당 정보를 통하여 E-PDCCH영역에 서는 자신에게 할당된 자원의 위치를 알고 있으므로, E-PDCCH 가 제대로 전송되었는 지의 여부만 판단하면 된다. 그러므로, 단말은 E-PDCCH 영역에는 UE 특정한 값이 아 닌 공용 (co讓 on) CRC를 적용함으로써 E-PDCCH 신호의 올바른 전송여부를 판단할 수 있다.
다른 예로서, 기지국은 레가시 PDCCH 및 Eᅳ PDCCH의 경우 모두 UE 특정 CRC로 마스킹된 레가시 PDCCH 신호 및 E-PDCCH 신호를 단말에 전송할 수 있다. 이러한 경 우, 단말은 레가시 PDCCH영역 및 E-PDCCH영역에 적용하는 CRC에 대해 UE특정한 값 을 사용함으로써, 자신에게 할당된 자원이 맞는지 이중으로 확인 (check)할 수도 있 다.
4.2.6 무선접속시스템에서 레가시 PDCCH와 E-PDCCH가 함께 사용되고 E-PDCCH 영역에 공용 CRC를 적용하는 경우, 4.2.5 절에서 CRC의 길이는 8 비트, 16 비트 또 는 24비트일 수 있다.이때,각각의 CRC의 길이에 따른 CRC의 계산은 다음 수학식 8 에 나타낸 다항식 (polynomial)을 통하여 구할 수 있다.
【수학식 8]
(1) gCRC24A(/¾ - [1^ + Ι 3 + I 7 + I} I 1 ^ I 0 + If + + I + I + D 3 + D + 1]
(2) gCRC24B0 = [Z^4 + + + ^ + + 1] for a CRC length L = 24
(3) gCRCi6(Z = [i 6 + £^2 + I + 1] for a CRC length L = 16; or
(4) gCRC8(/ = [i + lf + l + l + D + l for a CRC length of = 8.
4.2.7무선접속시스템에서 레가시 PDCCH와 E-PDCCH가 함께 사용되고 E-PDCCH 영역에 공용 CRC 를 적용하는 경우, 4.2.5 절에서 CRC 의 길이는 E-PDCCH 영역에 전 송되는 비트 수에 따라 달라질 수 있다.
4.3 E-PDCCH할당방법
도 21은 본 발명의 실시예로서 E-PDCCH가 PDSCH 영역에 할당되는 모습의 일례를 나타내는 도면이다.
본 발명의 실시예들에서 E-PDCCH는 제어채널영역이 아닌 데이터채널 영역 (예를 들어 , PDSCH 영역)에 할당되는 것이 바람직하다. 또한, E-PDCCH의 할당 자원의 형태가 레가시 PDCCH의 할당 형태와 다를 수 있으므로 레가시 PDCCH 전송의 기본단위인 CCE가 유지되지 않을 수 있다.
따라서, E-PDCCH를 PDSCH 영역에 할당하는 경우, E-PDCCH는 PDSCH의 할당 및 전송에 가장 영향을 적게 주는 방식으로 할당되는 것이 바람직하다. 예를 들에 PDSCH의 경우 PRB단위로 자원영역이 할당되므로, E-PDCCH는 PDCCH의 할당 단위인 CCE 단위가 아닌 PDSCH의 할당 단위인 PRB 단위로 자원이 할당될 수 있다. 즉, PDSCH가 1PRB, 2PRB,또는 4PRB단위로 할당되는 경우, E-PDCCH는 역시 1PRB, 2PRB, 또는 4PRB 단위로 할당될 수 있다. 도 21을 참조하면, E-PDCCH가 PRB 단위로 PDSCH 영역에 할당되는 것을 확인할 수 있다.
E-PDCCH의 할당 구조가 CCE가 아닌 REG나 RE를 기반으로 구성되는 경우,
E-PDCCH를 통해 전송되는 제어정보의 양도 CCE 배수가 아닌 REG의 배수이거나 RE의. 배수일 수 있다. 즉, 레가시 PDCCH의 전송이 1 CCE, 2 CCE 또는 4 CCE 단위로 수행되더라도, E-PDCCH는 9, 18, 36 REG단위 (왜냐하면 , 1CCE = 9REG)로 전송되지 않을 수 있다. 예를 들어 , E-PDCCH는 CCE와 무관하게 4, 5, 9, 13, 14, 18, 22, 23, 27, 31, 32, 또는 36 REG 단위로 구성될 수 있다. 도 22는 본 발명의 실시예로서 E-PDCCH가 PDSCH 영역에 할당되는 모습의 다른 일례를 나타내는 도면이다.
E-PDCCH 자원영역은 주파수 우선으로 할당되거나, 시간 우선으로 할당될 수 있다.또한,특정 PRB또는 PRB그룹 내에서 주파수 우선으로 배정될 수도 있고,시간 우선으로 할당될 수도 있다. 도 22의 경우, E-PDCCH가 1 PRB 상에 매핑되는 경우를 나타낸다. 또한, E-PDCCH가 할당되는 영역은 서브프레임의 첫 번째 슬롯에만 할당되거나 두 번째 슬롯에만 할당되는 것으로 구성할 수 있다. 물론, 두 슬롯에 걸쳐서 특정 서브캐리어 영역에서만 할당될 수 있다. 5. 구현 장치
도 23에서 설명한 장치는 도 1 내지 도 22에서 설명한 방법들이 구현될 수 있는 수단이다.
단말 (UE: User Equipment)은 상향링크에서는 송신기로 동작하고, 하향링크에서는 수신기로 동작할 수 있다. 또한, 기지국 (eNB:e-Node B)은 상향링크에서는 수신기로 동작하고, 하향링크에서는 송신기로 동작할 수 있다.
즉, 단말 및 기지국은 정보, 데이터 및 /또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신모들 (Tx module: 2340, 2350) 및 수신모들 (Rx module: 2350, 2370)을 포함할 수 있으며, 정보, 데이터 및 /또는 메시지를 송수신하기 위한 안테나 (2300, 2310) 등을 포함할 수 있다.
또한, 단말 및 기지국은 각각 상술한 본 발명의 실시예들을 수행하기 위한 프로세서 (Processor: 2320, 2330)와 프로세서의 처리 과정을 임시적으로 또는 지속적으로 저장할 수 있는 메모리 (2380, 2390)를 각각 포함할 수 있다.
상술한 단말 및 기지국 장치의 구성성분 및 기능들을 이용하여 본원 발명의 실시예들이 수행될 수 있다. 이때, 도 23에서 설명한 장치는 도 12, 도 14, 또는 도 16 내지 도 17의 구성을 더 포함할 수 있으며, 바람직하게는 프로세서에서 해당 구성들이 포함될 수 있다.
단말의 프로세서는 서치 스페이스를 모니터링하여 PDCCH 신호를 수신할 수 있다. 특히, LTE-A 단말의 경우 확장된 CSS에 대해서 블라인드 디코딩 (BD: Blind Decoding)을 수행함으로써 다론 LTE 단말과의 PDCCH 신호에 대한 블로킹 없이 PDCCH를 수신할 수 있다.
이때, 단말의 프로세서는 레가시 PDCCH를 검출한 이후 레가시 PDCCH의 할당 위치 및 /또는 크기를 기반으로 E-PDCCH의 할당 위치를 검출할 수 있다. 이때, 단말은 수학식 3내지 7에서 설명한 방법을 이용하여 E-PDCCH의 할당 위치를 검출할 수 있다. E-PDCCH는 PDSCH 영역에 할당되며, PDSCH의 할당 단위에 따라 할당될 수 있다.
단말 및 기지국에 포함된 송신모들 및 수신모들은 데이터 전송올 위한 패 ¾ 변복조 기능, 고속 패킷 채널 코딩 기능, 직교주파수분할다중접속 (OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스 (TDD: Time Division Duplex)패킷 스케줄링 및 /또는 채널 다중화 기능을 수행할 수 있다. 또한, 도 21의 단말 및 기지국은 저전력 RF(Radio Frequency)/IF( Intermediate Frequency) 모들을 더 포함할 수 있다.
한편, 본 발명에서 단말로 개인휴대단말기 (PDA: Personal Digital Assistant) 셀를러폰, 개인통신서비스 (PCS: Personal Communication Service) 폰, GSM(Global System for Mobile)폰, WCDMA( Wideband CDMA)폰, MBS (Mobile Broadband System)폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트 (Smart) 폰 또는 멀티모드 멀티밴드 (丽 -MB: Multi Mode-Mult i Band) 단말기 등이 이용될 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 흔합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템 (예를 들어, CDMA Code Division Multiple Access) 2000시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어 (finnware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(appl icat ion specific integrated circuits) , DSPs(digital signal processors) , DSPDs(digital signal processing devices) , PLDs ( r ogr ammab 1 e logic devices) , FPGAs(f ield programmable gate arrays) , 프로세서 , 콘트를러 , 마이크로 콘트를러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛 (2180, 2190)에 저장되어 프로세서 (2120, 2130)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다론 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운.청구항으로 포함할 수 있다.
【산업상 이용가능성】
본 발명의 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project), 3GPP2 및 /또는 IEEE 802. xx (Institute of Electrical and Electronic Engineers 802)시스템 등이 있다. 본 발명의 실시예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 웅용한 모든 기술 분야에 적용될 수 있다.

Claims

【청구의 범위】
【청구항 1】
무선접속시스템에서 향상된 물리하향링크제어채널 (E-PDCCH)을 검색하는 방법에 있어서,
제어채널영역을 블라인드 디코딩하여 레거시 물리하향링크제어채널
(PDCCH)을 검색하는 단계 ; 및
검색한 상기 레거시 PDCCH를 기반으로 상기 E-PDCCH를 검색하는 단계를 포함하되
상기 레거시 PDCCH는 상기 E-PDCCH가 할당되는 서브프레임에서는 항상 상기 서브프레임의 첫 번째 심볼부터 세 번째 심볼 모두를 사용하여 할당되는, E-PDCCH 검색방법.
【청구항 2】
제 1항에 있어서,
상기 레거시 PDCCH를 통해 전송되는 레거시 PDCCH 신호는 단말 특정 순환중복검사 (CRC) 비트로 마스킹되어 전송되는, E-PDCCH 검색방법.
【청구항 3]
제 2항에 있어서,
상기 E-PDCCH를 통해 전송되는 E-PDCCH 신호는 공용 CRC로 마스킹되어 전송되는, E-PDCCH 검색방법 . '
【청구항 4】
제 2항에 있어서,
상기 E-PDCCH를 통해 전송되는 E-PDCCH 신호는 상기 단말 특정 CRC로 마스킹되어 전송되는, E-PDCCH 검색방법 .
【청구항 5】
제 1항에 있어서,
상기 레거시 PDCCH의 할당 영역에 대한 시작위치정보, 종료위치정보 및 크기정보 중 하나 이상을 이용하여 상기 E-PDCCH의 할당위치정보를 획득하는 단계를 더 포함하고,
상기 E-PDCCH 검색 단계에서 상기 E-PDCCH의 상기 할당위치정보를 이용하여 상기 E-PDCCH를 검색하되, 상기 E-PDCCH는 상기 제어채널영역이 아닌 데이터채널영역에 할당되는, E-PDCCH 검색방법 .
【청구항 6】
제 5항에 있어서,
상기 할당위치정보는 / ^은 함수
Figure imgf000045_0001
이용하여 계산되되, 상기 ζ0"는 상기 레가시 PDCCH의 시작위치정보, 상기 /ς 는 상기 레가시
PDCCH의 종료위치정보, 상기 skg 는 상기 레가시 PDCCH의 크기정보인, E-PDCCH 검색방법.
【청구항 7】
무선접속시스템에서 향상된 물리하향링크제어채널 (E-PDCCH)을 검색하는 단말은,
송신모들;
수신모들; 및
상기 E-PDCCH를 검색하기 위한 프로세서를 포함하되, 상기 프로세서는 제어채널영역을 블라인드 디코딩하여 레거시 물리하향링크제어채널 (PDCCH)을 검색하고; 및
검색한 상기 레거시 PDCCH를 기반으로 상기 E-PDCCH를 검색하되 ,
상기 레거시 PDCCH는 상기 E-PDCCH가 할당되는 서브프레임에서는 항상 상기 서브프레임의 첫 번째 심볼부터 세 번째 심볼 모두를 사용하여 할당되는, 단말.
【청구항 8】
제 7항에 있어서,
상기 레거시 PDCCH를 통해 전송되는 레거시 PDCCH 신호는 단말 특정 순환중복검사 (CRC) 비트로 마스킹되어 전송되는, 단말.
【청구항 9】
제 8항에 있어서,
상기 E-PDCCH를 통해 전송되는 E-PDCCH 신호는 공용 CRC로 마스킹되어 전송되는, 단말.
【청구항 10】
제 8항에 있어서,
상기 E-PDCCH를 통해 전송되는 E-PDCCH 신호는 상기 단말 특정 CRC로 마스킹되어 전송되는, 단말.
【청구항 11】
제 7항에 있어서,
상기 프로세서는,
상기 레거시 PDCCH의 할당 영역에 대한 시작위치정보, 종료위치정보 및 크기정보 중 하나 이상을 이용하여 상기 E-PDCCH의 할당위치정보를 획득하고, 상기 E-PDCCH 검색 단계에서 상기 E-PDCCH의 상기 할당위치정보를 이용하여 상기 E— PDCCH를 검색하되, 상기 E-PDCCH는 상기 제어채널영역이 아닌 데이터채널영역에 할당되는, 단말.
【청구항 12】
제 11항에 있어서,
상기 할당위치정보는 은 함수 /(/,r, /, s)를 이용하여 계산되되, 상기 ζ'"는 상기 레가시 PDCCH의 시작위치정보, 상기 ζη/는 상기 레가시 PDCCH의 종료위치정보, 상기 는 상기 레가시 PDCCH의 크기정보인, 단말.
PCT/KR2012/004304 2011-05-31 2012-05-31 향상된 물리하향링크제어채널영역을 검색하는 방법 WO2012165877A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/123,173 US9419763B2 (en) 2011-05-31 2012-05-31 Method for searching for enhanced physical downlink control channel region

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161491884P 2011-05-31 2011-05-31
US61/491,884 2011-05-31

Publications (2)

Publication Number Publication Date
WO2012165877A2 true WO2012165877A2 (ko) 2012-12-06
WO2012165877A3 WO2012165877A3 (ko) 2013-03-28

Family

ID=47260088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004304 WO2012165877A2 (ko) 2011-05-31 2012-05-31 향상된 물리하향링크제어채널영역을 검색하는 방법

Country Status (2)

Country Link
US (1) US9419763B2 (ko)
WO (1) WO2012165877A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3031264A4 (en) * 2013-08-07 2016-08-17 Panasonic Ip Corp America BASISSTATION DEVICE, DEVICE DEVICE, TRANSMISSION PROCEDURE AND RECEIVING METHOD
EP3119025A4 (en) * 2014-03-13 2017-10-25 LG Electronics Inc. Method for transmitting and receiving signal for low latency in wireless communication system and apparatus therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8582527B2 (en) 2011-07-01 2013-11-12 Ofinno Technologies, Llc Hybrid automatic repeat request in multicarrier systems
US8369280B2 (en) 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
WO2013006379A1 (en) 2011-07-01 2013-01-10 Dinan Esmael Hejazi Synchronization signal and control messages in multicarrier ofdm
US8842637B2 (en) 2011-12-04 2014-09-23 Ofinno Technologies, Llc Carrier information transmission to wireless devices
US9497756B2 (en) 2012-03-25 2016-11-15 Comcast Cable Communications, Llc Base station radio resource management
US9949265B2 (en) 2012-05-04 2018-04-17 Comcast Cable Communications, Llc Control channel in a wireless communication system
WO2018058588A1 (en) 2016-09-30 2018-04-05 Mediatek Singapore Pte. Ltd. Methods and apparatus for control detecting and dl and ul format processing
US10326578B2 (en) 2017-02-13 2019-06-18 At&T Intellectual Property I, L.P. Early termination scheme for blind decoding of a downlink control channel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053984A2 (en) * 2008-11-04 2010-05-14 Nortel Networks Limited Providing a downlink control structure in a first carrier to indicate control information in a second, different carrier
US20110075624A1 (en) * 2009-09-28 2011-03-31 Samsung Electronics Co., Ltd. Extending physical downlink control channels

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8009617B2 (en) * 2007-08-15 2011-08-30 Qualcomm Incorporated Beamforming of control information in a wireless communication system
KR101448309B1 (ko) * 2007-09-28 2014-10-08 엘지전자 주식회사 무선통신 시스템에서 하향링크 제어채널 모니터링 방법
WO2009066406A1 (ja) * 2007-11-22 2009-05-28 Panasonic Corporation 無線通信装置、無線通信システム及び無線通信方法
KR100943908B1 (ko) * 2008-02-19 2010-02-24 엘지전자 주식회사 Pdcch를 통한 제어 정보 송수신 방법
US8787275B2 (en) * 2008-10-31 2014-07-22 Panasonic Intellectual Property Corporation Of America Wireless communication base station equipment, wireless communication terminal device and search space setting method
US8005039B2 (en) * 2008-12-30 2011-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for robust transmission of control information in wireless communication network
EP2421315B1 (en) * 2009-04-15 2017-04-19 Fujitsu Limited Transmitting device, receiving device and radio communication method
BR112012012655B1 (pt) * 2009-11-27 2021-07-27 Sharp Kabushiki Kaisha Aparelho de estação móvel, aparelho de estação base, método de comunicação de um aparelho de estação móvel e método de comunicação de um aparelho de estação base
KR101684867B1 (ko) * 2010-04-07 2016-12-09 삼성전자주식회사 공간 다중화 이득을 이용한 제어 정보 송수신 방법
US20120106465A1 (en) * 2010-04-30 2012-05-03 Interdigital Patent Holdings, Inc. Downlink control in heterogeneous networks
US8792438B2 (en) * 2010-10-07 2014-07-29 Futurewei Technologies, Inc. System and method for search space reconfiguration in a communications system
WO2012102510A2 (ko) * 2011-01-26 2012-08-02 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
DK2919545T3 (en) * 2011-02-11 2016-12-05 Interdigital Patent Holdings Inc Device and method for an improved control channel (E-PDCCH).
WO2012134535A1 (en) * 2011-04-01 2012-10-04 Intel Corporation Enhanced node b and method of transmitting physical-downlink control channels (pdcchs) in a lte-a system
EP2702707B1 (en) * 2011-04-29 2018-04-04 LG Electronics Inc. Method for transmitting and receiving downlink control information in a wireless communication system and apparatus for the same
US9398578B2 (en) * 2011-05-03 2016-07-19 Lg Electronics Inc. Method for receiving downlink signal, and user device, and method for transmitting downlink signal, and base station
US9344230B2 (en) * 2011-05-04 2016-05-17 Lg Electronics Inc. Method for searching for enhanced PDCCH area

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053984A2 (en) * 2008-11-04 2010-05-14 Nortel Networks Limited Providing a downlink control structure in a first carrier to indicate control information in a second, different carrier
US20110075624A1 (en) * 2009-09-28 2011-03-31 Samsung Electronics Co., Ltd. Extending physical downlink control channels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORTEL NETWORKS: 'Control channel design for the support of wider bandwidth for LTE-Advanced.' 3GPP TSG-RAN WG1 #57, [Online] 04 May 2009, Retrieved from the Internet: <URL:http://www.3gpp.org/ftp/ tsg ran/WG1_RL1/TSGRl 57/Docs/Rl-091923.zip> [retrieved on 2012-12-01] *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3031264A4 (en) * 2013-08-07 2016-08-17 Panasonic Ip Corp America BASISSTATION DEVICE, DEVICE DEVICE, TRANSMISSION PROCEDURE AND RECEIVING METHOD
US10038529B2 (en) 2013-08-07 2018-07-31 Sun Patent Trust Base station apparatus, terminal apparatus, transmitting method, and receiving method
EP3429295A1 (en) * 2013-08-07 2019-01-16 Sun Patent Trust Communication apparatus and method
US10680772B2 (en) 2013-08-07 2020-06-09 Sun Patent Trust Base station apparatus, terminal apparatus, transmitting method, and receiving method
US11218265B2 (en) 2013-08-07 2022-01-04 Sun Patent Trust Base station apparatus, terminal apparatus, transmitting method, and receiving method
US11632213B2 (en) 2013-08-07 2023-04-18 Sun Patent Trust Base station apparatus, terminal apparatus, transmitting method, and receiving method
EP3119025A4 (en) * 2014-03-13 2017-10-25 LG Electronics Inc. Method for transmitting and receiving signal for low latency in wireless communication system and apparatus therefor
US10084586B2 (en) 2014-03-13 2018-09-25 Lg Electronics Inc. Method for transmitting and receiving signal for low latency in wireless communication system and apparatus therefor
US10218486B2 (en) 2014-03-13 2019-02-26 Lg Electronics Inc. Method for transmitting and receiving signal for low latency in wireless communication system and apparatus therefor

Also Published As

Publication number Publication date
WO2012165877A3 (ko) 2013-03-28
US9419763B2 (en) 2016-08-16
US20140105156A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP6073514B2 (ja) アップリンクリソース割当のための方法及び装置
KR102208124B1 (ko) 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 하향링크 물리 방송 채널 수신 방법 및 장치
KR102127535B1 (ko) 무선통신시스템에서 제어정보 전송/획득 방법 및 장치
KR101448662B1 (ko) 반송파 집성(ca)을 지원하는 무선접속 시스템에서 제어신호 검색방법
KR101253655B1 (ko) 반송파 병합 전송을 위한 제어신호 송수신 방법 및 장치
US9113457B2 (en) Method and apparatus for transmitting control information
US9237555B2 (en) Method and device for configuring a carrier indication field for a multi-carrier
WO2013025005A2 (ko) 무선 통신 시스템에서 상향링크 제어 채널을 위한 자원을 획득하는 방법 및 장치
WO2012165877A2 (ko) 향상된 물리하향링크제어채널영역을 검색하는 방법
JP6321186B2 (ja) Fdr送信を支援する無線接続システムにおいてフレーム構造を構成する方法及び装置
WO2014112841A1 (ko) 무선접속시스템에서 유사 코로케이션을 수행하는 방법 및 장치
WO2011065704A2 (ko) 반송파 집성 시스템에서 상향링크의 교차 반송파 스케줄링 방법 및 단말
JP2016504791A (ja) 超高周波帯域を支援する無線接続システムにおいて同期信号生成方法及び装置
WO2013048114A2 (en) Method and apparatus for transmitting and receiving uplink control information in radio access system
WO2012036534A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2013048196A1 (ko) 저비용 기계 타입 통신을 위한 제어정보전송방법 및 이를 지원하는 장치
KR20110102145A (ko) 복수의 요소 반송파를 사용하는 다중 반송파 시스템에서 단말의 통신 방법
KR20150030649A (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
US9515798B2 (en) Method and apparatus for allocating enhanced physical downlink control channel in wireless access system
KR20140082769A (ko) 무선통신시스템에서 제어정보 송수신 방법 및 장치
WO2015060639A1 (ko) 기계타입통신을 지원하는 무선 접속 시스템에서 물리하향링크제어채널 전송 방법 및 장치
US9344230B2 (en) Method for searching for enhanced PDCCH area
KR101608787B1 (ko) 반송파 집성을 지원하는 무선 접속 시스템에서 제어 신호 송수신 방법
CN110892778B (zh) 在支持时分双工的窄带iot系统中发送随机接入前导码的方法及其设备
WO2011111955A2 (ko) 복수의 요소 반송파를 사용하는 다중 반송파 시스템에서 단말의 통신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792797

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14123173

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792797

Country of ref document: EP

Kind code of ref document: A2