WO2012165189A1 - Piezoelectric motor and piezoelectric motor device - Google Patents

Piezoelectric motor and piezoelectric motor device Download PDF

Info

Publication number
WO2012165189A1
WO2012165189A1 PCT/JP2012/062905 JP2012062905W WO2012165189A1 WO 2012165189 A1 WO2012165189 A1 WO 2012165189A1 JP 2012062905 W JP2012062905 W JP 2012062905W WO 2012165189 A1 WO2012165189 A1 WO 2012165189A1
Authority
WO
WIPO (PCT)
Prior art keywords
individual electrode
mode
electrode
common electrode
piezoelectric
Prior art date
Application number
PCT/JP2012/062905
Other languages
French (fr)
Japanese (ja)
Inventor
浅野宏志
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012165189A1 publication Critical patent/WO2012165189A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators

Definitions

  • the present invention relates to a piezoelectric motor that displaces a power transmission unit by utilizing deformation of a piezoelectric plate, and a piezoelectric motor device that converts the displacement of the power transmission unit into power of rotational motion or linear motion.
  • Piezoelectric motors are motors powered by the displacement of the power transmission section accompanying the deformation of the piezoelectric plate.
  • the piezoelectric motor device converts the power of the piezoelectric motor into rotational motion or linear motion and uses it as power.
  • FIG. 1 is a diagram illustrating a basic configuration of a piezoelectric motor device 101 with reference to Patent Document 1.
  • FIG. 1A is a perspective view of the piezoelectric motor device 101.
  • FIG. 1B is a circuit diagram of the piezoelectric motor device 101.
  • FIG. 1C is a partially enlarged plan view of the piezoelectric motor device 101.
  • a coordinate system is added.
  • the piezoelectric motor device 101 includes a piezoelectric plate 102, individual electrodes 103A and 103B, a common electrode 104, an AC source 105A, a switch 105B, a pressing spring 106, a frame 107, a bearing 108, and a linear slider 109.
  • the piezoelectric plate 102, the individual electrodes 103A and 103B, the common electrode 104, the AC source 105A, and the switch 105B constitute a piezoelectric motor.
  • the piezoelectric plate 102 is a flat plate having a rectangular main surface facing the Z-axis, and a protrusion 102A is provided on the side surface in the positive Y-axis direction.
  • the individual electrodes 103A and 103B are provided on the front main surface of the piezoelectric plate 102 in line symmetry with respect to a straight line along the Y-axis direction passing through the position where the protrusion 102A is provided.
  • the common electrode 104 is provided on substantially the entire back main surface of the piezoelectric plate 102.
  • the AC source 105A is connected between the common electrode 104 and the switch 105B, and the individual electrodes 103A and 103B are selectively connected to the AC source 105A by the switch 105B.
  • a linear slider 109 is disposed in the Y axis positive direction of the piezoelectric plate 102, and a bearing 108 is disposed in the Y axis positive direction of the linear slider 109.
  • a pressing spring 106 is disposed in the negative Y-axis direction of the piezoelectric plate 102. The pressing spring 106 is supported by the frame 107 and presses the piezoelectric plate 102 toward the linear slider 109.
  • the piezoelectric plate 102 When the individual electrode 103A is connected to the AC source 105A by the switch 105B and an AC voltage is applied between the individual electrode 103A and the common electrode 104 by the AC source 105A, the piezoelectric plate 102 is deformed in the XY plane, and the protrusion The part 102A is displaced by a linear reciprocating orbit having a predetermined inclination with respect to the X axis and the Y axis.
  • the projecting portion 102A displaced as described above collides with the side surface of the linear slider 109 in the negative Y-axis direction, whereby the power in the negative X-axis direction is transmitted from the projecting portion 102A to the linear slider 109, and the linear slider 109 is transmitted to the X-axis. It can be moved in the negative direction.
  • the switch 105B and connecting the individual electrode 103B to the AC source 105A the moving direction of the linear slider 109 can be switched to the reverse direction.
  • an object of the present invention is to provide a piezoelectric motor and a piezoelectric motor device having a simple configuration in which dynamic friction hardly occurs and power transmission efficiency is high.
  • the piezoelectric motor according to the present invention includes a piezoelectric plate, a power transmission unit, and a drive unit.
  • the piezoelectric plate has a first surface including a first region and a second region adjacent to each other.
  • the power transmission unit is provided on a boundary line between the first region and the second region, and is displaced in a first direction along the boundary line, and is also in a direction normal to the first surface of the piezoelectric plate and the first direction. It is displaced in a second direction perpendicular to the direction of.
  • the drive unit is provided on the first individual electrode provided in the first region, the second individual electrode provided in the second region, and the second surface facing the first surface of the piezoelectric plate. An AC voltage is applied between the first individual electrode and the common electrode, and the second individual electrode is prevented from becoming a floating electrode.
  • the power transmission unit provided on the boundary line between the first region and the second region is displaced by a circular or elliptical orbit, not a linear reciprocating orbit.
  • the drive unit has one side connected to the first individual electrode, the other side connected to the second individual electrode and the common electrode, and the first individual electrode and the common electrode.
  • the second individual electrode, the common electrode, and the other side of the AC source are preferably connected to the ground.
  • the drive unit applies an AC voltage corresponding to a resonance frequency whose vibration mode is the E (3,1) mode between the first individual electrode and the common electrode.
  • the drive unit simultaneously excites the symmetric mode vibration of the E (3,1) mode and the vibration of the asymmetric mode on the entire piezoelectric plate, and the phase difference between the symmetric mode of the E (3,1) mode and the asymmetric mode. It is preferable to apply an AC voltage between the first individual electrode and the common electrode so that is 90 °.
  • the driving unit includes an AC source that applies an AC voltage between the first individual electrode or the second individual electrode and the common electrode, and one side of the AC source is the first source. Connected to the individual electrode, the other side is connected to the second individual electrode and the common electrode, and the second individual electrode, the common electrode and the other side of the AC source are connected to the ground; One side of the AC source is connected to the second individual electrode, the other side is connected to the first individual electrode and the common electrode, and the first individual electrode, the common electrode, and the other side of the AC source are grounded. It is preferable to provide a switch for switching between the state connected to the.
  • the drive unit applies an AC voltage corresponding to a resonance frequency whose vibration mode is the E (3,1) mode between the first individual electrode or the second individual electrode and the common electrode. . Further, the drive unit simultaneously excites the symmetric mode vibration of the E (3,1) mode and the vibration of the asymmetric mode on the entire piezoelectric plate, and the phase difference between the symmetric mode of the E (3,1) mode and the asymmetric mode. It is preferable to apply an AC voltage between the first individual electrode or the second individual electrode and the common electrode so that the angle is about 90 °.
  • the drive unit has one side connected to the first individual electrode, the other side connected to the common electrode, and an alternating current between the first individual electrode and the common electrode.
  • a first AC source for applying a voltage one side is connected to a second individual electrode, the other side is connected to a common electrode, and an AC voltage is applied between the second individual electrode and the common electrode
  • the other side of the first AC source and the other side of the second AC source are connected to the ground.
  • the drive unit corresponds to a resonance frequency in which the vibration mode is the E (3,1) mode between the first individual electrode and the common electrode and between the second individual electrode and the common electrode. It is preferable to apply an alternating voltage.
  • the drive unit simultaneously excites the symmetric mode vibration of the E (3,1) mode and the vibration of the asymmetric mode on the entire piezoelectric plate, and the phase difference between the symmetric mode of the E (3,1) mode and the asymmetric mode. It is preferable to apply an AC voltage between the first individual electrode and the common electrode and between the second individual electrode and the common electrode so that the angle is about 90 °.
  • the piezoelectric motor device preferably includes any one of the above-described piezoelectric motors and a power conversion unit disposed on the first direction side of the piezoelectric plate.
  • the power conversion unit may be a linear slider that is movable with the second direction as the movement direction.
  • a power conversion unit such as a linear slider can be driven by a piezoelectric motor, and the feed motion of the piezoelectric motor can be converted into a linear motion or the like to be used as power.
  • the power transmission unit is displaced so as to draw a circular or elliptical orbit instead of a linear reciprocating orbit
  • the second The displacement in the direction (X axis) is small, and after the displacement in the first direction (Y axis) is small, the displacement in the second direction (X axis) is large. Therefore, when this power transmission part collides with the power conversion part which opposes a 2nd direction (Y-axis), it becomes difficult to produce dynamic friction, and wear and energy loss with a power transmission part and a power conversion part can be suppressed.
  • FIG. 6 is a circuit diagram of a piezoelectric motor device according to a third embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the configuration of the piezoelectric motor device 1 according to the first embodiment of the present invention.
  • FIG. 2A is a perspective view of the piezoelectric motor device 1.
  • FIG. 2B is a circuit diagram of the piezoelectric motor device 1.
  • FIG. 2C is a partially enlarged plan view of the piezoelectric motor device 1.
  • the orthogonal direction with the normal direction of the main surface of the piezoelectric plate 2 included in the piezoelectric motor device 1 as the Z-axis direction, the longitudinal direction of the main surface as the X-axis direction, and the short direction of the main surface as the Y-axis direction A coordinate system is added.
  • the piezoelectric motor device 1 includes a piezoelectric plate 2, individual electrodes 3A and 3B, a common electrode 4, an AC source 5, a pressing spring 6, a frame 7, a bearing 8, and a linear slider 9.
  • the piezoelectric plate 2, the individual electrodes 3A and 3B, the common electrode 4, and the AC source 5 constitute the piezoelectric motor in this embodiment, and the individual electrodes 3A and 3B, the common electrode 4, and the AC source 5 are driving units in this embodiment.
  • the linear slider 9 is a power conversion unit in the present embodiment.
  • Piezoelectric plate 2 is a flat plate having a main surface facing the Z-axis having a rectangular shape, and the main surface facing the Z-axis includes a first region and a second region adjacent to each other.
  • a protrusion 2A is provided on the side surface in the positive direction of the Y axis on the boundary line between the first region and the second region of the piezoelectric plate 2.
  • the protrusion 2A is a power transmission unit in the present embodiment.
  • the individual electrodes 3A and 3B are provided on the main surface of the piezoelectric plate 2 facing the Z axis.
  • the individual electrodes 3A and 3B are provided symmetrically with respect to a straight line along the Y-axis direction that passes through the position where the protrusion 2A is provided.
  • the individual electrode 3A is provided in the first region
  • the individual electrode 3B is provided in the second region.
  • the common electrode 4 is provided on substantially the entire main surface facing the main surface facing the Z axis of the piezoelectric plate 2.
  • the AC source 5 has one side connected to the individual electrode 3 ⁇ / b> A and the other side connected to the individual electrode 3 ⁇ / b> B and the common electrode 4.
  • a connection point of the AC source 5, the individual electrode 3B, and the common electrode 4 is connected to the ground. That is, the individual electrode 3B, the common electrode 4, and the other side of the AC source 5 are connected to the ground.
  • the frame 7 has ribs that rise in the positive direction of the Z-axis from the XY plane at both ends of the Y-axis.
  • a linear slider 9 is disposed in the positive direction of the Y axis of the piezoelectric plate 2.
  • the linear slider 9 has a rectangular bar-like configuration with the X-axis direction as the longitudinal direction.
  • a bearing 8 is disposed in the positive direction of the Y-axis of the linear slider 9. The bearing 8 is in rolling contact with a linear slider 9 that moves in the X-axis direction.
  • a pressing spring 6 is disposed in the negative Y-axis direction of the piezoelectric plate 2. The pressing spring 6 is supported by the rib of the frame 7 and presses the piezoelectric plate 2 toward the linear slider 9.
  • an AC voltage corresponding to a resonance frequency whose vibration mode is the E (3, 1) mode is applied between the individual electrode 3A and the common electrode 4, so that E (3 1) The vibration of the asymmetric mode of the mode is excited.
  • E (3, 1) mode symmetric mode vibrations are excited.
  • the symmetric mode of the E (3,1) mode has substantially the same resonance frequency as the asymmetric mode of the E (3,1) mode.
  • an AC voltage corresponding to a resonance frequency whose vibration mode is the E (3,1) mode is applied between the individual electrode 3A and the common electrode 4, so that E (3,1) is applied to the entire piezoelectric plate 2.
  • the symmetric mode vibration and the asymmetric mode vibration are excited simultaneously.
  • a phase difference between the symmetric mode of the E (3,1) mode and the asymmetric mode results in a phase difference between the symmetric mode and the asymmetric mode of the E (3,1) mode.
  • FIG. 3 is a diagram for explaining the displacement vector of the piezoelectric plate 2 of the piezoelectric motor device 1 according to this embodiment.
  • a sine wave signal is applied to the individual electrode 3A in the right hand region of the piezoelectric plate 2 on the right side in the drawing, and the individual electrode 3B in the left hand region of the piezoelectric plate 2 on the left side in the drawing is connected to the ground together with the common electrode 4.
  • the example which analyzed the displacement vector by the finite element method about the structure which has been shown is shown.
  • a displacement vector having a larger contraction direction is generated in the right-hand region of the piezoelectric plate 2 than in the case where the phase is 0 °, and the expansion direction is smaller in the left-hand region than when the phase is 0 °.
  • the displacement vector is generated.
  • a displacement vector in the direction of about 0 ° is generated counterclockwise with respect to the positive X-axis direction.
  • the displacement vector in the maximum contraction direction is generated in the right-hand region of the piezoelectric plate 2 than in the case of 45 °, and in the left-hand region, the phase is 45 °.
  • a small expansion direction displacement vector is generated.
  • a displacement vector in the direction of about 315 ° is generated counterclockwise with respect to the positive X-axis direction.
  • a displacement vector in the contraction direction is smaller in the right hand region of the piezoelectric plate 2 than in the case where the phase is 90 °, and a displacement vector in the contraction direction is generated in the left hand region.
  • a displacement vector in a direction of about 270 ° is generated counterclockwise with respect to the positive X-axis direction.
  • a displacement vector in the expansion direction is generated in the right-hand region of the piezoelectric plate 2, and a displacement vector in the contraction direction is generated in the left-hand region, compared to when the phase is 135 °.
  • a displacement vector in the direction of about 225 ° is generated counterclockwise with respect to the positive X-axis direction.
  • phase of the sine wave signal When the phase of the sine wave signal is 225 °, a displacement vector in the expansion direction that is larger in the right-hand region of the piezoelectric plate 2 than in the case of 180 ° is generated, and in the left-hand region, the phase is larger than that in the case of 180 °.
  • the displacement vector in the maximum extension direction is generated in the right-hand region of the piezoelectric plate 2 than in the case of 225 °, and the displacement vector in the maximum expansion direction is generated, and in the left-hand region, the phase is 225 °.
  • a small contraction direction displacement vector is generated.
  • a displacement vector in the direction of about 135 ° is generated counterclockwise with respect to the positive X-axis direction.
  • the piezoelectric plate 2 is deformed as described above, an AC voltage is applied between the individual electrode 3A and the common electrode 4 so that the phase difference between the symmetric mode and the asymmetric mode of the E (3,1) mode is about 90 °. Is applied, vibration of an elliptical motion in which a symmetric mode and an asymmetric mode of the E (3,1) mode are combined is generated, and a protrusion provided at the boundary between the left hand region and the right hand region of the piezoelectric plate 2 The displacement vector of the part 2A rotates clockwise. For this reason, the projection 2A is displaced so as to draw a clockwise circular or elliptical orbit.
  • the protrusion 2A is displaced in the Y-axis direction and is displaced in the X-axis direction.
  • the projection 2A collides with the side surface of the linear slider 9 in the Y-axis negative direction, so that power in the X-axis positive direction is transmitted from the projection 2A to the linear slider 9.
  • the slider 9 moves in the positive direction of the X axis.
  • the protrusion 2A is displaced in a circular or elliptical orbit as described above, when the protrusion 2A is largely displaced along the Y axis, the displacement along the X axis is small and the protrusion 2A is large along the Y axis. After the displacement, the displacement greatly occurs along the X axis. Therefore, in the configuration of the present embodiment, the dynamic friction between the protrusion 2A and the linear slider 9 hardly occurs, wear and energy loss of both can be suppressed, and the power transmission efficiency from the protrusion 2A to the linear slider 9 can be enhanced.
  • FIG. 4 is a diagram for explaining a displacement vector of the piezoelectric plate 102 of the piezoelectric motor device 101 according to the conventional configuration.
  • a finite element is applied to a configuration in which a sine wave signal is applied to the individual electrode 103A in the right hand region of the piezoelectric plate 102 on the right side in the drawing and the individual electrode 103B in the left hand region of the piezoelectric plate 102 on the left side in the drawing is in an open state.
  • the example which analyzed the displacement vector by the method is shown.
  • a displacement vector having a larger contraction direction is generated in the right-hand region of the piezoelectric plate 102 than in the case where the phase is 45 °, but almost no displacement vector is generated in the left-hand region. Then, in the vicinity of the protrusion 102A, a displacement vector having a direction of about 315 ° larger than the case where the phase is 45 ° is generated counterclockwise with respect to the positive direction of the X axis.
  • the phase in the right hand region of the piezoelectric plate 102 is larger than that in the case of 90 °, and a displacement vector in the maximum contraction direction is generated, but almost no displacement vector is generated in the left hand region.
  • a displacement vector having a maximum direction of about 315 ° is generated counterclockwise with respect to the positive direction of the X axis as compared with the case where the phase is 90 °.
  • a displacement vector having a smaller contraction direction is generated in the right-hand region of the piezoelectric plate 102 than in the case where the phase is 135 °, but almost no displacement vector is generated in the left-hand region. Then, in the vicinity of the protrusion 102A, a displacement vector having a direction of about 315 ° smaller than that in the case where the phase is 135 ° is generated counterclockwise with respect to the positive direction of the X axis.
  • a displacement vector in a larger expansion direction is generated in the right-hand region of the piezoelectric plate 102 than in the case where the phase is 225 °, but almost no displacement vector is generated in the left-hand region.
  • a displacement vector in a direction of about 135 ° is generated counterclockwise with respect to the positive X-axis direction as compared with a phase of 225 °.
  • the phase vector is larger in the right hand region of the piezoelectric plate 102 than in the case of 270 ° and the maximum displacement vector in the expansion direction is generated, but almost no displacement vector is generated in the left hand region.
  • a displacement vector having a maximum direction of about 135 ° is generated counterclockwise with respect to the positive X-axis direction as compared with the case where the phase is 225 °.
  • FIG. 5 is a circuit diagram of the piezoelectric motor device 11 according to the present embodiment.
  • the piezoelectric motor device 11 includes a switch 15A for switching an individual electrode connected to one side of the AC source 5 and an individual electrode connected to the other side of the AC source 5.
  • one side of the AC source 5 is connected to the individual electrode 3A, the other side is connected to the individual electrode 3B and the common electrode 4, and a connection point between the AC source 5, the individual electrode 3B, and the common electrode 4 Is connected to the ground, and one side of the AC source 5 is connected to the individual electrode 3B, the other side is connected to the individual electrode 3A and the common electrode 4, and is common to the AC source 5 and the individual electrode 3A.
  • the switches 15A and 15B are controlled so as to switch between the state in which the connection point with the electrode 4 is connected to the ground.
  • one side of the AC source 5 is connected to the individual electrode 3B, the other side is connected to the individual electrode 3A and the common electrode 4, and the connection point of the AC source 5, the individual electrode 3A and the common electrode 4 is the ground.
  • the piezoelectric motor device 11 When the piezoelectric motor device 11 is connected to the piezoelectric motor device 11, the piezoelectric motor device 11 performs the reverse operation of the piezoelectric motor device 1 of the first embodiment, and the protrusion (not shown) is displaced in a counterclockwise circular or elliptical orbit.
  • the linear slider (not shown) is moved in the negative direction of the X axis. Therefore, the piezoelectric motor device 11 of the present embodiment can switch the moving direction of the linear slider by the control of the switches 15A and 15B.
  • FIG. 6 is a circuit diagram of the piezoelectric motor device 12 according to the present embodiment.
  • the piezoelectric motor device 12 includes an AC source 5A in addition to the circuit configuration of the piezoelectric motor device 1 described above. That is, the piezoelectric motor device 12 has a two-phase power source. One side of the AC source 5 is connected to the individual electrode 3A, one side of the AC source 5A is connected to the individual electrode 3B, and the other side of the AC source 5 and the AC source 5A is connected to the common electrode 4. A connection point of the source 5, the AC source 5A, and the common electrode 4 is connected to the ground.
  • a sin ( ⁇ t) sine wave signal is applied from the AC source 5 to the individual electrode 3A
  • a cos ( ⁇ t) sine wave signal is applied from the AC source 5A to the individual electrode 3B.
  • An AC voltage is applied between the individual electrodes 3A, 3B and the common electrode 4 so that the phase difference between the symmetric mode and the asymmetric mode of the mode is 90 °. Similar to the piezoelectric motor device 1, the vibration of the elliptical motion in which the symmetric mode and the asymmetric mode of the E (3,1) mode are combined is excited. Therefore, the piezoelectric motor device 12 performs the same operation as the piezoelectric motor device 1 of the first embodiment.
  • a rotor that rotates in addition to the linear slider may be a power transmission target.
  • the rotor can be rotated by a piezoelectric motor to obtain power of rotational motion.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

To provide a piezoelectric motor and a piezoelectric motor device having a simple configuration with high power transmission efficiency and less occurrence of kinetic friction. A piezoelectric motor device (1) comprises a piezoelectric plate (2), a protrusion part (2A), and a drive part. The piezoelectric plate (2) has a first surface that includes a first area and a second area adjacent to each other. The protrusion part (2A) is provided on a boundary line between the first area and the second area, displaces in the Y axial direction along the boundary line, and displaces in the X axial direction perpendicular to the Y axial direction and the normal direction of the first surface of the piezoelectric plate (2). The drive part includes an individual electrode (3A) provided in the first area, an individual electrode (3B) provided in the second area, and a common electrode (4) provided on a second surface facing the first surface of the piezoelectric plate (2), and an AC voltage is applied between the individual electrode (3A) and the common electrode (4) so that the individual electrode (3B) does not become a floating electrode.

Description

圧電モータおよび圧電モータ装置Piezoelectric motor and piezoelectric motor device
 この発明は、圧電板の変形を利用して動力伝達部を変位させる圧電モータ、および、動力伝達部の変位を変換して回転運動や直線運動の動力とする圧電モータ装置に関するものである。 The present invention relates to a piezoelectric motor that displaces a power transmission unit by utilizing deformation of a piezoelectric plate, and a piezoelectric motor device that converts the displacement of the power transmission unit into power of rotational motion or linear motion.
 圧電モータは、圧電板の変形に伴う動力伝達部の変位を動力とするモータである。また、圧電モータ装置は、圧電モータの動力を回転運動や直線運動に変換して動力とするものである。 Piezoelectric motors are motors powered by the displacement of the power transmission section accompanying the deformation of the piezoelectric plate. In addition, the piezoelectric motor device converts the power of the piezoelectric motor into rotational motion or linear motion and uses it as power.
 図1は、特許文献1を参考にした圧電モータ装置101の基本構成を説明する図である。図1(A)は、圧電モータ装置101の斜視図である。図1(B)は、圧電モータ装置101の回路図である。図1(C)は、圧電モータ装置101の部分拡大平面図である。なお、図中に、圧電モータ装置101が備える圧電板102の主面の法線方向をZ軸方向、主面の長手方向をX軸方向、主面の短手方向をY軸方向とした直交座標系を付記している。 FIG. 1 is a diagram illustrating a basic configuration of a piezoelectric motor device 101 with reference to Patent Document 1. FIG. 1A is a perspective view of the piezoelectric motor device 101. FIG. 1B is a circuit diagram of the piezoelectric motor device 101. FIG. 1C is a partially enlarged plan view of the piezoelectric motor device 101. In the figure, the orthogonal direction with the normal direction of the main surface of the piezoelectric plate 102 included in the piezoelectric motor device 101 as the Z-axis direction, the longitudinal direction of the main surface as the X-axis direction, and the short direction of the main surface as the Y-axis direction. A coordinate system is added.
 圧電モータ装置101は、圧電板102、個別電極103A,103B、共通電極104、交流源105A、スイッチ105B、押圧バネ106、フレーム107、ベアリング108、およびリニアスライダ109を備える。圧電板102、個別電極103A,103B、共通電極104、交流源105A、およびスイッチ105Bは、圧電モータを構成する。 The piezoelectric motor device 101 includes a piezoelectric plate 102, individual electrodes 103A and 103B, a common electrode 104, an AC source 105A, a switch 105B, a pressing spring 106, a frame 107, a bearing 108, and a linear slider 109. The piezoelectric plate 102, the individual electrodes 103A and 103B, the common electrode 104, the AC source 105A, and the switch 105B constitute a piezoelectric motor.
 圧電板102はZ軸を向く主面が長方形状の平板であり、Y軸正方向の側面には突起部102Aが設けられている。個別電極103A,103Bは、圧電板102の表主面に、突起部102Aが設けられている位置を通るY軸方向に沿った直線に対して線対称に設けられている。共通電極104は、圧電板102の裏主面の略全面に設けられている。交流源105Aは共通電極104とスイッチ105Bとの間に接続され、スイッチ105Bにより個別電極103A,103Bが選択的に交流源105Aに接続されている。 The piezoelectric plate 102 is a flat plate having a rectangular main surface facing the Z-axis, and a protrusion 102A is provided on the side surface in the positive Y-axis direction. The individual electrodes 103A and 103B are provided on the front main surface of the piezoelectric plate 102 in line symmetry with respect to a straight line along the Y-axis direction passing through the position where the protrusion 102A is provided. The common electrode 104 is provided on substantially the entire back main surface of the piezoelectric plate 102. The AC source 105A is connected between the common electrode 104 and the switch 105B, and the individual electrodes 103A and 103B are selectively connected to the AC source 105A by the switch 105B.
 圧電板102のY軸正方向にはリニアスライダ109が配置され、リニアスライダ109のY軸正方向にはベアリング108が配置されている。また、圧電板102のY軸負方向には押圧バネ106が配置されている。押圧バネ106は、フレーム107に支持されており、圧電板102をリニアスライダ109に向け押圧する。 A linear slider 109 is disposed in the Y axis positive direction of the piezoelectric plate 102, and a bearing 108 is disposed in the Y axis positive direction of the linear slider 109. A pressing spring 106 is disposed in the negative Y-axis direction of the piezoelectric plate 102. The pressing spring 106 is supported by the frame 107 and presses the piezoelectric plate 102 toward the linear slider 109.
 スイッチ105Bにより個別電極103Aが交流源105Aに接続され、交流源105Aによって個別電極103Aと共通電極104との間に交流電圧が印加されると、圧電板102がX-Y面において変形し、突起部102AはX軸およびY軸に対して所定の傾きを持った直線往復軌道で変位する。 When the individual electrode 103A is connected to the AC source 105A by the switch 105B and an AC voltage is applied between the individual electrode 103A and the common electrode 104 by the AC source 105A, the piezoelectric plate 102 is deformed in the XY plane, and the protrusion The part 102A is displaced by a linear reciprocating orbit having a predetermined inclination with respect to the X axis and the Y axis.
 上記のように変位する突起部102Aはリニアスライダ109のY軸負方向の側面へ衝突し、これによりX軸負方向の動力が突起部102Aからリニアスライダ109に伝達され、リニアスライダ109をX軸負方向に移動させることができる。スイッチ105Bを切り替えて、個別電極103Bが交流源105Aに接続されることにより、リニアスライダ109の移動方向を逆方向に切り替えることができる。 The projecting portion 102A displaced as described above collides with the side surface of the linear slider 109 in the negative Y-axis direction, whereby the power in the negative X-axis direction is transmitted from the projecting portion 102A to the linear slider 109, and the linear slider 109 is transmitted to the X-axis. It can be moved in the negative direction. By switching the switch 105B and connecting the individual electrode 103B to the AC source 105A, the moving direction of the linear slider 109 can be switched to the reverse direction.
特表2007-538484号公報Special table 2007-538484
 上記構成では、突起部102Aとリニアスライダ109との接触圧力が小さい状態のときに動摩擦が起こってエネルギー損失が発生する。そのため、突起部102Aからリニアスライダ109に伝達されるX軸方向の動力が低減し、効率的に動力が伝達されない。 In the above configuration, dynamic friction occurs and energy loss occurs when the contact pressure between the protrusion 102A and the linear slider 109 is small. Therefore, the power in the X-axis direction transmitted from the protrusion 102A to the linear slider 109 is reduced, and the power is not efficiently transmitted.
 そこで、本発明の目的は、動摩擦が起こりにくく動力伝達効率が高い簡易な構成の圧電モータおよび圧電モータ装置を提供することにある。 Therefore, an object of the present invention is to provide a piezoelectric motor and a piezoelectric motor device having a simple configuration in which dynamic friction hardly occurs and power transmission efficiency is high.
 本発明に係る圧電モータは、圧電板と、動力伝達部と、駆動部と、を備える。圧電板は、互いに隣接する第1の領域と第2の領域とを含む第1の面を有する。動力伝達部は、第1の領域と第2の領域との境界線上に設けられ、境界線に沿った第1の方向に変位するとともに、圧電板の第1の面の法線方向と第1の方向とに対して垂直な第2の方向に変位する。駆動部は、第1の領域に設けられた第1の個別電極と、第2の領域に設けられた第2の個別電極と、圧電板の第1の面と対向する第2の面に設けられた共通電極とを含み、第1の個別電極と共通電極との間に交流電圧を印加するとともに、第2の個別電極が浮き電極にならないようにする。 The piezoelectric motor according to the present invention includes a piezoelectric plate, a power transmission unit, and a drive unit. The piezoelectric plate has a first surface including a first region and a second region adjacent to each other. The power transmission unit is provided on a boundary line between the first region and the second region, and is displaced in a first direction along the boundary line, and is also in a direction normal to the first surface of the piezoelectric plate and the first direction. It is displaced in a second direction perpendicular to the direction of. The drive unit is provided on the first individual electrode provided in the first region, the second individual electrode provided in the second region, and the second surface facing the first surface of the piezoelectric plate. An AC voltage is applied between the first individual electrode and the common electrode, and the second individual electrode is prevented from becoming a floating electrode.
 この構成では、第1の領域と第2の領域との境界線上に設けられる動力伝達部は、直線往復軌道ではなく円軌道または楕円軌道で変位することになる。 In this configuration, the power transmission unit provided on the boundary line between the first region and the second region is displaced by a circular or elliptical orbit, not a linear reciprocating orbit.
 本発明に係る圧電モータにおいて、駆動部は、一方側が第1の個別電極に接続されており、他方側が第2の個別電極と共通電極とに接続されており、第1の個別電極と共通電極との間に交流電圧を印加する交流源を含み、第2の個別電極と共通電極と交流源の他方側とがグランドに接続されていると好適である。特に、駆動部は、第1の個別電極と共通電極との間に、振動モードがE(3,1)モードである共振周波数に対応する交流電圧を印加すると好適である。さらに、駆動部は、圧電板全体にE(3,1)モードの対称モードの振動と非対称モードの振動とが同時に励振され、E(3,1)モードの対称モードと非対称モードとの位相差が約90°となるように、第1の個別電極と共通電極との間に交流電圧を印加すると好適である。 In the piezoelectric motor according to the present invention, the drive unit has one side connected to the first individual electrode, the other side connected to the second individual electrode and the common electrode, and the first individual electrode and the common electrode. The second individual electrode, the common electrode, and the other side of the AC source are preferably connected to the ground. In particular, it is preferable that the drive unit applies an AC voltage corresponding to a resonance frequency whose vibration mode is the E (3,1) mode between the first individual electrode and the common electrode. Further, the drive unit simultaneously excites the symmetric mode vibration of the E (3,1) mode and the vibration of the asymmetric mode on the entire piezoelectric plate, and the phase difference between the symmetric mode of the E (3,1) mode and the asymmetric mode. It is preferable to apply an AC voltage between the first individual electrode and the common electrode so that is 90 °.
 また、本発明に係る圧電モータにおいて、駆動部は、第1の個別電極又は第2の個別電極と共通電極との間に交流電圧を印加する交流源を含み、交流源の一方側が第1の個別電極に接続されており、他方側が第2の個別電極と共通電極とに接続されており、第2の個別電極と共通電極と交流源の他方側とがグランドに接続されている状態と、交流源の一方側が第2の個別電極に接続されており、他方側が第1の個別電極と共通電極とに接続されており、第1の個別電極と共通電極と交流源の他方側とがグランドに接続されている状態と、を切り替えるスイッチを備えると好適である。特に、駆動部は、第1の個別電極又は第2の個別電極と共通電極との間に、振動モードがE(3,1)モードである共振周波数に対応する交流電圧を印加すると好適である。さらに、駆動部は、圧電板全体にE(3,1)モードの対称モードの振動と非対称モードの振動とが同時に励振され、E(3,1)モードの対称モードと非対称モードとの位相差が約90°となるように、第1の個別電極又は第2の個別電極と共通電極との間に交流電圧を印加すると好適である。 In the piezoelectric motor according to the present invention, the driving unit includes an AC source that applies an AC voltage between the first individual electrode or the second individual electrode and the common electrode, and one side of the AC source is the first source. Connected to the individual electrode, the other side is connected to the second individual electrode and the common electrode, and the second individual electrode, the common electrode and the other side of the AC source are connected to the ground; One side of the AC source is connected to the second individual electrode, the other side is connected to the first individual electrode and the common electrode, and the first individual electrode, the common electrode, and the other side of the AC source are grounded. It is preferable to provide a switch for switching between the state connected to the. In particular, it is preferable that the drive unit applies an AC voltage corresponding to a resonance frequency whose vibration mode is the E (3,1) mode between the first individual electrode or the second individual electrode and the common electrode. . Further, the drive unit simultaneously excites the symmetric mode vibration of the E (3,1) mode and the vibration of the asymmetric mode on the entire piezoelectric plate, and the phase difference between the symmetric mode of the E (3,1) mode and the asymmetric mode. It is preferable to apply an AC voltage between the first individual electrode or the second individual electrode and the common electrode so that the angle is about 90 °.
 また、本発明に係る圧電モータにおいて、駆動部は、一方側が第1の個別電極に接続されており、他方側が共通電極に接続されており、第1の個別電極と共通電極との間に交流電圧を印加する第1の交流源と、一方側が第2の個別電極に接続されており、他方側が共通電極に接続されており、第2の個別電極と共通電極との間に交流電圧を印加する第2の交流源と、を含み、第1の交流源の他方側と第2の交流源の他方側とがグランドに接続されていると好適である。特に、駆動部は、第1の個別電極と共通電極との間と、第2の個別電極と共通電極との間とに、振動モードがE(3,1)モードである共振周波数に対応する交流電圧を印加すると好適である。さらに、駆動部は、圧電板全体にE(3,1)モードの対称モードの振動と非対称モードの振動とが同時に励振され、E(3,1)モードの対称モードと非対称モードとの位相差が約90°となるように、第1の個別電極と共通電極との間と、第2の個別電極と共通電極との間とに交流電圧を印加すると好適である。 In the piezoelectric motor according to the present invention, the drive unit has one side connected to the first individual electrode, the other side connected to the common electrode, and an alternating current between the first individual electrode and the common electrode. A first AC source for applying a voltage, one side is connected to a second individual electrode, the other side is connected to a common electrode, and an AC voltage is applied between the second individual electrode and the common electrode It is preferable that the other side of the first AC source and the other side of the second AC source are connected to the ground. In particular, the drive unit corresponds to a resonance frequency in which the vibration mode is the E (3,1) mode between the first individual electrode and the common electrode and between the second individual electrode and the common electrode. It is preferable to apply an alternating voltage. Further, the drive unit simultaneously excites the symmetric mode vibration of the E (3,1) mode and the vibration of the asymmetric mode on the entire piezoelectric plate, and the phase difference between the symmetric mode of the E (3,1) mode and the asymmetric mode. It is preferable to apply an AC voltage between the first individual electrode and the common electrode and between the second individual electrode and the common electrode so that the angle is about 90 °.
 本発明に係る圧電モータ装置は、上述のいずれかの圧電モータと、圧電板の第1の方向側に配置されている動力変換部と、を備えると好適である。動力変換部は、第2の方向を移動方向として移動自在なリニアスライダであってもよい。 The piezoelectric motor device according to the present invention preferably includes any one of the above-described piezoelectric motors and a power conversion unit disposed on the first direction side of the piezoelectric plate. The power conversion unit may be a linear slider that is movable with the second direction as the movement direction.
 これらの構成では、リニアスライダなどの動力変換部を圧電モータで駆動して、圧電モータの送り運動を直線運動などに変換して動力とすることができる。 In these configurations, a power conversion unit such as a linear slider can be driven by a piezoelectric motor, and the feed motion of the piezoelectric motor can be converted into a linear motion or the like to be used as power.
 この発明によれば、動力伝達部が直線往復軌道ではなく円軌道または楕円軌道を描くように変位するので、動力伝達部が第1の方向(Y軸)に大きく変位する際には第2の方向(X軸)への変位は小さく、第1の方向(Y軸)の変位が小さくなった後で、第2の方向(X軸)への変位が大きくなる。そのため、この動力伝達部が第2の方向(Y軸)に対向する動力変換部に衝突する際に動摩擦が生じにくくなり、動力伝達部と動力変換部との摩耗やエネルギー損失を抑制できる。 According to the present invention, since the power transmission unit is displaced so as to draw a circular or elliptical orbit instead of a linear reciprocating orbit, when the power transmission unit is largely displaced in the first direction (Y axis), the second The displacement in the direction (X axis) is small, and after the displacement in the first direction (Y axis) is small, the displacement in the second direction (X axis) is large. Therefore, when this power transmission part collides with the power conversion part which opposes a 2nd direction (Y-axis), it becomes difficult to produce dynamic friction, and wear and energy loss with a power transmission part and a power conversion part can be suppressed.
圧電モータ装置の基本構成を説明する図である。It is a figure explaining the basic composition of a piezoelectric motor device. 本発明の第1の実施形態に係る圧電モータ装置の構成を説明する図である。It is a figure explaining the structure of the piezoelectric motor apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る圧電モータ装置の圧電板の変位ベクトルについて説明する図である。It is a figure explaining the displacement vector of the piezoelectric plate of the piezoelectric motor apparatus which concerns on the 1st Embodiment of this invention. 従来構成に係る比較例の圧電板の変位ベクトルについて説明する図である。It is a figure explaining the displacement vector of the piezoelectric plate of the comparative example which concerns on a conventional structure. 本発明の第2の実施形態に係る圧電モータ装置の回路図である。It is a circuit diagram of the piezoelectric motor device concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係る圧電モータ装置の回路図である。FIG. 6 is a circuit diagram of a piezoelectric motor device according to a third embodiment of the present invention.
 図2は、本発明の第1の実施形態に係る圧電モータ装置1の構成を説明する図である。図2(A)は、圧電モータ装置1の斜視図である。図2(B)は、圧電モータ装置1の回路図である。図2(C)は、圧電モータ装置1の部分拡大平面図である。なお、図中に、圧電モータ装置1が備える圧電板2の主面の法線方向をZ軸方向、主面の長手方向をX軸方向、主面の短手方向をY軸方向とした直交座標系を付記している。 FIG. 2 is a diagram illustrating the configuration of the piezoelectric motor device 1 according to the first embodiment of the present invention. FIG. 2A is a perspective view of the piezoelectric motor device 1. FIG. 2B is a circuit diagram of the piezoelectric motor device 1. FIG. 2C is a partially enlarged plan view of the piezoelectric motor device 1. In the figure, the orthogonal direction with the normal direction of the main surface of the piezoelectric plate 2 included in the piezoelectric motor device 1 as the Z-axis direction, the longitudinal direction of the main surface as the X-axis direction, and the short direction of the main surface as the Y-axis direction A coordinate system is added.
 圧電モータ装置1は、圧電板2、個別電極3A,3B、共通電極4、交流源5、押圧バネ6、フレーム7、ベアリング8、およびリニアスライダ9を備える。 The piezoelectric motor device 1 includes a piezoelectric plate 2, individual electrodes 3A and 3B, a common electrode 4, an AC source 5, a pressing spring 6, a frame 7, a bearing 8, and a linear slider 9.
 圧電板2、個別電極3A,3B、共通電極4、および交流源5は本実施形態における圧電モータを構成し、個別電極3A,3B、共通電極4、および交流源5は本実施形態における駆動部を構成する。また、リニアスライダ9は本実施形態における動力変換部である。 The piezoelectric plate 2, the individual electrodes 3A and 3B, the common electrode 4, and the AC source 5 constitute the piezoelectric motor in this embodiment, and the individual electrodes 3A and 3B, the common electrode 4, and the AC source 5 are driving units in this embodiment. Configure. The linear slider 9 is a power conversion unit in the present embodiment.
 圧電板2はZ軸を向く主面が長方形状の平板であり、Z軸を向く主面は、互いに隣接する第1の領域と第2の領域とを含む。圧電板2の第1の領域と第2の領域との境界線上であり、Y軸正方向の側面には突起部2Aが設けられている。突起部2Aは、本実施形態における動力伝達部である。 Piezoelectric plate 2 is a flat plate having a main surface facing the Z-axis having a rectangular shape, and the main surface facing the Z-axis includes a first region and a second region adjacent to each other. A protrusion 2A is provided on the side surface in the positive direction of the Y axis on the boundary line between the first region and the second region of the piezoelectric plate 2. The protrusion 2A is a power transmission unit in the present embodiment.
 個別電極3A,3Bは、圧電板2のZ軸を向く主面に設けられている。個別電極3A,3Bは、突起部2Aが設けられている位置を通るY軸方向に沿った直線に対して線対称に設けられている。具体的には、個別電極3Aは第1の領域に設けられており、個別電極3Bは第2の領域に設けられている。共通電極4は、圧電板2のZ軸を向く主面と対向している主面の略全面に設けられている。交流源5は、一方側が個別電極3Aに接続されており、他方側が個別電極3Bと共通電極4とに接続されている。交流源5と個別電極3Bと共通電極4との接続点は、グランドに接続されている。すなわち、個別電極3Bと共通電極4と交流源5の他方側とは、グランドに接続されている。 The individual electrodes 3A and 3B are provided on the main surface of the piezoelectric plate 2 facing the Z axis. The individual electrodes 3A and 3B are provided symmetrically with respect to a straight line along the Y-axis direction that passes through the position where the protrusion 2A is provided. Specifically, the individual electrode 3A is provided in the first region, and the individual electrode 3B is provided in the second region. The common electrode 4 is provided on substantially the entire main surface facing the main surface facing the Z axis of the piezoelectric plate 2. The AC source 5 has one side connected to the individual electrode 3 </ b> A and the other side connected to the individual electrode 3 </ b> B and the common electrode 4. A connection point of the AC source 5, the individual electrode 3B, and the common electrode 4 is connected to the ground. That is, the individual electrode 3B, the common electrode 4, and the other side of the AC source 5 are connected to the ground.
 フレーム7は、Y軸両方向の端部にX-Y面からZ軸正方向に立ち上がるリブを備えている。 The frame 7 has ribs that rise in the positive direction of the Z-axis from the XY plane at both ends of the Y-axis.
 圧電板2のY軸正方向にはリニアスライダ9が配置されている。リニアスライダ9はX軸方向を長手とする角棒状の構成である。リニアスライダ9のY軸正方向にはベアリング8が配置されている。ベアリング8は、X軸方向に移動するリニアスライダ9に転接する。また、圧電板2のY軸負方向には押圧バネ6が配置されている。押圧バネ6はフレーム7のリブに支持されており、圧電板2をリニアスライダ9に向け押圧する。 A linear slider 9 is disposed in the positive direction of the Y axis of the piezoelectric plate 2. The linear slider 9 has a rectangular bar-like configuration with the X-axis direction as the longitudinal direction. A bearing 8 is disposed in the positive direction of the Y-axis of the linear slider 9. The bearing 8 is in rolling contact with a linear slider 9 that moves in the X-axis direction. A pressing spring 6 is disposed in the negative Y-axis direction of the piezoelectric plate 2. The pressing spring 6 is supported by the rib of the frame 7 and presses the piezoelectric plate 2 toward the linear slider 9.
 この構成では、個別電極3Aと共通電極4との間に、振動モードがE(3,1)モードである共振周波数に対応する交流電圧が印加されることにより、圧電板2全体にE(3,1)モードの非対称モードの振動が励振される。このとき、個別電極3Bがグランドに接続されており、浮き電極にはならないことから、グランドから個別電極3Bへの電荷の流入又は個別電極3Bからグランドへの電荷の流出が起こり、圧電板2全体にE(3,1)モードの対称モードの振動が励振される。E(3,1)モードの対称モードは、E(3,1)モードの非対称モードとほぼ同じ共振周波数を有する。すなわち、個別電極3Aと共通電極4との間に、振動モードがE(3,1)モードである共振周波数に対応する交流電圧が印加されることにより、圧電板2全体にE(3,1)モードの対称モードの振動と非対称モードの振動とが同時に励振される。そして、E(3,1)モードの対称モードと非対称モードとの僅かな位相特性の差異により両者に位相差が生まれることから、E(3,1)モードの対称モードと非対称モードとの位相差が約90°となるように個別電極3Aと共通電極4との間に交流電圧が印加されることにより、E(3,1)モードの対称モードの振動と非対称モードの振動とが合成された楕円運動の振動が励振される。 In this configuration, an AC voltage corresponding to a resonance frequency whose vibration mode is the E (3, 1) mode is applied between the individual electrode 3A and the common electrode 4, so that E (3 1) The vibration of the asymmetric mode of the mode is excited. At this time, since the individual electrode 3B is connected to the ground and does not become a floating electrode, an inflow of electric charge from the ground to the individual electrode 3B or an outflow of electric charge from the individual electrode 3B to the ground occurs. E (3, 1) mode symmetric mode vibrations are excited. The symmetric mode of the E (3,1) mode has substantially the same resonance frequency as the asymmetric mode of the E (3,1) mode. That is, an AC voltage corresponding to a resonance frequency whose vibration mode is the E (3,1) mode is applied between the individual electrode 3A and the common electrode 4, so that E (3,1) is applied to the entire piezoelectric plate 2. ) The symmetric mode vibration and the asymmetric mode vibration are excited simultaneously. A phase difference between the symmetric mode of the E (3,1) mode and the asymmetric mode results in a phase difference between the symmetric mode and the asymmetric mode of the E (3,1) mode. By applying an AC voltage between the individual electrode 3A and the common electrode 4 so that the angle is about 90 °, the E (3, 1) mode symmetric mode vibration and the asymmetric mode vibration are synthesized. The vibration of the elliptical motion is excited.
 図3は、本実施形態に係る圧電モータ装置1の圧電板2の変位ベクトルについて説明する図である。ここでは、図中右側である圧電板2の右手領域の個別電極3Aに正弦波信号が印加され、図中左側である圧電板2の左手領域の個別電極3Bが共通電極4とともにグランドに接続されている構成について有限要素法で変位ベクトルを解析した例を示している。 FIG. 3 is a diagram for explaining the displacement vector of the piezoelectric plate 2 of the piezoelectric motor device 1 according to this embodiment. Here, a sine wave signal is applied to the individual electrode 3A in the right hand region of the piezoelectric plate 2 on the right side in the drawing, and the individual electrode 3B in the left hand region of the piezoelectric plate 2 on the left side in the drawing is connected to the ground together with the common electrode 4. The example which analyzed the displacement vector by the finite element method about the structure which has been shown is shown.
 正弦波信号の位相が0°の場合、圧電板2の右手領域では収縮方向の変位ベクトルが発生し、左手領域では拡張方向の変位ベクトルが発生する。そして、右手領域と左手領域との境界に設けられている突起部2Aの近傍では、X軸正方向を基準として反時計回りに約45°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 0 °, a displacement vector in the contraction direction is generated in the right hand region of the piezoelectric plate 2, and a displacement vector in the expansion direction is generated in the left hand region. Then, in the vicinity of the protrusion 2A provided at the boundary between the right hand region and the left hand region, a displacement vector of about 45 ° is generated counterclockwise with respect to the positive direction of the X axis.
 正弦波信号の位相が45°の場合、圧電板2の右手領域では位相が0°の場合よりも大きな収縮方向の変位ベクトルが発生し、左手領域では位相が0°の場合よりも小さな拡張方向の変位ベクトルが発生する。そして、突起部2Aの近傍では、X軸正方向を基準として反時計回りに約0°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 45 °, a displacement vector having a larger contraction direction is generated in the right-hand region of the piezoelectric plate 2 than in the case where the phase is 0 °, and the expansion direction is smaller in the left-hand region than when the phase is 0 °. The displacement vector is generated. In the vicinity of the protrusion 2A, a displacement vector in the direction of about 0 ° is generated counterclockwise with respect to the positive X-axis direction.
 正弦波信号の位相が90°の場合、圧電板2の右手領域では位相が45°の場合よりも大きく、最大の収縮方向の変位ベクトルが発生し、左手領域では位相が45°の場合よりも小さな拡張方向の変位ベクトルが発生する。そして、突起部2Aの近傍では、X軸正方向を基準として反時計回りに約315°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 90 °, the displacement vector in the maximum contraction direction is generated in the right-hand region of the piezoelectric plate 2 than in the case of 45 °, and in the left-hand region, the phase is 45 °. A small expansion direction displacement vector is generated. In the vicinity of the protrusion 2A, a displacement vector in the direction of about 315 ° is generated counterclockwise with respect to the positive X-axis direction.
 正弦波信号の位相が135°の場合、圧電板2の右手領域では位相が90°の場合よりも小さな収縮方向の変位ベクトルが発生し、左手領域では収縮方向の変位ベクトルが発生する。そして、突起部2Aの近傍では、X軸正方向を基準として反時計回りに約270°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 135 °, a displacement vector in the contraction direction is smaller in the right hand region of the piezoelectric plate 2 than in the case where the phase is 90 °, and a displacement vector in the contraction direction is generated in the left hand region. In the vicinity of the protrusion 2A, a displacement vector in a direction of about 270 ° is generated counterclockwise with respect to the positive X-axis direction.
 正弦波信号の位相が180°の場合、圧電板2の右手領域では拡張方向の変位ベクトルが発生し、左手領域では位相が135°の場合よりも大きな収縮方向の変位ベクトルが発生する。そして、突起部2Aの近傍では、X軸正方向を基準として反時計回りに約225°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 180 °, a displacement vector in the expansion direction is generated in the right-hand region of the piezoelectric plate 2, and a displacement vector in the contraction direction is generated in the left-hand region, compared to when the phase is 135 °. In the vicinity of the protrusion 2A, a displacement vector in the direction of about 225 ° is generated counterclockwise with respect to the positive X-axis direction.
 正弦波信号の位相が225°の場合、圧電板2の右手領域では位相が180°の場合よりも大きな拡張方向の変位ベクトルが発生し、左手領域では位相が180°の場合よりも大きく、最大の収縮方向の変位ベクトルが発生する。そして、突起部2Aの近傍では、X軸正方向を基準として反時計回りに約180°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 225 °, a displacement vector in the expansion direction that is larger in the right-hand region of the piezoelectric plate 2 than in the case of 180 ° is generated, and in the left-hand region, the phase is larger than that in the case of 180 °. The displacement vector in the contraction direction of In the vicinity of the protrusion 2A, a displacement vector in the direction of about 180 ° is generated counterclockwise with respect to the positive X-axis direction.
 正弦波信号の位相が270°の場合、圧電板2の右手領域では位相が225°の場合よりも大きく、最大の拡張方向の変位ベクトルが発生し、左手領域では位相が225°の場合よりも小さな収縮方向の変位ベクトルが発生する。そして、突起部2Aの近傍では、X軸正方向を基準として反時計回りに約135°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 270 °, the displacement vector in the maximum extension direction is generated in the right-hand region of the piezoelectric plate 2 than in the case of 225 °, and the displacement vector in the maximum expansion direction is generated, and in the left-hand region, the phase is 225 °. A small contraction direction displacement vector is generated. In the vicinity of the protrusion 2A, a displacement vector in the direction of about 135 ° is generated counterclockwise with respect to the positive X-axis direction.
 正弦波信号の位相が315°の場合、圧電板2の右手領域では位相が270°の場合よりも小さな拡張方向の変位ベクトルが発生し、左手領域では拡張方向の変位ベクトルが発生する。そして、突起部2Aの近傍では、X軸正方向を基準として反時計回りに約90°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 315 °, a displacement vector in the expansion direction smaller than that in the right-hand region of the piezoelectric plate 2 than in the case of 270 ° is generated, and a displacement vector in the expansion direction is generated in the left-hand region. In the vicinity of the protrusion 2A, a displacement vector of about 90 ° is generated counterclockwise with respect to the positive X-axis direction.
 以上のように圧電板2は変形するが、E(3,1)モードの対称モードと非対称モードとの位相差が約90°となるように個別電極3Aと共通電極4との間に交流電圧が印加されることにより、E(3,1)モードの対称モードと非対称モードとが合成された楕円運動の振動が生じ、圧電板2の左手領域と右手領域との境界に設けられている突起部2Aの変位ベクトルは時計回りに回転する。このため、突起部2Aは、時計回りの円軌道または楕円軌道を描くように変位することになる。言い換えれば、突起部2Aは、Y軸方向に変位するとともに、X軸方向に変位する。これにより、前述の圧電モータ装置1では、リニアスライダ9のY軸負方向の側面に突起部2Aが衝突することにより、突起部2Aからリニアスライダ9にX軸正方向の動力が伝達され、リニアスライダ9がX軸正方向に移動することになる。 Although the piezoelectric plate 2 is deformed as described above, an AC voltage is applied between the individual electrode 3A and the common electrode 4 so that the phase difference between the symmetric mode and the asymmetric mode of the E (3,1) mode is about 90 °. Is applied, vibration of an elliptical motion in which a symmetric mode and an asymmetric mode of the E (3,1) mode are combined is generated, and a protrusion provided at the boundary between the left hand region and the right hand region of the piezoelectric plate 2 The displacement vector of the part 2A rotates clockwise. For this reason, the projection 2A is displaced so as to draw a clockwise circular or elliptical orbit. In other words, the protrusion 2A is displaced in the Y-axis direction and is displaced in the X-axis direction. As a result, in the piezoelectric motor device 1 described above, the projection 2A collides with the side surface of the linear slider 9 in the Y-axis negative direction, so that power in the X-axis positive direction is transmitted from the projection 2A to the linear slider 9. The slider 9 moves in the positive direction of the X axis.
 このように突起部2Aが円軌道または楕円軌道で変位するため、突起部2AがY軸に沿って大きく変位する際にX軸に沿った変位は小さく、突起部2AがY軸に沿って大きく変位した後でX軸に沿って大きく変位することになる。したがって、本実施形態の構成では、突起部2Aとリニアスライダ9との動摩擦が生じにくく、両者の摩耗やエネルギー損失を抑制でき、突起部2Aからリニアスライダ9への動力伝達効率を高められる。 Since the protrusion 2A is displaced in a circular or elliptical orbit as described above, when the protrusion 2A is largely displaced along the Y axis, the displacement along the X axis is small and the protrusion 2A is large along the Y axis. After the displacement, the displacement greatly occurs along the X axis. Therefore, in the configuration of the present embodiment, the dynamic friction between the protrusion 2A and the linear slider 9 hardly occurs, wear and energy loss of both can be suppressed, and the power transmission efficiency from the protrusion 2A to the linear slider 9 can be enhanced.
 なお、以下に、図1に示した従来構成に係る圧電モータ装置101を比較例として用意し、従来構成に係る圧電モータ装置101の圧電板102の変形について説明する。図4は、従来構成に係る圧電モータ装置101の圧電板102の変位ベクトルについて説明する図である。ここでは、図中右側である圧電板102の右手領域の個別電極103Aに正弦波信号が印加され、図中左側である圧電板102の左手領域の個別電極103Bがオープン状態である構成について有限要素法で変位ベクトルを解析した例を示している。 In the following, the piezoelectric motor device 101 according to the conventional configuration shown in FIG. 1 is prepared as a comparative example, and the deformation of the piezoelectric plate 102 of the piezoelectric motor device 101 according to the conventional configuration will be described. FIG. 4 is a diagram for explaining a displacement vector of the piezoelectric plate 102 of the piezoelectric motor device 101 according to the conventional configuration. Here, a finite element is applied to a configuration in which a sine wave signal is applied to the individual electrode 103A in the right hand region of the piezoelectric plate 102 on the right side in the drawing and the individual electrode 103B in the left hand region of the piezoelectric plate 102 on the left side in the drawing is in an open state. The example which analyzed the displacement vector by the method is shown.
 正弦波信号の位相が0°の場合、圧電板102の右手領域では拡張方向の変位ベクトルが発生するが、左手領域ではほとんど変位ベクトルが発生しない。そして、右手領域と左手領域との境界に設けられている突起部102Aの近傍では、X軸正方向を基準として反時計回りに約135°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 0 °, a displacement vector in the expansion direction is generated in the right-hand region of the piezoelectric plate 102, but almost no displacement vector is generated in the left-hand region. Then, in the vicinity of the protrusion 102A provided at the boundary between the right hand region and the left hand region, a displacement vector in a direction of about 135 ° is generated counterclockwise with respect to the positive direction of the X axis.
 正弦波信号の位相が45°の場合、圧電板102の右手領域では収縮方向の変位ベクトルが発生するが、左手領域ではほとんど変位ベクトルが発生しない。そして、突起部102Aの近傍では、X軸正方向を基準として反時計回りに約315°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 45 °, a displacement vector in the contraction direction is generated in the right hand region of the piezoelectric plate 102, but almost no displacement vector is generated in the left hand region. In the vicinity of the protrusion 102A, a displacement vector in the direction of about 315 ° is generated counterclockwise with respect to the positive X-axis direction.
 正弦波信号の位相が90°の場合、圧電板102の右手領域では位相が45°の場合よりも大きな収縮方向の変位ベクトルが発生するが、左手領域ではほとんど変位ベクトルが発生しない。そして、突起部102Aの近傍では、X軸正方向を基準として反時計回りに、位相が45°の場合よりも大きな約315°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 90 °, a displacement vector having a larger contraction direction is generated in the right-hand region of the piezoelectric plate 102 than in the case where the phase is 45 °, but almost no displacement vector is generated in the left-hand region. Then, in the vicinity of the protrusion 102A, a displacement vector having a direction of about 315 ° larger than the case where the phase is 45 ° is generated counterclockwise with respect to the positive direction of the X axis.
 正弦波信号の位相が135°の場合、圧電板102の右手領域では位相が90°の場合よりも大きく、最大の収縮方向の変位ベクトルが発生するが、左手領域ではほとんど変位ベクトルが発生しない。そして、突起部102Aの近傍では、X軸正方向を基準として反時計回りに、位相が90°の場合よりも大きく、最大の約315°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 135 °, the phase in the right hand region of the piezoelectric plate 102 is larger than that in the case of 90 °, and a displacement vector in the maximum contraction direction is generated, but almost no displacement vector is generated in the left hand region. In the vicinity of the protrusion 102A, a displacement vector having a maximum direction of about 315 ° is generated counterclockwise with respect to the positive direction of the X axis as compared with the case where the phase is 90 °.
 正弦波信号の位相が180°の場合、圧電板102の右手領域では位相が135°の場合よりも小さな収縮方向の変位ベクトルが発生するが、左手領域ではほとんど変位ベクトルが発生しない。そして、突起部102Aの近傍では、X軸正方向を基準として反時計回りに、位相が135°の場合よりも小さな約315°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 180 °, a displacement vector having a smaller contraction direction is generated in the right-hand region of the piezoelectric plate 102 than in the case where the phase is 135 °, but almost no displacement vector is generated in the left-hand region. Then, in the vicinity of the protrusion 102A, a displacement vector having a direction of about 315 ° smaller than that in the case where the phase is 135 ° is generated counterclockwise with respect to the positive direction of the X axis.
 正弦波信号の位相が225°の場合、圧電板102の右手領域では拡張方向の変位ベクトルが発生するが、左手領域ではほとんど変位ベクトルが発生しない。そして、突起部102Aの近傍では、X軸正方向を基準として反時計回りに約135°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 225 °, a displacement vector in the expansion direction is generated in the right-hand region of the piezoelectric plate 102, but almost no displacement vector is generated in the left-hand region. In the vicinity of the protrusion 102A, a displacement vector in the direction of about 135 ° is generated counterclockwise with respect to the positive X-axis direction.
 正弦波信号の位相が270°の場合、圧電板102の右手領域では位相が225°の場合よりも大きな拡張方向の変位ベクトルが発生するが、左手領域ではほとんど変位ベクトルが発生しない。そして、突起部102Aの近傍では、X軸正方向を基準として反時計回りに、位相が225°の場合よりも大きな約135°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 270 °, a displacement vector in a larger expansion direction is generated in the right-hand region of the piezoelectric plate 102 than in the case where the phase is 225 °, but almost no displacement vector is generated in the left-hand region. In the vicinity of the protrusion 102A, a displacement vector in a direction of about 135 ° is generated counterclockwise with respect to the positive X-axis direction as compared with a phase of 225 °.
 正弦波信号の位相が315°の場合、圧電板102の右手領域では位相が270°の場合よりも大きく、最大の拡張方向の変位ベクトルが発生するが、左手領域ではほとんど変位ベクトルが発生しない。そして、突起部102Aの近傍では、X軸正方向を基準として反時計回りに、位相が225°の場合よりも大きく、最大の約135°の方向の変位ベクトルが発生する。 When the phase of the sine wave signal is 315 °, the phase vector is larger in the right hand region of the piezoelectric plate 102 than in the case of 270 ° and the maximum displacement vector in the expansion direction is generated, but almost no displacement vector is generated in the left hand region. In the vicinity of the protrusion 102A, a displacement vector having a maximum direction of about 135 ° is generated counterclockwise with respect to the positive X-axis direction as compared with the case where the phase is 225 °.
 以上のように比較例の圧電板102は変形するが、比較例では、圧電板102の右手領域の個別電極103Aに正弦波信号を印加され、左手領域の個別電極103Bがオープン状態であるため、右手領域の個別電極103Aと共通電極104との間に、振動モードがE(3,1)モードである共振周波数に対応する交流電圧が印加されることにより、圧電板102全体にE(3,1)モードの非対称モードの振動が励振される。このとき、左手領域の個別電極103Bはオープン状態であることから、グランドから左手領域の個別電極103Bへの電荷の流入又は左手領域の個別電極103Bからグランドへの電荷の流出が起こらず、E(3,1)モードの対称モードの振動は励振されない。よって、左手領域と右手領域との境界に設けられている突起部102Aの変位ベクトルは、X-Y面でX軸正方向を基準として反時計回りに135°もしくは315°の傾きを維持し、突起部102Aは直線往復軌道を描くように変位することになる。したがって、比較例では突起部102Aからリニアスライダ109にX軸負方向に動力が伝達され、リニアスライダ109がX軸負方向に移動することになる。 As described above, the piezoelectric plate 102 of the comparative example is deformed, but in the comparative example, a sine wave signal is applied to the individual electrode 103A in the right hand region of the piezoelectric plate 102, and the individual electrode 103B in the left hand region is in an open state. An AC voltage corresponding to a resonance frequency whose vibration mode is the E (3, 1) mode is applied between the individual electrode 103A and the common electrode 104 in the right hand region, so that E (3, 3 1) Asymmetric mode vibration is excited. At this time, since the individual electrode 103B in the left-hand region is in an open state, no inflow of charge from the ground to the individual electrode 103B in the left-hand region or no outflow of charge from the individual electrode 103B in the left-hand region to the ground occurs. 3,1) Mode symmetric mode vibrations are not excited. Therefore, the displacement vector of the protrusion 102A provided at the boundary between the left hand region and the right hand region maintains an inclination of 135 ° or 315 ° counterclockwise with respect to the positive direction of the X axis on the XY plane, The protrusion 102A is displaced so as to draw a linear reciprocating orbit. Therefore, in the comparative example, power is transmitted from the protrusion 102A to the linear slider 109 in the X-axis negative direction, and the linear slider 109 moves in the X-axis negative direction.
 次に、本発明の第2の実施形態に係る圧電モータ装置11について説明する。 Next, a piezoelectric motor device 11 according to a second embodiment of the present invention will be described.
 図5は、本実施形態に係る圧電モータ装置11の回路図である。 FIG. 5 is a circuit diagram of the piezoelectric motor device 11 according to the present embodiment.
 圧電モータ装置11は、前述の圧電モータ装置1の回路構成に加えて、交流源5の一方側に接続される個別電極を切り替えるスイッチ15Aと、交流源5の他方側に接続される個別電極を切り替えるスイッチ15Bとを備える。 In addition to the circuit configuration of the piezoelectric motor device 1 described above, the piezoelectric motor device 11 includes a switch 15A for switching an individual electrode connected to one side of the AC source 5 and an individual electrode connected to the other side of the AC source 5. A switch 15B for switching.
 この構成では、交流源5の一方側が個別電極3Aに接続されており、他方側が個別電極3Bと共通電極4とに接続されており、交流源5と個別電極3Bと共通電極4との接続点がグランドに接続されている状態と、交流源5の一方側が個別電極3Bに接続されており、他方側が個別電極3Aと共通電極4とに接続されており、交流源5と個別電極3Aと共通電極4との接続点がグランドに接続されている状態と、を切り替えるようにスイッチ15A,15Bが制御される。 In this configuration, one side of the AC source 5 is connected to the individual electrode 3A, the other side is connected to the individual electrode 3B and the common electrode 4, and a connection point between the AC source 5, the individual electrode 3B, and the common electrode 4 Is connected to the ground, and one side of the AC source 5 is connected to the individual electrode 3B, the other side is connected to the individual electrode 3A and the common electrode 4, and is common to the AC source 5 and the individual electrode 3A. The switches 15A and 15B are controlled so as to switch between the state in which the connection point with the electrode 4 is connected to the ground.
 交流源5の一方側が個別電極3Aに接続されており、他方側が個別電極3Bと共通電極4とに接続されており、交流源5と個別電極3Bと共通電極4との接続点がグランドに接続されている状態では、圧電モータ装置11は第1の実施形態の圧電モータ装置1と同じ動作を行う。 One side of the AC source 5 is connected to the individual electrode 3A, the other side is connected to the individual electrode 3B and the common electrode 4, and the connection point of the AC source 5, the individual electrode 3B and the common electrode 4 is connected to the ground. In this state, the piezoelectric motor device 11 performs the same operation as the piezoelectric motor device 1 of the first embodiment.
 一方、交流源5の一方側が個別電極3Bに接続されており、他方側が個別電極3Aと共通電極4とに接続されており、交流源5と個別電極3Aと共通電極4との接続点がグランドに接続されている状態では、圧電モータ装置11は第1の実施形態の圧電モータ装置1とは逆の動作を行い、突起部(不図示)が反時計回りの円軌道または楕円軌道で変位し、リニアスライダ(不図示)をX軸負方向に移動させる。したがって、本実施形態の圧電モータ装置11は、スイッチ15A,15Bの制御により、リニアスライダの移動方向を切り替えることができる。 On the other hand, one side of the AC source 5 is connected to the individual electrode 3B, the other side is connected to the individual electrode 3A and the common electrode 4, and the connection point of the AC source 5, the individual electrode 3A and the common electrode 4 is the ground. When the piezoelectric motor device 11 is connected to the piezoelectric motor device 11, the piezoelectric motor device 11 performs the reverse operation of the piezoelectric motor device 1 of the first embodiment, and the protrusion (not shown) is displaced in a counterclockwise circular or elliptical orbit. The linear slider (not shown) is moved in the negative direction of the X axis. Therefore, the piezoelectric motor device 11 of the present embodiment can switch the moving direction of the linear slider by the control of the switches 15A and 15B.
 次に、本発明の第3の実施形態に係る圧電モータ装置12について説明する。 Next, a piezoelectric motor device 12 according to a third embodiment of the present invention will be described.
 図6は、本実施形態に係る圧電モータ装置12の回路図である。 FIG. 6 is a circuit diagram of the piezoelectric motor device 12 according to the present embodiment.
 圧電モータ装置12は、前述の圧電モータ装置1の回路構成に加えて、交流源5Aを備える。すなわち、圧電モータ装置12は、2相電源を有する。交流源5の一方側が個別電極3Aに接続されており、交流源5Aの一方側が個別電極3Bに接続されており、交流源5および交流源5Aの他方側が共通電極4に接続されており、交流源5と交流源5Aと共通電極4との接続点がグランドに接続されている。 The piezoelectric motor device 12 includes an AC source 5A in addition to the circuit configuration of the piezoelectric motor device 1 described above. That is, the piezoelectric motor device 12 has a two-phase power source. One side of the AC source 5 is connected to the individual electrode 3A, one side of the AC source 5A is connected to the individual electrode 3B, and the other side of the AC source 5 and the AC source 5A is connected to the common electrode 4. A connection point of the source 5, the AC source 5A, and the common electrode 4 is connected to the ground.
 この構成では、交流源5から個別電極3Aにsin(ωt)の正弦波信号が印加され、交流源5Aから個別電極3Bにcos(ωt)の正弦波信号が印加されることにより、E(3,1)モードの対称モードと非対称モードとの位相差が90°となるように個別電極3A,3Bと共通電極4との間に交流電圧が印加されることになり、第1の実施形態の圧電モータ装置1と同様に、E(3,1)モードの対称モードと非対称モードとが合成された楕円運動の振動が励振される。よって、圧電モータ装置12は第1の実施形態の圧電モータ装置1と同じ動作を行う。 In this configuration, a sin (ωt) sine wave signal is applied from the AC source 5 to the individual electrode 3A, and a cos (ωt) sine wave signal is applied from the AC source 5A to the individual electrode 3B. 1) An AC voltage is applied between the individual electrodes 3A, 3B and the common electrode 4 so that the phase difference between the symmetric mode and the asymmetric mode of the mode is 90 °. Similar to the piezoelectric motor device 1, the vibration of the elliptical motion in which the symmetric mode and the asymmetric mode of the E (3,1) mode are combined is excited. Therefore, the piezoelectric motor device 12 performs the same operation as the piezoelectric motor device 1 of the first embodiment.
 第1の実施形態の圧電モータ装置1では、個別電極3Bがグランドに接続されているため、交流源は1つでよいものの、E(3,1)モードの対称モードと非対称モードとの位相差が約90°となるのは、特定の周波数に限られる。一方、本実施形態の圧電モータ装置12は、交流源は2つであるが、様々な周波数においてE(3,1)モードの対称モードと非対称モードとの位相差が約90°とすることができる。 In the piezoelectric motor device 1 of the first embodiment, since the individual electrode 3B is connected to the ground, only one AC source is required, but the phase difference between the symmetric mode and the asymmetric mode of the E (3,1) mode. Is about 90 ° only for certain frequencies. On the other hand, the piezoelectric motor device 12 of this embodiment has two AC sources, but the phase difference between the symmetric mode and the asymmetric mode of the E (3,1) mode may be about 90 ° at various frequencies. it can.
 以上に説明した実施形態では、動力伝達対象として直線運動するリニアスライダを用いる例を示したが、リニアスライダの他にも回転運動するロータなどを動力伝達対象としてもよい。その場合、ロータの周面を突起部に対向させるように配置することで、圧電モータによりロータを回転させて回転運動の動力を得ることができる。 In the embodiment described above, an example in which a linear slider that linearly moves as a power transmission target has been shown, but a rotor that rotates in addition to the linear slider may be a power transmission target. In that case, by arranging the circumferential surface of the rotor so as to face the protrusion, the rotor can be rotated by a piezoelectric motor to obtain power of rotational motion.
 本発明は以上に説明した実施形態の記載に制限されるものではなく、本発明の範囲は特許請求の範囲によって示される。そして、本発明の範囲には、特許請求の範囲よって示されるものだけでなく特許請求の範囲に均等な範囲で変更された全てのものが含まれる。 The present invention is not limited to the description of the embodiment described above, and the scope of the present invention is indicated by the claims. The scope of the present invention includes not only what is indicated by the scope of claims but also all that are modified within the scope equivalent to the scope of claims.
1,11,12…圧電モータ装置
2…圧電板
2A…突起部
3A,3B…個別電極
4…共通電極
5,5A…交流源
6…押圧バネ
7…フレーム
8…ベアリング
9…リニアスライダ
15A,15B…スイッチ
DESCRIPTION OF SYMBOLS 1, 11, 12 ... Piezoelectric motor apparatus 2 ... Piezoelectric plate 2A ... Protrusion part 3A, 3B ... Individual electrode 4 ... Common electrode 5, 5A ... AC source 6 ... Pressing spring 7 ... Frame 8 ... Bearing 9 ... Linear slider 15A, 15B …switch

Claims (12)

  1.  互いに隣接する第1の領域と第2の領域とを含む第1の面を有する圧電板と、
     前記第1の領域と前記第2の領域との境界線上に設けられ、前記境界線に沿った第1の方向に変位するとともに、前記圧電板の前記第1の面の法線方向と前記第1の方向とに対して垂直な第2の方向に変位する動力伝達部と、
     前記第1の領域に設けられた第1の個別電極と、前記第2の領域に設けられた第2の個別電極と、前記圧電板の前記第1の面と対向する第2の面に設けられた共通電極とを含み、前記第1の個別電極と前記共通電極との間に交流電圧を印加するとともに、前記第2の個別電極が浮き電極にならないようにする駆動部と、
    を備える圧電モータ。
    A piezoelectric plate having a first surface including a first region and a second region adjacent to each other;
    The first region is disposed on a boundary line between the first region and the second region, and is displaced in a first direction along the boundary line. The normal direction of the first surface of the piezoelectric plate and the first direction A power transmission unit that is displaced in a second direction perpendicular to the direction of 1;
    Provided on a first individual electrode provided in the first region, a second individual electrode provided in the second region, and a second surface facing the first surface of the piezoelectric plate A drive unit that applies an AC voltage between the first individual electrode and the common electrode, and prevents the second individual electrode from becoming a floating electrode;
    A piezoelectric motor comprising:
  2.  前記駆動部は、一方側が前記第1の個別電極に接続されており、他方側が前記第2の個別電極と前記共通電極とに接続されており、前記第1の個別電極と前記共通電極との間に交流電圧を印加する交流源を含み、
     前記第2の個別電極と前記共通電極と前記交流源の他方側とがグランドに接続されている、請求項1に記載の圧電モータ。
    The drive unit has one side connected to the first individual electrode, the other side connected to the second individual electrode and the common electrode, and the first individual electrode and the common electrode. Including an AC source for applying an AC voltage between them,
    2. The piezoelectric motor according to claim 1, wherein the second individual electrode, the common electrode, and the other side of the AC source are connected to a ground.
  3.  前記駆動部は、前記第1の個別電極と前記共通電極との間に、振動モードがE(3,1)モードである共振周波数に対応する交流電圧を印加する、請求項2に記載の圧電モータ。 3. The piezoelectric device according to claim 2, wherein the driving unit applies an AC voltage corresponding to a resonance frequency whose vibration mode is an E (3,1) mode between the first individual electrode and the common electrode. motor.
  4.  前記駆動部は、前記圧電板全体にE(3,1)モードの対称モードの振動と非対称モードの振動とが同時に励振され、E(3,1)モードの対称モードと非対称モードとの位相差が約90°となるように、前記第1の個別電極と前記共通電極との間に交流電圧を印加する、請求項3に記載の圧電モータ。 The drive unit simultaneously excites E (3,1) mode symmetric mode vibration and asymmetric mode vibration over the entire piezoelectric plate, and the phase difference between the E (3,1) mode symmetric mode and the asymmetric mode. 4. The piezoelectric motor according to claim 3, wherein an AC voltage is applied between the first individual electrode and the common electrode so that the angle is about 90 °.
  5.  前記駆動部は、前記第1の個別電極又は前記第2の個別電極と前記共通電極との間に交流電圧を印加する交流源を含み、
     前記交流源の一方側が前記第1の個別電極に接続されており、他方側が前記第2の個別電極と前記共通電極とに接続されており、前記第2の個別電極と前記共通電極と前記交流源の他方側とがグランドに接続されている状態と、
     前記交流源の一方側が前記第2の個別電極に接続されており、他方側が前記第1の個別電極と前記共通電極とに接続されており、前記第1の個別電極と前記共通電極と前記交流源の他方側とがグランドに接続されている状態と、
    を切り替えるスイッチを備える、請求項1に記載の圧電モータ。
    The drive unit includes an AC source that applies an AC voltage between the first individual electrode or the second individual electrode and the common electrode,
    One side of the AC source is connected to the first individual electrode, the other side is connected to the second individual electrode and the common electrode, and the second individual electrode, the common electrode, and the AC The other side of the source is connected to ground,
    One side of the AC source is connected to the second individual electrode, the other side is connected to the first individual electrode and the common electrode, and the first individual electrode, the common electrode, and the AC The other side of the source is connected to ground,
    The piezoelectric motor according to claim 1, further comprising a switch for switching between the two.
  6.  前記駆動部は、前記第1の個別電極又は前記第2の個別電極と前記共通電極との間に、振動モードがE(3,1)モードである共振周波数に対応する交流電圧を印加する、請求項5に記載の圧電モータ。 The drive unit applies an AC voltage corresponding to a resonance frequency in which a vibration mode is an E (3,1) mode between the first individual electrode or the second individual electrode and the common electrode. The piezoelectric motor according to claim 5.
  7.  前記駆動部は、前記圧電板全体にE(3,1)モードの対称モードの振動と非対称モードの振動とが同時に励振され、E(3,1)モードの対称モードと非対称モードとの位相差が約90°となるように、前記第1の個別電極又は前記第2の個別電極と前記共通電極との間に交流電圧を印加する、請求項6に記載の圧電モータ。 The drive unit simultaneously excites E (3,1) mode symmetric mode vibration and asymmetric mode vibration over the entire piezoelectric plate, and the phase difference between the E (3,1) mode symmetric mode and the asymmetric mode. The piezoelectric motor according to claim 6, wherein an AC voltage is applied between the first individual electrode or the second individual electrode and the common electrode so that the angle is about 90 °.
  8.  前記駆動部は、一方側が前記第1の個別電極に接続されており、他方側が前記共通電極に接続されており、前記第1の個別電極と前記共通電極との間に交流電圧を印加する第1の交流源と、一方側が前記第2の個別電極に接続されており、他方側が前記共通電極に接続されており、前記第2の個別電極と前記共通電極との間に交流電圧を印加する第2の交流源と、を含み、
     前記第1の交流源の他方側と前記第2の交流源の他方側とがグランドに接続されている、請求項1に記載の圧電モータ。
    The drive unit has one side connected to the first individual electrode and the other side connected to the common electrode, and applies an AC voltage between the first individual electrode and the common electrode. 1 AC source, one side is connected to the second individual electrode, the other side is connected to the common electrode, and an AC voltage is applied between the second individual electrode and the common electrode A second AC source,
    The piezoelectric motor according to claim 1, wherein the other side of the first AC source and the other side of the second AC source are connected to a ground.
  9.  前記駆動部は、前記第1の個別電極と前記共通電極との間と、前記第2の個別電極と前記共通電極との間とに、振動モードがE(3,1)モードである共振周波数に対応する交流電圧を印加する、請求項8に記載の圧電モータ。 The drive unit has a resonance frequency in which a vibration mode is an E (3,1) mode between the first individual electrode and the common electrode, and between the second individual electrode and the common electrode. The piezoelectric motor according to claim 8, wherein an AC voltage corresponding to is applied.
  10.  前記駆動部は、前記圧電板全体にE(3,1)モードの対称モードの振動と非対称モードの振動とが同時に励振され、E(3,1)モードの対称モードと非対称モードとの位相差が約90°となるように、前記第1の個別電極と前記共通電極との間と、前記第2の個別電極と前記共通電極との間とに交流電圧を印加する、請求項9に記載の圧電モータ。 The drive unit simultaneously excites E (3,1) mode symmetric mode vibration and asymmetric mode vibration over the entire piezoelectric plate, and the phase difference between the E (3,1) mode symmetric mode and the asymmetric mode. The AC voltage is applied between the first individual electrode and the common electrode, and between the second individual electrode and the common electrode, so that is about 90 °. Piezoelectric motor.
  11.  請求項1ないし請求項10に記載の圧電モータと、
     前記圧電板の前記第1の方向側に配置されている動力変換部と、
    を備える圧電モータ装置。
    A piezoelectric motor according to any one of claims 1 to 10,
    A power converter disposed on the first direction side of the piezoelectric plate;
    A piezoelectric motor device comprising:
  12.  前記動力変換部は、前記第2の方向を移動方向として移動自在なリニアスライダである、請求項11に記載の圧電モータ装置。 12. The piezoelectric motor device according to claim 11, wherein the power conversion unit is a linear slider that is movable with the second direction as a moving direction.
PCT/JP2012/062905 2011-05-27 2012-05-21 Piezoelectric motor and piezoelectric motor device WO2012165189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011118707 2011-05-27
JP2011-118707 2011-05-27

Publications (1)

Publication Number Publication Date
WO2012165189A1 true WO2012165189A1 (en) 2012-12-06

Family

ID=47259050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062905 WO2012165189A1 (en) 2011-05-27 2012-05-21 Piezoelectric motor and piezoelectric motor device

Country Status (1)

Country Link
WO (1) WO2012165189A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016061832A1 (en) * 2014-10-22 2016-04-28 深圳市华星光电技术有限公司 Naked-eye 3d liquid crystal display panel and driving method therefor
CN110912444A (en) * 2019-04-08 2020-03-24 浙江师范大学 Bionic creeping type piezoelectric actuator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538484A (en) * 2004-05-18 2007-12-27 フィジック インストゥルメント(ピーアイ)ゲーエムベーハー アンド ツェーオー.カーゲー Piezoelectric ultrasonic motor
JP2011072131A (en) * 2009-09-25 2011-04-07 Taiheiyo Cement Corp Ultrasonic motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538484A (en) * 2004-05-18 2007-12-27 フィジック インストゥルメント(ピーアイ)ゲーエムベーハー アンド ツェーオー.カーゲー Piezoelectric ultrasonic motor
JP2011072131A (en) * 2009-09-25 2011-04-07 Taiheiyo Cement Corp Ultrasonic motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016061832A1 (en) * 2014-10-22 2016-04-28 深圳市华星光电技术有限公司 Naked-eye 3d liquid crystal display panel and driving method therefor
GB2545853A (en) * 2014-10-22 2017-06-28 Shenzhen China Star Optoelect Naked-eye 3D liquid crystal display panel and driving method therefor
GB2545853B (en) * 2014-10-22 2021-02-24 Shenzhen China Star Optoelect Naked-eye 3D liquid crystal display panel and driving method for the same
CN110912444A (en) * 2019-04-08 2020-03-24 浙江师范大学 Bionic creeping type piezoelectric actuator
CN110912444B (en) * 2019-04-08 2022-09-27 浙江师范大学 Bionic creeping type piezoelectric actuator

Similar Documents

Publication Publication Date Title
JP4261964B2 (en) Vibration type driving device and control system
JP4103799B2 (en) Linear actuator
US7932660B2 (en) Ultrasonic motor
JPWO2003077410A1 (en) Rotation / movement conversion actuator
CN102185096B (en) Piezoelectric actuator and linear piezoelectric motor
CN103259449A (en) Piezoelectric actuator and piezoelectric motor
JP2008253078A (en) Electromechanical conversion element, vibration actuator, drive arrangement of vibration actuator, lens barrel and camera
JP2008278711A (en) Drive device
Yang et al. Longitudinal and bending hybrid linear ultrasonic motor using bending PZT elements
JP4984673B2 (en) Drive device
US8299682B2 (en) Ultrasonic motor
US11043908B2 (en) Ultrasonic motor having a diagonally excitable actuator plate
JP2008278712A (en) Drive device
WO2012165189A1 (en) Piezoelectric motor and piezoelectric motor device
JP4830165B2 (en) Ultrasonic motor vibrator
JP2015035947A (en) Drive device and lens drive apparatus having the same
JP2006340493A (en) Vibration wave actuator and its drive method
US9705425B2 (en) Piezoelectric linear motor
JP4918122B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP2004239408A (en) Rotational motion conversion device
KR101225008B1 (en) Piezoelectric vibrator of ultrasonic motor
JP2004304963A (en) Piezoelectric actuator
JP4676395B2 (en) Piezoelectric vibrator and ultrasonic motor having the same
JP2007202227A (en) Ultrasonic driver
JP2005261080A (en) Actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP