WO2012164647A1 - Vehicle torque limiter device - Google Patents

Vehicle torque limiter device Download PDF

Info

Publication number
WO2012164647A1
WO2012164647A1 PCT/JP2011/062245 JP2011062245W WO2012164647A1 WO 2012164647 A1 WO2012164647 A1 WO 2012164647A1 JP 2011062245 W JP2011062245 W JP 2011062245W WO 2012164647 A1 WO2012164647 A1 WO 2012164647A1
Authority
WO
WIPO (PCT)
Prior art keywords
engagement element
friction engagement
power transmission
electric motor
torque limiter
Prior art date
Application number
PCT/JP2011/062245
Other languages
French (fr)
Japanese (ja)
Inventor
充孝 土田
康広 林
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/062245 priority Critical patent/WO2012164647A1/en
Publication of WO2012164647A1 publication Critical patent/WO2012164647A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/108Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D7/00Slip couplings, e.g. slipping on overload, for absorbing shock
    • F16D7/02Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type
    • F16D7/024Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type with axially applied torque limiting friction surfaces
    • F16D7/025Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type with axially applied torque limiting friction surfaces with flat clutching surfaces, e.g. discs
    • F16D7/027Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type with axially applied torque limiting friction surfaces with flat clutching surfaces, e.g. discs with multiple lamellae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/1846Preventing of breakage of drive line components, e.g. parts of the gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a torque limiter device provided in a vehicle.
  • a vehicle equipped with a torque limiter device that connects a power transmission path between an electric motor and drive wheels so as not to be connected or disconnected is known.
  • the torque limiter device is mainly configured to include a friction engagement element and a disc spring, and when a torque exceeding a preset limiter torque is input, slipping occurs in the friction engagement element. The transmission of torque exceeding the limiter torque is prevented.
  • the torque limiter mechanism described in Patent Document 1 and Patent Document 2 is an example.
  • the torque limiter mechanism 56 of Patent Document 1 is disposed on the inner periphery of the rotor 52 of the first electric motor MG1, and connects the rotor 52 of the electric motor and the sun gear S0 of the power distribution mechanism 16 so that they cannot be connected or disconnected.
  • the torque limiter mechanism 31 of Patent Document 2 is disposed on the inner peripheral side of the rotor 15c of the motor generator 15 (electric motor), and the rotor 15c of the motor generator 15 and the sun gear 27 of the power distribution mechanism 17 cannot be connected or disconnected. It is linked to.
  • the torque limiter devices of Patent Document 1 and Patent Document 2 are both disposed on the inner peripheral side of the rotor of the electric motor.
  • the torque limiter device is arranged at such a position, the effective diameter of the friction material of the friction engagement element is shortened. Therefore, in the torque limiter device, in order to obtain a necessary limit torque, it is necessary to increase the number of friction materials of the friction engagement elements or increase the pressing load of the disc spring.
  • increasing the number of friction materials leads to an increase in cost and weight.
  • the disc spring load it is necessary to give the friction engagement element strength that can cope with the disc spring load. For example, the plate thickness of the friction plate is increased, resulting in an increase in cost and weight. It leads to increase.
  • the present invention has been made against the background of the above circumstances.
  • the object of the present invention is to provide a friction limiter for a friction material in a vehicle torque limiter provided in a power transmission path between an electric motor and a drive wheel. It is an object of the present invention to provide a torque limiter device for a vehicle that can secure a necessary limiter torque without increasing the number of sheets and increasing the thickness of a friction plate.
  • the gist of the invention according to claim 1 is that: (a) a torque limiter device for a vehicle provided in a power transmission path between an electric motor and drive wheels;
  • the torque limiter device includes an end plate that rotates integrally with the rotor of the electric motor, a power transmission member, and a friction engagement element that connects the end plate and the power transmission member so that they cannot be connected or disconnected.
  • the element is arranged on the inner peripheral side of the coil end of the electric motor, and (d) the rotor of the electric motor is supported by the case via the power transmission member.
  • the frictional engagement element of the torque limiter device can be arranged on the outer peripheral side to the position adjacent to the rotor of the electric motor in the radial direction, a large effective diameter of the friction material can be secured. Therefore, the necessary limiter torque can be obtained without increasing the number of friction materials or the thickness of the friction plate. Further, since the friction engagement element is arranged on the inner peripheral side of the coil end, the space formed on the inner peripheral side of the coil end is effectively utilized, and the friction engagement element and the coil end overlap in the radial direction. Accordingly, the axial length of the device is also shortened.
  • the end plate is provided on an inner peripheral side with respect to the friction engagement element, and a disc spring that presses the friction engagement element includes the friction engagement element and the power transmission member in the axial direction. Is inserted in a preloaded state.
  • the end plate can be shared as a constituent member of the rotor and a constituent member of the torque limiter device, so that an increase in the number of parts is prevented and the axial length of the device is also shortened. .
  • the end plate is provided on the outer peripheral side of the friction engagement element, and a disc spring that presses the friction engagement element is disposed between the friction engagement element and the rotor in the axial direction. Is inserted in a preloaded state. In this way, since the electromagnetic steel plate constituting the rotor is pressed in the axial direction by the disc spring, the member for fixing the electromagnetic steel plate can be eliminated, and the apparatus is simplified.
  • FIG. 1 is a schematic diagram for explaining a vehicle power transmission device according to a first embodiment to which the present invention is applied. It is sectional drawing showing the range equivalent to the II section (one-dot chain line) of Drawing 1 containing the principal part of the power transmission device for vehicles of Drawing 1, ie, a torque limiter device. It is sectional drawing for demonstrating the periphery structure of the torque limiter apparatus of the power transmission device for hybrid vehicles which is the other Example of this invention.
  • FIG. 1 is a skeleton diagram for explaining a hybrid vehicle power transmission device 10 (hereinafter referred to as “power transmission device 10”) to which the present invention is applied.
  • a power transmission device 10 is interposed between an engine 14 which is an internal combustion engine such as a gasoline engine or a diesel engine and a drive wheel 40, and a driving force from the engine 14 is applied to the drive wheel 40.
  • the power transmission device 10 has a transaxle (T / A) case 12 (hereinafter referred to as “case 12”) as a non-rotating member attached to the vehicle body.
  • the first axis RC1 is provided in order from the engine 14 side.
  • a damper 16 operatively connected to an output shaft (for example, a crankshaft) of the engine 14 is connected to the engine 14 via the damper 16 and is rotated by the engine 14.
  • first drive gear 20 as an output rotating member supported so as to be rotatable relative to input shaft 18 on the outer periphery side of input shaft 18, planetary gear device 22 functioning as a power distribution mechanism, and first electric motor M1 And a drive wheel 40 are provided with a torque limiter device 24 provided in the power transmission path and a first electric motor M1.
  • the power transmission device 10 is connected to the first driven gear 26, the first counter gear device 28, and the first driven gear 26 that mesh with the first drive gear 20 in the case 12 via the first counter gear device 28.
  • a second drive gear (differential drive gear) 30, a second counter gear device 32, and a second electric motor M2 connected to the second drive gear 30 via the second counter gear device 32 are parallel to the first axis RC1.
  • a differential gear device (final reduction gear) 36 having a second driven gear (diffractive driven gear) 34 that meshes with the second drive gear 30.
  • the power transmission device 10 is, for example, placed in front of a front wheel drive, that is, an FF (front engine / front drive) type vehicle 6, and is preferably used to drive the drive wheels 40.
  • the power of the engine 14 is generated by the damper 16, the input shaft 18, the planetary gear device 22, the first drive gear 20, the first driven gear 26, the first counter gear device 28, the second drive gear 30, and the differential. It is transmitted to the pair of drive wheels 40 through the gear device 36 and the pair of axles 38 in order.
  • the damper 16 is a damper used in a general vehicle, and is interposed between the engine 14 and the input shaft 18.
  • the damper 16 transmits torque from one of the engine 14 and the input shaft 18 to the other and the engine. 14 absorbs pulsation caused by torque fluctuations and the like.
  • the first counter gear device 28 includes a first countershaft 42 that is parallel to the second axis RC2, a first gear 44 that is coaxially connected to the first driven gear 26, and a first gear 44 that meshes with the first gear 44.
  • a second gear 46 connected to the countershaft 42, a third gear 48 connected to the first countershaft 42 and rotating integrally with the second gear 46, meshed with the third gear 48, and the second drive gear 30.
  • a fourth gear 50 connected coaxially therewith is provided.
  • the first counter gear device 28 thus configured decelerates the rotation from the first driven gear 26 and transmits it to the second drive gear 30.
  • the second counter gear device 32 includes a second countershaft 52 parallel to the second axis RC2, a fifth gear 54 coaxially connected to the second electric motor M2, and a second gear meshing with the fifth gear 54.
  • a sixth gear 56 connected to the countershaft 52, a seventh gear 58 connected to the second countershaft 52 and rotating integrally with the sixth gear 56, meshed with the seventh gear 58, and the second drive gear 30.
  • An eighth gear 60 connected coaxially thereto is also provided.
  • the second counter gear device 32 configured in this manner decelerates the rotation from the second electric motor M ⁇ b> 2 and transmits it to the second drive gear 30.
  • FIG. 2 is a cross-sectional view showing a range corresponding to a main part of the power transmission device 10, that is, a II portion (a chain line) in FIG. 1 including the torque limiter device 24.
  • a sun gear S1 and a first electric motor M1 (electric motor) of a planetary gear device 22 that can rotate around the first axial center RC1 are arranged in series.
  • the transmission member) and the torque limiter device 24 are connected so as to be able to transmit power.
  • first electric motor M1 and the planetary gear device 22 are partitioned by the partition wall 12a of the case 12 that is a non-rotating member, so that the gear chamber in which the planetary gear device 22 is accommodated in the case 12. And the MG chamber in which the 1st electric motor M1 is accommodated is formed.
  • the sun gear S1 of the planetary gear unit 22 is formed in a cylindrical shape, and the outer peripheral teeth of the sun gear S1 are formed at the outer peripheral end of the engine side in the axial direction. Moreover, the outer peripheral tooth for spline fitting with the power transmission shaft 70 is formed in the other of the axial direction.
  • the first electric motor M1 includes a stator 72 fixed to the case 12 so as not to rotate by bolting or the like, a rotor 74 provided on the inner peripheral side of the stator 72 and rotatable about the first axis RC1, a stator 72 and a coil end 76 protruding in the axial direction from both ends.
  • the rotor 74 includes a rotor core 78 composed of a plurality of disk-shaped electromagnetic steel plates stacked in the axial direction on the inner peripheral side of the stator 76, and a cylindrical shape that rotates integrally with the rotor core 78 on the inner peripheral portion of the rotor core 78.
  • a disk-shaped first end plate 82 (corresponding to the end plate of the present invention) and a second end plate 84 which are disposed adjacent to both ends of the rotor shaft 80 in the axial direction of the rotor core 78 and sandwich the rotor core 78 therebetween. It has.
  • the rotor core 78 is formed with a through hole 79 penetrating the rotor core 78 in the axial direction, and the second end plate 84 is similarly penetrated through the second end plate 84 in the axial direction. Is formed.
  • a thrust bearing 87 is inserted between the rotor shaft 80 and the sun gear S1, and supports the rotation shafts of each other so as to be relatively rotatable.
  • a lubricating oil supply oil passage 89 is formed in the rotor shaft 80 in parallel with the first axis RC1. The lubricating oil flowing through the lubricating oil supply oil passage 89 is supplied to the friction engagement element 98 after lubricating the thrust bearing 87 and the bearing 88.
  • the lubricating oil that has lubricated the friction engagement element 98 is supplied to the coil end 76 through the coil end 76 disposed on the outer peripheral side of the friction engagement element 98 or through holes 79 and 85. That is, the lubricating oil also functions as a cooling oil for the coil end 76.
  • the power transmission shaft 70 connects the gear chamber and the MG chamber through the inner peripheral side of the partition wall 12a of the case 12, and has a cylindrical shape in which the diameter of the first electric motor M1 (MG chamber side) is increased in the axial direction.
  • This member is supported by the case 12 via a bearing 86 so as to be relatively rotatable.
  • one end in the axial direction of the rotor shaft 80 of the first electric motor M1 is supported by the bearing 88 so as to be relatively rotatable with respect to the power transmission shaft 70, and the other end in the axial direction is relatively rotatable with respect to the case 12 by the bearing 90. It is supported by. That is, one end of the rotor shaft 80 in the axial direction is supported by the case 12 via the power transmission shaft 70 so as to be relatively rotatable.
  • the power transmission shaft 70 has a cylindrical small diameter cylindrical portion 92 in which spline teeth for spline fitting with the sun gear S1 are formed at one end on the outer periphery in the axial direction, and the other end portion of the small diameter cylindrical portion 92 in the radial direction.
  • a friction engagement element 98 (to be described later) that constitutes the torque limiter device 24 is provided between the large-diameter cylindrical portion 96 and the first end plate 82 in the radial direction. Specifically, the friction engagement element 98 is disposed in a space surrounded by the inner periphery of the large-diameter cylindrical portion 96 and the outer periphery of the first end plate 82.
  • the torque limiter device 24 includes a first end plate 82, a power transmission shaft 70, a friction engagement element 98, and a disc spring 100, and the first end plate 82 and the power transmission shaft are formed by the friction engagement element 98. 70 is connected so that it cannot be connected or disconnected.
  • the friction engagement element 98 includes a disk 102 that is a ring-shaped friction plate, a pair of ring-shaped flanges 104 and 105 that are adjacent to both ends of the disk 102, and the first motor M1 side in the axial direction.
  • the flange 105 and the adjacent snap ring 106 are provided.
  • the disk 102 is spline-fitted to the outer peripheral portion of the first end plate 82 so as not to rotate relative to the first end plate 82 and is movable in the axial direction, and is rotated together with the first end plate 82, that is, the rotor 74.
  • the flanges 104 and 105 are spline-fitted to the inner peripheral portion of the large-diameter cylindrical portion 96 so as not to be relatively rotatable and movable in the axial direction, and are rotated together with the power transmission shaft 70.
  • the snap ring 106 is fitted into an annular groove formed in the inner peripheral portion of the large-diameter cylindrical portion 96, and is prevented from moving in the axial direction. Therefore, the axial movement of the flange 105 adjacent to the snap ring 106 is restricted by the snap ring 106.
  • the disc spring 100 is inserted in the axial direction between the friction engagement element 98 and the enlarged diameter portion 94 of the power transmission shaft 70 in a preloaded state set in advance. Specifically, one end of the disc spring 100 is in contact with the enlarged diameter portion 94 and the other end is in contact with the flange 104 of the friction engagement element 98.
  • the disc spring 100 always presses the flange 104 toward the snap ring 106 with a preset preload (disc spring load).
  • the disc spring load F of the disc spring 100 and the disc 102 and the flanges 104, 105 are between the disc 102 and the flanges 104, 105.
  • a friction force based on the friction coefficient ⁇ is generated. Based on this frictional force and the effective diameter r of the disk 102, the limiter torque Tlm of the torque limiter device 24 is set.
  • the limiter torque Tlm is set by appropriately adjusting the disc spring load F of the disc spring 100, the friction coefficient ⁇ of the disc 102 (friction material), and the effective diameter r of the disc 102. For example, the limiter torque Tlm increases as the disc spring load F increases, the limiter torque Tlm increases as the friction coefficient ⁇ increases, and the limiter torque Tlm increases as the effective diameter r of the disk 102 increases.
  • the torque limiter device 24 (friction engagement element 98) of the present embodiment is disposed in the MG chamber and on the inner peripheral side of the coil end 76 of the first electric motor M1.
  • a friction engagement element has been arranged on the inner peripheral side of the rotor of the electric motor.
  • the friction engagement element 98 is disposed on the inner peripheral side of the coil end 76, so that the friction engagement element 98 is adjacent to the rotor 74 (rotor core 78) of the electric motor M1 in the radial direction.
  • the friction engagement element 98 of the torque limiter device 24 can be disposed on the outer peripheral side to a position adjacent to the rotor 74 (rotor core 78) of the electric motor M1 in the radial direction.
  • a large effective diameter r of the disk 102 can be secured. Therefore, the necessary limiter torque Tlm can be obtained without increasing the number of disks 102 or increasing the thickness of the disks 102.
  • the friction engagement element 98 is disposed on the inner peripheral side of the coil end 76, the space formed on the inner peripheral side of the coil end 76 is effectively utilized, and the friction engagement element 98 and the coil end 76 are separated.
  • the length of the power transmission device 10 in the axial direction can be shortened as it overlaps in the radial direction.
  • the first end plate 82 is provided on the inner peripheral side with respect to the friction engagement element 98, and the disc spring 100 that presses the friction engagement element 98 includes the friction engagement element in the axial direction. 98 and a power transmission shaft 70 are inserted in a preloaded state. In this way, the first end plate 82 is shared as a member of the rotor 74 and a constituent member of the torque limiter device 24, so that an increase in the number of components is prevented and the axial length of the power transmission device 10 is prevented. Also shortened.
  • the lubricating oil supplied to the friction engagement element 98 is also used as the cooling oil for the coil end 76, the lubricating oil can be effectively used.
  • the torque limiter device 24 is provided between the first electric motor M1 and the power transmission shaft 70, it is not necessary to provide the torque limiter device in the damper device that absorbs the torque fluctuation of the engine. Since the torque limiter device provided in the damper device is a dry torque limiter device, the performance is likely to deteriorate due to the external environment (such as adhesion of foreign matter). On the other hand, since the torque limiter device 24 of the present embodiment is a wet torque limiter device, performance degradation due to the external environment is suppressed.
  • FIG. 3 is a cross-sectional view for explaining a peripheral structure of a torque limiter device 202 of a hybrid vehicle power transmission device 200 (hereinafter referred to as “power transmission device 200”) according to another embodiment of the present invention. This corresponds to the cross-sectional view of FIG. 2 and the II part (dashed line) of FIG.
  • the torque limiter device 202 of the present embodiment is compared with the torque limiter device 24 described above, the structures of the rotor shaft 201, the power transmission shaft 204 (power transmission member), the end plate 206, and the friction engagement element 205 are different. .
  • the rotor shaft 201 is supported by the case 12 at one end in the axial direction and supported by the case 12 through the power transmission shaft 204 at the other end in the axial direction.
  • one axial direction of the rotor shaft 201 is supported by the case 12 via the bearing 90 so as to be relatively rotatable, and the other axial direction is supported by the case 12 via the bearing 88, the power transmission shaft 204 and the bearing 86. It is supported for relative rotation.
  • a flange portion 201 a is formed on the outer peripheral surface of the rotor shaft 201, and movement in the axial direction is restricted by the rotor core 78 being in direct contact with the flange portion 201.
  • a communication hole 201b is formed to communicate the lubricating oil supply oil passage 89 formed on the inner periphery of the rotor shaft 201 with the outer peripheral surface. Therefore, when the rotor shaft 201 rotates, the lubricating oil in the lubricating oil supply oil passage 89 is discharged in the outer circumferential direction by centrifugal force through the communication hole 201b. After the discharged lubricating oil lubricates the friction system element 205, the coil end 76 is further cooled.
  • the torque limiter device 202 is provided on the inner peripheral side of the coil end 76.
  • the torque limiter device 202 includes a power transmission shaft 204, an end plate 206, a friction engagement element 205, and a disc spring 207, and the end plate 206 and the power transmission shaft 204 are disconnected by the friction engagement element 205. It is inaccessible.
  • the power transmission shaft 204 has a cylindrical small-diameter cylindrical portion 208 in which spline teeth for spline fitting with the sun gear S1 are formed at one end of the outer periphery in the axial direction, and a disk shape extending in the radial direction from the small-diameter cylindrical portion 208. , And a large-diameter cylindrical portion 212 that extends in the axial direction from the outer peripheral end portion of the enlarged-diameter portion 94 toward the first electric motor M1.
  • the enlarged diameter portion 210 of the present embodiment extends to the middle portion of the rotor core 78 in the radial direction.
  • the end plate 206 of this embodiment is provided on the outer periphery of the rotor core 78.
  • the end plate 206 has a cylindrical cylindrical portion 214 provided adjacent to the outer peripheral surface of the rotor core 78, and a first annular plate-shaped portion extending from one axial end of the cylindrical portion 214 toward the inner peripheral side.
  • a stopper portion 216 and an annular plate-shaped second stopper portion 218 extending from the other axial end of the cylindrical portion 214 toward the inner peripheral side are provided.
  • the cylindrical portion 214 of the end plate 206 is inserted in a gap formed between the rotor 74 and the stator 72, and is arranged in a state where the inner peripheral surface is in contact with the outer peripheral surface of the rotor core 78. Further, a first stopper portion 216 extending from the end portion on the bearing 90 side toward the inner peripheral side in the axial direction of the cylindrical portion 214 is formed, and one end of the rotor core 78 abuts on the first stopper 216, The movement of the rotor core 78 in the axial direction is restricted.
  • the side of the cylindrical portion 214 where the frictional engagement element 205 is disposed is further extended in the axial direction toward the partition wall 12a (gear chamber side), and extends to the inner peripheral side at the extended end portion. Two stopper portions 218 are formed.
  • the friction engagement element 205 is provided between the rotor core 78 and the second stopper portion 218 in the axial direction.
  • the friction engagement element 205 is provided on the inner peripheral side of the cylindrical end 204 of the coil end 76 and the end plate 206 in the radial direction and on the outer peripheral side of the large-diameter cylindrical portion 212.
  • the friction engagement element 205 includes a disk 220 that is an annular plate-like friction plate, and a pair of annular plate-like flanges 222 and 223 that are adjacent to both ends of the disk 220.
  • the disc 220 is spline-fitted to the outer peripheral surface of the large-diameter cylindrical portion 212 of the power transmission shaft 204 so as not to be relatively rotatable and to be movable in the axial direction.
  • the flanges 222 and 223 are spline-fitted to the inner peripheral surface extending toward the partition wall 12a of the cylindrical portion 214 so as not to be relatively rotatable and movable in the axial direction.
  • the axial movement of the flange 223 adjacent to the second stopper portion 218 in the axial direction is restricted by the second stopper portion 218.
  • the disc spring 207 is inserted between the rotor core 78 and the friction engagement element 205 in the axial direction in a preloaded state set in advance. Specifically, one end of the disc spring 207 contacts the flange 222 and the other end contacts the rotor core 78. Note that the outer peripheral side of the disc spring 207 is spline-fitted to inner peripheral teeth formed on the inner peripheral surface of the cylindrical portion 214. The disc spring 207 presses the flange 222 toward the second stopper portion with a preload (disc spring load F) set in advance, and presses the rotor core 78 toward the first stopper portion 216. ing.
  • the disc spring load F of the disc spring 207 and the friction coefficient between the disc 220 and the flanges 222 and 223 between the disc 220 and the flanges 222 and 223.
  • a frictional force based on ⁇ is generated.
  • the limiter torque Tlm of the torque limiter device 202 is set.
  • the torque limiter device 202 of the present embodiment is disposed in the MG chamber and on the inner peripheral side of the coil end 76 of the first electric motor M1.
  • a friction engagement element has been arranged on the inner peripheral side of the rotor of the electric motor.
  • the friction engagement element 205 is disposed on the inner peripheral side of the coil end 76, so that the friction engagement element 205 is adjacent to the rotor 74 (rotor core 78) of the electric motor M1 in the radial direction. Since it can arrange
  • a space is conventionally formed in the inner peripheral portion of the coil end 76, and the space is effectively used by arranging the torque limiter device 202 in this space, and the axial length of the power transmission device 200 is increased. Is shortened.
  • the disc spring 207 presses the rotor core 78 in the axial direction toward the first stopper portion 216 side. Therefore, the member for holding the rotor core 78 in the axial direction can be eliminated on the friction engagement element 205 side of the rotor core 78. Further, since the electromagnetic steel plate is pressed by the disc spring 207, it is possible to prevent the lubricating oil from seeping out between the laminated electromagnetic steel plates, thereby preventing a reduction in efficiency of the electric motor M1.
  • the friction engagement element 2058 of the torque limiter device 202 can be disposed on the outer peripheral side to the position adjacent to the rotor 74 (rotor core 78) of the electric motor M1, so that the disk 220 It is possible to secure a large effective diameter r. Accordingly, the necessary limiter torque Tlm can be obtained without increasing the number of disks 220 or increasing the thickness of the disk 220. Further, since the friction engagement element 205 is disposed on the inner peripheral side of the coil end 76, the space formed on the inner peripheral side of the coil end 76 is effectively utilized, and the axial length of the power transmission device 200 is increased. It can be shortened.
  • the end plate 206 is provided on the outer peripheral side of the friction engagement element 205, and a disc spring 207 that presses the friction engagement element 205 is preloaded between the friction engagement element 205 and the rotor 74 in the axial direction. It is inserted in the state. In this way, since the electromagnetic steel plate constituting the rotor 74 is pressed in the axial direction by the disc spring 207, the member for fixing the electromagnetic steel plate can be eliminated, and the power transmission device 200 is simplified.
  • the disc spring 207 presses the electromagnetic steel plates constituting the rotor core 78 in the axial direction, it is possible to prevent the lubricating oil from seeping out between the laminated electromagnetic steel plates.
  • the friction engagement element 205 and the coil end 76 are effectively lubricated.
  • the torque limiter devices 24 and 202 are provided in the power transmission path between the first electric motor M1 and the drive wheels 40.
  • the power between the second electric motor M2 and the drive wheels 40 is not limited. It may be provided in the transmission path. Even in such a case, since the torque transmitted to the second electric motor M2 is limited, it is possible to reduce the size of the bearing that supports the second electric motor M2 and the diameter of the rotor shaft.
  • the outer peripheral portion of the disc spring 207 is spline-fitted to the inner peripheral teeth formed on the cylindrical portion 214.
  • the spline fitting is not necessarily required.
  • a configuration in which the outer peripheral end of the disc spring 207 is disposed on the inner peripheral side of the inner peripheral tooth of the cylindrical portion 214, or a space in which the disc spring 207 can be disposed is formed by blocking the inner peripheral tooth of the cylindrical portion 214 in the middle. It may be configured as described above.

Abstract

Provided is a vehicle torque limiter device that is provided between an electric motor and a driving wheel, wherein the limit torque can easily be secured. Because the frictional engaging element (98) of the torque limiter device (24) can be disposed towards that outer circumference up to a position in the radial direction that is adjacent to the rotor (74) (rotor core (78)) of the electric motor (M1), a large effective disc (102) radius r can be secured. Consequently, the necessary limit torque Tlm can be obtained without increasing the number of discs (102), increasing disc (102) thickness, etc. And since the frictional engaging element (98) is disposed on the inside of the coil end (76), the space formed inside the coil end (76) is used effectively and the length of the power transmission device (10) in the axial direction can be shortened as a result of the overlap of the frictional engaging element (98) and the coil end (76) in the radial direction.

Description

車両のトルクリミッタ装置Torque limiter device for vehicle
 本発明は、車両に備えられるトルクリミッタ装置に関するものである。 The present invention relates to a torque limiter device provided in a vehicle.
 車両において、電動機と駆動輪との間の動力伝達経路を断接不能に連結するトルクリミッタ装置を備えたものが知られている。トルクリミッタ装置は、主に摩擦係合要素および皿バネを備えて構成されており、予め設定されているリミッタトルクを越えるトルクが入力されると、摩擦係合要素において滑りを生じさせることで、そのリミッタトルクを越えるトルクの伝達を防止する。例えば特許文献1および特許文献2に記載されているトルクリミッタ機構がその一例である。特許文献1のトルクリミッタ機構56は、第1電動機MG1のロータ52に内周に配置され、電動機のロータ52と動力分配機構16のサンギヤS0との間を断接不能に連結している。また、特許文献2のトルクリミッタ機構31は、モータジェネレータ15(電動機)のロータ15cの内周側に配置され、モータジェネレータ15のロータ15cと動力分配機構17のサンギヤ27との間を断接不能に連結している。 2. Description of the Related Art A vehicle equipped with a torque limiter device that connects a power transmission path between an electric motor and drive wheels so as not to be connected or disconnected is known. The torque limiter device is mainly configured to include a friction engagement element and a disc spring, and when a torque exceeding a preset limiter torque is input, slipping occurs in the friction engagement element. The transmission of torque exceeding the limiter torque is prevented. For example, the torque limiter mechanism described in Patent Document 1 and Patent Document 2 is an example. The torque limiter mechanism 56 of Patent Document 1 is disposed on the inner periphery of the rotor 52 of the first electric motor MG1, and connects the rotor 52 of the electric motor and the sun gear S0 of the power distribution mechanism 16 so that they cannot be connected or disconnected. Further, the torque limiter mechanism 31 of Patent Document 2 is disposed on the inner peripheral side of the rotor 15c of the motor generator 15 (electric motor), and the rotor 15c of the motor generator 15 and the sun gear 27 of the power distribution mechanism 17 cannot be connected or disconnected. It is linked to.
特開2010-162969号公報JP 2010-162969 A 特開2010-254230号公報JP 2010-254230 A 特開2003-191760号公報JP 2003-191760 A
 ところで、特許文献1および特許文献2のトルクリミッタ装置は、いずれも電動機のロータの内周側に配置されている。このような位置にトルクリミッタ装置が配置されると、摩擦係合要素の摩擦材の有効径が短くなる。従って、トルクリミッタ装置において、必要なリミットトルクを得るためには摩擦係合要素の摩擦材の枚数を増やす、或いは、皿バネの押し付け荷重を増加させる必要がある。しかしながら、摩擦材の枚数を増やすとコスト増加や重量増加に繋がる。また、皿バネ荷重を増加すると、その皿バネ荷重に対処可能な強度を摩擦係合要素に持たせる必要が生じ、例えば摩擦板の板厚を増加するなどして、結果的にコスト増加や重量増加に繋がる。 Incidentally, the torque limiter devices of Patent Document 1 and Patent Document 2 are both disposed on the inner peripheral side of the rotor of the electric motor. When the torque limiter device is arranged at such a position, the effective diameter of the friction material of the friction engagement element is shortened. Therefore, in the torque limiter device, in order to obtain a necessary limit torque, it is necessary to increase the number of friction materials of the friction engagement elements or increase the pressing load of the disc spring. However, increasing the number of friction materials leads to an increase in cost and weight. Further, when the disc spring load is increased, it is necessary to give the friction engagement element strength that can cope with the disc spring load. For example, the plate thickness of the friction plate is increased, resulting in an increase in cost and weight. It leads to increase.
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、電動機と駆動輪との間の動力伝達経路中に設けられた車両のトルクリミッタ装置において、摩擦材の枚数増加および摩擦板の板厚増加等することなく必要なリミッタトルクを確保できる車両のトルクリミッタ装置を提供することにある。 The present invention has been made against the background of the above circumstances. The object of the present invention is to provide a friction limiter for a friction material in a vehicle torque limiter provided in a power transmission path between an electric motor and a drive wheel. It is an object of the present invention to provide a torque limiter device for a vehicle that can secure a necessary limiter torque without increasing the number of sheets and increasing the thickness of a friction plate.
 上記目的を達成するための、請求項1にかかる発明の要旨とするところは、(a)電動機と駆動輪との間の動力伝達経路中に設けられた車両のトルクリミッタ装置において、(b)前記トルクリミッタ装置は、電動機のロータと共に一体回転するエンドプレートと、動力伝達部材と、そのエンドプレートおよび動力伝達部材を断接不能に連結する摩擦係合要素を含み、(c)その摩擦係合要素は、前記電動機のコイルエンドの内周側に配置されており、(d)前記電動機のロータは、前記動力伝達部材を介してケースに支持されていることを特徴とする。 In order to achieve the above object, the gist of the invention according to claim 1 is that: (a) a torque limiter device for a vehicle provided in a power transmission path between an electric motor and drive wheels; The torque limiter device includes an end plate that rotates integrally with the rotor of the electric motor, a power transmission member, and a friction engagement element that connects the end plate and the power transmission member so that they cannot be connected or disconnected. The element is arranged on the inner peripheral side of the coil end of the electric motor, and (d) the rotor of the electric motor is supported by the case via the power transmission member.
 このようにすれば、トルクリミッタ装置の摩擦係合要素を、径方向において電動機のロータと隣り合う位置まで外周側に配置することができるので、摩擦材の有効径を大きく確保することができる。したがって、摩擦材の枚数増加や摩擦板の板厚増加なしに必要なリミッタトルクを得ることができる。また、摩擦係合要素がコイルエンドの内周側に配置されるので、コイルエンドの内周側に形成される空間が有効に活用され、摩擦係合要素とコイルエンドとが径方向に重複するに従い、装置の軸方向の長さも短縮化される。 In this way, since the frictional engagement element of the torque limiter device can be arranged on the outer peripheral side to the position adjacent to the rotor of the electric motor in the radial direction, a large effective diameter of the friction material can be secured. Therefore, the necessary limiter torque can be obtained without increasing the number of friction materials or the thickness of the friction plate. Further, since the friction engagement element is arranged on the inner peripheral side of the coil end, the space formed on the inner peripheral side of the coil end is effectively utilized, and the friction engagement element and the coil end overlap in the radial direction. Accordingly, the axial length of the device is also shortened.
 また、好適には、前記エンドプレートは、前記摩擦係合要素よりも内周側に設けられ、前記摩擦係合要素を押圧する皿バネが、軸方向においてその摩擦係合要素と前記動力伝達部材との間に予荷重状態で介挿されている。このようにすれば、エンドプレートをロータの構成部材およびトルクリミッタ装置の構成部材として共用化することができるので、部品点数の増加が防止されると共に、装置の軸方向の長さも短縮化される。 Preferably, the end plate is provided on an inner peripheral side with respect to the friction engagement element, and a disc spring that presses the friction engagement element includes the friction engagement element and the power transmission member in the axial direction. Is inserted in a preloaded state. In this way, the end plate can be shared as a constituent member of the rotor and a constituent member of the torque limiter device, so that an increase in the number of parts is prevented and the axial length of the device is also shortened. .
 また、好適には、前記エンドプレートは、前記摩擦係合要素よりも外周側に設けられ、前記摩擦係合要素を押圧する皿バネが、軸方向においてその摩擦係合要素と前記ロータとの間に予荷重状態で介挿されている。このようにすれば、ロータを構成する電磁鋼板が皿バネによって軸方向に押圧されるので、電磁鋼板を固定する部材を廃止することができ、装置が簡素化される。 Preferably, the end plate is provided on the outer peripheral side of the friction engagement element, and a disc spring that presses the friction engagement element is disposed between the friction engagement element and the rotor in the axial direction. Is inserted in a preloaded state. In this way, since the electromagnetic steel plate constituting the rotor is pressed in the axial direction by the disc spring, the member for fixing the electromagnetic steel plate can be eliminated, and the apparatus is simplified.
本発明が適用される実施例1の車両用動力伝達装置を説明するための骨子図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram for explaining a vehicle power transmission device according to a first embodiment to which the present invention is applied. 図1の車両用動力伝達装置の要部、すなわち、トルクリミッタ装置を含む図1のII部(一点鎖線)に相当する範囲を表した断面図である。It is sectional drawing showing the range equivalent to the II section (one-dot chain line) of Drawing 1 containing the principal part of the power transmission device for vehicles of Drawing 1, ie, a torque limiter device. 本発明の他の実施例であるハイブリッド車両用動力伝達装置のトルクリミッタ装置の周辺構造を説明するための断面図である。It is sectional drawing for demonstrating the periphery structure of the torque limiter apparatus of the power transmission device for hybrid vehicles which is the other Example of this invention.
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.
 図1は、本発明が適用されるハイブリッド車両用動力伝達装置10(以下、「動力伝達装置10」という)を説明するための骨子図である。 FIG. 1 is a skeleton diagram for explaining a hybrid vehicle power transmission device 10 (hereinafter referred to as “power transmission device 10”) to which the present invention is applied.
 図1において、動力伝達装置10は、例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン14と駆動輪40との間に介装されており、そのエンジン14からの駆動力を駆動輪40に伝達するトランスアクスルである。そして、動力伝達装置10は、車体に取り付けられる非回転部材としてのトランスアクスル(T/A)ケース12(以下、「ケース12」という)を有し、そのケース12内において、第1軸心RC1上にエンジン14側から順番に、そのエンジン14の出力軸(例えばクランク軸)に作動的に連結されたダンパー16、そのダンパー16を介してエンジン14に連結されておりエンジン14によって回転駆動させられる入力軸18、その入力軸18の外周側において入力軸18に対し相対回転可能に支持された出力回転部材としての第1ドライブギヤ20、動力分配機構として機能する遊星歯車装置22、第1電動機M1と駆動輪40との間に動力伝達経路に設けられるトルクリミッタ装置24、および、第1電動機M1を備えている。更に、動力伝達装置10は、ケース12内において、上記第1ドライブギヤ20に噛み合う第1ドリブンギヤ26、第1カウンタギヤ装置28、第1ドリブンギヤ26に第1カウンタギヤ装置28を介して連結された第2ドライブギヤ(デフドライブギヤ)30、第2カウンタギヤ装置32、および、第2ドライブギヤ30に第2カウンタギヤ装置32を介して連結された第2電動機M2を第1軸心RC1と平行な第2軸心RC2上に備えており、第2ドライブギヤ30に噛み合う第2ドリブンギヤ(デフドリブンギヤ)34を有する差動歯車装置(終減速機)36を備えている。 In FIG. 1, a power transmission device 10 is interposed between an engine 14 which is an internal combustion engine such as a gasoline engine or a diesel engine and a drive wheel 40, and a driving force from the engine 14 is applied to the drive wheel 40. A transaxle to transmit. The power transmission device 10 has a transaxle (T / A) case 12 (hereinafter referred to as “case 12”) as a non-rotating member attached to the vehicle body. In the case 12, the first axis RC1 is provided. In order from the engine 14 side, a damper 16 operatively connected to an output shaft (for example, a crankshaft) of the engine 14 is connected to the engine 14 via the damper 16 and is rotated by the engine 14. Input shaft 18, first drive gear 20 as an output rotating member supported so as to be rotatable relative to input shaft 18 on the outer periphery side of input shaft 18, planetary gear device 22 functioning as a power distribution mechanism, and first electric motor M1 And a drive wheel 40 are provided with a torque limiter device 24 provided in the power transmission path and a first electric motor M1. Further, the power transmission device 10 is connected to the first driven gear 26, the first counter gear device 28, and the first driven gear 26 that mesh with the first drive gear 20 in the case 12 via the first counter gear device 28. A second drive gear (differential drive gear) 30, a second counter gear device 32, and a second electric motor M2 connected to the second drive gear 30 via the second counter gear device 32 are parallel to the first axis RC1. And a differential gear device (final reduction gear) 36 having a second driven gear (diffractive driven gear) 34 that meshes with the second drive gear 30.
 この動力伝達装置10は、例えば前輪駆動すなわちFF(フロントエンジン・フロントドライブ)型の車両6の前方に横置きされ、駆動輪40を駆動するために好適に用いられるものである。動力伝達装置10では、エンジン14の動力が、ダンパー16、入力軸18、遊星歯車装置22、第1ドライブギヤ20、第1ドリブンギヤ26、第1カウンタギヤ装置28、第2ドライブギヤ30、差動歯車装置36、および一対の車軸38等を順次介して一対の駆動輪40へ伝達される。 The power transmission device 10 is, for example, placed in front of a front wheel drive, that is, an FF (front engine / front drive) type vehicle 6, and is preferably used to drive the drive wheels 40. In the power transmission device 10, the power of the engine 14 is generated by the damper 16, the input shaft 18, the planetary gear device 22, the first drive gear 20, the first driven gear 26, the first counter gear device 28, the second drive gear 30, and the differential. It is transmitted to the pair of drive wheels 40 through the gear device 36 and the pair of axles 38 in order.
 ダンパー16は、一般的な車両に用いられるダンパーであり、エンジン14と入力軸18との間に介装されており、そのエンジン14及び入力軸18の一方から他方へのトルク伝達を行うと共にエンジン14からのトルク変動等による脈動を吸収する。 The damper 16 is a damper used in a general vehicle, and is interposed between the engine 14 and the input shaft 18. The damper 16 transmits torque from one of the engine 14 and the input shaft 18 to the other and the engine. 14 absorbs pulsation caused by torque fluctuations and the like.
 第1カウンタギヤ装置28は、第2軸心RC2と平行な第1副軸42と、第1ドリブンギヤ26にそれと同軸上で連結された第1歯車44と、その第1歯車44と噛み合い第1副軸42に連結された第2歯車46と、第1副軸42に連結されており第2歯車46と一体回転する第3歯車48と、その第3歯車48と噛み合い第2ドライブギヤ30にそれと同軸上で連結された第4歯車50とを備えている。このように構成された第1カウンタギヤ装置28は、第1ドリブンギヤ26からの回転を減速して第2ドライブギヤ30に伝達する。 The first counter gear device 28 includes a first countershaft 42 that is parallel to the second axis RC2, a first gear 44 that is coaxially connected to the first driven gear 26, and a first gear 44 that meshes with the first gear 44. A second gear 46 connected to the countershaft 42, a third gear 48 connected to the first countershaft 42 and rotating integrally with the second gear 46, meshed with the third gear 48, and the second drive gear 30. A fourth gear 50 connected coaxially therewith is provided. The first counter gear device 28 thus configured decelerates the rotation from the first driven gear 26 and transmits it to the second drive gear 30.
 第2カウンタギヤ装置32は、第2軸心RC2と平行な第2副軸52と、第2電動機M2にそれと同軸上で連結された第5歯車54と、その第5歯車54と噛み合い第2副軸52に連結された第6歯車56と、第2副軸52に連結されており第6歯車56と一体回転する第7歯車58と、その第7歯車58と噛み合い第2ドライブギヤ30にそれと同軸上で連結された第8歯車60とを備えている。このように構成された第2カウンタギヤ装置32は、第2電動機M2からの回転を減速して第2ドライブギヤ30に伝達する。 The second counter gear device 32 includes a second countershaft 52 parallel to the second axis RC2, a fifth gear 54 coaxially connected to the second electric motor M2, and a second gear meshing with the fifth gear 54. A sixth gear 56 connected to the countershaft 52, a seventh gear 58 connected to the second countershaft 52 and rotating integrally with the sixth gear 56, meshed with the seventh gear 58, and the second drive gear 30. An eighth gear 60 connected coaxially thereto is also provided. The second counter gear device 32 configured in this manner decelerates the rotation from the second electric motor M <b> 2 and transmits it to the second drive gear 30.
 図2は、動力伝達装置10の要部、すなわち、トルクリミッタ装置24を含む図1のII部(一点鎖線)に相当する範囲を表した断面図である。図2に示すように、第1軸心RC1まわりに回転可能な遊星歯車装置22のサンギヤS1および第1電動機M1(電動機)が直列に配置されており、それらが後述する動力伝達軸70(動力伝達部材)およびトルクリミッタ装置24を介して動力伝達可能に連結されている。また、第1電動機M1と遊星歯車装置22(サンギヤS1のみ記載)とは、非回転部材であるケース12の隔壁12aによって仕切られることにより、ケース12内において遊星歯車装置22が収容されるギヤ室および第1電動機M1が収容されるMG室が形成されている。 FIG. 2 is a cross-sectional view showing a range corresponding to a main part of the power transmission device 10, that is, a II portion (a chain line) in FIG. 1 including the torque limiter device 24. As shown in FIG. 2, a sun gear S1 and a first electric motor M1 (electric motor) of a planetary gear device 22 that can rotate around the first axial center RC1 are arranged in series. The transmission member) and the torque limiter device 24 are connected so as to be able to transmit power. Further, the first electric motor M1 and the planetary gear device 22 (only the sun gear S1 is described) are partitioned by the partition wall 12a of the case 12 that is a non-rotating member, so that the gear chamber in which the planetary gear device 22 is accommodated in the case 12. And the MG chamber in which the 1st electric motor M1 is accommodated is formed.
 遊星歯車装置22のサンギヤS1は円筒状に形成されており、軸方向においてエンジン側の外周端部にサンギヤS1の外周歯が形成されている。また、軸方向の他方に動力伝達軸70とスプライン嵌合するための外周歯が形成されている。 The sun gear S1 of the planetary gear unit 22 is formed in a cylindrical shape, and the outer peripheral teeth of the sun gear S1 are formed at the outer peripheral end of the engine side in the axial direction. Moreover, the outer peripheral tooth for spline fitting with the power transmission shaft 70 is formed in the other of the axial direction.
 第1電動機M1は、ケース12にボルト止め等により回転不能に固定されているステータ72と、そのステータ72の内周側に設けられて第1軸心RC1まわりに回転可能なロータ74と、ステータ72両端から軸方向に突き出すコイルエンド76とを備えている。 The first electric motor M1 includes a stator 72 fixed to the case 12 so as not to rotate by bolting or the like, a rotor 74 provided on the inner peripheral side of the stator 72 and rotatable about the first axis RC1, a stator 72 and a coil end 76 protruding in the axial direction from both ends.
 ロータ74は、ステータ76の内周側において軸方向に積層されている複数枚の円板状の電磁鋼板から成るロータコア78と、そのロータコア78の内周部においてロータコア78と共に一体回転する円筒状のロータ軸80と、ロータコア78の軸方向両端に隣接し、そのロータコア78を挟み込んだ状態で配置されている円盤形状の第1エンドプレート82(本発明のエンドプレートに対応)および第2エンドプレート84を備えている。 The rotor 74 includes a rotor core 78 composed of a plurality of disk-shaped electromagnetic steel plates stacked in the axial direction on the inner peripheral side of the stator 76, and a cylindrical shape that rotates integrally with the rotor core 78 on the inner peripheral portion of the rotor core 78. A disk-shaped first end plate 82 (corresponding to the end plate of the present invention) and a second end plate 84 which are disposed adjacent to both ends of the rotor shaft 80 in the axial direction of the rotor core 78 and sandwich the rotor core 78 therebetween. It has.
 ロータコア78には、そのロータコア78内部を軸方向に貫通する貫通穴79が形成されており、さらに、第2エンドプレート84にも同様に、第2エンドプレート84を軸方向に貫通する貫通穴85が形成されている。また、ロータ軸80とサンギヤS1との間には、スラスト軸受87が介挿されており、互いの回転軸を相対回転可能に支持している。また、ロータ軸80の内部には第1軸心RC1に平行な潤滑油供給油路89が形成されている。この潤滑油供給油路89を流れる潤滑油は、スラスト軸受87および軸受88を潤滑した後、摩擦係合要素98に供給される。さらに、摩擦係合要素98を潤滑した潤滑油は、摩擦係合要素98の外周側に配置されるコイルエンド76、或いは、貫通穴79、85を通ってコイルエンド76に供給される。すなわち、潤滑油がコイルエンド76の冷却油としても機能する。 The rotor core 78 is formed with a through hole 79 penetrating the rotor core 78 in the axial direction, and the second end plate 84 is similarly penetrated through the second end plate 84 in the axial direction. Is formed. A thrust bearing 87 is inserted between the rotor shaft 80 and the sun gear S1, and supports the rotation shafts of each other so as to be relatively rotatable. A lubricating oil supply oil passage 89 is formed in the rotor shaft 80 in parallel with the first axis RC1. The lubricating oil flowing through the lubricating oil supply oil passage 89 is supplied to the friction engagement element 98 after lubricating the thrust bearing 87 and the bearing 88. Further, the lubricating oil that has lubricated the friction engagement element 98 is supplied to the coil end 76 through the coil end 76 disposed on the outer peripheral side of the friction engagement element 98 or through holes 79 and 85. That is, the lubricating oil also functions as a cooling oil for the coil end 76.
 動力伝達軸70は、ケース12の隔壁12aのさらに内周側を通ってギヤ室とMG室とを連結し、軸方向において第1電動機M1側(MG室側)が拡径されている円筒状の部材であり、軸受86を介してケース12に相対回転可能に支持されている。ここで、第1電動機M1のロータ軸80の軸方向の一端が、軸受88によって動力伝達軸70に相対回転可能に支持されると共に、軸方向の他端が軸受90によってケース12に相対回転可能に支持されている。すなわち、ロータ軸80の軸方向の一端は、動力伝達軸70を介してケース12に相対回転可能に支持されている。 The power transmission shaft 70 connects the gear chamber and the MG chamber through the inner peripheral side of the partition wall 12a of the case 12, and has a cylindrical shape in which the diameter of the first electric motor M1 (MG chamber side) is increased in the axial direction. This member is supported by the case 12 via a bearing 86 so as to be relatively rotatable. Here, one end in the axial direction of the rotor shaft 80 of the first electric motor M1 is supported by the bearing 88 so as to be relatively rotatable with respect to the power transmission shaft 70, and the other end in the axial direction is relatively rotatable with respect to the case 12 by the bearing 90. It is supported by. That is, one end of the rotor shaft 80 in the axial direction is supported by the case 12 via the power transmission shaft 70 so as to be relatively rotatable.
 動力伝達軸70は、軸方向の外周一端にサンギヤS1とスプライン嵌合するためのスプライン歯が形成されている円筒状の小径筒部92と、その小径筒部92の他端部から径方向に伸びる円板状の拡径部94と、その拡径部94の外周端部より第1軸心RC1と平行に第1電動機M1側に向かって伸びる大径筒部96とを、備えている。 The power transmission shaft 70 has a cylindrical small diameter cylindrical portion 92 in which spline teeth for spline fitting with the sun gear S1 are formed at one end on the outer periphery in the axial direction, and the other end portion of the small diameter cylindrical portion 92 in the radial direction. A disk-shaped enlarged diameter portion 94 that extends, and a large-diameter cylindrical portion 96 that extends from the outer peripheral end portion of the enlarged diameter portion 94 toward the first electric motor M1 in parallel with the first axis RC1.
 そして、径方向において前記大径筒部96と第1エンドプレート82との間にトルクリミッタ装置24を構成する後述する摩擦係合要素98が設けられている。具体的には、摩擦係合要素98が、大径筒部96の内周および第1エンドプレート82の外周とで囲まれる空間に配置されている。 A friction engagement element 98 (to be described later) that constitutes the torque limiter device 24 is provided between the large-diameter cylindrical portion 96 and the first end plate 82 in the radial direction. Specifically, the friction engagement element 98 is disposed in a space surrounded by the inner periphery of the large-diameter cylindrical portion 96 and the outer periphery of the first end plate 82.
 トルクリミッタ装置24は、第1エンドプレート82、動力伝達軸70、摩擦係合要素98、および皿バネ100を含んで構成されおり、摩擦係合要素98によって、第1エンドプレート82と動力伝達軸70とが断接不能に連結されている。 The torque limiter device 24 includes a first end plate 82, a power transmission shaft 70, a friction engagement element 98, and a disc spring 100, and the first end plate 82 and the power transmission shaft are formed by the friction engagement element 98. 70 is connected so that it cannot be connected or disconnected.
 摩擦係合要素98は、円環板状の摩擦板であるディスク102と、ディスク102の両端に隣接されている円環板状の一対のフランジ104、105と、軸方向において第1電動機M1側のフランジ105と隣接するスナップリング106とを、備えている。 The friction engagement element 98 includes a disk 102 that is a ring-shaped friction plate, a pair of ring-shaped flanges 104 and 105 that are adjacent to both ends of the disk 102, and the first motor M1 side in the axial direction. The flange 105 and the adjacent snap ring 106 are provided.
 ディスク102は、第1エンドプレート82の外周部に相対回転不能、且つ、軸方向の移動可能にスプライン嵌合されており、第1エンドプレート82すなわちロータ74と共に一体回転させられる。フランジ104、105は、大径筒部96の内周部に相対回転不能、且つ、軸方向の移動可能にスプライン嵌合されており、動力伝達軸70と共に一体回転させられる。スナップリング106は、大径筒部96の内周部に形成されている環状溝に嵌め着けられており、軸方向への移動が阻止されている。したがって、スナップリング106に隣接するフランジ105は、スナップリング106によって軸方向への移動が規制されている。 The disk 102 is spline-fitted to the outer peripheral portion of the first end plate 82 so as not to rotate relative to the first end plate 82 and is movable in the axial direction, and is rotated together with the first end plate 82, that is, the rotor 74. The flanges 104 and 105 are spline-fitted to the inner peripheral portion of the large-diameter cylindrical portion 96 so as not to be relatively rotatable and movable in the axial direction, and are rotated together with the power transmission shaft 70. The snap ring 106 is fitted into an annular groove formed in the inner peripheral portion of the large-diameter cylindrical portion 96, and is prevented from moving in the axial direction. Therefore, the axial movement of the flange 105 adjacent to the snap ring 106 is restricted by the snap ring 106.
 皿バネ100は、軸方向において摩擦係合要素98と動力伝達軸70の拡径部94との間に予め設定されている予荷重状態で介挿されている。具体的には、皿バネ100の一端が拡径部94に当接するとと共に、他端が摩擦係合要素98のフランジ104に当接している。そして、皿バネ100は、予め設定されている予荷重(皿バネ荷重)でフランジ104を常時スナップリング106側に押圧している。ここで、フランジ105はスナップリング106によって軸方向への移動が規制されているので、ディスク102およびフランジ104、105間で、皿バネ100の皿バネ荷重Fおよびディスク102とフランジ104、105間の摩擦係数μに基づく摩擦力が発生する。この摩擦力およびディスク102の有効径rに基づいて、トルクリミッタ装置24のリミッタトルクTlmが設定される。 The disc spring 100 is inserted in the axial direction between the friction engagement element 98 and the enlarged diameter portion 94 of the power transmission shaft 70 in a preloaded state set in advance. Specifically, one end of the disc spring 100 is in contact with the enlarged diameter portion 94 and the other end is in contact with the flange 104 of the friction engagement element 98. The disc spring 100 always presses the flange 104 toward the snap ring 106 with a preset preload (disc spring load). Here, since the movement of the flange 105 in the axial direction is restricted by the snap ring 106, the disc spring load F of the disc spring 100 and the disc 102 and the flanges 104, 105 are between the disc 102 and the flanges 104, 105. A friction force based on the friction coefficient μ is generated. Based on this frictional force and the effective diameter r of the disk 102, the limiter torque Tlm of the torque limiter device 24 is set.
 上記リミッタトルクTlmは、皿バネ100の皿バネ荷重F、ディスク102(摩擦材)の摩擦係数μ、およびディスク102の有効径rを適宜調整することで設定される。例えば皿バネ荷重Fが大きくなるに従ってリミッタトルクTlmが増加し、摩擦係数μが大きくなるに従ってリミッタトルクTlmが増加し、ディスク102の有効径rが大きくなるに従ってリミッタトルクTlmが増加する。 The limiter torque Tlm is set by appropriately adjusting the disc spring load F of the disc spring 100, the friction coefficient μ of the disc 102 (friction material), and the effective diameter r of the disc 102. For example, the limiter torque Tlm increases as the disc spring load F increases, the limiter torque Tlm increases as the friction coefficient μ increases, and the limiter torque Tlm increases as the effective diameter r of the disk 102 increases.
 本実施例のトルクリミッタ装置24(摩擦係合要素98)は、図2に示すように、MG室内であって、第1電動機M1のコイルエンド76の内周側に配置されている。従来では、電動機のロータの内周側に摩擦係合要素が配置されていた。これに対して、本実施例では、コイルエンド76の内周側に摩擦係合要素98が配置されるので、摩擦係合要素98を、径方向において電動機M1のロータ74(ロータコア78)と隣り合う位置まで外周側に配置することができるため、従来に比べてディスク102の有効径rが大きくなり、必要なリミッタトルクTlmの確保が容易となる。また、このコイルエンド76の内周部は従来より空間が形成されており、この空間にトルクリミッタ装置24が配置されることで、空間が有効に活用され、動力伝達装置10の軸方向の長さが短縮化される。 As shown in FIG. 2, the torque limiter device 24 (friction engagement element 98) of the present embodiment is disposed in the MG chamber and on the inner peripheral side of the coil end 76 of the first electric motor M1. Conventionally, a friction engagement element has been arranged on the inner peripheral side of the rotor of the electric motor. On the other hand, in the present embodiment, the friction engagement element 98 is disposed on the inner peripheral side of the coil end 76, so that the friction engagement element 98 is adjacent to the rotor 74 (rotor core 78) of the electric motor M1 in the radial direction. Since it can arrange | position to an outer peripheral side to the matching position, compared with the past, the effective diameter r of the disk 102 becomes large, and ensuring of the required limiter torque Tlm becomes easy. In addition, a space is conventionally formed in the inner peripheral portion of the coil end 76, and the space is effectively utilized by arranging the torque limiter device 24 in this space, so that the axial length of the power transmission device 10 is increased. Is shortened.
 上述のように、本実施例によれば、トルクリミッタ装置24の摩擦係合要素98を、径方向において電動機M1のロータ74(ロータコア78)と隣り合う位置まで外周側に配置することができるので、ディスク102の有効径rを大きく確保することができる。したがって、ディスク102の枚数増加やディスク102の板厚増加等なしに必要なリミッタトルクTlmを得ることができる。また、摩擦係合要素98がコイルエンド76の内周側に配置されるので、コイルエンド76の内周側に形成される空間が有効に活用され、摩擦係合要素98とコイルエンド76とが径方向において重複するに従い、動力伝達装置10の軸方向の長さを短縮化することができる。 As described above, according to the present embodiment, the friction engagement element 98 of the torque limiter device 24 can be disposed on the outer peripheral side to a position adjacent to the rotor 74 (rotor core 78) of the electric motor M1 in the radial direction. A large effective diameter r of the disk 102 can be secured. Therefore, the necessary limiter torque Tlm can be obtained without increasing the number of disks 102 or increasing the thickness of the disks 102. Further, since the friction engagement element 98 is disposed on the inner peripheral side of the coil end 76, the space formed on the inner peripheral side of the coil end 76 is effectively utilized, and the friction engagement element 98 and the coil end 76 are separated. The length of the power transmission device 10 in the axial direction can be shortened as it overlaps in the radial direction.
 また、本実施例によれば、第1エンドプレート82は、摩擦係合要素98よりも内周側に設けられ、摩擦係合要素98を押圧する皿バネ100が、軸方向において摩擦係合要素98と動力伝達軸70との間に予荷重状態で介挿されている。このようにすれば、第1エンドプレート82がロータ74の部材およびトルクリミッタ装置24の構成部材として共用化されるので、部品点数の増加が防止されると共に、動力伝達装置10の軸方向の長さも短縮化される。 Further, according to the present embodiment, the first end plate 82 is provided on the inner peripheral side with respect to the friction engagement element 98, and the disc spring 100 that presses the friction engagement element 98 includes the friction engagement element in the axial direction. 98 and a power transmission shaft 70 are inserted in a preloaded state. In this way, the first end plate 82 is shared as a member of the rotor 74 and a constituent member of the torque limiter device 24, so that an increase in the number of components is prevented and the axial length of the power transmission device 10 is prevented. Also shortened.
 また、本実施例によれば、摩擦係合要素98に供給される潤滑油がコイルエンド76の冷却油としても利用されるので、潤滑油の有効活用が可能となる。 Further, according to the present embodiment, since the lubricating oil supplied to the friction engagement element 98 is also used as the cooling oil for the coil end 76, the lubricating oil can be effectively used.
 また、本実施例によれば、第1電動機M1と動力伝達軸70との間にトルクリミッタ装置24が設けられるので、エンジンのトルク変動を吸収するダンパ装置にトルクリミッタ装置を設けなくてすむ。なお、ダンパ装置に設けられるトルクリミッタ装置は、乾式のトルクリミッタ装置となるので、外部環境(異物付着等)による性能低下が生じ易い。これに対して、本実施例のトルクリミッタ装置24は湿式のトルクリミッタ装置となるので、外部環境による性能低下も抑制される。 Further, according to the present embodiment, since the torque limiter device 24 is provided between the first electric motor M1 and the power transmission shaft 70, it is not necessary to provide the torque limiter device in the damper device that absorbs the torque fluctuation of the engine. Since the torque limiter device provided in the damper device is a dry torque limiter device, the performance is likely to deteriorate due to the external environment (such as adhesion of foreign matter). On the other hand, since the torque limiter device 24 of the present embodiment is a wet torque limiter device, performance degradation due to the external environment is suppressed.
 つぎに、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。 Next, another embodiment of the present invention will be described. In the following description, the same reference numerals are given to portions common to the above-described embodiments, and the description is omitted.
 図3は、本発明の他の実施例であるハイブリッド車両用動力伝達装置200(以下、「動力伝達装置200」という)のトルクリミッタ装置202の周辺構造を説明するための断面図であって、図2の断面図および図1のII部(一点鎖線)に対応している。本実施例のトルクリミッタ装置202を前述したトルクリミッタ装置24と比較すると、ロータ軸201、動力伝達軸204(動力伝達部材)、エンドプレート206、および摩擦係合要素205の構造が相違している。 FIG. 3 is a cross-sectional view for explaining a peripheral structure of a torque limiter device 202 of a hybrid vehicle power transmission device 200 (hereinafter referred to as “power transmission device 200”) according to another embodiment of the present invention. This corresponds to the cross-sectional view of FIG. 2 and the II part (dashed line) of FIG. When the torque limiter device 202 of the present embodiment is compared with the torque limiter device 24 described above, the structures of the rotor shaft 201, the power transmission shaft 204 (power transmission member), the end plate 206, and the friction engagement element 205 are different. .
 ロータ軸201は、軸方向の一方がケース12によって支持される共に、軸方向の他方が動力伝達軸204を介してケース12に支持されている。具体的には、ロータ軸201の軸方向の一方が軸受90を介してケース12に相対回転可能に支持され、軸方向の他方が軸受88、動力伝達軸204および軸受86を介してケース12に相対回転可能に支持されている。また、ロータ軸201の外周面に鍔部201aが形成されており、ロータコア78が鍔部201と直接当接することで軸方向の移動が規制されている。さらに、ロータ軸201の内周に形成されている潤滑油供給油路89と外周面とを連通する連通穴201bが形成されている。従って、ロータ軸201が回転すると、潤滑油供給油路89内の潤滑油が、連通穴201bを通って遠心力によって外周方向に放出される。この放出された潤滑油が摩擦系要素205を潤滑した後、さらにコイルエンド76を冷却する。 The rotor shaft 201 is supported by the case 12 at one end in the axial direction and supported by the case 12 through the power transmission shaft 204 at the other end in the axial direction. Specifically, one axial direction of the rotor shaft 201 is supported by the case 12 via the bearing 90 so as to be relatively rotatable, and the other axial direction is supported by the case 12 via the bearing 88, the power transmission shaft 204 and the bearing 86. It is supported for relative rotation. Further, a flange portion 201 a is formed on the outer peripheral surface of the rotor shaft 201, and movement in the axial direction is restricted by the rotor core 78 being in direct contact with the flange portion 201. Furthermore, a communication hole 201b is formed to communicate the lubricating oil supply oil passage 89 formed on the inner periphery of the rotor shaft 201 with the outer peripheral surface. Therefore, when the rotor shaft 201 rotates, the lubricating oil in the lubricating oil supply oil passage 89 is discharged in the outer circumferential direction by centrifugal force through the communication hole 201b. After the discharged lubricating oil lubricates the friction system element 205, the coil end 76 is further cooled.
 本実施例においても、トルクリミッタ装置202は、コイルエンド76の内周側に設けられている。トルクリミッタ装置202は、動力伝達軸204、エンドプレート206、摩擦係合要素205、および皿バネ207を含んで構成されており、摩擦係合要素205によってエンドプレート206と動力伝達軸204とが断接不能に連結されている。 Also in this embodiment, the torque limiter device 202 is provided on the inner peripheral side of the coil end 76. The torque limiter device 202 includes a power transmission shaft 204, an end plate 206, a friction engagement element 205, and a disc spring 207, and the end plate 206 and the power transmission shaft 204 are disconnected by the friction engagement element 205. It is inaccessible.
 動力伝達軸204は、軸方向の外周一端にサンギヤS1とスプライン嵌合するためのスプライン歯が形成されている円筒状の小径筒部208と、その小径円筒部208から径方向に伸びる円板状の拡径部210と、その拡径部94の外周端部より軸方向に第1電動機M1側に向かって伸びる大径筒部212とを、備えている。本実施例の拡径部210は、径方向においてロータコア78の中間部程度まで伸びている。 The power transmission shaft 204 has a cylindrical small-diameter cylindrical portion 208 in which spline teeth for spline fitting with the sun gear S1 are formed at one end of the outer periphery in the axial direction, and a disk shape extending in the radial direction from the small-diameter cylindrical portion 208. , And a large-diameter cylindrical portion 212 that extends in the axial direction from the outer peripheral end portion of the enlarged-diameter portion 94 toward the first electric motor M1. The enlarged diameter portion 210 of the present embodiment extends to the middle portion of the rotor core 78 in the radial direction.
 本実施例のエンドプレート206は、ロータコア78の外周部に設けられている。エンドプレート206は、ロータコア78の外周面に隣接して設けられている円筒状の筒部214と、その筒部214の軸方向の一端から内周側に向かって伸びる円環板状の第1ストッパ部216と、筒部214の軸方向の他端から内周側に向かって伸びる円環板状の第2ストッパ部218とを、備えている。 The end plate 206 of this embodiment is provided on the outer periphery of the rotor core 78. The end plate 206 has a cylindrical cylindrical portion 214 provided adjacent to the outer peripheral surface of the rotor core 78, and a first annular plate-shaped portion extending from one axial end of the cylindrical portion 214 toward the inner peripheral side. A stopper portion 216 and an annular plate-shaped second stopper portion 218 extending from the other axial end of the cylindrical portion 214 toward the inner peripheral side are provided.
 エンドプレート206の筒部214は、ロータ74とステータ72との間に形成されている間隙に介挿され、内周面がロータコア78の外周面と接触した状態で配置されている。また、筒部214の軸方向において軸受90側の端部から内周側に向かって伸びる第1ストッパ部216が形成されており、この第1ストッパ216にロータコア78の一端が当接することで、ロータコア78の軸方向の移動が規制されている。筒部214の摩擦係合要素205が配置される側は、さらに隔壁12a(ギヤ室側)に向かって軸方向に延接されており、その延接された端部に内周側に伸びる第2ストッパ部218が形成されている。 The cylindrical portion 214 of the end plate 206 is inserted in a gap formed between the rotor 74 and the stator 72, and is arranged in a state where the inner peripheral surface is in contact with the outer peripheral surface of the rotor core 78. Further, a first stopper portion 216 extending from the end portion on the bearing 90 side toward the inner peripheral side in the axial direction of the cylindrical portion 214 is formed, and one end of the rotor core 78 abuts on the first stopper 216, The movement of the rotor core 78 in the axial direction is restricted. The side of the cylindrical portion 214 where the frictional engagement element 205 is disposed is further extended in the axial direction toward the partition wall 12a (gear chamber side), and extends to the inner peripheral side at the extended end portion. Two stopper portions 218 are formed.
 摩擦係合要素205は、軸方向においてロータコア78と第2ストッパ部218との間に設けられている。また、摩擦係合要素205は、径方向においてコイルエンド76およびエンドプレート206の筒部204の内周側であって、大径筒部212の外周側に設けられている。 The friction engagement element 205 is provided between the rotor core 78 and the second stopper portion 218 in the axial direction. The friction engagement element 205 is provided on the inner peripheral side of the cylindrical end 204 of the coil end 76 and the end plate 206 in the radial direction and on the outer peripheral side of the large-diameter cylindrical portion 212.
 摩擦係合要素205は、円環板状の摩擦板であるディスク220と、ディスク220の両端に隣接されている円環板状の一対のフランジ222、223とを、備えている。ディスク220は、動力伝達軸204の大径筒部212の外周面に相対回転不能、且つ、軸方向の移動可能にスプライン嵌合されている。また、フランジ222、223は、筒部214の隔壁12a側に延接されている内周面に相対回転不能、且つ、軸方向の移動可能にスプライン嵌合されている。なお、軸方向において第2ストッパ部218と隣接するフランジ223は、その第2ストッパ部218によって、軸方向への移動が規制されている。 The friction engagement element 205 includes a disk 220 that is an annular plate-like friction plate, and a pair of annular plate- like flanges 222 and 223 that are adjacent to both ends of the disk 220. The disc 220 is spline-fitted to the outer peripheral surface of the large-diameter cylindrical portion 212 of the power transmission shaft 204 so as not to be relatively rotatable and to be movable in the axial direction. The flanges 222 and 223 are spline-fitted to the inner peripheral surface extending toward the partition wall 12a of the cylindrical portion 214 so as not to be relatively rotatable and movable in the axial direction. The axial movement of the flange 223 adjacent to the second stopper portion 218 in the axial direction is restricted by the second stopper portion 218.
 皿バネ207は、軸方向においてロータコア78と摩擦係合要素205との間に予め設定されている予荷重状態で介挿されている。具体的には、皿バネ207の一端がフランジ222に当接すると共に、他端がロータコア78に当接している。なお、皿バネ207の外周側は、筒部214の内周面に形成されている内周歯にスプライン嵌合されている。そして、皿バネ207は、予め設定されている予荷重(皿バネ荷重F)でフランジ222を第2ストッパ部側に向かって押圧すると共に、ロータコア78を第1ストッパ部216側に向かって押圧している。ここで、第1ストッパ218によって軸方向への移動が規制されているので、ディスク220およびフランジ222、223間で、皿バネ207の皿バネ荷重Fおよびディスク220とフランジ222、223間の摩擦係数μに基づく摩擦力が発生する。この摩擦力およびディスク220の有効径rに基づいて、トルクリミッタ装置202のリミッタトルクTlmが設定される。 The disc spring 207 is inserted between the rotor core 78 and the friction engagement element 205 in the axial direction in a preloaded state set in advance. Specifically, one end of the disc spring 207 contacts the flange 222 and the other end contacts the rotor core 78. Note that the outer peripheral side of the disc spring 207 is spline-fitted to inner peripheral teeth formed on the inner peripheral surface of the cylindrical portion 214. The disc spring 207 presses the flange 222 toward the second stopper portion with a preload (disc spring load F) set in advance, and presses the rotor core 78 toward the first stopper portion 216. ing. Here, since the movement in the axial direction is restricted by the first stopper 218, the disc spring load F of the disc spring 207 and the friction coefficient between the disc 220 and the flanges 222 and 223 between the disc 220 and the flanges 222 and 223. A frictional force based on μ is generated. Based on this frictional force and the effective diameter r of the disk 220, the limiter torque Tlm of the torque limiter device 202 is set.
 本実施例のトルクリミッタ装置202は、図3に示すように、MG室内であって、第1電動機M1のコイルエンド76の内周側に配置されている。従来では、電動機のロータの内周側に摩擦係合要素が配置されていた。これに対して、本実施例では、コイルエンド76の内周側に摩擦係合要素205が配置されるので、摩擦係合要素205を、径方向において電動機M1のロータ74(ロータコア78)と隣り合う位置まで外周側に配置することができるため、従来に比べてディスク220の有効径rが大きくなり、必要なリミッタトルクTlmの確保が容易となる。また、このコイルエンド76の内周部は従来より空間が形成されており、この空間にトルクリミッタ装置202が配置されることで、空間が有効に活用され、動力伝達装置200の軸方向の長さが短縮化される。 As shown in FIG. 3, the torque limiter device 202 of the present embodiment is disposed in the MG chamber and on the inner peripheral side of the coil end 76 of the first electric motor M1. Conventionally, a friction engagement element has been arranged on the inner peripheral side of the rotor of the electric motor. On the other hand, in the present embodiment, the friction engagement element 205 is disposed on the inner peripheral side of the coil end 76, so that the friction engagement element 205 is adjacent to the rotor 74 (rotor core 78) of the electric motor M1 in the radial direction. Since it can arrange | position to an outer peripheral side to a matching position, the effective diameter r of the disk 220 becomes large compared with the past, and ensuring of the required limiter torque Tlm becomes easy. In addition, a space is conventionally formed in the inner peripheral portion of the coil end 76, and the space is effectively used by arranging the torque limiter device 202 in this space, and the axial length of the power transmission device 200 is increased. Is shortened.
 また、皿バネ207は、ロータコア78を第1ストッパ部216側に向かって軸方向に押圧している。従って、ロータコア78の摩擦係合要素205側では、ロータコア78を軸方向に保持するための部材を廃止することができる。また、皿バネ207によって電磁鋼板が押圧されるので、積層されている電磁鋼板間から潤滑油が染み出すことも防止されるため、電動機M1の効率低下が防止される。 The disc spring 207 presses the rotor core 78 in the axial direction toward the first stopper portion 216 side. Therefore, the member for holding the rotor core 78 in the axial direction can be eliminated on the friction engagement element 205 side of the rotor core 78. Further, since the electromagnetic steel plate is pressed by the disc spring 207, it is possible to prevent the lubricating oil from seeping out between the laminated electromagnetic steel plates, thereby preventing a reduction in efficiency of the electric motor M1.
 上述のように、本実施例によれば、トルクリミッタ装置202の摩擦係合要2058を、電動機M1のロータ74(ロータコア78)と隣り合う位置まで外周側に配置することができるので、ディスク220の有効径rを大きく確保することができる。したがって、ディスク220の枚数増加やディスク220の板厚増加等なしに必要なリミッタトルクTlmを得ることができる。また、摩擦係合要素205がコイルエンド76の内周側に配置されるので、コイルエンド76の内周側に形成される空間が有効に活用され、動力伝達装置200の軸方向の長さを短縮化することができる。 As described above, according to the present embodiment, the friction engagement element 2058 of the torque limiter device 202 can be disposed on the outer peripheral side to the position adjacent to the rotor 74 (rotor core 78) of the electric motor M1, so that the disk 220 It is possible to secure a large effective diameter r. Accordingly, the necessary limiter torque Tlm can be obtained without increasing the number of disks 220 or increasing the thickness of the disk 220. Further, since the friction engagement element 205 is disposed on the inner peripheral side of the coil end 76, the space formed on the inner peripheral side of the coil end 76 is effectively utilized, and the axial length of the power transmission device 200 is increased. It can be shortened.
 また、エンドプレート206は、摩擦係合要素205よりも外周側に設けられ、摩擦係合要素205を押圧する皿バネ207が、軸方向において摩擦係合要素205とロータ74との間に予荷重状態で介挿されている。このようにすれば、ロータ74を構成する電磁鋼板が皿バネ207によって軸方向に押圧されるので、電磁鋼板を固定する部材を廃止することができ、動力伝達装置200が簡素化される。 The end plate 206 is provided on the outer peripheral side of the friction engagement element 205, and a disc spring 207 that presses the friction engagement element 205 is preloaded between the friction engagement element 205 and the rotor 74 in the axial direction. It is inserted in the state. In this way, since the electromagnetic steel plate constituting the rotor 74 is pressed in the axial direction by the disc spring 207, the member for fixing the electromagnetic steel plate can be eliminated, and the power transmission device 200 is simplified.
 また、皿バネ207は、ロータコア78を構成する電磁鋼板を軸方向に押圧するので、積層されている電磁鋼板間から潤滑油が染み出すことも防止される。 Further, since the disc spring 207 presses the electromagnetic steel plates constituting the rotor core 78 in the axial direction, it is possible to prevent the lubricating oil from seeping out between the laminated electromagnetic steel plates.
 また、ロータ軸201に形成されている連通穴201bから潤滑油が遠心力によって外周方向に放出されるので、摩擦係合要素205およびコイルエンド76が効果的に潤滑される。 Further, since the lubricating oil is discharged in the outer circumferential direction by the centrifugal force from the communication hole 201b formed in the rotor shaft 201, the friction engagement element 205 and the coil end 76 are effectively lubricated.
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。 As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.
 例えば、前述の実施例では、トルクリミッタ装置24、202が第1電動機M1と駆動輪40との間の動力伝達経路に設けられているが、第2電動機M2と駆動輪40との間の動力伝達経路に設けられても構わない。このような場合であっても、第2電動機M2に伝達されるトルクが制限されるので、第2電動機M2を支持する軸受の小型化やロータ軸の小径化が可能となる。 For example, in the above-described embodiment, the torque limiter devices 24 and 202 are provided in the power transmission path between the first electric motor M1 and the drive wheels 40. However, the power between the second electric motor M2 and the drive wheels 40 is not limited. It may be provided in the transmission path. Even in such a case, since the torque transmitted to the second electric motor M2 is limited, it is possible to reduce the size of the bearing that supports the second electric motor M2 and the diameter of the rotor shaft.
 また、前述の実施例では、皿バネ207の外周部は、筒部214に形成されている内周歯にスプライン嵌合されているとしたが、必ずしもスプライン嵌合されてなくても構わない。例えば皿バネ207の外周端が筒部214の内周歯よりも内周側に配置される構成や、筒部214の内周歯が途中で遮断されて皿バネ207が配置可能な空間が形成される構成であっても構わない。 In the above-described embodiment, the outer peripheral portion of the disc spring 207 is spline-fitted to the inner peripheral teeth formed on the cylindrical portion 214. However, the spline fitting is not necessarily required. For example, a configuration in which the outer peripheral end of the disc spring 207 is disposed on the inner peripheral side of the inner peripheral tooth of the cylindrical portion 214, or a space in which the disc spring 207 can be disposed is formed by blocking the inner peripheral tooth of the cylindrical portion 214 in the middle. It may be configured as described above.
 なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 It should be noted that the above is only one embodiment, and the present invention can be carried out in a mode in which various changes and improvements are added based on the knowledge of those skilled in the art.
 12:ケース
 24、202:トルクリミッタ装置
 40:駆動輪
 70、204:動力伝達軸(動力伝達部材)
 74:ロータ
 76:コイルエンド
 82:第1エンドプレート(エンドプレート)
 98、205:摩擦係合要素
 100、207:皿バネ
 206:エンドプレート
 M1:第1電動機(電動機)
12: Case 24, 202: Torque limiter device 40: Drive wheel 70, 204: Power transmission shaft (power transmission member)
74: Rotor 76: Coil end 82: First end plate (end plate)
98, 205: Friction engagement elements 100, 207: Belleville spring 206: End plate M1: First electric motor (electric motor)

Claims (3)

  1.  電動機と駆動輪との間の動力伝達経路中に設けられた車両のトルクリミッタ装置であって、
     前記トルクリミッタ装置は、電動機のロータと共に一体回転するエンドプレートと、動力伝達部材と、該エンドプレートおよび該動力伝達部材を断接不能に連結する摩擦係合要素を含み、
     該摩擦係合要素は、前記電動機のコイルエンドの内周側に配置されており、
     前記電動機のロータは、前記動力伝達部材を介してケースに支持されていることを特徴とする車両のトルクリミッタ装置。
    A torque limiter device for a vehicle provided in a power transmission path between an electric motor and drive wheels,
    The torque limiter device includes an end plate that rotates integrally with the rotor of the electric motor, a power transmission member, and a friction engagement element that connects the end plate and the power transmission member so as not to be connected or disconnected.
    The friction engagement element is disposed on the inner peripheral side of the coil end of the electric motor,
    A torque limiter device for a vehicle, wherein a rotor of the electric motor is supported by a case via the power transmission member.
  2.  前記エンドプレートは、前記摩擦係合要素よりも内周側に設けられ、
     前記摩擦係合要素を押圧する皿バネが、軸方向において該摩擦係合要素と前記動力伝達部材との間に予荷重状態で介挿されていることを特徴とする請求項1の車両のトルクリミッタ装置。
    The end plate is provided on the inner peripheral side with respect to the friction engagement element,
    2. The vehicle torque according to claim 1, wherein a disc spring for pressing the friction engagement element is interposed between the friction engagement element and the power transmission member in a preload state in an axial direction. Limiter device.
  3.  前記エンドプレートは、前記摩擦係合要素よりも外周側に設けられ、
     前記摩擦係合要素を押圧する皿バネが、軸方向において該摩擦係合要素と前記ロータとの間に予荷重状態で介挿されていることを特徴とする請求項1の車両のトルクリミッタ装置。
    The end plate is provided on the outer peripheral side of the friction engagement element,
    2. The vehicle torque limiter device according to claim 1, wherein a disc spring for pressing the friction engagement element is interposed between the friction engagement element and the rotor in a preload state in an axial direction. .
PCT/JP2011/062245 2011-05-27 2011-05-27 Vehicle torque limiter device WO2012164647A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062245 WO2012164647A1 (en) 2011-05-27 2011-05-27 Vehicle torque limiter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062245 WO2012164647A1 (en) 2011-05-27 2011-05-27 Vehicle torque limiter device

Publications (1)

Publication Number Publication Date
WO2012164647A1 true WO2012164647A1 (en) 2012-12-06

Family

ID=47258536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062245 WO2012164647A1 (en) 2011-05-27 2011-05-27 Vehicle torque limiter device

Country Status (1)

Country Link
WO (1) WO2012164647A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015205676A (en) * 2014-04-10 2015-11-19 株式会社ジェイテクト drive unit and drive module
EP2955417B1 (en) * 2014-06-11 2020-08-12 Magna PT B.V. & Co. KG Hybrid motor vehicle transmission assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019834A (en) * 2002-06-18 2004-01-22 Aisin Seiki Co Ltd Equipment for absorbing torque fluctuation
JP2010254230A (en) * 2009-04-28 2010-11-11 Toyota Motor Corp Driving force transmission device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019834A (en) * 2002-06-18 2004-01-22 Aisin Seiki Co Ltd Equipment for absorbing torque fluctuation
JP2010254230A (en) * 2009-04-28 2010-11-11 Toyota Motor Corp Driving force transmission device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015205676A (en) * 2014-04-10 2015-11-19 株式会社ジェイテクト drive unit and drive module
EP2955417B1 (en) * 2014-06-11 2020-08-12 Magna PT B.V. & Co. KG Hybrid motor vehicle transmission assembly

Similar Documents

Publication Publication Date Title
US8430190B2 (en) Driving apparatus for hybrid vehicle
JP5246466B2 (en) Hybrid drive device
EP2349769B1 (en) Vehicular drive apparatus
JP5561375B2 (en) Damper device for vehicle
JP5439935B2 (en) Driving force transmission device
JP5354103B2 (en) Power transmission device for vehicle
US9132832B2 (en) Power transmission device for vehicle
JP6123888B2 (en) Damper device
JP5812182B2 (en) Drive device for hybrid vehicle
JP2009001126A (en) Hybrid driving device
WO2012164647A1 (en) Vehicle torque limiter device
JP5502720B2 (en) Power transmission device
JP5293850B2 (en) Hybrid drive device
CN210554153U (en) Power transmission device for vehicle
JP2019077203A (en) Power transmission for hybrid vehicle
CN210881662U (en) Vehicle drive device
JP2015192554A (en) Drive device
JP2017001502A (en) Hybrid-vehicular power transmission apparatus
JP2017110742A (en) Power transmission device for vehicle
JP2016168976A (en) Vehicle driving device
JP2013023011A (en) Power transmission device for hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP