WO2012163011A1 - Decoding method and device of mimo system - Google Patents

Decoding method and device of mimo system Download PDF

Info

Publication number
WO2012163011A1
WO2012163011A1 PCT/CN2011/080940 CN2011080940W WO2012163011A1 WO 2012163011 A1 WO2012163011 A1 WO 2012163011A1 CN 2011080940 W CN2011080940 W CN 2011080940W WO 2012163011 A1 WO2012163011 A1 WO 2012163011A1
Authority
WO
WIPO (PCT)
Prior art keywords
dist
transmitting terminal
modulation symbol
error
transmitted
Prior art date
Application number
PCT/CN2011/080940
Other languages
French (fr)
Chinese (zh)
Inventor
李希
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012163011A1 publication Critical patent/WO2012163011A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a decoding method and apparatus for a MIMO (Multiple Input Multiple-Output) system.
  • MIMO Multiple Input Multiple-Output
  • Multi-antenna transmission technology plays an important role in improving the capacity and reliability of wireless communication systems.
  • Distributed access methods are also the hotspot of high-speed packet transmission research.
  • the transmission signal is simultaneously transmitted and received by multiple antennas, and the wireless channel between the transmitting end and the receiving end is changed into a MIMO system by a conventional SISO (Single-Input Single-Out-put) system, and the communication system is It has space resources other than traditional time, frequency, and code channel resources.
  • SISO Single-Input Single-Out-put
  • Theoretical studies have shown that the MIMO channel is a superposition of multiple SISO channels, and its capacity is proportional to min(A ⁇ , N), where N R is the number of transmitting and receiving antennas, respectively.
  • MIMO systems provide a huge potential for improving the information throughput of wireless networks, expanding coverage areas, and improving transmission quality.
  • MIMO technology can generate independent parallel channels in space to simultaneously transmit multiple data streams, thus effectively increasing the transmission rate of the system, that is, increasing the capacity and spectrum utilization of the communication system without increasing the system bandwidth.
  • the MIMO-OFDM (Orthogonal Frequency Division Multiplexing) system combines the advantages of OFDM technology and MIMO technology and has great potential in improving the transmission rate and reliability of wireless links.
  • Detection and decoding techniques in MIMO-OFDM systems are also a hot topic of research. Due to the simultaneous transmission of multiple antennas, there is co-channel interference.
  • the advantages and disadvantages of the receiver's detection technology and the complexity directly affect the performance and application prospects of the system.
  • the receiver with the maximum likelihood detection algorithm (ML/MAP) can achieve optimal performance, but the complexity is too high.
  • the current hardware processing can The force can not meet the computing requirements, and can only be applied when the number of antennas and the modulation order are small.
  • Linear receiving methods (such as zero-forcing detection algorithm ZF, minimum mean square error detection algorithm MMSE) have low complexity but poor performance, and there are interference cancellation algorithms and spherical decoding algorithms between ML and linear reception.
  • the interference cancellation algorithm needs to subtract the first detected data portion from the received signal, so there is a phenomenon of error propagation, and the performance is affected by the interference cancellation order.
  • the sphere decoding algorithm is a simplification of the maximum likelihood algorithm.
  • an object of the present invention is to provide a decoding method and apparatus for a MIMO system to optimize the problem that the complexity of the existing decoding method is too high.
  • the present invention provides a decoding method for a MIMO system, including:
  • the modulation symbols r received by the system, the terminal calculates the current transmission modulation symbols transmitted modulation symbols ⁇ projected on another 3 ⁇ 4 of the transmission the transmitting terminal;
  • the calculating the projection of the modulation symbol transmitted by the current transmitting terminal on the modulation symbol transmitted by the other transmitting terminal is:
  • the projection of the modulation symbol transmitted by the modulation symbol transmitted on the current transmitting terminal on the other transmitting terminal is calculated by the following formula:
  • /3 ⁇ 4 denotes the channel response of the above other transmitting terminal, indicating a conjugate transpose of /3 ⁇ 4, and 11/3 ⁇ 4 11 2 is the modulus of /3 ⁇ 4.
  • the above calculation of the modulation symbol transmitted by the current transmitting terminal ⁇ on the modulation symbol transmitted by the other transmitting terminal is:
  • the modulation symbol transmitted on the current transmitting terminal is calculated by the following formula ⁇ Projection of modulation symbols transmitted on a transmitting terminal:
  • /3 ⁇ 4 represents the channel response of the other transmitting terminal, indicating a conjugate transpose of /3 ⁇ 4.
  • the above-described real part ⁇ 2 ⁇ and imaginary part ⁇ 2 ⁇ are estimated by the following formula:
  • the real part 2 ⁇ and the imaginary part 2 e of the pair are quantitatively estimated, and an estimated value of the real part 2 ⁇ and the imaginary part 2 e is obtained, where e is:
  • the error D between the estimated value of the above modulation symbol ⁇ and the actual value is calculated by the following formula:
  • represents the modulation symbol transmitted by the current transmitting terminal
  • /3 ⁇ 4 indicates the current transmission A channel response of the terminal, indicating a modulation symbol transmitted by the another transmitting terminal, indicating a channel response of the another transmitting terminal.
  • the method further comprises: initializing the values of the elements in the minimum errors min_dist_0[k] and min_dist_l[k] to positive infinity when the system is initialized.
  • the minimum error min_dist_0[k] and min_dist_l [k] between the estimated value and the actual value of the modulation symbol ⁇ are updated according to the error D described above:
  • the log likelihood ratio of each bit of the modulation symbol ⁇ transmitted by the current transmitting terminal is calculated by the following formula:
  • LLR ⁇ represents the log likelihood ratio of the kth bit of the modulation symbol transmitted by the current transmitting terminal.
  • the present invention also provides a decoding apparatus for a MIMO system, comprising: a projection module, an estimation module, a mapping module, an error calculation module, a minimum error update module, and a log likelihood ratio calculation module, wherein the projection module is configured to receive according to a system modulation symbols r, the transmitting terminal calculates the current modulation symbol transmitted on a projection ⁇ modulation symbols transmitted to another transmitting terminal of 3 ⁇ 4;
  • e is quantized estimates, obtained in the above 2> ⁇ real part and an imaginary part 2, e estimate 3 ⁇ 4 ⁇ , s 2>e;
  • mapping module configured above 3 ⁇ 4 ⁇ , 3 ⁇ 4e constellation mapping, modulation symbols 3 ⁇ 4 obtain the position in the constellation diagram
  • the above error calculation module is configured for the modulation symbol 3 ⁇ 4 obtained according to the above estimation in the constellation diagram Position, calculating an error D between the estimated value of the modulation symbol ⁇ and the actual value;
  • the minimum error update module is configured to update a minimum error min_dist_0[k] and min_dist_l [k] between the estimated value and the actual value of the modulation symbol ⁇ according to the error D, wherein k represents a k-th bit of the modulation symbol ;
  • the log likelihood ratio calculation module is configured to calculate a log likelihood ratio of each bit of the modulation symbol ⁇ transmitted by the current transmitting terminal according to the minimum errors min_dist_0[k] and min_dist_l [k], and obtain a decoding result. .
  • the apparatus further includes an initialization module, configured to initialize the values of the elements in the minimum errors min_dist_0[k] and min_dist_l[k] to positive infinity when the MIMO system is initialized.
  • an initialization module configured to initialize the values of the elements in the minimum errors min_dist_0[k] and min_dist_l[k] to positive infinity when the MIMO system is initialized.
  • the projector module further configured to mold the channel response calculation the other terminal of the transmitting / 3 ⁇ 4 square 11 / 3 ⁇ 411 2, another transmitting terminal calculates the channel response / 3 ⁇ 4 of calculating the conjugate transpose of h 2 H a product of the modulation symbol r received by the above system and calculating a product of the above-mentioned channel response with the current transmitting terminal;
  • the above estimation module is further configured to calculate a modulus ⁇ h 2 ⁇ 2 of the channel response of the another transmitting terminal; calculate an intermediate estimated value of the real part 2 ⁇ , and calculate an intermediate estimated value of the imaginary part 2 ⁇ And determining whether the above is less than -211 h 2 II 2 , and when the above is less than -211 h 2 II 2 , the above estimated value 3 ⁇ 4 is equal to 0, and when the above is greater than or equal to -211 II 2 , determining whether the above s is If the value is less than 0, and the above-mentioned less than 0, the above estimated value is equal to 1, and when the above is greater than or equal to 0, it is judged whether the above is less than 211 h 2 II 2 , and when the above is less than 211 h 2 II 2 , the above estimated value is obtained.
  • the invention optimizes the problem that the complexity of the traditional MAP algorithm is too high, and the decoded result calculated by the invention is equivalent to soft demodulation soft information, and can be directly used for decoding without demodulation, for multi-antenna, high-order and low The order modulation has a good decoding effect.
  • FIG. 1 is a flow chart of a preferred embodiment of a decoding method of a MIMO system of the present invention
  • FIG. 2 is a schematic diagram of a 16QAM constellation
  • 3 is a schematic diagram of a constellation of estimated modulation symbols
  • FIG. 4 is a schematic block diagram of a preferred embodiment of a decoding apparatus for a MIMO system of the present invention. detailed description
  • the basic idea of the present invention is: calculating, according to the modulation symbol r received by the system, a projection of the modulation symbol transmitted by the current transmitting terminal on the modulation symbol 3 ⁇ 4 transmitted by the other transmitting terminal; 2 ⁇ real part and an imaginary part 2 ⁇ -described quantizing estimation to obtain an estimated value of 2 ⁇ 3 ⁇ 4 of the real part and the imaginary part of the 2 ⁇ , 'e; the 3 ⁇ 4,' e constellation mapping, modulation symbols obtained 3 ⁇ 4 of the position in the constellation diagram; D based on the estimated error between the obtained position of the modulation symbols in the constellation, the modulation symbols ⁇ calculating estimated and actual values; D according to the error, update the a minimum error min_dist_0[k] and min_dist_l[k] between the estimated value of the modulation symbol ⁇ and the actual value, where k represents the kth bit of the modulation symbol; according to the minimum error min_dist_0[k] and min_dist_l[k] And calculating a log
  • FIG. 1 it is a flowchart of a preferred embodiment of the decoding method of the MIMO system of the present invention.
  • 16QAM is taken as an example, and a constellation diagram thereof is shown in FIG. 2 , where 0. 0 3 0 2 represents 4 bits corresponding to each modulation symbol in the 16QAM constellation, c is a normalization factor, and 16 modulation symbols are respectively marked as ( ⁇ , ⁇ 2 , ⁇ , C 16 , because In the invention, it does not matter how the modulation symbol mark and the modulation symbol correspond, so the specific positions of the 16 modulation symbols are not shown in the figure. Each modulation symbol has 4 bits. Assuming that the MIMO system has an NRX root receiving antenna, the system model as follows:
  • r 1 , r 1 ... r i ⁇ represent the modulation symbols received by the antenna of the MIMO system; ⁇ represents the modulation symbol transmitted by one transmitting terminal of the MIMO system, indicating the channel of the transmitting terminal at the receiving antenna NRX Response; represents a modulation symbol transmitted by another transmitting terminal of the MIMO system, h N , 2 represents a channel response of the transmitting terminal at the receiving antenna NRX; The noise of the antenna of the MIMO system is received.
  • n [n l , n 2 , - - - n NR ⁇ ] T
  • r denotes a modulation symbol received by the MIMO system
  • denotes a modulation symbol transmitted by a transmitting terminal of the MIMO system, Representing the channel response of the transmitting terminal; representing the modulation symbol transmitted by another transmitting terminal of the MIMO system, s 2 e 3 ⁇ 4 ⁇ 2 , . . . , ⁇ 6 ⁇ , /3 ⁇ 4 indicating the channel response of the transmitting terminal; ⁇ indicating noise.
  • the embodiment includes the following steps:
  • Step S001 Initialize the minimum errors min_dist_0[k] and min_dist_l[k] between the estimated value and the actual value of the modulation symbol ⁇ transmitted by the current transmitting terminal, and set the value of each element to positive infinity, that is:
  • Min_dist_l[k] + oc
  • Step S002 The modulation symbol r received by the system calculates the current transmission modulation symbols transmitted by the terminal on a projection of ⁇ another transmit modulation symbols transmitted 3 ⁇ 4 of the terminal;
  • the step specifically includes:
  • Step S10 Calculate the module II h 2 II 2 of the channel response of the other transmitting terminal and save it;
  • Step S11 Calculate the conjugate transpose/ ⁇ of the channel response of the other transmitting terminal and save it;
  • Step S13 Calculate the product B of the channel response/3 ⁇ 4 of the current transmitting terminal and save it;
  • Step S14 According to the module response II/3 ⁇ 4 II 2 of the channel response of the other transmitting terminal, the above and the above A and B, calculate the modulation symbol transmitted by the current transmitting terminal and transmit at another transmitting terminal by the following formula Projection on the modulation symbol 3 ⁇ 4 :
  • /3 ⁇ 4 denotes the channel response of the above other transmitting terminal, indicating a conjugate transpose of /3 ⁇ 4, and 11/3 ⁇ 4 11 2 is the modulus of /3 ⁇ 4.
  • a complex multiplication, a complex subtraction, and a division of the real multiple are performed at a time to obtain a corresponding projection.
  • the step specifically includes:
  • Step S10 Calculate the conjugate transpose / ⁇ of the channel response of the other transmitting terminal and save it;
  • Step Sir calculate the product A of the above / ⁇ and the modulation symbol r received by the above system and save it;
  • Step S12 calculating a product B of the above-mentioned / / channel response / 3 ⁇ 4 of the current transmitting terminal and saving;
  • Step S13 calculating, according to the above / ⁇ and A, B, the projection of the modulation symbol transmitted by the current transmitting terminal on the modulation symbol 3 ⁇ 4 transmitted by the other transmitting terminal by the following formula:
  • /3 ⁇ 4 represents the channel response of the other transmitting terminal, indicating a conjugate transpose of /3 ⁇ 4.
  • the second embodiment only needs to perform complex multiplication, one complex subtraction and one complex multiplication with real numbers for different modulation symbols to obtain corresponding projections.
  • Step S003 performing quantitative estimation on the real part 2 ⁇ and the imaginary part 2e described above, and obtaining an estimated value of the real part and the imaginary part 2 e , e ;
  • step S002 calculates a current transmit modulation symbols transmitted terminal ⁇ projected onto modulation symbols in another transmission 3 ⁇ 4 of the transmitting terminal in step S002 employed in this step by the steps of the above-described real part and an imaginary part s ⁇ 2J 2 , e to estimate:
  • Step S20 Calculate the intermediate estimate of the real part above according to the following formula:
  • Step S21 Calculate the intermediate estimated value s e of the imaginary part 2 ⁇ described above according to the following formula:
  • Step S22 According to the above s, Calculating an estimated value of the real part and the imaginary 2 ⁇ portions of the 3 ⁇ 4 ⁇ s ⁇ 2, Q by the following equation estimates 3 ⁇ 4e
  • the step is performed by the following steps.
  • the actual part 2> ⁇ and imaginary part 2 , ⁇ are estimated:
  • Step S20 Calculate the module II II 2 of the channel response of the other transmitting terminal and save it;
  • Step S21 Calculate the intermediate estimated value of the real part according to the following formula:
  • Step S23 determining whether the above is less than ⁇ ⁇ / ⁇ ⁇ 2 , and if so, executing step S24, otherwise, performing step S25;
  • Step S25 determining whether the above is less than 0, and if yes, executing step S26, otherwise, performing step S27;
  • Step S27 determining whether the above ⁇ is less than 2ll II 2 , and if so, executing step S28, otherwise, performing step S29;
  • Step S30 determining whether the above s e is less than ⁇ ⁇ / ⁇ ⁇ 2 , and if so, executing step S31, otherwise, performing step S32;
  • Step S32 respectively determining whether the above s e is less than 0, and if so, executing step S33, otherwise, performing step S34;
  • Step S004 the above ⁇ , e constellation mapping, modulation symbols 3 ⁇ 4 obtain the position in the constellation diagram;
  • FIG. 3 it is a constellation diagram of the estimated modulation symbol, and the I path is the horizontal axis.
  • the 3 ⁇ 4 map represents the real part of the modulation symbol
  • the Q path is the vertical axis
  • the e- map represents the imaginary part of the modulation symbol s.
  • s 2i l
  • s 2e 3
  • the estimated modulation symbol is mapped to point 0 in the upper left corner of the second quadrant in the figure.
  • Step S005 calculating an error D between the estimated value and the actual value of the modulation symbol ⁇ according to the position of the modulation symbol 3 ⁇ 4 obtained in the constellation diagram;
  • represents the modulation symbol transmitted by the current transmitting terminal
  • /3 ⁇ 4 represents the channel response of the current transmitting terminal
  • Step S006 Update the minimum errors min_dist_0[k] and min_dist_l[k] between the estimated value and the actual value of the modulation symbol ⁇ according to the distance D, where k represents the kth bit of the modulation symbol;
  • This step is specifically as follows:
  • Step S0064 Do not update min_dist_0[k];
  • Step S0065 determining whether the error D is smaller than min_dist_l [k], if yes, executing step S0066, otherwise, performing step S0067;
  • Step S0067 Min_dist_l [k] is not updated.
  • Step S007 Calculate a log likelihood ratio of each bit of the modulation symbol ⁇ transmitted by the current transmitting terminal according to the minimum errors min_dist_0[k] and min_dist_l [k] to obtain a decoding result.
  • the log likelihood ratio of each bit of the modulation symbol ⁇ transmitted by the current transmitting terminal is calculated by the following formula:
  • LLI ⁇ k represents the log likelihood ratio of the kth bit of the modulation symbol transmitted by the current transmitting terminal.
  • the decoding apparatus includes a projection module 02, an estimation module 03, a mapping module 04, an error calculation module 05, and a minimum error update.
  • a module 06 and a log likelihood ratio calculation module 07 wherein the initialization module 01 is configured to initialize the values of the elements in the minimum errors min_dist_0[k] and min_dist_l[k] to positive infinity when the MIMO system is initialized;
  • a projection module 02 configured to calculate and calculate a channel II II 2 of a channel response of the another transmitting terminal according to the modulation symbol r received by the system, and calculate a channel response of the another transmitting terminal/conjugate conjugate transposition / ⁇ and save, calculate the above / ⁇ product of the modulation symbol r received by the above system and save and calculate the above-mentioned product of the channel response / 3 ⁇ 4 of the current transmitting terminal and save, and according to the channel response of the other transmitting terminal /3 ⁇ 4 of the square II /3 ⁇ 4 II 2 , the product of the above-mentioned modulation symbol r received by the above system and the above / ⁇ and the channel of the current transmitting terminal Calculating the projection of the modulation symbol transmitted by the current transmitting terminal on the modulation symbol transmitted by the other transmitting terminal, or the product of the modulation symbol r received by the above system and the above-mentioned / ⁇ and the current current channel response transmitting terminal / 3 ⁇ 4 product, calculates
  • the mapping module 04 is configured to perform constellation mapping on the above i and e to obtain a position of the modulation symbol 3 ⁇ 4 in the constellation diagram;
  • the error calculation module 05 is configured to calculate an error D between the estimated value of the modulation symbol and the actual value according to the position of the modulation symbol 3 ⁇ 4 in the constellation diagram obtained by the above estimation;
  • the log likelihood ratio calculation module 07 is configured to calculate a log likelihood ratio of each bit of the modulation symbol ⁇ transmitted by the current transmitting terminal according to the minimum errors min_dist_0[k] and min_dist_l [k], and obtain a decoding result. .

Abstract

The present invention relates to a decoding method and device of an MIMO system. The method comprises: calculating, according to a modulation symbol r received by a system, a projection s̃2 of a modulation symbol s1 transmitted by a current transmitting terminal on a modulation symbol s2 transmitted by another transmitting terminal; performing quantitative estimation on a real part s̃2,I and an imaginary part s̃2,Q of the s̃2, to obtain estimated values s2,I and s2,Q of the real part s̃2,I and the imaginary part s̃2,Q of the s̃2; performing constellation mapping on the s2,I and s2,Q to obtain a position of the s2 in a constellation graph; calculating, according to the position of the s2 , an error D of an estimated value and an actual value of the s1 ; updating, according to the D, minimum errors min_dist_0[k] and min_dist_1[k] between the estimated value and the actual value of the s1 ; and calculating, according to the min_dist_0[k] and min_dist_1[k], a log likelihood ratio of each bit of the s1 to obtain a decoding result. The decoding complexity of the present invention is low.

Description

MIMO系统的译码方法及装置 技术领域  Decoding method and device for MIMO system
本发明涉及通信技术领域, 尤其涉及一种 MIMO ( Multiple-Input Multiple-Out-put, 多输入多输出) 系统的译码方法及装置。 背景技术  The present invention relates to the field of communications technologies, and in particular, to a decoding method and apparatus for a MIMO (Multiple Input Multiple-Output) system. Background technique
多天线传输技术对提高无线通信系统的容量和可靠性具有至关重要的 作用, 分布式接入方式也是目前高速分组传输研究的热点。 传输信号由多 个天线同时发送和接收, 发送端和接收端之间的无线信道由传统的 SISO ( Single-Input Single-Out-put, 单输入单输出) 系统变成 MIMO系统, 并使 通信系统具有了除传统时间、 频率、 码道资源以外的空间资源。 理论研究 表明, MIMO信道是多个 SISO信道的叠加, 其容量和 min(A^ , N )成正比, 其中 和 NR分别是发送和接收天线的数目。 这说明当增加发送和接收天线 的数目时, 可有效地提高信道容量。 所以, MIMO 系统为提高无线网络的 信息吞吐量、 扩大覆盖区域和提高传输质量提供了一条具有巨大的潜力的 道路。 MIMO技术能够在空间中产生独立的并行信道同时传输多路数据流, 这样就有效地提高了系统的传输速率, 即在不增加系统带宽的情况下成倍 地提高通信系统的容量和频谱利用率。 MIMO-OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用)系统结合 OFDM技术和 MIMO技术 的优势, 在提高无线链路的传输速率和可靠性方面具有巨大潜力。 Multi-antenna transmission technology plays an important role in improving the capacity and reliability of wireless communication systems. Distributed access methods are also the hotspot of high-speed packet transmission research. The transmission signal is simultaneously transmitted and received by multiple antennas, and the wireless channel between the transmitting end and the receiving end is changed into a MIMO system by a conventional SISO (Single-Input Single-Out-put) system, and the communication system is It has space resources other than traditional time, frequency, and code channel resources. Theoretical studies have shown that the MIMO channel is a superposition of multiple SISO channels, and its capacity is proportional to min(A^, N), where N R is the number of transmitting and receiving antennas, respectively. This shows that when the number of transmitting and receiving antennas is increased, the channel capacity can be effectively increased. Therefore, MIMO systems provide a huge potential for improving the information throughput of wireless networks, expanding coverage areas, and improving transmission quality. MIMO technology can generate independent parallel channels in space to simultaneously transmit multiple data streams, thus effectively increasing the transmission rate of the system, that is, increasing the capacity and spectrum utilization of the communication system without increasing the system bandwidth. . The MIMO-OFDM (Orthogonal Frequency Division Multiplexing) system combines the advantages of OFDM technology and MIMO technology and has great potential in improving the transmission rate and reliability of wireless links.
MIMO-OFDM系统中检测和译码技术也是现在研究的热点。 由于采用 多天线同时发射, 存在着共信道干扰, 接收机的检测技术的优劣以及复杂 度直接影响系统的性能和应用前景。 整个接收部分联合最大似然检测算法 ( ML/MAP )接收机能取得最优性能, 但复杂度太高, 目前的硬件处理能 力尚不能满足运算要求, 往往只能在天线数目和调制阶数都很小时才能应 用。 线性接收方法(如迫零检测算法 ZF、 最小均方误差检测算法 MMSE ) 的复杂度低但性能差, 性能介于 ML和线性接收之间的有干扰抵消算法和 球形译码算法。 干扰抵消算法需要从接收信号中减去先检测出的数据部分, 因此存在错误传播的现象, 性能受干扰抵消次序影响。 球形译码算法是极 大似然算法的简化, 通过动态改变搜索的圆心与半径减少搜索的次数, 在 高信噪比时性能逼近 ML的性能, 复杂度较低, 但在低信噪比时搜索的时 间比较长复杂度仍然很高。 如何减少最优检测算法的复杂度并避免传统检 测算法应用的局限性对系统的实现 ^艮有意义。 发明内容 Detection and decoding techniques in MIMO-OFDM systems are also a hot topic of research. Due to the simultaneous transmission of multiple antennas, there is co-channel interference. The advantages and disadvantages of the receiver's detection technology and the complexity directly affect the performance and application prospects of the system. The receiver with the maximum likelihood detection algorithm (ML/MAP) can achieve optimal performance, but the complexity is too high. The current hardware processing can The force can not meet the computing requirements, and can only be applied when the number of antennas and the modulation order are small. Linear receiving methods (such as zero-forcing detection algorithm ZF, minimum mean square error detection algorithm MMSE) have low complexity but poor performance, and there are interference cancellation algorithms and spherical decoding algorithms between ML and linear reception. The interference cancellation algorithm needs to subtract the first detected data portion from the received signal, so there is a phenomenon of error propagation, and the performance is affected by the interference cancellation order. The sphere decoding algorithm is a simplification of the maximum likelihood algorithm. By dynamically changing the center and radius of the search to reduce the number of searches, the performance of the ML is close to the performance of the ML at high SNR, but the complexity is low, but at low SNR. The search time is still relatively long and the complexity is still high. How to reduce the complexity of the optimal detection algorithm and avoid the limitations of the traditional detection algorithm application is meaningful to the implementation of the system. Summary of the invention
有鉴于此,本发明的目的是,提供一种 MIMO系统的译码方法及装置, 以优化现有的译码方法复杂度太高的问题。  In view of the above, an object of the present invention is to provide a decoding method and apparatus for a MIMO system to optimize the problem that the complexity of the existing decoding method is too high.
本发明提供了一种 MIMO系统的译码方法, 包括:  The present invention provides a decoding method for a MIMO system, including:
根据系统接收到的调制符号 r, 计算当前发射终端发射的调制符号 ^在 另一发射终端发射的调制符号 ¾上的投影 ; The modulation symbols r received by the system, the terminal calculates the current transmission modulation symbols transmitted modulation symbols ^ projected on another ¾ of the transmission the transmitting terminal;
对上述 的实部 和虚部s ~2,Q进行量化估计,得到上述 的实部s ~2J和虚 部 2,e的估计值 、 ¾β ; Quantitative estimation of the real and imaginary parts s ~ 2 , Q above, and the estimated value of the real part s ~ 2J and the imaginary part 2 , e , 3⁄4β ;
对上述 ¾ί¾2进行星座映射, 得到调制符号 ¾在星座图中的位置; 根据上述估计得到的调制符号 ¾在星座图中的位置,计算上述调制符号 Sl的估计值与实际值之间的误差 D; Performing constellation mapping on the above 3⁄4ί , 3⁄42 to obtain the position of the modulation symbol 3⁄4 in the constellation diagram; calculating the error between the estimated value and the actual value of the modulation symbol S1 according to the position of the modulation symbol 3⁄4 obtained in the constellation diagram D;
根据上述误差 D,更新上述调制符号 ^的估计值与实际值之间的最小误 差 min_dist_0[k]和 min_dist_l [k] , 其中, k表示调制符号 的第 k个比特; 根据上述最小误差 min_dist_0[k]和 min_dist_l[k] ,计算上述当前发射终 端发射的调制符号 ^的每个比特的对数似然比, 得到译码结果。 优选地,上述计算当前发射终端发射的调制符号 ^在另一发射终端发射 的调制符号 上的投影 为: Updating the minimum errors min_dist_0[k] and min_dist_l [k] between the estimated value and the actual value of the above-mentioned modulation symbol ^ according to the above error D, where k represents the k-th bit of the modulation symbol; according to the minimum error min_dist_0[k] And min_dist_l[k], calculating the log likelihood ratio of each bit of the modulation symbol ^ transmitted by the current transmitting terminal, and obtaining a decoding result. Preferably, the calculating the projection of the modulation symbol transmitted by the current transmitting terminal on the modulation symbol transmitted by the other transmitting terminal is:
计算上述另一发射终端的信道响应 的模方 II h2 II2Calculating the mode II h 2 II 2 of the channel response of the other transmitting terminal;
计算上述另一发射终端的信道响应 的共轭转置 h2 HCalculating a conjugate transpose h 2 H of the channel response of the other transmitting terminal;
计算上述/ ^与上述系统接收到的调制符号 r的乘积;  Calculating the product of /^ above the modulation symbol r received by the above system;
计算上述 与上述当前发射终端的信道响应/ ¾的乘积;  Calculating the above-mentioned product of the channel response / 3⁄4 of the current transmitting terminal;
根据上述另一发射终端的信道响应 的模方 II h2 II2 , 上述 与上述系统 接收到的调制符号 r的乘积以及上述/^与上述当前发射终端的信道响应/ ¾ 的乘积,计算上述当前发射终端发射的调制符号 ^在另一发射终端发射的调 制符号 ¾上的投影 。 Calculating the current current according to the modularity II h 2 II 2 of the channel response of the other transmitting terminal, the product of the above-mentioned modulation symbol r received by the above system, and the product of the above-mentioned / / channel response of the current transmitting terminal / 3⁄4 The projection of the modulation symbol transmitted by the transmitting terminal on the modulation symbol 3⁄4 transmitted by the other transmitting terminal.
优选地,通过如下公式计算上述当前发射终端上发射的调制符号 在另 一发射终端上发射的调制符号 的投影 : Preferably, the projection of the modulation symbol transmitted by the modulation symbol transmitted on the current transmitting terminal on the other transmitting terminal is calculated by the following formula:
Figure imgf000005_0001
Figure imgf000005_0001
其中, /¾表示上述另一发射终端的信道响应, 表示/ ¾的共轭转置, 11 /¾ 112为/¾的模方。 Where /3⁄4 denotes the channel response of the above other transmitting terminal, indicating a conjugate transpose of /3⁄4, and 11/3⁄4 11 2 is the modulus of /3⁄4.
优选地,上述计算当前发射终端发射的调制符号 ^在另一发射终端发射 的调制符号 上的投影 为:  Preferably, the above calculation of the modulation symbol transmitted by the current transmitting terminal ^ on the modulation symbol transmitted by the other transmitting terminal is:
计算上述另一发射终端的信道响应 的共轭转置 ;  Calculating a conjugate transpose of a channel response of the other transmitting terminal;
计算上述/ ^与上述系统接收到的调制符号 r的乘积;  Calculating the product of /^ above the modulation symbol r received by the above system;
计算上述/^与上述当前发射终端的信道响应 /¾的乘积;  Calculating a product of the above /^ and the channel response /3⁄4 of the current transmitting terminal;
根据上述/^与上述系统接收到的调制符号 r的乘积以及上述/^与上述 当前发射终端的信道响应/ ¾的乘积,计算上述当前发射终端发射的调制符号 Sl在另一发射终端发射的调制符号 ¾上的投影 。 Calculating the modulation of the modulation symbol S1 transmitted by the current transmitting terminal at another transmitting terminal according to the product of the above-mentioned modulation symbol r received by the above system and the product of the above-mentioned /^ and the channel response of the current transmitting terminal. The projection on symbol 3⁄4 .
优选地,通过如下公式计算上述当前发射终端上发射的调制符号 ^在另 一发射终端上发射的调制符号 的投影 :Preferably, the modulation symbol transmitted on the current transmitting terminal is calculated by the following formula ^ Projection of modulation symbols transmitted on a transmitting terminal:
Figure imgf000006_0001
Figure imgf000006_0001
其中, /¾表示上述另一发射终端的信道响应, 表示/ ¾的共轭转置。 优选地, 通过如下公式对上述 的实部 ί和虚部 ί2 β进行估计: Where /3⁄4 represents the channel response of the other transmitting terminal, indicating a conjugate transpose of /3⁄4. Preferably, the above-described real part ί and imaginary part ί 2 β are estimated by the following formula:
3 )
Figure imgf000006_0002
3 )
3)
Figure imgf000006_0002
3)
其中, 表示 的实部, 表示 的虚部, L」表示向下取整。  Where, the real part of the representation, the imaginary part of the representation, L" means rounding down.
优选地,上述对 的实部 和虚部 2 e进行量化估计,得到实部 和虚 部 2 e的估计值 、 ,e为: Preferably, the real part and the imaginary part 2 e of the pair are quantitatively estimated, and an estimated value of the real part 2 ί and the imaginary part 2 e is obtained, where e is:
计算上述另一发射终端的信道响应 的模方 II II2Calculating the mode II II 2 of the channel response of the other transmitting terminal;
根据如下公式计算上述 的实部 的中间估计值 :  Calculate the intermediate estimate of the real part above based on the following formula:
s2 I = [(s2I
Figure imgf000006_0003
s 2 I = [(s 2I
Figure imgf000006_0003
"
根据如下公式计算上述 的虚部 2,β的中间估计值 s eCalculate the intermediate estimate s e of the above imaginary part 2 , β according to the following formula:
s2 Q
Figure imgf000006_0004
s 2 Q
Figure imgf000006_0004
判断上述 是否小于 ll/^ ll2 , 若是, 则 =0; 否则, Determine if the above is less than ll/^ ll 2 , and if so, then =0; otherwise,
判断上述 是否小于 0, 若是, 则 =1; 否则,  Determine if the above is less than 0, and if so, then =1; otherwise,
判断上述 是否小于 2ll/¾ ll2 , 若是, 则 =2; 否则, s2,,=3; Determine whether the above is less than 2ll / 3⁄4 ll 2 , and if so, then = 2; otherwise, s 2 ,, = 3;
判断上述 s e是否小于 ll/^ ll2 , 若是, 则 s2,e=0; 否则, Judging whether the above s e is less than ll / ^ ll 2 , and if so, then s 2 , e =0; otherwise,
判断上述^是否小于 0, 若是, 则 s2,e=l; 否则, Determine whether the above ^ is less than 0, and if so, then s 2 , e = l; otherwise,
判断上述 s e是否小于 2||/¾ 112 , 若是, 则 =2; 否则, =3。 It is judged whether the above s e is less than 2||/3⁄4 11 2 , and if so, then = 2; otherwise, = 3.
优选地,通过如下公式计算上述调制符号 ^的估计值与实际值之间的误 差 D:  Preferably, the error D between the estimated value of the above modulation symbol ^ and the actual value is calculated by the following formula:
D =11 r-s^ -s2h2 II2 D =11 rs^ -s 2 h 2 II 2
其中, ^表示上述当前发射终端发射的调制符号, /¾表示上述当前发射 终端的信道响应, 表示上述另一发射终端发射的调制符号, 表示上述另 一发射终端的信道响应。 Where ^ represents the modulation symbol transmitted by the current transmitting terminal, and /3⁄4 indicates the current transmission A channel response of the terminal, indicating a modulation symbol transmitted by the another transmitting terminal, indicating a channel response of the another transmitting terminal.
优选地, 上述方法还包括: 上述系统初始化时, 将上述最小误差 min_dist_0[k]和 min_dist_l [k]中各元素的值初始化为正无穷大。  Preferably, the method further comprises: initializing the values of the elements in the minimum errors min_dist_0[k] and min_dist_l[k] to positive infinity when the system is initialized.
优选地, 上述根据上述误差 D, 更新上述调制符号 ^的估计值与实际值 之间的最小误差 min_dist_0[k]和 min_dist_l [k]为:  Preferably, the minimum error min_dist_0[k] and min_dist_l [k] between the estimated value and the actual value of the modulation symbol ^ are updated according to the error D described above:
判断上述调制符号 ^的第 k个比特 ^的值,  Judging the value of the kth bit ^ of the above modulation symbol ^,
sf =0 , 判断上述误差 D 是否小于 min_dist_0[k] , 若是, 令 min_dist_0[k]=D; 否则, 不更新 min_dist_0[k] ; If s f =0, it is judged whether the above error D is smaller than min_dist_0[k], and if so, let min_dist_0[k]=D; otherwise, min_dist_0[k] is not updated;
若 s =l , 判断上述误差 D 是否小于 min_dist_l[k] , 若是, 令 min_dist_l [k]=D; 否则, 不更新 min_dist_l [k]。  If s = l, it is judged whether the above error D is smaller than min_dist_l[k], and if so, let min_dist_l [k] = D; otherwise, min_dist_l [k] is not updated.
优选地,通过如下公式计算上述当前发射终端发射的调制符号 ^的每个 比特的对数似然比:  Preferably, the log likelihood ratio of each bit of the modulation symbol ^ transmitted by the current transmitting terminal is calculated by the following formula:
LLR = min_dist_l [k]- min_dist_0[k] LLR = min_dist_l [k]- min_dist_0[k]
其中, LLR^表示上述当前发射终端发射的调制符号 的第 k个比特的 对数似然比。  Where LLR^ represents the log likelihood ratio of the kth bit of the modulation symbol transmitted by the current transmitting terminal.
本发明还提供了一种 MIMO系统的译码装置, 包括投影模块、 估计模 块、 映射模块、 误差计算模块、 最小误差更新模块以及对数似然比计算模 块, 上述投影模块, 用于根据系统接收到的调制符号 r, 计算当前发射终端 发射的调制符号 ^在另一发射终端发射的调制符号 ¾上的投影 ; The present invention also provides a decoding apparatus for a MIMO system, comprising: a projection module, an estimation module, a mapping module, an error calculation module, a minimum error update module, and a log likelihood ratio calculation module, wherein the projection module is configured to receive according to a system modulation symbols r, the transmitting terminal calculates the current modulation symbol transmitted on a projection ^ modulation symbols transmitted to another transmitting terminal of ¾;
上述估计模块, 用于对上述 的实部 和虚部 2,e进行量化估计, 得到 上述 的实部 2>ί和虚部 2,e的估计值 ¾ί、 s2>eAbove estimation module, for the above-mentioned real and imaginary portions 2, e is quantized estimates, obtained in the above 2> ί real part and an imaginary part 2, e estimate ¾ί, s 2>e;
上述映射模块, 用于对上述 ¾ί¾e进行星座映射, 得到调制符号 ¾在 星座图中的位置; Above mapping module configured above ¾ί, ¾e constellation mapping, modulation symbols ¾ obtain the position in the constellation diagram;
上述误差计算模块,用于根据上述估计得到的调制符号 ¾在星座图中的 位置, 计算上述调制符号 ^的估计值与实际值之间的误差 D; The above error calculation module is configured for the modulation symbol 3⁄4 obtained according to the above estimation in the constellation diagram Position, calculating an error D between the estimated value of the modulation symbol ^ and the actual value;
上述最小误差更新模块, 用于根据上述误差 D, 更新上述调制符号 ^的 估计值与实际值之间的最小误差 min_dist_0[k]和 min_dist_l [k], 其中, k表 示调制符号 的第 k个比特;  The minimum error update module is configured to update a minimum error min_dist_0[k] and min_dist_l [k] between the estimated value and the actual value of the modulation symbol ^ according to the error D, wherein k represents a k-th bit of the modulation symbol ;
上述对数似然比计算模块, 用于根据上述最小误差 min_dist_0[k]和 min_dist_l [k], 计算上述当前发射终端发射的调制符号 ^的每个比特的对数 似然比, 得到译码结果。  The log likelihood ratio calculation module is configured to calculate a log likelihood ratio of each bit of the modulation symbol ^ transmitted by the current transmitting terminal according to the minimum errors min_dist_0[k] and min_dist_l [k], and obtain a decoding result. .
优选地, 上述装置还包括初始化模块, 用于在上述 MIMO系统初始化 时,将上述最小误差 min_dist_0[k]和 min_dist_l[k]中各元素的值初始化为正 无穷大。  Preferably, the apparatus further includes an initialization module, configured to initialize the values of the elements in the minimum errors min_dist_0[k] and min_dist_l[k] to positive infinity when the MIMO system is initialized.
优选地,上述投影模块,还用于计算上述另一发射终端的信道响应/ ¾的 模方 11/¾112, 计算上述另一发射终端的信道响应/ ¾的共轭转置 计算上述 h2 H与上述系统接收到的调制符号 r的乘积以及计算上述 与上述当前发射 终端的信道响应 的乘积; Preferably, the projector module further configured to mold the channel response calculation the other terminal of the transmitting / ¾ square 11 / ¾11 2, another transmitting terminal calculates the channel response / ¾ of calculating the conjugate transpose of h 2 H a product of the modulation symbol r received by the above system and calculating a product of the above-mentioned channel response with the current transmitting terminal;
上述估计模块, 还用于计算上述另一发射终端的信道响应 的模方 \\h2\\2 ; 计算上述 的实部 的中间估计值 , 计算上述 的虚部 2 β的中 间估计值 s e; 以及判断上述 是否小于 -211 h2 II2 , 并在上述 小于 -211 h2 II2 时, 令上述 的估计值 ¾等于 0, 在上述 大于等于 -211 II2时, 判断上述 s ,是否小于 0, 并在上述 小于 0时, 令上述 的估计值 等于 1, 在上 述 大于等于 0时,判断上述 是否小于 211 h2 II2 ,在上述 小于 211 h2 II2时, 令上述 的估计值 等于 2, 在上述 大于等于 211/^ 11 †, 令上述 的 估计值 等于 3; 判断上述 2是否小于 -2ιι/¾ιι2, 并在上述 小于 -2ιι/¾ιι2 时, 令上述 s e的估计值 s2,e等于 0, 在上述 s e大于等于 -2||/¾||2时, 判断上 述 s e是否小于 0, 并在上述 s e小于 0时, 令上述 s e的估计值 s2,e等于 1, 在上述 s e大于等于 0 时, 判断上述 s e是否小于 2|| /¾ ||2 , 在上述 s e小于The above estimation module is further configured to calculate a modulus \\h 2 \\ 2 of the channel response of the another transmitting terminal; calculate an intermediate estimated value of the real part , and calculate an intermediate estimated value of the imaginary part 2 β And determining whether the above is less than -211 h 2 II 2 , and when the above is less than -211 h 2 II 2 , the above estimated value 3⁄4 is equal to 0, and when the above is greater than or equal to -211 II 2 , determining whether the above s is If the value is less than 0, and the above-mentioned less than 0, the above estimated value is equal to 1, and when the above is greater than or equal to 0, it is judged whether the above is less than 211 h 2 II 2 , and when the above is less than 211 h 2 II 2 , the above estimated value is obtained. Equivalent to 2, above the above 211 / ^ 11 †, so that the above estimated value is equal to 3; determine whether the above 2 is less than -2 ι / 3⁄4ιι 2 , and above the above -2 ιι / 3⁄4ιι 2 , the estimated value of the above s e s 2 , e is equal to 0, when the above s e is greater than or equal to -2||/3⁄4|| 2 , it is judged whether the above s e is less than 0, and when the above s e is less than 0, the estimated value s 2 of the above s e is obtained , e is equal to 1, When the above s e is greater than or equal to 0, it is judged whether the above s e is less than 2|| /3⁄4 || 2 , and the above s e is smaller than
2ιι /¾ ιι2时, 令上述 s e的估计值 s2,e等于 2, 在上述 s e大于等于 2ιι /¾ ιι2时, 令 上述^的估计值 等于 3; 2ιι / ¾ ιι 2, so the above estimate s e s 2, e is equal to 2, the above s e greater than or equal 2ιι / ¾ ιι 2, so that said estimated value ^ is equal to 3;
上述最小误差更新模块,还用于判断上述调制符号 ^的第 k个比特 ^的 值, 并在上述 =0时, 判断上述误差 D是否小于 min_dist_0[k] , 在上述误 差 D小于 min_dist_0[k]时, 令 min_dist_0[k]的值等于上述误差 D, 在上述 误差 D大于等于 min_dist_0[k]时, 不更新 min_dist_0[k]; 或在上述 ^ =1 , 判断上述误差 D是否 'j、于 min_dist_l [k] , 在上述误差 D小于 min_dist_l [k] 时, 令 min_dist_l[k]的值等于上述误差 D , 在上述误差 D 大于等于 min_dist_l [k]时, 不更新 min_dist_l [k]。  The minimum error update module is further configured to determine a value of the kth bit ^ of the modulation symbol ^, and when the above =0, determine whether the error D is smaller than min_dist_0[k], where the error D is smaller than min_dist_0[k] When the value of min_dist_0[k] is equal to the above error D, when the error D is greater than or equal to min_dist_0[k], min_dist_0[k] is not updated; or in the above ^=1, it is determined whether the error D is 'j, at min_dist_l [k], when the above error D is smaller than min_dist_l [k], let the value of min_dist_l[k] be equal to the above error D, and when the above error D is greater than or equal to min_dist_l [k], min_dist_l [k] is not updated.
本发明优化了传统 MAP算法复杂度太高的问题,本发明计算出的译码 结果相当于软解调的软信息, 可直接用于译码, 无需解调, 对于多天线、 高阶和低阶调制都有很好的译码效果。 附图说明  The invention optimizes the problem that the complexity of the traditional MAP algorithm is too high, and the decoded result calculated by the invention is equivalent to soft demodulation soft information, and can be directly used for decoding without demodulation, for multi-antenna, high-order and low The order modulation has a good decoding effect. DRAWINGS
此处所说明的附图用来提供对本发明的进一步理解, 构成本发明的一 部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发 明的不当限定。 在附图中:  The drawings are intended to provide a further understanding of the invention, and are intended to be a part of the invention. In the drawing:
图 1是本发明 MIMO系统的译码方法优选实施例的流程图;  1 is a flow chart of a preferred embodiment of a decoding method of a MIMO system of the present invention;
图 2是 16QAM星座示意图;  2 is a schematic diagram of a 16QAM constellation;
图 3是估计得到的调制符号 的星座示意图;  3 is a schematic diagram of a constellation of estimated modulation symbols;
图 4是本发明 MIMO系统的译码装置优选实施例的原理框图。 具体实施方式  4 is a schematic block diagram of a preferred embodiment of a decoding apparatus for a MIMO system of the present invention. detailed description
本发明的基本思想是: 根据系统接收到的调制符号 r, 计算当前发射终 端发射的调制符号 ^在另一发射终端发射的调制符号 ¾上的投影 ; 对所 述 的实部 2 ί和虚部 2 β进行量化估计, 得到所述 的实部 2 ί和虚部 2 β的 估计值 ¾、 'e; 对所述 ¾、 'e进行星座映射, 得到调制符号 ¾在星座图 中的位置;根据所述估计得到的调制符号 在星座图中的位置,计算所述调 制符号 ^的估计值与实际值之间的误差 D; 根据所述误差 D, 更新所述调制 符号 ^的估计值与实际值之间的最小误差 min_dist_0[k]和 min_dist_l[k] ,其 中, k表示调制符号 的第 k个比特; 根据所述最小误差 min_dist_0[k]和 min_dist_l[k] , 计算所述当前发射终端发射的调制符号 ^的每个比特的对数 似然比, 得到译码结果。 The basic idea of the present invention is: calculating, according to the modulation symbol r received by the system, a projection of the modulation symbol transmitted by the current transmitting terminal on the modulation symbol 3⁄4 transmitted by the other transmitting terminal; 2 ί real part and an imaginary part 2 β-described quantizing estimation to obtain an estimated value of 2 ί ¾ of the real part and the imaginary part of the 2 β, 'e; the ¾,' e constellation mapping, modulation symbols obtained ¾ of the position in the constellation diagram; D based on the estimated error between the obtained position of the modulation symbols in the constellation, the modulation symbols ^ calculating estimated and actual values; D according to the error, update the a minimum error min_dist_0[k] and min_dist_l[k] between the estimated value of the modulation symbol ^ and the actual value, where k represents the kth bit of the modulation symbol; according to the minimum error min_dist_0[k] and min_dist_l[k] And calculating a log likelihood ratio of each bit of the modulation symbol ^ transmitted by the current transmitting terminal to obtain a decoding result.
为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚、 明白, 以下结合附图和实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅用以解释本发明, 并不用于限定本发明。  The present invention will be further described in detail below with reference to the accompanying drawings and embodiments in order to make the present invention. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
如图 1所示, 是本发明 MIMO系统的译码方法优选实施例的流程图; 本实施例以 16QAM为例, 其星座示意图如图 2所示, 其中, 0。,0302表示 16QAM星座图中每个调制符号对应的 4个 bit, c为归一化因子, 16个调制 符号分别标记为(^, < 2 ,···, C16 , 因对于本发明而言, 调制符号标记和调制符 号如何对应并不重要, 故图中未示出 16个调制符号的具体位置。 每个调制 符号有 4个比特。 假设 MIMO系统有 NRX根接收天线, 系统模型如下: As shown in FIG. 1 , it is a flowchart of a preferred embodiment of the decoding method of the MIMO system of the present invention. In this embodiment, 16QAM is taken as an example, and a constellation diagram thereof is shown in FIG. 2 , where 0. 0 3 0 2 represents 4 bits corresponding to each modulation symbol in the 16QAM constellation, c is a normalization factor, and 16 modulation symbols are respectively marked as (^, < 2 , ···, C 16 , because In the invention, it does not matter how the modulation symbol mark and the modulation symbol correspond, so the specific positions of the 16 modulation symbols are not shown in the figure. Each modulation symbol has 4 bits. Assuming that the MIMO system has an NRX root receiving antenna, the system model as follows:
Figure imgf000010_0001
Figure imgf000010_0001
其中, r1, r1 ... ri ^表示 MIMO系统的 ^妻收天线接收到的调制符号; ^表 示 MIMO系统的一个发射终端发射的调制符号, 表示该发射终端在接 收天线 NRX的信道响应; 表示 MIMO系统的另一个发射终端发射的调制 符号, hN ,2表示该发射终端在接收天线 NRX的信道响应; 表示 MIMO系统的 ^妻收天线上的噪声。 Where r 1 , r 1 ... r i ^ represent the modulation symbols received by the antenna of the MIMO system; ^ represents the modulation symbol transmitted by one transmitting terminal of the MIMO system, indicating the channel of the transmitting terminal at the receiving antenna NRX Response; represents a modulation symbol transmitted by another transmitting terminal of the MIMO system, h N , 2 represents a channel response of the transmitting terminal at the receiving antenna NRX; The noise of the antenna of the MIMO system is received.
令:
Figure imgf000011_0001
make:
Figure imgf000011_0001
n = [nl , n2 , - - - nNR∑ ]T n = [n l , n 2 , - - - n NR∑ ] T
则上述系统模型变为:  Then the above system model becomes:
r = sfy + 52/¾ + n r = sfy + 5 2 /3⁄4 + n
其中, r表示 MIMO系统接收到的调制符号; ^表示 MIMO系统的一 个发射终端发射的调制符号,
Figure imgf000011_0002
表示该发射终端的信道响 应; 表示 MIMO 系统的另一个发射终端发射的调制符号, s2 e ¾^2,···,^6}, /¾表示该发射终端的信道响应; η表示噪声。
Where r denotes a modulation symbol received by the MIMO system; ^ denotes a modulation symbol transmitted by a transmitting terminal of the MIMO system,
Figure imgf000011_0002
Representing the channel response of the transmitting terminal; representing the modulation symbol transmitted by another transmitting terminal of the MIMO system, s 2 e 3⁄4^ 2 , . . . , ^ 6 }, /3⁄4 indicating the channel response of the transmitting terminal; η indicating noise.
基于以上模型, 本实施例包括以下步驟:  Based on the above model, the embodiment includes the following steps:
步驟 S001 : 初始化当前发射终端发射的调制符号 ^的估计值与实际值 之间的最小误差 min_dist_0[k]和 min_dist_l[k] ,将其中各元素的值设置为正 无穷大, 即令:  Step S001: Initialize the minimum errors min_dist_0[k] and min_dist_l[k] between the estimated value and the actual value of the modulation symbol ^ transmitted by the current transmitting terminal, and set the value of each element to positive infinity, that is:
min_dist_0[k]=+∞  Min_dist_0[k]=+∞
min_dist_l[k]= +oc Min_dist_l[k]= + oc
其中, k表示调制符号的第 k个比特位, 在 16QAM中, k = 0,l,2,3。 步驟 S002:根据系统接收到的调制符号 r,计算上述当前发射终端发射 的调制符号 ^在另一发射终端发射的调制符号 ¾上的投影 ; Where k represents the kth bit of the modulation symbol, and in 16QAM, k = 0, 1, 2, 3. Step S002: The modulation symbol r received by the system calculates the current transmission modulation symbols transmitted by the terminal on a projection of ^ another transmit modulation symbols transmitted ¾ of the terminal;
在实施例一中, 本步驟具体包括:  In the first embodiment, the step specifically includes:
步驟 S10: 计算上述另一发射终端的信道响应 的模方 II h2 II2并保存; 步驟 S11 : 计算上述另一发射终端的信道响应/ ¾的共轭转置 /^并保存; 步驟 S12: 计算上述/ ^与上述系统接收到的调制符号 r的乘积 A并保 存, 即 A= h2 Hr Step S10: Calculate the module II h 2 II 2 of the channel response of the other transmitting terminal and save it; Step S11: Calculate the conjugate transpose/^ of the channel response of the other transmitting terminal and save it; Step S12: Calculating the product A of the above / ^ and the modulation symbol r received by the above system and saving, that is, A= h 2 H r
步驟 S13: 计算上述/^与上述当前发射终端的信道响应/ ¾的乘积 B并 保存; 即  Step S13: Calculate the product B of the channel response/3⁄4 of the current transmitting terminal and save it;
B= h2 H B= h 2 H
步驟 S14: 根据上述另一发射终端的信道响应/ ¾的模方 II /¾ II2 , 上述 以及上述 A和 B,通过如下公式计算上述当前发射终端发射的调制符号 ^在 另一发射终端发射的调制符号 ¾上的投影 : Step S14: According to the module response II/3⁄4 II 2 of the channel response of the other transmitting terminal, the above and the above A and B, calculate the modulation symbol transmitted by the current transmitting terminal and transmit at another transmitting terminal by the following formula Projection on the modulation symbol 3⁄4 :
¾ = h2 H (r - sA) / II /z2 II2 = (A - SlB) /||/i2 3⁄4 = h 2 H (r - sA) / II /z 2 II 2 = (A - Sl B) /||/i 2
其中, /¾表示上述另一发射终端的信道响应, 表示/ ¾的共轭转置, 11 /¾ 112为/¾的模方。 Where /3⁄4 denotes the channel response of the above other transmitting terminal, indicating a conjugate transpose of /3⁄4, and 11/3⁄4 11 2 is the modulus of /3⁄4.
实施例一中, 对于不同的调制符号 , 每次只要作一次复数乘法、 一次 复数减法和一次复数除实数的除法即可得到相应的投影 。  In the first embodiment, for different modulation symbols, a complex multiplication, a complex subtraction, and a division of the real multiple are performed at a time to obtain a corresponding projection.
由于实施例一中, 需要做一次除法运算, 开销比较大, 还可以对实施 例进行进一步的优化。  In the first embodiment, a division operation is required, and the overhead is relatively large, and the embodiment can be further optimized.
在实施例二中, 本步驟具体包括:  In the second embodiment, the step specifically includes:
步驟 S10,:计算上述另一发射终端的信道响应 的共轭转置 /^并保存; 步驟 Sir: 计算上述/ ^与上述系统接收到的调制符号 r的乘积 A并保 存;  Step S10: Calculate the conjugate transpose /^ of the channel response of the other transmitting terminal and save it; Step Sir: calculate the product A of the above /^ and the modulation symbol r received by the above system and save it;
步驟 S12,: 计算上述/^与上述当前发射终端的信道响应/ ¾的乘积 B并 保存;  Step S12,: calculating a product B of the above-mentioned / / channel response / 3⁄4 of the current transmitting terminal and saving;
步驟 S13,: 根据上述/ ^与 A、 B, 通过如下公式计算上述当前发射终 端发射的调制符号 ^在另一发射终端发射的调制符号 ¾上的投影 :Step S13,: calculating, according to the above / ^ and A, B, the projection of the modulation symbol transmitted by the current transmitting terminal on the modulation symbol 3⁄4 transmitted by the other transmitting terminal by the following formula:
2 = ιξ (r - Sl )VlO = (A - SlB)y/ 2 = ιξ (r - Sl )VlO = (A - Sl B)y/
其中, /¾表示上述另一发射终端的信道响应, 表示/ ¾的共轭转置。 实施例二与实施例一相比,对于不同的调制符号 仅需要作一次复数 乘法、 一次复数减法和一次复数与实数的乘法即可得到相应的投影 。 Where /3⁄4 represents the channel response of the other transmitting terminal, indicating a conjugate transpose of /3⁄4. Compared with the first embodiment, the second embodiment only needs to perform complex multiplication, one complex subtraction and one complex multiplication with real numbers for different modulation symbols to obtain corresponding projections.
步驟 S003:对上述 的实部 和虚部 2e进行量化估计,得到实部 和 虚部 2 e的估计值 、 ,eStep S003: performing quantitative estimation on the real part and the imaginary part 2e described above, and obtaining an estimated value of the real part and the imaginary part 2 e , e ;
本步驟中,  In this step,
?2/ = real s2); 2/ = real s 2 );
s2Q = imag(s2); s 2Q = imag(s 2 );
若步驟 S002中采用实施例一计算上述当前发射终端发射的调制符号 ^ 在另一发射终端发射的调制符号 ¾上的投影 ,则本步驟通过如下步驟对上 述 的实部s ~2J和虚部 2,e进行估计: If the above-described embodiment calculates a current transmit modulation symbols transmitted terminal ^ projected onto modulation symbols in another transmission ¾ of the transmitting terminal in step S002 employed in this step by the steps of the above-described real part and an imaginary part s ~ 2J 2 , e to estimate:
步驟 S20: 根据如下公式计算上述 的实部 的中间估计值 :  Step S20: Calculate the intermediate estimate of the real part above according to the following formula:
s2I = [(s2I
Figure imgf000013_0001
s 2I = [(s 2I
Figure imgf000013_0001
"
步驟 S21: 根据如下公式计算上述 的虚部 的中间估计值 s eStep S21: Calculate the intermediate estimated value s e of the imaginary part described above according to the following formula:
s2Q = [(s2Q
Figure imgf000013_0002
s 2Q = [(s 2Q
Figure imgf000013_0002
"
步驟 S22: 根据上述 s ,、
Figure imgf000013_0003
通过如下公式计算上述 的实部 的估 计值 ¾ί为和虚部s ~2,Q的估计值 ¾e
Step S22: According to the above s,
Figure imgf000013_0003
Calculating an estimated value of the real part and the imaginary portions of the ¾ί s ~ 2, Q by the following equation estimates ¾e
Figure imgf000013_0004
」), 3)
Figure imgf000013_0004
"), 3)
= min ( max ( 0, s2I ), 3 )= min ( max ( 0, s 2I ), 3 )
Figure imgf000013_0005
0.5」), 3)
Figure imgf000013_0005
0.5"), 3)
=min ( max ( 0, s2Q ), 3 ) =min ( max ( 0, s 2Q ), 3 )
其中, 表示 的实部, 表示 的虚部, L」表示向下取整。  Where, the real part of the representation, the imaginary part of the representation, L" means rounding down.
若步驟 S002中采用实施例二计算上述当前发射终端发射的调制符号 在另一发射终端发射的调制符号 ¾上的投影 ,则本步驟通过如下步驟对上 述 的实部 2>ί和虚部 2,β进行估计: If the projection of the modulation symbol transmitted by the current transmitting terminal on the modulation symbol 3⁄4 transmitted by the other transmitting terminal is calculated in the second embodiment, the step is performed by the following steps. The actual part 2> ί and imaginary part 2 , β are estimated:
步驟 S20,: 计算上述另一发射终端的信道响应 的模方 II II2并保存; 步驟 S21,: 根据如下公式计算上述 的实部 的中间估计值^: Step S20:: Calculate the module II II 2 of the channel response of the other transmitting terminal and save it; Step S21: Calculate the intermediate estimated value of the real part according to the following formula:
s2I = [(s2I
Figure imgf000014_0001
s 2I = [(s 2I
Figure imgf000014_0001
步驟 S22,: 根据如下公式计算上述 的虚部S ~l,Q的中间估计值 s e: s2Q = [(s2Q
Figure imgf000014_0002
Step S22,: calculating the intermediate estimated value s e of the imaginary part S ~ l , Q according to the following formula: s 2Q = [(s 2Q
Figure imgf000014_0002
步驟 S23,: 判断上述 是否小于 ^ΙΙ/^ΙΙ2, 若是, 则执行步驟 S24,, 否 则, 执行步驟 S25,; Step S23,: determining whether the above is less than ^ ΙΙ / ^ ΙΙ 2 , and if so, executing step S24, otherwise, performing step S25;
步驟 S24,: s2 =0, 执行步驟 S30,; Step S24,: s 2 =0, step S30 is performed;
步驟 S25,: 判断上述 是否小于 0, 若是, 则执行步驟 S26,, 否则, 执行步驟 S27,;  Step S25,: determining whether the above is less than 0, and if yes, executing step S26, otherwise, performing step S27;
步驟 S26,: s2 =l, 执行步驟 S30,; Step S26,: s 2 = l, performing step S30;
步驟 S27,: 判断上述 ^是否小于 2ll II2, 若是, 则执行步驟 S28,, 否 则, 执行步驟 S29,; Step S27,: determining whether the above ^ is less than 2ll II 2 , and if so, executing step S28, otherwise, performing step S29;
步驟 S28,: s2 =2, 执行步驟 S30,; Step S28,: s 2 = 2, performing step S30;
步驟 S29,: s2 =3, 执行步驟 S30,; Step S29,: s 2 = 3, performing step S30;
步驟 S30,: 判断上述 s e是否小于 ^ΙΙ/^ΙΙ2, 若是, 则执行步驟 S31,, 否 则, 执行步驟 S32,; Step S30,: determining whether the above s e is less than ^ ΙΙ / ^ ΙΙ 2 , and if so, executing step S31, otherwise, performing step S32;
步驟 S31,: s2Q=0, 估值结束; Step S31,: s 2Q =0, the evaluation ends;
步驟 S32,: 分别判断上述 s e是否小于 0, 若是, 则执行步驟 S33,, 否 则, 执行步驟 S34,; Step S32,: respectively determining whether the above s e is less than 0, and if so, executing step S33, otherwise, performing step S34;
步驟 S33,: s2^=l, 估值结束; Step S33,: s 2 ^=l, the evaluation ends;
步驟 S34,: 判断上述 s e是否小于 211/ i2, 若是, 则执行步驟 S35,, 否 则, 执行步驟 S36,; 步驟 S35,: s2^=2, 估值结束; Step S34,: determining whether the above s e is less than 211 / i 2 , and if so, executing step S35, otherwise, performing step S36; Step S35,: s 2 ^=2, the evaluation ends;
步驟 S36,: s2^= , 估值结束。 Step S36,: s 2 ^= , the valuation ends.
步驟 S004: 对上述 ίe进行星座映射,得到调制符号 ¾在星座图中 的位置; Step S004: the above ί, e constellation mapping, modulation symbols ¾ obtain the position in the constellation diagram;
如图 3所示, 是估计得到的调制符号 的星座示意图, I路即横轴通过  As shown in FIG. 3, it is a constellation diagram of the estimated modulation symbol, and the I path is the horizontal axis.
¾映射, 表示调制符号的实部, Q路即纵轴通过 ,e映射, 表示调制符 号 s的虚部。 比如, 当 s2i=l, s2e=3时, 则估计得到的调制符号 被映射到 图中的第二象限中左上角的点 0。 The 3⁄4 map represents the real part of the modulation symbol, the Q path is the vertical axis, and the e- map represents the imaginary part of the modulation symbol s. For example, when s 2i =l, s 2e =3, the estimated modulation symbol is mapped to point 0 in the upper left corner of the second quadrant in the figure.
步驟 S005: 根据上述估计得到的调制符号¾在星座图中的位置, 计算 上述调制符号 ^的估计值与实际值之间的误差 D; Step S005: calculating an error D between the estimated value and the actual value of the modulation symbol ^ according to the position of the modulation symbol 3⁄4 obtained in the constellation diagram;
本步驟通过如下公式计算上述调制符号 ^的估计值与实际值之间的误 差 D:  In this step, the error between the estimated value of the above modulation symbol ^ and the actual value is calculated by the following formula D:
D =11 r-s^ -s2h2 II2 D =11 rs^ -s 2 h 2 II 2
其中, ^表示上述当前发射终端发射的调制符号, /¾表示上述当前发射 终端的信道响应, 表示上述另一发射终端发射的调制符号, 表示上述另 一发射终端的信道响应。  Wherein, ^ represents the modulation symbol transmitted by the current transmitting terminal, /3⁄4 represents the channel response of the current transmitting terminal, and represents the modulation symbol transmitted by the other transmitting terminal, indicating the channel response of the other transmitting terminal.
步驟 S006: 根据上述距离 D, 更新上述调制符号 ^的估计值与实际值 之间的最小误差 min_dist_0[k]和 min_dist_l[k], 其中, k表示调制符号 的 第 k个比特;  Step S006: Update the minimum errors min_dist_0[k] and min_dist_l[k] between the estimated value and the actual value of the modulation symbol ^ according to the distance D, where k represents the kth bit of the modulation symbol;
本步驟具体为:  This step is specifically as follows:
步驟 S0061: 判断上述调制符号 ^的第 k个比特 ^的值, 若 =0, 则执 行步驟 S0062; 若 =1, 执行步驟 S0065;  Step S0061: determining the value of the kth bit ^ of the modulation symbol ^, if =0, executing step S0062; if =1, executing step S0065;
步驟 S0062: 判断上述误差 D是否小于 min_dist_0[k], 若是, 执行步 驟 S0063, 否则, 执行步驟 S0064; 步驟 S0063: 令 min_dist_0[k]=D; Step S0062: determining whether the error D is less than min_dist_0[k], and if so, executing step S0063, otherwise, performing step S0064; Step S0063: Let min_dist_0[k]=D;
步驟 S0064: 不更新 min_dist_0[k];  Step S0064: Do not update min_dist_0[k];
步驟 S0065: 判断所述误差 D是否小于 min_dist_l [k] , 若是, 则执行 步驟 S0066, 否则, 执行步驟 S0067;  Step S0065: determining whether the error D is smaller than min_dist_l [k], if yes, executing step S0066, otherwise, performing step S0067;
步驟 S0066: 令 min_dist_l[k]=D;  Step S0066: Let min_dist_l[k]=D;
步驟 S0067: 不更新 min_dist_l [k]。  Step S0067: Min_dist_l [k] is not updated.
步驟 S007: 根据上述最小误差 min_dist_0[k]和 min_dist_l [k] , 计算上 述当前发射终端发射的调制符号 ^的每个比特的对数似然比, 得到译码结 果。  Step S007: Calculate a log likelihood ratio of each bit of the modulation symbol ^ transmitted by the current transmitting terminal according to the minimum errors min_dist_0[k] and min_dist_l [k] to obtain a decoding result.
本步驟通过如下公式计算上述当前发射终端发射的调制符号 ^的每个 比特的对数似然比:  In this step, the log likelihood ratio of each bit of the modulation symbol ^ transmitted by the current transmitting terminal is calculated by the following formula:
LLR = min_dist_l [k]- min_dist_0[k]  LLR = min_dist_l [k]- min_dist_0[k]
其中, LLI^k表示上述当前发射终端发射的调制符号 的第 k个比特的 对数似然比。  Where LLI^k represents the log likelihood ratio of the kth bit of the modulation symbol transmitted by the current transmitting terminal.
如图 4所示,是本发明 MIMO系统的译码装置的优选实施例原理框图, 本实施中, 译码装置包括投影模块 02、 估计模块 03、 映射模块 04、 误差计 算模块 05、 最小误差更新模块 06以及对数似然比计算模块 07, 其中, 初始化模块 01 , 用于在上述 MIMO 系统初始化时, 将上述最小误差 min_dist_0[k]和 min_dist_l [k]中各元素的值初始化为正无穷大;  As shown in FIG. 4, it is a schematic block diagram of a preferred embodiment of a decoding apparatus of a MIMO system according to the present invention. In this implementation, the decoding apparatus includes a projection module 02, an estimation module 03, a mapping module 04, an error calculation module 05, and a minimum error update. a module 06 and a log likelihood ratio calculation module 07, wherein the initialization module 01 is configured to initialize the values of the elements in the minimum errors min_dist_0[k] and min_dist_l[k] to positive infinity when the MIMO system is initialized;
投影模块 02,用于根据系统接收到的调制符号 r,计算计算上述另一发 射终端的信道响应 的模方 II II2并保存, 计算上述另一发射终端的信道响 应/ ¾的共轭转置/ ^并保存, 计算上述/ ^与上述系统接收到的调制符号 r的 乘积并保存以及计算上述 与上述当前发射终端的信道响应/ ¾的乘积并保 存, 以及根据上述另一发射终端的信道响应/ ¾的模方 II /¾ II2 , 上述 与上述 系统接收到的调制符号 r的乘积以及上述/ ^与上述当前发射终端的信道响 应 的乘积,计算上述当前发射终端发射的调制符号 ^在另一发射终端发射 的调制符号 上的投影 ;或者根据上述 /^与上述系统接收到的调制符号 r 的乘积以及上述 /^与上述当前发射终端的信道响应 /¾的乘积, 计算上述当 前发射终端发射的调制符号 ^在另一发射终端发射的调制符号 ¾上的投影 估计模块 03,用于对上述 的实部 和虚部 2,e进行量化估计,得到上 述 的实部 和虚部 2,e的估计值¾¾β; 具体为: 用于计算上述另一发 射终端的信道响应 h2的模方 II h2 II2并保存; 计算上述 的实部s ~2J的中间估计 值^, 计算上述 的虚部 的中间估计值 s e; 以及判断上述 ^是否小于 -2\\h2\\ 并在上述 小于 -2ll/¾ll2时, 令上述 ί的估计值 等于 0, 在上述 大于等于 -211 /¾ II2时, 判断上述 是否小于 0, 并在上述 小于 0时, 令 上述 的估计值¾等于 1, 在上述 s ,大于等于 0时, 判断上述 s ,是否小 于 2ll/¾ll2 , 在上述 小于 2ll/¾ll2时, 令上述 ί的估计值 等于 2, 在上述 大于等于 211 ¾ II2时, 令上述 的估计值¾等于 3; 判断上述 s e是否小 于 ll/^ll2 , 并在上述 s e小于 -2ll/¾ll2时, 令上述 s e的估计值 e等于 0, 在 上述 s e大于等于 -2||/¾112时, 判断上述 s e是否小于 0, 并在上述 s e小于 0 时, 令上述 s e的估计值 s2,e等于 1, 在上述 s e大于等于 0时, 判断上述
Figure imgf000017_0001
是否小于 2ll/¾ll2 , 在上述 小于 2ll/¾ll2时, 令上述 的估计值¾2等于 2, 在上述 s e大于等于 2ιι/¾ιι2时, 令上述 s e的估计值 ¾e等于 3;
a projection module 02, configured to calculate and calculate a channel II II 2 of a channel response of the another transmitting terminal according to the modulation symbol r received by the system, and calculate a channel response of the another transmitting terminal/conjugate conjugate transposition / ^ and save, calculate the above / ^ product of the modulation symbol r received by the above system and save and calculate the above-mentioned product of the channel response / 3⁄4 of the current transmitting terminal and save, and according to the channel response of the other transmitting terminal /3⁄4 of the square II /3⁄4 II 2 , the product of the above-mentioned modulation symbol r received by the above system and the above / ^ and the channel of the current transmitting terminal Calculating the projection of the modulation symbol transmitted by the current transmitting terminal on the modulation symbol transmitted by the other transmitting terminal, or the product of the modulation symbol r received by the above system and the above-mentioned /^ and the current current channel response transmitting terminal / ¾ product, calculates the current transmit modulation symbols transmitted terminal ^ projection estimation module modulation symbols transmitted in the transmitting terminal further ¾ 03, for the above-mentioned real and imaginary portions 2, e estimate quantized to obtain the above-mentioned real and imaginary portions 2, e estimates ¾, ¾β; in particular: the other transmitting terminal for calculating a channel response of h 2 norm II h 2 II 2 and stored; calculated The intermediate estimated value ^ of the real part s ~ 2J above, calculates the intermediate estimated value s e of the imaginary part ; and determines whether the above ^ is less than -2\\h 2 \\ and is less than -2ll/3⁄4ll 2 Let the above estimated value of ί be equal to 0. When the above is greater than or equal to -211 /3⁄4 II 2 , judge whether the above is less than 0, and when the above is less than 0, let the above estimated value 3⁄4 be equal to 1, in the above s, greater than When it is equal to 0, judge the above s, is it In 2ll / ¾ll 2, in the above less than 2 2ll / ¾ll, so that the above-described ί estimate equal to 2, in the not less than 211 ¾ 2 II, so the above estimate ¾ equal to 3; determining whether the s e is less than Ll / ^ ll 2 , and when the above s e is less than -2ll / 3⁄4ll 2 , let the estimated value e of the above s e be equal to 0, when the above s e is greater than or equal to -2||/3⁄411 2 , determine whether the above s e is less than 0, and when said s e less than 0, so the above estimate s e s 2, e is equal to 1, in the s e greater than or equal to 0, determining whether the
Figure imgf000017_0001
Is it less than 2ll/3⁄4ll 2 , when the above is less than 2ll/3⁄4ll 2 , let the above estimated value 3⁄42 be equal to 2, when the above s e is greater than or equal to 2ιι/3⁄4ιι 2 , let the estimated value of the above s e 3e4e be equal to 3;
映射模块 04, 用于对上述 ie进行星座映射, 得到调制符号 ¾在星 座图中的位置; The mapping module 04 is configured to perform constellation mapping on the above i and e to obtain a position of the modulation symbol 3⁄4 in the constellation diagram;
误差计算模块 05, 用于根据上述估计得到的调制符号 ¾在星座图中的 位置, 计算上述调制符号 的估计值与实际值之间的误差 D; 最小误差更新模块 06, 用于更新上述调制符号^的估计值与实际值之 间的最小误差 min_dist_0[k]和 min_dist_l[k] , 其中, k表示调制符号 的第 k个比特;具体为:判断上述调制符号 ^的第 k个比特 ^的值,并在上述 =0 时,判断上述误差 D是否小于 min_dist_0[k] ,在上述误差 D小于 min_dist_0[k] 时, 令 min_dist_0[k]的值等于上述误差 D , 在上述误差 D 大于等于 min_dist_0[k]时, 不更新 min_dist_0[k]; 或者在上述 ^ =1 , 判断上述误差 D 是否 'j、于 min_dist_l [k] ,在上述误差 D小于 min_dist_l [k]时,令 min_dist_l [k] 的值等于上述误差 D, 在上述误差 D 大于等于 min_dist_l [k]时, 不更新 min_dist_l [k]。 The error calculation module 05 is configured to calculate an error D between the estimated value of the modulation symbol and the actual value according to the position of the modulation symbol 3⁄4 in the constellation diagram obtained by the above estimation; The minimum error update module 06 is configured to update the minimum errors min_dist_0[k] and min_dist_l[k] between the estimated value and the actual value of the modulation symbol ^, where k represents the kth bit of the modulation symbol; specifically: determining The value of the kth bit ^ of the modulation symbol ^, and when the above =0, determines whether the error D is smaller than min_dist_0[k], and when the error D is smaller than min_dist_0[k], the value of min_dist_0[k] is equal to The error D, when the error D is greater than or equal to min_dist_0[k], does not update min_dist_0[k]; or in the above ^=1, determines whether the error D is 'j, at min_dist_l [k], where the error D is less than min_dist_l When [k], let the value of min_dist_l [k] be equal to the above error D, and when the above error D is greater than or equal to min_dist_l [k], min_dist_l [k] is not updated.
对数似然比计算模块 07 , 用于根据上述最小误差 min_dist_0[k]和 min_dist_l [k], 计算上述当前发射终端发射的调制符号 ^的每个比特的对数 似然比, 得到译码结果。  The log likelihood ratio calculation module 07 is configured to calculate a log likelihood ratio of each bit of the modulation symbol ^ transmitted by the current transmitting terminal according to the minimum errors min_dist_0[k] and min_dist_l [k], and obtain a decoding result. .
上述说明示出并描述了本发明的优选实施例, 但如前所述, 应当理解 本发明并非局限于本文所披露的形式, 不应看作是对其他实施例的排除, 而可用于各种其他组合、 修改和环境, 并能够在本文所述发明构想范围内, 通过上述教导或相关领域的技术或知识进行改动。 而本领域人员所进行的 改动和变化不脱离本发明的精神和范围, 则都应在本发明所附权利要求的 保护范围内。  The above description shows and describes a preferred embodiment of the present invention, but as described above, it should be understood that the present invention is not limited to the form disclosed herein, and should not be construed as being Other combinations, modifications, and environments are possible and can be modified by the teachings of the above teachings or related art within the scope of the inventive concept described herein. All changes and modifications made by those skilled in the art are intended to be within the scope of the appended claims.

Claims

权利要求书 Claim
1、 一种多输入多输出 MIMO系统的译码方法, 其特征在于, 该方法包 括:  A decoding method for a multiple input multiple output MIMO system, the method comprising:
根据系统接收到的调制符号 r, 计算当前发射终端发射的调制符号 ^在 另一发射终端发射的调制符号 ¾上的投影 ; The modulation symbols r received by the system, the terminal calculates the current transmission modulation symbols transmitted modulation symbols ^ projected on another ¾ of the transmission the transmitting terminal;
对所述 的实部s ~2J和虚部S ~l,Q进行量化估计,得到所述 的实部s ~2J和虚 部 2,e的估计值¾、 ¾βQuantifying and estimating the real part s ~ 2J and the imaginary part S ~ l , Q , and obtaining the estimated values 3⁄4 , 3⁄4β of the real part s ~ 2J and the imaginary part 2 , e ;
对所述 ¾i、 ,e进行星座映射, 得到调制符号 ¾在星座图中的位置; 根据所述估计得到的调制符号 在星座图中的位置,计算所述调制符号 Sl的估计值与实际值之间的误差 D; Performing constellation mapping on the 3⁄4i , , e to obtain a position of the modulation symbol 3⁄4 in the constellation diagram; calculating an estimated value and an actual value of the modulation symbol S1 according to the position of the modulation symbol obtained in the constellation diagram Error D;
根据所述误差 D,更新所述调制符号 ^的估计值与实际值之间的最小误 差 min_dist_0[k]和 min_dist_l [k] , 其中, k表示调制符号 的第 k个比特; 根据所述最小误差 min_dist_0[k]和 min_dist_l[k] ,计算所述当前发射终 端发射的调制符号 ^的每个比特的对数似然比, 得到译码结果。  Updating a minimum error min_dist_0[k] and min_dist_l [k] between the estimated value and the actual value of the modulation symbol ^ according to the error D, wherein k represents a k-th bit of the modulation symbol; according to the minimum error Min_dist_0[k] and min_dist_l[k] calculate a log likelihood ratio of each bit of the modulation symbol ^ transmitted by the current transmitting terminal to obtain a decoding result.
2、 根据权利要求 1所述的方法, 其特征在于, 所述计算当前发射终端 发射的调制符号 ^在另一发射终端发射的调制符号 ¾上的投影 为: 2. The method of claim 1, wherein said transmitting terminal calculates current modulation symbols transmitted modulation symbols ^ projected on another transmitting terminal is transmitted ¾:
计算所述另一发射终端的信道响应 的模方 II II2Calculating the mode II II 2 of the channel response of the other transmitting terminal;
计算所述另一发射终端的信道响应 的共轭转置 ;  Calculating a conjugate transpose of a channel response of the other transmitting terminal;
计算所述 /^与所述系统接收到的调制符号 r的乘积;  Calculating a product of the /^ and the modulation symbol r received by the system;
计算所述/^与所述当前发射终端的信道响应 的乘积;  Calculating a product of the channel response of the current transmitting terminal;
根据所述另一发射终端的信道响应 的模方 II II2 , 所述 与所述系统 接收到的调制符号 r的乘积以及所述/^与所述当前发射终端的信道响应/ ¾ 的乘积,计算所述当前发射终端发射的调制符号 ^在另一发射终端发射的调 制符号 ¾上的投影 。 According to the module II II 2 of the channel response of the other transmitting terminal, the product of the modulation symbol r received by the system and the product of the channel response/3⁄4 of the current transmitting terminal, Calculating a modulation symbol transmitted by the current transmitting terminal and transmitting a modulation at another transmitting terminal The projection on the symbol 3⁄4 .
3、 根据权利要求 1或 2所述的方法, 其特征在于, 通过如下公式计算 所述当前发射终端上发射的调制符号 ^在另一发射终端上发射的调制符号 的投影  3. Method according to claim 1 or 2, characterized in that the modulation symbol transmitted on the current transmitting terminal is calculated by the following formula: the projection of the modulation symbol transmitted on the other transmitting terminal
s2 =h2 H(r-slhl)l\\h2\\2 s 2 =h 2 H (rs l h l )l\\h 2 \\ 2
其中, /¾表示所述另一发射终端的信道响应, 表示/ ¾的共轭转置, 11/¾112为/¾的模方。 Where /3⁄4 denotes the channel response of the other transmitting terminal, indicating a conjugate transpose of /3⁄4, and 11/3⁄411 2 is a modular square of /3⁄4.
4、 根据权利要求 1所述的方法, 其特征在于, 所述计算当前发射终端 发射的调制符号 ^在另一发射终端发射的调制符号 ¾上的投影 为: 4. The method of claim 1, wherein said transmitting terminal calculates current modulation symbols transmitted modulation symbols ^ projected on another transmitting terminal is transmitted ¾:
计算所述另一发射终端的信道响应 的共轭转置 ;  Calculating a conjugate transpose of a channel response of the other transmitting terminal;
计算所述 /^与所述系统接收到的调制符号 r的乘积;  Calculating a product of the /^ and the modulation symbol r received by the system;
计算所述/^与所述当前发射终端的信道响应 的乘积;  Calculating a product of the channel response of the current transmitting terminal;
根据所述/^与所述系统接收到的调制符号 r的乘积以及所述 与所述 当前发射终端的信道响应 的乘积,计算所述当前发射终端发射的调制符号 Calculating a modulation symbol transmitted by the current transmitting terminal according to a product of the modulation symbol r received by the system and the channel response of the current transmitting terminal
Sl在另一发射终端发射的调制符号 ¾上的投影 。 Projection of the Sl on the modulation symbol 3⁄4 transmitted by the other transmitting terminal.
5、 根据权利要求 1或 4所述的方法, 其特征在于, 通过如下公式计算 所述当前发射终端上发射的调制符号 ^在另一发射终端上发射的调制符号 的投影 The method according to claim 1 or 4, wherein the modulation symbol transmitted on the current transmitting terminal is calculated by the following formula: a projection of a modulation symbol transmitted on another transmitting terminal
Figure imgf000020_0001
Figure imgf000020_0001
其中, /¾表示所述另一发射终端的信道响应, 表示/ ¾的共轭转置。 Where /3⁄4 denotes the channel response of the other transmitting terminal, indicating a conjugate transpose of /3⁄4.
6、根据权利要求 3所述的方法,其特征在于,通过如下公式对所述 的 实部 2>ί和虚部 2e进行估计: 6. Method according to claim 3, characterized in that said real part 2 > ί and imaginary part 2e are estimated by the following formula:
」), 3) "), 3)
Figure imgf000020_0002
」), 3) 其中, 表示 的实部, 表示 的虚部, L」表示向下取整。
Figure imgf000020_0002
"), 3) Where, the real part of the representation, the imaginary part of the representation, L" means rounding down.
7、 根据权利要求 5所述的方法, 其特征在于, 所述对 的实部 和虚 部 2,e进行量化估计, 得到实部 和虚部 2,e的估计值¾、 ¾e为: 7. The method according to claim 5, wherein the real part and the imaginary part 2 , e of the pair are quantitatively estimated, and the real part and the imaginary part 2 are obtained, and the estimated values of the e are 3⁄4 , 3⁄4e are:
计算所述另一发射终端的信道响应 的模方 II II2Calculating the mode II II 2 of the channel response of the other transmitting terminal;
根据如下公式计算所述 的实部 的中间估计值 s ,:  The intermediate estimate s of the real part is calculated according to the following formula:
s2I = [(s2I
Figure imgf000021_0001
s 2I = [(s 2I
Figure imgf000021_0001
"
根据如下公式计算所述 的虚部 2,β的中间估计值 s eCalculate the intermediate estimate s e of the imaginary part 2 , β according to the following formula:
s2 Q = [(s2Q
Figure imgf000021_0002
s 2 Q = [(s 2Q
Figure imgf000021_0002
"
判断所述 是否小于 ll/^ ll2 , 若是, 则 =0; 否则, Determining whether the said is less than ll/^ ll 2 , and if so, then =0; otherwise,
判断所述 是否小于 0, 若是, 则 =1; 否则,  Determining whether the said is less than 0, and if so, then =1; otherwise,
判断所述 是否小于 2ll/¾ ll2 , 若是, 则 =2; 否则, ¾,=3; 判断所述 s e是否小于 ll/^ ll2 , 若是, 则 s2,e=0; 否则, It determines whether less than 2ll / ¾ ll 2, if yes, 2 =; otherwise, ¾, = 3; Analyzing the s e is less than ll / ^ ll 2, if yes, s 2, e = 0; otherwise,
判断所述^是否小于 0, 若是, 则 s2,e=l; 否则, Determining whether the ^ is less than 0, and if so, then s 2 , e = l; otherwise,
判断所述 s e是否小于 211/¾ 112 , 若是, 则 =2; 否则, =3。 It is determined whether the s e is less than 211/3⁄4 11 2 , and if so, then = 2; otherwise, = 3.
8、 根据权利要求 1所述的方法, 其特征在于, 通过如下公式计算所述 调制符号 的估计值与实际值之间的误差 D:  8. The method according to claim 1, wherein the error D between the estimated value and the actual value of the modulation symbol is calculated by the following formula:
D =11 r-s^ -s2h2 II2 D =11 rs^ -s 2 h 2 II 2
其中, 表示所述当前发射终端发射的调制符号, /¾表示所述当前发射 终端的信道响应, 表示所述另一发射终端发射的调制符号, 表示所述另 一发射终端的信道响应。  Wherein, a modulation symbol transmitted by the current transmitting terminal is indicated, and /3⁄4 represents a channel response of the current transmitting terminal, and represents a modulation symbol transmitted by the another transmitting terminal, indicating a channel response of the another transmitting terminal.
9、 根据权利要求 1所述的方法, 其特征在于, 该方法还包括: 所述系 统初始化时,将所述最小误差 min_dist_0[k]和 min_dist_l[k]中各元素的值初 始化为正无穷大。 9. The method according to claim 1, wherein the method further comprises: initializing the values of the elements in the minimum errors min_dist_0[k] and min_dist_l[k] to positive infinity when the system is initialized.
10、 根据权利要求 1或 9所述的方法, 其特征在于, 所述根据所述误 差 D,更新所述调制符号 ^的估计值与实际值之间的最小误差 min_dist_0[k] 和 min_dist_l [k]为: The method according to claim 1 or 9, wherein the minimum error min_dist_0[k] and min_dist_l [k] between the estimated value and the actual value of the modulation symbol ^ is updated according to the error D ] is:
判断所述调制符号 ^的第 k个比特 ^的值,  Determining the value of the kth bit ^ of the modulation symbol ^,
若 s =0 , 判断所述误差 D 是否小于 min_dist_0[k] , 若是, 令 min_dist_0[k]=D; 否则, 不更新 min_dist_0[k] ;  If s =0, it is judged whether the error D is smaller than min_dist_0[k], and if so, let min_dist_0[k]=D; otherwise, min_dist_0[k] is not updated;
sf =l , 判断所述误差 D 是否小于 min_dist_l[k] , 若是, 令 min_dist_l [k]=D; 否则, 不更新 min_dist_l [k]。 If s f = l , it is judged whether the error D is smaller than min_dist_l[k], and if so, let min_dist_l [k] = D; otherwise, min_dist_l [k] is not updated.
11、 根据权利要求 1 所述的方法, 其特征在于, 通过如下公式计算所 述当前发射终端发射的调制符号 ^的每个比特的对数似然比:  The method according to claim 1, wherein the log likelihood ratio of each bit of the modulation symbol ^ transmitted by the current transmitting terminal is calculated by the following formula:
LLR = min_dist_l [k]- min_dist_0[k]  LLR = min_dist_l [k]- min_dist_0[k]
其中, LLI^k表示所述当前发射终端发射的调制符号 的第 k个比特的 对数似然比。  Where LLI^k represents the log likelihood ratio of the kth bit of the modulation symbol transmitted by the current transmitting terminal.
12、 一种 MIMO系统的译码装置, 其特征在于, 该装置包括: 投影模 块、 估计模块、 映射模块、 误差计算模块、 最小误差更新模块以及对数似 然比计算模块; 其中,  12. A decoding device for a MIMO system, the device comprising: a projection module, an estimation module, a mapping module, an error calculation module, a minimum error update module, and a log likelihood ratio calculation module;
所述投影模块, 用于根据系统接收到的调制符号 r, 计算当前发射终端 发射的调制符号 ^在另一发射终端发射的调制符号 ¾上的投影 ; The projection module, the system according to the received modulation symbol r calculated current transmit modulation symbols transmitted by the terminal on a projection of ^ another transmit modulation symbols transmitted ¾ of the terminal;
所述估计模块, 用于对所述 的实部 和虚部 2,e进行量化估计, 得到 所述 的实部 和虚部 2 β的估计值 ¾ί¾βSaid estimation module for the real and imaginary portions 2, e is quantized estimates, to obtain the real and imaginary parts of 2 β estimation value ¾ί, ¾β;
所述映射模块, 用于对所述 ¾ί¾2进行星座映射, 得到调制符号 ¾在 星座图中的位置; The mapping module, for the ¾ί, ¾2 constellation mapping, modulation symbols ¾ obtain the position in the constellation diagram;
所述误差计算模块,用于根据所述估计得到的调制符号 ¾在星座图中的 位置, 计算所述调制符号 的估计值与实际值之间的误差 D; The error calculation module is configured to calculate an error D between the estimated value and the actual value of the modulation symbol according to the estimated position of the modulation symbol 226 in the constellation;
所述最小误差更新模块, 用于根据所述误差 D, 更新所述调制符号 ^的 估计值与实际值之间的最小误差 min_dist_0[k]和 min_dist_l [k], 其中, k表 示调制符号 的第 k个比特; The minimum error update module is configured to update the modulation symbol according to the error D a minimum error between the estimated value and the actual value min_dist_0[k] and min_dist_l [k], where k represents the kth bit of the modulation symbol;
所述对数似然比计算模块, 用于根据所述最小误差 min_dist_0[k]和 min_dist_l[k], 计算所述当前发射终端发射的调制符号 ^的每个比特的对数 似然比, 得到译码结果。  The log likelihood ratio calculation module is configured to calculate a log likelihood ratio of each bit of the modulation symbol ^ transmitted by the current transmitting terminal according to the minimum errors min_dist_0[k] and min_dist_l[k], The result of the decoding.
13、 根据权利要求 12所述的装置, 其特征在于, 所述装置还包括初始 化模块, 用于在所述 MIMO系统初始化时, 将所述最小误差 min_dist_0[k] 和 min_dist_l [k]中各元素的值初始化为正无穷大。  13. The apparatus according to claim 12, wherein the apparatus further comprises an initialization module, configured to: when the MIMO system is initialized, the elements of the minimum errors min_dist_0[k] and min_dist_l[k] The value is initialized to positive infinity.
14、 根据权利要求 12或 13所述的装置, 其特征在于,  14. Apparatus according to claim 12 or claim 13 wherein:
所述投影模块, 还用于计算所述另一发射终端的信道响应 的模方 11/¾112,计算所述另一发射终端的信道响应/ ¾的共轭转置 计算所述 与 所述系统接收到的调制符号 r的乘积以及计算所述 与所述当前发射终端 的信道响应 /¾的乘积; The projection module is further for calculating a channel of the other transmitting terminal in response to the norm of 11 / ¾11 2, further calculating the channel response transmitting terminal / ¾ conjugate transpose with the system calculates the a product of the received modulation symbol r and a product of the channel response/3⁄4 of the current transmitting terminal;
所述估计模块, 还用于计算所述另一发射终端的信道响应 的模方 11/¾112; 计算所述 的实部 的中间估计值 s ,, 计算所述 的虚部 的中 间估计值 s e; 以及判断所述 是否小于 -2 II /¾ 112 , 并在所述 小于 -2 II /¾ 112 时, 令所述 的估计值¾等于 0, 在所述 大于等于 -211 II2时, 判断所述 s ,是否小于 0, 并在所述 小于 0时, 令所述 的估计值 等于 1, 在所 述 大于等于 0时,判断所述 是否小于 2||/¾112,在所述 ,,小于 211 /¾ II2时, 令所述 的估计值 等于 2, 在所述 大于等于 211/^11 †, 令所述 的 估计值 等于 3; 判断所述 s e是否小于 ^ΙΙ/^ΙΙ2, 并在所述 s e小于 -2||/¾112 时, 令所述 s e的估计值 s2,e等于 0, 在所述 s e大于等于 -2ll/¾ll2时, 判断所 述 s e是否小于 0, 并在所述 s e小于 0时, 令所述 s e的估计值 s2,e等于 1, 在所述 s e大于等于 0 时, 判断所述 s e是否小于 211/ i2 , 在所述 s e小于 2ιι/¾ιι2时, 令所述 s e的估计值 s2e等于 2, 在所述 s e大于等于 2ιι/¾ιι2时, 令 所述^的估计值 s2,e等于 3; The estimation module is further configured to transmit to another terminal of said mold calculating channel response square 11 / ¾11 2; calculating the real part of the intermediate estimation value s ,, intermediate calculating the estimated imaginary part a value s e ; and determining whether the said value is less than -2 II /3⁄4 11 2 , and when the said less than -2 II /3⁄4 11 2 , the estimated value 3⁄4 is equal to 0, in the greater than or equal to -211 II 2 , determining whether the s is less than 0, and when the less than 0, let the estimated value be equal to 1, and when the greater than or equal to 0, determining whether the said is less than 2||/3⁄411 2 Said that, when less than 211 /3⁄4 II 2 , let the estimated value be equal to 2, in the said greater than or equal to 211 / ^ 11 †, let the estimated value be equal to 3; determine whether the s e is less than ^ ΙΙ / ^ ΙΙ 2, and the s e is less than -2 || / 2 when ¾11, so that the estimated value e s s 2, e is equal to 0, the s e greater than or equal -2ll / 2 when ¾ll, Analyzing the s e is smaller than 0, and when the s e is smaller than 0, so that the estimate s e s 2, e is equal to 1, in the s e greater than or equal to 0, it is determined whether the s e Less than 211 / i 2 , where the s e is less than 2ιι / ¾ιι 2, so that the estimate s e s 2e is equal to 2 or greater in the s e 2ιι / ¾ιι 2, so that the estimation value ^ s 2, e is equal to 3;
所述最小误差更新模块,还用于判断所述调制符号 ^的第 k个比特 ^的 值, 并在所述 ^ =0时, 判断所述误差 D是否小于 min_dist_0[k], 在所述误 差 D小于 min_dist_0[k]时, 令 min_dist_0[k]的值等于所述误差 D, 在所述 误差 D大于等于 min_dist_0[k]时, 不更新 min_dist_0[k]; 或在所述 ^=1, 判断所述误差 D是否小于 min_dist_l[k], 在所述误差 D小于 min_dist_l[k] 时, 令 min_dist_l[k]的值等于所述误差 D, 在所述误差 D 大于等于 min_dist_l [k]时, 不更新 min_dist_l [k]。  The minimum error update module is further configured to determine a value of the kth bit of the modulation symbol ^, and when the ^=0, determine whether the error D is smaller than min_dist_0[k], in the error When D is smaller than min_dist_0[k], the value of min_dist_0[k] is equal to the error D, and when the error D is greater than or equal to min_dist_0[k], min_dist_0[k] is not updated; or in the ^=1, judging Whether the error D is smaller than min_dist_l[k], and when the error D is smaller than min_dist_l[k], let the value of min_dist_l[k] be equal to the error D, when the error D is greater than or equal to min_dist_l [k], Update min_dist_l [k].
PCT/CN2011/080940 2011-06-03 2011-10-18 Decoding method and device of mimo system WO2012163011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110149760.5 2011-06-03
CN201110149760.5A CN102811117B (en) 2011-06-03 2011-06-03 The interpretation method of mimo system and device

Publications (1)

Publication Number Publication Date
WO2012163011A1 true WO2012163011A1 (en) 2012-12-06

Family

ID=47234707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080940 WO2012163011A1 (en) 2011-06-03 2011-10-18 Decoding method and device of mimo system

Country Status (2)

Country Link
CN (1) CN102811117B (en)
WO (1) WO2012163011A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855797A (en) * 2005-03-22 2006-11-01 三星电子株式会社 Method for detecting and decoding a signal in a mimo communication system
CN1977486A (en) * 2004-06-30 2007-06-06 皇家飞利浦电子股份有限公司 System and method for maximum likelihood decoding in multiple out wireless communication systems
CN101150379A (en) * 2007-09-26 2008-03-26 山东大学 A low-complexity decoding method for standard orthogonal pace time packet code

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109679A1 (en) * 2004-05-07 2005-11-17 Samsung Electronics Co., Ltd. Apparatus and method for encoding/decoding space time block code in a mobile communication system using multiple input multiple output scheme
TW201025894A (en) * 2006-02-10 2010-07-01 Interdigital Tech Corp Method and apparatus for performing uplink transmission in a multiple-input multiple-output single carrier frequency division multiple access system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1977486A (en) * 2004-06-30 2007-06-06 皇家飞利浦电子股份有限公司 System and method for maximum likelihood decoding in multiple out wireless communication systems
CN1855797A (en) * 2005-03-22 2006-11-01 三星电子株式会社 Method for detecting and decoding a signal in a mimo communication system
CN101150379A (en) * 2007-09-26 2008-03-26 山东大学 A low-complexity decoding method for standard orthogonal pace time packet code

Also Published As

Publication number Publication date
CN102811117B (en) 2017-03-01
CN102811117A (en) 2012-12-05

Similar Documents

Publication Publication Date Title
CN102882575B (en) For determining the method and apparatus of channel condition information
US11711155B2 (en) Self-adaptive MIMO detection method and system
US9258148B2 (en) Method for channel estimation, related channel estimator, receiver, and computer program product
JP4861316B2 (en) System and method for maximum likelihood decoding in a multi-output wireless communication system
WO2007137484A1 (en) A channel estimation method and the device thereof
WO2016034051A1 (en) Interference suppression method and device
EP2342875A1 (en) An mmse mimo decoder using qr decomposition
JP4469724B2 (en) Decoder and decoding method in 2 × 2 wireless local area network, COFDM-MIMO system
CN105940625B (en) Base station apparatus, wireless communication system and communication means
WO2008032849A1 (en) Wireless communication apparatus
Wang et al. Low complexity Kolmogorov-Smirnov modulation classification
CN109391278B (en) Signal receiver of large-scale antenna multi-user system and signal processing method thereof
US9432224B1 (en) Method and apparatus for low-complexity ISI estimation using sparse discontinuous time-domain pilots
Nissel et al. Closed-Form capacity expression for low complexity BICM with uniform inputs
CN105471778B (en) A kind of signal detecting method and device
WO2012163011A1 (en) Decoding method and device of mimo system
WO2007093111A1 (en) Maximum likelihood estimation method and apparatus for a mimo system
WO2012163102A1 (en) Method and apparatus for estimating signal to interference noise ratio
Chang et al. Turbo MIMO-OFDM Receiver in Time-Varying Channels
US20240137790A1 (en) Method and apparatus for adaptive modulation and coding (amc) of link adaptation using channel orthogonality analysis in wireless mimo-ofdm communication systems
CN113866752B (en) SVD (singular value decomposition) pre-coded MIMO-OTFS (multiple input multiple output-on-the-fly) radar target detection method
WO2022062868A1 (en) Signal detection method and related device
CN101355378B (en) Method and apparatus for de-mapping code-element of multiple input-output communication system
Peel et al. Performance of unitary space-time modulation in rayleigh fading
Karnani et al. Enhancement of Oversampling Scheme to Achieve Diversity Gain in Wireless Communication by Feedback Equalization Algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866899

Country of ref document: EP

Kind code of ref document: A1