WO2012162883A1 - Power control method in non-adaptive retransmission and user equipment - Google Patents

Power control method in non-adaptive retransmission and user equipment Download PDF

Info

Publication number
WO2012162883A1
WO2012162883A1 PCT/CN2011/074997 CN2011074997W WO2012162883A1 WO 2012162883 A1 WO2012162883 A1 WO 2012162883A1 CN 2011074997 W CN2011074997 W CN 2011074997W WO 2012162883 A1 WO2012162883 A1 WO 2012162883A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch data
transmit power
power
transmission power
retransmitted
Prior art date
Application number
PCT/CN2011/074997
Other languages
French (fr)
Chinese (zh)
Inventor
景叔武
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180000891.5A priority Critical patent/CN102918895B/en
Priority to PCT/CN2011/074997 priority patent/WO2012162883A1/en
Publication of WO2012162883A1 publication Critical patent/WO2012162883A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a power control method and user equipment in non-adaptive retransmission. Background technique
  • LTE Long Term Evolution
  • 3G third generation
  • UE User Equipment
  • the success rate of access is very high.
  • a higher access success rate is beneficial to improve system reliability.
  • the power control in the random access process is crucial. Only enough transmit power can ensure that the signal transmitted by the UE can be received and correctly demodulated by the network side, such as an evolved base station (eNodeB). If the UE's transmit power is too high, it will affect the access of other UEs, and the power is too low to guarantee successful access.
  • eNodeB evolved base station
  • msg3 is the second signaling in the uplink of the series of interactive signaling, so whether msg3 is Being successfully received by the network side and correctly demodulating is a crucial step in the success of random access, and the transmit power of the msg3 signal is the key to success.
  • msg3 is one of channel data transmitted in a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the UE After the initial transmission of msg3 or other PUSCH data fails, the UE retransmits the msg3 or other PUSCH data, and the number of retransmissions is configured by the network side through system messages.
  • the retransmission is divided into adaptive retransmission and non-adaptive retransmission.
  • the network side indicates the UE to perform power adjustment, and in the non-adaptive retransmission, the UE calculates the previous transmission power according to the previous transmission power.
  • the calculated transmit power is the smaller of the previous transmit power and the maximum transmit power.
  • the UE calculates the transmit power based on the previous transmit power is less than Or equal to the previous transmit power, and may still fail to meet the demodulation threshold of the eNodeB, causing the transmission to fail again. After the maximum number of retransmissions is reached, the random access fails, which reduces the reliability of the system. Summary of the invention
  • the embodiment of the invention provides a power control method and user equipment in non-adaptive retransmission, which improves the transmission power of uplink data and improves the reliability of the system.
  • An aspect of the present invention provides a power control method in a non-adaptive retransmission, including: acquiring a rising step size of a PUSCH data transmission power of an uplink shared data channel; and acquiring a retransmitted PUSCH data according to a rising step size of the PUSCH data transmission power.
  • the transmit power of the retransmitted PUSCH data and the maximum transmit power of the user equipment are taken as the transmit power of the retransmitted PUSCH data; PUSCH data.
  • An aspect of the present invention provides a user equipment, including: an obtaining unit, configured to acquire a rising step of a PUSCH data transmission power of an uplink shared data channel; and a first determining unit, configured to increase a step size of the transmit power according to the PUSCH data, Acquiring a transmit power of the retransmitted PUSCH data; a second determining unit, configured to obtain a minimum value between the transmit power of the retransmitted PUSCH data and the maximum transmit power of the user equipment as the transmit power of the retransmitted PUSCH data; and the transmission unit And transmitting, by using the foregoing transmit power of the retransmitted PUSCH data, the PUSCH data.
  • the above technical solution obtains the rising step of the transmission power, so that the transmission power at the time of retransmission is higher than the previous transmission power, and the transmission step is increased, and the transmission power can be increased as the number of retransmissions increases, thereby improving the access of the UE. Success rate, improve system performance.
  • FIG. 1 is a schematic diagram of a power control method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a power control method according to another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a power control method according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a user equipment according to an embodiment of the present invention. detailed description
  • FIG. 1 is a schematic diagram of a power control method according to an embodiment of the present invention, including the following content. 11 . Obtain the rising step size of the PUSCH data transmission power.
  • the step of increasing the transmit power of the PUSCH data includes: receiving configuration information sent by the network side, where the configuration information includes a rising step of the PUSCH data transmit power; or acquiring a rising step of the PUSCH data transmit power.
  • the long default value is the default value of the rising step size of the transmission power as the rising step size of the PUSCH data transmission power.
  • the foregoing obtaining the transmit power of the retransmitted PUSCH data according to the rising step size of the PUSCH data transmission power includes:
  • the transmission power of the retransmitted PUSCH data is obtained based on the transmission power of the PUSCH data and the rising step size of the PUSCH data transmission power. Specifically, the sum of the transmission power of the PUCH data transmitted the previous time and the rising step of the PUSCH data transmission power may be used as the transmission power of the retransmission PUSCH data.
  • the minimum value between the transmit power of the retransmitted PUSCH data and the maximum transmit power of the UE is taken as the transmit power of the retransmitted PUSCH data.
  • the PUSCH data is retransmitted by using the transmission power of the PUSCH data of the current retransmission.
  • the PUSCH data in the above embodiment may specifically be msg3 or other PUSCH data.
  • the transmit power at the time of the retransmission is higher than the previous transmit power, and the transmit power is increased as the number of retransmissions increases, thereby improving the access of the UE. Success rate, improve system performance.
  • FIG. 2 is a schematic diagram of a power control method according to another embodiment of the present invention.
  • a power control method for retransmitting PUSCH data in a non-adaptive retransmission is introduced in detail.
  • the embodiment includes the following content.
  • the PUSCH data may include msg3, msg5 or PUSCH data transmission data, and the like.
  • the transmit power of the initial transmitted PUSCH data ⁇ USCH ( ) (in dBm) can be calculated by the following formula 2.1:
  • the obtaining parameter ⁇ may include the following two methods: (1) configuring the network side (such as an eNodeB), for example, configured by the eNodeB, and adding a non-adaptive retransmission to the system message sent by the eNodeB to the UE
  • the configuration of the rising step parameter of the PUSCH data transmission power, for example, the eNodeB is sent to the UE through the system message SIB2.
  • the transmit power (in dBm) of the retransmitted PUSCH data can be determined by the following formula 2.2: ——Formula 2.2 where ⁇ MAX is the maximum UE transmit power; P IniffUSCH is the transmit power of the initial PUSCH data; for non-adaptive retransmission, the rising step size of the PUSCH data transmit power; for non-adaptive retransmission, The number of retransmissions of PUSCH data.
  • the product of the rising step te p of the transmission power of the PUSCH data and the number of retransmissions W « can be calculated first, and the sum of the product and the transmission power value P InitPUSai of the initial PUSCH data is calculated .
  • the minimum value between the transmission power of PUSCH data (P ImtPUSCH + tep *A ( 0 ) and ⁇ is taken as the transmission power L PUSCH of the current PUSCH data.
  • the UE may also determine, according to the transmit power of the previous transmission of the PUSCH data, the transmit power of the retransmitted PUSCH data.
  • the PUSCH data After acquiring the transmit power of the retransmitted PUSCH data, the PUSCH data may be retransmitted by using the transmit power of the retransmission PUSCH data.
  • the rising step size of the PUSCH data transmission power is obtained, so that the transmission power at the time of the retransmission is higher than the previous transmission power, and the transmission step is increased, and the transmission power can be increased as the number of retransmissions increases, and the PUSCH is improved.
  • the success rate of digital transmission increases system throughput.
  • FIG. 3 is a schematic diagram of a power control method according to another embodiment of the present invention.
  • the PUSCH data in this embodiment takes msg3 as an example, and details a power control method for retransmitting msg3 in non-adaptive retransmission, and FIG. 3, Embodiments include the following.
  • the transmit power L tmsg3 (0 (in dBm)) of the initial transmitted msg3 can be calculated by the following formula 2.1:
  • msg3 is the open-loop control parameter (resolution is ldB), the unit is dB; is the path loss compensation factor, Dimensional; estimated downlink path loss for the UE side, in dB; ⁇ ⁇ ⁇ (for cell level parameters, the unit is dB; /('') has power control adjustment step size, the unit is dB.
  • the method of obtaining the parameter township may include the following two methods: (1) Network side (e.g., eNodeB) configuration: configured by the eNodeB, where the eNodeB sends a system message to the UE, adding a non-adaptive retransmission Msg3 configuration of the climb step parameter for transmit power, such as eNodeB pass-through The system message SIB2 is sent to the UE. (2) Default configuration: Set a default value of ⁇ . If there is no configuration on the network side, use the default configuration value of the P to calculate.
  • Network side e.g., eNodeB
  • the transmission power of the retransmitted PUSCH data can be determined by the following formula 3.2.
  • is the transmit power of the first transmitted msg3
  • fe p is the climb step of the msg3 transmit power in the non-adaptive retransmission
  • the number of retransmissions of the msg3 in the non-adaptive retransmission is the number of retransmissions of the msg3 in the non-adaptive retransmission.
  • the product of the rising step size of the transmission power of msg3 and the number of retransmissions 7 ⁇ ⁇ can be calculated first, and the sum of the product and the transmission power value P taltasg3 of the initial transmission msg 3 (P Imtmsg3 + tep *A( 0 ) is taken as Retransmit the transmit power of the PUSCH data, and then retransmit the transmit power of the msg3
  • the minimum value between ⁇ ln ltmsg 3 + tep* ⁇ ( ) is used as the transmission power pemsg3 of the current retransmission m Sg 3 as another alternative embodiment, and the UE may also calculate according to the transmission power of the previous transmission msg3. This time, the transmission power of msg3 is retransmitted. For example, the transmission power of this retransmission msg3 can be determined by the following formula 3.3.
  • the msg3 may be retransmitted by using the transmit power of the retransmission msg3.
  • the msg3 signaling is taken as an example, and the retransmission PUSCH data power control method is introduced.
  • the power control method for retransmitting other PUSCH data can refer to the formula 2.1-2.3.
  • the transmit power is higher than the transmit power of the previous transmit msg3.
  • the rise step can increase the transmit power as the number of retransmissions increases, improve the UE access success rate, and improve system performance.
  • FIG. 4 is a schematic diagram of a user equipment according to an embodiment of the present invention, including: an obtaining unit 41, a first determining unit 42, a second determining unit 43, and a transmitting unit 44.
  • the obtaining unit 41 is configured to acquire a rising step of PUSCH data transmission power.
  • the first determining unit 42 is configured to obtain the transmit power of the retransmitted PUSCH data according to the rising step of the PUSCH data transmission power
  • the second determining unit 43 is configured to obtain the transmit power of the retransmitted PUSCH data and the maximum transmit of the user equipment.
  • the minimum value between the powers is used as the transmission power of the retransmission PUSCH data.
  • the transmission unit 44 is configured to retransmit the PUSCH data by using the transmission power of the current retransmission PUSCH data.
  • the obtaining unit 41 is specifically configured to receive configuration information sent by the network side, where the configuration information includes a rising step of the PUSCH data transmission power, or obtain a default value of the rising step size of the PUSCH data transmission power, and send the foregoing The default value of the power ramp step as the above
  • the rising step size of the PUSCH data transmission power is the rising step size of the PUSCH data transmission power.
  • the first determining unit 42 is specifically configured to obtain a transmit power value and a retransmission number of the PUSCH data that are initially transmitted, and a rising step according to the transmit power value of the PUSCH data, the retransmission times, and the PUSCH data transmit power. Obtaining the transmit power of the above-mentioned retransmitted PUSCH data. Further, the first determining unit 42 may be specifically configured to calculate a product of the rising step size of the PUSCH data transmission power and the number of retransmission times, and the above product and the above initial transmission
  • the sum of the transmission power values of the PUSCH data is used as the transmission power of the above-mentioned retransmission PUSCH data.
  • the first determining unit 42 is specifically configured to obtain the transmit power of the retransmitted PUSCH data according to the transmit power of the PUSCH data and the rising step of the PUSCH data transmit power. Further, the first determining unit 42 may be specifically configured to use, as the transmit power of the retransmitted PUSCH data, a sum of a transmit power of the foregoing PUSCH data and a rising step of the PUSCH data transmit power.
  • the transmitting unit 44 may be specifically configured to retransmit the msg3 signaling by using the transmit power of the retransmission PUSCH data.
  • the ratio of the transmission power at the time of retransmission is made.
  • the previous transmission power is high, the climbing step is long, and the transmission power can be increased as the number of retransmissions increases, the UE's access success rate is improved, and system performance is improved.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A power control method in non-adaptive retransmission and a user equipment are disclosed in the present invention. The method includes: acquiring rising step size of transmission power of Physical Uplink Shared Channel (PUSCH) data; according to the rising step size of the transmission power of the PUSCH data, acquiring the transmission power of retransmission PUSCH data; selecting the minimum value between the transmission power of the retransmission PUSCH data and the maximum transmission power of the user equipment as the transmission power of the current retransmission PUSCH data; and adopting the transmission power of the current retransmission PUSCH data to retransmit the PUSCH data. The embodiments of the present invention can improve system performance.

Description

非自适应重传中的功率控制方法及用户设备  Power control method and user equipment in non-adaptive retransmission
技术领域 Technical field
本发明涉及移动通信技术, 尤其涉及一种非自适应重传中的功率控制方 法及用户设备。 背景技术  The present invention relates to mobile communication technologies, and in particular, to a power control method and user equipment in non-adaptive retransmission. Background technique
长期演进( Long Term Evolution, LTE )作为第三代(3G )技术的演进, 改进并增强了 3G的空中接入技术, 对于用户设备(User Equipment, UE )来 说, 其接入的成功率非常重要,较高的接入成功率有利于提高系统的可靠性。 在整个接入过程中, 随机接入过程中的功率控制是至关重要的, 只有足够的 发射功率才能保证 UE发射的信号能够被网络侧, 如演进基站(eNodeB )接 收并正确解调。 如果 UE的发射功率太高会影响其他 UE的接入, 而功率太 低又不能保证成功接入。  Long Term Evolution (LTE), as the evolution of the third generation (3G) technology, improves and enhances the 3G air access technology. For User Equipment (UE), the success rate of access is very high. Important, a higher access success rate is beneficial to improve system reliability. In the whole access process, the power control in the random access process is crucial. Only enough transmit power can ensure that the signal transmitted by the UE can be received and correctly demodulated by the network side, such as an evolved base station (eNodeB). If the UE's transmit power is too high, it will affect the access of other UEs, and the power is too low to guarantee successful access.
在随机接入过程中, UE 与网络侧之间会有一系列的信令交互来完成握 手, 第三条消息 (msg3 )是这一系列交互信令中上行的第二个信令, 所以 msg3 是否能够成功被网络侧接收到并正确解调是随机接入成功至关重要的 一步, 而 msg3信号的发射功率是保证成功的关键。 其中, msg3是上行共享 数据信道(Physical Uplink Shared Channel, PUSCH ) 中传输的信道数据中的 一种。  In the random access process, there is a series of signaling interactions between the UE and the network side to complete the handshake. The third message (msg3) is the second signaling in the uplink of the series of interactive signaling, so whether msg3 is Being successfully received by the network side and correctly demodulating is a crucial step in the success of random access, and the transmit power of the msg3 signal is the key to success. Wherein, msg3 is one of channel data transmitted in a Physical Uplink Shared Channel (PUSCH).
当 msg3 或其他 PUSCH数据初次发射失败后, UE会对 msg3 或其他 PUSCH数据进行重新发射, 重传的次数由网络侧通过系统消息配置。 重传分 为自适应重传和非自适应重传, 自适应重传时由网络侧指示 UE进行功率调 整, 而在非自适应重传时是 UE根据前一次的发射功率计算得到的, 通常计 算得到的发射功率为前一次的发射功率与最大发射功率中的较小值。  After the initial transmission of msg3 or other PUSCH data fails, the UE retransmits the msg3 or other PUSCH data, and the number of retransmissions is configured by the network side through system messages. The retransmission is divided into adaptive retransmission and non-adaptive retransmission. When the adaptive retransmission is performed, the network side indicates the UE to perform power adjustment, and in the non-adaptive retransmission, the UE calculates the previous transmission power according to the previous transmission power. The calculated transmit power is the smaller of the previous transmit power and the maximum transmit power.
在非自适应重传时, UE根据前一次的发射功率计算得到的发射功率小于 或者等于前一次的发射功率, 且可能依然不能满足 eNodeB 的解调门限而导 致发射再次失败, 最终达到最大重传次数后, 随机接入就会失败, 降低了系 统的可靠性。 发明内容 In the non-adaptive retransmission, the UE calculates the transmit power based on the previous transmit power is less than Or equal to the previous transmit power, and may still fail to meet the demodulation threshold of the eNodeB, causing the transmission to fail again. After the maximum number of retransmissions is reached, the random access fails, which reduces the reliability of the system. Summary of the invention
本发明实施例是提供一种非自适应重传中的功率控制方法及用户设备, 提高上行数据的发射功率, 提高系统的可靠性。  The embodiment of the invention provides a power control method and user equipment in non-adaptive retransmission, which improves the transmission power of uplink data and improves the reliability of the system.
本发明一方面提供一种非自适应重传中的功率控制方法, 包括: 获取上 行共享数据信道 PUSCH数据发射功率的攀升步长;根据上述 PUSCH数据发 射功率的攀升步长, 获取重传 PUSCH数据的发射功率; 取上述重传 PUSCH 数据的发射功率与用户设备最大发射功率之间的最小值作为本次重传 PUSCH数据的发射功率; 采用上述本次重传 PUSCH数据的发射功率, 重传 上述 PUSCH数据。 本发明另一方面提供一种用户设备, 包括: 获取单元, 用于获取上行共 享数据信道 PUSCH数据发射功率的攀升步长; 第一确定单元, 用于根据上 述 PUSCH数据发射功率的攀升步长, 获取重传 PUSCH数据的发射功率; 第 二确定单元, 用于取上述重传 PUSCH数据的发射功率与用户设备最大发射 功率之间的最小值作为本次重传 PUSCH数据的发射功率; 和传输单元, 用 于采用上述本次重传 PUSCH数据的发射功率, 重传上述 PUSCH数据。 上述技术方案通过获取发射功率的攀升步长, 使得本次重传时的发射功 率比前一次的发射功率高该攀升步长, 可以随着重传次数的增多而增加发射 功率, 提高 UE的接入成功率, 提高系统性能。 附图说明  An aspect of the present invention provides a power control method in a non-adaptive retransmission, including: acquiring a rising step size of a PUSCH data transmission power of an uplink shared data channel; and acquiring a retransmitted PUSCH data according to a rising step size of the PUSCH data transmission power. The transmit power of the retransmitted PUSCH data and the maximum transmit power of the user equipment are taken as the transmit power of the retransmitted PUSCH data; PUSCH data. An aspect of the present invention provides a user equipment, including: an obtaining unit, configured to acquire a rising step of a PUSCH data transmission power of an uplink shared data channel; and a first determining unit, configured to increase a step size of the transmit power according to the PUSCH data, Acquiring a transmit power of the retransmitted PUSCH data; a second determining unit, configured to obtain a minimum value between the transmit power of the retransmitted PUSCH data and the maximum transmit power of the user equipment as the transmit power of the retransmitted PUSCH data; and the transmission unit And transmitting, by using the foregoing transmit power of the retransmitted PUSCH data, the PUSCH data. The above technical solution obtains the rising step of the transmission power, so that the transmission power at the time of retransmission is higher than the previous transmission power, and the transmission step is increased, and the transmission power can be increased as the number of retransmissions increases, thereby improving the access of the UE. Success rate, improve system performance. DRAWINGS
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的 前提下, 还可以根据这些附图获得其他的附图。 In order to more clearly illustrate the technical solutions in the embodiments of the present invention, a brief description of the drawings to be used in the description of the embodiments will be briefly made. It is obvious that the drawings in the following description are the present invention. For some embodiments of the present invention, other drawings may be obtained from those skilled in the art without any inventive labor.
图 1为本发明一实施例提供的功率控制方法的示意图;  1 is a schematic diagram of a power control method according to an embodiment of the present invention;
图 2为本发明另一实施例提供的功率控制方法的示意图;  2 is a schematic diagram of a power control method according to another embodiment of the present invention;
图 3为本发明又一实施例提供的功率控制方法的示意图;  3 is a schematic diagram of a power control method according to another embodiment of the present invention;
图 4为本发明一实施例提供的用户设备的示意图。 具体实施方式  FIG. 4 is a schematic diagram of a user equipment according to an embodiment of the present invention. detailed description
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。  The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is a partial embodiment of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
图 1为本发明一实施例提供的功率控制方法的示意图, 包括以下内容。 11 , 获取 PUSCH数据发射功率的攀升步长。  FIG. 1 is a schematic diagram of a power control method according to an embodiment of the present invention, including the following content. 11 . Obtain the rising step size of the PUSCH data transmission power.
可选地, 上述获取 PUSCH数据发射功率的攀升步长包括: 接收网络侧 发送的配置信息, 该配置信息中包含上述 PUSCH数据发射功率的攀升步长; 或者, 获取上述 PUSCH数据发射功率的攀升步长的缺省值, 将该发射功率 的攀升步长的缺省值作为上述 PUSCH数据发射功率的攀升步长。  Optionally, the step of increasing the transmit power of the PUSCH data includes: receiving configuration information sent by the network side, where the configuration information includes a rising step of the PUSCH data transmit power; or acquiring a rising step of the PUSCH data transmit power. The long default value is the default value of the rising step size of the transmission power as the rising step size of the PUSCH data transmission power.
12, 根据上述 PUSCH数据发射功率的攀升步长, 获取重传 PUSCH数据 的发射功率。  12. Obtain a transmit power of the retransmitted PUSCH data according to the rising step size of the PUSCH data transmission power.
可选地, 上述根据 PUSCH数据发射功率的攀升步长, 获取重传 PUSCH 数据的发射功率, 包括:  Optionally, the foregoing obtaining the transmit power of the retransmitted PUSCH data according to the rising step size of the PUSCH data transmission power includes:
获取初传上述 PUSCH数据的发射功率值以及重传次数, 根据初传上述 PUSCH数据的发射功率值、 上述重传次数及上述 PUSCH数据发射功率的攀 升步长, 获取上述重传 PUSCH数据的发射功率。 具体可以是, 计算上述 PUSCH数据发射功率的攀升步长与上述重传次数的乘积,并将该乘积与上述 初传上述 PUSCH数据的发射功率值的和,作为上述重传 PUSCH数据的发射 功率。 Obtaining a transmit power value and a number of retransmissions of the PUSCH data, and acquiring a transmit power of the retransmitted PUSCH data according to a transmit power value of the first PUSCH data, a number of retransmissions, and a rising step of the PUSCH data transmit power. . Specifically, it can be calculated The product of the rising step size of the PUSCH data transmission power and the number of retransmission times, and the sum of the product and the transmission power value of the PUSCH data initially transmitted as the transmission power of the retransmission PUSCH data.
或者,根据前一次发送上述 PUSCH数据的发射功率和上述 PUSCH数据 发射功率的攀升步长, 获取上述重传 PUSCH数据的发射功率。 具体可以是, 将上述前一次发送上述 PUSCH数据的发射功率与上述 PUSCH数据发射功率 的攀升步长之和作为上述重传 PUSCH数据的发射功率。  Alternatively, the transmission power of the retransmitted PUSCH data is obtained based on the transmission power of the PUSCH data and the rising step size of the PUSCH data transmission power. Specifically, the sum of the transmission power of the PUCH data transmitted the previous time and the rising step of the PUSCH data transmission power may be used as the transmission power of the retransmission PUSCH data.
13 ,取上述重传 PUSCH数据的发射功率与 UE最大发射功率之间的最小 值作为本次重传 PUSCH数据的发射功率。  13. The minimum value between the transmit power of the retransmitted PUSCH data and the maximum transmit power of the UE is taken as the transmit power of the retransmitted PUSCH data.
14,采用上述本次重传 PUSCH数据的发射功率,重传上述 PUSCH数据。 上述实施例中的 PUSCH数据具体可以是 msg3或者其他 PUSCH数据。 本实施例通过获取发射功率的攀升步长, 使得本次重传时的发射功率比 前一次的发射功率高该攀升步长,可以随着重传次数的增多而增加发射功率, 提高 UE的接入成功率, 提高系统性能。  14. The PUSCH data is retransmitted by using the transmission power of the PUSCH data of the current retransmission. The PUSCH data in the above embodiment may specifically be msg3 or other PUSCH data. In this embodiment, by increasing the step size of the transmit power, the transmit power at the time of the retransmission is higher than the previous transmit power, and the transmit power is increased as the number of retransmissions increases, thereby improving the access of the UE. Success rate, improve system performance.
图 2为本发明另一实施例提供的功率控制方法的示意图, 本实施例详细 介绍非自适应重传中重传 PUSCH数据的功率控制方法, 参见图 2, 本实施例 包括以下内容。  FIG. 2 is a schematic diagram of a power control method according to another embodiment of the present invention. In this embodiment, a power control method for retransmitting PUSCH data in a non-adaptive retransmission is introduced in detail. Referring to FIG. 2, the embodiment includes the following content.
21 , 确定初传 PUSCH数据的发射功率值。  21. Determine the transmit power value of the initial PUSCH data.
其中, PUSCH数据可以包括 msg3, msg5或 PUSCH数传数据等。  The PUSCH data may include msg3, msg5 or PUSCH data transmission data, and the like.
例如可以通过下述公式 2.1计算初传的 PUSCH数据的发射功率 ^ USCH ( ) (单位为 dBm ) :For example, the transmit power of the initial transmitted PUSCH data ^ USCH ( ) (in dBm) can be calculated by the following formula 2.1:
Figure imgf000006_0001
+ « ') - Ρ Ρ, + ΔΤΡ( + ( }一公式 2.1 其中: 为最大 UE发射功率, 单位为 dBm; mPUSCH(0为 PUSCH第 i 个上行子帧的传输带宽, 单位为 RB; P。-pusch G)为开环控制参数 (分辨率为 ldB), 单位为 dB; 为路径损耗补偿因子, 无量纲; 为 UE侧估计的下 行路径损耗, 单位为 dB; ΔχΡ( 为小区级参数, 单位为 dB; /('')有功控调整 步长, 单位为 dB。
Figure imgf000006_0001
+ « ') - Ρ Ρ , + Δ ΤΡ ( + ( } a formula 2.1 where: is the maximum UE transmit power, the unit is dBm; m PUSCH (0 is the transmission bandwidth of the i-th uplink subframe of the PUSCH, the unit is RB; estimated at the UE side; open loop control P .- pusch G) parameter (resolution ldB), in units of dB; is a path loss compensation factor, dimensionless Line path loss, in dB; Δ χ Ρ (for cell level parameters, the unit is dB; /('') has power control adjustment step size, the unit is dB.
22, 获取 PUSCH数据发射功率的攀升步长 ^。  22, Obtain the rising step size of the PUSCH data transmission power ^.
可选地, 获取参数 ^可包括以下两种方法: (1 ) 网络侧 (如 eNodeB)配 置 , 例如由 eNodeB进行配置 , 在 eNodeB对 UE下发的系统消息中 , 增加对 非自适应重传的 PUSCH数据发射功率的攀升步长参数的配置, 例如 eNodeB 通过系统消息 SIB2发送给 UE。 (2 )缺省配置: 设置一个 ^缺省值; 在网 络侧没有配置 p的情况下, 使用该 tep缺省的配置值来进行计算。 Optionally, the obtaining parameter ^ may include the following two methods: (1) configuring the network side (such as an eNodeB), for example, configured by the eNodeB, and adding a non-adaptive retransmission to the system message sent by the eNodeB to the UE The configuration of the rising step parameter of the PUSCH data transmission power, for example, the eNodeB is sent to the UE through the system message SIB2. (2) Default configuration: Set a default value of ^. If no p is configured on the network side, use the default configuration value of the te p to calculate.
23 , 确定本次重传 PUSCH数据的发射功率。  23. Determine the transmit power of the retransmitted PUSCH data.
例如, 可通过以下公式 2.2计算确定本次重传 PUSCH数据的发射功率 (单位为 dBm ) :
Figure imgf000007_0001
) ―公式 2.2 其中, ^MAX为最大 UE发射功率; PIniffUSCH为初传 PUSCH数据的发射功率; 为非自适应重传中, PUSCH数据发射功率的攀升步长; 为非自适应重 传中, PUSCH数据的重传次数。
For example, the transmit power (in dBm) of the retransmitted PUSCH data can be determined by the following formula 2.2:
Figure imgf000007_0001
——Formula 2.2 where ^MAX is the maximum UE transmit power; P IniffUSCH is the transmit power of the initial PUSCH data; for non-adaptive retransmission, the rising step size of the PUSCH data transmit power; for non-adaptive retransmission, The number of retransmissions of PUSCH data.
即可以先计算 PUSCH数据的发射功率的攀升步长 tep与重传次数 W«的 乘积, 并将该乘积与初传 PUSCH 数据的发射功率值 PInitPUSai的和That is, the product of the rising step te p of the transmission power of the PUSCH data and the number of retransmissions W« can be calculated first, and the sum of the product and the transmission power value P InitPUSai of the initial PUSCH data is calculated .
( ^MtPUSCH + ep * ^( ) 作为重传 PUSCH 数据的发射功率, 再取该重传( ^MtPUSCH + ep * ^( ) as the transmit power of the retransmitted PUSCH data, and then the retransmission
PUSCH数据的发射功率( PImtPUSCH+ tep *A (0 )与^^之间的最小值作为本 次重传 PUSCH数据的发射功率 LPUSCHThe minimum value between the transmission power of PUSCH data (P ImtPUSCH + tep *A ( 0 ) and ^^ is taken as the transmission power L PUSCH of the current PUSCH data.
作为另一可选实施例, UE也可以根据前一次发送 PUSCH数据的发射功 率计算确定本次重传 PUSCH数据的发射功率。 例如, 可以通过下述公式 2.3 计算确定本次重传 PUSCH数据的发射功率。
Figure imgf000008_0001
= min{ MAX 尸匿 H( -l) + U —公式 2.3 其中, Ζ^α^' - Ι)为前一次发送 PUSCH数据的发射功率; PMAX为最大 UE 发射功率; 为非自适应重传中, PUSCH数据发射功率的攀升步长。
As another optional embodiment, the UE may also determine, according to the transmit power of the previous transmission of the PUSCH data, the transmit power of the retransmitted PUSCH data. For example, the transmission power of the retransmission PUSCH data can be determined by the following formula 2.3.
Figure imgf000008_0001
= min{ MAXH ( -l) + U — Equation 2.3 where Ζ^α^' - Ι) is the transmit power of the previous PUSCH data transmission; P MAX is the maximum UE transmit power; In the PUSCH data transmission power climbing step.
在获取本次重传 PUSCH数据的发射功率之后, 可以采用上述本次重传 PUSCH数据的发射功率, 重传上述 PUSCH数据。  After acquiring the transmit power of the retransmitted PUSCH data, the PUSCH data may be retransmitted by using the transmit power of the retransmission PUSCH data.
本实施例通过获取 PUSCH数据发射功率的攀升步长, 使得本次重传时 的发射功率比前一次的发射功率高该攀升步长, 可以随着重传次数的增多而 增加发射功率, 提高 PUSCH的数传的成功率, 提高系统吞吐量。  In this embodiment, the rising step size of the PUSCH data transmission power is obtained, so that the transmission power at the time of the retransmission is higher than the previous transmission power, and the transmission step is increased, and the transmission power can be increased as the number of retransmissions increases, and the PUSCH is improved. The success rate of digital transmission increases system throughput.
图 3为本发明又一实施例提供的功率控制方法的示意图, 本实施例中的 PUSCH数据以 msg3为例, 详细介绍非自适应重传中重传 msg3的功率控制 方法, 参见图 3 , 本实施例包括以下内容。  FIG. 3 is a schematic diagram of a power control method according to another embodiment of the present invention. The PUSCH data in this embodiment takes msg3 as an example, and details a power control method for retransmitting msg3 in non-adaptive retransmission, and FIG. 3, Embodiments include the following.
31 , 确定初传的 msg3的发射功率值。  31. Determine the transmit power value of the initial transmitted msg3.
例如可以通过下述公式 2.1计算初传的 msg3的发射功率 Ltmsg3(0 (单位 为 dBm ) : For example, the transmit power L tmsg3 (0 (in dBm)) of the initial transmitted msg3 can be calculated by the following formula 2.1:
^ltmsg3( - min{PMAX 101og10( msg3( )) + P0_msgiJ) + «0) - ρ Ρι + ΔχΡ( + ( } —公式 3.1 其中: 为最大 UE发射功率, 单位为 dBm; Mmsg3( )为 PUSCH第 i个 上行子帧的传输带宽, 单位为 RB; P。 msg3(〕为开环控制参数 (分辨率为 ldB), 单位为 dB; 为路径损耗补偿因子, 无量纲; 为 UE侧估计的下行路径 损耗, 单位为 dB; ΔχΡ( 为小区级参数, 单位为 dB; /('')有功控调整步长, 单位为 dB。 ^ ltmsg3 ( - min{P MAX 101og 10 ( msg3 ( )) + P 0 _ msg iJ) + «0) - ρ Ρ ι + Δ χ Ρ ( + ( } — Equation 3.1 where: is the maximum UE transmit power, unit dBm; M msg3 ( ) is the transmission bandwidth of the i-th uplink subframe of the PUSCH, and the unit is RB; P. msg3 () is the open-loop control parameter (resolution is ldB), the unit is dB; is the path loss compensation factor, Dimensional; estimated downlink path loss for the UE side, in dB; Δ χ Ρ (for cell level parameters, the unit is dB; /('') has power control adjustment step size, the unit is dB.
32, 获取 msg3发射功率的攀升步长 tep。 32. Obtain the climbing step te p of the msg3 transmit power.
可选地, 获取参数 鄉可包括以下两种方法: (1 ) 网络侧 (如 eNodeB)配 置: 例如由 eNodeB进行配置 , 在 eNodeB对 UE下发的系统消息中 , 增加对 非自适应重传的 msg3发射功率的攀升步长参数的配置,例如 eNodeB通过系 统消息 SIB2发送给 UE。 (2)缺省配置: 设置一个 ^缺省值; 在网络侧没 有配置 的情况下, 使用该 P缺省的配置值来进行计算。 Optionally, the method of obtaining the parameter township may include the following two methods: (1) Network side (e.g., eNodeB) configuration: configured by the eNodeB, where the eNodeB sends a system message to the UE, adding a non-adaptive retransmission Msg3 configuration of the climb step parameter for transmit power, such as eNodeB pass-through The system message SIB2 is sent to the UE. (2) Default configuration: Set a default value of ^. If there is no configuration on the network side, use the default configuration value of the P to calculate.
33, 确定本次重传 msg3的发射功率。  33. Determine the transmit power of this retransmission msg3.
例如, 可通过以下公式 3.2计算确定本次重传 PUSCH数据的发射功率 尸 Remsg3(0 (单位为 dBm) : PRemsg3(0 = min{PMAX Imtmsg3 + ^step*^(0} For example, the transmission power of the retransmitted PUSCH data can be determined by the following formula 3.2. Remsg3 (0 (in dBm) : P Remsg3 (0 = min{P MAX Imtmsg3 + ^ step *^ (0 }
一公式 3.2 a formula 3.2
其中: ^ 为初传的 msg3 的发射功率; fep为非自适应重传中, msg3 发射功率的攀升步长; 为非自适应重传中 msg3的重传次数。 Where: ^ is the transmit power of the first transmitted msg3; fe p is the climb step of the msg3 transmit power in the non-adaptive retransmission; the number of retransmissions of the msg3 in the non-adaptive retransmission.
即可以先计算 msg3 的发射功率的攀升步长 与重传次数7^ ^的乘积, 并将该乘积与初传 msg3的发射功率值 Ptaltasg3的和( PImtmsg3 + tep*A(0 )作为 重传 PUSCH 数据的发射功率, 再取该重传 msg3 的发射功率That is, the product of the rising step size of the transmission power of msg3 and the number of retransmissions 7 ^ ^ can be calculated first, and the sum of the product and the transmission power value P taltasg3 of the initial transmission msg 3 (P Imtmsg3 + tep *A( 0 ) is taken as Retransmit the transmit power of the PUSCH data, and then retransmit the transmit power of the msg3
( ^lnltmsg3 + tep*^( ) 与 之间的最小值作为本次重传 mSg3 的发射功率 pemsg3 作为另一可选实施例, UE也可以根据前一次发送 msg3的发射功率计算 确定本次重传 msg3的发射功率。 例如, 可以通过下述公式 3.3计算确定本次 重传 msg3的发射功率。 (The minimum value between ^ln ltmsg 3 + tep*^( ) is used as the transmission power pemsg3 of the current retransmission m Sg 3 as another alternative embodiment, and the UE may also calculate according to the transmission power of the previous transmission msg3. This time, the transmission power of msg3 is retransmitted. For example, the transmission power of this retransmission msg3 can be determined by the following formula 3.3.
Remsg3(0 =
Figure imgf000009_0001
—公式 3.3 其中, -1)为前一次的发射功率, PMAX为最大 UE发射功率; 为 非自适应重传中 msg3发射功率的攀升步长。
Corpse Remsg3 (0 =
Figure imgf000009_0001
- Equation 3.3 where -1) is the previous transmit power, P MAX is the maximum UE transmit power; is the climb step size of the msg3 transmit power in the non-adaptive retransmission.
在获取本次重传 msg3的发射功率之后, 可以采用上述本次重传 msg3的 发射功率重传该 msg3。 本实施例仅以 msg3信令为例, 介绍重传 PUSCH数 据功率控制方法, 重传其他 PUSCH数据的功率控制方法可参照公式 2.1-2.3 发射功率比前一次发送 msg3的发射功率高该攀升步长,可以随着重传次数的 增多而增加发射功率, 提高 UE的接入成功率, 提高系统性能。 After acquiring the transmit power of the retransmitted msg3, the msg3 may be retransmitted by using the transmit power of the retransmission msg3. In this embodiment, only the msg3 signaling is taken as an example, and the retransmission PUSCH data power control method is introduced. The power control method for retransmitting other PUSCH data can refer to the formula 2.1-2.3. The transmit power is higher than the transmit power of the previous transmit msg3. The rise step can increase the transmit power as the number of retransmissions increases, improve the UE access success rate, and improve system performance.
图 4为本发明一实施例提供的用户设备的示意图, 包括: 获取单元 41、 第一确定单元 42、 第二确定单元 43和传输单元 44; 获取单元 41用于获取 PUSCH数据发射功率的攀升步长; 第一确定单元 42用于根据上述 PUSCH 数据发射功率的攀升步长, 获取重传 PUSCH数据的发射功率; 第二确定单 元 43用于取上述重传 PUSCH数据的发射功率与用户设备最大发射功率之间 的最小值作为本次重传 PUSCH数据的发射功率; 传输单元 44用于采用上述 本次重传 PUSCH数据的发射功率, 重传上述 PUSCH数据。  FIG. 4 is a schematic diagram of a user equipment according to an embodiment of the present invention, including: an obtaining unit 41, a first determining unit 42, a second determining unit 43, and a transmitting unit 44. The obtaining unit 41 is configured to acquire a rising step of PUSCH data transmission power. The first determining unit 42 is configured to obtain the transmit power of the retransmitted PUSCH data according to the rising step of the PUSCH data transmission power, and the second determining unit 43 is configured to obtain the transmit power of the retransmitted PUSCH data and the maximum transmit of the user equipment. The minimum value between the powers is used as the transmission power of the retransmission PUSCH data. The transmission unit 44 is configured to retransmit the PUSCH data by using the transmission power of the current retransmission PUSCH data.
上述获取单元 41具体用于接收网络侧发送的配置信息,上述配置信息中 包含上述 PUSCH数据发射功率的攀升步长; 或者, 获取上述 PUSCH数据发 射功率的攀升步长的缺省值, 将上述发射功率的攀升步长的缺省值作为上述 The obtaining unit 41 is specifically configured to receive configuration information sent by the network side, where the configuration information includes a rising step of the PUSCH data transmission power, or obtain a default value of the rising step size of the PUSCH data transmission power, and send the foregoing The default value of the power ramp step as the above
PUSCH数据发射功率的攀升步长。 The rising step size of the PUSCH data transmission power.
上述第一确定单元 42具体用于获取初传上述 PUSCH数据的发射功率值 以及重传次数; 根据上述初传上述 PUSCH数据的发射功率值、 上述重传次 数及上述 PUSCH数据发射功率的攀升步长,获取上述重传 PUSCH数据的发 射功率。 进一步地, 第一确定单元 42可以具体用于计算上述 PUSCH数据发 射功率的攀升步长与上述重传次数的乘积, 并将上述乘积与上述初传上述 The first determining unit 42 is specifically configured to obtain a transmit power value and a retransmission number of the PUSCH data that are initially transmitted, and a rising step according to the transmit power value of the PUSCH data, the retransmission times, and the PUSCH data transmit power. Obtaining the transmit power of the above-mentioned retransmitted PUSCH data. Further, the first determining unit 42 may be specifically configured to calculate a product of the rising step size of the PUSCH data transmission power and the number of retransmission times, and the above product and the above initial transmission
PUSCH数据的发射功率值的和, 作为上述重传 PUSCH数据的发射功率。 The sum of the transmission power values of the PUSCH data is used as the transmission power of the above-mentioned retransmission PUSCH data.
或者, 上述第一确定单元 42具体用于根据前一次发送上述 PUSCH数据 的发射功率和上述 PUSCH数据发射功率的攀升步长, 获取上述重传 PUSCH 数据的发射功率。 进一步地, 第一确定单元 42可以具体用于将上述前一次发 送上述 PUSCH数据的发射功率与上述 PUSCH数据发射功率的攀升步长之和 作为上述重传 PUSCH数据的发射功率。 传输单元 44可以具体用于采用上述 本次重传 PUSCH数据的发射功率, 重传 msg3信令。  Alternatively, the first determining unit 42 is specifically configured to obtain the transmit power of the retransmitted PUSCH data according to the transmit power of the PUSCH data and the rising step of the PUSCH data transmit power. Further, the first determining unit 42 may be specifically configured to use, as the transmit power of the retransmitted PUSCH data, a sum of a transmit power of the foregoing PUSCH data and a rising step of the PUSCH data transmit power. The transmitting unit 44 may be specifically configured to retransmit the msg3 signaling by using the transmit power of the retransmission PUSCH data.
本实施例通过获取发射功率的攀升步长, 使得本次重传时的发射功率比 前一次的发射功率高该攀升步长,可以随着重传次数的增多而增加发射功率, 提高 UE的接入成功率, 提高系统性能。 In this embodiment, by obtaining the rising step size of the transmission power, the ratio of the transmission power at the time of retransmission is made. The previous transmission power is high, the climbing step is long, and the transmission power can be increased as the number of retransmissions increases, the UE's access success rate is improved, and system performance is improved.
可以理解的是, 上述方法及设备中的相关特征可以相互参考。 另外, 上 述实施例中的 "第一" 、 "第二" 等是用于区分各实施例, 而并不代表各实 施例的优劣。  It can be understood that related features in the above methods and devices can be referred to each other. In addition, "first", "second", and the like in the above embodiments are used to distinguish the embodiments, and do not represent the advantages and disadvantages of the embodiments.
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于计算机可读取 存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的 存储介质包括: ROM, RAM,磁碟或者光盘等各种可以存储程序代码的介质。  A person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be completed by using hardware related to program instructions. The foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的范围。  It should be noted that the above embodiments are only for explaining the technical solutions of the present invention, and are not intended to be limiting; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those skilled in the art that: The technical solutions described in the foregoing embodiments are modified, or some of the technical features are equivalently replaced; and the modifications or substitutions do not deviate from the scope of the technical solutions of the embodiments of the present invention.

Claims

权 利 要 求 Rights request
1、 一种非自适应重传中的功率控制方法, 其特征在于, 包括: 获取上行共享数据信道 PUSCH数据发射功率的攀升步长; A power control method for non-adaptive retransmission, comprising: obtaining a rising step of a PUSCH data transmission power of an uplink shared data channel;
根据所述 PUSCH数据发射功率的攀升步长,获取重传 PUSCH数据的发 射功率;  Obtaining a transmission power of the retransmitted PUSCH data according to a rising step size of the PUSCH data transmission power;
取所述重传 PUSCH数据的发射功率与用户设备最大发射功率之间的最 小值作为本次重传 PUSCH数据的发射功率;  And taking a minimum value between the transmit power of the retransmitted PUSCH data and the maximum transmit power of the user equipment as the transmit power of the retransmitted PUSCH data;
采用所述本次重传 PUSCH数据的发射功率, 重传所述 PUSCH数据。 The PUSCH data is retransmitted by using the transmit power of the current retransmission PUSCH data.
2、 根据权利要求 1所述的方法, 其特征在于, 所述获取 PUSCH数据发 射功率的攀升步长, 包括: 2. The method according to claim 1, wherein the obtaining a step size of the PUSCH data transmission power comprises:
接收网络侧发送的配置信息, 所述配置信息中包含所述 PUSCH数据发 射功率的攀升步长; 或者,  Receiving configuration information sent by the network side, where the configuration information includes a rising step of the PUSCH data transmission power; or
获取所述 PUSCH数据发射功率的攀升步长的缺省值, 将所述发射功率 的攀升步长的缺省值作为所述 PUSCH数据发射功率的攀升步长。  Obtaining a default value of the rising step size of the PUSCH data transmission power, and using a default value of the rising step of the transmitting power as a rising step size of the PUSCH data transmission power.
3、根据权利要求 1或 2所述的方法,其特征在于,所述根据所述 PUSCH 数据发射功率的攀升步长, 获取重传 PUSCH数据的发射功率, 包括:  The method according to claim 1 or 2, wherein the acquiring the transmit power of the retransmitted PUSCH data according to the rising step size of the PUSCH data transmission power comprises:
获取初传所述 PUSCH数据的发射功率值以及重传次数;  Obtaining a transmit power value of the PUSCH data initially transmitted and a number of retransmissions;
根据所述初传所述 PUSCH数据的发射功率值、 所述重传次数及所述 PUSCH数据发射功率的攀升步长, 获取所述重传 PUSCH数据的发射功率。  And acquiring, according to the transmit power value of the PUSCH data, the number of retransmissions, and the rising step size of the PUSCH data transmission power, the transmit power of the retransmitted PUSCH data.
4、 根据权利要求 3 所述的方法, 其特征在于, 所述根据所述初传所述 PUSCH数据的发射功率值、 所述重传次数及所述 PUSCH数据发射功率的攀 升步长, 获取所述重传 PUSCH数据的发射功率, 包括:  The method according to claim 3, wherein the acquiring step according to the transmit power value of the initial transmission of the PUSCH data, the number of retransmissions, and the rising power of the PUSCH data transmission power Transmitting the transmit power of the PUSCH data, including:
计算所述 PUSCH数据发射功率的攀升步长与所述重传次数的乘积, 并 将所述乘积与所述初传所述 PUSCH数据的发射功率值的和, 作为所述重传 PUSCH数据的发射功率。  Calculating a product of a rising step size of the PUSCH data transmission power and the number of retransmissions, and using a sum of the product and the transmit power value of the initially transmitted PUSCH data as a transmission of the retransmitted PUSCH data power.
5、根据权利要求 1或 2所述的方法,其特征在于,所述根据所述 PUSCH 数据发射功率的攀升步长, 获取重传 PUSCH数据的发射功率, 包括: 根据前一次发送所述 PUSCH数据的发射功率和所述 PUSCH数据发射功 率的攀升步长, 获取所述重传 PUSCH数据的发射功率。 The method according to claim 1 or 2, wherein said according to said PUSCH Obtaining the transmit power of the data transmission power, obtaining the transmit power of the retransmitted PUSCH data, including: acquiring the retransmitted PUSCH data according to the transmit power of the previous PUSCH data and the rising step size of the PUSCH data transmit power Transmit power.
6、 根据权利要求 5所述的方法, 其特征在于, 所述根据所述前一次发送 所述 PUSCH数据的发射功率和所述 PUSCH数据发射功率的攀升步长,获取 所述重传 PUSCH数据的发射功率, 包括:  The method according to claim 5, wherein the acquiring the retransmitted PUSCH data according to the rising transmit step of the transmit power of the PUSCH data and the rising power of the PUSCH data transmit power Transmit power, including:
将所述前一次发送所述 PUSCH数据的发射功率与所述 PUSCH数据发射 功率的攀升步长之和作为所述重传 PUSCH数据的发射功率。  And a sum of a rising step of transmitting the PUSCH data and a rising step of the PUSCH data transmission power as a transmission power of the retransmitted PUSCH data.
7、 根据权利要求 1-6任一项所述的方法, 其特征在于, 所述 PUSCH数 据, 包括: msg3信令。  The method according to any one of claims 1-6, wherein the PUSCH data comprises: msg3 signaling.
8、 一种用户设备, 其特征在于, 包括:  8. A user equipment, comprising:
获取单元, 用于获取上行共享数据信道 PUSCH数据发射功率的攀升步 长;  An obtaining unit, configured to acquire a rising step of the uplink shared data channel PUSCH data transmission power;
第一确定单元, 用于根据所述 PUSCH数据发射功率的攀升步长, 获取 重传 PUSCH数据的发射功率;  a first determining unit, configured to acquire, according to the rising step size of the PUSCH data transmission power, a transmit power of the retransmitted PUSCH data;
第二确定单元, 用于取所述重传 PUSCH数据的发射功率与用户设备最 大发射功率之间的最小值作为本次重传 PUSCH数据的发射功率; 和  a second determining unit, configured to obtain a minimum value between a transmit power of the retransmitted PUSCH data and a maximum transmit power of the user equipment as a transmit power of the retransmitted PUSCH data; and
传输单元, 用于采用所述本次重传 PUSCH数据的发射功率, 重传所述 PUSCH数据。  And a transmitting unit, configured to retransmit the PUSCH data by using the transmit power of the current retransmission PUSCH data.
9、 根据权利要求 8所述的设备, 其特征在于, 所述获取单元具体用于: 接收网络侧发送的配置信息, 所述配置信息中包含所述 PUSCH数据发 射功率的攀升步长; 或者,  The device according to claim 8, wherein the acquiring unit is configured to: receive configuration information sent by the network side, where the configuration information includes a rising step of the PUSCH data transmission power; or
获取所述 PUSCH数据发射功率的攀升步长的缺省值, 将所述发射功率 的攀升步长的缺省值作为所述 PUSCH数据发射功率的攀升步长。  Obtaining a default value of the rising step size of the PUSCH data transmission power, and using a default value of the rising step of the transmitting power as a rising step size of the PUSCH data transmission power.
10、 根据权利要求 8或 9所述的设备, 其特征在于, 所述第一确定单元 具体用于: 获取初传所述 PUSCH数据的发射功率值以及重传次数; The device according to claim 8 or 9, wherein the first determining unit is specifically configured to: Obtaining a transmit power value of the PUSCH data initially transmitted and a number of retransmissions;
根据所述初传所述 PUSCH数据的发射功率值、 所述重传次数及所述 PUSCH数据发射功率的攀升步长, 获取所述重传 PUSCH数据的发射功率。  And acquiring, according to the transmit power value of the PUSCH data, the number of retransmissions, and the rising step size of the PUSCH data transmission power, the transmit power of the retransmitted PUSCH data.
11、 根据权利要求 10所述的设备, 其特征在于, 所述第一确定单元具体 用于:  The device according to claim 10, wherein the first determining unit is specifically configured to:
计算所述 PUSCH数据发射功率的攀升步长与所述重传次数的乘积, 并 将所述乘积与所述初传所述 PUSCH数据的发射功率值的和, 作为所述重传 PUSCH数据的发射功率。  Calculating a product of a rising step size of the PUSCH data transmission power and the number of retransmissions, and using a sum of the product and the transmit power value of the initially transmitted PUSCH data as a transmission of the retransmitted PUSCH data power.
12、 根据权利要求 8或 9所述的设备, 其特征在于, 所述第一确定单元 具体用于:  The device according to claim 8 or 9, wherein the first determining unit is specifically configured to:
根据前一次发送所述 PUSCH数据的发射功率和所述 PUSCH数据发射功 率的攀升步长, 获取所述重传 PUSCH数据的发射功率。  The transmission power of the retransmitted PUSCH data is obtained according to a transmission step of transmitting the PUSCH data and a rising step of the PUSCH data transmission power.
13、 根据权利要求 12所述的设备, 其特征在于, 所述第一确定单元具体 用于:  The device according to claim 12, wherein the first determining unit is specifically configured to:
将所述前一次发送所述 PUSCH数据的发射功率与所述 PUSCH数据发射 功率的攀升步长之和作为所述重传 PUSCH数据的发射功率。  And a sum of a rising step of transmitting the PUSCH data and a rising step of the PUSCH data transmission power as a transmission power of the retransmitted PUSCH data.
14、 根据权利要求 8-13任一项所述的设备, 其特征在于, 所述 PUSCH 数据, 包括: msg3信令。  The device according to any one of claims 8 to 13, wherein the PUSCH data comprises: msg3 signaling.
PCT/CN2011/074997 2011-05-31 2011-05-31 Power control method in non-adaptive retransmission and user equipment WO2012162883A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180000891.5A CN102918895B (en) 2011-05-31 2011-05-31 Power control method in non-adaptive retransmission and user equipment
PCT/CN2011/074997 WO2012162883A1 (en) 2011-05-31 2011-05-31 Power control method in non-adaptive retransmission and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074997 WO2012162883A1 (en) 2011-05-31 2011-05-31 Power control method in non-adaptive retransmission and user equipment

Publications (1)

Publication Number Publication Date
WO2012162883A1 true WO2012162883A1 (en) 2012-12-06

Family

ID=47258276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074997 WO2012162883A1 (en) 2011-05-31 2011-05-31 Power control method in non-adaptive retransmission and user equipment

Country Status (2)

Country Link
CN (1) CN102918895B (en)
WO (1) WO2012162883A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105282837B (en) * 2014-06-12 2020-05-19 中兴通讯股份有限公司 Power control method, user equipment, base station and system
CN108811061B (en) * 2017-04-28 2020-06-19 维沃移动通信有限公司 Uplink transmission power control method and terminal
CN109392070B (en) * 2017-08-11 2021-05-11 华为技术有限公司 Method and device for transmitting signal
WO2019095307A1 (en) 2017-11-17 2019-05-23 华为技术有限公司 Method and device for transmitting message
CN110769494B (en) * 2018-07-26 2021-05-07 维沃移动通信有限公司 Power control method, terminal and network side equipment
CN111355563B (en) * 2018-12-24 2023-04-18 深圳市中兴微电子技术有限公司 Random access method and device, terminal and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741437A (en) * 2008-11-19 2010-06-16 中国移动通信集团公司 Uplink power control method, system and equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741437A (en) * 2008-11-19 2010-06-16 中国移动通信集团公司 Uplink power control method, system and equipment

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Uplink Power Control - Way forward", 3GPP TSG-RAN WG1 #50BIS, R1-074489, 8 October 2007 (2007-10-08) - 12 October 2007 (2007-10-12), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_50b/Docs/R1-074489.zip> [retrieved on 20120212] *
MOTOROLA: "Remaining Issues on UL PC", 3GPP TSG RAN 1 #51BIS, R1-080097, 14 January 2008 (2008-01-14) - 18 January 2008 (2008-01-18), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_51b/Docs/R1-080097.zip> [retrieved on 20120212] *
TECHNICAL SPECIFICATION GROUP RADIO ACCESS NETWORK.: "Physical layer procedures", 3 GPP TS 36.213 V9.3.0 (RELEASE 9). 3RD GENERATION PARTNERSHIP PROJECT, 3 October 2010 (2010-10-03), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/archive/36_series/36.213/36213-930.zip> [retrieved on 20120212] *

Also Published As

Publication number Publication date
CN102918895B (en) 2014-11-05
CN102918895A (en) 2013-02-06

Similar Documents

Publication Publication Date Title
US10959184B2 (en) Wireless communication system, base station apparatus, mobile station apparatus, wireless communication method, and integrated circuit
CN109845209B (en) Terminal device, base station device, communication method, and integrated circuit
EP3217714B1 (en) Wireless network coverage enhancement method, apparatus and system
RU2515601C1 (en) Method and device for power control in non-adaptive retransmission
WO2012162883A1 (en) Power control method in non-adaptive retransmission and user equipment
WO2017031646A1 (en) Information processing method, apparatus, and system
JP6800981B2 (en) Terminal equipment, base station equipment and communication methods
WO2012068952A1 (en) Power control method and evolved node b
WO2015165080A1 (en) Device and method for adjusting power control parameter of random access
WO2012146117A1 (en) Method and device for controlling uplink power based on flexible sub-frames in time-division duplex mode
CN103907381B (en) Method and apparatus for reducing the power consumption for being used for HARQ decodings
WO2014180422A1 (en) Method, device and storage medium for increasing distance measuring equipment interference-prevention capabilities in lte systems
JP6037963B2 (en) Base station apparatus, mobile station apparatus, wireless communication method, and integrated circuit
WO2012162987A1 (en) Power determination method and user equipment
WO2018196737A1 (en) Method and apparatus for discontinuous transmission detection
WO2015042784A1 (en) Scheduling method of d2d communication, sending method of scheduling information and control information, base station and user equipment
WO2019101155A1 (en) Method and device for determining reference subframe in unlicensed spectrum
WO2015168917A1 (en) Communication method and device
WO2013102325A1 (en) Data retransmission method and device in transparent relay network
JP2019145850A (en) Terminal device, base station apparatus, communication method, and integrated circuit
JP2016529790A5 (en)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000891.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866615

Country of ref document: EP

Kind code of ref document: A1