WO2012161533A2 - 제어 정보를 전송하는 방법 및 이를 위한 장치 - Google Patents

제어 정보를 전송하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2012161533A2
WO2012161533A2 PCT/KR2012/004122 KR2012004122W WO2012161533A2 WO 2012161533 A2 WO2012161533 A2 WO 2012161533A2 KR 2012004122 W KR2012004122 W KR 2012004122W WO 2012161533 A2 WO2012161533 A2 WO 2012161533A2
Authority
WO
WIPO (PCT)
Prior art keywords
ack
harq
nack
pdcch
dtx
Prior art date
Application number
PCT/KR2012/004122
Other languages
English (en)
French (fr)
Other versions
WO2012161533A3 (ko
Inventor
양석철
안준기
서동연
김민규
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47217913&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012161533(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US14/119,786 priority Critical patent/US8855027B2/en
Priority to EP19216216.2A priority patent/EP3641191B1/en
Priority to EP12790352.4A priority patent/EP2717531B1/en
Priority to CN201280025270.7A priority patent/CN103563322B/zh
Priority to JP2014512760A priority patent/JP5832643B2/ja
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020137031999A priority patent/KR102029243B1/ko
Priority to EP16186425.1A priority patent/EP3121984B1/en
Publication of WO2012161533A2 publication Critical patent/WO2012161533A2/ko
Publication of WO2012161533A3 publication Critical patent/WO2012161533A3/ko
Priority to US14/321,274 priority patent/US9584298B2/en
Priority to US15/407,795 priority patent/US9887812B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for transmitting control information and an apparatus therefor.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple iple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division mult iple access (CDMA) systems, frequency division mult iple access (FDMA) systems, time division mult iple access (TDMA) systems, orthogonal frequency division mult iple access (0FDMA) systems, SC— Single carrier frequency division mult iple access (FDMA) systems.
  • CDMA code division mult iple access
  • FDMA frequency division mult iple access
  • TDMA time division mult iple access
  • OFDMA orthogonal frequency division mult iple access
  • SC Single carrier frequency division mult iple access
  • An object of the present invention is to provide a method and an apparatus for efficiently transmitting control information in a wireless communication system.
  • Another object of the present invention is to provide a method and an apparatus for efficiently transmitting uplink control information in a time division duplex (TDD) system and efficiently managing resources for the same.
  • TDD time division duplex
  • uplink control information is supported in a wireless communication system that supports carrier aggregation and operates with time division duplex (TDD).
  • TDD time division duplex
  • a method of transmitting comprising: generating a first set of Hybrid Automatic Repeat Request-Acknowledgment (HARQ-ACK) associated with a first Component Carrier (CC); Generating a second set of HARQ-ACKs associated with a second CC; And transmitting 4-bit information corresponding to the first set of HARQ 'ACK and the second set of HARQ-ACK on a physical uplink shared channel (PUSCH), wherein the set of HARQ-ACK,
  • PUSCH physical uplink shared channel
  • A represents ACK
  • N represents NACK (Negative ACK)
  • N / D represents NACK or DTX, any represents any one of ACK, NACK or DTX
  • CC may be replaced with a cell.
  • a communication apparatus configured to transmit uplink control information in a wireless communication system that supports carrier aggregation and operates in a time division duplex (TDD), the radio frequency (RF) unit; And a processor, the processor generates a first set of Hybrid Automatic Repeat Request-Acknowledgment (HARQ-ACK) associated with a first CCC Component Carrier, A second set of HARQ-ACKs associated with a second CC is generated, and 4-bit information on the first set of HARQ-ACKs and the second set of HARQ-ACKs is transmitted on a PUSCH (Physical Uplink Shared CHannel).
  • a communication device configured to transmit, wherein a corresponding relationship between the first set of HARQ-ACK, the second set of HARQ-ACK, and the 4 ms bit information is provided using the following relationship is provided:
  • A represents ACK
  • N represents NACK (Negative ACK)
  • N / D represents NACK or DTX, any represents any one of ACK, NACK or DTX,
  • CC may be replaced with sal.
  • the first CC is a primary CC
  • the second CC is a secondary CC.
  • HARQ-ACK (O) in the corresponding HARQ-ACK set is the ACK / ACK for the PDSCH without the corresponding PDCCH Represents a NACK / DTX response
  • HARQ-ACK (j) in the corresponding HARQ-ACK set is the ACK / NACK / DTX response or DAI value for the PDSCH corresponding to the PDCCH of the DAI (Downlink Assignment Index) value j
  • DAI Downlink Assignment Index
  • ⁇ Q-ACK (j) is an ACK / NACK / DTX response for a PDSCH corresponding to a PDCCH having a DAI value of j + 1, or This indicates an ACK / NACK / DTX answer for the SPS release PDCCH having a DAI value of j + 1.
  • transmitting the 4-bit information on the PUSCH comprises channel coding the 4-bit information using the following equation:
  • qf CK represents the i-th channel coded bit
  • i is an integer greater than or equal to zero
  • mod represents a modulo operation
  • represents the following block code
  • a carrier aggregation support (carrier aggregat ion) is supported and transmits uplink control information in a wireless communication system operating in time division duplex (TDD) CLAIMS 1.
  • TDD time division duplex
  • a method comprising: generating a first set of Hybrid Automatic Repeat Request-Acknowledgements (HARQ-ACKs) associated with a first Component Carrier (CC); Generating a second set of HARQ-ACKs associated with a second CC; And transmitting 4-bit information corresponding to the first set of HARQ-ACK and the second set of HARQ-ACK on a Physical Upl Ink Shared CHannel (PUSCH), wherein the first set of HARQ-ACK. Therefore, the corresponding relationship between the second set of HARQ-ACK and the 4-bit information is provided using the following relationship. First cc second CC 4-bit information
  • A, A, N / D any A, A, A, N / D 1 , 0, 1, 1
  • N / D any, any, any, any, any A, A, A, N / D 0 , 0 , 1 , 1
  • A, A, A, N / D A, A, N / D, any 1 , 1 , 1, o
  • A, A, N / D any A, A, N / D, any 1, 0 , 1, 0
  • N / D any, any, any, any A, A, N / D, any 0 , 0, 1 , 0
  • A, A, N / D any A, D, D, D 1 , 0 , 0, 1
  • A, A, N / D any A, A, A, A 1 , 0, 0 , 1
  • A, A, A, N / D N / D any, any, any, any 1 , 1 , 0 , 0
  • A, A, N / D any 1, 0, 0 , 0 except for (A, D, D, D)
  • A, A, A, A N / D any, any, any, any 0 , 1, 0 , 0
  • N any, any, any N / D, any, any, any, any 0, 0, 0 , 0
  • N any, any, any, any 0 , 0, 0, 0 except for (A, D, D, D)
  • N / D any, any, any 0 , 0, 0 , 0 except for (A, D, D, D) (A, N / D, any, any), (A, N / D, any, any),
  • A represents Natty ACK
  • N represents NACK (Negative ACK).
  • N / D represents NACK or DTX
  • any represents ACK :, NACK or DTX
  • CC may be replaced with a cell.
  • a communication device configured to transmit carrier control information in a wireless communication system supporting carrier aggregation and operating in a time division duplex (TDD), the radio frequency (Radio Frequency) RF) unit; And a processor, wherein the processor generates a first set of HARQ-ACKX Hybrid Automatic Repeat request-Acknowledgments associated with a first component carrier (CC), and generates a second set of HARQ-ACK associated with a second CC; And transmitting 4-bit information on the first set of HARQ-ACK and the second set of HARQ-ACK on a PUSCH (Physical Uplink Shared CHannel), and the first set of HARQ-ACK.
  • TDD time division duplex
  • Radio Frequency Radio Frequency
  • RF radio frequency
  • A, A, N / D any A, A, A, N / D 1 , 0 , 1 , 1
  • N / D any, any, any, any, any A, A, A, N / D 0 , 0 , 1 , 1
  • A, A, A, N / D A, A, N / D, any 1 , 1, 1, 0
  • A, A, N / D any A, A, N / D, any 1 , 0 , 1 , 0
  • N / D any, any, any, any A, A, N / D, any 0 , 0 , 1 , 0
  • A, A, N / D any A, D, D, D 1, 0, 0 , 1
  • A, A, N / D any A, A, A, A 1, 0 , 0 , 1
  • A, A, A, N / D N / D any, any, any, any 1, 1 , 0, 0
  • A, A, A, A N / D any, any, any, any 0 , 1 , 0, 0
  • N any, any, any N / D, any, any, any, any 0 , 0, 0 , 0
  • A represents ACK
  • N represents NACK (Negative ACK)
  • D represents DTX (Discontinuous Transmission)
  • N / D represents NACK or DTX
  • CC may be replaced with a cell.
  • the first 1 CC CC is the primary, the first CC 2 is a secondary COl.
  • HARQ-ACK (O) in the corresponding HARQ-ACK set is an ACK / ACK for the PDSCH without the corresponding PDCCH NACK / DTX indicates ungdap, wherein the HARQ eu HARQ-ACK (j) the DAI (Downl ink Assignment Index) values eu), the ACK / NACK / DTX response or DAI values on the PDSCH to Daewoong the PDCCH in ACK set
  • This j represents the ACK / NACK / DTX response to the SPS release (Semi-Persistent Scheduling release) PDCCH.
  • HARQ-ACK (j) in each HARQ-ACK set is an ACK / NACK / DTX response or a DAI for a PDSCH that Daewoong PDCCH having a DAI value of j +1.
  • the ACK / NACK / DTX answer is shown for the SPS release PDCCH whose value is j + 1.
  • transmitting the 4-bit information on the PUSCH includes channel coding the 4-bit information using the following equation:
  • represents the i-th channel coded bit
  • i is an integer greater than or equal to zero
  • mod represents a modulo operation
  • !! represents the following block code.
  • control information can be efficiently transmitted in a wireless communication system.
  • the TDD system can efficiently transmit the uplink control information, and can efficiently manage the resources for this.
  • FIG. 1 illustrates physical channels used in a 3GPP LTE system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • 5 illustrates a structure of an uplink subframe.
  • FIG. 8 illustrates a process of processing UL-SCH data and control information.
  • FIG. 10 illustrates a TDD UL ACK / NACK (Uplink Acknowledgement / Negative Acknowledgement) transmission process in a single cell situation.
  • FIG. 11 illustrates a carrier aggregation (CA) communication system.
  • 12 illustrates cross-carrier scheduling.
  • FIG 13 illustrates an A / N transmission process according to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division mult iple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMAC single carrier frequency division multiple access FDMA
  • CDMA may be implemented by radio technology such as UTRACUniversal Terrestrial Radio Access) or CDMA2000.
  • TDMA may be implemented in a wireless technology such as Global System for Mobile Communication (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile Communication
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA supports IEEE 802.11 (Wi-Fi), Wireless technologies such as IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA) can be implemented.
  • UTRA is part of the UMTSCUniversal Mobile Telecom unicat ions System.
  • 3GPP LTEdong term evolution (3GPP) is part of Evolved UMTS (E-UMTS) using E-UTRA and employs 0FDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced is an evolution of 3GPP LTE. In order to make the description clear, 3GPP LTE / LTE-A is mainly described, but the technical spirit of the present invention is not limited thereto.
  • HARQ-ACK Receives a response result for downlink transmission (eg, PDSCH or SPS release PDCCH), that is, an ACK / NACK / DTX response (simply, an ACK / NACK answer, ACK / NACK, or HARQ-ACK response). .
  • ACK / NACK / DTX Unanswered means ACK, NACK, DTX or NACK / DTX.
  • HARQ-ACK for a specific CC or HARQ-ACK for a specific CC indicates an ACK / NACK response for downlink transmission (eg, scheduled for the CC) associated with the CC.
  • PDSCH may be replaced by a transport block or codeword.
  • PDSCH means a PDSCH corresponding to a DL grant PDCCH.
  • PDSCH is commonly used with PDSCH w / PDCCH.
  • SPS release PDCCH PDCCH indicating SPS release.
  • ⁇ SPS PDSCH DL is transmitted using a resource semi-statically set by the SPS.
  • the SPS PDSCH has no DL grant PDCCH to be treated.
  • the SPS PDSCH is commonly used herein with the PDSCH w / o PDCCH.
  • PUCCH index treated to PUCCH resources.
  • the PUCCH index represents a PUCCH resource index, for example.
  • the PUCCH resource index is mapped to at least one of orthogonal cover (00, cyclic shift (CS) and PRB).
  • ARKACK / NACK Resource Indicator Used as an indication for indicating a PUCCH resource.
  • the ARI may be used for indicating a resource variation value (eg, offset) for a specific PUCCH resource (group) configured by a higher layer.
  • the ARI may be used for indicating a specific PUCCH resource (group) index in a PUCCH resource (group) set (configured by a higher layer).
  • the ARI may be included in the TPCC Transmit Power Control (field) field of the PDCCH for the PDSCH on the SCC.
  • PUCCH power control is performed through the TPC field in the PDCCH scheduling the PCC (ie, the PDCCH corresponding to the PDSCH on the PCC).
  • the ARI may be included in the TPC field of the remaining PDCCH except for the PDCCH scheduling a specific cell (eg, PCell) while having an initial value of a Downlink Assignment Index (DAI). ARI is commonly used with HARQ-ACK resource indication value.
  • DAI Downlink Assignment Index
  • DAI Downlink Assignment Index
  • Implicit PUCCH resource Represents the PUCCH resource / index linked to the minimum CCE index of the PDCCH scheduling the PCC (see Equation 1).
  • Explicit PUCCH resource may be indicated using ARI.
  • PDCCH scheduling a CC This indicates a PDCCH scheduling a PDSCH on the CC. That is, it indicates the PDCCH corresponding to the PDSCH on the CC.
  • PCC PDCCH Represents a PDCCH scheduling a PCC. That is, the PCC PDCCH represents a PDCCH corresponding to a PDSCH on the PCC. Assuming that cross-carrier scheduling is not allowed for the PCC, the PCC PDCCH is transmitted only on the PCC.
  • SCC PDCCH Represents a PDCCH for scheduling an SCC. That is, SCC PDCCH is SCC PDCCH corresponding to PDSCH on the network. If cross-carrier scheduling is allowed for the SCC, the SCC PDCCH may be transmitted on the PCC. On the other hand, when cross-carrier scheduling is not allowed for the SCC, the SCC PDCCH is transmitted only on the SCC.
  • Non-Cross-CC Scheduling PDCCH scheduling each CC is scheduled / transmitted through the CC.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • the initial cell search operation such as synchronizing with the base station is performed in step S101.
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID. .
  • the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE transmits a physical downlink control channel (Physical)
  • Downlink control channel (PDCCH) and physical downlink shared channel (Physical Downlink 1 Ink Control Channel, PDSCH) according to the physical downlink control channel information Specific system information can be obtained.
  • PDCH Downlink control channel
  • Physical Downlink shared channel Physical Downlink 1 Ink Control Channel
  • the terminal may perform a random access procedure as in steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), and a voice response message for the preamble through a physical downlink control channel and a physical downlink shared channel. Can be received (S104).
  • PRACH physical random access channel
  • S104 a content ion resolution procedure such as transmission of an additional physical random access channel (S105) and a physical downlink control channel and receiving a physical downlink shared channel (S106) can be performed. .
  • the UE After performing the above-described procedure, the UE performs a physical downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel as a general uplink / downlink signal transmission procedure.
  • S107 physical downlink control channel / physical downlink shared channel reception
  • S107 physical uplink shared channel
  • UCI uplink control information
  • UCI includes HARQ ACK / NACK (Hybrid Automatic Repeat and reQuest Acknowledgment / Negat ive-ACK), SRCScheduling Request (SRQ), Channel Quality Indicator (CQ I), PMK Precoding Matrix Indicator (RMK), and RKRank Indication (RQ).
  • HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ—ACK includes at least one of a positive ACK (simply ACK), a negative ACK (NACK), a DTX, and a NACK / DTX boost.
  • UCI is generally transmitted through a PUCCH, but may be transmitted through a PUSCH when control information and traffic data are to be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH according to a network request / instruction.
  • 2 illustrates the structure of a radio frame. In a Salla OFDM wireless packet communication system, uplink / downlink data packet transmission is performed in units of subframes, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • Type applicable to (Frequency Division Duplex) A type 2 radio frame structure applicable to a radio frame structure and a time division duplex (TDD) is supported.
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a TTK transmission time interval.
  • one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP when an OFDM symbol is configured by a normal CP, the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of 0FDM symbols included in one slot may be six.
  • an extended CP may be used to further reduce inter-symbol interference.
  • Type 2 wireless frames It consists of two half frames, and each half frame consists of five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an upPTSCU link pilot time slot.
  • DwPTS downlink pilot time slot
  • GP guard period
  • upPTSCU link pilot time slot One subframe consists of two slots.
  • the DwPTS is used for initial cell discovery, synchronization, or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • Table 1 illustrates UL-DL configuration (Uplink-Downlink Conf igurat ion) of subframes in a radio frame in TDD mode.
  • D denotes a downlink subframe
  • U denotes an uplink subframe
  • S special subframes include Down 1 ink Pilot TimeSlot (DwPTS), Guard Period (GP), and UpPTSCUplink Pilot TimeSlot (GPW).
  • DwPTS is a time interval reserved for downlink transmission
  • UpPTS is a time interval reserved for uplink transmission.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • One downlink slot may include 7 (6) OFDM symbols, and the resource block may include 12 subcarriers in the frequency domain.
  • Each element on the resource grid may include 7 (6) OFDM symbols, and the resource block may include 12 subcarriers in the frequency domain.
  • An element is referred to as a resource element (RE).
  • One RB is 12x7 (6) Includes the RE.
  • the number N RBs of the RBs included in the downlink slot depends on the downlink transmission band.
  • the structure of an uplink slot is the same as that of a downlink slot, but a 0FOM symbol is replaced with an SC-FDMA symbol.
  • FIG. 4 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located at the front of the first slot of a subframe are indicated in a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to the ⁇ data region to which PDSCHCPhysical Downlink Shared CHancel) is allocated.
  • Examples of a downlink control channel used in LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • PHICH carries a HARQ ACK / NACK (Hybr id Automatic Repeat request acknowledgment / negative—acknowledgment) signal in response to uplink transmission.
  • the DCI format has formats 3, 3A, 4, and formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, and 2C defined for uplink.
  • the DCI format can be based on a hopping flag, RB assignment, modulated ion coding scheme (MCS), redundancy version (NDV), NDKnew data indicator (TPC), transmit power control (TPC), or cyclic shift DM RS (depending on the application). It optionally includes information such as demodulation reference signal (CQI) request, channel quality information (CQI) request, HARQ process number, transmitted precoding matrix indicator (TPMI), and PMKprecoding matrix indicator (PMK) confirmation.
  • CQI demodulation reference signal
  • CQI channel quality information
  • TPMI transmitted precoding matrix indicator
  • PMK PMKprecoding matrix indicator
  • the PDCCH includes transmission format and resource allocation information of a downlink shared channel (DL-SCH), transmission format and resource allocation information of an uplink shared channel (UL-SCH), and a paging channel.
  • -Layer control such as paging information on the PCH), system information on the DL-SCH, and random access response transmitted on the PDSCH. It carries the resource allocation information of the message, the Tx power control command set, the Tx power control command, and the activation instruction information of VoIP (Voice over IP) for individual terminals in the terminal group.
  • Multiple PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • CCE is a logical allocation unit used to provide a coding rate based on radio channel conditions to a PDCCH.
  • CCE refers to multiple resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier (eg, radio network temporary identifier (RNTI)) depending on the owner of the PDCCH or the purpose of use.
  • RNTI radio network temporary identifier
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI RA-RNTI
  • 5 illustrates a structure of an uplink subframe used in LTE.
  • an uplink subframe includes a plurality (eg, two) slots.
  • the slot may include different numbers of SC-FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit data signals such as voice.
  • the control region includes a PUCCH and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • PUCCH may be used to transmit the following control information.
  • SR Scheduling Request
  • HARQ ACK / NACK This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received.
  • One bit of ACK / NACK is transmitted in response to a single downlink codeword (Codeword, CW), and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • CQI Channel Quality Indicator
  • MIM0 Multiple input multiple output
  • RI rank indicator
  • RIK PMKPrecoding Matrix Indicator
  • RI PTKPrecoding Type Indicator
  • the amount of control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for transmission of control information.
  • SC-FDMA available for control information transmission means the remaining SCHEMA symbols except for the SC-FDMA symbol for transmission of the reference signal in the subframe, and in the case of a subframe in which a Sounding Reference Signal (SRS) is set, the last SC- of the subframe FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports seven formats according to the transmitted information.
  • Table 2 shows the mapping relationship between PUCCH format and UCI in LTE.
  • FIG. 6 shows a slot level structure of the PUCCH format la / lb.
  • PUCCH format la / lb is used for ACK / NACK transmission.
  • SC-FDMA # 2 / # 3 / # 4 is used for DM RS (Demodulation Reference Signal) transmission.
  • SOFDMA # 2 / # 3 is used for DM RS transmission. Therefore, four SC-FDMA heart balls in the slot are used for ACK / NACK transmission.
  • the garment, PUCCH format la / lb is collectively called PUCCH format 1.
  • 1 bit [b (0)] and 2 bit [b (0) b (l)] ACK / NACK information are modulated according to BPSR and QPSK modulation schemes, respectively, and one ACK / NACK modulation symbol. Is generated (do).
  • the corresponding bit is given as 1 and in the case of negative ACK (NACK).
  • the bit is given as zero.
  • Table 3 shows a modulation table defined for PUCCH formats la and lb in legacy LTE.
  • the PUCCH format la / lb performs cyclic shifts ( ⁇ ) in the frequency domain and spreads using an orthogonal spreading code (eg, Walsh-Hadamard or DFT code) ( ⁇ 0 ,,,) in the time domain. Since code multiplexing is used in both frequency and time domain, more terminals can be multiplexed on the same PUCCH RB.
  • orthogonal spreading code eg, Walsh-Hadamard or DFT code
  • the number of supported cyclic shifts in the SC-FDMA symbol for the PUCCH ACK / NACK RB may be configured by the cell-specific higher increment signaling parameter.
  • ⁇ ⁇ 1, 2, 3 ⁇ indicates that the shift values are 12, 6, and 4, respectively.
  • the number of spreading codes that can actually be used for ACK / NACK in the domain CDM may be limited by the number of RS symbols. Multiplexing capacity of RS symbols due to small number of RS symbols
  • (multiplexing capacity) is smaller than the multiplexing capacity of the UCI symbol.
  • the PUCCH resource for ACK / NACK is not allocated to each terminal in advance
  • PUCCH resources are divided and used by a plurality of terminals in a cell at every time point. Specifically, the PUCCH resources used by the UE to transmit ACK / NACK are based on the corresponding downlink data. It is treated by the PDCCH carrying one scheduling information.
  • the entire region in which the PDCCH is transmitted in each downlink subframe consists of a plurality of control channel elements (CCEs), and the PDCCH transmitted to the UE consists of one or more CCEs.
  • the UE transmits ACK / NACK through a PUCCH resource that is treated for a specific CCE (eg, the first CCE) among the CCEs configuring the PDCCH received by the UE.
  • a specific CCE eg, the first CCE
  • each rectangle represents a CCE in a downlink component carrier (DL CC), and each rectangle represents a PUCCH resource in an uplink component carrier (UL CC).
  • Each PUCCH index is referenced to a PUCCH resource for ACK / NACK. If it is assumed that the information on the PDSCH is transmitted through the PDCCH configured 4 to 6 CCE as shown in Figure 7, the UE ACK / NACK through the 4 PUCCH corresponding to the 4 CCE, the first CCE constituting the PDCCH Send it.
  • FIG. 7 illustrates a case in which up to M PUCCHs exist in a UL CC when there are up to N CCEs in a DL CC.
  • N may be M, but it is also possible to design M and N values differently and to overlap the mapping of CCE and PUCCH.
  • the PUCCH resource index in the LTE system is determined as follows.
  • n (1) PUCCH represents a resource index of PUCCH format 1 for transmitting ACK / NACK / DTX
  • N (1) PUCCH represents a signaling value received from a higher layer
  • n CCE is a PDCCH transmission The smallest value in the CCE index increment used is shown.
  • n (1) From the PUCCH a cyclic shift, an orthogonal spreading code, and a PRB (Physical Resource Block) for the PUCCH format la / lb are obtained.
  • PRB Physical Resource Block
  • the UE transmits one multiplexed ACK / NACK signal for a plurality of PDSCHs received through subframes of different time points.
  • the method of transmitting ACK / NACK for a plurality of PDSCHs is divided as follows.
  • ACK / NACK bundling ACK / NACK bits for multiple data units (e.g. PDSCH, SPS release PDCCH, etc.) are combined by, for example, a logical AND operation do. For example, when all data units are successfully decoded, the Rx node (eg, terminal) transmits an ACK signal. On the other hand, if any one of the data units fails to decode (or detect), the Rx node transmits a NACK signal or nothing.
  • data units e.g. PDSCH, SPS release PDCCH, etc.
  • PUCCH selection A terminal receiving a plurality of PDSCHs occupies a plurality of PUCCH resources for ACK / NACK transmission.
  • the ACK / NACK response for the plurality of data units is identified by the combination of the PUCCH resources used for the actual ACK / NACK transmission and the transmitted ACK / NACK content (eg bit values). Also referred to as an ACK / NACK selection scheme.
  • the terminal occupies a plurality of uplink physical channel resources to transmit a multiplexed ACK / NACK signal when receiving a plurality of downlink data.
  • the UE may occupy the same number of PUCCH resources by using a specific CCE of a PDCCH indicating each PDSCH.
  • the multiplexed ACK / NACK signal may be transmitted using a combination of a PUCCH resource selected from among a plurality of occupied PUCCH resources and a modulation / coded content applied to the selected PUCCH resource.
  • Table ; 4 shows a PUCCH selective transmission scheme defined in the LTE system.
  • HARQ-ACK (i) represents the HARQ ACK / NACK / DTX result of the i-th data unit (0 i ⁇ 3).
  • HARQ ACK / NACK / DTX results include ACK, NACK, DTX, NACK / DTX.
  • NACK / DTX stands for NACK or DTX.
  • ACK and NACK indicate the success and failure of decoding of a transport block (equivalent to a code block) transmitted on a PDSCH.
  • Discontinuous Transmission (DTX) indicates PDCCH detection failure. Up to four PUCCH resources (ie, n (1) PUCCH , 0 ⁇ n (1) PUCCH , 3 ) may be occupied with each data unit.
  • the multiplexed ACK / NACK is transmitted on one PUCCH resource selected from occupied PUCCH resources.
  • N (1) PUCCH i described in Table 4 represents the PUCCH resources used to actually transmit ACK / NACK.
  • b (0) b (l) represents two bits transmitted through the selected PUCCH resource and is modulated in a QPSK scheme. For example, when the terminal successfully decodes four data units, the terminal transmits (1, 1) to the base station through the PUCCH resource associated with ⁇ .
  • NACK and DTX are coupled (NACK / DTX, N / D) except in some cases because the combination of PUCCH resources and QPSK symbols is insufficient to represent all possible ACK / NACK assumptions.
  • the PUSCH piggyback Since the LTE terminal cannot simultaneously transmit the PUCCH and the PUSCH, when UCI (eg, CQI / PMI, HARQ-ACK, RI, etc.) transmission is required in a subframe in which the PUSCH is transmitted, the UCI is multiplexed in the PUSCH region.
  • UCI eg, CQI / PMI, HARQ-ACK, RI, etc.
  • error detection is performed through CRCCCyclic Redundancy Check) attachment.
  • TB transport block
  • the entire transport block is used to calculate the CRC parity bits.
  • the bits of the transport block are " ⁇ , 2 , ⁇ 3 , ... ,” ⁇ .
  • the parity bit is Po'Pi'J 'P. 'PL-i.
  • the size of the transport block is A, the number of parity bits is L.
  • code block division and code block CRC attachment are performed (S110).
  • the bit input for code block division is 0 ,,,,. B is the number of bits in the transport block (including CRC).
  • the bit after the code block division is C r0 ' Crl ' Cr 2 ' C w ⁇ , Cr !).
  • r denotes a code block number and ⁇ -to... ⁇ ⁇ Represents the number of bits of code block r .
  • C represents the total number of code blocks.
  • Channel coding is performed after the code block division and the code block CRC (S120).
  • Kr represents the number of bits of the code block r.
  • C represents the total number of code blocks.
  • Turbo coding may be used for channel coding.
  • Rate matching is performed after channel coding (S130).
  • the bits after rate matching are e ⁇ e ⁇ ece ⁇ ..., ⁇ ).
  • ⁇ Is the number of rate matched bits of the r—th code block. r 0, l, —, C-1, where C represents the total number of code blocks.
  • Code block concatenation is performed after rate matching (S140). Bits after code block concatenation Becomes G represents the total number of coded bits for transmission. When the control information is multiplexed with the UL-SCH transmission, the bits used for the control information transmission are not included in G. / ⁇ '/ ⁇ ' ⁇ - ⁇ - ⁇ corresponds to the UL-SCH codeword.
  • channel quality information (CQI and / or PMIK o 0 , Ol , ... o 0 _,),
  • Channel coding is performed independently of each other (channel coding of S150 to S170 UCI is performed based on the number of coded symbols for each control information.
  • the number of coded symbols is the rate of coded control information.
  • the number of coded symbols can be matched to the number of modulation symbols, the number of REs, etc. in a later process.
  • Channel coding of HARQ-ACK is performed by the input bit sequence of step S170 [ ⁇ Ci: ⁇ , ⁇ 0 ⁇
  • ⁇ ⁇ 0 ⁇ ] ... ( ⁇ : ⁇ is performed using ⁇ o] and [ ⁇ 0 ° ⁇ ] are each 1-bit Means HARQ-ACK consisting of two or more bits of information (ie, O> 2 ). ACK is coded 1 and NACK is coded 0. In the case of 1-bit HARQ-ACK, repetition coding is used. In the case of 2-bit HARQ-ACK, the (3, 2) simplex code is used and the encoded data may be cyclically repeated. For 3-bit or more HARQ-ACK, a (32,0) block code is used. More specifically, referring to 36.212 V8.7.0 (2009.05) 5.2.2.6 Channel coding of control information-S-, a 3-bit or higher Q-ACK (i.e., ), Channel coded bit sequence
  • ⁇ Q ⁇ x ⁇ ) is the number of encoded symbols for HARQ-ACK, and ⁇ is the order of modulation. Is set equal to UL-SCH data.
  • Table 5 shows Reed—MuUer codes defined in the LTE system.
  • Table 5 Input of the data / control multiplexing block means coded UL-SCH bits.
  • the input of the channel interleaver is the output of the data / control multiplexing block, g n ,,
  • Coded rank indicator q, q Set ⁇ -, ⁇ Coded HARQ-ACK K ⁇ CK qA c ⁇ ACK It is performed as a target (S190). ; Is a column vector of length Q m for CQI / PMI ⁇ 0 ,... , '— 1 is (H ⁇ /// ⁇ ). Is a column vector of length Q m for ACK / NACK ⁇ Is a column vector of length administratfor RI and ⁇ - ⁇ , ..., ⁇ deliberately - ⁇ ( ⁇ /).
  • the channel interleaver multiplexes control information and UL-SCH data for PUSCH transmission.
  • the channel interleaver includes a process of mapping control information and UL-SCH data to a channel interleaver matrix for PUSCH resources.
  • the read bit sequence is mapped onto the resource grid.
  • 9 shows multiplexing of control information and UL-SCH data on a PUSCH.
  • the UE When transmitting control information in a subframe to which PUSCH transmission is allocated, the UE multiplexes the control information (UCI) and the UL-SCH data together before DFT-spreading.
  • the control information includes at least one of CQI / PMI, HARQ ACK / NACK, and RI.
  • Each number of REs used for CQI / PMI, ACK / NACK, and RI transmission is determined by MCS (Modulation and
  • Offset values allow different coding rates depending on the control information and may be applied by higher layer (e.g., Radio Resource Control, RRC) signals.
  • RRC Radio Resource Control
  • Semi-statically set UL—SCH data and control information are not mapped to the same RE The control information is mapped to exist in both slots of the subframe.
  • CQI and / or PMI (CQI / PMI) resources are located at the beginning of UL-SCH data resources and are sequentially mapped to all SC-FDMA symbols on one subcarrier and then mapped on the next subcarrier. .
  • CQI / PMI maps from left to right in the subcarrier, i.e., in the direction of increasing SC-FDMA symbol index.
  • PUSCH data (UL-SCH data) is rate-matched taking into account the amount of CQI / PMI resources (ie, the number of coded symbols). The same modulation order as the UL-SCH data Used for CQI / PMI.
  • the ACK / NACK is inserted through puncturing into a part of the SC-FDMA resource to which the UL-SCH data is mapped.
  • the ACK / NACK is located next to the RS and is filled in the direction of increasing up, i.e., subcarrier index, starting from the bottom in the corresponding SC-FDMA symbol.
  • an SC-FDMA symbol for ACK / NACK is located at SC-FDMA symbol # 2 / # 5 in each slot. Regardless of whether ACK / NACK actually transmits in a subframe, the coded RI is located next to the symbol for ACK / NACK.
  • control information In LTE (-A), control information (eg, using QPSK modulation) may be scheduled to be transmitted on the PUSCH without UL-SCH data.
  • Control information (CQI / PMI, RI and / or ACK / NACK) is a low cubic metric single-carrier . Multiplexed before DFT-spreading to maintain characteristics. Multiplexing ACK / NACK, RI and CQI / PMI is similar to that shown in FIG.
  • the SC-FDMA symbol for ACK / NACK is located next to the RS, and the resource to which the CQI is mapped may be punctured.
  • the number of the RE for the ACK / NACK and RI is based on the reference MCS CQI / PMI MCS) and the offset parameter ( ⁇ ⁇ ', ⁇ » ' or ⁇ ⁇ « ⁇ ).
  • the reference MCS is calculated from the CQI payload size and resource allocation.
  • Channel coding and rate matching for control signaling without UL-SCH data is the same as the case of control signaling with UL-SCH data described above.
  • the UE may receive one or more PDSCH signals on M DL subframes (SuMrame, SF) (S502_0 to S502_M-1).
  • Each PDSCH signal is used to transmit one or more (eg two) transport blocks (TB) (or codewords (CW)) depending on the transmission mode.
  • TB transport blocks
  • CW codewords
  • a PDCCH signal requiring an ACK / NACK response for example, a PDCCH signal for indicating SP-release (Semi-Persistent Scheduling re I ease) (simply, an SPS release PDCCH signal). May also be received.
  • ACK / NACK is transmitted through one UL subframe for M DL subframes (S504).
  • ACK / NACK is performed in steps S502_0 to S502_M-1.
  • ACK / NACK is basically transmitted through PUCCH (eg, see FIGS. 6-7).
  • ACK / NACK is transmitted through PUSCH (eg, see FIGS. 8-9).
  • Various PUCCH formats shown in Table 2 may be used for ACK / NACK transmission.
  • various methods such as ACK / NACK bundling and ACK / NACK channel selection may be used to reduce the number of ACK / NACK bits transmitted through the PUCCH format.
  • ACK / NACK for data received in M DL subframes is transmitted through one UL subframe; that is, M DL SF (s): l UL SF), and the relationship between them is DASK Downlink Association Set Index).
  • Table 6 shows DASKK: defined in LTE (-A).
  • the LTE-A system collects a plurality of UL / DL frequency blocks to use a wider frequency band and uses a carrier aggregation or bandwidth aggregation technique that uses a larger UL / DL bandwidth.
  • Each frequency block is transmitted using a component carrier (CC).
  • the component carrier may be understood as the carrier frequency (or center carrier, center frequency) for the corresponding frequency block.
  • CCs UL / DL Component Carriers
  • CCs may be collected to support a wider UL / DL bandwidth.
  • CCs may be adjacent to each other or non-adjacent in the frequency domain. The bandwidth of each CC can be determined independently.
  • the configuration may be 2: 1.
  • the DL CC / UL CC link can be fixed in the system or semi-statically configured.
  • a frequency band that can be monitored / received by a specific terminal may be limited to M ( ⁇ N) CCs.
  • Various parameters for carrier aggregation may be set in a cell-specific, UE group-specific, or UE-specific manner.
  • the control information may be set to be transmitted and received only through a specific CC.
  • This particular CC may be referred to as a Primary CC (or CCC) (or anchor CC) and the remaining CCs may be referred to as a Secondary CCX Secondary CC (SCC).
  • LTE-A uses the concept of a cell to manage radio resources [36.300 V10.2.0 (2010-12) 5.5. Carrier Aggregation; 7.5. See Carrier Aggregation].
  • SAL is defined as a combination of downlink resources and uplink resources, and uplink resources are not required. Therefore, the cell may be configured with only downlink resources, or with downlink resources and uplink resources. If carrier aggregation is supported, the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by system information.
  • a cell operating on a primary frequency may be referred to as a primary cell (PCell), and a cell operating on a secondary frequency (or SCC) may be referred to as a secondary cell (SCell).
  • PCell is used by the terminal to perform an initial connection establishment process or to perform a connection re-establishment process.
  • PCell may refer to a cell indicated in the handover process.
  • SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • PCell and SCell may be collectively referred to as serving cells.
  • serving consisting of PCell only There is only one cell.
  • the network may configure one or more SCells for terminals supporting carrier aggregation in addition to the PCell initially configured in the connection establishment process.
  • the PDCCH for downlink allocation may be transmitted on DL CC # 0, and the corresponding PDSCH may be transmitted on DL CC # 2.
  • the introduction of a carrier indicator field (CIF) may be considered.
  • the presence or absence of the CIF in the PDCCH may be set in a semi-static and terminal-specific (or terminal group-specific) manner by higher layer signaling (eg, RRC signaling).
  • RRC signaling eg, RRC signaling
  • PDCCH on DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on one linked UL CC
  • PDCCH on DL CC can allocate PDSCH or PUSCH resource on specific DL / UL CC among a plurality of merged DL / UL CCs using CIF
  • the base station may allocate the PDCCH monitoring DL CC set to reduce the BD complexity of the terminal.
  • the PDCCH monitoring DL CC set includes one or more DL CCs as part of the merged total DL CCs, and the UE performs detection / decoding of the PDCCH only on the corresponding DL CCs. That is, when the base station schedules PDSCH / PUSCH to the UE, the PDCCH is transmitted only through the PDCCH monitoring DL CC set.
  • the PDCCH monitoring DL CC set may be configured in a UE-specific, UE-group-specific or cell-specific manner.
  • the term "PDCCH monitoring DL CC" may be replaced with equivalent terms such as monitoring carrier, monitoring cell, and the like.
  • the CC merged for the terminal may be replaced with equivalent terms such as serving CC, serving carrier, serving cell, and the like.
  • each DL CC can transmit only PDCCH scheduling its PDSCH without CIF according to the LTE PDCCH rule.
  • the DL CC A (monitoring DL CC) may transmit not only the PDCCH scheduling the PDSCH of the DL CC A but also the PDCCH scheduling the PDSCH of another CC using the CIF. In this case, PDCCH is not transmitted in DL CC B / C that is not configured as PDCCH monitoring DL CC.
  • Embodiment ACK / NACK Transmission in CA-Based TDD System
  • the PDCCH that schedules each PDSCH of a corresponding UE to secure a PUCCH resource of each UE eg, in a PDCCH transmission
  • an implicit ACK / NACK selection method that uses an implicit PUCCH resource (linked with the lowest CCE index used).
  • implicit linking to a PDCCH that schedules certain, some or all DL CCs (e.g. linked to the lowest CCE index n CCE or linked to n CCE and nccE + 1) Considering an ACK / NACK selection method using a combination of an explicit PUCCH resource previously reserved to each UE through a PUCCH resource or a corresponding implicit PUCCH resource and RRC signaling.
  • a situation in which a plurality of CCs are merged may be considered. Accordingly, a plurality of ACK / NACK information / signals for a plurality of DL subframes and a plurality of PDSCHs transmitted through a plurality of DL CCs are assigned to a specific UL CC (eg It is considering transmitting through PCC, PCell).
  • a method of transmitting a plurality of ACK / NACK for the maximum number of CWs that can be transmitted through all DL CCs allocated to the UE for all of the plurality of DL subframes (hereinafter, full) ACK / NACK) may be considered.
  • ACK / NACK bundling means applying ACK / NACK bundling for each DL SF for each CC.
  • CW bundling is also referred to as spatial bundling.
  • CC bundling means applying ACK / NACK bundling for all black or some CCs for each DL SF.
  • SF bundling means applying ACK / NACK bundling to all or some DL SFs for each CC.
  • ACK / NACK bundleling includes applying a logical-AND operation to a plurality of ACK / NACK responses.
  • DAI-c a DAI-counter
  • DAI-c downlink assignment index
  • the DAI-c value can start with 0, 1, or any number, and is assumed to start with 1 for convenience.
  • DAI-c is commonly used with DL DAI.
  • DAI-c black, DLDAI: can inform the PDSCH or DL grant PDCCH order that is scheduled based on the DL SF order. That is, the DAI—counter value is the PDCCH (s) for the PDSCH (s) from the DL subframe (s) nk (kGK) (see Table 6) to the current subframe and the PDCCH (s) indicating downlink SPS release. ) May be represented as cumulative values (ie, counting values). Meanwhile, the order indicated by the DAI-c may be an order excluding a PDSCH (eg, an SPS PDSCH) transmitted without a PDCCH.
  • a PDSCH eg, an SPS PDSCH
  • DAI-c in PDCCH scheduling the PDSCH may be signaled as 1 and 2, respectively.
  • DAI-c l of the PDSCH or DL grant PDCCH scheduled for 1st, 5th or 9th
  • DAI-c 2 of the PDSCH or DL grant PDCCH scheduled for the 2nd or 6th time
  • DAI_c 3 of the 3rd or 7th scheduled PDSCH or DL grant PDCCH
  • DAI-c 4 of the PDSCH or DL grant PDCCH scheduled for 4th or 8th, where PDSCH I DL grant PDCCH I PDSCH or DL grant PDCCH is PDSCH I DL grant PDCCH I PDSCH or DL grant that requires ACK / NACK answer respectively.
  • the PDSCH includes a PDSCH with a PDCCH being referred to (hereinafter referred to as PDSCH w / PDCCH) and a PDSCH without a corresponding PDCCH, PDSCH w / o PDCCH (eg, SPS PDSCH).
  • DL that The Land PDCCH includes a PDCCH (hereinafter, referred to as an SPS release PDCCH) that commands an SPS release.
  • DL grant PDCCH may be generalized to DL scheduling-related PDCCH.
  • ACK-counter scheme that informs the total number of ACKs (or some number of ACKs) for the DL grant PDCCH may be considered.
  • the ACK-counter method the following method may be considered.
  • the number of ACKs (i.e. ACK-counter value) is reported for the continuously increasing DAI-c value starting from the DAI-c initial value (e.g., 1) (PDSCH or DL grant PDCCH).
  • DAI-c initial value e.g. 1
  • ACK-counter 0.
  • the number of ACKs ie, ACKs
  • a continuously increasing DAI-c value starting from the initial DAI-c value
  • ACK-counter 0 when the number of ACKs is 0 (or NACK or DTX)
  • ACK-counter 3
  • the transmission of an ACK-counter value for each DL COH through multi-bit ACK / NACK coding or an ACK / NACK selection scheme may be considered.
  • the ACK-counter based PUCCH ACK / NACK transmission scheme is referred to as a perCC-Acount method.
  • continuous ACK-counter based ACK / NACK selection is referred to as Acount-Chsel method.
  • A means ACK
  • N means NACK
  • D means no data or no PDCCH (ie, DTX).
  • N / D means NACK or DTX, and any means any one of ACK, NACK or DTX.
  • Table 8
  • HARQ-ACK (l), (2), (3) (N, any, any) is mapped to the A / N state (N, N)
  • HARQ-ACK (l), (2), (3) (N, any, any) is mapped to the A / N state (N, N / D)
  • HARQ-ACK means ACK / NACK / DTX ACK for PDSCH w / o PDCCH
  • PDSCH w / o PDCCH may be transmitted on the PCC.
  • HARQ-ACK means ACK / NACK / DTX ACK for PDSCH w / o PDCCH
  • PDSCH w / o PDCCH may be transmitted on the PCC.
  • Table 10 illustrates the A / N State-to-Resource / Constellation Mapping Table when two CCs (or cells) are configured.
  • Two CCs black cells
  • Two CCs include a PCC (or PCell) and an SCC (black SCell).
  • (BO, B1) can be mapped to 2-bit A / N state for PCC (or PCell), and (B2, B3) can be mapped to 2-bit A / N state for SCC.
  • the fifth column (Resource) of Table 10 means the index of the PUCCH resource selected for transmission of all 4-bit A / N status (B0, Bl, B2, B3), the sixth column (Constellation) QPSK constellation point on the PUCCH resource.
  • H0 and / or HI have an implicit PUCCH resource linked to the PDCCH (i.e., PCC-PDCCH) scheduling PCC (or PCell) regardless of whether or not cross CC scheduling, H2 and / or H3 have cross CC scheduling?
  • the implicit PUCCH resources or linked to the PDCCH (ie, SCC-PDCCH) scheduling the SCC or explicit PUCCH resources reserved in the RRC may be allocated respectively.
  • SCC-PDCCH scheduling the SCC or explicit PUCCH resources reserved in the RRC may be allocated respectively.
  • H0 and HI are implied linked to PCC-PDCCH with DAI-c equal to 1 and 2, respectively.
  • the implicit PUCCH resource, H2 and H3 may be assigned an implicit PUCCH resource linked to the SCC-PDCCH having DAI-c of 1 and 2, respectively.
  • the above example calculates 2-bit A / N states for each CC based on Tables 7 to 9, and then transfers A / N information through the A / N state-to-resource / phase mapping process of Table 10. Indicates.
  • Table 11 is derived from the combination of Table 7 and Table 10. N ⁇ CCH 0 ⁇ n CCH3 in Table 11 is
  • Table 12 is derived from the combination of Table 8 and Table 10.
  • UCCH n, 0 ⁇ n are CCH3 Table
  • Table 13 is derived from the combination of Tables 9 and 10.
  • n CCHfi ⁇ r ⁇ UCCH, 3 is a table
  • PCC PCell
  • SCell SCC
  • A, A, N / D any A, A, N / D, any PUCCH, 3 1, 0
  • N / D any, any, any, any A, A, N / D, any PUCCH, 3 0, 0
  • A, A, N / D any A, D, D, D PUCCH, 2 0 , 1
  • A, A, N / D any A ⁇ A, A, A n PUCCH, 2 0, 1
  • N / D any, any, any, any A, D, D, D PUCC, 2 0 , 0
  • N / D any, any, any, any A, A, A, A n PUCCH, 2 0, 0 (A, N / D, any, any),
  • A, A, A, A N / D any, any, any, any PUCCH, 0 1 , 1
  • the ACK / NACK type piggybacked to PUSCH is the same as that of DLCC-specific ACK-counter. It can be a value (ie per-CC A-counter).
  • PUSCH transmission is performed as follows. A / N bits can be calculated.
  • M 1: PDSCH or DL grant PDCCH (if no PDSCH w / o PDCCH does not exist) or PDSCH w / o PDCCH (PDSCH w / o PDCCH exists) for each CC 1- or 2-bit A / N answer
  • Table 15
  • HARQ-ACK (l), (2), (3) (N, any, any) is mapped to A / N bits (0, 0)
  • HARQ-ACK (l), (2), ( 3) (D, any, any) may be mapped to A / N bits (0, 0).
  • HARQ-ACK means an ACK / NACK / DTX response for the PDSCH w / o PDCCH
  • PDSCH w / o PDCCH may be transmitted on the PCC.
  • HARQ-ACK means ACK / NACK / DTX ACK for PDSCH w / o PDCCH
  • PDSCH w / o PDCCH may be transmitted on the PCC.
  • a method of informing information about ACK / NACK to be piggybacked to the PUSCH may be considered through a PDCCH scheduling a PUSCH (ie, an UL grant PDCCH).
  • the maximum value (ie, maxPDCCHperCC) among the number of PDSCHs or DL grant PDCCHs scheduled / transmitted for each DL CC may be informed through a UL grant PDCCH for scheduling a PUSCH.
  • maxPDCCHperCC may be determined to include or exclude a PDSCH transmitted without a PDCCH (eg, an SPS PDSCH).
  • the UE may be a DAI-c value corresponding to maxPDCCHperCC up to maxPDCCHperCC (that is, if there is a PDSCH (eg, SPS PDSCH) transmitted without PDCCH) for each DL CC.
  • ACK / NACK payload may be configured in a separate A / N-bit or per-CC A-counter method only for the PDSCH or DL grant PDCCH and ACK / NACK position (posit ion) corresponding to the corresponding subfield.
  • the maxPDCCHperCC information may be transmitted through a DAI field (ie, UL DAI) in the UL grant PDCCH.
  • UL DAI DAI field
  • -UL DAI 4 reception: calculate 2-bit A / N information by applying Table 9 for each CC
  • a CC configured to transmit up to 2 CWs has 2-bit A / N for each CW
  • a CC configured to transmit up to 1 CW has 1-bit A / N Unanswered Answer. Can be generated.
  • 1- or 2-bit A / Ns per CC may be concatenated to form a final A / N codeword transmitted through a PUSCH.
  • the A / N for the PCC (or PCell) may be placed in the Most Significant Bit (MSB).
  • MSB Most Significant Bit
  • 2-bit A / N for each CC may be concatenated in the same manner as described with reference to Table 10 to configure a final A / N codeword transmitted through a PUSCH.
  • a / N for PCC or PCell
  • 0, 1, 1, and 0 can be changed to 1, 0, 0, and 1, respectively, through which the same gray coding effect can be obtained.
  • 0, 0, 1, and 1 may be mapped to 1, 1, 0, and 0, respectively.
  • Tables 17 to 19 show the cases where 0, 1, 1, and 0 are changed to 1, 0, 0, and 1, respectively, in the A / N bits of Table 14-16.
  • Table 18
  • HARQ-AC O
  • HARQ-AC l
  • HARQ-ACK A / N bit on PUSCH
  • PDSCH w / o PDCCH may be transmitted on the PCC.
  • HARQ-ACK (O) means ACK / NACK / DTX ACK for PDSCH w / o PDCCH
  • PDSCH w / o PDCCH may be transmitted on the PCC.
  • PCC PCell
  • SCell Resource Constellation Bits on PUSCH
  • HARQ-ACK (l) HARQ-ACK (l) "PUCCH b (0), b (l) o (0), o (l) ( o (2), o (3)
  • PCC PCell
  • SCell A / N bit on PUSCH HARQ-AC (0), HARQ-AC (1), HARQ-AC (0), HA Q-ACK (1), o (0), o (l), o (2) ) o (3) HARQ- ACK (2), HARQ-ACK (3) HARQ-ACK (2), HARQ-ACK (3)
  • A, A, N / D any A, A, A, N / D 1 , 0, 1 , 1
  • N / D any, any, any, any A, A, A, N / D 0 , 0, 1, 1
  • A, A, A, N / D A, A, N / D, any 1 , 1 , 1, 0
  • A, A, N / D any A, A, N / D, any 1 , 0 , 1, 0
  • N / D any, any, any, any A, A, N / D, any 0 , 0 , 1 , 0
  • A, A, A, N / D A, A, A, A 1, 1 , 0 , 1
  • A, A, N / D any A, D, D, D 1 , 0 , 0 , 1
  • A, A, N / D any A, A, A, A, A 1 , 0 , 0 , 1
  • A, A, A, N / D N / D any, any, any, any 1 , 1 , o, 0
  • A, A, N / D any 1, 0 , 0 , 0 except for (A, D, D, D)
  • N any, any, any N / D, any, any, any, any 0, 0 , 0 , 0
  • N any, any, any, any 0 , 0 , 0 , 0 except for (A, D, D, D)
  • A, A, A, N / DN / D any, any, any, any n PUCCH, ⁇ 1 , o 1 , 1 , 0 , 0
  • A, A, A, AN / D any, any, any, any n PUCCHfi 1 , 1 0 , 1 , 0, 0
  • N any, any, any N / D, any, any, any, any n PUCCH fi 0 , 0 0 , 0 , 0, 0
  • FIG. 13 illustrates an A / N transmission process according to an embodiment of the present invention.
  • the UE generates a first set of HARQ-ACK for the first CC (or SAL) and a second set of HARQ-ACK for the second CC (or SAL) (S1302). Thereafter, the UE checks whether there is a PUSCH allocation in a subframe for A / N transmission (hereinafter, A / N subframe) (S1304). If there is no PUSCH allocation in the A / N subframe, the UE transmits A / N information by performing PUCCH format lb and channel selection. In this case, depending on the PUCCH format lb and the channel selection Other PUCCH resources and A / N bits may be performed using Tables 11-13 (or Tables 21, 23, and 25).
  • the UE when there is a PUSCH allocation in the A / N subframe, the UE multiplexes the A / N bits to the PUSCH.
  • the terminal is a 4-bit A / ⁇ ( ⁇ (0), ⁇ (1), ⁇ (2), ⁇ (3)) corresponding to the first set of HARQ-ACK and the second set of HARQ-ACK.
  • 4-bit A / N may be obtained based on Tables 20, 22, and 24 (or Tables 21, 23, and 25).
  • the 4-bit A / N is a channel coding block S170 (see FIG. 8).
  • a channel interleaver block S190 (see FIG. 8) is used to transmit the PUSCH.
  • An output bit of the data and control multiplexing block S180 (see FIG. 8) and an output bit of the RI channel coding block S160 (see FIG. 8) are also input to the channel interleaver block S190.
  • RI is optionally present.
  • the channel coding S170 may be performed using a Reed-MuIler (RM) code, a tail-biting convolutional code, or the like.
  • RM Reed-MuIler
  • 4-bit A / N ( ⁇ (0), ⁇ (1), ⁇ (2), ⁇ (3)) can be channel coded using the following equation.
  • Equation 3 Where q CK represents the i-th channel coded bit. i is an integer of 0 or more, specifically 0 to ⁇ -, and ⁇ represents the total number of channel coded bits. m0 d represents a modulo operation, and ⁇ represents the following block code. Table 26
  • FIG. 14 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected with the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • Processor 122 is in the present invention It can be configured to implement the proposed procedure and / or methods.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected to the processor 122 and transmits and / or receives a radio signal.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • a base station may, in some cases, be performed by their upper node. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station may be performed by a base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as UECUser Equipment (MSC), Mobile Station (MS), and Mobile Subscriber Station (MSS).
  • Embodiments according to the present invention can be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs) and digital signal processors (DSPs).
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • PLDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAsCfield programmable able gate arrays processors, controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 캐리어 병합을 지원하고 TDD로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치에 있어서, 제1 CC(Component Carrier)와 관련된 제1 세트의 HARQ-ACK(Hybrid Automatic Repeat request - Acknowledgement)을 생성하는 단계; 제2 CC와 관련된 제2 세트의 HARQ-ACK을 생성하는 단계; 상기 제1 세트의 HARQ-ACK 및 상기 제2 세트의 HARQ-ACK에 대응하는 4-비트 정보를 PUSCH(Physical Uplink Shared CHannel) 상에서 전송하는 단계를 포함하는 방법 및 이를 위한 장치에 관한 것이다.

Description

【명세서】
【발명의 명칭】
제어 정보를 전송하는 방법 및 이를 위한 장치
【기술분야】
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 제어 정보를 전송 하는 방법 및 이를 위 한 장치에 관한 것이다 .
【배경 기술】
무선 통신 시스템이 음성 이나 데이터 등과 같은 다양한 종류의 통신 서비스 를 제공하기 위해 광범위하게 전개되고 있다 . 일반적으로 무선통신 시스템은 가용 한 시스템 자원 (대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속 (mult iple access) 시스템이다 . 다중 접속 시스템의 예들로는 CDMA (code division mult iple access) 시스템, FDMA( frequency division mult iple access) 시스템, TDMA(t ime division mult iple access) 시스템, 0FDMA( orthogonal frequency division mult iple access) 시스템, SC—FDMA( single carrier frequency division mult iple access) 시스템 등이 있다 .
【발명의 상세한 설명】
【기술적 과제】
본 발명의 목적은 무선 통신 시스템에서 제어 정보를 효율적으로 전송하는 방법 및 이를 위한 장치를 제공하는데 있다 . 본 발명의 다른 목적은 TDD(Time Division Du lex) 시스템에서 상향링크 제어 정보를 효율적으로 전송하고, 이를 위 한 자원을 효율적으로 관라하는 방법 및 이를 위 한 장치를 제공하는데 있다. 본 발 명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급 하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명 이 속하는 기술분야 에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것 이다.
【기술적 해결방법】
본 발명의 일 양상으로, 캐리어 병합 (carrier aggregat ion)을 지원하고 TDD(Time Division Duplex)로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법에 있어서, 제 1 CC (Component Carrier)와 관련된 제 1 세트의 HARQ-ACK(Hybrid Automatic Repeat request - Acknowledgement)을 생성하는 단계; 제 2 CC와 관련된 제 2세트의 HARQ-ACK을 생성하는 단계; 및 상기 제 1 세트의 HARQᅳ ACK 및 상기 제 2 세트의 HARQ-ACK에 대응하는 4-비트 정보를 PUSCH (Physical Uplink Shared CHannel) 상에서 전송하는 단계를 포함하고, 상기 게 1 세트의 HARQ-ACK, 상 기 제 2 세트의 HARQ-ACK 및 상기 4-비트 정보의 대웅 관계는 아래의 관계를 이용하 여 주어지는 방법이 제공된다:
Figure imgf000004_0001
여기서, A는 ACK을 나타내고, N은 NACK(Negative ACK)을 나타내며
DTX(Discontinuous Transmission)을 나타내고, N/D는 NACK또는 DTX를 나타내며, any 는 ACK, NACK또는 DTX중 어느 하나를 나타내며
여기서, CC는 셀로 대체될 수 있다.
본 발명의 다른 양상으로, 캐리어 병합 (carrier aggregation)을 지원하고 TDD(Time Division Duplex)로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하도록 구성된 통신 장치에 있어서, 무선 주파수 (Radio Frequency, RF) 유닛; 및 프로세서를 포함하고, 상기 프로세서는 제 1 CCCComponent Carrier)와 관련된 제 1 세트의 HARQ-ACK(Hybrid Automatic Repeat request - Acknowledgement)을 생성하고, 제 2 CC와 관련된 제 2 세트의 HARQ-ACK을 생성하며, 상기 제 1 세트의 HARQ-ACK 및 상 기 제 2 세트의 HARQ-ACK에 대웅하는 4-비트 정보를 PUSCH( Physical Uplink Shared CHannel) 상에서 전송하도록 구성되고, 상기 제 1 세트의 HARQ-ACK, 상기 제 2 세트 의 HARQ-ACK 및 상기 4ᅳ비트 정보의 대응 관계는 아래의 관계를 이용하여 주어지는 통신 장치가 제공된다:
Figure imgf000005_0001
여기서, A는 ACK을 나타내고, N은 NACK(Negative ACK)을 나타내며
DTX(Discontinuous Transmission)을 나타내고, N/D는 NACK또는 DTX를 나타내며 , any 는 ACK, NACK또는 DTX중 어느 하나를 나타내며,
여기서, CC는 샐로 대체될 수 있다. 바람직하게, 상기 제 1 CC는 프라이머리 CC이고, 상기 제 2 CC는 세컨더리 CC이다.
바람직하게 , 대웅되는 PDCCH가 없는 PDSCH가 상기 제 1 CC또는 상기 제 2 CC에 서 검출된 경우, 해당 HARQ-ACK 세트에서 HARQ-ACK(O)은 상기 대응되는 PDCCH가 없 는 PDSCH에 대한 ACK/NACK/DTX 응답을 나타내고, 상기 해당 HARQ-ACK 세트에서 HARQ-ACK(j)는 DAI (Downlink Assignment Index) 값이 j인 PDCCH에 대응하는 PDSCH에 대한 ACK/NACK/DTX 응답 또는 DAI 값이 j인 SPS 해제 (Semi -Per si stent Scheduling release) PDCCH에 대한 ACK/NACK/DTX웅답을 나타낸다. 바람직하게, 대응되는 PDCCH가 없는 PDSCH가 검출되지 않은 경우, 각 HARQ-ACK 세트에서 腿 Q-ACK(j)는 DAI 값이 j+1인 PDCCH에 대응하는 PDSCH에 대한 ACK/NACK/DTX 응답 또는 DAI 값이 j+1인 SPS 해제 PDCCH에 대한 ACK/NACK/DTX 웅답 을 나타낸다.
바람직하게, 상기 4-비트 정보를 상기 PUSCH 상에서 전송하는 것은 상기 4- 비트 정보를 하기 식을 이용하여 채널 코딩 하는 것을 포함한다:
Figure imgf000006_0001
여기서, qfCK는 i-번째 채널 코딩 된 비트를 나타내고, i는 0 이상의 정수이 며, mod는 모들로 (modulo) 연산을 나타내고, ^는 하기의 블록 코드를 나타낸다.
i Mi .o Mi .i Mi , Mi Mj Mi , Mi . Mi Mi Mi Mi ,
0 1 1 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 1 1
2 1 0 0 1 0 0 1 0 1 1 1
3 1 0 1 1 0 0 0 0 1 0 1
4 1 1 1 1 0 0 0 1 0 0 1
5 1 1 0 0 1 0 1 1 1 0 1
6 1 0 1 0 1 0 1 0 1 1 1
7 1 0 0 1 1 0 0 1 1 0 1
8 1 1 0 1 1 0 0 1 0 1 1
9 1 0 1 1 1 0 1 0 0 1 1
10 1 0 1 0 0 1 1 1 0 1 1
11 1 1 1 0 0 1 1 0 1 0 1
12 1 0 0 1 0 1 0 1 1 1 1
13 1 1 0 1 0 1 0 1 0 1 1
14 1 0 0 0 1 1 0 1 0 0 1
15 1 1 0 0 1 1 1 1 0 1 1
16 1 1 1 0 1 1 1 0 0 1 0
17 1 0 0 1 1 1 0 0 1 0 0
18 1 1 0 1 1 1 1 1 0 0 0
19 1 0 0 0 0 1 1 0 0 0 0
20 1 0 1 0 0 0 1 0 0 0 1
21 1 1 0 1 0 0 0 0 0 1 1
22 1 0 0 0 1 0 0 1 1 0 1
23 1 1 1 0 1 0 0 0 1 1 1
24 1 1 1 1 1 0 1 1 1 1 0
25 1 1 0 0 0 1 1 1 0 0 1
26 1 0 1 1 0 1 0 0 1 1 0
27 1 1 1 1 0 1 0 1 1 1 0
28 1 0 1 0 1 1 1 0 1 0 0
29 1 0 1 1 1 1 1 1 1 0 0
30 1 1 1 1 1 1 1 1 1 1 1
31 1 0 0 0 0 0 0 0 0 0 0 본 발명의 또 다른 양상으로, 캐리어 병합 (carrier aggregat ion)을 지원하고 TDD(Time Division Duplex)로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법에 있어서 , 제 1 CC(Component Carr ier)와 관련된 제 1 세트의 HARQ-ACK(Hybrid Automat ic Repeat request - Acknowledgement )을 생성하는 단계 ; 제 2 CC와 관련된 계 2 세트의 HARQ-ACK을 생성하는 단계 ; 및 상기 제 1 세트의 HARQ-ACK 및 상기 제 2 세트의 HARQ-ACK에 대응하는 4-비트 정보를 PUSCH(Physical Upl ink Shared CHannel ) 상에서 전송하는 단계를 포함하고 , 상기 제 1 세트의 HARQ-ACK, 상 기 제 2 세트의 HARQ-ACK 및 상기 4-비트 정보의 대응 관계는 아래의 관계를 이용하 여 주어지는 방법 이 제공된다 : 제 1 cc 제 2 CC 4-비트 정보
HA Q-ACK(0),HARQ-ACK(1), HARQ-AC (O), HARQ-AC (l) , o(0),o(l))o(2),o(3) HARQ-AC (2),HARQ-ACK(3) HARQ-AC (2),HARQ-AC (3)
A, A, A, N/D A, A, A, N/D 1, 1, 1, 1
A, A, N/D, any A, A, A, N/D 1, 0, 1, 1
A, D, D, D A, A, A, N/D 0, 1, 1, 1
A, A, A, A A, A, A, N/D 0, 1, 1, 1
N/D, any, any, any A, A, A, N/D 0, 0, 1, 1
(A, N/D, any, any), A, A, A, N/D 0, 0, 1, 1 except for (A, D, D, D)
A, A, A, N/D A, A, N/D, any 1, 1, 1, o
A, A, N/D, any A, A, N/D, any 1, 0, 1, 0
A, D, D, D ᅳ A, A, N/D, any 0, 1, 1, 0
A, A, A, A A, A, N/D, any 0, 1, 1, 0
N/D, any, any, any A, A, N/D, any 0, 0, 1, 0
(A, N/D, any, any), A, A, N/D, any 0, 0, 1, 0 except for (A, D, D, D)
A, A, A, N/D A, D, D, D 1, 1, 0, 1
A, A, A, N/D A, A, A, A 1, 1, 0, 1
A, A, N/D, any A, D, D, D 1, 0, 0, 1
A, A, N/D, any A, A, A, A 1, 0, 0, 1
A, D, D, D A, D, D, D 0, 1, 0, 1
A, D, D, D A, A, A, A 0, 1, 0, 1
A, A, A, A A, D, D, D 0, 1, 0, 1
A, A, A, A A, A, A, A 0, 1, 0, 1
N/D, any, any, any A, D, D, D 0, 0, 0, 1
N/D, any, any, any A, A, A, A 0, 0, 0, 1
(A, N/D, any, any) , A, D, D, D 0, 0, 0, 1 except for (A, D, D, D)
(A, N/D, any, any), A, A, A, A 0, 0, 0, 1 except for (A, D, D, D)
A, A, A, N/D N/D, any, any, any 1, 1, 0, 0
(A, N/D, any, any),
A, A, A, N/D 1, 1, 0, 0 except for (A, D, D, D)
A, A, N/D, any N/D, any, any, any 1, 0, 0, 0
(A, N/D, any, any),
A, A, N/D, any 1, 0, 0, 0 except for (A, D, D, D)
A, D, D, D N/D, any, any, any 0, 1, 0, 0
(A, N/D, any, any) ,
A, D, D, D 0, 1, 0, 0 except for (A, D, D, D)
A, A, A, A N/D, any, any, any 0, 1, 0, 0
(A, N/D, any, any),
A, A, A, A 0, 1, 0, 0 except for (A, D, D, D)
N, any, any, any N/D, any, any, any 0, 0, 0, 0
(A, N/D, any, any),
N, any, any, any 0, 0, 0, 0 except for (A, D, D, D)
(A, N/D, any, any),
N/D, any, any, any 0, 0, 0, 0 except for (A, D, D, D) (A, N/D, any, any), (A, N/D, any, any),
0, 0, 0, 0
except for (A, D, D, D) except for (A, D, D, D)
D, any, any, any N/D, any, any, any 0, 0, 0, 0
(A, N/D, any, any),
D, any, any, any 0, 0, 0, 0
except for (A, D, D, D)
여기서, A는 ACK을 나티 -내고, N은 NACK(Negative ACK)을 나타내며
DTX(Discontinuous Transmission)을 나타내고, N/D는 NACK또는 DTX를 나타내며, any 는 ACK:, NACK또는 DTX중 어느 하나를 나타내며,
여기서, CC는 셀로 대체될 수 있다.
본 발명의 또 다른 양상으로, 캐리어 병합 (carrier aggregat ion)을 지원하고 TDD(Time Division Duplex)로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하도톡 구성된 통신 장치에 있어서, 무선 주파수 (Radio Frequency, RF) 유닛; 및 프로세서를 포함하고, 상기 프로세서는 제 1 CC(Component Carrier)와 관련된 제 1 세트의 HARQ-ACKXHybrid Automatic Repeat request ― Acknowledgement)을 생성하고, 제 2 CC와관련된 제 2세트의 HARQ-ACK을 생성하며, 상기 제 1 세트의 HARQ-ACK및 상 기 계 2 세트의 HARQ-ACK에 대웅하는 4-비트 정보를 PUSCH (Physical Uplink Shared CHannel) 상에서 전송하도록 구성되고, 상기 제 1 세트의 HARQ-ACK, 상기 제 2 세트 의 HARQ-ACK 및 상기 4-비트 정보의 대웅 관계는 아래의 관계를 이용하여 주어지는 통신 장치가 제공된다:
제 1 CC 제 2 CC 4-비트'정보
HARQ-ACK(0),HARQ-ACK(1), HARQ-AC (0),HARQ-AC (1), o(0),o(l),o(2),o(3) HARQ-ACK(2),HARQ-AC (3) HARQ-AC (2), HARQ-ACK ( 3 )
A, A, A, N/D A, A, A, N/D 1, 1, 1, 1
A, A, N/D, any A, A, A, N/D 1, 0, 1, 1
A, D, D, D A, A, A, N/D 0, 1, 1, 1
A, A, A, A A, A, A, N/D 0, 1, 1, 1
N/D, any, any, any A, A, A, N/D 0, 0, 1, 1
(A, N/D, any, any), A, A, A, N/D 0, 0, 1, 1 except for (A, D, D, D)
A, A, A, N/D A, A, N/D, any 1, 1, 1, 0
A, A, N/D, any A, A, N/D, any 1, 0, 1, 0
A, D, D, D A, A, N/D, any 0, 1, 1, 0
A, A, A, A A, A, N/D, any 0, 1, 1, 0
N/D, any, any, any A, A, N/D, any 0, 0, 1, 0
(A, N/D, any, any), A, A, N/D, any 0, 0, 1, 0 except for (A, D, D, D)
A, A, A, N/D A, D, D, D 1, 1, 0, 1 A, A, A, N/D A, A, A, A 1, 1, 0, 1
A, A, N/D, any A, D, D, D 1, 0, 0, 1
A, A, N/D, any A, A, A, A 1, 0, 0, 1
A, D, D, D A, D, D, D 0, 1, 0, 1
A, D, D, D A, A, A, A 0, 1, 0, 1
A, A, A, A Aᅳ D, D, D 0, 1, 0, 1
A, A, A, A A, A, A, A 0, 1, 0, 1
N/D, any, any, any , D, D, D 0, 0, 0, 1
N/D, any, any, any A, A, A, A 0, 0, 0, 1
(A, N/D, any, any), A, D, D, D 0, 0, 0, 1 except for (A, D, D, D)
(A, N/D, any, any), A, A, A, A 0, 0, 0, 1 except for (A, D, D, D)
A, A, A, N/D N/D, any, any, any 1, 1, 0, 0
(A, N/D, any, any),
A, A, A, N/D 1, 1, 0, 0
except for (A, D, D, D)
A, A, N/D, any N/D, any, any, any 1, 0, 0, 0
(A, N/D, any, any),
A, A, N/D, any 1, 0, 0, 0
except for (A, D, D, D)
A, D, D, D N/D, any, any, any 0, 1, 0, 0
(A, N/D, any, any) ,
A, D, D, D 0, 1, 0, 0
except for (A, D, D, D)
A, A, A, A N/D, any, any, any 0, 1, 0, 0
(A, N/D, any, any),
A, A, A, A 0, 1, 0, 0
except for (A, D, D, D)
N, any, any, any N/D, any, any, any 0, 0, 0, 0
(A, N/D, any, any),
N, any, any, any 0, 0, 0, 0
except for (A, D, D, D)
(A, N/D, any, any),
N/D, any, any, any 0, 0, 0, 0
except for (A, D, D, D)
(A, N/D, any, any) , (A, N/D, any, any) ,
0, 0, 0, 0
except for (A, D, D, D) except for (A, D, D, D)
D, any, any, any N/D, any, any, any 0, 0, 0, 0
(A, N/D, any, any) ,
D, any, any, any 0, 0, 0, 0
except for (A, D, D, D) 여기서, A는 ACK을 나타내고, N은 NACK (Negative ACK)을 나타내며, D는 DTX(Discontinuous Transmission)을 나타내고, N/D는 NACK또는 DTX를 나타내며, any 는 ACK, NACK또는 DTX중 어느 하나를 나타내며,
여기서, CC는 셀로 대체될 수 있다. ' 바람직하게, 상기 제 1 CC는 프라이머리 CC이고, 상기 제 2 CC는 세컨더리 COl 다. 바람직하게, 대웅되는 PDCCH가 없는 PDSCH가 상기 제 1 CC 또는 상기 계 2 CC에 서 검출된 경우, 해당 HARQ-ACK 세트에서 HARQ-ACK(O)은 상기 대응되는 PDCCH가 없 는 PDSCH에 대한 ACK/NACK/DTX 웅답을 나타내고, 상기 해당 HARQᅳ ACK 세트에서 HARQ-ACK(j )는 DAI (Downl ink Assignment Index) 값이 ᅳ) ' 인 PDCCH에 대웅하는 PDSCH에 대한 ACK/NACK/DTX 응답 또는 DAI 값이 j인 SPS 해제 (Semi-Persi stent Schedul ing release) PDCCH에 대한 ACK/NACK/DTX 응답을 나타낸다 .
바람직하게, 대웅되는 PDCCH가 없는 PDSCH가 검출되지 않은 경우 , 각 HARQ-ACK 세트에서 HARQ-ACK(j )는 DAI 값이 j +1인 PDCCH에 대웅하는 PDSCH에 대한 ACK/NACK/DTX 응답 또는 DAI 값이 j+1인 SPS 해제 PDCCH에 대한 ACK/NACK/DTX 웅답 을 나타낸다 .
바람직하게, 상기 4-비트 정보를 상기 PUSCH 상에서 전송하는 것은 상기 4- 비트 정보를 하기 식을 이용하여 채널 코딩 하는 것을 포함한다 :
Figure imgf000011_0001
여기서, ^ 는 i-번째 채널 코딩 된 비트를 나타내고, i는 0 이상의 정수이 며, mod는 모들로 (modulo) 연산을 나타내고, !! 는 하기의 블록 코드를 나타낸다 .
i Mi .o Mi , i Mi , Mi Mi Mi i Mi Mi Mi .g Mi , lo
0 1 1 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 1 1
2 1 0 0 1 0 0 1 0 1 1 1
3 1 0 1 1 0 0 0 0 1 0 1
4 1 1 1 1 0 0 0 1 0 0 1
5 1 1 0 0 1 0 1 1 1 0 1
6 1 0 1 0 1 0 1 0 1 1 1
7 1 0 0 1 1 0 0 1 1 0 1
8 1 1 0 1 1 0 0 1 0 1 1
9 1 0 1 1 1 0 1 0 0 1 1
10 1 0 1 0 0 1 1 1 0 1 1
11 1 1 1 0 0 1 1 0 1 0 1
12 1 0 0 1 0 1 0 1 1 1 1
13 1 1 0 1 0 1 0 1 0 1 1
14 1 0 0 0 1 1 0 1 0 0 1
15 1 1 0 0 1 1 1 1 0 1 1
16 1 1 1 0 1 1 1 0 0 1 0
17 1 0 0 1 1 1 0 0 1 0 0
18 1 1 0 1 1 1 1 1 0 0 0
19 1 0 0 0 0 1 1 0 0 0 0
20 1 0 1 0 0 0 1 0 0 0 1
21 1 1 0 1 0 0 0 0 0 1 1
22 1 0 0 0 1 0 0 1 1 0 1
23 1 1 1 0 1 0 0 0 1 1 1
24 1 1 1 1 1 0 1 1 1 1 0
25 1 1 0 0 0 1 1 1 0 0 1
26 1 0 1 1 0 1 0 0 1 1 0
27 1 1 1 1 0 1 0 1 1 1 0
28 1 0 1 0 1 1 1 0 1 0 0
29 1 0 1 1 1 1 1 1 1 0 0
30 1 1 1 1 1 1 1 1 1 1 1
31 1 0 0 0 0 0 0 0 0 0 0
【유리한 효과 I
본 발명에 의하면, 무선 통신 시스템에서 제어 정보를 효율적으로 전송할 수 있다 . 구체적으로 , TDD 시스템에서 상향링크 제어 정보를 효율적으로 전송하고, 이 를 위한 자원을 효율적으로 관리할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으 며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명 이 속하는 기술분 야에서 통상의 지식을 가진 자에 게 명 확하게 이해될 수 있을 것 이다 .
【도면의 간단한 설명】
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도 면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사 상올 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임 (radio frame)의 구조를 예시한다.
도 3은 하향링크 슬롯의 자원 그리드를 예시한다.
도 4는 하향링크 프레임의 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 예시한다.
도 6은 PUCCH포맷 la/ lb의 슬롯 레벨 구조를 나타낸다.
도 7은 ACK/NACK올 위한 PUCCH자원을 결정하는 예를 나타낸다.
도 8은 UL-SCH 데이터와 제어 정보의 처리 과정을 예시한다.
도 9는 PUSCH상에서 제어 정보와 UL-SCH 데이터의 다중화를 나타낸다.
도 10은 단일 샐 상황에서 TDD UL ACK/NACK(Uplink Acknowledgement /Negative Acknowledgement) 전송 과정을 나타낸다.
도 11은 캐리어 병합 (Carrier Aggregation, CA) 통신 시스템을 예시한다. 도 12는 크로스-캐리어 스케줄링을 예시한다.
도 13은 본 발명의 실시예에 따른 A/N 전송 과정을 예시한다.
도 14는 본 발명에 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 【발명을 실시를 위한 형태】
이하의 CDMA(code division multiple access) , FDMA(frequency division multiple access) , TDMA(time division mult iple access), 0FDMA( orthogonal frequency division multiple access) , SC-FDMAC single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRACUniversal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communicat ions)/GPRS(General Packet Radio Ser vi ce ) /EDGE (Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA( Evolved UTRA) 등과 같은 무선 기술로 구 현될 수 있다. UTRA는 UMTSCUniversal Mobile Teleco匪 unicat ions System)의 일부이 다. 3GPP(3rd Generation Partnership Project) LTEdong term evolution)는 E—UTRA 를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 0FDMA를 채용하고 상향 링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다ᅳ 또한, 이하의 설명에서 사용되는 특정
(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어 는 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다. 먼저, 본 명세서에서 사용되는 용어에 대해 정리한다.
• HARQ-ACK: 하향링크 전송 (예, PDSCH 혹은 SPS 해제 PDCCH)에 대한 수신응답결과, 즉, ACK/NACK/DTX 응답 (간단히, ACK/NACK 웅답, ACK/NACK, HARQ-ACK 응답)을 나타낸다. ACK/NACK/DTX 웅답은 ACK, NACK, DTX 또는 NACK/DTX를 의미한다. 특정 CC에 대한 HARQ-ACK 혹은 특정 CC의 HARQ-ACK은 해당 CC와 연관된 (예, 해당 CC에 스케줄링된) 하향링크 전송에 대한 ACK/NACK응답을 나타낸다. PDSCH는 전송블록 혹은 코드워드로 대체될 수 있다.
眷 PDSCH: DL 그랜트 PDCCH에 대응하는 PDSCH를 의미한다. 본 명세서에서
PDSCH는 PDSCH w/ PDCCH와흔용된다.
· SPS 해제 PDCCH: SPS 해제를 지시하는 PDCCH를 의미한다. 단말은 SPS 해제
PDCCH에 대한 ACK/NACK 정보를 상향링크 피드백한다.
參 SPS PDSCH: SPS에 의해 반-정적으로 설정된 자원을 이용하여 DL 전송되는
PDSCH를 의미한다. SPS PDSCH는 대웅되는 DL 그랜트 PDCCH가 없다. 본 명세서에서 SPS PDSCH는 PDSCH w/o PDCCH와 흔용된다.
· PUCCH 인덱스: PUCCH 자원에 대웅된다. PUCCH 인덱스는 예를 들어 PUCCH 자원 인텍스를 나타낸다. PUCCH 자원 인덱스는 직교 커버 (00, 사이클릭 쉬프트 (CS) 및 PRB 중 적어도 하나로 맵핑된다. ARKACK/NACK Resource Indicator): PUCCH 자원을 지시하기 위한 융도로 사용된다. 일 예로, ARI는 (상위 계층에 의해 구성된) 특정 PUCCH 자원 (그룹)에 대한 자원 변형 값 (예, 오프셋)을 알려주는 용도로 사용될 수 있다. 다른 예로, ARI는 (상위 계층에 의해 구성된) PUCCH 자원 (그룹) 세트 내에서 특정 PUCCH 자원 (그룹) 인덱스를 알려주는 용도로 사용될 수 있다. ARI는 SCC 상의 PDSCH에 대웅하는 PDCCH의 TPCCTransmit Power Control) 필드에 포함될 수 있다. PUCCH 전력 제어는 PCC를 스케줄링하는 PDCCH (즉, PCC 상의 PDSCH에 대응하는 PDCCH) 내의 TPC 필드를 통해 수행된다. 또한, ARI는 DAI (Downlink Assignment Index) 초기 값을 가지면서 특정 샐 (예, PCell)을 스케줄링하는 PDCCH를 제외하고 남은 PDCCH의 TPC 필드에 포함될 수 있다. ARI는 HARQ-ACK 자원 지시 값과 흔용된다.
DAI (Downlink Assignment Index): PDCCH를 통해 전송되는 DCI에 포함된다. DAI는 PDCCH와 순서 값 또는 카운터 값을 나타낼 수 있다. 편의상, DL 그랜트 PDCCH의 DAI 필드가지시하는 값을 DLDAI라고 지칭하고, UL 그랜트 PDCCH 내의 DAI 필드가 지시하는 값을 UL DAI라고 지칭한다.
묵시적 PUCCH 자원 (Implicit PUCCH resource): PCC를 스케줄링하는 PDCCH의 최소 CCE 인덱스에 링크된 PUCCH 자원 /인덱스를 나타낸다 (수학식 1 참조).
명시적 PUCCH 자원 (Explicit PUCCH resource): 명시적 PUCCH 자원은 ARI를 이용하여 지시될 수 있다.
CC를 스케줄링하는 PDCCH: 해당 CC 상의 PDSCH를 스케줄링하는 PDCCH를 나타낸다. 즉, 해당 CC 상의 PDSCH에 대응하는 PDCCH를 나타낸다.
PCC PDCCH: PCC를 스케줄링하는 PDCCH를 나타낸다. 즉, PCC PDCCH는 PCC 상의 PDSCH에 대응하는 PDCCH를 나타낸다. PCC에 대해서는 크로스-캐리어 스케줄링이 허용되지 않는다고 가정하면 PCC PDCCH는 PCC 상에서만 전송된다.
SCC PDCCH: SCC를 스케줄링하는 PDCCH를 나타낸다. 즉, SCC PDCCH는 SCC 상의 PDSCH에 대응하는 PDCCH를 나타낸다. SCC에 대해 크로스-캐리어 스케줄링이 허용될 경우, SCC PDCCH는 PCC상에서 전송될 수 있다. 반면, SCC에 대해 크로스 캐리어 스케즐링이 허용되지 않은 경우, SCC PDCCH는 SCC상에서만 전송된다.
· 크로스 -CC 스케줄링: 모든 PDCCH가 하나의 PCC를 통해서만 스케줄링 /전송되는 동작을 의미한다.
秦 논-크로스 -CC 스케줄링 : 각 CC를 스케줄링하는 PDCCH가 해당 CC를 통해 스케줄링 /전송되는 동작을 의미한다. 무선 통신 시스템에서 단말은 기지국으로부터 하향링크 (Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크 (Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류 /용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (Primary Synchronization Channel , P-SCH) 및 부동기 채:널 (Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 물리방송채널 (Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크제어채널 (Physical
Downlink Control Channel, PDCCH) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (Physical Down 1 ink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S103 내지 단계 S106과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (Physical Random Access Channel, PRACH)을 통해 프리앰블 (preamble)을 전송하고 (S103), 물리하향링크제어채널 및 이에 대웅하는 물리하향링크공유 채널을 통해 프리앰블에 대한 웅답 메시지를 수신할 수 있다 (S104). 경쟁 기반 임의 접속의 경우 추가적인 물리임의접속채널의 전송 (S105) 및 물리하향링크제어채널 및 이에 대웅하는 물리하향링크공유 채널 수신 (S106)과 같은 층돌해결절차 (Content ion Resolution Procedure)를 수행할수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상 /하향링크 신호 전송 절차로서 물리하향링크제어채널 /물리하향링크공유채널 수신 (S107) 및 물리상향링크공유채널 (Physical Uplink Shared Channel ,
PUSCH)/물리상향링크제어채널 (Physical Uplink Control Channel, PUCCH) 전송 (S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보 (Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negat ive-ACK) , SRCSchedul ing Request ) , CQ I (Channel Quality Indicator) , PMKPrecoding Matrix Indicator), RKRank Indication) 등을 포함한다. 본 명세서에서, HARQ ACK/NACK은 간단히 HARQ-ACK 혹은 ACK/NACK(A/N)으로 지칭된다. HARQ— ACK은 포지티브 ACK (간단히, ACK), 네거티브 ACK(NACK), DTX 및 NACK/DTX 증 적어도 하나를 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청 /지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다. 도 2는 무선 프레임의 구조를 예시한다. 샐를라 OFDM 무선 패킷 통신 시스템에서, 상향링크 /하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다.3GPPLTE표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임 (radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임 (radio frame)은 10개의 서브프레임으로 구성되고, 하나의 서브프레임은 시간 영역 (time domain)에서 2개의 슬롯 (slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTK transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록 (Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 0FDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블톡 (RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파 (subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성 (configuration)에 따라 달라질 수 있다. CP에는 확장 CP(extended CP)와 노멀 CP (normal CP)가 있다. 예를 들어, OFDM 심볼이 노멀 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심불의 수는 노멀 CP인 경우보다 적다. 확장 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 0FDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장 CP가사용될 수 있다.
노멀 CP가 사용되는 경우 하나의 슬롯은 7개의 0FDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 0FDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 0FDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 0FDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다. 도 2(b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의 하프 프레임 (half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간 (Guard Period, GP), UpPTSCU link Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 샐 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
표 1은 TDD 모드에서 무선 프레임 내 서브프레임들의 UL-DL 구성 (Uplink-Downlink Conf igurat ion)을 예시한다.
【표 1】
Figure imgf000019_0001
표 1에서, D는 하향링크 서브프레임을, U는 상향링크 서^프레임을, S 특별 (special) 서브프레임을 나타낸다. 특별 서브프레임은 DwPTS ( Down 1 ink Pilot TimeSlot), GP(Guard Period), UpPTSCUplink Pilot TimeSlot)을 포함한다. DwPTS는 하향링크 전송용으로 유보된 시간 구간이며, UpPTS는 상향링크 전송용으로 유보된 시간 구간이다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임 의 수 또는 서브프레임에 포함되는 슬롯의 수, 술롯에 포함되는 심볼의 수는 다양 하게 변경될 수 있다.
도 3은 하향링크 슬롯의 자원 그리드를 예시한다.
도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포 함한다. 하나의 하향링크 슬롯은 7(6)개의 OFDM 심볼을 포함하고 자원 블록은 주파 수 도메인에서 12개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소
(element)는 자원 요소 (Resource Element, RE)로 지칭된다. 하나의 RB는 12x7(6)개 의 RE를 포함한다. 하향링크 슬롯에 포함되는 RB의 개수 NRB는 하향링크 전송 대역 에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일하되 , 0FOM 심볼 이 SC-FDMA 심볼로 대체된다.
도 4는 하향링크 서브프레임의 구조를 예시한다.
도 4를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(4) 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대웅한다. 남은 OFDM 심볼은 PDSCHCPhysical Downlink Shared CHancel)가 할당되 ^ 데이터 영역에 해당한다. LTE 에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel) , PDCCH(Physical Downlink Control Channel) , PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 웅답으로 HARQ ACK/NACK(Hybr id Automatic Repeat request acknowledgment /negative— acknowledgment) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCKDownlink Control Information)라고 한다. DCI 포맷은 상향링크용으로 포맷 으 3, 3A, 4, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C 등의 포맷이 정의되어 있다. DCI 포맷은 용도에 따라 호핑 플 래그 (hopping flag) , RB 할당, MCS(modulat ion coding scheme) , RV( redundancy version) , NDKnew data indicator) , TPC( transmit power control ) , 사이클릭 쉬프 트 DM RS( demodulation reference signal ) , CQI (channel quality information) 요 청, HARQ 프로세스 번호, TPMI (transmitted precoding matrix indicator) , PMKprecoding matrix indicator) 확인 (confirmation) 등의 정보를 선택적으로 포함 한다.
PDCCH는 하향링크 공유 채널 (downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널 (uplink shared channel , UL-SCH)의 전송 포 맷 및 자원 할당 정보, 페이징 채널 (paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 웅답과 같은 상위 -계층 제어 메시지의 자원 할당 정보, 단말 그룹 내의 개별 단말들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령 , VoIP(Voice over IP)의 활성화 지시 정보 둥을 나른다. 복 수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소 (control channel element, CCE)들의 집합 (aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당유닛이다. CCE는 복 수의 자원 요소 그룹 (resource element group, REG)에 대웅한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은 단말에게 전송될 DCI 에 따라 PDCCH포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 부가 한다. CRC는 PDCCH의 소유자또는 사용 목적에 따라 식별자 (예, RNTI (radio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH가특정 단말을 위한 것일 경우, 해당 단말의 식별자 (예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자 (예, paging-RNTI (P-RNTI)) 가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보 (보다 구체적으로, 시,스템 정보 블록 (system information block, SIC))를 위한 것일 경우, SI-RNTI(system information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 웅답을 위한 것 일 경우, RA-RNTI (random access-RNTI)가 CRC에 마스킹 될 수 있다.
도 5는 LTE에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 5를 참조하면, 상향링크 서브프레임은 복수 (예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영 역은 PUSCH를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역 은 PUCCH를 포함하고 상향링크 제어 정보 (Uplink Control Information, UCI)를 전송 하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB쌍 (RB pair)을 포함하며 슬롯을 경계로 호핑한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR( Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정 보이다. 00 (0n-0ff Keying) 방식을 이용하여 전송된다.
-HARQ ACK/NACK: PDSCH상의 하향링크 데이터 패킷에 대한 응답 신호이다. 하 향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드 (Codeword, CW)에 대한 웅답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향 링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.
- CQI (Channel Quality Indicator): 하향링크 채널에 대한 피드백 정보이다. MIM0(Multiple Input Multiple Output) 관련 피드백 정보는 RI(Rank Indicator), PMKPrecoding Matrix Indicator), PTKPrecoding Type Indicator) 등을 포함한다. 서 브프레임 당 20비트가사용된다.
단말이 서브프레임에서 전송할 수 있는 제어 정보 (UCI)의 양은 제어 정보 전 송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브 프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SCHEMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임 의 마지막 SC-FDMA심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용 된다. PUCCH는 전송되는 정보에 따라 7개의 포맷을 지원한다.
표 2는 LTE에서 PUCCH포맷과 UCI의 맵핑 관계를 나타낸다.
【표 2]
PUCCH포맷 상향링크 제어 정보 (Uplink Control Information, UCI)
포맷 1 SR( Scheduling Request) (비변조된 파형)
포맷 la 1-비트 HARQ ACK/NACK (SR존재 /비존재)
포맷 lb 2-비트 HARQ ACK/NACK (SR존재 /비존재 )
포맷 2 CSI (20개의 코딩된 비트)
포맷 2 CSI 및 1-또는 2-비트 HARQ ACK/NACK (20비트) (확장 CP만 해당)
포맷 2a CSI 및 1ᅳ비트 HARQ ACK/NACK (20+1개의 코딩된 비트)
포맷 2b CSI 및 2ᅳ비트 HARQ ACK/NACK (20+2개의 코딩된 비트)
포맷 3 (LTE-A) HARQ ACK/NACK + SR (48비트) 도 6은 PUCCH포맷 la/lb의 슬롯 레벨 구조를 나타낸다. PUCCH 포맷 la/ lb는 ACK/NACK전송에 사용된다. 노멀 CP인 경우 SC-FDMA #2/#3/#4가 DM RS (Demodulation Reference Signal) 전송에 사용된다. 확장 CP인 경우 SOFDMA #2/#3이 DM RS 전송에 사용된다. 따라서, 슬롯에서 4개의 SC-FDMA 심불이 ACK/NACK 전송에 사용된다. 편 의상, PUCCH포맷 la/lb를 PUCCH포맷 1이라고 통칭한다.
도 5올 참조하면, 1비트 [b(0)] 및 2비트 [b(0)b(l)] ACK/NACK 정보는 각각 BPSR 및 QPSK 변조 방식에 따라 변조되며, 하나의 ACK/NACK 변조 심볼이 생성된다 (do). ACK/NACK 정보에서 각각의 비트 [b(i),i=0,l]는 해당 DL 전송블록에 대한 HARQ 웅답을 나타내며, 포지티브 ACK일 경우 해당 비트는 1로 주어지고 네거티브 ACK(NACK)일 경우 해당 비트는 0으로 주어진다. 표 3은 기존 LTE에서 PUCCH 포맷 la 및 lb를 위해 정의된 변조 테이블을 나타낸다.
【표 3】
Figure imgf000023_0001
PUCCH 포맷 la/lb는 주파수 도메인에서 사이클릭 쉬프트 (^ )를 수행하고, 시간 도메인에서 직교 확산 코드 (예, Walsh-Hadamard또는 DFT코드)(\0, , , )를 이용하여 확산을 한다. 주파수 및 시간 도메인 모두에서 코드 다중화가 사용되므로 보다 많은 단말이 동일한 PUCCH RB상에 다중화 될 수 있다.
서로 다른 단말로부터 전송되는 RS는 UCI와 동일한 방법을 이용하여 다중화 된다. PUCCH ACK/NACK RB를 위한 SC-FDMA 심블에서 지원돠는 사이클릭 쉬프트의 개 수는 셀 -특정 (cell-specific) 상위 계증 시그널링 파라미터 에 의해 구성될 수 있다. ^ ≡ {1, 2, 3}는 각각 쉬프트 값이 12, 6 및 4인 것올 나타낸다. 시간
-도메인 CDM에서 ACK/NACK에 실제 사용될 수 있는 확산 코드의 개수는 RS 심볼의 개수에 의해 제한될 수 있다. 적은 수의 RS 심볼로 인해 RS 심볼의 다중화 용량
(multiplexing capacity)이 UCI 심볼의 다중화 용량보다 작기 때문이다.
도 7은 ACK/NACK을 위한 PUCCH지:원을 결정하는 예를 나타낸다. LTE시스템에 서 ACK/NACK을 위한 PUCCH 자원은 각 단말에게 미리 할당되어 있지 않고, 복수의
PUCCH 자원을 셀 내의 복수의 단말들이 매 시점마다 나눠서 사용한다. 구체적으로, 단말이 ACK/NACK을 전송하는데 사용하는 PUCCH 자원은 해당 하향링크 데이터에 대 한 스케줄링 정보를 나르는 PDCCH에 대웅된다. 각각의 하향링크 서브프레임에서 PDCCH가 전송되는 전체 영역은 복수의 CCE(Control Channel Element)로 구성되고, 단말에게 전송되는 PDCCH는 하나 이상의 CCE로 구성된다. 단말은 자신이 수신한 PDCCH를 구성하는 CCE들 중 특정 CCE (예, 첫 번째 CCE)에 대웅되는 PUCCH 자원을 통해 ACK/NACK을 전송한다.
도 7을 참조하면, 하향링크 콤포넌트 반송파 (DownLink Component Carrier, DL CC)에서 각 사각형은 CCE를 나타내고, 상향링크 콤포넌트 반송파 (UpLink Component Carrier, UL CC)에서 각 사각형은 PUCCH 자원을 나타낸다. 각각의 PUCCH 인덱스는 ACK/NACK을 위한 PUCCH 자원에 대웅된다. 도 7에서와 같이 4~6 번 CCE로 구성된 PDCCH를 통해 PDSCH에 대한 정보가 전달된다고 가정할 경우, 단말은 PDCCH를 구성 하는 첫 번째 CCE인 4번 CCE에 대응되는 4번 PUCCH를 통해 ACK/NACK을 전송한다. 도 7은 DL CC에 최대 N개의 CCE가 존재할 때에 UL CC에 최대 M개의 PUCCH가 존재하 는 경우를 예시한다. N=M일 수도 있지만 M값과 N값을 다르게 설계하고 CCE와 PUCCH 들의 매핑이 겹치게 하는 것도 가능하다.
구체적으로, LTE 시스템에서 PUCCH 자원 인덱스는 다음과 같이 정해진다.
【수학식 1】
n(i) _ η , M(D
n puccH - nccE 十 N PUCCH
여기에서, n(1) PUCCH는 ACK/NACK/DTX을 전송하기 위한 PUCCH 포맷 1의 자원 인덱 스를 나타내고, N(1) PUCCH는 상위계층으로부터 전달받는 시그널링 값을 나타내며, nCCE 는 PDCCH 전송에 사용된 CCE 인덱스 증에서 가장 작은 값을 나타낸다. n(1) PUCCH로부터 PUCCH 포맷 la/lb를 위한 사이클릭 쉬프트, 직교 확산 코드 및 PRB(Physical Resource Block)가 얻어진다.
LTE 시스템이 TDD 방식으로 동작 시, 단말은 서로 다른 시점의 서브프레임을 통해 수신한 복수의 PDSCH에 대해 하나의 다중화된 ACK/NACK 신호를 전송한다. 복 수의 PDSCH에 대하여 ACK/NACK을 전송하는 방식은 다음과 같이 나눠진다.
1) ACK/NACK 번들링 (ACK/NACK bundling): 복수의 데이터 유닛 (예, PDSCH, SPS 해제 PDCCH 등)에 대한 ACK/NACK 비트가 예를 들어 논리ᅳ AND 연산에 의해 결합 된다. 예를 들어, 모든 데이터 유닛이 성공적으로 복호된 경우 Rx 노드 (예, 단말) 는 ACK 신호를 전송한다. 반면, 데이터 유닛 중 하나라도 복호 (또는 검출)가 실패 한 경우 Rx 노드는 NACK신호를 전송하거나 아무것도 전송하지 않는다.
2) PUCCH 선택 (PUCCH selection): 복수의 PDSCH를 수신하는 단말은 ACK/NACK 전송을 위해 복수의 PUCCH 자원들을 점유한다. 복수의 데이터 유닛에 대 한 ACK/NACK 응답은 실제 ACK/NACK 전송에 사용된 PUCCH 자원과 전송된 ACK/NACK 내용 (예, 비트 값)의 조합에 의해 식별된다. ACK/NACK선택 방식으로도 지칭된다.
PUCCH 선택 전송에 대해 보다 구체적으로 설명한다. PUCCH 선택 전송 방식에 서 단말은 복수의 하향링크 데이터를 수신한 경우에 다중화된 ACK/NACK 신호를 전 송하기 위해 복수의 상향링크 물리 채널 자원올 점유한다. 일 예로, 단말은 복수의 PDSCH를 수신한 경우에 각 PDSCH를 지시하는 PDCCH의 특정 CCE를 이용해 동일한 수 의 PUCCH 자원을 점유할 수 있다. 이 경우, 점유한 복수의 PUCCH 자원 중 어느 PUCCH 자원을 선택하는가와 선택한 PUCCH 자원에 적용되는 변조 /부호화된 내용의 조합을 이용해 다중화된 ACK/NACK신호를 전송할 수 있다.
; 4는 LTE 시스템에 정의된 PUCCH 선택 전송 방식을 나타낸다.
【표 4】
Figure imgf000025_0001
NAC /DTX, ACK, AC , AC Π PUCCH.3 0,1
NAC /DTX, NAC , DTX, DTX n puccH, l 0,0
NACK/DTX, ACK, ACK, NACK/DTX n PUCCH, 2 1,0
NACK/DTX, ACK, NACK/DTX, ACK Π PUCCH.3 1,0
NACK/DTX, ACK, NACK/DTX, NACK/DTX n puccH. l. 0,1
NACK/DTX, NACK/DTX, ACK, ACK n puccH.3 0,1
NACK/DTX, NACK/DTX, ACK, NACK/DTX n PUCCH, 2 0,0
NACK/DTX, NACK/DTX, NACK/DTX, ACK n PUCCH.3 0,0
DTX, DTX, DTX, DTX N/A' N/A
표 4에서, HARQ-ACK(i)는 i-번째 데이터 유닛 (0 i≤3)의 HARQ ACK/NACK/DTX 결과를 나타낸다. HARQ ACK/NACK/DTX 결과는 ACK, NACK, DTX, NACK/DTX를 포함한다. NACK/DTX는 NACK 또는 DTX를 나타낸다. ACK 및 NACK은 PDSCH를 통해 전송된 전송블록 (코드블록과 등가이다)의 디코딩 성공 및 실패를 나타낸다. DTX(Discontinuous Transmission)는 PDCCH 검출 실패를 나타낸다. 각각의 데이터 유닛과 관련하여 최대 4개의 PUCCH 자원 (즉 , n(1) PUCCH,0~n(1) PUCCH,3)이 점유될 수 있다. 다중화된 ACK/NACK은 점유된 PUCCH 자원으로부터 선택된 하나의 PUCCH 자원을 통해 전송된다. 표 4에 기재된 n(1) PUCCH,i는 실제로 ACK/NACK을 전송하는데 사용되는 PUCCH 자원을 나타낸다. b(0)b(l)은 선택된 PUCCH 자원을 통해 전송되는 두 비트를 나타내며 QPSK 방식으로 변조된다. 일 예로, 단말이 4개의 데아터 유닛을 성공적으로 복호한 경우, 단말은 ^^^^와 연결된 PUCCH 자원을 통해 (1,1)을 기지국으로 전송한다. PUCCH 자원과 QPSK 심볼의 조합이 가능한 ACK/NACK 가정을 모두 나타내기에 부족하므로 일부의 경우를 제외하고는 NACK과 DTX는 커플링된다 (NACK/DTX, N/D).
다음으로 PUSCH 피기백에 대해 설명한다. LTE 단말은 PUCCH와 PUSCH를 동시에 전송할 수 없으므로 PUSCH가 전송되는 서브프레임에서 UCI (예, CQI/PMI, HARQ-ACK, RI 등) 전송이 필요한 경우, UCI를 PUSCH 영역에 다중화 한다.
도 8은 UL-SCH 데이터와 제어 정보의 처리 과정을 예시한다. 보다 자세한 과정은 36.212 V8.7.0 (2009.05) 5.2.2. ~ 5.2.2.8을 참조할 수 있다.
도 8을 참조하면, 에러 검출은 CRCCCyclic Redundancy Check) 부착을 통해 UL-SCH 전송블록 (Transport Block, TB)에 제공된다 (SIOO).
전체 전송블록이 CRC 패리티 비트를 계산하기 위해 사용된다. 전송블록의 비트는 "。, 2,^3,...,"^ 이다. 패리티 비트는 Po'Pi'J 'P . 'PL-i 이다. 전송블록의 크기는 A이고, 패리티 비트의 수는 L 이다.
전송블록 CRC 부착 이후, 코드 블록 분할과 코드 블록 CRC 부착이 실행된다 (S110). 코드 블록 분할에 대한 비트 입력은 0, , , ,… 이다ᅳ B는 전송블록 (CRC 포함)의 비트 수이다. 코드 블록 분할 이후의 비트는 Cr0'Crl'Cr 2'Cwᅳ, Cr !)이 된다. r은 코드 블록 번호를 나타내고^-에… ^ ^은 코드 블록 r의 비트 수를 나타낸다. C는 코드 블록의 총 개수를 나타낸다.
채널 코딩은 코드 블록 분할과 코드 블록 CRC 이후에 실행된다 (S120). 채널 코딩 이후의 비트는 ί^,^,ί^,^,…, Ho이 된다. / = 0,1,2이고, Dr 은 코드 블록 r을 위한 i번째 부호화된 스트림의 비트 수를 나타낸다 (즉, ϋΓ =^+4 ). r은 코드 블록 번호를 나타내고 "=0,1,".,01), Kr은 코드 블록 r의 비트 수를 나타낸다. C는 코드 블록의 총 개수를 나타낸다. 채널 코딩을 위해 터보 코딩이 사용될 수 있다.
레이트 매칭은 채널 코딩 이후에 수행된다 (S130). 레이트 매칭 이후의 비트는 e^e^ece^...,^^)이 된다. ^은 r—번째 코드 블록의 레이트 매칭된 비트의 수이다. r=0,l,— ,C-l이고, C는 코드 블록의 총 개수를 나타낸다.
코드 블록 연결은 레이트 매칭 이후에 실행된다 (S140). 코드 블록 연결 이후 비트는
Figure imgf000027_0001
가 된다. G는 전송을 위한 부호화된 비트의 총 개수를 나타낸다. 제어 정보가 UL-SCH 전송과 다중화 되는 경우, 제어 정보 전송에 사용되는 비트는 G에 포함되지 않는다. /ο'/ι'ΛΆ-Ά-ι 는 UL-SCH 코드워드에 해당한다.
UCI의 경우, 채널 품질 정보 (CQI 및 /또는 PMIK o0,Ol ,...o0_, ),
, r ACK-, ACK - ACK -, RI([o0 w]또는 [o of7]) 및 腿 Q-ACK( [0。 ],
Figure imgf000027_0002
°' 0o 小 >)의 채널 코딩이 각각 독립적으로 수행된다 (S150~S170 UCI의 채널 코딩은 각각의 제어 정보를 위한 부호화된 심볼의 개수에 기초하여 수행된다. 예를 들어, 부호화된 심볼의 개수는 부호화된 제어 정보의 레이트 매칭에 사용될 수 있다. 부호화된 심볼의 개수는 이후의 과정에서 변조 심볼의 개수, RE의 개수 등에 대웅된다.
HARQ-ACK의 채널 코딩은 단계 S170의 입력 비트 시퀀스 [^Ci:ᅵ , ^0^^
T^ACK -ACK „ACK ΑΓΚ ^CK ACK
또는 1·ο0 θ] …(^^:ᅬ를 이용하여 수행된다ᅳ o ]와 [ο 0 °ι ]는 각각 1-비트
Figure imgf000028_0001
은 두 비트 이상의 정보로 구성된 HARQ-ACK을 의미한다 (즉, O >2). ACK은 1로 부호화되고, NACK은 0으로 부호화된다. 1-비트 HARQ-ACK의 경우, 반복 (repetition) 코딩이 사용된다. 2-비트 HARQ-ACK의 경우, (3,2) 심플렉스 코드가 사용되고 인코딩된 데이터는 순환 반복될 수 있다. 3-비트 이상의 HARQ-ACK의 경우, (32,0) 블록 코드가 사용된다. 보다 구체적으로, 36.212 V8.7.0 (2009.05) 5.2.2.6 Channel coding of control information-S- 참조하면, 3—비트 이상의 丽 Q-ACK (즉
Figure imgf000028_0002
)의 경우, 채널 코딩 된 비트 시뭔스
^^,^^,^쭈^ 띠 이 하기 식을 이용해 얻어진다. 은 채널 코딩 된 비트의 총 개수를 나타낸다.
【수학식 2】
0ACK -)
(imod32),n jmod2
n=0 qfCK는 i-번째 채널 코딩 된 비트를 나타내고, i는 0 내지 β 의 정수이 며, mod는 모들로 (modulo) 연산올 나타내고, M는 하기의 블록 코드를 나타낸다. ^ Q^x ^)고, 은 HARQ-ACK을 위한 부호화된 심볼의 개수이며, β„은 변 조 차수 (order)이다. 은 UL-SCH 데이터와동일하게 설정된다.
표 5는 LTE 시스템에 정의된 RM(Reed— MuUer) 코드를 나타낸다.
【표 5】
Figure imgf000029_0001
데이터 /제어 다중화 블록의 입력은 부호화된 UL-SCH 비트를 의미하는
U , ,h,- G-x 와 부호화된 CQI/PMI 비트를 의미하는 ,^ ^2, ,"ᅳ, &2,-1 이다 (S180). 데이터 /제어 다중화 블록의 출력은 Ί'^'^'·"'^/'-ι이다. 는 길이 ¬의 컬럼 백터이다 ( '· = ο,.·Ή'-ι ). 이고, ^G + ce 이다. H는 UL-SCH 데이터와 CQI/PMI를 위해 할당된 부호화된 비트의 총 개수이다.
채널 인터리버의 입력은 데이터 /제어 다중화 블록의 출력, gn, ,
부호화된 랭크 지시자 q ,q 세.ᅳ ―、^부호화된 HARQ-ACK K ^CK qAc^ ACK 를 대상으로 수행된다 (S190). ; 는 CQI/PMI를 위한 길이 Qm 의 컬럼 백터이고 ^0,…, '— 1이다 ( H^///^ ). 는 ACK/NACK을 위한 길이 Qm의 컬럼 백터이고 /
Figure imgf000030_0001
^는 RI를 위한 길이 „의 컬럼 백터이고 ζ-=ο,...,ρ„-ι이다 ( ^^/ ).
채널 인터리버는 PUSCH 전송을 위해 제어 정보와 UL-SCH 데이터를 다중화한다. 구체적으로, 채널 인터리버는 PUSCH 자원에 대웅하는 채널 인터리버 행렬에 제어 정보와 UL-SCH 데이터를 맵핑하는 과정을 포함한다.
채널 인터리빙이 수행된 이후, 채널 인터리버 행렬로부터 행-바이-행으로 독출된 비트 시퀀스 /?。,^,^,...,/^^^,가 출력된다. 독출된 비트 시퀀스는 자원 그리드 상에 맵핑된다. ^'=^ + /개의 변조 심볼이 서브프레임을 통해 전송된다. 도 9는 PUSCH상에서 제어 정보와 UL-SCH 데이터의 다중화를 나타낸다. PUSCH 전송이 할당된 서브프레임에서 제어 정보를 전송하고자 할 경우, 단말은 DFT-확산 이전에 제어 정보 (UCI)와 UL-SCH 데이터를 함께 다중화 한다. 제어 정보는 CQI/PMI, HARQ ACK/NACK 및 RI 중에서 적어도 하나를 포함한다. CQI/PMI, ACK/NACK 및 RI 전송에 사용되는 각각의 RE 개수는 PUSCH 전송을 위해 할당된 MCS(Modulation and
Coding Scheme) 및 오프셋 값 ( , Δ°<^ , ο(¾ε' )에 기초한다ᅳ 오프셋 값은 제어 정보에 따라서로 다른 코딩 레이트를 허용하며 상위 계층 (예, Radio Resource Control, RRC) 시그널에 의해 반-정적으로 설정된다. UL—SCH 데이터와 제어 정보는 동일한 RE에 맵핑되지 、않는다. 제어 정보는 서브프레임의 두 슬롯에 모두 존재하도록 맵핑된다.
도 9를 참조하면, CQI 및 /또는 PMI (CQI/PMI) 자원은 UL-SCH 데이터 자원의 시작 부분에 위치하고 하나의 부반송파 상에서 모든 SC-FDMA 심볼에 순차적으로 맵핑된 이후에 다음 부반송파에서 맵핑이 이뤄진다. CQI/PMI는 부반송파 내에서 왼쪽에서 오른쪽, 즉 SC-FDMA 심볼 인텍스가 증가하는 방향으로 맵핑된다. PUSCH 데이터 (UL-SCH 데이터)는 CQI/PMI 자원의 양 (즉, 부호화된 심볼의 개수)을 고려해서 레이트 -매칭된다. UL-SCH 데이터와동일한 변조 차수 (modulation order)가 CQI/PMI에 사용된다. ACK/NACK은 UL-SCH 데이터가 맵핑된 SC-FDMA의 자원의 일부에 펑처링을 통해 삽입된다. ACK/NACK는 RS 옆에 위치하며 해당 SC-FDMA 심볼 내에서 아래쪽부터 시작해서 위쪽, 즉 부반송파 인덱스가 증가하는 방향으로 채워진다. 노멀 CP인 경우, 도면에서와 같이 ACK/NACK을 위한 SC-FDMA 심볼은 각 슬롯에서 SC-FDMA 심볼 #2/#5에 위치한다. 서브프레임에서 ACK/NACK이 실제로 전송하는지 여부와 관계 없이, 부호화된 RI는 ACK/NACK을 위한 심볼의 옆에 위치한다.
LTE(-A)에서 제어 정보 (예, QPSK 변조 사용)는 UL-SCH 데이터 없이 PUSCH 상에서 전송되도록 스케줄링 될 수 있다. 제어 정보 (CQI/PMI, RI 및 /또는 ACK/NACK)는 낮은 CM(Cubic Metric) 단일-반송파 . 특성을 유지하기 위해 DFT-스프레딩 이전에 다중화된다. ACK/NACK, RI 및 CQI/PMI를 다중화 하는 것은 도 7에서 도시한 것과 유사하다. ACK/NACK를 위한 SC-FDMA 심볼은 RS 옆에 위치하며 , CQI가 맵핑된 자원이 펑처링 될 수 있다. ACK/NACK 및 RI을 위한 RE의 개수는 레퍼런스 MCS CQI/PMI MCS)와 오프셋 파라미터 ( Δ<^' , Δ» ' 또는 Δο«^ )에 기초한다. 레퍼런스 MCS는 CQI 페이로드 사이즈 및 자원 할당으로부터 계산된다. UL-SCH 데이터가 없는 제어 시그널링을 위한 채널 코딩 및 레이트 매칭은 상술한 UL-SCH 데이터가 있는 제어 시그널링의 경우와 동일하다.
도 10은 단일 샐 상황에서 TDD UL ACK/NACK 전송 과정을 나타낸다.
도 10을 참조하면, 단말은 M개의 DL 서브프레임 (SuMrame, SF) 상에서 하나 이상의 PDSCH 신호를 수신할 수 있다 (S502_0~S502_M-1). 각각의 PDSCH 신호는 전송 모드에 따라 하나 또는 복수 (예, 2개)의 전송블록 (TB) (혹은 코드워드 (CW))을 전송하는데 사용된다. 또한, 도시하지는 않았지만, 단계 S502_0~S502_M-1에서 ACK/NACK 응답을 요하는 PDCCH 신호, 예를 들어 SPS 해제 (Semi-Persistent Scheduling re I ease)를 지시하는 PDCCH 신호 (간단히, SPS 해제 PDCCH 신호)도 수신될 수 있다. M개의 DL서브프레임에 PDSCH신호 및 /또는 SPS 해제 PDCCH 신호가 존재하면, 단말은 ACK/NACK을 전송하기 위한 과정 (예, ACK/NACK (페이로드) 생성, ACK/NACK 자원 할당 등)을 거쳐, M개의 DL 서브프레임에 대웅하는 하나의 UL 서브프레임을 통해 ACK/NACK을 전송한다 (S504). ACK/NACK은 단계 S502_0~S502_M-1의 PDSCH 신호 및 /또는 SPS 해제 PDCCH 신호에 대한 수신 웅답 정보를 포함한다. ACK/NACK은 기본적으로 PUCCH를 통해 전송되지만 (예, 도 6~7 참조), ACK/NACK 전송 시점에 PUSCH 전송이 있는 경우 ACK/NACK은 PUSCH를 통해 전송된다 (예, 도 8~9 참조). ACK/NACK 전송을 위해 표 2의 다양한 PUCCH 포맷이 사용될 수 있다. 또한, PUCCH 포맷을 통해 전송되는 ACK/NACK 비트 수를 줄이기 위해 ACK/NACK 번들링 (bundling), ACK/NACK 채널 선택 (channel selection)과 같은 다양한 방법이 사용될 수 있다.
상술한 바와 같이, TDD에서는 M개의 DL서브프레임에서 수신한 데이터에 대한 ACK/NACK이 하나의 UL 서브프레임을 통해 전송되몌;즉, M DL SF(s):l UL SF), 이들간의 관계는 DASKDownlink Association Set Index)에 의해 주어진다.
표 6은 LTE(-A)에 정의된 DASKK: 를 나타낸다. 표 6은
ACK/NACK을 전송하는 UL 서브프레임 입장에서 자신과 연관된 DL 서브프레임과의 간 격을 나타낸다. 구체적으로, 서브프레임 n-k (keK)에 PDSCH 전송 및 /또는 SPS 해제 PDCCH가 있는 경우, 단말은 서브프레임 n에서 대웅하는 ACK/NACK을 전송한다.
【표 6】
Figure imgf000032_0001
도 11은 캐리어 병합 (Carrier Aggregation, CA) 통신 시스템을 예시한다. LTE-A 시스템은 보다 넓은 주파수 대역을 사용하기 위해 복수의 UL/DL 주파수 블록 을 모다 더 큰 UL/DL 대역폭을 사용하는 캐리어 병합 (carrier aggregation 또는 bandwidth aggregation) 기술을 사용한다. 각 주파수 블록은 콤포넌트 캐리어 (Component Carrier, CC)를 이용해 전송된다. 콤포년트 캐리어는 해당 주파수 블록 을 위한 캐리어 주파수 (또는 중심 캐리어, 중심 주파수)로 이해될 수 있다. 도 11을 참조하면, 복수의 UL/DL 콤포넌트 캐리어 (Component Carrier, CC)들 을 모아 더 넓은 UL/DL 대역폭을 지원할 수 있다. CC들은 주파수 영역에서 서로 인 접하거나 비-인접할 수 있다. 각 CC의 대역폭은 독립적으로 정해질 수 있다. UL CC 의 개수와 DLCC의 개수가 다른 비대칭 캐리어 병합도 가능하다. 예를 들어, DLCC2 개 UL CC 1개인 경우에는 2:1로 대웅되도톡 구성이 가능하다. DL CC/UL CC 링크는 시 스템에 고정되어 있거나 반ᅳ정적으로 구성될 수 있다. 또한, 시스템 전체 대역이 N 개의 CC로 구성되더라도 특정 단말이 모나터링 /수신할 수 있는 주파수 대역은 M(<N) 개의 CC로 한정될 수 있다. 캐리어 병합에 대한 다양한 파라미터는 샐 특정 (cell-specific), 단말 그룹 특정 (UE group-specific) 또는 단말 특정 (UE-specif ic) 방식으로 설정될 수 있다. 한편, 제어 정보는 특정 CC를 통해서만 송수신 되도록 설정될 수 있다. 이러한 특정 CC를 프라이머리 CC(Primary CC, PCC) (또는 앵커 CC) 로 지칭하고, 나머지 CC를 세컨더리 CCXSecondary CC, SCC)로 지칭할 수 있다.
LTE-A는 무선 자원을 관리하기 위해 셀 (cell)의 개념을 사용한다 [36.300 V10.2.0 (2010-12) 5.5. Carrier Aggregation; 7.5. Carrier Aggregation참조]. 샐 은 하향링크 자원과 상향링크 자원의 조합으로 정의되며, 상향링크 자원은 필수 요 소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 캐리어 병합이 지원되는 경우, 하향링크 자원의 캐리어 주파수 (또는, DL CC)와상향링크 자원의 캐리어 주파수 (또는, UL CC) 사이의 링키지 (linkage)는 시스템 정보에 의해 지시될 수 있다. 프라이머리 주파수 (또는 PCC) 상 에서 동작하는 셀을 프라이머리 샐 (Primary Cell, PCell)로 지칭하고, 세컨더리 주 파수 (또는 SCC) 상에서 동작하는 셀을 세컨더리 셀 (Secondary Cell, SCell)로 지칭 할수 있다. PCell은 단말이 초기 연결 설정 (initial connection establishment) 과 정을 수행하거나 연결 재 -설정 과정을 수행하는데 사용된다. PCell은 핸드오버 과정 에서 지시된 셀을 지칭할 수도 있다. SCell은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. PCell과 SCell은 서빙 샐로 통칭될 수 있다. 따라서, RRC_C0NNECTED상태에 있지만 캐리어 병합이 설 정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, PCell로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED상태에 있고 캐리어 병합이 설정된 단 말의 경우, 하나 이상의 서빙 셀이 존재하고, 전체 서빙 셀에는 PCell과 전체 SCell이 포함된다. 캐리어 병합을 위해, 네트워크는 초기 보안 활성화 (initial security activation) 과정이 개시된 이후, 연결 설정 과정에서 초기에 구성되는 PCell에 부가하여 하나 이상의 SCell을 캐리어 병합을 지원하는 단말을 위해 구성 할 수 있다.
크로스-캐리어 스케줄링 (또는 크로스 -CC 스케줄링)이 적용될 경우, 하향링 크 할당을 위한 PDCCH는 DL CC#0으로 전송되고, 해당 PDSCH는 DL CC#2로 전송될 수 있다. 크로스 -CC스케즐링을 위해, 캐리어 지시 필드 (carrier indicator field, CIF) 의 도입이 고려될 수 있다. PDCCH 내에서 CIF의 존재 여부는 상위 계층 시그널링 (예, RRC 시그널링)에 의해 반 -정적 및 단말 -특정 (또는 단말 그룹-특정) 방식으로 설정 될 수 있다. PDCCH 전송의 베이스 라인을 요약하면 다음과 같다.
- CIF 디스에이블드 (disabled): DL CC 상의 PDCCH는 동일한 DL CC상의 PDSCH 자원을 할당하거나 하나의 링크된 UL CC 상의 PUSCH자원을 할당
- CIF 이네이블드 (enabled): DL CC상의 PDCCH는 CIF를 이용하여 복수의 병합 된 DL/UL CC 중에서 특정 DL/UL CC상의 PDSCH또는 PUSCH자원을 할당 가능
CIF가 존재할 경우, 기지국은 단말 측의 BD 복잡도를 낮추기 위해 PDCCH 모 니터링 DL CC 세트를 할당할수 있다. PDCCH 모니터링 DL CC 세트는 병합된 전체 DL CC의 일부로서 하나 이상의 DL CC를 포함하고 단말은 해당 DL CC 상에서만 PDCCH의 검출 /디코딩을 수행한다. 즉, 기지국이 단말에게 PDSCH/PUSCH를 스케줄링 할 경우, PDCCH는 PDCCH모니터링 DL CC 세트를 통해서만 전송된다. PDCCH모니터링 DL CC 세 트는 단말ᅳ특정 (UE-specific), 단말—그룹 -특정 또는 셀 -특정 (cell-specific) 방식 으로 설정될 수 있다. 용어 "PDCCH모니터링 DL CC" 는 모니터링 캐리어, 모니터링 샐 등과 같은 등가의 용어로 대체될 수 있다. 또한, 단말을 위해 병합된 CC는 서빙 CC, 서빙 캐리어, 서빙 샐 등과 같은 등가의 용어로 대체될 수 있다.
도 12는 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다. 3개의 DL CC가 병합되었다고 가정한다. DL CC A가 PDCCH모니터링 DL CC로 설정되었다고 가정한다. DL CC A~C는 서빙 CC, 서빙 캐리어, 서빙 샐 등으로 지칭될 수 있다. CIF가 디스에 이블 된 경우, 각각의 DL CC는 LTE PDCCH 규칙에 따라 CIF 없이 자신의 PDSCH를 스 케줄링 하는 PDCCH만을 전송할 수 있다. 반면, CIF가 이네이블 된 경우, DL CC A (모 니터링 DL CC)는 CIF를 이용하여 DL CC A의 PDSCH를 스케줄링 하는 PDCCH뿐만 아니 라 다른 CC의 PDSCH를 스케즐링 하는 PDCCH도 전송할 수 있다. 이 경우, PDCCH 모니 터링 DL CC로 설정되지 않은 DL CC B/C에서는 PDCCH가 전송되지 않는다.
실시예: CA 기반 TDD시스템에서의 ACK/NACK 전송
기존 LTE TDD 시스템의 ACK/NACK 다중화 (즉, ACK/NACK 선택) 방법에서는, 기 본적으로 각 단말의 PUCCH 자원 확보를 위해 해당 단말의 각 PDSCH를 스케줄링 하 는 PDCCH에 대웅되는 (예, PDCCH 전송에 사용된 최소 (lowest) CCE 인덱스와 링크되어 있는) 묵시적 PUCCH 자원을 사용하는 묵시적 ACK/NACK 선택 방식을 사용한다. 한편 LTE-A FDD 시스템에서는 기본적으로 단말 -특정 (UE-specific)하게 설정되는 하나의 특정 UL CC (예, PCC, PCell)를 통하여 복수의 DL CC를 통해 전송된 복수의 PDSCH에 대한 복수 ACK/NACK 전송을 고려하고 있다. 이를 위해, 특정 혹은 일부 혹은 모든 DL CC를 스케줄링 하는 PDCCH에 링크되어 있는 (예, 최소 (lowest) CCE 인덱스 nCCE에 링크되어 있는, 혹은 nCCE와 nccE+1에 링크되어 있는) 묵시적 (implicit) PUCCH 자원 혹은 해당 묵시적 PUCCH 자원과 RRC 시그널링을 통해 각 단말에게 미리 예약된 명 시적 (explicit) PUCCH 자원의 조합을 사용하는 ACK/NACK 선택 방식을 고려하고 있 다.
한편, LTE-A TDD 시스템에서도 복수의 CC가 병합된 상황올 고려할 수 있다. 이에 따라, 복수의 DL서브프레임과 복수의 DL CC를 통해 전송된 복수의 PDSCH에 대 한 복수 ACK/NACK 정보 /신호를, 해당 복수 DL 서브프레임에 대웅되는 UL 서브프레 임에서 특정 UL CC (예, PCC, PCell)를 통해 전송하는 것을 고려하고 있다. 여기서는 앞서 LTE-A FDD에서와는 달리 , 단말에게 할당된 모든 DL CC를 통해 전송될 수 있는 최대 CW 수에 대웅되는 복수 ACK/NACK을, 복수 DL 서브프레임 모두에 대하여 전송 하는 방식 (이하, 풀 (full) ACK/NACK)을 고려할 수 있다. 또한, CW 및 /또는 CC 및 /또 는 SF 도메인에 대해 ACK/NACK 번들링을 적용하여 전체 전송 ACK/NACK 수를 줄여서 전송하는 방식 (이하, 번들링된 (bundled) ACK/NACK)을 고려할 수 있다. CW 번들링은 각 DL SF에 대해 CC별로 ACK/NACK 번들링을 적용하는 것을 의미한다. CW 번들링은 공간 번들링으로도 지칭된다. CC 번들링은 각 DL SF에 대해 모든 흑은 일부 CC에 대 해 ACK/NACK 번들링을 적용하는 것을 의미한다. SF 번들링은 각 CC에 대해 모든 혹 은 일부 DL SF에 대해 ACK/NACK 번들링을 적용하는 것을 의미한다. ACK/NACK번들링 은 복수의 ACK/NACK응답에 대해 논리 -AND 연산을 적용하는 것을 포함한다.
한편, CA 기반 TDD 시스템에서는 각 DL CC에 대해 DL 그랜트 PDCCH 내의 DAI (Downlink Assignment Index) 필드를 이용하여 DAI-카운터 (이하, DAI-c)를 동작 시키는 상황을 고려할 수 있다. DAI-c 값은 0 이나 1, 혹은 임의의 숫자로 시작될 수 있으며, 편의상 1로 시작됨을 가정한다. DAI-c는 DL DAI와 흔용된다.
• DAI-c (흑은, DLDAI) : DL SF 순서를 기반으로 스케즐링 되는 PDSCH 또는 DL 그랜트 PDCCH 순서를 알려줄 수 있다. 즉, DAI—카운터 값은 DL 서브프레임 (들) n-k ( kGK ) (표 6 참조) 내에서 현재 서브프레임까지 PDSCH (들)에 대웅하는 PDCCH (들) 및 하향링크 SPS 해제를 지시하는 PDCCH (들)의 누적 값 (즉, 카운팅 값) 을 나타낼 수 있다. 한편, DAI-c가지시하는 순서는 PDCCH 없이 전송되는 PDSCH (예, SPS PDSCH)를 제외한 순서일 수 있다. 예를 들어, DL SF #1, #3을 통해 PDSCH가 스 케줄링되는 경우, 해당 PDSCH를 스케줄링하는 PDCCH 내의 DAI-c는 각각 1, 2로 시그 널링될 수 있다. 2-비트 DAI-c를 기반으로 DL SF:UL SF = 9:1인 TDD 구성 (예, 표 1 의 UL-DL 구성 5)까지 고려할 경우, 아래와 같은 modul으 4 연산올 적용할 수 있다.
- 1 또는 5 또는 9번째 스케즐링 되는 PDSCH또는 DL 그랜트 PDCCH의 DAI-c=l
- 2 또는 6번째 스케줄링 되는 PDSCH 또는 DL 그랜트 PDCCH의 DAI-c=2
- 3 또는 7번째 스케줄링 되는 PDSCH또는 DL 그랜트 PDCCH의 DAI_c=3
- 4 또는 8번째 스케줄링 되는 PDSCH또는 DL 그랜트 PDCCH의 DAI-c=4 여기서, PDSCH I DL 그랜트 PDCCH I PDSCH 또는 DL 그랜트 PDCCH는 각각 ACK/NACK 웅답이 요구되는 PDSCH I DL 그랜트 PDCCH I PDSCH 또는 DL 그랜트 PDCCH 를 의미한다. PDSCH는 대웅되는 PDCCH가 있는 PDSCH (이하, PDSCH w/ PDCCH) 및 대응 되는 PDCCH가 없는 PDSCH 이하, PDSCH w/o PDCCH) (예, SPS PDSCH)를 포함한다. DL 그 랜트 PDCCH는 SPS 해제 (release)를 명령하는 PDCCH (이하, SPS 해제 PDCCH)를 포함한 다. DL 그랜트 PDCCH는 DL 스케줄링 -관련 PDCCH로 일반화될 수 있다.
CA 기반 TDD시스템의 경우, 복수의 DL CC/SF에 대한 복수 ACK/NACK에 대하여 CW 번들링을 기반으로 DAI-c를 이용한 SF 번들링을 적용하기 위해, 하나의 DL CC에 대해 수신된 모든 PDSCH 및 /또는 DL 그랜트 PDCCH에 대하여 총 ACK 개수 (혹은, 일 부 ACK 개수)를 알려주는 ACK-카운터 방식을 고려할 수 있다. ACK-카운터 방식으로 아래와 같은 방식이 고려될 수 있다.
■ 번들링된 (bundled) ACK-카운터 방식
수신된 DAI-c 개수와총 ACK 개수가 일치할 때만 ACK 개수 (즉 ACK-카운터 값) 를 알려주고, 그렇지 않은 경우 ACK-카운터 = 0으로 처리하는 방식이다. PDCCH 없이 전송되는 PDSCH (예, SPS PDSCH)가 존재하는 경우, 이에 대한 ACK을 포함하여 총 ACK 개수가 (수신된 DAI— c 개수 + 1)과 일치할 때만 ACK 개수 (즉, ACK-카운터 값)을 알 려주고, 그렇지 않은 경우 ACK-카운터 = 0으로 처리할 수 있다.
■ 연속적 (consecutive) ACK-카운터 방식
DAI-c 초기 값 (예, 1) (이에 대웅되는 PDSCH 또는 DL 그랜트 PDCCH)부터 시작 하여 연속적으로 증가하는 DAI-c 값에 대웅되는 ACK 개수 (즉, ACK-카운터 값)를 알 려주고, DAI-c 초기 값에 대해 ACK이 아닌 경우 ACK-카운터 = 0으로 처리하는 방식 이다. PDCCH 없이 전송되는 PDSCH (예, SPS PDSCH)가 존재하는 경우, 이에 대한 ACK 부터 시작하여 (DAI-c 초기 값부터 시작되어) 연속적으로 증가하는 DAI-c 값에 대 웅되는 ACK 개수 (즉, ACK-카운터 값)를 알려주고, PDCCH 없이 전송되는 PDSCH에 대 하여 NACK인 경우 ACK-카운터 = 0으로 처리할 수 있다.
. 2-비트 ACK-카운터를 기반으로 DL SF:UL SF = 9:1인 TDD 구성까지 고려할 경 우, 아래와 같은 모듈로 (modulo)-3 연산을 적용할 수 있다.
- ACK 개수가 0 (or NACK or DTX)인 경우, ACK-카운터 = 0
- ACK 개수가 1 or 4 or 7인 경우, ACK-카운터 = 1
- ACK 개수가 2 or 5 or 8인 경우, ACK-카운터 = 2
- ACK 개수가 3 or 6 or 9인 경우, ACK-카운터 = 3 CA 기반 TDD에서는 복수의 DL CC에 대한 복수 ACK/NACK의 PUCCH 전송 방식으 로, 각 DL COH 대한 ACK-카운터 값을 멀티 -비트 ACK/NACK코딩 혹은 ACK/NACK선택 기법을 통해 전송하는 것을 고려할 수 있다. 편의상, ACK-카운터 기반의 PUCCH ACK/NACK 전송 방식을 perCC-Acount 방법으로 지칭한다. 또한, 연속적 ACK-카운터 기반의 ACK/NACK선택을 Acount-Chsel 방법으로 지칭한다.
표 7~9는 DL SF:UL SF = M:l인 TDD 구성에서 Acount—Chsel 적용을 위한 CC별 HARQ-ACK 응답-대 -A/N 상태 매핑을 예시한다. 표 7, 표 8, 표 9는 각각 M=2, M=3, M=4인 경우를 나타낸다. 아래 표에서, A은 ACK을 의미하고, N은 NACK을 의미하며, D 는 데이터를 수신하지 않음 혹은 PDCCH를 수신하지 않음 (즉, DTX)을 의미한다. N/D 는 NACK혹은 DTX를 의미하고, any는 ACK, NACK또는 DTX중 어느 하나를 의미한다. 【표 7]
Figure imgf000038_0001
여기서, HARQ-ACK(l), (2) = (N, N/D)는 A/N 상태 (Ν,. N)으로 매핑되고, HARQ-ACK(l), (2) = (D, '.,> N/D)는 A/N 상태 (D, D)으로 매핑될 수 있다. 또한,
HARQ-ACK(l), (2) = (N, N/D)는 A/N상태 (N, N/D)으로 매핑되고, HARQ-ACK(l), (2) = (D, N/D)는 A/N상태 (D, N/D)으로 매핑될 수 있다.
여기서, HARQ-ACK(j) (0≤j≤M-l)(M=2)는 j+1번째 DL SF을 통해 전송된 PDSCH 또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX웅답을 의미한다. 【표 8】
Figure imgf000038_0002
여기서, HARQ-ACK(l), (2), (3) = (N, any, any)는 A/N상태 (N, N)으로 매핑 되고, HARQ-ACK(l), (2), (3) = (D, any, any)는 A/N 상태 (D, D)에 매핑될 수 있다. 또한, HARQ-ACK(l), (2), (3) = (N, any, any)는 A/N 상태 (N, N/D)으로 매핑되고,
HARQ-ACK(l), (2), (3) = (D, any, any)는 A/N상태 (D, N/D)에 매핑될 수 있다. 여기서, HARQ-ACK(j) (0<j<M-l)(M=3)는 DAI-c = j+1에 대응되는 PDSCH 또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX 웅답을 의미한다. 등가 적으로, HARQ-ACK(j) (0<j<M-l)(M=3)는 DAI-c = j+1를 갖는 PDCCH에 대응되는 PDSCH에 대한 ACK/NACK/DTX 웅답 또는 DAI-c = j+1를 갖는 SPS 해제 PDCCH)에 대한 ACK/NACK/DTX 응답을 의미할 수 있다. PDCCH 없이 전송되는 PDSCH (즉, PDSCH w/o PDCCH) (예, SPS PDSCH)가 존재하는 경우, HARQ-ACK(O)은 PDSCH w/o PDCCH에 대한 ACK/NACK/DTX 웅답을 의미하고, HARQ-ACK(j) (l≤j≤M-l)은 DAI-c = j에 대웅되는 PDSCH또는 DL그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX웅답을 의미 할 수 있다. PDSCH w/o PDCCH는 PCC상에서 전송될 수 있다.
【표 9】
Figure imgf000039_0001
여기서, HARQ-ACK(l), (2), (3), (4) = (N, any, any, any) 또는 (A, N/D, any, any), except for (A, D, D, D)는 A/N 상태 (N, N)으로 매핑되고, HA Q-ACK(l), (2), (3), (4) = (D, any, any, any)는 A/N 상태 (D, D)으로 매핑될 수 있다. 또한, HARQ-ACK(l), (2), (3), (4) = (N, any, any, any) 또는 (A, N/D, any, any), except for (A, D, D, D)는 A/N 상태 (N, N/D)으로 매핑되고, HARQ-ACK(l), (2), (3), (4) = (D, any, any, any)는 A/N상태 (D, N/D)으로 매핑될 수 있다.
여기서, HARQ— ACK(j) (0<j<M-l)(M=4)는 DAI_c = j+1에 대응되는 PDSCH 또는 DL 그랜트 PDCCH (예 SPS 해제 PDCCH)에 대한 ACK/NACK/DTX 웅답을 의미한다. 등가 적으로, HARQ-ACK(j) (0<j<M-l)(M=4)는 DAI-c = j+1를 갖는 PDCCH에 대응되는 PDSCH에 대한 ACK/NACK/DTX 응답 또는 DAI-c = j+1를 갖는 SPS 해제 PDCCH)에 대한 ACK/NACK/DTX 응답을 의미할 수 있다. PDCCH 없이 전송되는 PDSCH (즉, PDSCH w/o PDCCH) (예, SPS PDSCH)가 존재하는 경우, HARQ-ACK(O)은 PDSCH w/o PDCCH에 대한 ACK/NACK/DTX 웅답을 의미하고, HARQ-ACK(j) (l<j<M-l)은 DAI-c = j에 대응되는 PDSCH또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX응답을 의미 할 수 있다. PDSCH w/o PDCCH는 PCC 상에서 전송될 수 있다.
표 7~9를 기반으로 CC별 2-비트 A/N 상태로 산출한 후, A/N 상태-대 -자원 /성 상 매핑 과정을 거쳐 최종적으로 A/N 정보를 전송할 수 있다. 표 10은 두 개의 CC (혹은 셀)가 구성된 경우의 A/N 상태-대 -자원 /성상 매핑 테이블을 예시한다. 두 개의 CC(흑은 셀)는 PCC (혹은 PCell)와 SCC (흑은 SCell)를 포함한다.
【표 10】
Figure imgf000040_0001
이로 제한되는 것은 아니지만, 표 10에서 (BO, B1)이 PCC (혹은 PCell)에 대한 2-비트 A/N상태, (B2, B3)가 SCC에 대한 2-비트 A/N상태로 매핑될 수 있다. 한편, 표 10의 5번째 열 (Resource)은 전체 4-비트 A/N상태 (B0, Bl, B2, B3) 전송을 위해 선택되는 PUCCH 자원의 인덱스를 의미하고, 6번째 열 (Constellation)은 각 PUCCH 자 원 상의 QPSK 성상 포인트 (constellation point)를 의미한다. 보다 구체적으로, H0 및 /또는 HI에는 크로스 CC 스케줄링 여부에 관계없이 PCC (혹은 PCell)를 스케줄링 하는 PDCCH (즉, PCC-PDCCH)에 링크된 묵시적 PUCCH자원, H2 및 /또는 H3에는 크로스 CC 스케줄링 여부에 따라 SCC를 스케줄링 하는 PDCCH (즉, SCC-PDCCH)에 링크된 묵시 적 PUCCH 자원 흑은 RRC로 예약되는 명시적 PUCCH 자원이 각각 할당될 수 있다. 예 를 들어, TDD상황에서 H0와 HI에는 각각 DAI-c가 1과 2인 PCC-PDCCH에 링크된 묵시 적 PUCCH 자원, H2와 H3에는 각각 DAI-c가 1과 2인 SCC-PDCCH에 링크된 묵시적 PUCCH자원이 할당될 수 있다.
상술한 예는 표 7~9를 기반으로 CC별 2-비트 A/N 상태를 산출한 후, 표 10의 A/N 상태-대 -자원 /성상 매핑 과정을 거쳐 A/N 정보를 전송하는 예를 나타낸다. 등 가의 방법으로, 표 7~9/표 10의 매핑 방식에 따른 중간 과정을 생략하고, 각 CC의 HARQ-ACK웅답을 최종 사용되는 PUCCH자원 /성상과 직접 매핑하는 것도 가능하다. 표 11은 M=2인 경우의 Acount-Chsel에 기초한 A/N 매핑 테이블을 나타낸다. 표 11은 표 7과 표 10의 결합으로부터 유도된다. 표 11에서 n^CCH 0~n CCH3은 표
10의 H0~H3에 대응하고, 표 11의 비트 값 [0011 1001]은 표 10의 복소 심볼 [+1 -1 +j ᅳ j]에 대응한다 (표 3 참조).
【표 11]
Figure imgf000041_0001
N, N/D N/D, N/D rlPUCCH,0 0, 0
D, N/D N/D, N/D No Transmission 표 12는 M=3인 경우의 Acount-Chsel에 기초한 A/N 매핑 테이블을 나타낸다. 표 12는 표 8과 표 10의 결합으로부터 유도된다. 표 12에서 n UCCH,0~n CCH3은 표
10의 H0-H3에 대웅하고, 표 12의 비트 값 [0011 1001]은 표 10의 복소 심볼 [+1 -1 +j -j]에 대웅한다 (표 3 참조).
【표 12]
Figure imgf000042_0001
표 13은 M=4인 경우의 Acount -Chsel에 기초한 A/N 매핑 테이블을 나타낸다. 표 13은 표 9와 표 10의 결합으로부터 유도된다. 표 13에서 n CCHfi~r^UCCH,3은 표
10의 H0~H3에 대웅하고, 표 13의 비트 값 [00 11 1001]은 표 10의 복소 심볼 [+1 -1 +j -j]에 대웅한다 (표 3 참조).
【표 13】
PCC (PCell) [BO Bl] SCC (SCell) [B2 B3] Resource Const el 1 at ion
HARQ-ACK(O), HARQ-AC (l), HARQ-AC (O) , HARQ-AC (l) ,
b(l)
HARQ-ACK(2), HARQ-ACKC3) HA Q-ACK(2), HARQ-ACK(3) "PUCCH b(0),
A, A, A, N/D A, A, A, N/D (1)
nPUCCH,\ 1, 1
k, A, N/D, any A, A, A, N/D PUCCH,\ 0, 0
A, D, 으 D A, A, A, N/D PUCCH,3 1, 1
A, A, A, A A, A, A, N/D "PUCCH,3 1, 1
N/D, any, any, any A, A, A, N/D rlPUCCH,3 0, 1
(A, N/D, any, any),
A, A, A, N/D
except for (A, D, D, D) nPUCCH,i 0, 1
A, A, A, N/D A, A, N/D, any „(i) 1, o
A, A, N/D, any A, A, N/D, any PUCCH,3 1, 0
A, D, D, D A, A' N/D, any PUCCH,0 0, 1
A, A, A, A A, A, N/D, any PUCCH,0 0, 1
N/D, any, any, any A, A, N/D, any PUCCH,3 0, 0
(A, N/D, any, any) ,
A, A, N/D, any
except for (A, D, D, D) PUCCH,3 0, 0
A, A, A, N/D A, D, D, D PUCCH,2 1, 1
A, A, A, N/D A, A, A, A rlPUCCH,2 1, 1
A, A, N/D, any A, D, D, D PUCCH,2 0, 1
A, A, N/D, any Aᅳ A, A, A nPUCCH,2 0, 1
A, D, D, D A, D, D, D rlPUCCH,2 1, o k' D, D, D A, A, A, A nPUCCH,2 1, o
A, A, A, A A, D, D, D PUCCH,2 1, 0
A, A, A, A A, A, A, A nPUCCH,2 1, 0
N/D, any, any, any A, D, D, D PUCC ,2 0, 0
N/D, any, any, any A, A, A, A nPUCCH,2 0, 0 (A, N/D, any, any),
A D
except for (A, D, D, D) ᅳ D, D, "PUCCH ,1 0, 0
(A, N/D, any, any),
A, A, A, A
except for (A, D, D, D) nPUCCH,2 0, 0
A, A, A, N/D N/D, any, any, any "PUCCH, I 1, o
(A, N/D, any, any),
A, A, A, N/D 1, 0
except for (A, D, D, D) "PUCCH, I
A, A, N/D, any N/D, any, any, any PUCCH, \ 0, 1
(A, N/D, any, any),
A, A, N/D, any 0)
except for (A, D, D, D) n PUCCH, \ 0, 1
A, D, D, D N/D, any, any, any "PUCCH fi 1, 1
(A, N/D, any, any),
A, D, D, D
except for (A, D, D, D) "PUCCH ft 1, 1
A, A, A, A N/D, any, any, any PUCCH,0 1, 1
(A, N/D, any, any),
A, A, A, A
except for (A, D, D, D) nPUCCHfi 1, 1
N, any, any, any N/D, any, any, any "PUCCH fi 0, 0
(A, N/D, any, any),
N, any, any, any
except for (A, D, D, D) PUCCH,0 0, 0
(A, N/D, any, any),
N/D, any, any, any nPUCCHfl 0, 0 except for (A, D, D, D)
(A, N/D, any, any), (A, N/D, any, any),
except for (A, D, D, D) except for (A, D, D, D) " PUCCH, 0 0, 0
D, any, any, any N/D, any, any, any No Transmission
(A, N/D, any, any),
D, any, any, any No Transmission except for (A, D, D, D) 한편, 기존 LTE에서는 ACK/NACK 전송 시점에 전송해야 할 PUSCH가 존재하면 UL 데이터 페이로드를 펑처링 (및 /또는 레이트-매칭)한 후 해당 ACK/NACK을 UL 데 이터와 다중화하여 PUCCH가 아닌 PUSCH를 통해 전송한다 (즉, ACK/NACK 피기백). CA 기반 LTE-A TDD 시스템에서도 ACK/NACK 전송 UL 서브프레임을 통해 전송해야 할 PUSCH가 존재하거나, 해당 UL SF에서 PCC를 통해 전송해야 할 PUSCH가 존재하는 경 우, 해당 ACK/NACK을 PUSCH에 피기백 하는 방안을 고려할 수 있다.
이와 관련하여, PUCCH 전송을 위해 perCC-Acount 방법 (즉, PUCCH 포맷 lb with 채널 선택)이 설정된 경우, PUSCH로 피기백 되는 ACK/NACK 형태는 PUCCH로 전송될 때와동일한 형태인 DLCC별 ACK-카운터 값 (즉, per-CC A-counter)이 될 수 있다. 구 체적으로, DL SF:UL SF = M:l인 TDD UL-DL 구성에서 다음과 같이 PUSCH 전송을 위한 A/N 비트를 산출할 수 있다.
- M = 1인 경우: 각 CC별로 DAI-c = 1에 대웅되는 PDSCH 또는 DL 그랜트 PDCCH (PDSCH w/o PDCCH가 존재하지 않는 경우) 혹은 PDSCH w/o PDCCH (PDSCH w/o PDCCH가 존재하는 경우)에 대한 1- 또는 2-비트 A/N웅답을산출
- M = 2인 경우: 각 CC별로 표 7을 적용하여 2ᅳ비트 A/N 정보를 산출
- M = 3인 경우: 각 CC별로 표 8을 적용하여 2ᅳ비트 A/N 정보를 산출
- M = 4인 경우: 각 CC별로 표 9를 적용하여 2-비트 A/N 정보를 산출 이후, 표 10을 참조하여 설명한 것과 동일한 방식으로 CC별 2-비트 A/N들을 연접하여 PUSCH로 전송되는 최종 A/N 코드워드를 구성할 수 있다. 이로 제한되는 것은 아니지만, PCC (혹은 PCell)에 대한 A/N이 MSB에 배치될 수 있다. 한편, CC별 2-비트 A/N의 경우 비트 오류 시의 A/N 응답 오류 개수를 최소화할 수 있는 그레이 코딩올 적용하는 것이 바람직하다.
표 7, 8, 9의 A/N 상태를 비트로 변환 (예, A - 1, N/D - 0)함으로써 M = 2, 3, 4에 대하여 표 14, 15, 16을 얻을 수 있다.
【표 14】
Figure imgf000045_0001
여기서, HARQ-ACK(l), (2) = (N, N/D)는 A/N 비트 (0, 0)으로 매핑되고, HARQ-AC (l), (2) = (D, N/D)는 A/N 비트 (0, 0)으로 매핑될 수 있다.
여기서, HARQ-ACK(j) (0≤j<M-l)(M=2)는 j+1번째 DL SF을 통해 전송된 PDSCH 또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX응답을 의미한다. 【표 15]
Figure imgf000045_0002
여기서, HARQ-ACK(l), (2), (3) = (N, any, any)는 A/N 비트 (0, 0)으로 매핑 되고, HARQ-ACK(l), (2), (3) = (D, any, any)는 A/N 비트 (0, 0)에 매핑될 수 있다. 여기서, HARQ-ACK(j) (0<j<M-l)(M=3)는 DAI-c = j+1에 대웅되는 PDSCH 또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX 웅답을 의미한다. 등가 적으로, HARQ-ACK(j) (0<j≤M-l)(M=3)는 DAI-c = j+1를 갖는 PDCCH에 대웅되는 PDSCH에 대한 ACK/NACK/DTX 웅답 또는 DAI-c = j+1를 갖는 SPS 해제 PDCCH)에 대한 ACK/NACK/DTX 웅답을 의미할 수 있다. PDCCH 없이 전송되는 PDSCH (즉, PDSCH w/o PDCCH) (예, SPS PDSCH)가 존재하는 경우, HARQ-ACK(O)은 PDSCH w/o PDCCH에 대한 ACK/NACK/DTX 응답을 의미하고, HARQ-ACK(j) (l≤j≤M-l)은 DAI-c = j에 대웅되는 PDSCH또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX웅답을 의미 할 수 있다. PDSCH w/o PDCCH는 PCC상에서 전송될 수 있다.
【표 16】
Figure imgf000046_0001
여기서, HARQ-ACK(l), (2), (3), (4) = (N, any, any, any) 또는 (A, N/D, any, any), except for (A, D, D, D)는 A/N 비트 (0, 0)으로 매핑되고, HARQ-ACK(l), (2), (3), (4) = (D, any, any, any)는 A/N 비트 (0, 0)으로 매핑될 수 있다.
여기서, HARQ-ACK(j) (0≤j≤¾KL)(M=4)는 DAI-c = j+1에 대웅되는 PDSCH 또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX 응답을 의미한다. 등가 적으로, HARQ-ACK(j) (0<j<M-l)(M=4)는 DAI-c = j+1를 갖는 PDCCH에 대응되는 PDSCH에 대한 ACK/NACK/DTX 웅답 또는 DAI— c = j+1를 갖는 SPS 해제 PDCCH)에 대한 ACK/NACK/DTX 응답을 의미할 수 있다. PDCCH 없이 전송되는 PDSCH (즉, PDSCH w/o PDCCH) (예, SPS PDSCH)가 존재하는 경우, HARQ-ACK(O)은 PDSCH w/o PDCCH에 대한 ACK/NACK/DTX 웅답을 의미하고, HARQ— ACK(j) (l<j≤M_l)은 DAI—c = j에 대웅되는 PDSCH또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX응답을 의미 할 수 있다. PDSCH w/o PDCCH는 PCC상에서 전송될 수 있다.
PUSCH ACK/NACK피기백을 수행하는 경우, ACK/NACK 정보사이즈를 적응적으로 축소 /결정하기 위하여 PUSCH를 스케줄링 하는 PDCCH (즉, UL 그랜트 PDCCH)를 통해 PUSCH에 피기백 될 ACK/NACK에 관한 정보를 알려주는 방법을 고려할 수 있다.
일 예로, 각 DL CC에 대해 스케줄링 /전송된 PDSCH 또는 DL 그랜트 PDCCH 수 중 최대 값 (즉, maxPDCCHperCC)을, PUSCH를 스케줄링 하는 UL 그랜트 PDCCH를 통해 알려줄 수 있다. 이 경우, PDCCH 없이 전송되는 PDSCH (예, SPS PDSCH)를 포함 혹은 제외하고 maxPDCCHperCC가 결정될 수 있다. 구체적으로, 단말은 DL CC 별로 maxPDCCHperCC까지에 해당하는 DAI-c 값 (이는, PDCCH 없이 전송되는 PDSCH (예, SPS PDSCH)가 존재하는 경우, maxPDCCHperCC - 1까지에 해당하는 DAI-c 값이 될 수 있음) 에 대응하는 PDSCH 또는 DL 그랜트 PDCCH 및 ACK/NACK 위치 (posit ion)에 대해서만 개별 A/N-비트 혹은 per-CC A-counter 방식으로 ACK/NACK 페이로드를 구성할 수 있 다. maxPDCCHperCC 정보는 UL 그랜트 PDCCH 내의 DAI 필드 (즉, UL DAI)를 통해 전송 될 수 다. 2-비트 UL DAI를 기반으로 DL SF:UL SF = 9:1인 TDD 구성까지 고려할 경 우, 아래와 같은 모들로 (modulo)-4 연산을 적용할 수 있다.
- maxPDCCHperCC가 1, 5 또는 9인 경우 UL DAI = 1
- maxPDCCHperCC가 2 또는 6인 경우 UL DAI = 2
- maxPDCCHperCC가 3 또는 7인 경우 UL DAI = 3
- maxPDCCHperCC가 0, 4또는 8인 경우 UL DAI = 4
DL SF:UL SF = M:l인 TDD UL-DL 구성에서 UL DAI = N (N<M)을 수신했을 경우, M:l이 아닌 N:l의 TDD UL-DL 구성에서의 Acount-Chsel을 위해 정의된 A/N 응답-대 -A/N 상태 매핑 테이블을 사용하여 A/N 피기백을 수행하는 방법을 고려할 수 있다. 이에 대한구체적인 예를 들면 아래와 같다.
- UL DAI = 1 수신 시: 각 CC별로 DAI-c = 1에 대웅되는 PDSCH 또는 DL 그랜 트 PDCCH (PDSCH w/o PDCCH가존재하지 않는 경우) 흑은 PDSCH w/o PDCCH (PDSCH w/o PDCCH가 존재하는 경우)에 대한 1- 또는 2-비트 A/N응답을 산출
- UL DAI = 2 수신 시: 각 CC별로 표 7을 적용하여 2-비트 A/N 정보를 산출
- UL DAI = 3 수신 시: 각 CC별로 표 8을 적용하여 2-비트 A/N 정보를 산출
- UL DAI = 4수신 시 : 각 CC별로 표 9를 적용하여 2-비트 A/N 정보를 산출 UL DAI = 1인 경우 구체적으로, 최대 2개 CW까지 전송할 수 있도록 설정된 CC 에는 각 CW에 대한 2-비트 A/N, 최대 1개 CW까지 전송할 수 있도록 설정된 CC에는 1-비트 A/N 웅답이 생성될 수 있다. 한편, CC별 1- 또는 2-비트 A/N들을 연접하여 PUSCH로 전송되는 최종 A/N 코드워드를 구성할 수 있다. 이로 제한되는 것은 아니 지만, PCC (혹은 PCell)에 대한 A/N이 MSB(Most Significant Bit)에 배치될 수 있다.
UL DAI > 1인 경우, 표 10을 참조하여 설명한 것과 동일한 방식으로 CC별 2- 비트 A/N들올 연접하여 PUSCH로 전송되는 최종 A/N 코드워드를 구성할 수 있다. 이 로 제한되는 것은 아니지만, PCC (혹은 PCell)에 대한 A/N이 MSB에 배치될 수 있다. 한편 , CC별 2-비트 A/N의 경우 비트 오류 시의 A/N 응답 오류 개수를 최소화할 수 있는 그레이 코딩올 적용하는 것이 바람직하다. 표 14~16의 A/N 비트에서 0, 1과 1, 0은 각각 1, 0과 0, 1로 바뀔 수 있으며 , 이를 통해서도 동일한 그레이 코딩 효과를 얻을 수 있다. 유사하게, 표 14~16의 A/N 비트에서 0, 0과 1, 1은 각각 1, 1과 0, 0으로 바뀌어 매핑될 수 있다.
표 17~19는 표 14-16의 A/N 비트에서 0, 1과 1, 0은 각각 1, 0과 0, 1로 바꾼 경우를 나타낸다.
【표 17]
Figure imgf000048_0001
여기서, HARQ-ACK(l), (2) = (N, N/D)는 A/N 비트 (0, 0)으로 매핑되고, HARQ-ACK(l), (2) = (D, N/D)는 A/N 비트 (0, 0)으로 매핑될 수 있다.
여기서, HARQ-ACK(j) (0≤j≤M-l)(M=2)는 j+1번째 DL SF을 통해 전송된 PDSCH 또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX응답을 의미한다. 【표 18]
HARQ-AC (O) , HARQ-AC (l), HARQ-ACK(2) A/N bit on PUSCH
A, A, A 1, 1
A, A, N/D 1, 0
A, N/D, any 0, 1 N/D, any, any 0, 0 여기서, HARQ-ACK(l), (2), (3) = (Ν' any, any)는 A/N 비트 (0, 0)으로 매핑 되고, HARQ-ACK(l), (2), (3) = (D, any, any)는 A/N 비트 (0, 0)에 매핑될 수 있다. 여기서, HARQ-ACK(j) (0<j<M-l)(M=3)는 DAI-c = j+1에 대웅되는 PDSCH또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX 웅답을 의미한다. 등가 적으로, HARQ-ACK(j) (0≤j≤M-l)(M=3)는 DAI-c = j+1를 갖는 PDCCH에 대웅되는 PDSCH에 대한 ACK/NACK/DTX 웅답 또는 DAI-c = j+1를 갖는 SPS 해제 PDCCH)에 대한 ACK/NACK/DTX 웅답을 의미할 수 있다. PDCCH 없이 전송되는 PDSCH (즉, PDSCH w/o PDCCH) (예, SPS PDSCH)가 존재하는 경우, HARQ-ACK(O)은 PDSCH w/o PDCCH에 대한 ACK/NACK/DTX 응답을 의미하고, HARQ-ACK(j) (l≤j≤M-l)은 DAI-c = j에 대웅되는 PDSCH 또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX웅답을 의미 할 수 있다. PDSCH w/o PDCCH는 PCC 상에서 전송될 수 있다.
【표 19]
Figure imgf000049_0001
여기서, HARQ-ACK(l), (2), (3), (4) = (N, any, any, any) 또는 (A; N/D, any, any), except for (A, D, D, D)는 A/N 비트 (0, 0)으로 매핑되고, HARQ-ACK(l), (2), (3), (4) = (D, any, any, any)는 A/N 비트 (0, 0)으로 매핑될 수 있다.
여기서, HARQ-ACK(j) (0<j<M-l)(M=4)는 DAI-c = j+1에 대응되는 PDSCH또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX 응답을 의미한다. 등가 적으로, HARQ-ACK(j) (0≤j<M-l)(M=4)는 DAI-c = j+1를 갖는 PDCCH에 대웅되는 PDSCH에 대한 ACK/NACK/DTX 응답 또는 DAI-c = j+1를 갖는 SPS 해제 PDCCH)에 대한 ACK/NACK/DTX 응답을 의미할 수 있다. PDCCH 없이 전송되는 PDSCH (즉, PDSCH w/o PDCCH) (예, SPS PDSCH)가 존재하는 경우, HARQ-ACK(O)은 PDSCH w/o PDCCH에 대한 ACK/NACK/DTX 웅답을 의미하고, HARQ-ACK(j) (l≤j≤M-l)은 DAI-c = j에 대웅되는 PDSCH또는 DL 그랜트 PDCCH (예, SPS 해제 PDCCH)에 대한 ACK/NACK/DTX웅답을 의미 할수 있다. PDSCH w/o PDCCH는 PCC상에서 전송될 수 있다.
표 20은 M=2(표 14)이고 두 개의 CC(예, PCC, SCC)가 구성된 경우의 A/N매핑 테이블을 예시한다. 하기 관계에 따라 PCC HARQ-ACK 세트 /SCC HARQ-ACK 세트는 PUSCH상에서 전송되는 4-비트 A/N으로 매핑된다.
【표 20】
Figure imgf000050_0001
표 21은 표 11과 표 20을 결합한 예이다. 표 21은 CA 기반 TDD 통신 시스템 에서 M=2인 경우에 복수의 COIl 대한 HARQ-ACK을 PUCCH 또는 PUSCH를 통해 전송하 는 경우에 모두 적용될 수 있다.
【표 21】
PCC (PCell) SCC (SCell) Resource Constel lation Bits on PUSCH
HARQ-AC (O), HARQ-ACK(O) ,
HARQ-ACK(l) HARQ-ACK(l) "PUCCH b(0),b(l) o(0),o(l)(o(2),o(3)
A, A A, A 1, 1 1
n PUCCH, \ , 1, 1, 1
N/D, A A, A 0, 0 0, 1, 1, 1
n PUCCH, \
A, N/D A, A 1, 1 1, 0, 1, 1
rlPUCCH,i
N/D, N/D A, A „(·) 0, 1 0, 0, 1, 1
A, A N/D, A 1, 0 1, 1, 1, 0
rl PUCCH, Q
Figure imgf000051_0001
표 22는 M=3(표 18)이고 두 개의 CC (예, PCC, SCC)가 구성된 경우의 A/N매핑 테이블을 예시한다. 하기 관계에 따라 PCC HARQ-ACK 세트 /SCC HARQ-ACK 세트는 PUSCH상에서 전송되는 4-비트 A/N으로 매핑된다.
【표 22】
Figure imgf000051_0002
표 23은 표 12와 표 22를 결합한 예이다. 표 23은 CA 기반 TDD 통신 시스템 서 M=3인 경우에 복수의 CC에 대한 HARQ-ACK을 PUCCH 또는 PUSCH를 통해 전송하 경우에 모두 적용될 수 있다.
£ 23]
Figure imgf000052_0001
표 24는 M=4(표 19)이고 두 개의 CC (예, PCC, SCC)가 구성된 경우의 A/N 매핑 테이블을 예시한다. 하기 관계에 따라 PCC HARQ-ACK 세트 /SCC HARQ-ACK 세트는 PUSCH상에서 전송되는 4—비트 A/N으로 매핑된다.
【표 24]
PCC (PCell) SCC (SCell) A/N bit on PUSCH HARQ-AC (0),HARQ-AC (1), HARQ-AC (0),HA Q-ACK(1), o(0),o(l),o(2))o(3) HARQ-ACK(2),HARQ-ACK(3) HARQ-ACK(2),HARQ-ACK(3)
A, A, A, N/D A, A, A, N/D 1, 1, 1, 1
A, A, N/D, any A, A, A, N/D 1, 0, 1, 1
A, D, D, D A, A, A, N/D 0, 1, 1, 1 k, A, A, A A, A, A, N/D 0, 1, 1, 1
N/D, any, any, any A, A, A, N/D 0, 0, 1, 1
(A, N/D, any, any) , A, A, A, N/D 0, 0, 1, 1 except for (A, D, D, D)
A, A, A, N/D A, A, N/D, any 1, 1, 1, 0
A, A, N/D, any A, A, N/D, any 1, 0, 1, 0
A, D, D, D A, A, N/D, any 으 1, 1, 0
A, A, A, A A, A, N/D, any 0, 1, 1, 0
N/D, any, any, any A, A, N/D, any 0, 0, 1, 0
(A, N/D, any, any), A, A, N/D, any 0, 0, 1, 0 except for (A, D, D, D)
A, A, A, N/D A, D, D, D 1, 1, 0, 1
A, A, A, N/D. A, A, A, A 1, 1, 0, 1
A, A, N/D, any A, D, D, D 1, 0, 0, 1
A, A, N/D, any A, A, A, A 1, 0, 0, 1
A, D, D, D A, D, D, D 0, 1, 0, 1
A, D, D, D A, A, A, A 0, 1, 0, 1
A, A, A, A A, D, D, D 0, 1, 0, 1
A, A, A, A A, A, A, A 0, 1, 0, 1
N/D, any, any, any A, D, D, D 0, 0, 0, 1
N/D, any, any, any A, A, A, A 0, 0, 0, 1
(A, N/D, any, any) , A, D, D, D 0, 0, 0, 1 except for (A, D, D, D)
(A, N/D, any, any) , A, A, A, A 0, 0, 0, 1 except for (A, D, D, D)
A, A, A, N/D N/D, any, any, any 1, 1, o, 0
(A, N/D, any, any),
A, A, A, N/D 1, 1, 0, 0 except for (A, D, D, D)
A, A, N/D, any N/D, any, any, any 1, 0, 0, 0
(A, N/D, any, any),
A, A, N/D, any 1, 0, 0, 0 except for (A, D, D, D)
A, D, D, D N/D, any, any, any 0, 1, 0, 0
(A, N/D, any, any) ,
A, D, D, D 0, 1, 0, 0 except for (A, D, D, D)
A, A, A, A N/D, any, any, any 0, 1, 0, 0
(A, N/D, any, any),
A, A,, , A 0, 1, 0, 0 except for (A, D, D, D)
N, any, any, any N/D, any, any, any 0, 0, 0, 0
(A, N/D, any, any),
N, any, any, any 0, 0, 0, 0 except for (A, D, D, D)
(A, N/D, any, any) ,
N/D, any, any, any 0, 0, 0, 0 except for (A, D, D, D)
(A, N/D, any, any), (A, N/D, any, any), 0, 0, 0, 0 except for (A, D, D, D) except for (A, D, D, D)
D, any, any, any N/D, any, any, any 0, 0, 0, 0
(A, N/D, any, any) ,
D, any, any, any 0, 0, 0, 0 except for (A, D, D, D) 표 25는 표 13과 표 24를 결합한 예이다. 표 25는 CA 기반 TDD 통신 시스템 에서 M=4인 경우에 복수의 CC에 대한 HARQ— ACK을 PUCCH 또는 PUSCH를 통해 전송하 는 경우에 모두 적용될 수 있다.
【표 25】
Figure imgf000054_0001
A, A, A, A A, D, D, D n PUCCH, 2 1, o 0, 1, 0, 1
A, A, A, A A, A, A, A n PUCCH, 2 1, 0 0, 1, 0, 1
N/D, any, any, any A, D, D, D PUCCH, 2 0, 0 0, 0, 0, 1
N/D, any, any, any A, A, A, A PUCCH, 2 0, 0 0, 0, 0, 1
(A, N/D, any, any),
A, D, D, D
except for (A, D, D, D) PUCCH, 2 0, 0 0, 0, 0, 1
(A, N/D, any, any),
A, A, A, A
except for (A, D, D, D) PUCCH, 2 0, 0 0, 0, 0, 1
A, A, A, N/D N/D, any, any, any nPUCCH,\ 1, o 1, 1, 0, 0
(A, N/D, any, any),
A, A, A, N/D 1, 1, 0, 0
except for (A, D, D, D) PUCCH, \ 1, 0
A, A, N/D, any N/D, any, any, any „(·> 0, 1 1, 0, 0, 0
(A, N/D, any, any),
A, A, N/D, any 0)
except for (A, D, D, D) ' 1 PUCCH ,\ 0, 1 1, 0, 0, 0
A, D, D, D N/D, any, any, any PUCCH,0 1, 1 0, 1, 0, 0
(A, N/D, any, any) ,
A, D, D, D
except for (A, D, D, D) PUCCH, 0 1, 1 0, 1, 0, 0
A, A, A, A N/D, any, any, any nPUCCHfi 1, 1 0, 1, 0, 0
(A, N/D, any, any),
A, A, A, A
except for (A, D, D, D) "PUCCH β 1, 1 0, 1, 0, 0
N, any, any, any N/D, any, any, any n PUCCH fi 0, 0 0, 0, 0, 0
(A, N/D, any, any) ,
N, any, any, any
except for (A, D, D, D) n PUCCH, Q 0, 0 0, 0, 0, 0
(A, N/D, any, any),
N/D, any, any, any
except for (A, D, D, D) n PUCCH fi 0, 0 0, 0, 0, 0
(A, N/D, any, any) , (A, N/D, any, any),
except for (A, D, D, D) except for (A, D, D, D) PUCC ft 0, 0 0, 0, 0, 0
D, any, any, any N/D, any, any, any No Transmission 0, 0, 0, 0
(A, N/D, any, any),
D, any, any, any No Transmission 0, 0, 0, 0
except for (A, D, D, D) 도 13은 본 발명의 일 실시예에 따른 A/N 전송 과정을 예시한다.
도 13을 참조하면, 단말은 제 1 CC (혹은 샐)를 위한 제 1 세트의 HARQ-ACK와 제 2 CC (혹은 샐)를 위한 제 2 세트의 HARQ-ACK가 생성한다 (S1302). 이후, 단말은 A/N 전송을 위한 서브프레임 (이하, A/N 서브프레임)에 PUSCH 할당이 있는지 확인한다 (S1304) . A/N서브프레임에 PUSCH 할당이 없는 경우, 단말은 PUCCH 포맷 lb 및 채널 선택을 수행하여 A/N 정보를 전송한다. 이 경우, PUCCH 포맷 lb 및 채널 선택에 따 른 PUCCH자원 및 A/N비트는 표 11-13 (혹은 표 21, 23, 25)을 이용하여 수행될 수 있다. 반면, A/N서브프레임에 PUSCH할당이 있는 경우, 단말은 A/N비트를 PUSCH에 다중화 한다. 구체적으로, 단말은 제 1 세트의 HARQ-ACK와 제 2 세트의 HARQ-ACK에 대응하는 4-비트 Α/Ν( ο(0),θ(1),ο(2),ο(3) )생성한다 (S1308). 4-비트 A/N은 표 20, 22, 24 (혹은 표 21, 23, 25)에 기초하여 얻어질 수 있다.4-비트 A/N은 채널 코딩 블 록 (S170) (도 8 참조), 채널 인터리버 블록 (S190) (도 8 참조)을 거쳐 PUSCH를 통해 전송된다. 채널 인터리버 블록 (S190)에는 데이터 및 제어 다중화 블록 (S180) (도 8 참조)의 출력 비트와 RI용 채널 코딩 블록 (S160) (도 8 참조)의 출력 비트도 입력된 다. RI는 선택적으로 존재한다.
이로 제한되는 것은 아니지만, 채널 코딩 (S170)은 RM(Reed-MuIler) 코드, 테 이-바이팅 컨볼루션 코드 (Tail-biting convolutional code) 등을 이용하여 수행될 수 있다. RM코드 이용 시, 4-비트 Α/Ν(θ(0),ο(1),ο(2),ο(3))은 하기 식을 이용하여 채널 코딩 될 수 있다.
【수학식 3】
Figure imgf000056_0001
여기서 , q CK는 i-번째 채널 코딩 된 비트를 나타낸다. i는 0 이상의 정수, 구체적으로 0 내지 ^^ - 의 정수이며, ^^은 채널 코딩 된 비트의 총 개수를 나타낸다. m0d는 모듈로 연산을 나타내고, ^^는 하기의 블록 코드를 나타낸다. 【표 26】
i Mi ,o ί ,ι Mi , Mi Mi Mi . Mi Mi ,7 Mi Mi ,g Mi . lo
0 1 1 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 1 1
2 1 0 0 1 0 0 1 0 1 1 1
3 1 0 1 1 0 0 0 0 1 0 1
4 1 1 1 1 0 0 0 1 0 0 1
5 1 1 0 0 1 0 1 1 1 0 1
6 1 0 1 0 1 0 1 0 1 1 1
7 1 0 0 1 1 0 0 1 1 0 1
8 1 1 0 1 1 0 0 1 0 1 1
9 1 0 1 1 1 0 1 0 0 1 1
10 1 0 1 0 0 1 1 1 0 1 1
11 1 1 1 0 0 1 1 0 1 0 1
12 1 0 0 1 0 1 0 1 1 1 1
13 1 1 0 1 0 1 0 1 0 1 1
14 1 0 0 0 1 1 0 1 0 0 1
15 1 1 0 0 1 1 1 1 0 1 1
16 1 1 1 0 1 1 1 0 0 1 0
17 1 0 0 1 1 1 0 0 1 0 0
18 1 1 0 1 1 1 1 1 0 0 0
19 1 0 0 0 0 1 1 0 0 0 0
20 1 0 1 0 0 0 1 0 0 0 1
21 1 1 0 1 0 0 0 0 0 1 1
22 1 0 0 0 1 0 0 1 1 0 1
23 1 1 1 0 1 0 0 0 1 1 1
24 1 1 1 1 1 0 1 1 1 1 0
25 1 1 0 0 0 1 1 1 0 0 1
26 1 0 1 1 0 1 0 0 1 1 0
27 1 1 1 1 0 1 0 1 1 1 0
28 1 0 1 0 1 1 1 0 1 0 0
29 1 0 1 1 1 1 1 1 1 0 0
30 1 1 1 1 1 1 1 1 1 1 1
31 1 0 0 0 0 0 0 0 0 0 0 도 14는 본 발명에 실시 예에 적용될 수 있는 기지국 및 단말을 예시한다. 릴 레이를 포함하는 시스템의 경우 , 기지국 또는 단말은 릴레이로 대체될 수 있다 . 도 14를 참조하면, 무선 통신 시스템은 기지국 (BS, 110) 및 단말 (UE, 120)을 포함한다 . 기지국 (110)은 프로세서 (112) , 메모리 (114) 및 무선 주파수 (Radio Frequency, RF) 유닛 (116)을 포함한다 . 프로세서 (112)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (114)는 프로세서 (112)와 연 결되고 프로세서 (112)의 동작과 관련한 다양한 정보를 저장한다 . RF 유닛 (116)은 프 로세서 (112)와 연결되고 무선 신호를 송신 및 /또는 수신한다 . 단말 (120)은 프로세 서 (122), 메모리 (124) 및 RF 유닛 (126)을 포함한다. 프로세서 (122)는 본 발명에서 제안한 절차 및 /또는 방법들올 구현하도록 구성될 수 있다. 메모리 (124)는 프로세 서 (122)와 연결되고 프로세서 (122)의 동작과 관련한 다양한 정보를 저장한다. RF유 닛 (126)은 프로세서 (122)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 기지국 (110) 및 /또는 단말 (120)은 단일 안테나 또는 다중 안테나를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적 인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결 합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결 합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명 되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음 은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드 (upper node)에 의해 수행될 수 있다. 즉, 기 지국을 포함하는 복수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에 서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다 른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국 (fixed station), Node B, eNode B(eNB), 억세스 포인트 (access point) 등의 용어에 의해 대 체될 수 있다. 또한, 단말은 UECUser Equipment), MS(Mobile Station), MSS (Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어 에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(appl ication specific integrated circuits) , DSPs(digital signal processors) DSPDsCdigital signal processing devices) , PLDs (programmable logic devices) , FPGAsCfield progra醒 able gate arrays), 프로세서, 콘트를러, 마이크로 콘트를러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있 다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양 한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한 적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위 는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】
본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있 다.

Claims

【청구의 범위】
【청구항 1】
캐리어 병합 (carrier aggregat ion)을 지원하고 TDD(Time Division Duplex)로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법에 있어서, 제 1 CC( Component Carrier)와 관련된 제 1 세트의 HARQ-ACKC Hybrid Automat ic Repeat request - Ackn0wledgement )올 생성하는 단계 ;
제 2 CC와 관련된 제 2 세트의 HARQ-ACK을 생성하는 단계 ; 및
상기 계 1 세트의 HARQ-ACK 및 상기 제 2 세트의 HARQ-ACK에 대응하는 4-비트 정보를 PUSCH(Physical Upl ink Shared CHannel ) 상에서 전송하는 단계를 포함하고 , 상기 제 1 세트의 HARQ-ACK, 상기 제 2 세트의 HARQ-ACK 및 상기 4-비트 정보 의 대응 관계는 아래의 관계를 이용하여 주어지는 방법 :
Figure imgf000060_0001
여기서, A는 ACK을 나타내고, N은 NACK(Negat ive ACK)을 나타내며
DTX(Di scont inuous Transmission)을 나타내고 , N/D는 NACK 또는 DTX를 나타내며, any 는 ACK, NACK 또는 DTX 중 어느 하나를 나타내며,
여기서, CC는 셀로 대체될 수 있다.
【청구항 2】 게 1항에 있어서 ,
상기 제 1 CC는 프라이머리 CC이고, 상기 제 2 CC는 세컨더리 CC인 방법 .
【청구항 3】
제 1항에 있어서,
대웅되는 PDCCH가 없는 PDSCH가 상기 제 1 CC 또는 상기 제 2 CC에서 검출된 경 우, 해당 HARQ-ACK 세트에서 HARQ-ACK(O)은 상기 대응되는 PDCCH가 없는 PDSCH에 대한 ACK/NACK/DTX 웅답을 나타내고,
상기 해당 HARQ-ACK 세트에서 HARQ-ACK(j )는 DAI (Downl ink Assignment Index) 값이 j인 PDCCH에 대웅하는 PDSCH에 대한 ACK/NACK/DTX 웅답 또는 DAI 값이 j 인 SPS 해제 (Semi-Persi stent Schedul ing release) PDCCH에 대한 ACK/NACK/DTX 웅답을 나타내는 방법 .
【청구항 4】 - 제 1항에 있어서,
대웅되는 PDCCH가 없는 PDSCH가 검출되지 않은 경우, 각 HARQ-ACK 세트에서 HARQ-ACK(j )는 DAI 값이 j+1인 PDCCH에 대응하는 PDSCH에 대한 ACK/NACK/DTX 웅답 또는 DAI 값이 j+1인 SPS 해제 PDCCH에 대한 ACK/NACK/DTX 웅답을 나타내는 방법 . 【청구항 5]
제 1항에 있어서,
상기 4-비트 정보를 상기 PUSCH 상에서 전송하는 것은 상기 4ᅳ비트 정보를 하기 식을 이용하여 채널 코딩 하는 것을 포함하는 방법 :
^
Figure imgf000061_0001
여기서 , qfCK 는 i-번째 채널 코딩 된 비트를 나타내고, i는 0 이상의 정수이 며, mod는 모들로 (modulo) 연산을 나타내고, Ma,n는 하기의 블록 코드를 나타낸다. i Mi .o Mi .i Mi , Mi , Mi Mi Mi Mi Mi , Mi Mi , lo
0 1 1 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 1 1
2 1 0 0 1 0 0 1 0 1 1 1
3 1 0 1 1 0 0 0 0 1 0 1
4 1 1 1 1 0 0 0 1 0 0 1
5 1 1 0 0 1 0 1 1 1 0 1
6 1 0 1 0 1 0 1 0 1 1 1
7 1 0 0 1 1 0 0 1 1 0 1
8 1 1 0 1 1 0 0 1 0 1 1
9 1 0 1 1 1 0 1 0 0 1 1
10 1 0 1 0 0 1 1 1 0 1 1
11 1 1 1 0 0 1 1 0 1 0 1
12 1 0 0 1 0 1 0 1 1 1 1
13 1 1 0 1 0 1 0 1 0 1 1
14 1 0 0 0 1 1 0 1 0 0 1
15 1 1 0 0 1 1 1 1 0 1 1
16 1 1 1 0 1 1 1 0 0 1 0
17 1 0 0 1 1 1 0 0 1 0 0
18 1 1 0 1 1 1 1 1 0 0 0
19 1 0 0 0 0 1 1 0 0 0 0
20 1 0 1 0 0 0 1 0 0 0 1
21 1 1 0 1 0 0 0 0 0 1 1
22 1 0 0 0 1 0 0 1 1 0 1
23 1 1 1 0 1 0 0 0 1 1 1
24 1 1 1 1 1 0 1 1 1 1 0
25 1 1 0 0 0 1 1 1 0 0 1
26 1 0 1 1 0 1 0 0 1 1 0
27 1 1 1 1 0 1 0 1 1 1 0
28 1 0 1 0 1 1 1 0 1 0 0
29 1 0 1 1 1 1 1 1 1 0 0
30 1 1 1 1 1 1 1 1 1 1 1
31 1 0 0 0 0 0 0 0 0 0 0
【청구항 6】
캐리어 병합 (carrier aggregat ion)을 지원하고 TDD(Time Division Duplex)로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하도록 구성 된 통신 장 치에 있어서,
무선 주파수 (Radio Frequency, RF) 유닛 ; 및 , 프로세서를 포함하고 ,
상기 프로세서는 제 1 CCXComponent Carrier)와 관련된 제 1 세트의 HARQ-AC (Hybrid Automat ic Repeat request - Acknowledgement )을 생성하고, 제 2 CC 와 관련된 제 2 세트의 HARQ-ACK을 생성하몌 상기 제 1 세트의 HARQ-ACK 및 상기 제 2 세트의 HARQ-ACK에 대웅하는 4-비트 정보를 PUSCH( Physi cal Up 1 ink Shared CHannel ) 상에서 전송하도록 구성되고,
상기 제 1 세트의 HARQ-ACK, 상기 제 2 세트의 HARQ-ACK 및 상기 4-비트 정보 의 대웅 관계는 아래의 관계를 이용하여 주어지는 통신 장치 :
Figure imgf000063_0001
여기서, A는 ACK을 나타내고, N은 NACK(Negat ive ACK)을 나타내며, D는
DTX(Di scont inuous Transmi ssion)^ 나타내고, N/D는 NACK 또는 DTX를 나타내며, any 는 ACK, NACK 또는 DTX 중 어느 하나를 나타내며,
여기서, CC는 샐로 대체될 수 있다.
【청구항 7】
제 6항에 있어서,
상기 제 1 CC는 프라이머리 CC이고, 상기 제 2 CC는 세컨더 리 CC인 통신 장치 .
【청구항 8】
제 6항에 있어서,
대웅되는 PDCCH가 없는 PDSCH가 상기 제 1 CC 또는 상기 제 2 (X에서 검출된 경 우, 해당 HARQ-ACK 세트에서 HARQ-ACK(O)은 상기 대웅되는 PDCCH가 없는 PDSCH에 대한 ACK/NACK/DTX 응답을 나타내고, 상기 해당 HARQ-ACK 세트에서 HARQ-ACK j )는 DAI (Downlink Assignment Index) 값이 j인 PDCCH에 대웅하는 PDSCH에 대한 ACK/NACK/DTX 웅답 또는 DAI 값이 j인 SPS 해제 (Semi-Persistent Scheduling release) PDCCH에 대한 ACK/NACK/DTX 응답을 나타내는 통신 장치 .
【청구항 9】
제 6항에 있어서,
대응되는 PDCCH가 없는 PDSCH가 검출되지 않은 경우, 각 HARQ-ACK 세트에서 HARQ-ACK(j)는 DAI 값이 j+1인 PDCCH에 대응하는 PDSCH에 대한 ACK/NACK/DTX 응답 또는 DAI 값이 j+1인 SPS 해제 PDCCH에 대한 ACK/NACK/DTX 응답을 나타내는 통신 장치 .
【청구항 10】
제 6항에 있어서,
상기 4ᅳ비트 정보를 상기 PUSCH 상에서 전송하는 것은 상기 4_비트 정보를 하기 식을 이용하여 채널 코딩 하는 것을 포함하는 통신 장치: ^=∑k- (,mod32),„)mod2 여기서, qfCK는 i-번째 채널 코딩 된 비트를 나타내고, i는 0 이상의 정수이 며, mod는 모들로 (modulo) 연산을 나타내고, ¾1^는 하기의 블록 코드를 나타낸다.
Figure imgf000065_0001
【청구항 11]
캐리어 병합 (carrier aggregat ion)을 지원하고 TDD(Time Division Duplex)로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법에 있어서, 제 1 CC(Component Carrier)와 관련된 제 1 세트의 HARQ-ACK( Hybrid Automat ic Repeat request一 Acknowledgement )을 생성하는 단계 ;
제 2 CC와 관련된 제 2 세트의 HARQ-ACK을 생성하는 단계 ; 및
상기 제 1 세트의 HARQ-ACK 및 상기 제 2 세트의 HARQ-ACK에 대응하는 4-비트 정보를 PUSCH(Physical Upl ink Shared CHannel ) 상에서 전송하는 단계를 포함하고, 상기 제 1 세트의 HARQ-ACK, 상기 제 2 세트의 HARQ-ACK 및 상기 4-비트 정보 관계는 아래의 관계를 이용하여 주어지는 방법:
제 1 CC 제 2 CC 4-비트정보
HARQ-ACK ( 0 ), HARQ-ACK ( 1 ), HA Q-ACK(O) , HARQ-AC ( 1) , o(0),o(l),o(2),o(3) HARQ-ACK(2),HARQ-ACK(3) HARQ-ACK(2),HARQ-ACK(3)
A, A, A, N/D A, A, A, N/D 1, 1, 1, 1
A, A, N/D, any A, A, A, N/D 1, 0, 1, 1
A, D, D, D A, A, A, N/D 0, 1, 1, 1
A, A, A, A A, A, A, N/D 0, 1, 1, 1
N/D, any, any, any A, A, A, N/D 0, 0, 1, 1
(A, N/D, any, any) , A, A, A, N/D 0, 0, 1, 1 except for (A, D, D, D)
A, A, A, N/D Aᅳ A, N/D, any 1, 1, 1, 0 , A, N/D, any A, A, N/D, any 1, 0, 1, 0
A, D, D, D A, A, N/D, any 0, 1, 1, 0
A, A, A, A A, A, N/D, any 0, 1, 1, 0
N/D, any, any, any A, A, N/D, any 0, 0, 1, 0
(A, N/D, any, any), A, A, N/D, any 0, 0, 1, 0 except for (A, D, D, D)
A, A, A, N/D A, D, D, D 1, 1, 0, 1
A, A, A, N/D A, A, A, A 1, 1, 0, 1
A, A, N/D, any A, D, D, D 1, 0, 0, 1
A, A, N/D, any A, A, A, A 1, 0, 0, 1
A, D, D, D A, D, D, D 0, 1, 0, 1
A, D, D, D A, A, A, A 0, 1, 0, 1
A, A, A, A A, D, D, D 0, 1, 0, 1
A, A, A, A A, A, A, A 0, 1, 0, 1
N/D, any, any, any A, D, D, D 0, 0, 0, 1
N/D, any, any, any A, A, A, A 0, 0, 0, 1
(A, N/D, any, any) , A, D, D, D 0, 0, 0, 1 except for (A, D, D, D)
(A, N/D, any, any), A, A, A, A 0, 0, 0, 1 except for (A, D, D, D)
A, A, A, N/D N/D, any, any, any 1, 1, 0, 0
(A, N/D, any, any) ,
A, A, A, N/D 1, 1,
except for (A, D, D, D) o, 0
A, A, N/D, any N/D, any, any, any 1, 0, 0, 0
(A, N/D, any, any),
A, A, N/D, any 1, 0, 0, 0 except for (A, D, D, D)
A, D, D, D N/D, any, any, any 0, 1, 0, 0
(A, N/D, any, any) ,
A, D, D, D 0, 1, 0, 0 except for (A, D, D, D)
A, A, A, A N/D, any, any, any 0, 1, 0, 0
(A, N/D, any, any) ,
k' A, A, A 0, 1, 0, 0 except for (A, D, D, D)
N, any, any, any N/D, any, any, any 0, 0, 0, 0
(A, N/D, any, any),
N, any, any, any 0, 0, 0, 0 except for (A, D, D, D) (A, N/D, any, any) ,
N/D, any, any, any 0, 0, 0, 0
except for (A, D, D, D)
(A, N/D, any, any), (A, N/D, any, any),
0, 0, 0, 0
except for (A, D, D, D) except for (A, D, D, D)
D, any, any, any N/D, any, any, any 0, 0, 0, 0
(A, N/D, any, any),
D, any, any, any 0, 0, 0, 0
except for (A, D, D D) 여기서, A는 ACK을 나타내고, N은 NACK(Negative ACK)을 나타내며, D는 DTX(Discontinuous Transmission)을 나타내고, N/D는 NACK또는 DTX를 나타내며, any 는 ACK, NACK또는 DTX중 어느 하나를 나타내며,
여기서, CC는 셀로 대체될 수 있다.
【청구항 121
제 11항에 있어서,
상기 제 1 CC는 프라이머리 CC이고, 상기 제 2 CC는 세컨더리 CC인 방법 .
【청구항 13]
제 11항에 있어서,
대응되는 PDCCH가 없는 PDSCH가 상기 제 1 CC 또는 상기 제 2 CC에서 검출된 경 우, 해당 HARQ-ACK 세트에서 HARQ-ACK(O)은 상기 대응되는 PDCCH가 없는 PDSCH에 대한 ACK/NACK/DTX웅답을 나타내고,
상기 해당 HARQ-ACK세트에서 HARQ-ACK(j)는 DAI (Downlink Assignment Index) 값이 j인 PDCCH에 대응하는 PDSCH에 대한 ACK/NACK/DTX 옹답 또는 DAI 값이 j인 SPS 해제 (Semi -Per si stent Scheduling release) PDCCH에 대한 ACK/NACK/DTX 응답을 나타내는 방법 .
【청구항 14]
제 11항에 있어서,
대응되는 PDCCH가 없는 PDSCH가 검출되지 않은 경우, 각 HARQ-ACK 세트에서
HARQ-ACK(j)는 DAI 값이 j+1인 PDCCH에 대응하는 PDSCH에 대한 ACK/NACK/DTX 웅답 또는 DAI 값이 j+1인 SPS 해제 PDCCH에 대한 ACK/NACK/DTX웅답을 나타내는 방법 .
【청구항 15】 제 11항에 있어서 ,
상기 4-비트 정보를 상기 PUSCH 상에서 전송하는 것은 상기 4-비트 정보를 하기 식을 이용하여 채널 코딩 하는 것을 포함하는 방법 :
Figure imgf000068_0001
여기서, qfCK 는 i_번째 채널 코딩 된 비트를 나타내고, i는 0 이상의 정수이 며, mod는 모듈로 (modulo) 연산을 나타내고, ^!^는 하기의 블록 코드를 나타낸다 .
Figure imgf000068_0002
【청구항 16】
캐리어 병합 (carrier aggregat ion)을 지원하고 TDDCTime Division Duplex)로 동작하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하도록 구성된 통신 장 치에 있어서,
무선 주파수 (Radio Frequency, RF) 유닛 ; 및
프로세서를 포함하고,
상기 프로세서는 제 1 CC(Component Carrier)와 관련된 게 1 세트의 HARQ-ACK(Hybrid Automat ic Repeat request - Acknowledgement )을 생성하고, 제 2 CC 와 관련된 제 2 세트의 HARQ-ACK을 생성하며, 상기 제 1 세트의 HARQ-ACK 및 상기 제 2 세트의 HARQ-ACK에 대응하는 4ᅳ비트 정보를 PUSCH(Physical Upl ink Shared CHannel ) 상에서 전송하도록 구성되고,
상기 제 1 세트의 HARQ-ACK, 상기 제 2 세트의 HARQ-ACK 및 상기 4-비트 정보 의 대웅 관계는 아래의 관계를 이용하여 주어지는 통신 장치 :
Figure imgf000069_0001
except for (A, D, D, D)
(A, N/D, any, any) , A, A, A, A 0, 0, 0, 1 except for (A, D, D, D)
A, A, A, N/D N/D, any, any, any 1, 1, 0, 0
(A, N/D, any, any) ,
A, A, A, N/D 1, 1, 0, 0
except for (A, D, D, D)
A, A, N/D, any N/D, any, any, any 1, 0, 0, 0
(A, N/D, any, any) ,
A, A, N/D, any 1, 0, 0, 0
except for (A, D, D, D)
A, D, D, D N/D, any, any, any 0, 1, 0, 0
(A, N/D, any, any) ,
A, D, D, D 0, 1, 0, 0
except for (A, D, D, D)
A, A, A, A N/D, any, any, any 0, 1, 0, 0
(A, N/D, any, any) ,
A, A, A, A 0, 1, 0, 0
except for (A, D, D, D)
N, any, any, any N/D, any, any, any 0, 0, 0, 0
(A, N/D, any, any),
N, any, any, any 0, 0, 0, 0
except for (A, D, D, D)
(A, N/D, any, any),
N/D, any, any, any 0, 0, 0, 0
except for (A, D, D, D)
(A, N/D, any, any) , (A, N/D, any, any) ,
0, 0, 0, 0
except for (A, D, D, D) except for (A, D, D, D)
D, any, any, any N/D, any, any, any 0, 0, 0, 0
(A, N/D, any, any) ,
D, any, any, any 0, 0, 0, 0
except for (A, D, D, D)
여기서, A는 ACK을 나티 -내고, N은 NACK(Negative ACK)을 나타내며
DTX(Discontinuous Transmission)을 나타내고, N/D는 NACK또는 DTX를 나타내며, any 는 ACK, NACK또는 DTX중 어느 하나를 나타내며,
여기서, CC는 샐로 대체될 수 있다.
【청구항 17】
제 16항에 있어서,
상기 제 1 CC는 프라이머리 CC이고, 상기 제 2 CC는세컨더리 CC인 통신 장치 .
【청구항 18]
제 16항에 있어서,
대웅되는 PDCCH가 없는 PDSCH가 상기 제 1 CC또는 상기 제 2 CC에서 검출된 경 우, 해당 HARQ-ACK 세트에서 HARQ-ACK(O)은 상기 대응되는 PDCCH가 없는 PDSCH에 대한 ACK/NACK/DTX응답을 나타내고,
상기 해당 HARQ-ACK세트에서 HARQ-ACK(j)는 DAI (Downlink Assignment Index) 값이 j인 PDCCH에 대웅하는 PDSCH에 대한 ACK/NACK/DTX 웅답 또는 DAI 값이 j인 SPS 해제 (Semi-Persistent Scheduling release) PDCCH에 대한 ACK/NACK/DTX 웅답을 나타내는 통신 장치 .
【청구항 19]
제 16항에 있어서,
대웅되는 PDCCH가 없는 PDSCH가 검출되지 않은 경우, 각 HARQ-ACK 세트에서 HARQ-ACK(j)는 DAI 값이 j+1인 PDCCH에 대웅하는 PDSCH에 대한 ACK/NACK/DTX 웅답 또는 DAI 값이 j+1인 SPS 해제 PDCCH에 대한 ACK/NACK/DTX 웅답을 나타내는 통신 장치.
【청구항 20】
제 16항에 있어서,
상기 4-비트 정보를 상기 PUSCH 상에서 전송하는 것은 상기 4-비트 정보를 하기 식을 이용하여 채널 코딩 하는 것을 포함하는 통신 장치:
Figure imgf000071_0001
여기서, ^는 i-번째 채널 코딩 된 비트를 나타내고, i는 0 이상의 정수이 며, mod는 모둘로 (modulo) 연산을 나타내고, Ma,n는 하기의 블록 코드를 나타낸다.
oz
Figure imgf000072_0001
ΖΖΐ )0/ΖΐΟ^ΜΑ1:><Ι CCST91/Z10Z OAV
PCT/KR2012/004122 2011-05-24 2012-05-24 제어 정보를 전송하는 방법 및 이를 위한 장치 WO2012161533A2 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP16186425.1A EP3121984B1 (en) 2011-05-24 2012-05-24 Method for transmitting control information and apparatus therefor
EP19216216.2A EP3641191B1 (en) 2011-05-24 2012-05-24 Method for transmitting control information and apparatus therefor
EP12790352.4A EP2717531B1 (en) 2011-05-24 2012-05-24 Method for transmitting control information and apparatus therefor
CN201280025270.7A CN103563322B (zh) 2011-05-24 2012-05-24 用于发送控制信息的方法及其设备
JP2014512760A JP5832643B2 (ja) 2011-05-24 2012-05-24 制御情報を送信する方法及びそのための装置
US14/119,786 US8855027B2 (en) 2011-05-24 2012-05-24 Method for transmitting control information and apparatus therefor
KR1020137031999A KR102029243B1 (ko) 2011-05-24 2012-05-24 제어 정보를 전송하는 방법 및 이를 위한 장치
US14/321,274 US9584298B2 (en) 2011-05-24 2014-07-01 Method for transmitting control information and apparatus therefor
US15/407,795 US9887812B2 (en) 2011-05-24 2017-01-17 Method for transmitting control information and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161489655P 2011-05-24 2011-05-24
US61/489,655 2011-05-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/119,786 A-371-Of-International US8855027B2 (en) 2011-05-24 2012-05-24 Method for transmitting control information and apparatus therefor
US14/321,274 Continuation US9584298B2 (en) 2011-05-24 2014-07-01 Method for transmitting control information and apparatus therefor

Publications (2)

Publication Number Publication Date
WO2012161533A2 true WO2012161533A2 (ko) 2012-11-29
WO2012161533A3 WO2012161533A3 (ko) 2013-03-21

Family

ID=47217913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004122 WO2012161533A2 (ko) 2011-05-24 2012-05-24 제어 정보를 전송하는 방법 및 이를 위한 장치

Country Status (7)

Country Link
US (3) US8855027B2 (ko)
EP (3) EP3121984B1 (ko)
JP (2) JP5832643B2 (ko)
KR (1) KR102029243B1 (ko)
CN (4) CN106850128B (ko)
ES (1) ES2778754T3 (ko)
WO (1) WO2012161533A2 (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2750320B1 (en) 2010-06-16 2021-01-13 LG Electronics, Inc. Method for transmitting control information and device therefor
JP5932809B2 (ja) 2010-10-11 2016-06-08 エルジー エレクトロニクス インコーポレイティド 制御情報を送信する方法及びそのための装置
US8934440B2 (en) * 2011-01-07 2015-01-13 Pantech Co., Ltd. Method and device for transmitting response information, and resource allocation for response information transmission according to transmission conditions in a wireless communication system
CN104168095B (zh) * 2014-08-15 2017-10-24 北京北方烽火科技有限公司 非连续性传输检测方法及装置
WO2016111599A1 (ko) 2015-01-09 2016-07-14 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
US10098099B2 (en) 2015-01-26 2018-10-09 Qualcomm Incorporated Low latency group acknowledgements
TWI611714B (zh) * 2015-01-30 2018-01-11 財團法人資訊工業策進會 用於載波聚合通訊系統的基地台與上行鏈路控制資訊排程方法
US10264564B2 (en) * 2015-01-30 2019-04-16 Futurewei Technologies, Inc. System and method for resource allocation for massive carrier aggregation
WO2017026972A1 (en) * 2015-08-07 2017-02-16 Intel IP Corporation Uci for carrier aggregation
US20180234954A1 (en) * 2015-08-13 2018-08-16 Ntt Docomo, Inc. Radio base station, user terminal and radio communication method
WO2017116120A1 (en) 2015-12-27 2017-07-06 Lg Electronics Inc. Method and apparatus for transmitting ack/nack for nb-iot in wireless communication system
US11146358B2 (en) 2016-12-13 2021-10-12 Nokia Technologies Oy Polar codes for downlink control channels for wireless networks
CN108206724B (zh) * 2016-12-16 2022-03-25 中兴通讯股份有限公司 一种数据传输方法及发射机、接收机、存储介质
CN114944903B (zh) * 2017-05-03 2024-04-26 Lg电子株式会社 无线通信系统中终端和基站发送/接收信号的方法和设备
JP2020523909A (ja) 2017-06-14 2020-08-06 アイディーエーシー ホールディングス インコーポレイテッド アップリンク共有データチャネルを介したアップリンク制御情報(uci)送信のための方法、装置、システム、アーキテクチャ、およびインタフェース
CN109391382B (zh) * 2017-08-03 2021-10-15 华硕电脑股份有限公司 无线通信系统中混合自动重复请求反馈处理的方法和设备
US10686576B2 (en) * 2017-11-17 2020-06-16 Qualcomm Incorporated Techniques and apparatuses for hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for carrier aggregation in new radio
CA3086882A1 (en) * 2017-12-27 2019-07-04 Ntt Docomo, Inc. User terminal and radio communication method
US11032867B2 (en) * 2018-03-27 2021-06-08 Hyundai Motor Company Method and apparatus for performing communication using aggregated carriers in V2X communication system
EP3720022B1 (en) * 2018-04-04 2022-05-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting uplink control information, and related product
CN110351025B (zh) * 2018-04-04 2022-04-05 华为技术有限公司 信息反馈方法、装置和系统
WO2019215928A1 (ja) * 2018-05-11 2019-11-14 株式会社Nttドコモ ユーザ端末及び無線基地局
DE112019004748T5 (de) * 2018-09-21 2021-06-17 Lg Electronics Inc. Verfahren und einrichtung zum übertragen oder empfangen von einemdrahtlossignal in einem drahtloskommunikationssystem
CN113711671A (zh) * 2019-04-23 2021-11-26 夏普株式会社 用于指示上行链路传输的用户设备、基站和方法
US20210409160A1 (en) * 2020-06-25 2021-12-30 Qualcomm Incorporated Hybrid automatic repeat request (harq) process sharing across carriers

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101087111B1 (ko) * 2004-12-27 2011-11-25 엘지전자 주식회사 무선 통신 시스템에서의 데이터 송신 및 수신 방법
KR101319870B1 (ko) 2006-01-05 2013-10-18 엘지전자 주식회사 이동 통신 시스템에서의 핸드오버 방법
CN101465720B (zh) * 2009-01-23 2013-08-21 中兴通讯股份有限公司 一种发送上行harq反馈信息的方法和装置
US8625554B2 (en) * 2009-01-30 2014-01-07 Samsung Electronics Co., Ltd. System and method for uplink data and control signal transmission in MIMO wireless systems
US8295253B2 (en) * 2009-02-05 2012-10-23 Qualcomm Incorporated Efficient ACK transmission for uplink semi-persistent scheduling release in LTE
JP5504331B2 (ja) 2009-03-18 2014-05-28 ノキア シーメンス ネットワークス オサケユキチュア データをスケジューリングする方法
CN101854662A (zh) * 2009-03-31 2010-10-06 三星电子株式会社 Lte系统中发送下行应答/否定应答的方法和装置
EP3745616A1 (en) * 2009-04-24 2020-12-02 LG Electronics Inc. Method and apparatus for transmitting and receiving control signal for merging carriers in transmission
CN101594211B (zh) * 2009-06-19 2013-12-18 中兴通讯股份有限公司南京分公司 大带宽的多载波系统中发送正确/错误应答消息的方法
EP3223569A1 (en) * 2009-06-19 2017-09-27 Interdigital Patent Holdings, Inc. Signaling uplink control information in lte-a
CN101662833A (zh) * 2009-09-29 2010-03-03 中兴通讯股份有限公司 上行混合重传反馈信息分量载波的选择方法及装置
TWI628933B (zh) 2009-10-01 2018-07-01 內數位專利控股公司 傳輸上鏈控制資訊的方法及系統
MX2012004889A (es) * 2009-10-26 2012-06-25 Lg Electronics Inc Metodo y aparato para transmitir informacion de reconocimiento de recepcion en un sistema de comunicacion inalambrico.
KR101784189B1 (ko) 2009-10-28 2017-10-12 엘지전자 주식회사 다중 반송파 시스템에서 상향링크 제어정보 전송 방법 및 장치
CN102025467B (zh) * 2009-12-30 2013-05-15 电信科学技术研究院 一种反馈信息的传输方法及传输装置
WO2012011718A2 (ko) * 2010-07-19 2012-01-26 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
GB2497468B (en) * 2010-09-13 2018-03-28 Lg Electronics Inc Method and device for transmitting control information
US8885496B2 (en) * 2010-10-08 2014-11-11 Sharp Kabushiki Kaisha Uplink control information transmission on backward compatible PUCCH formats with carrier aggregation
JP5763204B2 (ja) * 2010-11-02 2015-08-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated スケジューリング要求リソースを使用したマルチコンポーネントキャリア通信システムにおけるハイブリッド自動再送要求フィードバック送信
WO2012110493A1 (en) * 2011-02-14 2012-08-23 Nokia Siemens Networks Oy Multiplexing of ack/nack and channel state information on uplink control channel
WO2012115465A2 (ko) * 2011-02-23 2012-08-30 엘지전자 주식회사 무선접속시스렘에서 상향링크제어정보 코딩방법 및 전송방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2717531A4

Also Published As

Publication number Publication date
US20140078944A1 (en) 2014-03-20
US8855027B2 (en) 2014-10-07
CN107070584A (zh) 2017-08-18
JP5832643B2 (ja) 2015-12-16
CN103563322A (zh) 2014-02-05
CN103563322B (zh) 2017-03-29
EP2717531A2 (en) 2014-04-09
JP2014519748A (ja) 2014-08-14
EP3121984B1 (en) 2019-12-18
EP2717531B1 (en) 2019-08-14
US20140313950A1 (en) 2014-10-23
KR102029243B1 (ko) 2019-10-07
WO2012161533A3 (ko) 2013-03-21
KR20140040729A (ko) 2014-04-03
EP3121984A1 (en) 2017-01-25
US9584298B2 (en) 2017-02-28
ES2778754T3 (es) 2020-08-11
US9887812B2 (en) 2018-02-06
CN106850127B (zh) 2020-07-28
CN106850128B (zh) 2020-07-28
CN106850128A (zh) 2017-06-13
EP3641191B1 (en) 2021-09-29
EP3641191A1 (en) 2020-04-22
CN107070584B (zh) 2020-05-15
JP2016054495A (ja) 2016-04-14
JP6243387B2 (ja) 2017-12-06
CN106850127A (zh) 2017-06-13
EP2717531A4 (en) 2015-04-01
US20170126370A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
KR102029243B1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
CN106899391B (zh) 发送控制信息的方法及其设备
CN106549747B (zh) 在无线通信系统中发送上行控制信息的方法及用户设备
KR101929780B1 (ko) 무선 통신 시스템에서 서브프레임을 설정하는 방법
WO2012044115A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
JP2018528727A (ja) 無線通信システムにおける信号送信方法及び装置
WO2012157981A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2012036534A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2014142578A1 (ko) 무선 신호를 전송하는 방법 및 이를 위한 장치
WO2015147544A1 (ko) 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
WO2013119090A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2012044135A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2013012285A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2012008730A2 (ko) 상향 링크 신호를 전송하는 방법 및 이를 위한 장치
KR20140070526A (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2013009154A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790352

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14119786

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014512760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137031999

Country of ref document: KR

Kind code of ref document: A