WO2012161266A1 - Reaction vessel and method for producing polymer using said vessel - Google Patents

Reaction vessel and method for producing polymer using said vessel Download PDF

Info

Publication number
WO2012161266A1
WO2012161266A1 PCT/JP2012/063356 JP2012063356W WO2012161266A1 WO 2012161266 A1 WO2012161266 A1 WO 2012161266A1 JP 2012063356 W JP2012063356 W JP 2012063356W WO 2012161266 A1 WO2012161266 A1 WO 2012161266A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
reaction vessel
producing
polymerization
polymer
Prior art date
Application number
PCT/JP2012/063356
Other languages
French (fr)
Japanese (ja)
Inventor
大見 忠弘
井上 利洋
充則 元田
Original Assignee
国立大学法人東北大学
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 日本ゼオン株式会社 filed Critical 国立大学法人東北大学
Priority to JP2013516437A priority Critical patent/JPWO2012161266A1/en
Publication of WO2012161266A1 publication Critical patent/WO2012161266A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based

Definitions

  • the present invention relates to a reaction vessel, and more particularly, to a reaction vessel that can efficiently remove reaction heat, has little polymerization scale adherence and fine coagulum formation during the reaction, and can be operated for a long time.
  • the present invention also relates to a method for producing a polymer using such a reaction vessel, particularly a binder for an electrochemical element (binder).
  • Polymer latex is widely used as a binder for fixing an electrode active material or the like to a current collector in an electrochemical element such as a secondary battery or a capacitor.
  • These polymer latexes are usually produced by emulsion polymerization.
  • a polymerizable monomer hereinafter sometimes simply referred to as “monomer”
  • a surfactant or a water-soluble polymer protective colloid it is done in the state.
  • various monomers are used alone or in combination of two or more.
  • polymerization is performed while stirring the monomer emulsion with a stirring blade.
  • the polymer particles aggregate due to mechanical shearing force due to stirring, and the particles adhere to the reaction vessel wall and the stirring blade (the deposit is called a polymerization scale), or a fine coagulum (fine coagulum).
  • the deposit is called a polymerization scale
  • fine coagulum fine coagulum
  • the fine coagulum is reduced by pre-filtering in order to significantly reduce operability and make the final product non-uniform. It is necessary to separate and remove the coagulum. This is economically disadvantageous because it leads to an increase in process and a decrease in polymer yield.
  • the fine coagulum it cannot be separated and removed by filtration or the like, and may remain as coarse particles in the product latex. If such a polymer latex containing coarse particles is used for, for example, an electrochemical device, it causes streaks and further causes contamination of the coating apparatus and peripheral equipment, which is not preferable.
  • Patent Document 1 In order to prevent aggregation of polymer particles and to reduce the occurrence of polymerization scale, it has been proposed to provide a non-contaminating film on the inner surface of the reaction vessel (Patent Document 1, etc.).
  • Patent Document 2 proposes to provide a non-contaminating film in order to prevent the adhesion of contaminants to the building exterior and vehicle exterior.
  • the anti-contamination property is evaluated by providing a coating on an aluminum plate.
  • the reaction vessel main body in Patent Document 1 is made of glass. Glass reactors have low thermal conductivity and inadequate heat removal efficiency. Especially when a polymerization reaction with a high calorific value is performed, continuous operation becomes impossible unless measures such as forced cooling are used, which is economically disadvantageous. become.
  • the present invention has been made in view of the prior art as described above, and uses an aluminum alloy container main body that has high thermal conductivity and is expected to have excellent heat removal efficiency. It aims at providing the reaction container which can reduce generation
  • production. Another object of the present invention is to provide a method for producing a polymer using such a reaction vessel. As a result of intensive studies to achieve this purpose, the aluminum body of the aluminum alloy was anodized and the surface of the container body was passivated. It has been found that elution is prevented and the occurrence of polymerization scale can be reduced, and the present invention has been completed.
  • the present invention for solving the above-mentioned problems includes the following matters as a gist.
  • An aluminum alloy reaction vessel in which an anodized film and a non-contaminating film are formed in this order on the inner surface.
  • the polymerizable monomer is an aliphatic conjugated diene monomer, an ethylenically unsaturated carboxylic acid monomer, an ethylenically unsaturated carboxylic acid ester monomer, an alkenyl aromatic monomer, or cyanide.
  • a reaction vessel that can efficiently remove reaction heat, has little polymerization scale adherence and fine coagulated product during the reaction, and can be operated for a long time.
  • this invention provides the manufacturing method of the polymer using this reaction container, especially the binder for electrochemical elements.
  • FIG. 1 is a cross-sectional view of an embodiment of an aluminum alloy reaction vessel according to the present invention.
  • FIG. 1 shows a schematic cross-sectional view of an embodiment of an aluminum alloy reaction vessel according to the present invention, but the shape and the like of the reaction vessel of the present invention are not limited to this.
  • an aluminum alloy reaction vessel 10 has an anodized film 2 and a non-contaminating film 3 formed in this order on the inner surface of an aluminum alloy container body 1.
  • the anodic oxide coating refers to an oxide coating formed using the inner surface of the container as an anode.
  • the aluminum alloy container body 1 is made of a metal mainly composed of aluminum.
  • the metal mainly composed of aluminum is a metal containing 50% by mass or more of aluminum, and may be pure aluminum.
  • the metal contains 80% by mass or more of aluminum, more preferably 90% by mass or more, and still more preferably 94% by mass or more of aluminum.
  • the metal containing aluminum as a main component may be pure aluminum, but may contain any other metal capable of forming an alloy with aluminum as necessary, or may contain two or more kinds.
  • the kind of metal is not specifically limited, As a preferable metal, at least 1 or more types of metal chosen from the group which consists of magnesium, titanium, and a zirconium is mentioned. Of these, magnesium is particularly preferred because it has the advantage of improving the strength of the aluminum substrate.
  • the metal mainly composed of aluminum may be a metal mainly composed of high-purity aluminum in which the content of specific elements (iron, copper, manganese, zinc, chromium) is suppressed.
  • the total content of these specific elements is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.3% by mass or less.
  • the metal containing high-purity aluminum as a main component may be pure aluminum, but may contain any other metal capable of forming an alloy with aluminum as required, or may contain two or more kinds. .
  • the type of metal is not particularly limited as long as it is other than the above-mentioned specific elements, but preferred metals include at least one metal selected from the group consisting of magnesium, titanium and zirconium.
  • magnesium is particularly preferred because it has the advantage of improving the strength of the aluminum substrate.
  • the magnesium concentration is not particularly limited as long as it can form an alloy with aluminum, but is usually 0.5% by mass or more, preferably 1.0% by mass or more, in order to provide sufficient strength improvement. Preferably it is 1.5 mass% or more.
  • it is preferably 6.5% by mass or less, more preferably 5.0% by mass, still more preferably 4.5% by mass or less, and most preferably 3% by mass. It is as follows.
  • the metal mainly composed of aluminum or the metal mainly composed of high-purity aluminum may contain other metal components as a crystal modifier. There is no particular limitation as long as it has a sufficient effect on crystal control, but zirconium or the like is preferably used.
  • the content thereof is usually 0.01% by mass or more, preferably 0.05% by mass or more, based on the whole metal mainly containing aluminum or high-purity aluminum. More preferably, the content is 0.1% by mass or more. This is because the characteristics of the other added metals are sufficiently exhibited. However, it is usually 20% by mass or less, preferably 10% by mass or less, more preferably 6% by mass or less, particularly preferably 4.5% by mass or less, and most preferably 3% by mass or less. Aluminum and other metal components form a uniform solid solution, and in order to maintain good material properties, it is better to have less than this.
  • the shape, size, side wall thickness, etc. of the aluminum alloy container main body 1 may be appropriately set according to the purpose and environment of use of the reaction container. Moreover, the shaping
  • An anodized film 2 is formed on the inner surface of the aluminum alloy container body 1.
  • the anodic oxide coating 2 is formed by anodizing the inner surface of the aluminum alloy container body 1 in a chemical conversion solution having a predetermined composition.
  • the anodized film 2 is a film made of an oxide of a metal whose main component is aluminum and has a thickness of 10 nm or more. This film is a passive film, and when it is formed on the inner surface of the aluminum alloy container body 1, it exhibits high performance as a protective film.
  • the film thickness of the anodized film 2 is preferably 100 ⁇ m or less. If the film is thick, cracks are likely to occur and outgas is likely to be released. Therefore, the thickness of the anodic oxide coating 2 is more preferably 10 ⁇ m or less, still more preferably 1 ⁇ m or less, still more preferably 0.8 ⁇ m or less, and particularly preferably 0.6 ⁇ m or less. However, the film thickness is 10 nm or more. If the thickness of the anodic oxide coating 2 is too thin, sufficient corrosion resistance cannot be obtained. Therefore, the thickness of the anodic oxide coating 2 is preferably 20 nm or more, more preferably 30 nm or more.
  • an oxide film of a non-porous metal having no micropores or pores is suitable.
  • the nonporous metal oxide film is thin but has excellent corrosion resistance and has almost no fine pores or pores, so that moisture and the like can be removed. There is an advantage that it is difficult to adsorb.
  • the anodized film 2 is obtained by anodizing the inner surface of the aluminum alloy container body 1 using a chemical conversion solution having a pH of 4 to 10. This method has an advantage that a dense and non-porous anodic oxide coating 2 can be obtained.
  • the chemical conversion liquid is usually pH 4 or higher, preferably 5 or higher, more preferably 6 or higher.
  • the pH of the chemical conversion solution is usually 10 or less, preferably 9 or less, more preferably 8 or less.
  • it is desirable that the pH of the chemical conversion liquid is close to neutrality.
  • the chemical conversion liquid preferably exhibits a buffering action in the range of pH 4 to 10 in order to buffer the concentration fluctuation of various substances during anodization and keep the pH within a predetermined range. For this reason, it is desirable to include compounds such as acids and salts that exhibit a buffering action.
  • the type of such a compound is not particularly limited, but is preferably at least one selected from the group consisting of boric acid, phosphoric acid, organic carboxylic acid, and salts thereof from the viewpoint of high solubility in the chemical conversion solution and good dissolution stability. is there. More preferably, it is an organic carboxylic acid or a salt thereof that hardly contains boron or phosphorus elements in the anodic oxide coating 2.
  • the organic carboxylic acid only needs to have one or more carboxyl groups, and may have a functional group other than the carboxyl group.
  • formic acid can also be preferably used.
  • aliphatic carboxylic acids are preferable, and aliphatic dicarboxylic acids having 3 to 10 carbon atoms are particularly preferable.
  • the aliphatic dicarboxylic acid include, but are not limited to, malonic acid, maleic acid, fumaric acid, succinic acid, tartaric acid, itaconic acid, glutaric acid, dimethylmalonic acid, citraconic acid, citric acid, adipic acid, heptanoic acid, pimeline.
  • Examples include acid, suberic acid, azelaic acid, and sebacic acid. Of these, tartaric acid, citric acid, and adipic acid are particularly preferred for reasons such as solution stability, safety, and good buffer action. Of these, one type may be used, or two or more types may be used in combination.
  • the salt of boric acid, phosphoric acid and organic carboxylic acid may be a salt of these acids with an appropriate cation.
  • the cation is not particularly limited, and for example, ammonium ion, primary, secondary, tertiary or quaternary alkyl ammonium ion, alkali metal ion, phosphonium ion, or sulfonium ion can be used.
  • ammonium ions, primary, secondary, tertiary or quaternary alkylammonium ions are preferred in that they are less affected by residual metal ions on the surface, ion diffusion, and the like.
  • the alkyl group of the alkyl ammonium ion may be appropriately selected in consideration of the solubility in the chemical conversion solution, but is usually an alkyl group having 1 to 4 carbon atoms.
  • chemical conversion liquid may contain other compounds in addition to the above compounds.
  • the concentration of these compounds may be appropriately selected according to the purpose, but is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more with respect to the whole chemical conversion liquid. .
  • concentration of the compound In order to increase the electrical conductivity and sufficiently form the anodic oxide coating 2, it is desirable that the concentration of the compound be as high as possible. However, it is usually 30% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less from the viewpoint of keeping the performance of the anodic oxide coating 2 high and reducing the cost.
  • the chemical conversion liquid preferably contains a non-aqueous solvent.
  • the use of a chemical conversion solution containing a non-aqueous solvent has an advantage that it can be processed at a high throughput because the time required for the constant current conversion is shorter than that of an aqueous chemical conversion solution.
  • OH ions generated by water electrolysis etch the anodic oxide film to make it porous, so a main solvent having a low dielectric constant that can suppress water electrolysis is used. It is preferable to use it.
  • the type of the non-aqueous solvent is not particularly limited as long as it can be anodized satisfactorily and has sufficient solubility in a solute, but a solvent having one or more alcoholic hydroxyl groups and / or one or more phenolic hydroxyl groups, Or an aprotic organic solvent is preferable. Among these, a solvent having an alcoholic hydroxyl group is preferable from the viewpoint of storage stability.
  • Examples of the compound having an alcoholic hydroxyl group include monohydric alcohols such as methanol, ethanol, propanol, isopropanol, 1-butanol, 2-ethyl-1-hexanol and cyclohexanol; ethylene glycol, propylene glycol, butane-1,4 -Dihydric alcohols such as diol, diethylene glycol, triethylene glycol, and tetraethylene glycol; trihydric or higher polyhydric alcohols such as glycerin and pentaerythritol can be used.
  • numerator can also be used.
  • those having two or more alcoholic hydroxyl groups are preferable in view of miscibility with water and vapor pressure, more preferably dihydric alcohols and trihydric alcohols, and particularly preferably ethylene glycol, propylene glycol, and diethylene glycol.
  • Examples of the compound having a phenolic hydroxyl group include unsubstituted phenol having one hydroxyl group, alkylphenols such as o- / m- / p-cresols and xylenols, and resorcinols having two hydroxyl groups.
  • alkylphenols such as o- / m- / p-cresols and xylenols
  • resorcinols having two hydroxyl groups.
  • pyrogallol and the like can be used as those having three hydroxyl groups.
  • These compounds having an alcoholic hydroxyl group and / or a phenolic hydroxyl group may further have other functional groups in the molecule.
  • a solvent having an alkoxy group together with an alcoholic hydroxyl group such as methyl cellosolve and cellosolve can also be used.
  • aprotic organic solvent either a polar solvent or a nonpolar solvent may be used.
  • the polar solvent is not particularly limited, and examples thereof include cyclic carboxylic acid esters such as ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -valerolactone; chain carboxylic acid esters such as methyl acetate, ethyl acetate, and methyl propionate.
  • Cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate; chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, N-methylformamide, N-ethylformamide, N, N— Amides such as dimethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpyrrolidone, acetonitrile, glutaronitrile, adiponitrile, methoxya Tonitoriru, 3-methoxy nitriles such as propionitrile; trimethyl phosphate, phosphates such as triethyl phosphate.
  • the nonpolar solvent is not particularly limited, and examples thereof include hexane, toluene, and silicone oil.
  • non-aqueous solvent of the chemical conversion liquid used for forming the anodic oxide coating 2 is ethylene glycol, propylene glycol, or diethylene glycol, which may be used alone or in combination. Moreover, if it contains the nonaqueous solvent, you may contain water.
  • the non-aqueous solvent is usually contained in an amount of 10% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more, particularly preferably 55% by mass or more, and usually 95% by mass or less, based on the whole chemical conversion liquid. , Preferably 90% by mass or less, particularly preferably 85% by mass or less.
  • the content thereof is usually 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% with respect to the whole chemical conversion liquid.
  • the content is usually at least 85% by mass, preferably at most 50% by mass, particularly preferably at most 40% by mass.
  • the ratio of water to the non-aqueous solvent is preferably 1% by mass or more, preferably 5% by mass or more, more preferably 7% by mass or more, particularly preferably 10% by mass or more, and usually 90% by mass or less, preferably 60%. It is not more than mass%, more preferably not more than 50 mass%, particularly preferably not more than 40 mass%.
  • the chemical conversion liquid may contain other additives as necessary.
  • an additive for improving the film formability and film characteristics of the anodized film 2 may be contained.
  • the additive is not particularly limited and may be used by adding one or more substances selected from known additives and other substances. At this time, there is no special restriction
  • the electrolytic method for anodizing is not particularly limited.
  • the current waveform for example, in addition to direct current, a pulse method in which an applied voltage is periodically interrupted, a PR method in which the polarity is inverted, other alternating current, AC / DC superimposition, incomplete rectification, modulation current such as a triangular wave, or the like can be used.
  • a direct current is used.
  • the method for controlling the current and voltage of anodic oxidation is not particularly limited, and conditions for forming an oxide film on the inner surface of the aluminum alloy container body 1 can be appropriately combined.
  • the formation is performed at a constant current up to a predetermined formation voltage Vf, and after the formation voltage is reached, the voltage is held for a certain period of time to perform anodization.
  • the current density is usually 0.001 mA / cm 2 or more, preferably 0.01 mA / cm 2 or more.
  • the current density is usually 100 mA / cm 2 or less, preferably 10 mA / cm 2 or less.
  • the formation voltage Vf is usually 3 V or more, preferably 10 V or more, more preferably 20 V or more. Since the obtained oxide film thickness is related to the formation voltage Vf, it is preferable to apply the voltage or more in order to give a certain thickness to the oxide film. However, it is usually 1000 V or less, preferably 700 V or less, more preferably 500 V or less. Since the obtained oxide film has high insulating properties, it is preferable to carry out at the voltage or lower in order to form a high-quality oxide film without causing high dielectric breakdown.
  • the temperature at the time of anodization is set to a temperature range in which the chemical conversion liquid exists stably as a liquid. Usually, it is ⁇ 20 ° C. or higher, preferably 5 ° C. or higher, more preferably 10 ° C. or higher. In consideration of production, energy efficiency, and the like at the time of anodization, it is preferable to perform the treatment at the temperature or higher. However, it is usually 150 ° C. or lower, preferably 100 ° C. or lower, more preferably 80 ° C. or lower. In order to maintain the composition of the chemical conversion solution and perform uniform anodic oxidation, the treatment is preferably performed at the temperature or lower.
  • the anodic oxidation includes a first step in which an inner surface of the aluminum alloy container body 1 and a counter electrode (for example, platinum) are disposed in the chemical conversion solution, and a plus is applied to the aluminum alloy container body 1 as the electrode.
  • the predetermined time of the second step is until the voltage between the aluminum alloy container body 1 and the predetermined electrode reaches a predetermined value (for example, 200 V when ethylene glycol is used). Preferably there is.
  • the predetermined time of the third step is preferably until the current between the aluminum alloy container body 1 and the predetermined electrode reaches a predetermined value, but the current value is the voltage described above. When it becomes, it decreases rapidly, and then gradually decreases with time. The smaller the residual current is, the better the quality of the oxide film is. However, for example, if a constant voltage treatment is performed for 24 hours, the film quality becomes equivalent to that obtained by heat treatment. In order to increase productivity, the constant voltage treatment may be stopped and heat treatment (annealing) may be performed at an appropriate time. The heat treatment is preferably performed at 150 ° C. or more and about 300 ° C. for 0.5 to 1 hour.
  • the voltage is set such that the chemical conversion liquid does not cause electrolysis.
  • the thickness of the anodic oxide coating 2 depends on the voltage in the third step.
  • the nonporous anodic oxide coating 2 formed during the chemical conversion treatment has an amorphous structure as a whole, and there are almost no grain boundaries such as crystals. . Further, by adding a compound having a buffering action or using a non-aqueous solvent as a solvent, a trace amount of carbon component is taken into the anodized film 2 and the bonding strength of Al—O is weakened. Thus, it is presumed that the amorphous structure of the entire film is stabilized.
  • the anodic oxide coating 2 manufactured as described above may be subjected to heat treatment for the purpose of removing moisture in the film.
  • a metal oxide film mainly composed of high-purity aluminum that does not substantially contain the specific element has high thermal stability, and voids and gas reservoirs are not easily formed. For this reason, voids and seams are unlikely to enter the anodic oxide coating 2 even by annealing at about 300 ° C. or higher, and aluminum elution into the reaction solution due to generation of particles and exposure of aluminum can be suppressed.
  • the heat treatment method is not particularly limited, but an annealing treatment in a heating furnace or the like is simple and preferable.
  • the temperature of the heat treatment is not particularly limited, but is usually 100 ° C. or higher, preferably 200 ° C. or higher, more preferably 250 ° C. or higher. In order to sufficiently remove moisture on the surface and inside of the metal oxide film by heat treatment, it is preferable to perform the treatment at the above temperature or more. However, it is usually 600 ° C. or lower, preferably 550 ° C. or lower, more preferably 500 ° C. or lower. In order to maintain the amorphous structure of the metal oxide film and maintain the flatness of the surface, it is preferable to perform the treatment at the temperature or lower. In the case of annealing treatment, the set temperature of the heating furnace is usually regarded as the heat treatment temperature.
  • the time for the heat treatment is not particularly limited, and may be appropriately set in consideration of surface roughness due to the heat treatment, productivity, etc., but is usually 1 minute or more, preferably 5 minutes or more, particularly preferably 15 minutes or more. is there. In order to sufficiently remove moisture on the surface and inside of the metal oxide film, it is preferable to perform the treatment for the above time or more. However, it is usually 180 minutes or less, preferably 120 minutes or less, more preferably 60 minutes or less. In order to maintain the metal oxide film structure and surface flatness, it is preferable to perform the treatment within the above time.
  • the gas atmosphere in the furnace during the annealing treatment is not particularly limited, but usually nitrogen, oxygen, or a mixed gas thereof can be appropriately used. Of these, an atmosphere having an oxygen concentration of 18 vol% or higher is preferable, a condition of 20 vol% or higher is more preferable, and a condition of oxygen concentration of 100 vol% is most preferable.
  • a non-contaminating film 3 is provided on the anodic oxide film 2.
  • the non-contaminating film 3 has a property that the contact angle with pure water on the surface is preferably 90 ° or more, more preferably 95 ° or more, and the polymer scale or the like is difficult to adhere.
  • the contact angle with pure water on the surface is less than 90 °, it is easy to get wet with the polymerization solvent, and a polymerization scale during the reaction is easily generated.
  • the non-contaminating film 3 is not particularly limited as long as it exhibits the above-mentioned non-contaminating property.
  • the non-contaminating film 3 is a film made of a polymer having a fluorine-containing aliphatic ring structure described in Patent Document 1, or a heat described in Patent Document 2.
  • examples thereof include a film made of an antifouling agent containing a compound having a dissociable fluorine-containing protecting group.
  • a polymer having a fluorine-containing aliphatic ring structure is obtained by polymerizing a monomer having a fluorine-containing ring structure, or a fluorine-containing polymer having at least two polymerizable double bonds
  • a polymer having a ring structure in the main chain obtained by cyclopolymerizing monomers is preferred.
  • the polymer having a ring structure in the main chain obtained by polymerizing a monomer having a fluorine-containing ring structure is, for example, a monomer having a fluorine-containing ring structure such as perfluoro (2,2-dimethyl-1,3-dioxole). It can be obtained by homopolymerization or copolymerization with a radical polymerizable monomer such as tetrafluoroethylene.
  • Polymers having a ring structure in the main chain obtained by cyclopolymerization of a fluorine-containing monomer having at least two polymerizable double bonds are, for example, perfluoro (allyl vinyl ether), perfluoro (butenyl vinyl ether), etc. It is obtained by copolymerization with a radically polymerizable monomer such as tetrafluoroethylene.
  • a monomer having a fluorine-containing ring structure such as perfluoro (2,2-dimethyl-1,3-dioxole) and at least two polymerizable double molecules such as perfluoro (allyl vinyl ether) and perfluoro (butenyl vinyl ether).
  • a polymer obtained by copolymerizing a fluorine-containing monomer having a bond may also be used.
  • the polymer having a fluorine-containing aliphatic ring structure is preferably a polymer having a ring structure in the main chain, but a polymer containing 20% or more of the ring structure is preferable from the viewpoints of transparency and mechanical properties.
  • the method of providing the non-staining coating 3 by coating the polymer having a fluorine-containing aliphatic ring structure on the anodic oxide coating 2 a commonly used coating or laminating method is appropriately used. Can do. For example, it is possible to apply the polymer solution after drying the solvent, or to coat the polymer film by laminating in a usual manner.
  • Stain-proofing agent comprising a compound having a dissociative fluorinated protecting group, for example, formula (I): Z-X- O-R f (I) (Wherein Z is an organic group having or not having a functional group, X is C ⁇ O or SO 2 , R f is a hydrogen atom partially or entirely substituted with a fluorine atom, and an oxygen atom It is an organic group which may contain a compound having a thermally dissociable fluorine-containing protecting group.
  • —R f in the above formula (I) is preferably represented by the following formula (II) or (III).
  • R 1 , R 2 and R 3 are the same or different and each is a hydrogen atom or an organic group having 1 to 18 carbon atoms and optionally containing a fluorine atom
  • R 4 is a hydrogen atom having 1 to 18 carbon atoms Is an organic group partially or entirely substituted with a fluorine atom.
  • R 1 , R 2 , R 3 , R 4 and R 5 are the same or different, and any of them may be a hydrogen atom or 1 to 18 carbon atoms, and a part or all of the hydrogen atoms may be substituted with fluorine atoms. It is a good organic group, and at least one of R 1 , R 2 , R 3 , R 4 and R 5 is a fluorine atom-containing group.
  • the non-contaminating film 3 may be obtained by applying the above-mentioned anti-contamination agent on the anodized film 2, and the anti-contamination agent, the crosslinking functional group-containing coating resin, the curing agent and / or the curing.
  • a coating composition comprising a catalyst may be obtained, and this may be applied onto the anodized film 2 to obtain the non-contaminating film 3.
  • the crosslinkable functional group-containing coating resin may be, for example, a solvent-soluble fluorine coating resin containing a hydroxyl group and / or a carboxyl group, or may be an acrylic silicon coating resin having an alkoxysilyl group.
  • the thickness of the non-contaminating film 3 is not particularly limited, but is preferably about 0.1 to 200 ⁇ m, more preferably about 0.5 to 100 ⁇ m.
  • the aluminum alloy reaction vessel 10 has the anodized film 2 and the non-contaminating film 3 formed in this order on the inner surface of the aluminum alloy container main body 1.
  • a stirring blade may be provided, and a heating mechanism, a cooling mechanism, a raw material supply port, a product outlet, and the like may be provided.
  • a contaminated film may be formed on the stirring blade in the same manner as the container.
  • the aluminum alloy reaction vessel 10 of the present invention is mainly composed of an aluminum alloy, it has high thermal conductivity and can efficiently remove reaction heat.
  • the non-contaminating film 3 is formed on the inner surface of the container, it can be operated for a long time with little adhesion of polymerization scale and generation of fine solidified products during the reaction.
  • the surface of the aluminum alloy container main body 1 is provided with an anodic oxide coating 2 and is passivated, elution of aluminum from the main body 1 is prevented, and aggregation of polymer particles caused by the eluted aluminum is also prevented. Reduced.
  • the reaction vessel 10 of the present invention is used for various reactions, and is particularly preferably used for a reaction in which a monomer is polymerized to obtain a polymer, particularly a polymer particle, specifically, a binder for an electrochemical device. It is done. Furthermore, since the container 10 of the present invention hardly adheres to the polymer particles on the wall surface of the container, the container 10 can be used as a mixing container for preparing a slurry for electrode formation, for example, using an electrochemical element binder. .
  • Examples of the monomer used for the polymerization include various monomers that have been used in the production of binders for electrochemical devices, such as aliphatic conjugated diene monomers and ethylenically unsaturated carboxylic acid monomers. And ethylenically unsaturated carboxylic acid ester monomers, alkenyl aromatic monomers, vinyl cyanide monomers, unsaturated carboxylic acid amide monomers, and the like. These monomers can be used individually by 1 type or in combination of 2 or more types, There is no limitation in the composition.
  • aliphatic conjugated diene monomer examples include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, and 2-chloro-1,3-butadiene. Examples thereof include butadiene and 1,3-pentadiene.
  • ethylenically unsaturated carboxylic acid monomer examples include monovalent carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; polyvalent carboxylic acids such as maleic acid, fumaric acid, and itaconic acid; or monoethyl maleate, And partial esters of polycarboxylic acids such as monobutyl fumarate.
  • ethylenically unsaturated carboxylic acid ester monomer examples include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate; methacrylic acid esters such as methyl methacrylate and ethyl methacrylate; dimethyl fumarate, And polyvalent carboxylic acid esters such as diethyl fumarate, dimethyl maleate, diethyl maleate and dimethyl itaconate.
  • esters are not limited to alkyl esters, such as glycidyl acrylate, glycidyl methacrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate.
  • alkenyl aromatic monomer examples include styrene, ⁇ -methylstyrene, vinyltoluene and the like.
  • vinyl cyanide monomer examples include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, and ⁇ -ethylacrylonitrile.
  • unsaturated carboxylic acid amide monomer examples include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, N, N-dimethylacrylamide and the like.
  • the monomer another monomer copolymerizable with the above monomer may be contained.
  • examples of such other monomers include aliphatic vinyl ester monomers such as vinyl acetate and vinyl propionate; methyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, Vinyl ether monomers such as t-butyl vinyl ether, dodecyl vinyl ether and stearyl vinyl ether; basic monomers such as 2-vinyl pyridine and 4-vinyl pyridine; ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, 2-acrylamide -Sulphonic acid group-containing monomers such as 2-methylpropanesulfonic acid; Vinylsilane monomers such as vinyltrimethoxysilane; 3-acrylamidopropyltrimethylammonium chloride, 3-methacrylamidopropyltrimethyl
  • a crosslinkable monomer such as divinylbenzene, ethylene glycol dimethacrylate, or trimethylolpropane triacrylate can be used in combination as the monomer.
  • emulsion polymerization is taken as an example and described in more detail, the polymerization form in the present invention is not limited to emulsion polymerization.
  • the monomer emulsion in the following is adjusted when emulsion polymerization is carried out, but when taking a polymerization form other than emulsion polymerization, the monomer may be supplied to the reaction vessel in a form other than the emulsion. .
  • the composition of the monomer emulsion may be unchanged from the start point to the end point of the polymerization or may be changed over time as the polymerization progresses.
  • the change in the composition of the monomer emulsion may be continuous or discontinuous.
  • the monomer may be supplied to a container for preparing the monomer emulsion at any time.
  • two or more A so-called power feed method may be employed using a container.
  • the emulsifier used for preparing the monomer emulsion is not particularly limited as long as it is conventionally used in emulsion polymerization.
  • a water-soluble polymer protective colloid can be used in addition to the surfactant.
  • an alkali-soluble resin as described in, for example, JP-A-3-269032 can also be used.
  • surfactants include anionic surfactants such as sulfate esters of higher alcohols, alkylbenzene sulfonates, aliphatic sulfonates, aliphatic carboxylates, sulfate esters of nonionic surfactants; polyethylene glycol Nonionic surfactants such as alkyl ester type, alkylphenyl ether type, and alkyl ether type are used singly or in combination. Cationic surfactants and amphoteric surfactants can also be used.
  • Water-soluble polymer protective colloids include polyvinyl alcohol and various modified products; polyacrylic acid or polymethacrylic acid and salts thereof; polyvinyl alkyl ethers; copolymers of vinyl acetate and acrylic acid, methacrylic acid or maleic anhydride, and These saponified products; lower alkyl vinyl ether-maleic anhydride copolymer; cellulose derivatives such as alkyl cellulose, hydroxyalkyl cellulose, alkyl hydroxyalkyl cellulose, and carboxymethyl cellulose; starch derivatives such as alkyl starch, carboxymethyl starch, and oxidized starch; Examples thereof include rubber, tragacanth rubber; polyalkylene glycol and the like.
  • the amount of the emulsifier used for preparing the monomer emulsion is not particularly limited, and is usually 0.01 to 10 parts by weight, preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the monomer. is there.
  • All monomers used for the emulsion polymerization may be supplied as a monomer emulsion, and a part of the monomer is charged into the reaction vessel separately from the monomer emulsion,
  • the body may be supplied as a monomer emulsion. It is preferable to supply all monomers as a monomer emulsion.
  • the start time of the supply of the monomer emulsion is not particularly limited.
  • the polymerization may be started after a part or all of the monomer emulsion is supplied to the reaction vessel, or the monomer is charged into the reaction vessel separately from the monomer emulsion. You may start supply of a monomer emulsion after starting. In these cases, the ratio of the amount of monomer charged into the reaction vessel in advance and the amount of monomer supplied to the reaction vessel later is not particularly limited.
  • all of the polymerizable monomer may be added to the reaction vessel in the form of an emulsion, and after the entire amount of the polymerizable monomer is supplied to the reaction vessel, the polymerization is started. May be. Furthermore, after a part of the polymerizable monomer is supplied to the reaction vessel, the polymerization may be started, and the remaining polymerizable monomer may be sequentially supplied to the reaction vessel to carry out the polymerization.
  • the supply of the monomer emulsion to the reaction vessel may be continuous or intermittent. There is no particular limitation on the supply start and end times. Further, the supply speed (supply amount per unit time) may be uniform or non-uniform. Further, the time required for supply is not limited.
  • the polymerization is carried out using a polymerization initiator.
  • Any polymerization initiator may be used as long as it is conventionally used in emulsion polymerization, and the amount used is not particularly limited.
  • Specific examples of the polymerization initiator include water-soluble polymerization initiators such as potassium persulfate, ammonium persulfate, sodium persulfate, hydrogen peroxide, and t-butyl hydroperoxide; azobisisobutyronitrile, 2,2-azobis Oil-soluble polymerization initiators such as -2,4-dimethylvaleronitrile, benzoyl peroxide, and di-t-butyl peroxide can be used.
  • a water-soluble polymerization initiator is used.
  • these polymerization initiators can be used as a redox polymerization initiator in combination with a reducing agent.
  • these polymerization initiators are charged into a reaction vessel at the start of polymerization.
  • microsuspension polymerization microsuspension polymerization
  • a polymerization initiator is formed into microdroplets together with a monomer and a dispersant.
  • Adding a polymerization initiator into a container for preparing a monomer emulsified liquid and emulsifying with the monomer may start polymerization due to heat of stirring or the like, which is problematic in terms of safety.
  • a polymerization initiator may be added all at once, and the method of adding continuously or dividing according to progress of superposition
  • an emulsifier can be used as necessary.
  • the amount used is not particularly limited.
  • the aspect used as the emulsifier of the one part monomer, the aspect which adds an emulsifier separately in parallel with supply of a monomer emulsion, etc. can be shown.
  • Examples of the emulsifier used for purposes other than the preparation of the monomer emulsion include those similar to those used for the preparation of the monomer emulsion.
  • chain transfer agents can be used during the polymerization.
  • the amount of the chain transfer agent used is not particularly limited, but is usually 0 to 10 parts by mass with respect to 100 parts by mass of the monomer.
  • the chain transfer agent may be added directly to the reaction vessel or may be added as an emulsion together with the monomer.
  • the type of chain transfer agent is not particularly limited, and specific examples thereof include n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl mercaptan, 2,2,4 Mercaptan compounds such as 1,6,6-pentamethylheptane-4-thiol and 2,4,6-trimethylnonane-4-thiol; Halogenated hydrocarbons such as carbon tetrachloride and ethylene bromide; Dimethylxanthogen disulfide, diethyl Xanthogen compounds such as xanthogen disulfide and diisopropylxanthogen disulfide; thiuram compounds such as tetramethylthiuram disulfide, tetraethylthiuram disulfide and tetrabutylthiuram disul
  • Terpene compounds Terpene compounds; phenol compounds such as 2,6-di-t-butyl-4-methylphenol and styrenated phenol; allyl compounds such as acrolein, methacrolein and allyl alcohol; ⁇ -benzyloxystyrene, ⁇ -benzyloxy And vinyl ether compounds such as acrylonitrile and ⁇ -benzyloxyacrylamide; aldehydes such as benzaldehyde; polycyclic aromatic hydrocarbons such as triphenylmethane and pentaphenylethane; 2,5-dihydrofuran and the like.
  • chain transfer agents can be used singly or in combination of two or more.
  • emulsion polymerization In emulsion polymerization, other commonly used additives such as electrolytes (sodium pyrophosphate, sodium polyacrylate, sodium hexametaphosphate, etc.), antifoaming agents (polyglycol, fatty acid ester, phosphate ester, silicone oil) Etc.), polymerization accelerators, chelating agents, and the like can be used.
  • a polymerization retarder can also be used for the purpose of controlling the reaction rate. Specific examples thereof include 2,4-dinitrochlorobenzene.
  • the polymer particles obtained by the polymerization as described above are preferably used as a binder for an electrochemical element, and particularly preferably used as a binder for a lithium ion secondary battery electrode.
  • An electrode for a secondary battery such as a lithium ion secondary battery has an electrode mixture layer containing a binder and an electrode active material attached to a current collector.
  • the binder obtained by the above polymerization is used as the binder
  • the electrode active material may be any material that can reversibly insert and release lithium ions by applying a potential in the electrolyte.
  • Organic compounds can also be used.
  • Electrode active materials (positive electrode active materials) for lithium ion secondary battery positive electrodes are broadly classified into those made of inorganic compounds and those made of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • As the transition metal Fe, Co, Ni, Mn and the like are used.
  • the inorganic compound used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 and other lithium-containing composite metal oxides; TIS 2 , TIS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 It is done. These compounds may be partially element-substituted.
  • the positive electrode active material made of an organic compound for example, a conductive polymer such as polyacetylene or poly-p-phenylene can be used.
  • An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted.
  • the positive electrode active material for a lithium ion secondary battery may be a mixture of the above inorganic compound and organic compound.
  • the particle diameter of the positive electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics, the 50% volume cumulative diameter is usually 0.1. It is ⁇ 50 ⁇ m, preferably 1 to 20 ⁇ m. When the 50% volume cumulative diameter is within this range, a secondary battery having a large charge / discharge capacity can be obtained, and handling of the slurry for electrodes and the electrodes is easy.
  • the 50% volume cumulative diameter can be determined by measuring the particle size distribution by laser diffraction.
  • Examples of electrode active materials (negative electrode active materials) for negative electrodes of lithium ion secondary batteries include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, pitch-based carbon fibers, and high conductivity such as polyacene. Examples include molecules.
  • the negative electrode active material metals such as silicon, tin, zinc, manganese, iron, nickel, alloys thereof, oxides or sulfates of the metals or alloys are used.
  • lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, lithium transition metal nitride, silicon, and the like can be used.
  • the electrode active material a material obtained by attaching a conductivity imparting material to the surface by a mechanical modification method can be used.
  • the particle diameter of the negative electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics, a 50% volume cumulative diameter is usually The thickness is 1 to 50 ⁇ m, preferably 15 to 30 ⁇ m.
  • the electrode mixture layer may contain a conductivity imparting material or a reinforcing material.
  • a conductivity imparting material conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube can be used. Examples thereof include carbon powders such as graphite, and fibers and foils of various metals.
  • the reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • the amount of the conductivity-imparting material used is usually 0 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the electrode mixture layer can be formed by adhering an electrode-forming slurry containing a binder, an electrode active material and a solvent (hereinafter sometimes referred to as “mixture slurry”) to a current collector.
  • Any solvent may be used as long as it can dissolve or disperse the binder into particles.
  • a solvent that dissolves the binder is used, the dispersion of the electrode active material and the like is stabilized by the adsorption of the binder to the surface.
  • the mixture slurry contains a solvent and can be obtained by dispersing optional components such as an electrode active material, an essential component of a binder, and a conductivity-imparting material.
  • organic solvents include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ⁇ -butyrolactone, ⁇ -Esters such as caprolactone; Acylonitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether; Alcohols such as methanol, ethanol, isopropanol, ethylene glycol and ethylene glycol monomethyl ether; N-methyl Amides such as pyrrolidone and N, N-dimethylformamide are exemplified. These solvents may be used alone or in admixture of two or more
  • the mixture slurry may further contain additives that exhibit various functions such as a thickener.
  • thickeners include, for example, cellulosic polymers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, and ammonium and alkali metal salts thereof; modified or unmodified poly (meth) acrylic acid, and ammonium thereof.
  • polyvinyl alcohols such as modified or unmodified polyvinyl alcohol, copolymers of acrylic acid or acrylates and vinyl alcohol, maleic anhydride, maleic acid or copolymers of fumaric acid and vinyl alcohol
  • polyvinyl alcohols such as modified or unmodified polyvinyl alcohol, copolymers of acrylic acid or acrylates and vinyl alcohol, maleic anhydride, maleic acid or copolymers of fumaric acid and vinyl alcohol
  • the mixture slurry contains trifluoropropylene carbonate, vinylene carbonate, catechol carbonate, 1,6-dioxaspiro [4,4] nonane-2,7 in order to increase the stability and life of the battery.
  • -Dione, 12-crown-4-ether and the like can be used. These may be used by being contained in an electrolyte solution described later.
  • the amount of the solvent in the mixture slurry is adjusted so as to have a viscosity suitable for coating depending on the type of the electrode active material, the binder and the like.
  • the solid concentration of the mixture slurry in the mixture slurry is preferably 30 to 90% by mass, and more preferably 40 to 80% by mass. Used by adjusting.
  • the mixture slurry is obtained by mixing an electrode active material, a binder, a conductivity-imparting material added as necessary, other additives, and a solvent using a mixer. Mixing may be performed by supplying the above components all at once to a mixer (preferably the reaction vessel of the present invention).
  • a mixer preferably the reaction vessel of the present invention.
  • When using an electrode active material, binder, conductivity-imparting material, and thickener as components of the mixture slurry mix the conductivity-imparting material and thickener in a solvent to disperse the conductive material in the form of fine particles. Then, it is preferable to add a binder and an electrode active material and then mix them, because the dispersibility of the slurry is improved.
  • a mixer As a mixer, a ball mill, a sand mill, a pigment disperser, a pulverizer, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer, and the like can be used. It is preferable because aggregation of the resin can be suppressed.
  • the particle size of the mixture slurry is preferably 35 ⁇ m or less, and more preferably 25 ⁇ m or less.
  • the conductive material is highly dispersible and a homogeneous electrode can be obtained.
  • the current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material. From the viewpoint of having heat resistance, for example, iron, copper, aluminum, nickel, stainless steel, etc. Metal materials such as titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode of the lithium ion secondary battery, and copper is particularly preferable for the negative electrode.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength of the electrode mixture layer, the current collector is preferably used after being roughened. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used. Further, an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity of the electrode mixture layer.
  • the method for producing the electrode mixture layer may be any method in which the electrode mixture layer is bound in layers on at least one side, preferably both sides of the current collector.
  • the mixture slurry is applied to a current collector and dried, and then heated at 120 ° C. or higher for 1 hour or longer to form an electrode mixture layer.
  • the method for applying the mixture slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the preferable range of the porosity of the electrode mixture layer is 5% to 15%, more preferably 7% to 13%. If the porosity is too high, charging efficiency and discharging efficiency are deteriorated. On the other hand, when the porosity is too low, there is a problem that it is difficult to obtain a high volume capacity, or the electrode mixture layer is easily peeled off and a defect is likely to occur. Further, when a curable polymer is used as the binder, it is preferably cured.
  • the thickness of the electrode mixture layer is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m, for both the positive electrode and the negative electrode.
  • thermometer attached to the reaction vessel, the internal temperature of the reaction vessel was measured continuously from the start of polymerization to the end of polymerization (before cooling), and the temperature deviation from the set temperature was confirmed.
  • the copolymer latex (weight: W2) having a solid content of 45%, which has been precisely weighed, is filtered through a 325 mesh wire mesh, the coagulum remaining on the wire mesh is dried in an infrared oven for 20 minutes, and the weight (W3) is precisely weighed. To do. The ratio of W3 to W2 was expressed as a percentage.
  • a cylindrical container body was prepared by bending and arc welding a plate (3 mm thick) of aluminum alloy A5083.
  • an aluminum alloy reaction vessel of the present invention was obtained. Separately from the above, a glass five-hole separable cover was prepared as a reaction vessel lid, and a cooling device, a thermometer, and a stirring blade were attached thereto to constitute a reaction apparatus.
  • the monomer emulsion prepared above was continuously supplied to the reaction apparatus over 5 hours for polymerization.
  • the reaction was further continued for 4 hours after the completion of the supply of the monomer emulsion to obtain a copolymer latex having a polymerization conversion rate of 98%.
  • the pH was adjusted to 8.5 using 5% sodium hydroxide.
  • a copolymer latex having a solid content concentration of 45.2% and a viscosity of 80 mPa ⁇ s was obtained.
  • the amount of polymerization scale was 0.0003%, and the amount of fine solidified product was 0.0015%.
  • Example 2 In an emulsification tank equipped with a stirrer, 30 parts of water, 35 parts of butadiene, 39 parts of styrene, 14.5 parts of methyl methacrylate, 8 parts of acrylonitrile, 0.5 part of acrylic acid, 0.6 part of t-dodecyl mercaptan and dodecylbenzenesulfone 0.3 parts of sodium acid salt was added and stirred to obtain a monomer emulsion.
  • the reaction was further continued for 4 hours after the completion of the monomer emulsion supply to obtain a copolymer latex having a polymerization conversion rate of 98%.
  • the pH was adjusted to 8.5 using 5% sodium hydroxide.
  • a copolymer latex having a solid content concentration of 50.5% and a viscosity of 120 mPa ⁇ s was obtained.
  • the amount of polymerization scale was 0.0004%, and the amount of fine coagulum was 0.0018%.
  • Example 1 In the production of the reaction container of Example 1, an aluminum alloy reaction container was produced in the same manner as in Example 1 except that the non-contaminating film was formed directly on the container body without forming the anodized film. .
  • a polymerization reaction was performed in the same manner as in Example 1 except that the obtained reaction vessel was used.
  • a copolymer latex having a polymerization conversion of 98%, a solid content concentration of 45.1% and a viscosity of 80 mPa ⁇ s was obtained.
  • the pH of the copolymer latex was adjusted to 8.5 using 5% sodium hydroxide.
  • the amount of polymerization scale was 0.0005%, and the amount of fine coagulum was 1.5%.
  • the inner surface after the polymerization reaction was discolored.
  • Example 2 In the production of the reaction vessel of Example 1, an aluminum alloy reaction vessel was produced in the same manner as in Example 1 except that the non-contaminating film was not formed after the formation of the anodized film.
  • the polymerization reaction was performed in the same manner as in Example 1 except that the obtained reaction vessel was used.
  • a copolymer latex having a polymerization conversion rate of 95%, a solid content concentration of 44.3%, and a viscosity of 80 mPa ⁇ s was obtained.
  • the pH of the copolymer latex was adjusted to 8.5 using 5% sodium hydroxide.
  • the amount of polymerization scale was 0.5%, and the amount of fine coagulum was 0.20%.
  • Example 3 In the production of the reaction vessel of Example 1, a cylindrical vessel body was produced by bending and arc welding using a SUS electrolytic polishing plate (3 mm thick) instead of the plate of aluminum alloy A5083. A SUS reaction vessel was prepared in the same manner as in Example 1 except that this vessel body was used.
  • a polymerization reaction was carried out in the same manner as in Example 1 except that the obtained reaction vessel was used.
  • a copolymer latex having a polymerization conversion of 98%, a solid content concentration of 44.8% and a viscosity of 80 mPa ⁇ s was obtained.
  • the pH of the copolymer latex was adjusted to 8.5 using 5% sodium hydroxide.
  • the amount of polymerization scale was 0.0005%, and the amount of fine coagulum was 0.0025%, which was as good as in the examples.
  • the heat conduction in the SUS reaction vessel is low, the removal efficiency of the polymerization reaction heat is high. Unfortunately, the temperature during the reaction increased as a result.
  • the above results are summarized in the table below.
  • Example 3 (Production of slurry composition for secondary battery negative electrode)
  • Carboxymethylcellulose (CMC, “BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was prepared as a thickener.
  • the polymerization degree of the thickener was 1700, and the etherification degree was 0.65.
  • the slurry composition for secondary battery negative electrode was applied on a copper foil having a thickness of 20 ⁇ m with a comma coater so that the film thickness after drying was about 200 ⁇ m, and dried for 2 minutes (0.5 m / min). Speed, 60 ° C.), and further heat-treated (120 ° C.) for 2 minutes to obtain an electrode raw material.
  • This raw electrode was rolled with a roll press to obtain a secondary battery negative electrode having a negative electrode active material layer thickness of 80 ⁇ m.
  • the negative electrode is cut into a disk shape having a diameter of 15 mm, and a separator made of a disk-shaped porous polypropylene film having a diameter of 18 mm and a thickness of 25 ⁇ m, a metal lithium used as the positive electrode, and an expanded metal are sequentially laminated on the negative electrode active material layer surface side.
  • This was stored in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with polypropylene packing.
  • the electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A half cell (secondary battery) having a thickness of 20 mm and a thickness of about 2 mm was produced.
  • the evaluation results of the charge / discharge cycle characteristics of this half cell are shown in Table 2.
  • Comparative Example 4 A half cell was prepared in the same manner as in Example 3 except that the reaction container and copolymer latex prepared in Comparative Example 1 were used as the reaction container and polymer latex used in the preparation of the slurry composition. The results are shown in Table 2.
  • Example 5 A half cell was prepared in the same manner as in Example 3 except that the reaction container and copolymer latex prepared in Comparative Example 2 were used as the reaction container and polymer latex used in the preparation of the slurry composition. The results are shown in Table 2.
  • Example 6 A half cell was prepared in the same manner as in Example 3 except that the reaction container and copolymer latex prepared in Comparative Example 3 were used as the reaction container and polymer latex used in the preparation of the slurry composition. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Polymerisation Methods In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

[Problem] The purpose of the invention is to provide a reaction vessel which uses an aluminum alloy vessel main body which has high thermal conductivity and in which excellent heat removal efficiency is expected, and which is capable of reducing generation of polymeric scales and microscopic condensates. [Solution] The aluminum alloy reaction vessel according to the present invention is characterized in that the inner surface of the aluminum alloy vessel main body is formed with an anodic oxide coating and an antistaining coating in this order.

Description

反応容器、および該容器を用いた重合体の製造方法Reaction vessel and polymer production method using the vessel
 本発明は、反応容器に関し、さらに詳しくは反応熱を効率良く除去でき、反応時における重合スケールの付着や微細凝固物の生成が少なく、長時間運転可能な反応容器に関する。また、本発明は、かかる反応容器を用いた重合体、特に電気化学素子用バインダー(結着剤)の製造方法に関する。 The present invention relates to a reaction vessel, and more particularly, to a reaction vessel that can efficiently remove reaction heat, has little polymerization scale adherence and fine coagulum formation during the reaction, and can be operated for a long time. The present invention also relates to a method for producing a polymer using such a reaction vessel, particularly a binder for an electrochemical element (binder).
 重合体ラテックスは、二次電池やキャパシタなどの電気化学素子において、電極活物質等を集電体に固着するためのバインダーに幅広く用いられている。これらの重合体ラテックスは、通常、乳化重合によって製造される。乳化重合は、典型的には、界面活性剤や水溶性高分子保護コロイドによって、重合性単量体(以下、単に「単量体」と記載することがある)を分散媒中に乳化分散させた状態で行われる。乳化重合には、種々様々な単量体が単独で又は2種以上を組み合わせて使用される。 Polymer latex is widely used as a binder for fixing an electrode active material or the like to a current collector in an electrochemical element such as a secondary battery or a capacitor. These polymer latexes are usually produced by emulsion polymerization. In emulsion polymerization, typically, a polymerizable monomer (hereinafter sometimes simply referred to as “monomer”) is emulsified and dispersed in a dispersion medium using a surfactant or a water-soluble polymer protective colloid. It is done in the state. For emulsion polymerization, various monomers are used alone or in combination of two or more.
 乳化重合時には、単量体乳化液を攪拌翼により攪拌しながら重合を行う。この際、攪拌による機械的剪断力等により重合体粒子同士が凝集して、これが、反応容器壁や攪拌翼へ付着したり(付着物を重合スケールという)、微細な凝固物(微細凝固物)として分散媒中に存在する状況が生じやすい。反応容器壁へ重合スケールが付着すると除熱能力が低下して反応の制御が困難になるため、これを除去する必要がある。しかし、重合スケールの除去作業は時間と費用を要し、生産性の低下を招く。また、微細な凝固物は、これを含む重合体ラテックスを上記各種用途に使用したときに、操業性を著しく低下させ、また最終製品の品質を不均一にするため、事前に濾過することにより微細凝固物を分離・除去する必要がある。これは、工程の増加とポリマー収率低下とに繋がるので経済的に不利である。また、微細凝固物の大きさによっては、濾過等による分離・除去することが不可能であり、製品ラテックス中に粗大粒子として残存することがある。このような粗大粒子を含む重合体ラテックスを、例えば電気化学素子用途等に用いると、ストリークの発生を引き起こし、更にコーティング装置や周辺機器の汚れの原因となるので、好ましくない。 During emulsion polymerization, polymerization is performed while stirring the monomer emulsion with a stirring blade. At this time, the polymer particles aggregate due to mechanical shearing force due to stirring, and the particles adhere to the reaction vessel wall and the stirring blade (the deposit is called a polymerization scale), or a fine coagulum (fine coagulum). The situation that exists in the dispersion medium is likely to occur. If the polymerization scale adheres to the reaction vessel wall, the heat removal capability is lowered and it becomes difficult to control the reaction, so it is necessary to remove it. However, the removal work of a polymerization scale requires time and expense, and causes a decline in productivity. In addition, when the polymer latex containing this is used in the various applications described above, the fine coagulum is reduced by pre-filtering in order to significantly reduce operability and make the final product non-uniform. It is necessary to separate and remove the coagulum. This is economically disadvantageous because it leads to an increase in process and a decrease in polymer yield. In addition, depending on the size of the fine coagulum, it cannot be separated and removed by filtration or the like, and may remain as coarse particles in the product latex. If such a polymer latex containing coarse particles is used for, for example, an electrochemical device, it causes streaks and further causes contamination of the coating apparatus and peripheral equipment, which is not preferable.
 そこで、重合体の粒子の凝集を防止し、重合スケールの発生を低下するために、反応容器の内表面に非汚染性被膜を設けることが提案されている(特許文献1等)。 Therefore, in order to prevent aggregation of polymer particles and to reduce the occurrence of polymerization scale, it has been proposed to provide a non-contaminating film on the inner surface of the reaction vessel (Patent Document 1, etc.).
 また、特許文献2には、建築外装や車両外装への汚染物質の付着を防止するため、非汚染性被膜を設けることが提案されている。特許文献2の実施例では、アルミ板に被膜を設けて汚染防止性を評価している。 Further, Patent Document 2 proposes to provide a non-contaminating film in order to prevent the adhesion of contaminants to the building exterior and vehicle exterior. In the example of Patent Document 2, the anti-contamination property is evaluated by providing a coating on an aluminum plate.
特開平5-023652号公報JP-A-5-023652 特開平8-337771号公報JP-A-8-337771
 しかしながら、特許文献1における反応容器本体は、ガラス製である。ガラス反応容器は熱伝導率が低く、除熱効率が不十分であり、特に発熱量の高い重合反応を行うと、強制冷却等の手段を講じないと連続運転が不可能になり、経済的に不利になる。 However, the reaction vessel main body in Patent Document 1 is made of glass. Glass reactors have low thermal conductivity and inadequate heat removal efficiency. Especially when a polymerization reaction with a high calorific value is performed, continuous operation becomes impossible unless measures such as forced cooling are used, which is economically disadvantageous. become.
 また、本発明者らが検討したところ、特許文献2のように、アルミ製容器本体の内表面に、直接非汚染性被膜を設けると、反応条件によっては、アルミ製容器本体からアルミニウムが溶出し、重合体の凝固物がむしろ発生しやすくなることが分かった。 Further, as a result of investigation by the present inventors, when a non-contaminating film is directly provided on the inner surface of an aluminum container body as in Patent Document 2, aluminum is eluted from the aluminum container body depending on reaction conditions. It has been found that polymer coagulation is more likely to occur.
 本発明は、上記のような従来技術に鑑みてなされたものであり、熱伝導率が高く、優れた除熱効率が期待されるアルミ合金製容器本体を使用し、しかも重合スケールや微細凝固物の発生を低減できる反応容器を提供することを目的としている。また、本発明は、かかる反応容器を用いた重合体の製造方法を提供することを目的としている。かかる目的を達成すべく、鋭意検討したところ、アルミ合金製容器本体に、陽極酸化処理を施し、容器本体表面を不動態化した後に、非汚染性被膜を設けることで、容器本体からのアルミニウムの溶出が防止され、重合スケールの発生を低減できることを見出し、本発明を完成するに至った。 The present invention has been made in view of the prior art as described above, and uses an aluminum alloy container main body that has high thermal conductivity and is expected to have excellent heat removal efficiency. It aims at providing the reaction container which can reduce generation | occurrence | production. Another object of the present invention is to provide a method for producing a polymer using such a reaction vessel. As a result of intensive studies to achieve this purpose, the aluminum body of the aluminum alloy was anodized and the surface of the container body was passivated. It has been found that elution is prevented and the occurrence of polymerization scale can be reduced, and the present invention has been completed.
 上記課題を解決する本発明は、下記事項を要旨として含む。
(1)内表面に陽極酸化被膜および非汚染性被膜がこの順で形成されてなるアルミ合金製反応容器。
The present invention for solving the above-mentioned problems includes the following matters as a gist.
(1) An aluminum alloy reaction vessel in which an anodized film and a non-contaminating film are formed in this order on the inner surface.
(2)前記陽極酸化被膜が無孔質陽極酸化被膜である上記(1)に記載のアルミ合金製反応容器。 (2) The aluminum alloy reaction vessel according to (1), wherein the anodized film is a nonporous anodized film.
(3)前記陽極酸化被膜が非水溶液を用いて陽極酸化した無孔質陽極酸化被膜である上記(1)に記載のアルミ合金製反応容器。 (3) The aluminum alloy reaction vessel according to (1), wherein the anodic oxide coating is a nonporous anodic oxide coating anodized using a non-aqueous solution.
(4)上記(1)~(3)のいずれかに記載の反応容器中で、重合性単量体を重合する、重合体の製造方法。 (4) A method for producing a polymer, wherein a polymerizable monomer is polymerized in the reaction vessel described in any one of (1) to (3) above.
(5)前記重合性単量体が、脂肪族共役ジエン系単量体、エチレン系不飽和カルボン酸単量体、エチレン系不飽和カルボン酸エステル単量体、アルケニル芳香族単量体、シアン化ビニル単量体、不飽和カルボン酸アミド単量体より成る群から選ばれる1種以上の単量体である(4)に記載の重合体の製造方法。 (5) The polymerizable monomer is an aliphatic conjugated diene monomer, an ethylenically unsaturated carboxylic acid monomer, an ethylenically unsaturated carboxylic acid ester monomer, an alkenyl aromatic monomer, or cyanide. The method for producing a polymer according to (4), wherein the polymer is one or more monomers selected from the group consisting of vinyl monomers and unsaturated carboxylic acid amide monomers.
(6)前記重合性単量体が、(5)に記載の単量体に加えて、さらにこれらと共重合可能な単量体を含む、(5)に記載の重合体の製造方法。 (6) The method for producing a polymer according to (5), wherein the polymerizable monomer further contains a monomer copolymerizable with the monomer described in (5).
(7)前記重合性単量体の少なくとも一部を、乳化液の形態で反応容器中に加え、乳化重合を行う(4)に記載の重合体の製造方法。 (7) The method for producing a polymer according to (4), wherein emulsion polymerization is performed by adding at least a part of the polymerizable monomer in a reaction vessel in the form of an emulsion.
(8)単量体乳化液の調製のための乳化剤として、界面活性剤、水溶性高分子保護コロイド又はアルカリ可溶性樹脂を用いる(7)に記載の重合体の製造方法。 (8) The method for producing a polymer according to (7), wherein a surfactant, a water-soluble polymer protective colloid or an alkali-soluble resin is used as an emulsifier for the preparation of the monomer emulsion.
(9)単量体乳化液が重合開始剤を含まない、(7)に記載の重合体の製造方法。 (9) The method for producing a polymer according to (7), wherein the monomer emulsion does not contain a polymerization initiator.
(10)前記重合性単量体の全部を、乳化液の形態で反応容器中に加える、(7)に記載の重合体の製造方法。 (10) The method for producing a polymer according to (7), wherein all of the polymerizable monomer is added to the reaction vessel in the form of an emulsion.
(11)前記重合性単量体の全量を反応容器に供給した後、重合を開始する(4)に記載の重合体の製造方法。 (11) The method for producing a polymer according to (4), wherein the polymerization is started after supplying the entire amount of the polymerizable monomer to the reaction vessel.
(12)前記重合性単量体の一部を反応容器に供給した後、重合を開始し、残余の重合性単量体を順次反応容器に供給する、(4)に記載の重合体の製造方法。 (12) After supplying a part of the polymerizable monomer to the reaction vessel, the polymerization is started, and the remaining polymerizable monomer is sequentially supplied to the reaction vessel, The production of the polymer according to (4) Method.
(13)予め反応容器にシード用ラテックスを投入してから前記重合性単量体を供給する(4)に記載の重合体の製造方法。 (13) The method for producing a polymer according to (4), wherein the polymerizable monomer is supplied after the seed latex is charged in a reaction vessel in advance.
(14)前記重合性単量体の全単量体組成と、前記シード用ラテックスの単量体組成とが同じである(13)に記載の重合体の製造方法。 (14) The method for producing a polymer according to (13), wherein the total monomer composition of the polymerizable monomer and the monomer composition of the latex for seed are the same.
(15)前記重合性単量体の全単量体組成と、前記シード用ラテックスの単量体組成とが異なる(13)に記載の重合体の製造方法。 (15) The method for producing a polymer according to (13), wherein a total monomer composition of the polymerizable monomer is different from a monomer composition of the seed latex.
(16)得られる重合体が、電気化学素子用バインダーである(4)~(15)の何れかに記載の重合体の製造方法。 (16) The method for producing a polymer according to any one of (4) to (15), wherein the obtained polymer is a binder for an electrochemical element.
 本発明によれば、反応熱を効率良く除去でき、反応時における重合スケールの付着や微細凝固物の生成が少なく、長時間運転可能な反応容器が提供される。また、本発明は、かかる反応容器を用いた重合体、特に電気化学素子用バインダーの製造方法が提供される。 According to the present invention, there can be provided a reaction vessel that can efficiently remove reaction heat, has little polymerization scale adherence and fine coagulated product during the reaction, and can be operated for a long time. Moreover, this invention provides the manufacturing method of the polymer using this reaction container, especially the binder for electrochemical elements.
本発明に係るアルミ合金製反応容器の一実施態様の断面図を示す。1 is a cross-sectional view of an embodiment of an aluminum alloy reaction vessel according to the present invention.
 以下、本発明に係るアルミ合金製反応容器およびこれを用いた重合体の製造方法について順次説明する。 Hereinafter, an aluminum alloy reaction vessel and a polymer production method using the same according to the present invention will be sequentially described.
(アルミ合金製反応容器)
 図1に、本発明に係るアルミ合金製反応容器の一実施態様の概略断面図を示したが、本発明の反応容器の形状等は、これに限定されることはない。図1に示したように、アルミ合金製反応容器10は、アルミ合金製容器本体1の内表面に陽極酸化被膜2および非汚染性被膜3がこの順で形成されてなる。
 本発明において、陽極酸化被膜とは、容器内面を陽極として形成された酸化被膜をいう。
(Aluminum alloy reaction vessel)
FIG. 1 shows a schematic cross-sectional view of an embodiment of an aluminum alloy reaction vessel according to the present invention, but the shape and the like of the reaction vessel of the present invention are not limited to this. As shown in FIG. 1, an aluminum alloy reaction vessel 10 has an anodized film 2 and a non-contaminating film 3 formed in this order on the inner surface of an aluminum alloy container body 1.
In the present invention, the anodic oxide coating refers to an oxide coating formed using the inner surface of the container as an anode.
 アルミ合金製容器本体1は、アルミニウムを主成分とする金属からなる。アルミニウムを主成分とする金属とは、アルミニウムを50質量%以上含む金属であり、純アルミニウムでもよい。好ましくはこの金属はアルミニウムを80質量%以上含み、より好ましくはアルミニウムを90質量%以上、更に好ましくは94質量%以上含む。アルミニウムを主成分とする金属としては、純アルミニウムでもよいが、必要に応じてアルミニウムと合金を形成しうる他の任意の金属を含有してもよく、2種以上を含有しても良い。金属の種類は特に限定されないが、好ましい金属としてはマグネシウム、チタン及びジルコニウムよりなる群から選ばれる少なくとも一種以上の金属が挙げられる。なかでもマグネシウムはアルミニウム基体の強度を向上できる利点があり特に好ましい。 The aluminum alloy container body 1 is made of a metal mainly composed of aluminum. The metal mainly composed of aluminum is a metal containing 50% by mass or more of aluminum, and may be pure aluminum. Preferably, the metal contains 80% by mass or more of aluminum, more preferably 90% by mass or more, and still more preferably 94% by mass or more of aluminum. The metal containing aluminum as a main component may be pure aluminum, but may contain any other metal capable of forming an alloy with aluminum as necessary, or may contain two or more kinds. Although the kind of metal is not specifically limited, As a preferable metal, at least 1 or more types of metal chosen from the group which consists of magnesium, titanium, and a zirconium is mentioned. Of these, magnesium is particularly preferred because it has the advantage of improving the strength of the aluminum substrate.
 さらに、アルミニウムを主成分とする金属は、特定元素(鉄、銅、マンガン、亜鉛、クロム)の含有量が抑制された高純度アルミニウムを主成分とする金属であってもよい。これら特定元素の含有量の合計は、1.0質量%以下であることが好ましく、より好ましくは0.5質量%以下、更に好ましくは0.3質量%以下である。高純度アルミニウムを主成分とする金属としては、純アルミニウムでもよいが、必要に応じてアルミニウムと合金を形成しうる他の任意の金属を含有してもよく、2種以上を含有しても良い。金属の種類は上記特定元素以外であれば特に限定されないが、好ましい金属としては、マグネシウム、チタン及びジルコニウムよりなる群から選ばれる少なくとも一種以上の金属が挙げられる。なかでもマグネシウムはアルミニウム基体の強度を向上できる利点があり特に好ましい。マグネシウム濃度としては、アルミニウムと合金を形成しうる範囲であれば特に制限はないが、十分な強度向上をもたらすためには、通常0.5質量%以上、好ましくは1.0質量%以上、より好ましくは1.5質量%以上とする。またアルミニウムと均一な固溶体を形成する為には、6.5質量%以下であることが好ましく、より好ましくは5.0質量%、更に好ましくは4.5質量%以下、最も好ましくは3質量%以下である。 Furthermore, the metal mainly composed of aluminum may be a metal mainly composed of high-purity aluminum in which the content of specific elements (iron, copper, manganese, zinc, chromium) is suppressed. The total content of these specific elements is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.3% by mass or less. The metal containing high-purity aluminum as a main component may be pure aluminum, but may contain any other metal capable of forming an alloy with aluminum as required, or may contain two or more kinds. . The type of metal is not particularly limited as long as it is other than the above-mentioned specific elements, but preferred metals include at least one metal selected from the group consisting of magnesium, titanium and zirconium. Of these, magnesium is particularly preferred because it has the advantage of improving the strength of the aluminum substrate. The magnesium concentration is not particularly limited as long as it can form an alloy with aluminum, but is usually 0.5% by mass or more, preferably 1.0% by mass or more, in order to provide sufficient strength improvement. Preferably it is 1.5 mass% or more. In order to form a uniform solid solution with aluminum, it is preferably 6.5% by mass or less, more preferably 5.0% by mass, still more preferably 4.5% by mass or less, and most preferably 3% by mass. It is as follows.
 また、アルミニウムを主成分とする金属又は高純度アルミニウムを主成分とする金属は、この他に、結晶調整剤としてその他の金属成分を含有していてもよい。結晶制御に対する十分な効果を持つものであれば特に制限はないが、好ましくはジルコニウム等が用いられる。 In addition, the metal mainly composed of aluminum or the metal mainly composed of high-purity aluminum may contain other metal components as a crystal modifier. There is no particular limitation as long as it has a sufficient effect on crystal control, but zirconium or the like is preferably used.
 これら他の金属を含む場合、その含有量は、アルミニウムを主成分とする金属又は高純度アルミニウムを主成分とする金属全体に対して通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上とする。他の添加金属による特性を十分に発現させるためである。ただし、通常20質量%以下、好ましくは10質量%以下、より好ましくは6質量%以下、特に好ましくは4.5質量%以下、最も好ましくは3質量%以下とする。アルミニウムと他の金属成分とが均一な固溶体となり、良好な材料特性を維持するためにはこれより少ない方がよい。 When these other metals are included, the content thereof is usually 0.01% by mass or more, preferably 0.05% by mass or more, based on the whole metal mainly containing aluminum or high-purity aluminum. More preferably, the content is 0.1% by mass or more. This is because the characteristics of the other added metals are sufficiently exhibited. However, it is usually 20% by mass or less, preferably 10% by mass or less, more preferably 6% by mass or less, particularly preferably 4.5% by mass or less, and most preferably 3% by mass or less. Aluminum and other metal components form a uniform solid solution, and in order to maintain good material properties, it is better to have less than this.
 アルミ合金製容器本体1の形状や、大きさ、側壁の厚み等は、反応容器の使用目的や使用環境に応じて適宜に設定すればよい。また、アルミ合金製容器本体1の成形法は、特に限定はされず、種々の方法により所定形状に成形される。 The shape, size, side wall thickness, etc. of the aluminum alloy container main body 1 may be appropriately set according to the purpose and environment of use of the reaction container. Moreover, the shaping | molding method of the aluminum alloy container main body 1 is not specifically limited, It shape | molds in a predetermined shape by various methods.
 アルミ合金製容器本体1の内表面には、陽極酸化被膜2が形成される。陽極酸化被膜2は、所定組成の化成液中で、アルミ合金製容器本体1の内表面を陽極酸化することで形成される。 An anodized film 2 is formed on the inner surface of the aluminum alloy container body 1. The anodic oxide coating 2 is formed by anodizing the inner surface of the aluminum alloy container body 1 in a chemical conversion solution having a predetermined composition.
 陽極酸化被膜2は、アルミニウムを主成分とする金属の酸化物からなる膜であって、膜厚が10nm以上である。この膜は不動態膜であり、アルミ合金製容器本体1の内表面に形成すると、保護膜として高い性能を示す。 The anodized film 2 is a film made of an oxide of a metal whose main component is aluminum and has a thickness of 10 nm or more. This film is a passive film, and when it is formed on the inner surface of the aluminum alloy container body 1, it exhibits high performance as a protective film.
 陽極酸化被膜2の膜厚は、好ましくは100μm以下である。膜厚が厚いとクラックが入りやすく、またアウトガスを放出しやすい。したがって、陽極酸化被膜2の膜厚は、より好ましくは10μm以下、更に好ましくは1μm以下、いっそう好ましくは0.8μm以下、特に好ましくは0.6μm以下である。ただし膜厚は10nm以上とする。陽極酸化被膜2の膜厚が薄すぎると十分な耐食性が得られなくなる。したがって、陽極酸化被膜2の膜厚は、好ましくは20nm以上、より好ましくは30nm以上である。 The film thickness of the anodized film 2 is preferably 100 μm or less. If the film is thick, cracks are likely to occur and outgas is likely to be released. Therefore, the thickness of the anodic oxide coating 2 is more preferably 10 μm or less, still more preferably 1 μm or less, still more preferably 0.8 μm or less, and particularly preferably 0.6 μm or less. However, the film thickness is 10 nm or more. If the thickness of the anodic oxide coating 2 is too thin, sufficient corrosion resistance cannot be obtained. Therefore, the thickness of the anodic oxide coating 2 is preferably 20 nm or more, more preferably 30 nm or more.
 このような陽極酸化被膜2としては、微細孔や気孔などのない、すなわち無孔質の金属の酸化物膜が適している。従来用いられていたポーラス構造を有する多孔質の金属酸化物膜に対して、無孔質の金属酸化物膜は、薄膜でありながら耐食性に優れ、微細孔や気孔を殆ど有しないので水分等を吸着しにくい利点がある。 As such an anodic oxide coating 2, an oxide film of a non-porous metal having no micropores or pores is suitable. Compared to the porous metal oxide film having a porous structure that has been used in the past, the nonporous metal oxide film is thin but has excellent corrosion resistance and has almost no fine pores or pores, so that moisture and the like can be removed. There is an advantage that it is difficult to adsorb.
 陽極酸化被膜2は、アルミ合金製容器本体1の内表面を、pH4~10の化成液を用いて、陽極酸化することで得られる。この方法によれば、緻密で無孔質の陽極酸化被膜2を得ることができる利点がある。 The anodized film 2 is obtained by anodizing the inner surface of the aluminum alloy container body 1 using a chemical conversion solution having a pH of 4 to 10. This method has an advantage that a dense and non-porous anodic oxide coating 2 can be obtained.
 また、この方法は、金属表面の不均一性に起因する欠陥を修復する機能を有するために、緻密で平滑な陽極酸化被膜2を形成できる利点がある。化成液は通常pH4以上、好ましくは5以上、より好ましくは6以上である。また化成液のpHは、通常10以下、好ましくは9以下、より好ましくは8以下である。陽極酸化により生成した陽極酸化被膜2が化成液に溶解しないようにするために、化成液のpHは中性に近いことが望ましい。 Further, this method has a function of repairing defects caused by non-uniformity of the metal surface, and therefore has an advantage that a dense and smooth anodic oxide film 2 can be formed. The chemical conversion liquid is usually pH 4 or higher, preferably 5 or higher, more preferably 6 or higher. The pH of the chemical conversion solution is usually 10 or less, preferably 9 or less, more preferably 8 or less. In order to prevent the anodic oxide coating 2 formed by anodic oxidation from being dissolved in the chemical conversion liquid, it is desirable that the pH of the chemical conversion liquid is close to neutrality.
 化成液は、陽極酸化中の各種物質の濃度変動を緩衝してpHを所定範囲に保つためにも、pH4~10の範囲で緩衝作用を示すことが好ましい。このため緩衝作用を示す酸や塩などの化合物を含むことが望ましい。このような化合物の種類は特に限定されないが、化成液への溶解性が高く溶解安定性もよい点で、好ましくは硼酸、燐酸及び有機カルボン酸並びにそれらの塩よりなる群から選ばれる少なくとも一種である。より好ましくは陽極酸化被膜2中に硼素、燐元素の残留がほとんどない有機カルボン酸又はその塩である。 The chemical conversion liquid preferably exhibits a buffering action in the range of pH 4 to 10 in order to buffer the concentration fluctuation of various substances during anodization and keep the pH within a predetermined range. For this reason, it is desirable to include compounds such as acids and salts that exhibit a buffering action. The type of such a compound is not particularly limited, but is preferably at least one selected from the group consisting of boric acid, phosphoric acid, organic carboxylic acid, and salts thereof from the viewpoint of high solubility in the chemical conversion solution and good dissolution stability. is there. More preferably, it is an organic carboxylic acid or a salt thereof that hardly contains boron or phosphorus elements in the anodic oxide coating 2.
 有機カルボン酸は、カルボキシル基を1又は2以上有するものであればよく、またカルボキシル基以外の官能基を有していてもよい。例えば蟻酸なども好ましく用いることが出来る。化成液への溶解性が高く溶解安定性もよい点では、脂肪族カルボン酸類が好ましく、なかでも炭素数3~10の脂肪族ジカルボン酸が好ましい。脂肪族ジカルボン酸としては、特に限定はされないが例えばマロン酸、マレイン酸、フマル酸、コハク酸、酒石酸、イタコン酸、グルタル酸、ジメチルマロン酸、シトラコン酸、クエン酸、アジピン酸、ヘプタン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等が挙げられる。なかでも溶液安定性、安全性、良好な緩衝作用等の理由で酒石酸、クエン酸、アジピン酸が特に好ましい。このうち1種を用いてもよいし2種以上を組み合わせて用いてもよい。 The organic carboxylic acid only needs to have one or more carboxyl groups, and may have a functional group other than the carboxyl group. For example, formic acid can also be preferably used. In terms of high solubility in the chemical conversion solution and good dissolution stability, aliphatic carboxylic acids are preferable, and aliphatic dicarboxylic acids having 3 to 10 carbon atoms are particularly preferable. Examples of the aliphatic dicarboxylic acid include, but are not limited to, malonic acid, maleic acid, fumaric acid, succinic acid, tartaric acid, itaconic acid, glutaric acid, dimethylmalonic acid, citraconic acid, citric acid, adipic acid, heptanoic acid, pimeline. Examples include acid, suberic acid, azelaic acid, and sebacic acid. Of these, tartaric acid, citric acid, and adipic acid are particularly preferred for reasons such as solution stability, safety, and good buffer action. Of these, one type may be used, or two or more types may be used in combination.
 硼酸、燐酸及び有機カルボン酸の塩としては、これらの酸と適当な陽イオンとの塩であればよい。陽イオンとしては特に制限はないが例えばアンモニウムイオン、1級、2級、3級又は4級のアルキルアンモニウムイオン、アルカリ金属イオン、ホスホニウムイオン、或いはスルホニウムイオンなどを用いることができる。なかでも表面への金属イオン残留やイオンの拡散等による影響が少ない点で、アンモニウムイオン、1級、2級,3級又は4級のアルキルアンモニウムイオンが好ましい。アルキルアンモニウムイオンのアルキル基は、化成液への溶解性を考慮して適宜選択すればよいが、通常、炭素数1~4のアルキル基である。 The salt of boric acid, phosphoric acid and organic carboxylic acid may be a salt of these acids with an appropriate cation. The cation is not particularly limited, and for example, ammonium ion, primary, secondary, tertiary or quaternary alkyl ammonium ion, alkali metal ion, phosphonium ion, or sulfonium ion can be used. Of these, ammonium ions, primary, secondary, tertiary or quaternary alkylammonium ions are preferred in that they are less affected by residual metal ions on the surface, ion diffusion, and the like. The alkyl group of the alkyl ammonium ion may be appropriately selected in consideration of the solubility in the chemical conversion solution, but is usually an alkyl group having 1 to 4 carbon atoms.
 これらの化合物は1種を用いてもよいし、2種以上を組み合わせて用いてもよい。また、化成液は上記の化合物に加えて他の化合物を含んでもよい。 These compounds may be used alone or in combination of two or more. Further, the chemical conversion liquid may contain other compounds in addition to the above compounds.
 これら化合物の濃度は、目的に応じて適宜選択すればよいが、化成液全体に対して、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上とする。電気伝導率を上げ、陽極酸化被膜2の形成を十分に行うためには、前記化合物の濃度は、できる限り高くすることが望ましい。ただし、陽極酸化被膜2の性能を高く保ち、またコストを抑える点で、通常30質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下とすることが望ましい。 The concentration of these compounds may be appropriately selected according to the purpose, but is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more with respect to the whole chemical conversion liquid. . In order to increase the electrical conductivity and sufficiently form the anodic oxide coating 2, it is desirable that the concentration of the compound be as high as possible. However, it is usually 30% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less from the viewpoint of keeping the performance of the anodic oxide coating 2 high and reducing the cost.
 化成液は、非水溶媒を含有することが好ましい。非水溶媒を含む化成液を用いると、水溶液系の化成液に比べて、定電流化成に要する時間が短くて済むため、高いスループットで処理できる利点がある。また、水溶液を化成液として用いると、水の電気分解によって生じたOHイオンが陽極酸化被膜をエッチングして多孔質にしてしまうので、水の電気分解を抑制できるような誘電率の小さい主溶媒を用いることが好ましい。 The chemical conversion liquid preferably contains a non-aqueous solvent. The use of a chemical conversion solution containing a non-aqueous solvent has an advantage that it can be processed at a high throughput because the time required for the constant current conversion is shorter than that of an aqueous chemical conversion solution. In addition, when an aqueous solution is used as a chemical conversion solution, OH ions generated by water electrolysis etch the anodic oxide film to make it porous, so a main solvent having a low dielectric constant that can suppress water electrolysis is used. It is preferable to use it.
 非水溶媒の種類は、良好に陽極酸化ができ、溶質に対する十分な溶解度を持つものであれば特に制限はないが、1以上のアルコール性水酸基及び/又は1以上のフェノール性水酸基を有する溶媒、若しくは非プロトン性有機溶媒が好ましい。なかでも、保存安定性の点でアルコール性水酸基を有する溶媒が好ましい。 The type of the non-aqueous solvent is not particularly limited as long as it can be anodized satisfactorily and has sufficient solubility in a solute, but a solvent having one or more alcoholic hydroxyl groups and / or one or more phenolic hydroxyl groups, Or an aprotic organic solvent is preferable. Among these, a solvent having an alcoholic hydroxyl group is preferable from the viewpoint of storage stability.
 アルコール性水酸基を有する化合物としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1-ブタノール、2-エチル-1-ヘキサノール、シクロヘキサノール等の1価アルコール;エチレングリコール、プロピレングリコール、ブタン-1,4-ジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等の2価アルコール;グリセリン、ペンタエリスリトール等の3価以上の多価アルコール等を用いることができる。また、分子内にアルコール性水酸基以外の官能基を有する溶媒も使用することができる。なかでも水との混和性及び蒸気圧の点で二つ以上のアルコール性水酸基を有するものが好ましく、2価アルコールや3価アルコールがより好ましく、エチレングリコール、プロピレングリコール、ジエチレングリコールが特に好ましい。 Examples of the compound having an alcoholic hydroxyl group include monohydric alcohols such as methanol, ethanol, propanol, isopropanol, 1-butanol, 2-ethyl-1-hexanol and cyclohexanol; ethylene glycol, propylene glycol, butane-1,4 -Dihydric alcohols such as diol, diethylene glycol, triethylene glycol, and tetraethylene glycol; trihydric or higher polyhydric alcohols such as glycerin and pentaerythritol can be used. Moreover, the solvent which has functional groups other than alcoholic hydroxyl group in a molecule | numerator can also be used. Among these, those having two or more alcoholic hydroxyl groups are preferable in view of miscibility with water and vapor pressure, more preferably dihydric alcohols and trihydric alcohols, and particularly preferably ethylene glycol, propylene glycol, and diethylene glycol.
 フェノール性水酸基を有する化合物としては、例えば、1つの水酸基を有する無置換フェノールやo-/m-/p-クレゾール類、キシレノール類等のアルキルフェノール類、また、2つの水酸基を有するものとしてはレソルシノール類が、また3つの水酸基を有するものとしてはピロガロール類等を用いることができる。 Examples of the compound having a phenolic hydroxyl group include unsubstituted phenol having one hydroxyl group, alkylphenols such as o- / m- / p-cresols and xylenols, and resorcinols having two hydroxyl groups. However, pyrogallol and the like can be used as those having three hydroxyl groups.
 これらアルコール性水酸基及び/又はフェノール性水酸基を有する化合物は、さらに分子内に他の官能基を有していてもよい。例えば、メチルセロソルブやセロソルブ等のように、アルコール性水酸基とともにアルコキシ基を有する溶媒も用いることができる。 These compounds having an alcoholic hydroxyl group and / or a phenolic hydroxyl group may further have other functional groups in the molecule. For example, a solvent having an alkoxy group together with an alcoholic hydroxyl group such as methyl cellosolve and cellosolve can also be used.
 非プロトン性有機溶媒としては、極性溶媒又は非極性溶媒のいずれを使用してもよい。 As the aprotic organic solvent, either a polar solvent or a nonpolar solvent may be used.
 極性溶媒としては、特に限定はされないが例えば、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等の環状カルボン酸エステル類;酢酸メチル、酢酸エチル、プロピオン酸メチル等の鎖状カルボン酸エステル類;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状炭酸エステル類、N-メチルホルムアミド、N-エチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル等のニトリル類;トリメチルフォスフェート、トリエチルフォスフェート等の燐酸エステル類が挙げられる。 The polar solvent is not particularly limited, and examples thereof include cyclic carboxylic acid esters such as γ-butyrolactone, γ-valerolactone, and δ-valerolactone; chain carboxylic acid esters such as methyl acetate, ethyl acetate, and methyl propionate. Cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate; chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, N-methylformamide, N-ethylformamide, N, N— Amides such as dimethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpyrrolidone, acetonitrile, glutaronitrile, adiponitrile, methoxya Tonitoriru, 3-methoxy nitriles such as propionitrile; trimethyl phosphate, phosphates such as triethyl phosphate.
 非極性溶媒としては、特に限定はされないが、例えば、ヘキサン、トルエン、シリコーンオイルなどが挙げられる。 The nonpolar solvent is not particularly limited, and examples thereof include hexane, toluene, and silicone oil.
 これらの溶媒は、1種を単独で使用しても、2種以上を組み合わせて使用してもよい。陽極酸化被膜2の形成に用いる化成液の非水溶媒として特に好ましいのは、エチレングリコール、プロピレングリコール、又はジエチレングリコールであり、これらを単独又は組み合わせて用いてもよい。また非水溶媒を含有していれば、水を含有していてもよい。 These solvents may be used alone or in combination of two or more. Particularly preferable as the non-aqueous solvent of the chemical conversion liquid used for forming the anodic oxide coating 2 is ethylene glycol, propylene glycol, or diethylene glycol, which may be used alone or in combination. Moreover, if it contains the nonaqueous solvent, you may contain water.
 非水溶媒は、化成液全体に対して通常10質量%以上、好ましくは30質量%以上、さらに好ましくは50質量%以上、特に好ましくは55質量%以上の割合で含まれ、通常95質量%以下、好ましくは90質量%以下、特に好ましくは85質量%以下の割合で含まれる。 The non-aqueous solvent is usually contained in an amount of 10% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more, particularly preferably 55% by mass or more, and usually 95% by mass or less, based on the whole chemical conversion liquid. , Preferably 90% by mass or less, particularly preferably 85% by mass or less.
 化成液が非水溶媒に加えて水を含む場合、その含有量は化成液全体に対して、通常1質量%以上、好ましくは5質量%以上、さらに好ましくは10質量%以上、特に好ましくは15質量%以上であり、通常85質量%以下、好ましくは50質量%以下、特に好ましくは40質量%以下である。 When the chemical conversion liquid contains water in addition to the non-aqueous solvent, the content thereof is usually 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% with respect to the whole chemical conversion liquid. The content is usually at least 85% by mass, preferably at most 50% by mass, particularly preferably at most 40% by mass.
 非水溶媒に対する水の割合は、好ましくは1質量%以上、好ましくは5質量%以上、さらに好ましくは7質量%以上、特に好ましくは10質量%以上であり、通常90質量%以下、好ましくは60質量%以下、さらに好ましくは50質量%以下、特に好ましくは40質量%以下である。 The ratio of water to the non-aqueous solvent is preferably 1% by mass or more, preferably 5% by mass or more, more preferably 7% by mass or more, particularly preferably 10% by mass or more, and usually 90% by mass or less, preferably 60%. It is not more than mass%, more preferably not more than 50 mass%, particularly preferably not more than 40 mass%.
 化成液は、必要に応じて他の添加剤を含んでいてもよい。例えば、陽極酸化被膜2の成膜性及び膜特性を向上させるための添加剤を含有していてもよい。添加剤としては、特に制限されず、公知の化成液で用いられる添加剤やそれ以外の物質の中から選択する一種以上の物質を添加して用いることができる。このとき、添加剤の添加量には特段の制限はなく、その効果とコスト等を勘案して適切な量とすればよい。 The chemical conversion liquid may contain other additives as necessary. For example, an additive for improving the film formability and film characteristics of the anodized film 2 may be contained. The additive is not particularly limited and may be used by adding one or more substances selected from known additives and other substances. At this time, there is no special restriction | limiting in the addition amount of an additive, What is necessary is just to consider an effect, cost, etc., and to make it an appropriate amount.
 陽極酸化のための電解法は、特に制限はない。電流波形としては、例えば直流の他に、印加電圧が周期的に断続するパルス法、極性が反転するPR法、その他交流や交直重畳、不完全整流、三角波などの変調電流等を用いることができるが、好ましくは直流を用いる。 The electrolytic method for anodizing is not particularly limited. As the current waveform, for example, in addition to direct current, a pulse method in which an applied voltage is periodically interrupted, a PR method in which the polarity is inverted, other alternating current, AC / DC superimposition, incomplete rectification, modulation current such as a triangular wave, or the like can be used. However, preferably a direct current is used.
 陽極酸化の電流及び電圧の制御方法は特に制限はなく、アルミ合金製容器本体1の内表面に酸化物膜が形成される条件を適宜組み合わせることができる。通常は定電流及び定電圧にて陽極酸化処理することが好ましい。即ちあらかじめ定められた化成電圧Vfまで定電流にて化成し、化成電圧に達した後にその電圧に一定時間保持して陽極酸化を行うことが好ましい。 The method for controlling the current and voltage of anodic oxidation is not particularly limited, and conditions for forming an oxide film on the inner surface of the aluminum alloy container body 1 can be appropriately combined. Usually, it is preferable to anodize at a constant current and a constant voltage. In other words, it is preferable that the formation is performed at a constant current up to a predetermined formation voltage Vf, and after the formation voltage is reached, the voltage is held for a certain period of time to perform anodization.
 この際、効率的に酸化膜を形成する為に、電流密度は、通常0.001mA/cm以上とし、好ましくは0.01mA/cm以上とする。ただし表面平坦性の良好な酸化膜を得る為に、電流密度は、通常100mA/cm以下とし、好ましくは10mA/cm以下とする。 At this time, in order to efficiently form an oxide film, the current density is usually 0.001 mA / cm 2 or more, preferably 0.01 mA / cm 2 or more. However, in order to obtain an oxide film with good surface flatness, the current density is usually 100 mA / cm 2 or less, preferably 10 mA / cm 2 or less.
 また、化成電圧Vfは通常3V以上とし、好ましくは10V以上、より好ましくは20V以上とする。得られる酸化膜厚は化成電圧Vfと関連するので、酸化物膜に一定の厚みを付与するために、前記電圧以上を印加することが好ましい。ただし通常1000V以下とし、好ましくは700V以下とし、より好ましくは500V以下とする。得られる酸化物膜は高絶縁性を有するので、高絶縁破壊を起こすことなく、良質な酸化膜を形成する為には、前記の電圧以下で行うことが好ましい。 Further, the formation voltage Vf is usually 3 V or more, preferably 10 V or more, more preferably 20 V or more. Since the obtained oxide film thickness is related to the formation voltage Vf, it is preferable to apply the voltage or more in order to give a certain thickness to the oxide film. However, it is usually 1000 V or less, preferably 700 V or less, more preferably 500 V or less. Since the obtained oxide film has high insulating properties, it is preferable to carry out at the voltage or lower in order to form a high-quality oxide film without causing high dielectric breakdown.
 なお、化成電圧に至るまで直流電源の代わりにピーク電流値が一定の交流を使用し、化成電圧に達したところで直流電圧に切り替えて一定時間保持する方法を用いてもよい。 Note that it is also possible to use a method in which an alternating current having a constant peak current value is used in place of the direct current power source until the formation voltage is reached, and when the formation voltage is reached, the direct current voltage is switched to the direct current voltage and held for a certain time.
 陽極酸化の他の条件は特に制限されるものではない。ただし陽極酸化時の温度は、化成液が安定に液体として存在する温度範囲とする。通常、-20℃以上であり、好ましくは5℃以上であり、より好ましくは10℃以上である。陽極酸化時の生産・エネルギー効率等を勘案して、前記温度以上にて処理することが好ましい。ただし通常150℃以下であり、好ましくは100℃以下であり、より好ましくは80℃以下である。化成液の組成を保持して均一な陽極酸化を行う為に、前記温度以下にて処理することが好ましい。 Other conditions for anodic oxidation are not particularly limited. However, the temperature at the time of anodization is set to a temperature range in which the chemical conversion liquid exists stably as a liquid. Usually, it is −20 ° C. or higher, preferably 5 ° C. or higher, more preferably 10 ° C. or higher. In consideration of production, energy efficiency, and the like at the time of anodization, it is preferable to perform the treatment at the temperature or higher. However, it is usually 150 ° C. or lower, preferably 100 ° C. or lower, more preferably 80 ° C. or lower. In order to maintain the composition of the chemical conversion solution and perform uniform anodic oxidation, the treatment is preferably performed at the temperature or lower.
 前記陽極酸化は、前記アルミ合金製容器本体1の内表面と対向電極(たとえば白金)とを前記化成液中に配置する第1の工程と、前記アルミ合金製容器本体1にプラスを前記電極にマイナスを印加して一定の電流を所定の時間流す第2の工程と、前記アルミ合金製容器本体1と前記電極との間に一定の電圧を所定の時間印加する第3の工程とを含むのが好ましい。前記第2の工程の前記所定の時間は前記アルミ合金製容器本体1と所定の電極との間の電圧が所定の値になるまで(例えば、エチレングリコールを用いた場合は200Vになるまで)であるのが好ましい。 The anodic oxidation includes a first step in which an inner surface of the aluminum alloy container body 1 and a counter electrode (for example, platinum) are disposed in the chemical conversion solution, and a plus is applied to the aluminum alloy container body 1 as the electrode. A second step of applying a negative current to pass a constant current for a predetermined time; and a third step of applying a constant voltage between the aluminum alloy container body 1 and the electrode for a predetermined time. Is preferred. The predetermined time of the second step is until the voltage between the aluminum alloy container body 1 and the predetermined electrode reaches a predetermined value (for example, 200 V when ethylene glycol is used). Preferably there is.
 前記第3の工程の前記所定の時間は前記アルミ合金製容器本体1と所定の電極との間の電流が所定の値になるまでであることが好ましいが、電流値は電圧が上記の所定値になると急激に減少し、あとは時間とともに徐々に減少してゆく。この残留電流が少ないほど、酸化膜の膜質は向上するのであるが、たとえば24時間定電圧処理すれば、膜質は熱処理をしたものと同等になる。生産性を上げるためには、適当な時間で定電圧処理を打ち切り、熱処理(アニール)をすればよい。熱処理は150℃以上、300℃程度で0.5~1時間行うのが好ましい。 The predetermined time of the third step is preferably until the current between the aluminum alloy container body 1 and the predetermined electrode reaches a predetermined value, but the current value is the voltage described above. When it becomes, it decreases rapidly, and then gradually decreases with time. The smaller the residual current is, the better the quality of the oxide film is. However, for example, if a constant voltage treatment is performed for 24 hours, the film quality becomes equivalent to that obtained by heat treatment. In order to increase productivity, the constant voltage treatment may be stopped and heat treatment (annealing) may be performed at an appropriate time. The heat treatment is preferably performed at 150 ° C. or more and about 300 ° C. for 0.5 to 1 hour.
 前記第2の工程において平方cm当たり0.01~100mA、好ましくは0.1~10mAの電流、さらに好ましくは0.5~2mAの電流を流す。 In the second step, a current of 0.01 to 100 mA, preferably 0.1 to 10 mA, more preferably 0.5 to 2 mA is applied per square centimeter.
 先に述べたように前記第3の工程において前記電圧は前記化成液が電気分解を起こさないような電圧とする。前記陽極酸化被膜2の厚さは前記第3の工程における前記電圧に依存する。 As described above, in the third step, the voltage is set such that the chemical conversion liquid does not cause electrolysis. The thickness of the anodic oxide coating 2 depends on the voltage in the third step.
 如何なる理論にも拘束されるものではないが、化成処理時に形成された無孔質の陽極酸化被膜2は、膜全体がアモルファス構造となっており、結晶等の粒界がほとんど存在しないと考えられる。また、更に緩衝作用を有する化合物を添加したり、溶媒として非水溶媒を用いたりすることにより、陽極酸化被膜2中に微量の炭素成分が取り込まれてAl-Oの結合強度が弱くなっており、これにより膜全体のアモルファス構造が安定化されているものと推定される。 Although not bound by any theory, it is considered that the nonporous anodic oxide coating 2 formed during the chemical conversion treatment has an amorphous structure as a whole, and there are almost no grain boundaries such as crystals. . Further, by adding a compound having a buffering action or using a non-aqueous solvent as a solvent, a trace amount of carbon component is taken into the anodized film 2 and the bonding strength of Al—O is weakened. Thus, it is presumed that the amorphous structure of the entire film is stabilized.
 以上のように製造された陽極酸化被膜2は、膜中の水分除去を行うなどの目的で、加熱処理を行ってもよい。特に、前記特定元素をほぼ含まない高純度アルミニウムを主成分とする金属の酸化物皮膜は、熱安定性が高く、ボイドやガス溜まり等が形成されにくい。このため300℃程度以上のアニール処理によっても陽極酸化被膜2にボイドやシームが入りにくいので、パーティクルの発生やアルミニウムの露出による反応液中へのアルミニウムの溶出が抑えられる。加熱処理方法は特に限定されるものではないが、加熱炉等でのアニール処理が簡便で好ましい。 The anodic oxide coating 2 manufactured as described above may be subjected to heat treatment for the purpose of removing moisture in the film. In particular, a metal oxide film mainly composed of high-purity aluminum that does not substantially contain the specific element has high thermal stability, and voids and gas reservoirs are not easily formed. For this reason, voids and seams are unlikely to enter the anodic oxide coating 2 even by annealing at about 300 ° C. or higher, and aluminum elution into the reaction solution due to generation of particles and exposure of aluminum can be suppressed. The heat treatment method is not particularly limited, but an annealing treatment in a heating furnace or the like is simple and preferable.
 加熱処理の温度は、特に制限はないが、通常100℃以上であり、好ましくは200℃以上であり、より好ましくは250℃以上である。加熱処理による金属酸化膜の表面及び内部の水分を十分に除去するためには、前記温度以上で処理することが好ましい。ただし通常600℃以下であり、好ましくは550℃以下であり、より好ましくは500℃以下である。金属酸化膜のアモルファス構造を保持して、表面の平坦性を維持するためにも前記温度以下で処理することが好ましい。アニール処理の場合、通常、加熱炉の設定温度を加熱処理温度とみなす。 The temperature of the heat treatment is not particularly limited, but is usually 100 ° C. or higher, preferably 200 ° C. or higher, more preferably 250 ° C. or higher. In order to sufficiently remove moisture on the surface and inside of the metal oxide film by heat treatment, it is preferable to perform the treatment at the above temperature or more. However, it is usually 600 ° C. or lower, preferably 550 ° C. or lower, more preferably 500 ° C. or lower. In order to maintain the amorphous structure of the metal oxide film and maintain the flatness of the surface, it is preferable to perform the treatment at the temperature or lower. In the case of annealing treatment, the set temperature of the heating furnace is usually regarded as the heat treatment temperature.
 加熱処理の時間は、特に制限はないが、加熱処理による表面荒れ、生産性等を勘案して適宜設定すればよいが、通常1分以上、好ましくは5分以上、特に好ましくは15分以上である。金属酸化膜の表面及び内部の水分を十分に除去するためには、前記時間以上で処理することが好ましい。ただし通常180分以下、好ましくは120分以下、より好ましくは60分以下である。金属酸化膜構造及び表面平坦性を維持するためにも前記時間内で処理することが好ましい。 The time for the heat treatment is not particularly limited, and may be appropriately set in consideration of surface roughness due to the heat treatment, productivity, etc., but is usually 1 minute or more, preferably 5 minutes or more, particularly preferably 15 minutes or more. is there. In order to sufficiently remove moisture on the surface and inside of the metal oxide film, it is preferable to perform the treatment for the above time or more. However, it is usually 180 minutes or less, preferably 120 minutes or less, more preferably 60 minutes or less. In order to maintain the metal oxide film structure and surface flatness, it is preferable to perform the treatment within the above time.
 アニール処理の際の炉内ガス雰囲気は、特に制限はないが、通常、窒素、酸素あるいはこれらの混合ガスなどを適宜用いることができる。なかでも酸素濃度が18vol%以上の雰囲気が好ましく、20vol%以上の条件がより好ましく、酸素濃度が100vol%の条件が最も好ましい。 The gas atmosphere in the furnace during the annealing treatment is not particularly limited, but usually nitrogen, oxygen, or a mixed gas thereof can be appropriately used. Of these, an atmosphere having an oxygen concentration of 18 vol% or higher is preferable, a condition of 20 vol% or higher is more preferable, and a condition of oxygen concentration of 100 vol% is most preferable.
 次いで、上記の陽極酸化被膜2上に、非汚染性被膜3を設ける。非汚染性被膜3は、その表面における純水との接触角が好ましくは90°以上、さらに好ましくは95°以上であり、重合スケール等が付着しにくい性質を有する。表面における純水との接触角が90°未満の場合は、重合溶媒に濡れ易く、反応中の重合スケールが生成しやすくなる。 Next, a non-contaminating film 3 is provided on the anodic oxide film 2. The non-contaminating film 3 has a property that the contact angle with pure water on the surface is preferably 90 ° or more, more preferably 95 ° or more, and the polymer scale or the like is difficult to adhere. When the contact angle with pure water on the surface is less than 90 °, it is easy to get wet with the polymerization solvent, and a polymerization scale during the reaction is easily generated.
 このような非汚染性被膜3を、アルミ合金製反応容器の内表面に設けることで、攪拌時に重合体粒子が容器壁に衝突しても、付着しにくいため、重合体粒子が受ける機械的剪断力が小さい。このため、重合体粒子同士が凝集しにくくなり、重合スケールや、微細凝固物の発生が低減される。 By providing such a non-contaminating coating 3 on the inner surface of the reaction vessel made of aluminum alloy, even if the polymer particles collide against the vessel wall at the time of stirring, it is difficult for them to adhere. The power is small. For this reason, it becomes difficult for polymer particles to aggregate, and generation | occurrence | production of a polymerization scale and a fine solidified material is reduced.
 非汚染性被膜3は、上記の非汚染性を示す限り、特に限定はされないが、たとえば特許文献1に記載の含フッ素脂肪族環構造を有するポリマーからなる被膜や、特許文献2に記載の熱解離性含フッ素保護基を有する化合物を含む汚染付着防止剤からなる被膜があげられる。 The non-contaminating film 3 is not particularly limited as long as it exhibits the above-mentioned non-contaminating property. For example, the non-contaminating film 3 is a film made of a polymer having a fluorine-containing aliphatic ring structure described in Patent Document 1, or a heat described in Patent Document 2. Examples thereof include a film made of an antifouling agent containing a compound having a dissociable fluorine-containing protecting group.
 何ら限定されるものではないが、たとえば含フッ素脂肪族環構造を有するポリマーとしては、含フッ素環構造を有するモノマーを重合して得られるものや、少なくとも2つの重合性二重結合を有する含フッ素モノマーを環化重合して得られる主鎖に環構造を有するポリマーが好適である。 Although it is not limited at all, for example, a polymer having a fluorine-containing aliphatic ring structure is obtained by polymerizing a monomer having a fluorine-containing ring structure, or a fluorine-containing polymer having at least two polymerizable double bonds A polymer having a ring structure in the main chain obtained by cyclopolymerizing monomers is preferred.
 含フッ素環構造を有するモノマーを重合して得られる主鎖に環構造を有するポリマーは、たとえば、パーフルオロ(2,2-ジメチル-1,3-ジオキソール)等の含フッ素環構造を有するモノマーを単独重合ないし、テトラフルオロエチレンなどのラジカル重合性モノマーと共重合することにより得られる。 The polymer having a ring structure in the main chain obtained by polymerizing a monomer having a fluorine-containing ring structure is, for example, a monomer having a fluorine-containing ring structure such as perfluoro (2,2-dimethyl-1,3-dioxole). It can be obtained by homopolymerization or copolymerization with a radical polymerizable monomer such as tetrafluoroethylene.
 また、少なくとも2つの重合性二重結合を有する含フッ素モノマーを環化重合して得られる主鎖に環構造を有するポリマーは、たとえば、パーフルオロ(アリルビニルエーテル)やパーフルオロ(ブテニルビニルエーテル)等のモノマー環化重合、またはテトラフルオロエチレンなどのラジカル重合性モノマーと共重合することにより得られる。 Polymers having a ring structure in the main chain obtained by cyclopolymerization of a fluorine-containing monomer having at least two polymerizable double bonds are, for example, perfluoro (allyl vinyl ether), perfluoro (butenyl vinyl ether), etc. It is obtained by copolymerization with a radically polymerizable monomer such as tetrafluoroethylene.
 また、パーフルオロ(2,2-ジメチル-1,3-ジオキソール)等の含フッ素環構造を有するモノマーとパーフルオロ(アリルビニルエーテル)やパーフルオロ(ブテニルビニルエーテル)等の少なくとも2つの重合性二重結合を有する含フッ素モノマーを共重合して得られるポリマーでもよい。 Further, a monomer having a fluorine-containing ring structure such as perfluoro (2,2-dimethyl-1,3-dioxole) and at least two polymerizable double molecules such as perfluoro (allyl vinyl ether) and perfluoro (butenyl vinyl ether). A polymer obtained by copolymerizing a fluorine-containing monomer having a bond may also be used.
 含フッ素脂肪族環構造を有するポリマーは、主鎖に環構造を有するポリマーが好適であるが、環構造を20%以上含有するものが透明性、機械的特性等の面から好ましい。 The polymer having a fluorine-containing aliphatic ring structure is preferably a polymer having a ring structure in the main chain, but a polymer containing 20% or more of the ring structure is preferable from the viewpoints of transparency and mechanical properties.
 陽極酸化被膜2上に、含フッ素脂肪族環構造を有するポリマーを被覆して非汚染性被膜3を設ける方法としては特に限定はないが、通常行われているコーティングあるいはラミネートの方法を適宜用いることができる。例えば、該ポリマーの溶液を塗布した後に溶媒を乾燥させて被覆させたり、あるいは該ポリマーのフィルムを通常の方法でラミネートすることによって被覆させることが可能である。 Although there is no particular limitation on the method of providing the non-staining coating 3 by coating the polymer having a fluorine-containing aliphatic ring structure on the anodic oxide coating 2, a commonly used coating or laminating method is appropriately used. Can do. For example, it is possible to apply the polymer solution after drying the solvent, or to coat the polymer film by laminating in a usual manner.
 解離性含フッ素保護基を有する化合物を含む汚染付着防止剤は、たとえば
 式(I):Z-X-O-Rf (I)
 (式中、Zは官能基を有しているか有していない有機基、XはC=OまたはSO2、Rfは水素原子の一部または全部がフッ素原子で置換されており、酸素原子を含んでいてもよい有機基である)で示される熱解離性含フッ素保護基を有する化合物からなる。
Stain-proofing agent comprising a compound having a dissociative fluorinated protecting group, for example, formula (I): Z-X- O-R f (I)
(Wherein Z is an organic group having or not having a functional group, X is C═O or SO 2 , R f is a hydrogen atom partially or entirely substituted with a fluorine atom, and an oxygen atom It is an organic group which may contain a compound having a thermally dissociable fluorine-containing protecting group.
 ここで、上記式(I)における-Rは、好ましくは下記式(II)または(III)で示される。
Figure JPOXMLDOC01-appb-C000001
Here, —R f in the above formula (I) is preferably represented by the following formula (II) or (III).
Figure JPOXMLDOC01-appb-C000001
 式中、R1、R2およびR3は同じかまたは異なり、いずれも水素原子または炭素数1~18でフッ素原子を含んでいてもよい有機基、R4は炭素数1~18で水素原子の一部または全部がフッ素原子で置換されている有機基である。
Figure JPOXMLDOC01-appb-C000002
In the formula, R 1 , R 2 and R 3 are the same or different and each is a hydrogen atom or an organic group having 1 to 18 carbon atoms and optionally containing a fluorine atom, R 4 is a hydrogen atom having 1 to 18 carbon atoms Is an organic group partially or entirely substituted with a fluorine atom.
Figure JPOXMLDOC01-appb-C000002
 式中、R1、R2、R3、R4およびR5は同じかまたは異なり、いずれも水素原子または炭素数1~18で水素原子の一部または全部がフッ素原子で置換されていてもよい有機基であり、R1、R2、R3、R4およびR5のうちの少なくともひとつはフッ素原子含有基である。 In the formula, R 1 , R 2 , R 3 , R 4 and R 5 are the same or different, and any of them may be a hydrogen atom or 1 to 18 carbon atoms, and a part or all of the hydrogen atoms may be substituted with fluorine atoms. It is a good organic group, and at least one of R 1 , R 2 , R 3 , R 4 and R 5 is a fluorine atom-containing group.
 非汚染性被膜3は、上記の汚染付着防止剤を陽極酸化被膜2上に塗工して得てもよく、また汚染付着防止剤と架橋性官能基含有塗料用樹脂と硬化剤および/または硬化触媒とからなる塗料用組成物を得て、これを陽極酸化被膜2上に塗工して非汚染性被膜3を得ても良い。 The non-contaminating film 3 may be obtained by applying the above-mentioned anti-contamination agent on the anodized film 2, and the anti-contamination agent, the crosslinking functional group-containing coating resin, the curing agent and / or the curing. A coating composition comprising a catalyst may be obtained, and this may be applied onto the anodized film 2 to obtain the non-contaminating film 3.
 架橋性官能基含有塗料用樹脂は、たとえば水酸基および/またはカルボキシル基を含有する溶剤可溶性のフッ素塗料用樹脂であってもよく、アルコキシシリル基を有するアクリルシリコン塗料用樹脂であってもよい。 The crosslinkable functional group-containing coating resin may be, for example, a solvent-soluble fluorine coating resin containing a hydroxyl group and / or a carboxyl group, or may be an acrylic silicon coating resin having an alkoxysilyl group.
 このような非汚染性被膜3の厚さは、特に限定はされないが、好ましくは0.1~200μm、さらに好ましくは0.5~100μm程度である。 The thickness of the non-contaminating film 3 is not particularly limited, but is preferably about 0.1 to 200 μm, more preferably about 0.5 to 100 μm.
 本発明に係るアルミ合金製反応容器10は、上記のように、アルミ合金製容器本体1の内表面に陽極酸化被膜2および非汚染性被膜3がこの順で形成されてなるが、これらの他にも、たとえば攪拌翼を備えていてもよく、加熱機構、冷却機構、原料供給口、製品取出口等を備えていてもよい。また、攪拌翼には、上記容器と同様に、被汚染性被膜が形成されていてもよい。 As described above, the aluminum alloy reaction vessel 10 according to the present invention has the anodized film 2 and the non-contaminating film 3 formed in this order on the inner surface of the aluminum alloy container main body 1. In addition, for example, a stirring blade may be provided, and a heating mechanism, a cooling mechanism, a raw material supply port, a product outlet, and the like may be provided. In addition, a contaminated film may be formed on the stirring blade in the same manner as the container.
 このような本発明のアルミ合金製反応容器10は、アルミニウム合金を主体としているため、熱伝導率が高く、反応熱を効率良く除去できる。また、容器に内表面に、非汚染性被膜3が形成されているため、反応時における重合スケールの付着や微細凝固物の生成が少なく、長時間運転できる。さらに、アルミ合金製容器本体1の表面には、陽極酸化被膜2が設けられて不動態化しているため、本体1からのアルミニウムの溶出が防止され、溶出アルミニウムに起因する重合体粒子の凝集も低減される。 Since the aluminum alloy reaction vessel 10 of the present invention is mainly composed of an aluminum alloy, it has high thermal conductivity and can efficiently remove reaction heat. In addition, since the non-contaminating film 3 is formed on the inner surface of the container, it can be operated for a long time with little adhesion of polymerization scale and generation of fine solidified products during the reaction. Furthermore, since the surface of the aluminum alloy container main body 1 is provided with an anodic oxide coating 2 and is passivated, elution of aluminum from the main body 1 is prevented, and aggregation of polymer particles caused by the eluted aluminum is also prevented. Reduced.
 したがって、本発明の反応容器10は、各種の反応に用いられるが、特に単量体を重合して、重合体、特に重合体粒子、具体的には電気化学素子用バインダーを得る反応に好ましく用いられる。さらに、本発明の容器10は、容器壁面に対する重合体粒子の付着が起き難いため、電気化学素子用バインダーを用いて、たとえば電極形成用のスラリーを調整する際の混合容器として使用することもできる。 Therefore, the reaction vessel 10 of the present invention is used for various reactions, and is particularly preferably used for a reaction in which a monomer is polymerized to obtain a polymer, particularly a polymer particle, specifically, a binder for an electrochemical device. It is done. Furthermore, since the container 10 of the present invention hardly adheres to the polymer particles on the wall surface of the container, the container 10 can be used as a mixing container for preparing a slurry for electrode formation, for example, using an electrochemical element binder. .
 重合に用いられる単量体は、電気化学素子用バインダーの製造に使用されてきた各種の単量体があげられ、たとえば、脂肪族共役ジエン系単量体、エチレン系不飽和カルボン酸単量体、エチレン系不飽和カルボン酸エステル単量体、アルケニル芳香族単量体、シアン化ビニル単量体、不飽和カルボン酸アミド単量体などがあげられる。これらの単量体は、1種単独で、又は2種以上を組み合わせて用いることができ、その組成に限定はない。 Examples of the monomer used for the polymerization include various monomers that have been used in the production of binders for electrochemical devices, such as aliphatic conjugated diene monomers and ethylenically unsaturated carboxylic acid monomers. And ethylenically unsaturated carboxylic acid ester monomers, alkenyl aromatic monomers, vinyl cyanide monomers, unsaturated carboxylic acid amide monomers, and the like. These monomers can be used individually by 1 type or in combination of 2 or more types, There is no limitation in the composition.
 脂肪族共役ジエン系単量体の具体例としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられる。 Specific examples of the aliphatic conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, and 2-chloro-1,3-butadiene. Examples thereof include butadiene and 1,3-pentadiene.
 エチレン系不飽和カルボン酸単量体の具体例としては、アクリル酸、メタクリル酸、クロトン酸などの一価カルボン酸;マレイン酸、フマル酸、イタコン酸などの多価カルボン酸;またはマレイン酸モノエチル、フマル酸モノブチル等のポリカルボン酸の部分エステル;を挙げることができる。エチレン系不飽和カルボン酸エステル単量体の具体例としては、メチルアクリレート、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート等のアクリル酸エステル;メチルメタクリレート、エチルメタクリレート等のメタクリル酸エステル;ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート等の多価カルボン酸エステル等が挙げられる。これらのエステルはアルキルエステルに限られず、例えばグリシジルアクリレート、グリシジルメタクリレート、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、ジ-(エチレングリコール)マレエート、ジ-(エチレングリコール)イタコネート、2-ヒドロキシエチルマレエート、ビス(2-ヒドロキシエチル)マレエート、2-ヒドロキシエチルメチルフマレート、アミノエチルアクリレート、アミノエチルメタクリレート、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレートのように、グリシジル基、ヒドロキシル基、アミノ基等のような官能基を有するものであってもよい。 Specific examples of the ethylenically unsaturated carboxylic acid monomer include monovalent carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; polyvalent carboxylic acids such as maleic acid, fumaric acid, and itaconic acid; or monoethyl maleate, And partial esters of polycarboxylic acids such as monobutyl fumarate. Specific examples of the ethylenically unsaturated carboxylic acid ester monomer include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate; methacrylic acid esters such as methyl methacrylate and ethyl methacrylate; dimethyl fumarate, And polyvalent carboxylic acid esters such as diethyl fumarate, dimethyl maleate, diethyl maleate and dimethyl itaconate. These esters are not limited to alkyl esters, such as glycidyl acrylate, glycidyl methacrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate. , Di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, 2-hydroxyethyl methyl fumarate, aminoethyl acrylate, aminoethyl methacrylate, dimethyl Aminoethyl acrylate, dimethylaminoethyl methacrylate, diethylamino Ethyl acrylate, as diethylaminoethyl methacrylate, glycidyl group, hydroxyl group, may have a functional group such as amino groups.
 アルケニル芳香族単量体の具体例としては、スチレン、α-メチルスチレン、ビニルトルエン等を挙げることができる。 Specific examples of the alkenyl aromatic monomer include styrene, α-methylstyrene, vinyltoluene and the like.
 シアン化ビニル単量体の具体例としては、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エチルアクリロニトリルを挙げることができる。 Specific examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, and α-ethylacrylonitrile.
 不飽和カルボン酸アミド単量体の具体例としては、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、N,N-ジメチルアクリルアミド等が挙げられる。 Specific examples of the unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, N, N-dimethylacrylamide and the like.
 また、さらに単量体としては、上記の単量体と共重合可能な他の単量体が含まれていても良い。このような他の単量体としては、酢酸ビニル、プロピオン酸ビニル等の脂肪族ビニルエステル単量体;メチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル単量体;2-ビニルピリジン、4-ビニルピリジン等の塩基性単量体;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基含有単量体;ビニルトリメトキシシラン等のビニルシラン単量体;3-アクリルアミドプロピルトリメチルアンモニウムクロライド、3-メタクリルアミドプロピルトリメチルアンモニウムクロライド等の第4級アンモニウム基を有する単量体等の(共)重合に使用することもできる。 Further, as the monomer, another monomer copolymerizable with the above monomer may be contained. Examples of such other monomers include aliphatic vinyl ester monomers such as vinyl acetate and vinyl propionate; methyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, Vinyl ether monomers such as t-butyl vinyl ether, dodecyl vinyl ether and stearyl vinyl ether; basic monomers such as 2-vinyl pyridine and 4-vinyl pyridine; ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, 2-acrylamide -Sulphonic acid group-containing monomers such as 2-methylpropanesulfonic acid; Vinylsilane monomers such as vinyltrimethoxysilane; 3-acrylamidopropyltrimethylammonium chloride, 3-methacrylamidopropyltrimethylammo It can also be used for (co) polymerization of such monomer having a quaternary ammonium group such as Umukuroraido.
 さらに、単量体としては、上記に加え、ジビニルベンゼン、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートのような架橋性単量体を併用することも可能である。 Furthermore, in addition to the above, a crosslinkable monomer such as divinylbenzene, ethylene glycol dimethacrylate, or trimethylolpropane triacrylate can be used in combination as the monomer.
 本発明においては、電気化学素子用バインダーとして用いられる重合体粒子を得る観点から、上記単量体を乳化重合することが好ましい。このため、前記単量体の少なくとも一部は、乳化液の形態で反応容器に加えられる。以下、乳化重合を例にとり、さらに詳細に説明するが、本発明における重合形態が乳化重合に限定されることはない。以下における単量体乳化液は、乳化重合を行う場合に調整されるが、乳化重合以外の重合形態をとる場合には、単量体は乳化液以外の形態で反応容器に供給されてもよい。 In the present invention, from the viewpoint of obtaining polymer particles used as a binder for an electrochemical element, it is preferable to emulsion polymerize the monomer. For this reason, at least a part of the monomer is added to the reaction vessel in the form of an emulsion. Hereinafter, although emulsion polymerization is taken as an example and described in more detail, the polymerization form in the present invention is not limited to emulsion polymerization. The monomer emulsion in the following is adjusted when emulsion polymerization is carried out, but when taking a polymerization form other than emulsion polymerization, the monomer may be supplied to the reaction vessel in a form other than the emulsion. .
 単量体乳化液の組成は、重合の開始時点から終了時点まで不変であっても、重合の進展と共に経時的に変化させてもよい。単量体乳化液の組成の変化は、連続的でも不連続的でもよい。単量体乳化液の組成を変化させるには、単量体乳化液調製のための容器に単量体を随時供給して行ってもよく、単量体乳化液を調製するために2以上の容器を用いていわゆるパワーフィード法を採用して行ってもよい。 The composition of the monomer emulsion may be unchanged from the start point to the end point of the polymerization or may be changed over time as the polymerization progresses. The change in the composition of the monomer emulsion may be continuous or discontinuous. In order to change the composition of the monomer emulsion, the monomer may be supplied to a container for preparing the monomer emulsion at any time. To prepare the monomer emulsion, two or more A so-called power feed method may be employed using a container.
 本発明において、単量体乳化液の調製に使用される乳化剤は、従来、乳化重合において使用されているものであれば、特に限定されない。乳化剤としては、界面活性剤のほか、水溶性高分子保護コロイドを用いることもできる。また、例えば特開平3-269032号公報に記載されているようなアルカリ可溶性樹脂も使用することができる。 In the present invention, the emulsifier used for preparing the monomer emulsion is not particularly limited as long as it is conventionally used in emulsion polymerization. As the emulsifier, a water-soluble polymer protective colloid can be used in addition to the surfactant. Further, an alkali-soluble resin as described in, for example, JP-A-3-269032 can also be used.
 界面活性剤としては、高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、非イオン性界面活性剤の硫酸エステル塩等のアニオン性界面活性剤;ポリエチレングリコールのアルキルエステル型、アルキルフェニルエーテル型、アルキルエーテル型等のノニオン性界面活性剤が一種又は二種以上で用いられる。また、カチオン性界面活性剤や両性界面活性剤を使用することもできる。 Examples of surfactants include anionic surfactants such as sulfate esters of higher alcohols, alkylbenzene sulfonates, aliphatic sulfonates, aliphatic carboxylates, sulfate esters of nonionic surfactants; polyethylene glycol Nonionic surfactants such as alkyl ester type, alkylphenyl ether type, and alkyl ether type are used singly or in combination. Cationic surfactants and amphoteric surfactants can also be used.
 水溶性高分子保護コロイドとしては、ポリビニルアルコール及び各種変性物;ポリアクリル酸またはポリメタクリル酸及びこれらの塩;ポリビニルアルキルエーテル;酢酸ビニルとアクリル酸、メタクリル酸または無水マレイン酸との共重合物及びこれらの鹸化物;低級アルキルビニルエーテル-無水マレイン酸共重合物;アルキルセルロース、ヒドロキシアルキルセルロース、アルキルヒドロキシアルキルセルロース、カルボキシルメチルセルロース等のセルロース誘導体;アルキル澱粉、カルボキシルメチル澱粉、酸化澱粉などの澱粉誘導体;アラビアゴム、トラガントゴム;ポリアルキレングリコール等を挙げることができる。 Water-soluble polymer protective colloids include polyvinyl alcohol and various modified products; polyacrylic acid or polymethacrylic acid and salts thereof; polyvinyl alkyl ethers; copolymers of vinyl acetate and acrylic acid, methacrylic acid or maleic anhydride, and These saponified products; lower alkyl vinyl ether-maleic anhydride copolymer; cellulose derivatives such as alkyl cellulose, hydroxyalkyl cellulose, alkyl hydroxyalkyl cellulose, and carboxymethyl cellulose; starch derivatives such as alkyl starch, carboxymethyl starch, and oxidized starch; Examples thereof include rubber, tragacanth rubber; polyalkylene glycol and the like.
 単量体乳化液を調製するための乳化剤の使用量は、特に限定されず、通常、単量体100質量部に対して0.01~10質量部、好ましくは0.05~5質量部である。 The amount of the emulsifier used for preparing the monomer emulsion is not particularly limited, and is usually 0.01 to 10 parts by weight, preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the monomer. is there.
 乳化重合に使用する全ての単量体を単量体乳化液として供給してもよく、また、単量体乳化液とは別途に一部の単量体を反応容器に仕込み、残りの単量体を単量体乳化液として供給してもよい。全ての単量体を単量体乳化液として供給することが好ましい。単量体乳化物の供給の開始の時期は特に限定されない。例えば、反応容器に単量体乳化液の一部又は全部を供給してから重合を開始してもよく、また、単量体乳化液とは別途に単量体を反応容器に仕込んで重合を開始してから、単量体乳化液の供給を開始してもよい。これらの場合において、予め反応容器中に仕込む単量体量と後から反応容器に供給する単量体量との比率は、特に限定されない。 All monomers used for the emulsion polymerization may be supplied as a monomer emulsion, and a part of the monomer is charged into the reaction vessel separately from the monomer emulsion, The body may be supplied as a monomer emulsion. It is preferable to supply all monomers as a monomer emulsion. The start time of the supply of the monomer emulsion is not particularly limited. For example, the polymerization may be started after a part or all of the monomer emulsion is supplied to the reaction vessel, or the monomer is charged into the reaction vessel separately from the monomer emulsion. You may start supply of a monomer emulsion after starting. In these cases, the ratio of the amount of monomer charged into the reaction vessel in advance and the amount of monomer supplied to the reaction vessel later is not particularly limited.
 このように、重合時には、重合性単量体の全部を、乳化液の形態で反応容器中に加えてもよく、また重合性単量体の全量を反応容器に供給した後、重合を開始してもよい。さらに、重合性単量体の一部を反応容器に供給した後、重合を開始し、残余の重合性単量体を順次反応容器に供給して重合を行ってもよい。 Thus, at the time of polymerization, all of the polymerizable monomer may be added to the reaction vessel in the form of an emulsion, and after the entire amount of the polymerizable monomer is supplied to the reaction vessel, the polymerization is started. May be. Furthermore, after a part of the polymerizable monomer is supplied to the reaction vessel, the polymerization may be started, and the remaining polymerizable monomer may be sequentially supplied to the reaction vessel to carry out the polymerization.
 さらに、反応容器に単量体が存在しない状態で、反応容器中で重合開始剤を分解させ、これに単量体乳化液を供給していくことも可能である。 Furthermore, it is also possible to decompose the polymerization initiator in the reaction vessel in a state where no monomer is present in the reaction vessel, and to supply the monomer emulsion to this.
 また、反応容器にシード用ラテックスを存在させ、これに単量体乳化液を供給して重合を行わせることもできる。これにより、得られる重合体ラテックスの粒径を制御することが可能である。 It is also possible to cause the latex for seed to exist in the reaction vessel, and to carry out the polymerization by supplying a monomer emulsion to this. Thereby, it is possible to control the particle size of the obtained polymer latex.
 単量体乳化液中の単量体組成と、予め反応容器に単量体の一部を投入して重合する場合の反応容器中の単量体組成やシード用ラテックスの単量体組成とは、必ずしも同じである必要はなく、所望に応じて異ならせることができる。 What are the monomer composition in the monomer emulsion and the monomer composition in the reaction container and the monomer composition of the latex for seeding when polymerizing a part of the monomer in the reaction container in advance? , Not necessarily the same, but can be different as desired.
 反応容器への単量体乳化液の供給は、連続的でも断続的でもよい。供給開始や終了の時期も特に限定されない。更に、供給速度(単位時間当たりの供給量)も均一でも不均一でもよい。また、供給所要時間も制限されない。 The supply of the monomer emulsion to the reaction vessel may be continuous or intermittent. There is no particular limitation on the supply start and end times. Further, the supply speed (supply amount per unit time) may be uniform or non-uniform. Further, the time required for supply is not limited.
 また、通常は、重合開始剤を使用して重合を行う。重合開始剤としては、従来、乳化重合において使用されているものであればよく、その使用量にも、特に制限はない。重合開始剤の具体例としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、過酸化水素、t-ブチルハイドロパーオキサイド等の水溶性重合開始剤;アゾビスイソブチロニトリル、2,2-アゾビス-2,4-ジメチルバレロニトリル、過酸化ベンゾイル、ジ-t-ブチルパーオキサイド等の油溶性重合開始剤が使用できる。好ましくは、水溶性重合開始剤が使用される。また、これらの重合開始剤を還元剤と組み合わせてレドックス系重合開始剤として使用することも可能である。 Usually, the polymerization is carried out using a polymerization initiator. Any polymerization initiator may be used as long as it is conventionally used in emulsion polymerization, and the amount used is not particularly limited. Specific examples of the polymerization initiator include water-soluble polymerization initiators such as potassium persulfate, ammonium persulfate, sodium persulfate, hydrogen peroxide, and t-butyl hydroperoxide; azobisisobutyronitrile, 2,2-azobis Oil-soluble polymerization initiators such as -2,4-dimethylvaleronitrile, benzoyl peroxide, and di-t-butyl peroxide can be used. Preferably, a water-soluble polymerization initiator is used. Further, these polymerization initiators can be used as a redox polymerization initiator in combination with a reducing agent.
 好ましい実施態様では、これらの重合開始剤は、重合の開始に当たって、反応容器に投入する。この点で、重合開始剤を単量体及び分散剤と共に微小液滴とする微小懸濁重合(マイクロサスペンジョン重合)とは異なる。重合開始剤を単量体乳化液の調製のための容器中に添加して単量体と共に乳化することは、攪拌熱等により重合が開始する恐れがあり、安全上にも問題がある。なお、重合開始剤は、一括添加してもよく、重合の進行に応じて連続添加又は分割添加する方法を採ることもできる。 In a preferred embodiment, these polymerization initiators are charged into a reaction vessel at the start of polymerization. This is different from microsuspension polymerization (microsuspension polymerization) in which a polymerization initiator is formed into microdroplets together with a monomer and a dispersant. Adding a polymerization initiator into a container for preparing a monomer emulsified liquid and emulsifying with the monomer may start polymerization due to heat of stirring or the like, which is problematic in terms of safety. In addition, a polymerization initiator may be added all at once, and the method of adding continuously or dividing according to progress of superposition | polymerization can also be taken.
 単量体乳化液の調製以外にも、必要に応じて乳化剤を使用することができる。その使用量も特に限定されない。このような使用の例として、単量体の供給前に反応容器に予め添加しておく態様、単量体の一部を反応容器で重合させてから反応容器に単量体乳化液の供給を開始する場合に、その一部単量体の乳化剤として使用する態様、単量体乳化物の供給と並行して、別途、乳化剤を添加する態様等を示すことができる。 In addition to the preparation of the monomer emulsion, an emulsifier can be used as necessary. The amount used is not particularly limited. As an example of such use, a mode in which the monomer is added in advance to the reaction vessel before supplying the monomer, a part of the monomer is polymerized in the reaction vessel and then the monomer emulsion is supplied to the reaction vessel. When starting, the aspect used as the emulsifier of the one part monomer, the aspect which adds an emulsifier separately in parallel with supply of a monomer emulsion, etc. can be shown.
 単量体乳化液の調製以外の目的に使用する乳化剤としては、単量体乳化液の調製に使用するものと同様のものを例示することができる。 Examples of the emulsifier used for purposes other than the preparation of the monomer emulsion include those similar to those used for the preparation of the monomer emulsion.
 また、重合時には、各種の連鎖移動剤を使用することができる。連鎖移動剤の使用量は、特に限定されないが、通常は、単量体100質量部に対し、0~10質量部である。連鎖移動剤は、直接、反応容器に添加しても、単量体と共に乳化物として添加してもよい。連鎖移動剤の種類は、特に限定されないが、その具体例としては、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメルカプタン、2,2,4,6,6-ペンタメチルヘプタン-4-チオール、2,4,6-トリメチルノナン-4-チオール等のメルカプタン化合物;四塩化炭素、臭化エチレンなどのハロゲン化炭化水素;ジメチルキサントゲンジサルファイド、ジエチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲン化合物;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド等のチウラム系化合物;チオグリコール酸、チオグリコール酸オクチル、チオグリコール酸2-エチルヘキシル等のチオグリコール酸化合物;2,4-ジフェニル-4-メチル-1-ペンテン等のα-メチルスチレンダイマー;ターピノレン、α-テルピネン、β-テルピネン、γ-テルピネン、ジペンテン等のテルペン化合物;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなどのフェノール系化合物;アクロレイン、メタアクロレイン、アリルアルコールなどのアリル化合物;α-ベンジルオキシスチレン、α-ベンジルオキシアクリロニトリル、α-ベンジルオキシアクリルアミド等のビニルエーテル化合物;ベンゾアルデヒド等のアルデヒド;トリフェニルメタン、ペンタフェニルエタン等の多環芳香族炭化水素;2,5-ジヒドロフラン等々が挙げられる。これらの連鎖移動剤は、一種単独で又は二種以上を組み合わせて用いることができる。 Moreover, various chain transfer agents can be used during the polymerization. The amount of the chain transfer agent used is not particularly limited, but is usually 0 to 10 parts by mass with respect to 100 parts by mass of the monomer. The chain transfer agent may be added directly to the reaction vessel or may be added as an emulsion together with the monomer. The type of chain transfer agent is not particularly limited, and specific examples thereof include n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl mercaptan, 2,2,4 Mercaptan compounds such as 1,6,6-pentamethylheptane-4-thiol and 2,4,6-trimethylnonane-4-thiol; Halogenated hydrocarbons such as carbon tetrachloride and ethylene bromide; Dimethylxanthogen disulfide, diethyl Xanthogen compounds such as xanthogen disulfide and diisopropylxanthogen disulfide; thiuram compounds such as tetramethylthiuram disulfide, tetraethylthiuram disulfide and tetrabutylthiuram disulfide; thioglycolic acid, octyl thioglycolate Thioglycolic acid compounds such as 2-ethylhexyl thioglycolate; α-methylstyrene dimers such as 2,4-diphenyl-4-methyl-1-pentene; terpinolene, α-terpinene, β-terpinene, γ-terpinene, dipentene, etc. Terpene compounds; phenol compounds such as 2,6-di-t-butyl-4-methylphenol and styrenated phenol; allyl compounds such as acrolein, methacrolein and allyl alcohol; α-benzyloxystyrene, α-benzyloxy And vinyl ether compounds such as acrylonitrile and α-benzyloxyacrylamide; aldehydes such as benzaldehyde; polycyclic aromatic hydrocarbons such as triphenylmethane and pentaphenylethane; 2,5-dihydrofuran and the like. These chain transfer agents can be used singly or in combination of two or more.
 乳化重合においては、更に、常用されるその他の添加剤、例えば、電解質(ピロリン酸ナトリウム、ポリアクリル酸ナトリウム、ヘキサメタリン酸ナトリウムなど)、消泡剤(ポリグリコール、脂肪酸エステル、リン酸エステル、シリコーンオイルなど)、重合促進剤、キレート剤等を使用することができる。また、反応速度の制御等の目的で、重合遅延剤を使用することも可能である。その具体例としては、2,4-ジニトロクロルベンゼンなどを挙げることができる。上記添加剤成分の添加方法については、特に制限はなく、一括添加法、分割添加法、連続添加法の何れでも採用することができる。 In emulsion polymerization, other commonly used additives such as electrolytes (sodium pyrophosphate, sodium polyacrylate, sodium hexametaphosphate, etc.), antifoaming agents (polyglycol, fatty acid ester, phosphate ester, silicone oil) Etc.), polymerization accelerators, chelating agents, and the like can be used. A polymerization retarder can also be used for the purpose of controlling the reaction rate. Specific examples thereof include 2,4-dinitrochlorobenzene. There is no restriction | limiting in particular about the addition method of the said additive component, Any of a batch addition method, a division | segmentation addition method, and a continuous addition method can be employ | adopted.
 上記のような重合により得られる重合体粒子は、電気化学素子用バインダーとして好ましく用いられ、特にリチウムイオン二次電池電極用バインダーとして好ましく用いられる。 The polymer particles obtained by the polymerization as described above are preferably used as a binder for an electrochemical element, and particularly preferably used as a binder for a lithium ion secondary battery electrode.
リチウムイオン二次電池などの二次電池用電極は、バインダーと電極活物質とを含んでなる電極合剤層が、集電体に付着してなる。ここで、バインダーとしては、上記重合により得られるバインダーが用いられ、また電極活物質としては、電解質中で電位をかける事により可逆的にリチウムイオンを挿入放出できるものであればよく、無機化合物でも有機化合物でも用いることができる。 An electrode for a secondary battery such as a lithium ion secondary battery has an electrode mixture layer containing a binder and an electrode active material attached to a current collector. Here, the binder obtained by the above polymerization is used as the binder, and the electrode active material may be any material that can reversibly insert and release lithium ions by applying a potential in the electrolyte. Organic compounds can also be used.
 リチウムイオン二次電池正極用の電極活物質(正極活物質)は、無機化合物からなるものと有機化合物からなるものとに大別される。無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TIS、TIS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物が挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。 Electrode active materials (positive electrode active materials) for lithium ion secondary battery positive electrodes are broadly classified into those made of inorganic compounds and those made of organic compounds. Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides. As the transition metal, Fe, Co, Ni, Mn and the like are used. Specific examples of the inorganic compound used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 and other lithium-containing composite metal oxides; TIS 2 , TIS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 It is done. These compounds may be partially element-substituted. As the positive electrode active material made of an organic compound, for example, a conductive polymer such as polyacetylene or poly-p-phenylene can be used. An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted.
 リチウムイオン二次電池用の正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。正極活物質の粒子径は、電池の他の構成要件との兼ね合いで適宜選択されるが、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常0.1~50μm、好ましくは1~20μmである。50%体積累積径がこの範囲であると、充放電容量が大きい二次電池を得ることができ、かつ電極用スラリーおよび電極を製造する際の取扱いが容易である。50%体積累積径は、レーザー回折で粒度分布を測定することにより求めることができる。 The positive electrode active material for a lithium ion secondary battery may be a mixture of the above inorganic compound and organic compound. The particle diameter of the positive electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics, the 50% volume cumulative diameter is usually 0.1. It is ˜50 μm, preferably 1 to 20 μm. When the 50% volume cumulative diameter is within this range, a secondary battery having a large charge / discharge capacity can be obtained, and handling of the slurry for electrodes and the electrodes is easy. The 50% volume cumulative diameter can be determined by measuring the particle size distribution by laser diffraction.
 リチウムイオン二次電池負極用の電極活物質(負極活物質)としては、たとえば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維などの炭素質材料、ポリアセン等の導電性高分子などがあげられる。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属やこれらの合金、前記金属又は合金の酸化物や硫酸塩が用いられる。加えて、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコン等を使用できる。電極活物質は、機械的改質法により表面に導電付与材を付着させたものも使用できる。負極活物質の粒径は、電池の他の構成要件との兼ね合いで適宜選択されるが、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常1~50μm、好ましくは15~30μmである。 Examples of electrode active materials (negative electrode active materials) for negative electrodes of lithium ion secondary batteries include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, pitch-based carbon fibers, and high conductivity such as polyacene. Examples include molecules. In addition, as the negative electrode active material, metals such as silicon, tin, zinc, manganese, iron, nickel, alloys thereof, oxides or sulfates of the metals or alloys are used. In addition, lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, lithium transition metal nitride, silicon, and the like can be used. As the electrode active material, a material obtained by attaching a conductivity imparting material to the surface by a mechanical modification method can be used. The particle diameter of the negative electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics, a 50% volume cumulative diameter is usually The thickness is 1 to 50 μm, preferably 15 to 30 μm.
 電極合剤層には、導電性付与材や補強材を含有していてもよい。導電付与材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボンを使用することができる。黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。導電性付与材を用いることにより電極活物質同士の電気的接触を向上させることができ、リチウムイオン二次電池に用いる場合に放電レート特性を改善することができる。導電性付与材の使用量は、電極活物質100質量部に対して通常0~20質量部、好ましくは1~10質量部である。 The electrode mixture layer may contain a conductivity imparting material or a reinforcing material. As the conductivity-imparting material, conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube can be used. Examples thereof include carbon powders such as graphite, and fibers and foils of various metals. As the reinforcing material, various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used. By using the conductivity imparting material, the electrical contact between the electrode active materials can be improved, and the discharge rate characteristics can be improved when used in a lithium ion secondary battery. The amount of the conductivity-imparting material used is usually 0 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.
 電極合剤層は、バインダー、電極活物質及び溶媒を含む電極形成用スラリー(以下、「合剤スラリー」と記載することがある。)を集電体に付着させて形成することができる。 The electrode mixture layer can be formed by adhering an electrode-forming slurry containing a binder, an electrode active material and a solvent (hereinafter sometimes referred to as “mixture slurry”) to a current collector.
 溶媒としては、バインダーを溶解または粒子状に分散するものであればよい。バインダーを溶解する溶媒を用いると、バインダーが表面に吸着することにより電極活物質などの分散が安定化する。 Any solvent may be used as long as it can dissolve or disperse the binder into particles. When a solvent that dissolves the binder is used, the dispersion of the electrode active material and the like is stabilized by the adsorption of the binder to the surface.
 合剤スラリーは、溶媒を含有し、電極活物質、及びバインダーの必須成分、並びに導電性付与材などの任意成分を分散させて得ることができる。 The mixture slurry contains a solvent and can be obtained by dispersing optional components such as an electrode active material, an essential component of a binder, and a conductivity-imparting material.
 合剤スラリーに用いる溶媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;エチルメチルケトン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類;メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミドなどのアミド類があげられる。これらの溶媒は、単独または2種以上を混合して、乾燥速度や環境上の観点から適宜選択して用いることができる。 As a solvent used for the mixture slurry, either water or an organic solvent can be used. Examples of organic solvents include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, γ-butyrolactone, ε -Esters such as caprolactone; Acylonitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether; Alcohols such as methanol, ethanol, isopropanol, ethylene glycol and ethylene glycol monomethyl ether; N-methyl Amides such as pyrrolidone and N, N-dimethylformamide are exemplified. These solvents may be used alone or in admixture of two or more and appropriately selected from the viewpoint of drying speed and environment.
 合剤スラリーには、さらに増粘剤などの各種の機能を発現する添加剤を含有させることができる。増粘剤としては、たとえば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびに、これらのアンモニウム塩及びアルカリ金属塩;変性又は未変性のポリ(メタ)アクリル酸、ならびに、これらのアンモニウム塩及びアルカリ金属塩;変性又は未変性のポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールとの共重合体、無水マレイン酸、マレイン酸又はフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、アクリロニトリル-ブタジエン共重合体水素化物などが用いられる。 The mixture slurry may further contain additives that exhibit various functions such as a thickener. Examples of thickeners include, for example, cellulosic polymers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, and ammonium and alkali metal salts thereof; modified or unmodified poly (meth) acrylic acid, and ammonium thereof. Salts and alkali metal salts; polyvinyl alcohols such as modified or unmodified polyvinyl alcohol, copolymers of acrylic acid or acrylates and vinyl alcohol, maleic anhydride, maleic acid or copolymers of fumaric acid and vinyl alcohol Polyethylene glycol, polyethylene oxide, polyvinylpyrrolidone, modified polyacrylic acid, oxidized starch, phosphate starch, casein, various modified starches, acrylonitrile-butadiene copolymer hydride, etc. That.
 さらに、合剤スラリーには、上記成分の他に、電池の安定性や寿命を高めるため、トリフルオロプロピレンカーボネート、ビニレンカーボネート、カテコールカーボネート、1,6-ジオキサスピロ[4,4]ノナン-2,7-ジオン、12-クラウン-4-エーテル等が使用できる。また、これらは後述する電解液に含有せしめて用いてもよい。 In addition to the above components, the mixture slurry contains trifluoropropylene carbonate, vinylene carbonate, catechol carbonate, 1,6-dioxaspiro [4,4] nonane-2,7 in order to increase the stability and life of the battery. -Dione, 12-crown-4-ether and the like can be used. These may be used by being contained in an electrolyte solution described later.
 合剤スラリーにおける溶媒の量は、電極活物質やバインダーなどの種類に応じ、塗工に好適な粘度になるように調整して用いる。具体的には、合剤スラリー中の、電極活物質、バインダーおよび他の添加剤を合わせた固形分の濃度が、好ましくは30~90質量%、より好ましくは40~80質量%となる量に調整して用いられる。 The amount of the solvent in the mixture slurry is adjusted so as to have a viscosity suitable for coating depending on the type of the electrode active material, the binder and the like. Specifically, the solid concentration of the mixture slurry in the mixture slurry is preferably 30 to 90% by mass, and more preferably 40 to 80% by mass. Used by adjusting.
 合剤スラリーは、電極活物質、バインダー、必要に応じ添加される導電性付与材、その他の添加剤、および溶媒を、混合機を用いて混合して得られる。混合は、上記の各成分を一括して混合機(好ましくは本発明の反応容器)に供給し、混合してもよい。合剤スラリーの構成成分として、電極活物質、バインダー、導電性付与材及び増粘剤を用いる場合には、導電性付与材および増粘剤を溶媒中で混合して導電材を微粒子状に分散させ、次いでバインダー、電極活物質を添加してさらに混合することがスラリーの分散性が向上するので好ましい。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いることができるが、ボールミルを用いると導電性付与材、電極活物質の凝集を抑制できるので好ましい。 The mixture slurry is obtained by mixing an electrode active material, a binder, a conductivity-imparting material added as necessary, other additives, and a solvent using a mixer. Mixing may be performed by supplying the above components all at once to a mixer (preferably the reaction vessel of the present invention). When using an electrode active material, binder, conductivity-imparting material, and thickener as components of the mixture slurry, mix the conductivity-imparting material and thickener in a solvent to disperse the conductive material in the form of fine particles. Then, it is preferable to add a binder and an electrode active material and then mix them, because the dispersibility of the slurry is improved. As a mixer, a ball mill, a sand mill, a pigment disperser, a pulverizer, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer, and the like can be used. It is preferable because aggregation of the resin can be suppressed.
 合剤スラリーの粒度は、好ましくは35μm以下であり、さらに好ましくは25μm以下である。スラリーの粒度が上記範囲にあると、導電材の分散性が高く、均質な電極が得られる。 The particle size of the mixture slurry is preferably 35 μm or less, and more preferably 25 μm or less. When the particle size of the slurry is in the above range, the conductive material is highly dispersible and a homogeneous electrode can be obtained.
 集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、リチウムイオン二次電池の正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、電極合剤層の接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、電極合剤層の接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。 The current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material. From the viewpoint of having heat resistance, for example, iron, copper, aluminum, nickel, stainless steel, etc. Metal materials such as titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode of the lithium ion secondary battery, and copper is particularly preferable for the negative electrode. The shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength of the electrode mixture layer, the current collector is preferably used after being roughened. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. In the mechanical polishing method, an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used. Further, an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity of the electrode mixture layer.
 電極合剤層の製造方法は、前記集電体の少なくとも片面、好ましくは両面に電極合剤層を層状に結着させる方法であればよい。例えば、前記合剤スラリーを集電体に塗布、乾燥し、次いで、120℃以上で1時間以上加熱処理して電極合剤層を形成する。合剤スラリーを集電体へ塗布する方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。 The method for producing the electrode mixture layer may be any method in which the electrode mixture layer is bound in layers on at least one side, preferably both sides of the current collector. For example, the mixture slurry is applied to a current collector and dried, and then heated at 120 ° C. or higher for 1 hour or longer to form an electrode mixture layer. The method for applying the mixture slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method. Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
 次いで、金型プレスやロールプレスなどを用い、加圧処理により電極合剤層の空隙率を低くすることが好ましい。電極合剤層の空隙率の好ましい範囲は5%~15%、より好ましくは7%~13%である。前記空隙率が高すぎると充電効率や放電効率が悪化する。逆に空隙率が低すぎる場合は、高い体積容量が得難かったり、電極合剤層が剥がれ易く、不良を発生し易いといった問題を生じる。さらに、バインダーとして硬化性の重合体を用いる場合は、硬化させることが好ましい。 Next, it is preferable to lower the porosity of the electrode mixture layer by pressure treatment using a mold press or a roll press. The preferable range of the porosity of the electrode mixture layer is 5% to 15%, more preferably 7% to 13%. If the porosity is too high, charging efficiency and discharging efficiency are deteriorated. On the other hand, when the porosity is too low, there is a problem that it is difficult to obtain a high volume capacity, or the electrode mixture layer is easily peeled off and a defect is likely to occur. Further, when a curable polymer is used as the binder, it is preferably cured.
 電極合剤層の厚さは、正極、負極とも、通常5~300μmであり、好ましくは10~250μmである。 The thickness of the electrode mixture layer is usually 5 to 300 μm, preferably 10 to 250 μm, for both the positive electrode and the negative electrode.
(実施例)
 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。尚、本実施例における部および%は、特記しない限り質量基準である。
(Example)
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto. In addition, unless otherwise indicated, the part and% in a present Example are a mass reference | standard.
 実施例および比較例において、重合スケール量、微細凝固物量および充放電サイクル特性は以下のように評価した。 In Examples and Comparative Examples, the amount of polymerization scale, the amount of fine solidified matter, and charge / discharge cycle characteristics were evaluated as follows.
[反応中の温度上昇]
 反応容器に装着した温度計を用いて、重合開始から重合終了(冷却前)までの反応容器の内部温度を連続的に測定し、設定温度からの温度の乖離を確認した。
[Temperature rise during reaction]
Using a thermometer attached to the reaction vessel, the internal temperature of the reaction vessel was measured continuously from the start of polymerization to the end of polymerization (before cooling), and the temperature deviation from the set temperature was confirmed.
[重合スケール量]
 重合反応終了後、反応容器壁及び攪拌羽根に付着した重合スケールを収集し、その乾燥後の質量(重合スケール量)を測定する。重合に使用した単量体の合計質量に対する重合スケール量の割合を百分率で表す。
[Amount of polymerization scale]
After completion of the polymerization reaction, the polymerization scale attached to the reaction vessel wall and the stirring blade is collected, and the mass after the drying (polymerization scale amount) is measured. The ratio of the polymerization scale amount to the total mass of the monomers used for the polymerization is expressed as a percentage.
[微細凝固物量]
 精秤した固形分濃度45%の共重合体ラテックス(重量:W2)を325メッシュの金網で濾過し、金網に残る凝固物を赤外線オーブン中で20分間乾燥後、その重量(W3)を精秤する。前記W2に対するW3の割合を百分率で表した。
[Amount of fine solidified product]
The copolymer latex (weight: W2) having a solid content of 45%, which has been precisely weighed, is filtered through a 325 mesh wire mesh, the coagulum remaining on the wire mesh is dried in an infrared oven for 20 minutes, and the weight (W3) is precisely weighed. To do. The ratio of W3 to W2 was expressed as a percentage.
[充放電サイクル特性]
 実施例、比較例で得られた二次電池を用いて、それぞれ25℃で0.1Cの定電流定電圧充電法方式で、4.2Vになるまで定電流で充電、その後定電圧で充電し、また0.1Cの定電流で3.0Vまで放電する充放電サイクルを行った。充放電サイクルは100サイクルまで行い、初期放電容量に対する50サイクル目の放電容量の比を容量維持率とし、この容量維持率が80%以下となる電池の発生個数で判定した。なお、50サイクル目の放電容量を電池容量とし、試験は各50個の電池を作製して行った。この個数が少ないほど、充放電サイクル特性に優れることを示す。
[Charge / discharge cycle characteristics]
Using the secondary batteries obtained in the examples and comparative examples, charging was performed at a constant current until the voltage reached 4.2 V by a constant current constant voltage charging method of 0.1 C at 25 ° C., and then charged at a constant voltage. Moreover, the charge / discharge cycle which discharges to 3.0V with a constant current of 0.1 C was performed. The charge / discharge cycle was performed up to 100 cycles, and the ratio of the discharge capacity at the 50th cycle to the initial discharge capacity was taken as the capacity maintenance rate, and the determination was made based on the number of batteries generated with this capacity maintenance rate of 80% or less. The discharge capacity at the 50th cycle was defined as the battery capacity, and the test was performed with 50 batteries each manufactured. It shows that it is excellent in charging / discharging cycling characteristics, so that this number is small.
(実施例1)
 (反応容器の作成)
Example 1
(Create reaction vessel)
<容器本体の作成>
 アルミニウム合金A5083の板材(3mm厚)を曲げ加工・アーク溶接により円筒形の容器本体を作成した。
<Creation of container body>
A cylindrical container body was prepared by bending and arc welding a plate (3 mm thick) of aluminum alloy A5083.
<陽極酸化被膜の形成>
 水39.5部に酒石酸1.8部を溶解させた後、エチレングリコール(EG)158部を加えて撹拌混合した。
 この溶液を撹拌しながら溶液のpHが7.1になるまで29%アンモニア水を添加して化成液aを調製した。
 この化成液中で前記容器本体を化成電圧50Vまで1mA/cmの定電流にて化成し、50Vに達した後、定電圧で30分間保持して陽極酸化を行った。
 反応後、純水で十分洗浄した後、室温で乾燥させた。得られた酸化膜付きアルミ試料片をIR炉中300℃で1時間アニール処理した後、大気開放して室温で48時間放置した。無孔質の金属酸化膜の膜厚を測定したところ、0.08μmであった。
<Formation of anodized film>
After dissolving 1.8 parts of tartaric acid in 39.5 parts of water, 158 parts of ethylene glycol (EG) was added and mixed with stirring.
While this solution was stirred, 29% aqueous ammonia was added until the pH of the solution reached 7.1 to prepare a chemical conversion solution a.
In this chemical conversion solution, the container body was formed at a constant current of 1 mA / cm 2 up to a chemical conversion voltage of 50V. After reaching 50V, the container body was maintained at a constant voltage for 30 minutes for anodization.
After the reaction, the product was sufficiently washed with pure water and then dried at room temperature. The obtained aluminum sample piece with an oxide film was annealed in an IR furnace at 300 ° C. for 1 hour, then opened to the atmosphere and left at room temperature for 48 hours. The thickness of the nonporous metal oxide film was measured and found to be 0.08 μm.
<非汚染性被膜の形成>
 陽極酸化皮膜表面を有機溶剤で脱脂処理し、デュポン社製PES系プライマー462-Z-68501を焼成後の厚さで8μmとなるようにスプレー塗装し、100℃で10分間乾燥する。この上に、ダイキン工業社製PFA塗料AD-2CRを焼成後の厚さで25μmになるようにスプレー塗装し、380℃で20分間焼成することにより、非汚染性皮膜を形成した。
<Formation of non-contaminating film>
The surface of the anodized film is degreased with an organic solvent, and PES primer 462-Z-68501 manufactured by DuPont is spray-coated so that the thickness after firing is 8 μm, and dried at 100 ° C. for 10 minutes. On top of this, PFA paint AD-2CR manufactured by Daikin Industries, Ltd. was spray-coated to a thickness of 25 μm after firing, and baked at 380 ° C. for 20 minutes to form a non-staining film.
 かくして、本発明のアルミ合金製反応容器を得た。
 また、上記とは別に、反応容器の蓋として、ガラス製の5つ口(くち)セパラブルカバーを準備し、これに冷却機と温度計、攪拌翼を装着し、反応装置を構成した。
Thus, an aluminum alloy reaction vessel of the present invention was obtained.
Separately from the above, a glass five-hole separable cover was prepared as a reaction vessel lid, and a cooling device, a thermometer, and a stirring blade were attached thereto to constitute a reaction apparatus.
 (重合体の製造)
 攪拌器付きの乳化タンクに、水50部、ブタジエン31部、スチレン32部、メチルメタクリレート10.5部、アクリロニトリル6部、アクリル酸0.5部、t-ドデシルメルカプタン0.6部及びドデシルベンゼンスルフォン酸ナトリウム0.3部を仕込み、攪拌して単量体乳化液を得た。
(Manufacture of polymer)
In an emulsification tank equipped with a stirrer, 50 parts of water, 31 parts of butadiene, 32 parts of styrene, 10.5 parts of methyl methacrylate, 6 parts of acrylonitrile, 0.5 part of acrylic acid, 0.6 part of t-dodecyl mercaptan and dodecylbenzenesulfone 0.3 parts of sodium acid salt was added and stirred to obtain a monomer emulsion.
 上記単量体乳化液の調製とは別個に、作成したアルミ合金製反応容器(内容積3リットル)中に、水70部、ブタジエン4部、スチレン7部、メチルメタクリレート4部、アクリロニトリル2部、イタコン酸2部、アクリル酸1部、ドデシルベンゼンスルフォン酸ナトリウム0.3部、過硫酸カリウム1部及びn-ドデシルメルカプタン0.6部を投入し、70℃で2時間反応を行なった。 Separately from the preparation of the monomer emulsion, 70 parts of water, 4 parts of butadiene, 7 parts of styrene, 4 parts of methyl methacrylate, 2 parts of acrylonitrile, in a prepared aluminum alloy reaction vessel (internal volume 3 liters), 2 parts of itaconic acid, 1 part of acrylic acid, 0.3 part of sodium dodecylbenzenesulfonate, 1 part of potassium persulfate and 0.6 part of n-dodecyl mercaptan were added and reacted at 70 ° C. for 2 hours.
 次いで、上記で調製した単量体乳化液を5時間かけて上記反応装置に連続的に供給して重合を行なった。重合を完結させるため、単量体乳化物の供給終了後も更に4時間反応を継続し、重合転化率98%の共重合体ラテックスを得た。冷却後、5%水酸化ナトリウムを用いてpHを8.5に調整した。固形分濃度45.2%、粘度80mPa・sの共重合体ラテックスを得た。重合スケール量は0.0003%、微細凝固物量は0.0015%であった。 Subsequently, the monomer emulsion prepared above was continuously supplied to the reaction apparatus over 5 hours for polymerization. In order to complete the polymerization, the reaction was further continued for 4 hours after the completion of the supply of the monomer emulsion to obtain a copolymer latex having a polymerization conversion rate of 98%. After cooling, the pH was adjusted to 8.5 using 5% sodium hydroxide. A copolymer latex having a solid content concentration of 45.2% and a viscosity of 80 mPa · s was obtained. The amount of polymerization scale was 0.0003%, and the amount of fine solidified product was 0.0015%.
(実施例2)
 攪拌器付きの乳化タンクに、水30部、ブタジエン35部、スチレン39部、メチルメタクリレート14.5部、アクリロニトリル8部、アクリル酸0.5部、t-ドデシルメルカプタン0.6部及びドデシルベンゼンスルフォン酸ナトリウム0.3部を仕込み、攪拌して単量体乳化液を得た。
(Example 2)
In an emulsification tank equipped with a stirrer, 30 parts of water, 35 parts of butadiene, 39 parts of styrene, 14.5 parts of methyl methacrylate, 8 parts of acrylonitrile, 0.5 part of acrylic acid, 0.6 part of t-dodecyl mercaptan and dodecylbenzenesulfone 0.3 parts of sodium acid salt was added and stirred to obtain a monomer emulsion.
 上記単量体乳化液の調製とは別個に、実施例1で作成したアルミ合金製反応容器(内容積3リットル)中に、水70部、ドデシルベンゼンスルフォン酸ナトリウム0.3部、イタコン酸2部、アクリル酸1部及びスチレン―アクリル酸共重合体ラテックス(平均粒子径0.05ミクロン)5.5部を仕込み70℃に昇温した。次に、過硫酸カリウム1部を添加して、重合を開始した。次いで上記で調製した単量体乳化液を5時間かけて上記反応装置に連続的に供給して重合を行なった。重合を完結させるため、単量体乳化物供給終了後も更に4時間反応を継続し、重合転化率98%の共重合体ラテックスを得た。冷却後、5%水酸化ナトリウムを用いてpHを8.5に調整した。固形分濃度50.5%、粘度120mPa・sの共重合体ラテックスを得た。重合スケール量は0.0004%、微細凝固物量は0.0018%であった。 Separately from the preparation of the monomer emulsion, 70 parts of water, 0.3 part of sodium dodecylbenzenesulfonate, 2 parts of itaconic acid are contained in the reaction vessel made of aluminum alloy (internal volume 3 liters) prepared in Example 1. Parts, 1 part of acrylic acid and 5.5 parts of styrene-acrylic acid copolymer latex (average particle size 0.05 microns) were charged and the temperature was raised to 70 ° C. Next, 1 part of potassium persulfate was added to initiate the polymerization. Subsequently, the monomer emulsion prepared above was continuously supplied to the reactor over 5 hours to perform polymerization. In order to complete the polymerization, the reaction was further continued for 4 hours after the completion of the monomer emulsion supply to obtain a copolymer latex having a polymerization conversion rate of 98%. After cooling, the pH was adjusted to 8.5 using 5% sodium hydroxide. A copolymer latex having a solid content concentration of 50.5% and a viscosity of 120 mPa · s was obtained. The amount of polymerization scale was 0.0004%, and the amount of fine coagulum was 0.0018%.
(比較例1)
 実施例1の反応容器の作成において、陽極酸化被膜を形成せずに、容器本体に直接非汚染性被膜を形成したこと以外は、実施例1と同様にして、アルミ合金製反応容器を作成した。
(Comparative Example 1)
In the production of the reaction container of Example 1, an aluminum alloy reaction container was produced in the same manner as in Example 1 except that the non-contaminating film was formed directly on the container body without forming the anodized film. .
 得られた反応容器を使用した以外は、実施例1と同様にして重合反応を行なった。重合転化率98%で固形分濃度45.1%、粘度80mPa・sの共重合体ラテックスを得た。共重合体ラテックスのpHを5%水酸化ナトリウムを用いて8.5に調整した。重合スケール量は0.0005%、微細凝固物量は1.5%であった。なお、重合反応後の内表面は変色してしまった。 A polymerization reaction was performed in the same manner as in Example 1 except that the obtained reaction vessel was used. A copolymer latex having a polymerization conversion of 98%, a solid content concentration of 45.1% and a viscosity of 80 mPa · s was obtained. The pH of the copolymer latex was adjusted to 8.5 using 5% sodium hydroxide. The amount of polymerization scale was 0.0005%, and the amount of fine coagulum was 1.5%. The inner surface after the polymerization reaction was discolored.
(比較例2)
 実施例1の反応容器の作成において、陽極酸化被膜を形成した後、非汚染性被膜を形成させなかったこと以外は、実施例1と同様にして、アルミ合金製反応容器を作成した。
(Comparative Example 2)
In the production of the reaction vessel of Example 1, an aluminum alloy reaction vessel was produced in the same manner as in Example 1 except that the non-contaminating film was not formed after the formation of the anodized film.
 得られた反応容器を使用したこと以外は、実施例1と同様にして重合反応を行なった。重合転化率95%で固形分濃度44.3%、粘度80mPa・sの共重合体ラテックスを得た。共重合体ラテックスのpHを5%水酸化ナトリウムを用いて8.5に調整した。重合スケール量は0.5%、微細凝固物量は0.20%であった。 The polymerization reaction was performed in the same manner as in Example 1 except that the obtained reaction vessel was used. A copolymer latex having a polymerization conversion rate of 95%, a solid content concentration of 44.3%, and a viscosity of 80 mPa · s was obtained. The pH of the copolymer latex was adjusted to 8.5 using 5% sodium hydroxide. The amount of polymerization scale was 0.5%, and the amount of fine coagulum was 0.20%.
(比較例3)
 実施例1の反応容器の作成において、アルミニウム合金A5083の板材に代えて、SUS電解研磨板(3mm厚)を用いて、曲げ加工・アーク溶接により円筒形の容器本体を作成した。この容器本体を用いたこと以外は、実施例1と同様にして、SUS製反応容器を作成した。
(Comparative Example 3)
In the production of the reaction vessel of Example 1, a cylindrical vessel body was produced by bending and arc welding using a SUS electrolytic polishing plate (3 mm thick) instead of the plate of aluminum alloy A5083. A SUS reaction vessel was prepared in the same manner as in Example 1 except that this vessel body was used.
 得られた反応容器を使用したこと以外は、実施例1と同様にして重合反応を行なった。重合転化率98%で固形分濃度44.8%、粘度80mPa・sの共重合体ラテックスを得た。共重合体ラテックスのpHを5%水酸化ナトリウムを用いて8.5に調整した。重合スケール量は0.0005%、微細凝固物量は0.0025%であり、実施例と同程度に良好であったが、SUS製反応容器では熱伝導が低いため、重合反応熱の除去効率が悪く、結果として反応中の温度が上昇した。
 上記の結果を下表にまとめる。
Figure JPOXMLDOC01-appb-T000003
A polymerization reaction was carried out in the same manner as in Example 1 except that the obtained reaction vessel was used. A copolymer latex having a polymerization conversion of 98%, a solid content concentration of 44.8% and a viscosity of 80 mPa · s was obtained. The pH of the copolymer latex was adjusted to 8.5 using 5% sodium hydroxide. The amount of polymerization scale was 0.0005%, and the amount of fine coagulum was 0.0025%, which was as good as in the examples. However, since the heat conduction in the SUS reaction vessel is low, the removal efficiency of the polymerization reaction heat is high. Unfortunately, the temperature during the reaction increased as a result.
The above results are summarized in the table below.
Figure JPOXMLDOC01-appb-T000003
(実施例3)
(二次電池負極用スラリー組成物の製造)
 増粘剤として、カルボキシメチルセルロース(CMC、第一工業製薬株式会社製「BSH-12」)を準備した。増粘剤の重合度は、1700、エーテル化度は0.65であった。
(Example 3)
(Production of slurry composition for secondary battery negative electrode)
Carboxymethylcellulose (CMC, “BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was prepared as a thickener. The polymerization degree of the thickener was 1700, and the etherification degree was 0.65.
 実施例1で作成した反応容器に、負極活物質として人造黒鉛(平均粒子径:24.5μm)を100部、上記増粘剤の1%水溶液1部をそれぞれ加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分間混合し、混合液を得た。 To the reaction vessel prepared in Example 1, 100 parts of artificial graphite (average particle size: 24.5 μm) as a negative electrode active material and 1 part of a 1% aqueous solution of the above thickener were added, respectively, and the solid content concentration in ion-exchanged water After adjusting to 55%, the mixture was mixed at 25 ° C. for 60 minutes. Next, after adjusting the solid content concentration to 52% with ion-exchanged water, the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution.
 上記混合液に、実施例1で調整した共重合体ラテックスを1部(固形分基準)、及びイオン交換水を入れ、最終固形分濃度42%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い二次電池負極用スラリー組成物を得た。 In the above mixed solution, 1 part of the copolymer latex prepared in Example 1 (based on solid content) and ion-exchanged water were added, adjusted to a final solid content concentration of 42%, and further mixed for 10 minutes. This was defoamed under reduced pressure to obtain a slurry composition for a secondary battery negative electrode having good fluidity.
(電池の製造)
 上記二次電池負極用スラリー組成物を、コンマコーターで、厚さ20μmの銅箔の上に、乾燥後の膜厚が200μm程度になるように塗布し、2分間乾燥(0.5m/分の速度、60℃)し、さらに2分間加熱処理(120℃)して電極原反を得た。この電極原反をロールプレスで圧延して負極活物質層の厚みが80μmの二次電池負極を得た。
(Manufacture of batteries)
The slurry composition for secondary battery negative electrode was applied on a copper foil having a thickness of 20 μm with a comma coater so that the film thickness after drying was about 200 μm, and dried for 2 minutes (0.5 m / min). Speed, 60 ° C.), and further heat-treated (120 ° C.) for 2 minutes to obtain an electrode raw material. This raw electrode was rolled with a roll press to obtain a secondary battery negative electrode having a negative electrode active material layer thickness of 80 μm.
 上記負極を直径15mmの円盤状に切り抜き、この負極の負極活物質層面側に直径18mm、厚さ25μmの円盤状のポリプロピレン製多孔膜からなるセパレータ、正極として用いる金属リチウム、エキスパンドメタルを順に積層し、これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mmのハーフセル(二次電池)を作製した。 The negative electrode is cut into a disk shape having a diameter of 15 mm, and a separator made of a disk-shaped porous polypropylene film having a diameter of 18 mm and a thickness of 25 μm, a metal lithium used as the positive electrode, and an expanded metal are sequentially laminated on the negative electrode active material layer surface side. This was stored in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with polypropylene packing. The electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A half cell (secondary battery) having a thickness of 20 mm and a thickness of about 2 mm was produced.
 なお、電解液としてはエチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。このハーフセルの充放電サイクル特性の評価結果を表2に示す。 In addition, as an electrolytic solution, LiPF 6 was added at 1 mol / liter in a mixed solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at EC: DEC = 1: 2 (volume ratio at 20 ° C.). A solution dissolved at a concentration was used. The evaluation results of the charge / discharge cycle characteristics of this half cell are shown in Table 2.
(比較例4)
 スラリー組成物の調製に用いる反応容器および重合体ラテックスとして、比較例1で作成した反応容器および共重合体ラテックスを使用した以外は、実施例3と同様にして、ハーフセルを作成した。結果を表2に示す。
(Comparative Example 4)
A half cell was prepared in the same manner as in Example 3 except that the reaction container and copolymer latex prepared in Comparative Example 1 were used as the reaction container and polymer latex used in the preparation of the slurry composition. The results are shown in Table 2.
(比較例5)
 スラリー組成物の調製に用いる反応容器および重合体ラテックスとして、比較例2で作成した反応容器および共重合体ラテックスを使用した以外は、実施例3と同様にして、ハーフセルを作成した。結果を表2に示す。
(Comparative Example 5)
A half cell was prepared in the same manner as in Example 3 except that the reaction container and copolymer latex prepared in Comparative Example 2 were used as the reaction container and polymer latex used in the preparation of the slurry composition. The results are shown in Table 2.
(比較例6)
 スラリー組成物の調製に用いる反応容器および重合体ラテックスとして、比較例3で作成した反応容器および共重合体ラテックスを使用した以外は、実施例3と同様にして、ハーフセルを作成した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
(Comparative Example 6)
A half cell was prepared in the same manner as in Example 3 except that the reaction container and copolymer latex prepared in Comparative Example 3 were used as the reaction container and polymer latex used in the preparation of the slurry composition. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
1…アルミ合金製本体
2…陽極酸化被膜
3…非汚染性被膜
10…アルミ合金製反応容器
DESCRIPTION OF SYMBOLS 1 ... Aluminum alloy main body 2 ... Anodized film 3 ... Non-contaminating film 10 ... Aluminum alloy reaction vessel

Claims (16)

  1.  内表面に陽極酸化被膜および非汚染性被膜がこの順で形成されてなるアルミ合金製反応容器。 An aluminum alloy reaction vessel in which an anodized film and a non-contaminating film are formed in this order on the inner surface.
  2.  前記陽極酸化被膜が無孔質陽極酸化被膜である請求項1に記載のアルミ合金製反応容器。 The reaction vessel made of aluminum alloy according to claim 1, wherein the anodized film is a nonporous anodized film.
  3.  前記陽極酸化被膜が非水溶液を用いて陽極酸化した無孔質陽極酸化被膜である請求項1に記載のアルミ合金製反応容器。 The aluminum alloy reaction vessel according to claim 1, wherein the anodized film is a non-porous anodized film anodized using a non-aqueous solution.
  4.  請求項1~3のいずれかに記載の反応容器中で、重合性単量体を重合する、重合体の製造方法。 A method for producing a polymer, wherein a polymerizable monomer is polymerized in the reaction vessel according to any one of claims 1 to 3.
  5.  前記重合性単量体が、脂肪族共役ジエン系単量体、エチレン系不飽和カルボン酸単量体、エチレン系不飽和カルボン酸エステル単量体、アルケニル芳香族単量体、シアン化ビニル単量体、不飽和カルボン酸アミド単量体より成る群から選ばれる1種以上の単量体である請求項4に記載の重合体の製造方法。 The polymerizable monomer is an aliphatic conjugated diene monomer, an ethylenically unsaturated carboxylic acid monomer, an ethylenically unsaturated carboxylic acid ester monomer, an alkenyl aromatic monomer, a vinyl cyanide monomer The method for producing a polymer according to claim 4, wherein the polymer is one or more monomers selected from the group consisting of unsaturated carboxylic acid amide monomers.
  6.  前記重合性単量体が、請求項5に記載の単量体に加えて、さらにこれらと共重合可能な単量体を含む、請求項5に記載の重合体の製造方法。 The method for producing a polymer according to claim 5, wherein the polymerizable monomer further contains a monomer copolymerizable with the monomer according to claim 5.
  7.  前記重合性単量体の少なくとも一部を、乳化液の形態で反応容器中に加え、乳化重合を行う請求項4に記載の重合体の製造方法。 The method for producing a polymer according to claim 4, wherein at least a part of the polymerizable monomer is added to the reaction vessel in the form of an emulsion and emulsion polymerization is performed.
  8.  単量体乳化液の調製のための乳化剤として、界面活性剤、水溶性高分子保護コロイド又はアルカリ可溶性樹脂を用いる請求項7に記載の重合体の製造方法。 The method for producing a polymer according to claim 7, wherein a surfactant, a water-soluble polymer protective colloid or an alkali-soluble resin is used as an emulsifier for preparing the monomer emulsion.
  9.   単量体乳化液が重合開始剤を含まない、請求項7に記載の重合体の製造方法。 The method for producing a polymer according to claim 7, wherein the monomer emulsion does not contain a polymerization initiator.
  10.  前記重合性単量体の全部を、乳化液の形態で反応容器中に加える、請求項7に記載の重合体の製造方法。 The method for producing a polymer according to claim 7, wherein all of the polymerizable monomer is added to the reaction vessel in the form of an emulsion.
  11.  前記重合性単量体の全量を反応容器に供給した後、重合を開始する請求項4に記載の重合体の製造方法。 The method for producing a polymer according to claim 4, wherein the polymerization is started after the entire amount of the polymerizable monomer is supplied to the reaction vessel.
  12.  前記重合性単量体の一部を反応容器に供給した後、重合を開始し、残余の重合性単量体を順次反応容器に供給する、請求項4に記載の重合体の製造方法。 The method for producing a polymer according to claim 4, wherein after a part of the polymerizable monomer is supplied to the reaction vessel, the polymerization is started and the remaining polymerizable monomer is sequentially supplied to the reaction vessel.
  13.  予め反応容器にシード用ラテックスを投入してから前記重合性単量体を供給する請求項4に記載の重合体の製造方法。 The method for producing a polymer according to claim 4, wherein the polymerizable monomer is supplied after the latex for seed is charged in a reaction vessel in advance.
  14.  前記重合性単量体の全単量体組成と、前記シード用ラテックスの単量体組成とが同じである請求項13に記載の重合体の製造方法。 14. The method for producing a polymer according to claim 13, wherein the total monomer composition of the polymerizable monomer and the monomer composition of the seed latex are the same.
  15.  前記重合性単量体の全単量体組成と、前記シード用ラテックスの単量体組成とが異なる請求項13に記載の重合体の製造方法。 The method for producing a polymer according to claim 13, wherein the total monomer composition of the polymerizable monomer and the monomer composition of the seed latex are different.
  16.  得られる重合体が、電気化学素子用バインダーである請求項4~15の何れかに記載の重合体の製造方法。 The method for producing a polymer according to any one of claims 4 to 15, wherein the obtained polymer is a binder for an electrochemical element.
PCT/JP2012/063356 2011-05-25 2012-05-24 Reaction vessel and method for producing polymer using said vessel WO2012161266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013516437A JPWO2012161266A1 (en) 2011-05-25 2012-05-24 Reaction vessel and polymer production method using the vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011117134 2011-05-25
JP2011-117134 2011-05-25

Publications (1)

Publication Number Publication Date
WO2012161266A1 true WO2012161266A1 (en) 2012-11-29

Family

ID=47217338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063356 WO2012161266A1 (en) 2011-05-25 2012-05-24 Reaction vessel and method for producing polymer using said vessel

Country Status (2)

Country Link
JP (1) JPWO2012161266A1 (en)
WO (1) WO2012161266A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929305B1 (en) * 1970-12-29 1974-08-02
JPH0859708A (en) * 1994-08-17 1996-03-05 Shin Etsu Chem Co Ltd Production of polymer by polymerizing monomer having ethylenically unsaturated double bond
WO2006134737A1 (en) * 2005-06-17 2006-12-21 Tohoku University Metal oxide film, laminate, metal member and process for producing the same
JP2010153424A (en) * 2008-12-24 2010-07-08 Tohoku Univ Electronic device manufacturing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929305B1 (en) * 1970-12-29 1974-08-02
JPH0859708A (en) * 1994-08-17 1996-03-05 Shin Etsu Chem Co Ltd Production of polymer by polymerizing monomer having ethylenically unsaturated double bond
WO2006134737A1 (en) * 2005-06-17 2006-12-21 Tohoku University Metal oxide film, laminate, metal member and process for producing the same
JP2010153424A (en) * 2008-12-24 2010-07-08 Tohoku Univ Electronic device manufacturing apparatus

Also Published As

Publication number Publication date
JPWO2012161266A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5652322B2 (en) Manufacturing method of all-solid-state secondary battery
KR101959962B1 (en) Conductive adhesive composition for eeletrochemical element electrode, collector with adhesive layer, and electrochemical element electrode
JP5768815B2 (en) All solid state secondary battery
JP6375949B2 (en) Method for producing positive electrode for secondary battery, method for producing secondary battery and laminate for secondary battery
JP5387051B2 (en) Laminated body for all solid state secondary battery and all solid state secondary battery
WO2014157715A1 (en) Binder composition for electricity storage devices
JP2013084351A (en) Composite particle for electrochemical device electrode, electrochemical device electrode material, and electrochemical device electrode
KR101280145B1 (en) Electrode binder composition, electrode slurry, electrode, and electrical storage device
US20060153972A1 (en) Method of manufacturing electrode for electrochemical device
TW201043672A (en) Composition for electrochemical-device electrode binder, electrode slurry for electrochemical device, and electrode for electrochemical device
WO2011105574A1 (en) All solid state secondary battery and method for manufacturing all solid state secondary battery
JP2015106488A (en) Slurry for electricity storage device negative electrode and electricity storage device negative electrode, slurry for electricity storage device positive electrode and electricity storage device positive electrode, and electricity storage device
JP6314402B2 (en) Binder composition for electrochemical capacitor, slurry composition for electrochemical capacitor, electrode for electrochemical capacitor, and electrochemical capacitor
KR20120094003A (en) Binder particles for electrochemical element
JP6233577B2 (en) Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
JP2014165131A (en) Method for manufacturing slurry composition for lithium ion secondary battery positive electrode use, method for manufacturing lithium ion secondary battery positive electrode, and lithium ion secondary battery
WO2013011936A1 (en) Electrochemical element electrode composite particle, electrochemical element electrode material, and electrochemical element electrode
JP2012150896A (en) Resin current collector and secondary battery
JP6070266B2 (en) Slurry composition for positive electrode of lithium ion secondary battery, method for producing positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013041819A (en) Composite particle for electrochemical element negative electrode, electrochemical element negative electrode material, and electrochemical element negative electrode
JP2013055044A (en) Composite particle for electrochemical element electrode, electrochemical element electrode material, and electrochemical element electrode
JP2016134241A (en) Binder composition for power storage device, slurry for power storage device electrode, power storage device electrode and power storage device
JP2013033702A (en) Positive electrode for power storage device
JP6273948B2 (en) Conductive adhesive composition for electrochemical element electrode, current collector with adhesive layer, and electrode for electrochemical element
WO2019013218A1 (en) Method for producing member for electrochemical elements and laminate for electrochemical elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12790329

Country of ref document: EP

Kind code of ref document: A1