WO2012160941A1 - Titration device and rice inspection method using same - Google Patents

Titration device and rice inspection method using same Download PDF

Info

Publication number
WO2012160941A1
WO2012160941A1 PCT/JP2012/061193 JP2012061193W WO2012160941A1 WO 2012160941 A1 WO2012160941 A1 WO 2012160941A1 JP 2012061193 W JP2012061193 W JP 2012061193W WO 2012160941 A1 WO2012160941 A1 WO 2012160941A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport path
plug
titration
titrant
resin layer
Prior art date
Application number
PCT/JP2012/061193
Other languages
French (fr)
Japanese (ja)
Inventor
博章 鈴木
隆顕 佐竹
暁麗 邱
Original Assignee
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人筑波大学 filed Critical 国立大学法人筑波大学
Priority to JP2013516266A priority Critical patent/JPWO2012160941A1/en
Publication of WO2012160941A1 publication Critical patent/WO2012160941A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics

Definitions

  • the present invention relates to a portable titration apparatus that can perform chemical analysis by titration and is portable.
  • the present invention also relates to a rice freshness inspection method (rice inspection method) using the titration apparatus.
  • the freshness of food is defined by some physical quantity that can be measured, and this physical quantity is measured.
  • the index indicating the freshness of rice includes the amount of fatty acid generated and the activity of the contained enzyme. Since the former increases when the rice becomes old, it can be determined using a pH meter. Since the latter decreases when the rice becomes old, the determination can be made in the same manner by measuring the enzyme activity.
  • Patent Document 1 describes a method for measuring the freshness of rice using the amount of fatty acid generated.
  • a plurality of rice grains are stored in a color developing reaction plate with a filter that can store a plurality of rice grains independently. taking measurement.
  • the generation amount of fatty acid can be recognized as pH, and the freshness of rice can be measured as an objective physical quantity.
  • a pH meter that electrochemically measures pH can be used.
  • titration is generally performed. Often done. In titration, it is repeated that a titrant is dropped on a sample to be titrated by a certain amount. In this case, for example, the amount of fatty acid can be determined by confirming the color change of the indicator when the indicator is added to the sample to be titrated and the titrant reaches the equivalent point.
  • a burette or the like is used. At the time of dropping using a burette or the like, the amount of one drop can be made minute and constant, so that the amount of drop required to reach the equivalence point can be accurately measured.
  • Such a pH measurement can be used to check the freshness of rice. Similarly, the freshness of other foods and the like can be inspected.
  • the inspection device used when inspecting the freshness of food such as rice is generally large and difficult to carry. For this reason, a sample to be inspected (rice) is brought into a place where an inspection apparatus is installed, and the above measurement is performed here.
  • rice is often distributed as blended rice in which multiple brands are mixed.
  • the freshness may vary depending on the brand, so that it is required to be able to inspect rice in single grain units. That is, it is also required that a small sample to be inspected can be inspected.
  • the sample to be titrated at the time of inspection using titration becomes a very small amount, and correspondingly, the amount of titrant required to reach the equivalent point becomes small. In this case, it is difficult to accurately determine the equivalence point unless the amount of dripping (injection amount) is very small.
  • the present invention has been made in view of such problems, and an object thereof is to provide an invention that solves the above problems.
  • the present invention has the following configurations.
  • a sample to be titrated is placed in a reaction tank formed in a resin layer bonded on a substrate, and a plug which is a lump of titrant is injected into the sample to be titrated multiple times.
  • a titration apparatus for performing titration wherein the titrant transport path into which the titrant is injected, the gas transport path into which gas is injected, the titrant transport path and the gas transport path are merged
  • a volume restricting portion capable of simultaneously accommodating a plurality of the plugs, a cross-sectional area perpendicular to the flow direction being larger than the first plug transport path and smaller than the volume restricting portion, the volume restricting portion A plurality of said plugs fused together
  • a second plug transport path for introducing to the reaction vessel characterized in that is formed at the interface between the substrate and the resin layer.
  • the resin layer is made of a transparent resin material.
  • the substrate is made of glass.
  • the groove constituting the titrant transport path, the gas transport path, the first plug transport path, the volume restricting portion, and the second plug transport path is formed on the substrate side of the resin layer. It is characterized by being formed on the surface.
  • the titration apparatus of the present invention is characterized in that the resin layer is composed of polydimethylsiloxane (PDMS).
  • the groove is formed by a mold.
  • the rice inspection method of the present invention is a rice inspection method for inspecting the freshness of rice using the titration device, wherein a liquid obtained by extracting fatty acids contained in rice is introduced into the reaction tank, and an alkaline solution is used as the titrant. It is characterized by performing titration using.
  • the present invention is configured as described above, it is possible to obtain a titration apparatus that is small in size and capable of performing titration on a small amount of a sample to be titrated.
  • FIG. 1 is a top view showing the configuration of the titration apparatus 10
  • FIG. 2 is a cross-sectional view in the AA direction (a), the BB direction (b), and the CC direction (c).
  • a small reaction tank 20 is provided on a substrate 11, and a sample to be titrated is introduced into the reaction tank 20, and a lump of titrant (plug) is discretely introduced therein.
  • plug lump of titrant
  • titration can be performed in the same manner as when titration is performed using a puret or the like.
  • a color change in a titration sample in the reaction vessel 20 can be confirmed, and an equivalence point can be obtained. it can.
  • the titration apparatus 10 is configured by bonding a transparent resin layer 30 on a flat substrate 11.
  • the resin layer 30 is patterned so as to form a reaction tank 20 that can hold the titration sample in a state where the resin layer 30 is bonded to the substrate 11.
  • a route through which a titrant and air flow is formed at the interface between the resin layer 30 and the substrate 11. This path is formed by a groove formed on the surface of the resin layer 30 on the side bonded to the substrate 11.
  • a titrant transport path 41 through which the titrant 50 flows and a gas transport path 42 through which a gas such as air flows are formed on the right side in FIG.
  • the titrant 50 is introduced into the titrant transport path 41 and the air is introduced into the gas transport path 42 from the right side in FIG. 1 via the silicone tubes 61 and 62, respectively.
  • the titrant transport path 41 and the gas transport path 42 merge to form a first plug transport path 43. Since the titrant 50 is mixed with gas in the first plug transport path 43, the titrant 50 becomes an intermittent mass (plug 51) and flows in the first plug transport path 43 on the left side in the figure, and the volume restricting portion. 44 is reached. Thereafter, in the volume restriction unit 44, a plurality of plugs 51 are fused to reconfigure a new plug 52, and the plug 52 flows through the second plug transport path 45 and reaches the reaction tank 20.
  • the resin layer 30 has a substantially plate shape, as shown in FIG. 2, on the lower surface side (substrate 11) side, the titrant transport path 41, the gas transport path 42, the first plug transport path 43, the volume restricting portion. 44, a groove corresponding to the second plug transport path 45 is formed. These grooves have a rectangular cross section.
  • the sample to be titrated can be put into the reaction tank 20.
  • titration is performed.
  • an indicator is added to the sample to be titrated, a change in the color of the indicator in the reaction tank 20 when the titrant reaches the equivalent point can be visually confirmed.
  • the resin layer 30 is transparent, the plug flowing through the second plug transport path 45 can be visually confirmed. For this reason, the number of plugs required to reach the equivalent point can be visually confirmed.
  • an inexpensive glass substrate is preferably used because it has sufficient mechanical strength and chemical resistance to the titrant and the sample to be titrated.
  • the resin layer 30 can be patterned so as to form the reaction tank 20, the titrant transport path 41, etc., and a material that has low wettability with respect to the titrant 50 and can be bonded to the substrate 11 is preferably used.
  • a material for example, polydimethylsiloxane (PDMS) which is a kind of silicone rubber is particularly preferably used.
  • PDMS polydimethylsiloxane
  • a replica mold method is used. In this case, first, a mold having patterns corresponding to the titrant transport path 41, the gas transport path 42, the first plug transport path 43, the volume restricting portion 44, and the second plug transport path 45 in FIG. 1 is prepared. To do.
  • this shape can be obtained by removing the mold.
  • a photoresist formed on a flat plate can be used as the template.
  • the pattern on the mold can be easily formed by ultraviolet irradiation through a photomask.
  • a through hole corresponding to the reaction tank 20 is formed in the resin layer 30 by mechanical processing.
  • the resin layer 30 on which the patterns corresponding to the titrant transport path 41, the gas transport path 42, the first plug transport path 43, the volume restricting portion 44, the second plug transport path 45, and the reaction tank 20 are formed is a substrate. 11 is joined.
  • the height of the first plug transport path 43, the volume restricting portion 44, and the second plug transport path 45 (the depth of the groove in the resin layer 30) is to smoothly move the plug in these flow paths.
  • these widths are not constant, and details thereof will be described later.
  • the titrant 50 (plugs 51 and 52) flows in the region surrounded by the substrate 11 and the resin layer 30.
  • the wettability of the substrate 11 and the resin layer 30 with respect to the titrant 50 is low.
  • the titrant 50 flowing through the titrant transport path 41 flows as the plug 51 in the first plug transport path 43.
  • the size (volume) and interval of the plug 51 are not uniform.
  • the plug 51 is reconfigured as a plug 52 whose size is made uniform by the volume restricting portion 44, and the plug 52 is injected into the reaction tank 20 through the second plug transport path 45.
  • FIGS. 3A to 3G are diagrams schematically showing this form.
  • the titrant (plug) flows from right to left.
  • the titrant 50 is injected into the titrant transport path 41 and the air is simultaneously injected into the gas transport path 42 from the right side in FIG. Inside, the titrant 50 is plugged and proceeds to the left.
  • the sizes (volumes) and intervals of the illustrated plugs 71 to 73 are not uniform.
  • the width of the first plug transport path 43 is w 1
  • the width of the second plug transport path 45 is w 2
  • the maximum width is w 3
  • one side surface in the drawing of the first plug transport path 43, the volume restricting portion 44, and the second plug transport path 45 is the same plane (in FIG. 3, it is a straight line).
  • w 3 > w 2 > w 1 is satisfied.
  • width gradually toward the downstream side becomes wider again width toward the downstream side from the point where the width becomes w 3 is narrowed, so that the width and w 2 Yes.
  • the plugs 71 to 73 proceed to the left without contacting each other as shown in FIG. At this time, since the inside of the first plug transport path 43 is closed by the plugs 71 to 73, the plugs 71 to 73 are kept in the air with the above-mentioned size and spacing maintained by the pressure from the right side. Proceed to the left side efficiently by pressure.
  • the flow restricting portion 44 is widened at this location, and therefore the volume restricting portion 44 is a small plug.
  • the plug 71 it does not become the obstruct
  • the pressure from the right side is transmitted to the left side through the gap in the volume restricting portion 44, and this pressure is hardly transmitted to the plug 71.
  • the plug 71 is decelerated and remains in the volume restricting portion 44.
  • the plugs 72 and 73 on the rear side are located in the first plug transporting portion 43, as in FIG. 3B, the plugs 72 and 73 move to the left side while maintaining their sizes and intervals.
  • the second plug 72 also reaches the volume restricting portion 44 and fuses with the plug 71 that still remains in the volume restricting portion 44.
  • the third plug 73 reaches the volume restricting portion 44 and further merges. Subsequent plugs are similarly fused in the volume restricting portion 44, and finally, as shown in FIG. 3E, one large plug 81 that closes the volume restricting portion 44 in the flow direction is formed. .
  • the plug 81 once moved to the second plug transport path 45 moves toward the left side in the same manner as in the first plug transport path 43, and then the reaction tank 20 To reach. Thereafter, when plugs having non-uniform sizes and volumes flow discretely through the first plug transport path 43, the above operation is repeated. That is, a large plug 81 is formed by the volume restricting portion 44 and flows through the second plug transport path 45.
  • the size (volume) of the fused large plug 81 is determined by the volume and shape of the volume restricting portion 44. For this reason, the volume of the plug 81 formed repeatedly becomes uniform. If this plug 81 is used, a uniform amount can be injected into the reaction vessel 20 in the same manner as in the case of using a bullet or the like, so that the equivalent point can be accurately recognized. Although the volume of the plug 81 is larger than that of the plug 71 or the like, it is adjusted by setting the first plug transport path 43, the volume restricting portion 44, the second plug transport path 45, the titrant 50, the air flow rate, and the like. Is possible.
  • the plugs 81 can be visually recognized, and the total number of plugs 81 required to reach the equivalent point can be easily confirmed. If the average volume of the plug 81 is known, the total amount of titrant required to reach the equivalent point can be easily calculated.
  • the titration apparatus 10 can be manufactured by bonding an inexpensive PDMS layer (resin layer 30) on an inexpensive glass substrate (substrate 11).
  • the process of forming the titrant transport path 41 and the like in the resin layer 30 can be performed accurately using a mold formed by ultraviolet irradiation through a photomask, and the reproducibility is high. For this reason, this small titration apparatus 10 can be easily obtained at low cost.
  • the reproducibility of the plug volume in the second plug transport path 45 is also improved. . For this reason, the reproducibility of the titration for a very small amount of the sample to be titrated can be improved. That is, the titration apparatus 10 is excellent in mass productivity.
  • the shapes of the substrate 11 and the resin layer 30 are arbitrary as long as the above action is realized. Further, the processing method of the resin layer 30 (formation of the first plug transport path 43 and the like) is optional as long as the same shape can be obtained. Further, the material constituting the substrate 11 and the resin layer 30 can be appropriately set depending on the type of the sample to be titrated and the titrant 50.
  • the resin layer 30 is preferably made of a transparent material so that the plug can be visually recognized from the resin layer 30 side. However, for example, if the substrate 11 is transparent, the plug can be visually observed from the substrate 11 side. The resin layer 30 does not need to be transparent. Moreover, when the plug injected into the reaction vessel 20 can be confirmed by a method other than visual observation, neither the resin layer 30 nor the substrate 11 needs to be transparent.
  • the shape of the volume restricting portion is such that a sudden volume change occurs in the middle of the first plug transport path to the second plug transport path, and a plurality of small plugs can be retained and fused together.
  • the cross-sectional area perpendicular to the flow direction from the first plug transport path to the second plug transport path is minimized in the first plug transport path and is locally increased at the volume restricting portion.
  • an optimal shape can be appropriately set according to the wettability of the resin layer to the titrant, the viscosity of the titrant, the surface tension, the volume of the plug required in the second plug transport path, and the like.
  • the above-described titration apparatus 10 was manufactured, and the flow of the titrant was examined.
  • a KOH aqueous solution was used as the titrant.
  • the depths of the grooves formed in the resin layer 30 (the heights of the titrant transport path 41, the gas transport path 42, the first plug transport path 43, the volume restricting portion 44, and the second plug transport path 45) were 150 ⁇ m.
  • the widths of the titrant transport path 41, the gas transport path 42, the first plug transport path 43, and the second plug transport path 45 were 300 ⁇ m, 600 ⁇ m, 200 ⁇ m, and 500 ⁇ m, respectively.
  • FIGS. 4 (a) to 4 (e) show photographs taken when the form of the plug flowing through the above-described route is shown in FIG. 4A, the plug 71 is generated at the intersection of the titrant transport path 41 and the gas transport path 42.
  • the plug 71 is in the first plug transport path 43.
  • the situation to go through has been filmed.
  • FIG. 4C a situation is shown in which the subsequent plug 72 travels through the first plug transport path 43 while the preceding plug 71 remains in the volume restricting portion 44.
  • the large plug 81 is formed in the volume restricting portion 44.
  • FIG. 4E the large plug 81 exits the volume restricting portion 44 and travels through the second plug transport path 45. The situation to be photographed. From this result, it is clear that the situation shown in FIG. 3 is actually occurring.
  • the volume of the plug in the first plug transport path 43, the interval, depends on the ratio of the flow rate V air units of time a gas (air) in the flow rate V liquid and gas transport passage 42 of the unit time of the titrant in the titrant transport path 41 Therefore , the flow volume ratio V air / V liquid was changed, and the volume distribution (standard deviation) of the flowing plug was examined in the first plug transport path 43 and the second plug transport path 45.
  • FIG. 5 shows the measurement results.
  • the standard deviation is a value normalized by an average value. From this result, the standard deviation of the volume of the plug is about half that of the first plug transport path 43 in the second plug transport path 45 regardless of the flow rate ratio, and is as small as 10% or less. That is, this is a preferable state for titration.
  • FIG. 6 is a frequency distribution (average value 0.154 ⁇ l) of the plug volume under these conditions. It can be confirmed that the distribution is sharp with the average value as the center.
  • a titration experiment was performed under these conditions using a sample to be titrated in the reaction tank 20 as hydrochloric acid (HCl) and an indicator as phenolphthalein.
  • FIG. 7 shows the result of examining the relationship (titration characteristics) between the number of injection plugs and the color index in the reaction tank 20 at this time. It can be seen that the color index gradually changes as the plug is injected. For this reason, it turns out that it can fully perform titration using this titration apparatus 10.
  • Such a small titration apparatus 10 is particularly preferably used when titrating a very small amount of a sample to be titrated.
  • An example of this use is rice freshness inspection.
  • the rice can be evaluated for each grain.
  • a method for evaluating the freshness of rice a method of measuring the pH of a liquid extracted from water obtained by pulverizing rice grains is known.
  • Lipids contained in rice are hydrolyzed by enzymes (lipases) contained in the rice grains to become fatty acids. For this reason, the less fresh (old) rice produces more fatty acids.
  • the pH based on the amount of fatty acid generated is determined. That is, it is determined that the lower the pH, the more fatty acid and the lower the freshness.
  • the above-described titration apparatus 10 was used for this inspection.
  • rice grains as the sample to be inspected were pulverized, and fatty acids were extracted with absolute ethanol. 0.4 ⁇ l of this extract and 0.1 ⁇ l of 1% phenolphthalein solution serving as an indicator were mixed in the reaction vessel 20 to obtain a sample to be titrated. A 10 mM KOH solution was used as the titrant.

Abstract

The purpose of the present invention is to obtain a titration device which is compact and capable of performing titration on a small amount of a sample to be titrated. This titration device (10) is configured by joining a transparent resin layer (30) on a flat substrate (11). In this configuration, titrant (50) flowing through a titrant transport path (41) flows as plugs (51) in a first plug transport path (43). The sizes (volumes) of and the intervals between the plugs (51) are uneven. However, the plugs (51) are reconstructed as plugs (52) at a volume regulating section (44) so as to have even sizes, and these plugs (52) are poured into a reaction vessel (20) through a second plug transport path (45).

Description

滴定装置、これを用いた米検査方法Titration device and rice inspection method using the same
 本発明は、滴定によって化学分析を行うことができる、携帯が可能な滴定装置の構成に関する。また、この滴定装置を用いた米の鮮度検査方法(米検査方法)に関する。 The present invention relates to a portable titration apparatus that can perform chemical analysis by titration and is portable. The present invention also relates to a rice freshness inspection method (rice inspection method) using the titration apparatus.
 食品の鮮度は外観だけでは判定することが困難な場合が多い。このため、測定が可能な何らかの物理量で食品の鮮度を規定し、この物理量を測定する方法が用いられている。例えば、米の鮮度を示す指標としては、脂肪酸の発生量や含まれる酵素の活性がある。前者は米が古くなった場合には増大するため、pH計を用いて判定をすることができる。後者は米が古くなった場合には低下するため、酵素活性を測定することでやはり同様に判定が可能である。 Food freshness is often difficult to determine by appearance alone. For this reason, a method is used in which the freshness of food is defined by some physical quantity that can be measured, and this physical quantity is measured. For example, the index indicating the freshness of rice includes the amount of fatty acid generated and the activity of the contained enzyme. Since the former increases when the rice becomes old, it can be determined using a pH meter. Since the latter decreases when the rice becomes old, the determination can be made in the same manner by measuring the enzyme activity.
 いずれの判定方法においても、短時間で適切な判定結果を出せることが要求される。例えば、特許文献1には、脂肪酸の発生量を用いて米の鮮度を測定する方法が記載されている。この方法においては、複数の米粒を独立して収納できるフィルター付発色反応プレート中に複数の米粒を収納し、異なるpHによって発色する複数種のpH試薬溶液をそれぞれに対して投入、攪拌後に発色を測定する。これにより、脂肪酸の発生量をpHとして認識することができ、米の鮮度を客観的な物理量として測定することができる。 In any of the determination methods, it is required that an appropriate determination result can be obtained in a short time. For example, Patent Document 1 describes a method for measuring the freshness of rice using the amount of fatty acid generated. In this method, a plurality of rice grains are stored in a color developing reaction plate with a filter that can store a plurality of rice grains independently. taking measurement. Thereby, the generation amount of fatty acid can be recognized as pH, and the freshness of rice can be measured as an objective physical quantity.
 pHの測定においては、pHを電気化学的に測定するpH計を用いることができるが、pH計は高価であり、また直接的に鮮度に影響する脂肪酸の絶対量がわからないため、一般には滴定が行われる場合が多い。滴定においては、滴定剤が一定の量だけ被滴定試料に滴下されることが繰り返される。この場合、例えば被滴定試料に指示薬が添加され、滴定剤が当量点に達した場合の指示薬の色の変化等を確認することによって、脂肪酸の量を判定することができる。滴定剤を一定の量だけ滴下するためには、ビュレット等が用いられる。ビュレット等を用いた滴下の際には、1回の滴下量を微量かつ一定とすることができるため、当量点に至るまでに要した滴下量を正確に測定することが可能である。 In pH measurement, a pH meter that electrochemically measures pH can be used. However, since the pH meter is expensive and does not know the absolute amount of fatty acid that directly affects freshness, titration is generally performed. Often done. In titration, it is repeated that a titrant is dropped on a sample to be titrated by a certain amount. In this case, for example, the amount of fatty acid can be determined by confirming the color change of the indicator when the indicator is added to the sample to be titrated and the titrant reaches the equivalent point. In order to drop the titrant by a fixed amount, a burette or the like is used. At the time of dropping using a burette or the like, the amount of one drop can be made minute and constant, so that the amount of drop required to reach the equivalence point can be accurately measured.
 こうしたpH測定を用いて、米の鮮度を検査することができる。同様に、他の食品等についても、その鮮度を検査することが可能である。 Such a pH measurement can be used to check the freshness of rice. Similarly, the freshness of other foods and the like can be inspected.
特開2005-43097号公報JP 2005-43097 A
 米等の食品の鮮度を検査する場合に用いられる検査装置は、一般的には大型となり、携帯して使用することは困難である。このため、検査装置が設置された場所に被検査試料(米)を持ち込み、ここで上記の測定を行うことが行われている。 The inspection device used when inspecting the freshness of food such as rice is generally large and difficult to carry. For this reason, a sample to be inspected (rice) is brought into a place where an inspection apparatus is installed, and the above measurement is performed here.
 しかしながら、検査の効率を高めるためには、検査装置を携帯して被検査試料が保管された場所に行き、その場で検査を行うことが有効である。また、被検査試料を移動させている間にも鮮度は劣化するため、より正確な測定を行うためにも、任意の場所で検査が行えることが好ましい。こうした用途に際しては、小型で携帯が容易な検査装置が有効である。また、こうした検査を専門家でない消費者が行えるようにするためにもこうした携帯型の検査装置は有効である。 However, in order to increase the efficiency of the inspection, it is effective to carry the inspection apparatus to the place where the sample to be inspected is stored and perform the inspection on the spot. Further, since the freshness deteriorates while the sample to be inspected is moved, it is preferable that the inspection can be performed at an arbitrary place in order to perform more accurate measurement. For such applications, a small and easy-to-carry inspection apparatus is effective. In addition, such a portable inspection device is effective for enabling a non-expert consumer to perform such an inspection.
 また、米は、複数の銘柄が混合されたブレンド米として流通している場合も多い。こうした場合には、銘柄によって鮮度が異なる場合もあるため、米を一粒単位で検査できることが要求される。すなわち、小さな被検査試料を検査することができることも要求される。 In addition, rice is often distributed as blended rice in which multiple brands are mixed. In such a case, the freshness may vary depending on the brand, so that it is required to be able to inspect rice in single grain units. That is, it is also required that a small sample to be inspected can be inspected.
 こうした場合においては、滴定を用いて検査を行なう際の被滴定試料も微量となり、これに対応して当量点に達するまでに要する滴定剤も少量となる。この場合、1回の滴下量(投入量)を極めて微量ずつとしなければ、当量点を正確に求めることが困難となる。 In such a case, the sample to be titrated at the time of inspection using titration becomes a very small amount, and correspondingly, the amount of titrant required to reach the equivalent point becomes small. In this case, it is difficult to accurately determine the equivalence point unless the amount of dripping (injection amount) is very small.
 ところが、こうした1回の微量な投入量を一定とするためには、細管中における流量を制御する等の複雑な操作が必要となる。こうした操作を行うためには、流量センサや電磁弁等の複雑な機構が必要になるため、装置が高価となった。また、装置を小型化することも困難であった。 However, in order to make such a minute input amount constant, complicated operations such as controlling the flow rate in the narrow tube are required. In order to perform such an operation, a complicated mechanism such as a flow sensor or a solenoid valve is required, so that the apparatus becomes expensive. It has also been difficult to reduce the size of the apparatus.
 本発明は、かかる問題点に鑑みてなされたものであり、上記問題点を解決する発明を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide an invention that solves the above problems.
 本発明は、上記課題を解決すべく、以下に掲げる構成とした。
 本発明の滴定装置は、基板上に接合された樹脂層中に形成された反応槽に被滴定試料が投入され、当該被滴定試料に対して、滴定剤の塊であるプラグを複数回にわたり注入して滴定を行う滴定装置であって、前記滴定剤が注入される滴定剤輸送路と、気体が注入される気体輸送路と、前記滴定剤輸送路と前記気体輸送路とが合流されることによって形成された前記プラグを前記反応層側に向かって流す第1プラグ輸送路と、当該第1プラグ輸送路の下流側に設けられ、流れ方向に垂直な断面積が前記第1プラグ輸送路よりも大きく、複数の前記プラグを同時に収容することが可能な体積制限部と、流れ方向に垂直な断面積が前記第1プラグ輸送路よりも大きくかつ前記体積制限部よりも小さく、前記体積制限部で融合された複数の前記プラグを前記反応槽まで導入する第2プラグ輸送路と、が前記基板と前記樹脂層との界面に形成されたことを特徴とする。
 本発明の滴定装置において、前記樹脂層は透明な樹脂材料で構成されたことを特徴とする。
 本発明の滴定装置において、前記基板はガラスで構成されたことを特徴とする。
 本発明の滴定装置は、前記滴定剤輸送路、前記気体輸送路、前記第1プラグ輸送路、前記体積制限部、及び前記第2プラグ輸送路を構成する溝が、前記樹脂層における前記基板側の面に形成されたことを特徴とする。
 本発明の滴定装置は、前記樹脂層がポリジメチルシロキサン(PDMS)で構成されたことを特徴とする。
 本発明の滴定装置において、前記溝は鋳型によって形成されたことを特徴とする。
 本発明の米検査方法は、前記滴定装置を用いて米の鮮度を検査する米検査方法であって、米に含まれる脂肪酸を抽出した液を前記反応槽に投入し、前記滴定剤としてアルカリ溶液を用いて滴定を行うことを特徴とする。
In order to solve the above problems, the present invention has the following configurations.
In the titration apparatus of the present invention, a sample to be titrated is placed in a reaction tank formed in a resin layer bonded on a substrate, and a plug which is a lump of titrant is injected into the sample to be titrated multiple times. A titration apparatus for performing titration, wherein the titrant transport path into which the titrant is injected, the gas transport path into which gas is injected, the titrant transport path and the gas transport path are merged A first plug transport path for flowing the plug formed by the step toward the reaction layer, and a downstream side of the first plug transport path, and a cross-sectional area perpendicular to the flow direction is greater than that of the first plug transport path. A volume restricting portion capable of simultaneously accommodating a plurality of the plugs, a cross-sectional area perpendicular to the flow direction being larger than the first plug transport path and smaller than the volume restricting portion, the volume restricting portion A plurality of said plugs fused together A second plug transport path for introducing to the reaction vessel, characterized in that is formed at the interface between the substrate and the resin layer.
In the titration apparatus of the present invention, the resin layer is made of a transparent resin material.
In the titration apparatus of the present invention, the substrate is made of glass.
In the titration apparatus of the present invention, the groove constituting the titrant transport path, the gas transport path, the first plug transport path, the volume restricting portion, and the second plug transport path is formed on the substrate side of the resin layer. It is characterized by being formed on the surface.
The titration apparatus of the present invention is characterized in that the resin layer is composed of polydimethylsiloxane (PDMS).
In the titration apparatus of the present invention, the groove is formed by a mold.
The rice inspection method of the present invention is a rice inspection method for inspecting the freshness of rice using the titration device, wherein a liquid obtained by extracting fatty acids contained in rice is introduced into the reaction tank, and an alkaline solution is used as the titrant. It is characterized by performing titration using.
 本発明は以上のように構成されているので、小型であり、かつ微量の被滴定試料に対して滴定を行うことのできる滴定装置を得ることができる。 Since the present invention is configured as described above, it is possible to obtain a titration apparatus that is small in size and capable of performing titration on a small amount of a sample to be titrated.
本発明の第1の実施の形態となる滴定装置の上面図である。It is a top view of the titration apparatus which becomes the 1st Embodiment of this invention. 本発明の第1の実施の形態となる滴定装置の3箇所における断面図である。It is sectional drawing in three places of the titration apparatus used as the 1st Embodiment of this invention. 本発明の第1の実施の形態となる滴定装置における流路中のプラグの形態を示す模式図である。It is a schematic diagram which shows the form of the plug in the flow path in the titration apparatus used as the first embodiment of the present invention. 実施例となる滴定装置における流路中のプラグを実際に撮影した結果である。It is the result of having actually image | photographed the plug in the flow path in the titration apparatus used as an Example. 実施例となる滴定装置におけるプラグの体積の標準偏差を第1プラグ輸送路と第2プラグ輸送路で実測した結果である。It is the result of having measured the standard deviation of the volume of the plug in the titration apparatus used as an Example in the 1st plug transport path and the 2nd plug transport path. 実施例となる滴定装置におけるプラグの体積の度数分布を実測した結果である。It is the result of having measured the frequency distribution of the volume of the plug in the titration apparatus used as an Example. 実施例となる滴定装置を用いて塩酸の滴定を行った際の滴定特性である。It is the titration characteristic at the time of titrating hydrochloric acid using the titration apparatus used as an Example. 本発明の第2の実施の形態となる米検査方法を鮮度の異なる米に対して適用した際の滴定特性の実施例である。It is an Example of the titration characteristic at the time of applying the rice test | inspection method used as the 2nd Embodiment of this invention with respect to the rice from which freshness differs.
(第1の実施の形態:滴定装置)
 以下、本発明の第1の実施の形態に係る滴定装置の構成について説明する。図1は、この滴定装置10の構成を示す上面図であり、図2は、そのA-A方向(a)、B-B方向(b)、C-C方向(c)の断面図である。この滴定装置10においては、基板11上に小さな反応槽20が設けられ、この反応槽20には被滴定試料が投入され、この中に滴定剤の塊(プラグ)が離散的に導入される。これにより、ピュレット等を用いて滴定を行う場合と同様に、滴定を行うことができ、例えば反応槽20中の被滴定試料中の発色の変化を確認することができ、当量点を求めることができる。
(First embodiment: titration apparatus)
Hereinafter, the configuration of the titration apparatus according to the first embodiment of the present invention will be described. FIG. 1 is a top view showing the configuration of the titration apparatus 10, and FIG. 2 is a cross-sectional view in the AA direction (a), the BB direction (b), and the CC direction (c). . In the titration apparatus 10, a small reaction tank 20 is provided on a substrate 11, and a sample to be titrated is introduced into the reaction tank 20, and a lump of titrant (plug) is discretely introduced therein. As a result, titration can be performed in the same manner as when titration is performed using a puret or the like. For example, a color change in a titration sample in the reaction vessel 20 can be confirmed, and an equivalence point can be obtained. it can.
 この滴定装置10は、平坦な基板11上に、透明な樹脂層30が接合されて構成される。樹脂層30には、樹脂層30が基板11に接合された状態で、被滴定試料を保持することのできる反応槽20が形成されるようなパターニングが施されている。また、樹脂層30と基板11との間の界面には、滴定剤や空気が流される経路が形成される。この経路は、樹脂層30における基板11と接合される側の面に形成された溝によって形成される。 The titration apparatus 10 is configured by bonding a transparent resin layer 30 on a flat substrate 11. The resin layer 30 is patterned so as to form a reaction tank 20 that can hold the titration sample in a state where the resin layer 30 is bonded to the substrate 11. In addition, a route through which a titrant and air flow is formed at the interface between the resin layer 30 and the substrate 11. This path is formed by a groove formed on the surface of the resin layer 30 on the side bonded to the substrate 11.
 この経路として、滴定剤50が流される滴定剤輸送路41、空気等の気体が流される気体輸送路42が図1中の右側に形成される。滴定剤輸送路41には滴定剤50が、気体輸送路42には空気が、それぞれシリコーンチューブ61、62を介して図1中の右側から導入される。また、滴定剤輸送路41と気体輸送路42は合流して第1プラグ輸送路43が形成される。第1プラグ輸送路43では滴定剤50は気体と混合されるため、滴定剤50は断続的な塊(プラグ51)となって第1プラグ輸送路43中を図中左側に流れ、体積制限部44に達する。その後、体積制限部44では複数のプラグ51が融合して新たなプラグ52が再構成され、プラグ52が第2プラグ輸送路45を流れ、反応槽20に達する。 As this path, a titrant transport path 41 through which the titrant 50 flows and a gas transport path 42 through which a gas such as air flows are formed on the right side in FIG. The titrant 50 is introduced into the titrant transport path 41 and the air is introduced into the gas transport path 42 from the right side in FIG. 1 via the silicone tubes 61 and 62, respectively. Further, the titrant transport path 41 and the gas transport path 42 merge to form a first plug transport path 43. Since the titrant 50 is mixed with gas in the first plug transport path 43, the titrant 50 becomes an intermittent mass (plug 51) and flows in the first plug transport path 43 on the left side in the figure, and the volume restricting portion. 44 is reached. Thereafter, in the volume restriction unit 44, a plurality of plugs 51 are fused to reconfigure a new plug 52, and the plug 52 flows through the second plug transport path 45 and reaches the reaction tank 20.
 樹脂層30は略板状であるが、図2に示されるように、その下面側(基板11)側において、滴定剤輸送路41、気体輸送路42、第1プラグ輸送路43、体積制限部44、第2プラグ輸送路45に対応する溝が形成されている。これらの溝の断面は矩形形状である。また、反応槽20に被滴定試料が投入できるような形態とされる。 Although the resin layer 30 has a substantially plate shape, as shown in FIG. 2, on the lower surface side (substrate 11) side, the titrant transport path 41, the gas transport path 42, the first plug transport path 43, the volume restricting portion. 44, a groove corresponding to the second plug transport path 45 is formed. These grooves have a rectangular cross section. In addition, the sample to be titrated can be put into the reaction tank 20.
 反応槽20に被滴定試料を入れ、滴定剤輸送路41に滴定剤50を、気体輸送路42に空気を同時に導入すれば、滴定剤50が最終的にプラグ52となって反応槽20に注入されるため、滴定が行われる。ここで、例えば被滴定試料に指示薬が添加されれば、滴定剤が当量点に達した場合の反応槽20中における指示薬の色の変化等を目視で確認することができる。また、樹脂層30は透明であるため、第2プラグ輸送路45を流れるプラグも目視で確認することができる。このため、当量点に達するまでに要したプラグの数を目視で確認することができる。 If a sample to be titrated is placed in the reaction tank 20, and the titrant 50 is introduced into the titrant transport path 41 and air is simultaneously introduced into the gas transport path 42, the titrant 50 finally becomes a plug 52 and is injected into the reaction tank 20. Therefore, titration is performed. Here, for example, if an indicator is added to the sample to be titrated, a change in the color of the indicator in the reaction tank 20 when the titrant reaches the equivalent point can be visually confirmed. Further, since the resin layer 30 is transparent, the plug flowing through the second plug transport path 45 can be visually confirmed. For this reason, the number of plugs required to reach the equivalent point can be visually confirmed.
 基板11としては、充分な機械的強度、滴定剤や被滴定試料に対する薬品耐性があり、安価なガラス基板が好ましく用いられる。 As the substrate 11, an inexpensive glass substrate is preferably used because it has sufficient mechanical strength and chemical resistance to the titrant and the sample to be titrated.
 樹脂層30は、反応槽20や滴定剤輸送路41等が形成されるようにパターニングすることが可能であり、滴定剤50に対する濡れ性が低く、かつ基板11に接合できる材料が好ましく用いられる。こうした材料として、例えばシリコーンゴムの1種であるポリジメチルシロキサン(PDMS)が特に好ましく用いられる。樹脂層30を図1、2に示されるような形状とするためには、レプリカモールド法が用いられる。この場合には、まず、図1における滴定剤輸送路41、気体輸送路42、第1プラグ輸送路43、体積制限部44、第2プラグ輸送路45に対応するパターンが形成された鋳型を準備する。この鋳型にPDMS前駆体溶液を流し込んだ後に硬化処理を行って硬化させた後に、鋳型を除去することにより、この形状とすることができる。鋳型としては、例えば平板上に形成したフォトレジストを用いることができる。この場合には、鋳型における上記のパターンはフォトマスクを通した紫外線照射によって容易に形成することができる。 The resin layer 30 can be patterned so as to form the reaction tank 20, the titrant transport path 41, etc., and a material that has low wettability with respect to the titrant 50 and can be bonded to the substrate 11 is preferably used. As such a material, for example, polydimethylsiloxane (PDMS) which is a kind of silicone rubber is particularly preferably used. In order to make the resin layer 30 as shown in FIGS. 1 and 2, a replica mold method is used. In this case, first, a mold having patterns corresponding to the titrant transport path 41, the gas transport path 42, the first plug transport path 43, the volume restricting portion 44, and the second plug transport path 45 in FIG. 1 is prepared. To do. After the PDMS precursor solution is poured into the mold and cured by performing a curing process, this shape can be obtained by removing the mold. As the template, for example, a photoresist formed on a flat plate can be used. In this case, the pattern on the mold can be easily formed by ultraviolet irradiation through a photomask.
 また、樹脂層30には、反応槽20に対応する貫通孔が機械的加工によって形成される。このように滴定剤輸送路41、気体輸送路42、第1プラグ輸送路43、体積制限部44、第2プラグ輸送路45、反応槽20に対応するパターンが形成された樹脂層30が、基板11に接合される。なお、第1プラグ輸送路43、体積制限部44、第2プラグ輸送路45の高さ(樹脂層30における溝の深さ)は、これらの流路内でのプラグの移動をスムーズに行うために、同一とすることが好ましい。ただし、これらの幅は一定ではなく、その詳細については後述する。 Further, a through hole corresponding to the reaction tank 20 is formed in the resin layer 30 by mechanical processing. Thus, the resin layer 30 on which the patterns corresponding to the titrant transport path 41, the gas transport path 42, the first plug transport path 43, the volume restricting portion 44, the second plug transport path 45, and the reaction tank 20 are formed is a substrate. 11 is joined. The height of the first plug transport path 43, the volume restricting portion 44, and the second plug transport path 45 (the depth of the groove in the resin layer 30) is to smoothly move the plug in these flow paths. Are preferably the same. However, these widths are not constant, and details thereof will be described later.
 なお、上記の通り、滴定剤50(プラグ51、52)は基板11と樹脂層30で囲まれた領域を流れる。この場合、滴定剤50に対する基板11と樹脂層30の濡れ性が低いことが好ましい。このため、特に基板11表面に対しては、フッ素樹脂等による撥水性のコーティングを施すことが好ましい。 Note that, as described above, the titrant 50 (plugs 51 and 52) flows in the region surrounded by the substrate 11 and the resin layer 30. In this case, it is preferable that the wettability of the substrate 11 and the resin layer 30 with respect to the titrant 50 is low. For this reason, it is preferable to apply a water-repellent coating with a fluororesin or the like especially on the surface of the substrate 11.
 上記の構成においては、滴定剤輸送路41を流れる滴定剤50は、第1プラグ輸送路43においてプラグ51となって流れる。ただし、このプラグ51の大きさ(体積)、間隔は不均一である。しかしながら、このプラグ51は体積制限部44によって大きさが均一化されたプラグ52として再構成され、このプラグ52が第2プラグ輸送路45を通って反応槽20に注入される。 In the above configuration, the titrant 50 flowing through the titrant transport path 41 flows as the plug 51 in the first plug transport path 43. However, the size (volume) and interval of the plug 51 are not uniform. However, the plug 51 is reconfigured as a plug 52 whose size is made uniform by the volume restricting portion 44, and the plug 52 is injected into the reaction tank 20 through the second plug transport path 45.
 以下に、第1プラグ輸送路43から第2プラグ輸送路45に至るまでの滴定剤(プラグ)の形態について説明する。図3(a)~(g)は、この形態を模式的に示す図である。図3においては、滴定剤(プラグ)は右から左に向かって流れる。 Hereinafter, the form of the titrant (plug) from the first plug transport path 43 to the second plug transport path 45 will be described. FIGS. 3A to 3G are diagrams schematically showing this form. In FIG. 3, the titrant (plug) flows from right to left.
 まず、図3(a)に示されるように、滴定剤輸送路41に滴定剤50が、気体輸送路42に空気が同時に図1中の右側から注入されることにより、第1プラグ輸送路43中では滴定剤50がプラグ化されて左側に進む。ただし、この状態においては、図示されたプラグ71~73の大きさ(体積)、間隔は不均一である。なお、図示されるように、第1プラグ輸送路43の幅はw、第2プラグ輸送路45の幅はwであり、w>wである。また、体積制限部44では流れ方向において局所的に幅が広くされており、その最大幅はwであり、w>w>wとなっている。また、この例では、第1プラグ輸送路43、体積制限部44、第2プラグ輸送路45における図中の一方の側面は同一平面をなしている(図3中では直線となっている)が、他方の側面の形状を流れ方向に沿って変化させることによって、w>w>wとされている。また、体積制限部44においては、下流側に向かって徐々に幅が広くなり、この幅がwとなった箇所から下流側に向かって再び幅が狭くなり、その幅がwとなっている。 First, as shown in FIG. 3A, the titrant 50 is injected into the titrant transport path 41 and the air is simultaneously injected into the gas transport path 42 from the right side in FIG. Inside, the titrant 50 is plugged and proceeds to the left. However, in this state, the sizes (volumes) and intervals of the illustrated plugs 71 to 73 are not uniform. As shown in the figure, the width of the first plug transport path 43 is w 1 , the width of the second plug transport path 45 is w 2 , and w 2 > w 1 . Moreover, locally a width is wider in the flow direction by volume limiting unit 44, the maximum width is w 3, and has a w 3> w 2> w 1 . Further, in this example, one side surface in the drawing of the first plug transport path 43, the volume restricting portion 44, and the second plug transport path 45 is the same plane (in FIG. 3, it is a straight line). By changing the shape of the other side surface along the flow direction, w 3 > w 2 > w 1 is satisfied. In the volume restriction portion 44, width gradually toward the downstream side becomes wider again width toward the downstream side from the point where the width becomes w 3 is narrowed, so that the width and w 2 Yes.
 第1プラグ輸送路43内の壁面の濡れ性が低いため、図3(b)に示されるように、プラグ71~73は互いに接触せずに左側に進行する。この際、第1プラグ輸送路43内はプラグ71~73によって閉塞された状態となっているため、プラグ71~73は、右側からの圧力によって、上記の大きさ、間隔を保ったまま空気の圧力によって効率的に左側に進行する。 Since the wettability of the wall surface in the first plug transport path 43 is low, the plugs 71 to 73 proceed to the left without contacting each other as shown in FIG. At this time, since the inside of the first plug transport path 43 is closed by the plugs 71 to 73, the plugs 71 to 73 are kept in the air with the above-mentioned size and spacing maintained by the pressure from the right side. Proceed to the left side efficiently by pressure.
 その後、図3(c)に示されるように、最先端にあるプラグ71が体積制限部44に達すると、この場所では流路の幅が広くなっているために、体積制限部44は小さなプラグ71では閉塞された状態とはならない。右側からの圧力は、体積制限部44中の空隙を通って左側に伝わり、プラグ71にはこの圧力は伝わりにくくなる。このため、プラグ71は減速され、体積制限部44に留まる。一方、これよりも後方のプラグ72、73は、第1プラグ輸送部43にあるため、図3(b)と同様に、その大きさ、間隔を保ったまま左側に移動する。 Thereafter, as shown in FIG. 3C, when the plug 71 at the foremost end reaches the volume restricting portion 44, the flow restricting portion 44 is widened at this location, and therefore the volume restricting portion 44 is a small plug. In 71, it does not become the obstruct | occluded state. The pressure from the right side is transmitted to the left side through the gap in the volume restricting portion 44, and this pressure is hardly transmitted to the plug 71. For this reason, the plug 71 is decelerated and remains in the volume restricting portion 44. On the other hand, since the plugs 72 and 73 on the rear side are located in the first plug transporting portion 43, as in FIG. 3B, the plugs 72 and 73 move to the left side while maintaining their sizes and intervals.
 その後、図3(d)に示されるように、2番目のプラグ72も体積制限部44に達し、まだ体積制限部44に留まっているプラグ71と融合する。その後、同様に3番目のプラグ73も体積制限部44に達して更に融合する。以降のプラグも同様に体積制限部44中で融合し、最終的には、図3(e)に示されるように、体積制限部44を流れ方向で閉塞する大きな一つのプラグ81が形成される。 Thereafter, as shown in FIG. 3 (d), the second plug 72 also reaches the volume restricting portion 44 and fuses with the plug 71 that still remains in the volume restricting portion 44. Thereafter, similarly, the third plug 73 reaches the volume restricting portion 44 and further merges. Subsequent plugs are similarly fused in the volume restricting portion 44, and finally, as shown in FIG. 3E, one large plug 81 that closes the volume restricting portion 44 in the flow direction is formed. .
 この大きなプラグ81によって体積制限部44は流れ方向に閉塞された状態となるため、右側からの圧力は効率的にこのプラグ81に伝わる。このため、このプラグ81は、図3(f)に示されるように、左側の第2プラグ輸送路45に移動する。 Since the volume restricting portion 44 is closed in the flow direction by the large plug 81, the pressure from the right side is efficiently transmitted to the plug 81. Therefore, the plug 81 moves to the left second plug transport path 45 as shown in FIG. 3 (f).
 その後、図3(g)に示されるように、第2プラグ輸送路45に一旦移動したプラグ81は、第1プラグ輸送路43における場合と同様に、左側に向かって移動し、その後反応槽20に達する。その後、大きさ、体積が不均一なプラグが第1プラグ輸送路43を離散的に流れた場合において、以上の動作が繰り返される。すなわち、大きなプラグ81が体積制限部44で形成され、これが第2プラグ輸送路45を流れる。 Thereafter, as shown in FIG. 3 (g), the plug 81 once moved to the second plug transport path 45 moves toward the left side in the same manner as in the first plug transport path 43, and then the reaction tank 20 To reach. Thereafter, when plugs having non-uniform sizes and volumes flow discretely through the first plug transport path 43, the above operation is repeated. That is, a large plug 81 is formed by the volume restricting portion 44 and flows through the second plug transport path 45.
 この流れにおいて、融合された大きなプラグ81の大きさ(体積)は、体積制限部44の体積、形状によって定まる。このため、繰り返し形成されるプラグ81の体積は均一となる。このプラグ81を用いれば、ビュレット等を用いた場合と同様に、均一量ずつを反応槽20に注入することができるため、正確に当量点を認識することができる。また、プラグ81の体積は、プラグ71等よりは大きくなっているものの、第1プラグ輸送路43、体積制限部44、第2プラグ輸送路45、滴定剤50や空気の流量等の設定により調整が可能である。この設定により、反応槽20における被滴定試料に対して滴定が可能となる程度に微量とすることも可能である。また、この滴定装置10においては、電気式や機械式の流量制御装置を用いることなしに、流路の構成のみによってこうしたプラグの制御を実現している。 In this flow, the size (volume) of the fused large plug 81 is determined by the volume and shape of the volume restricting portion 44. For this reason, the volume of the plug 81 formed repeatedly becomes uniform. If this plug 81 is used, a uniform amount can be injected into the reaction vessel 20 in the same manner as in the case of using a bullet or the like, so that the equivalent point can be accurately recognized. Although the volume of the plug 81 is larger than that of the plug 71 or the like, it is adjusted by setting the first plug transport path 43, the volume restricting portion 44, the second plug transport path 45, the titrant 50, the air flow rate, and the like. Is possible. With this setting, it is possible to make the amount of the sample to be titrated in the reaction tank 20 so small that titration is possible. Further, in the titration apparatus 10, such plug control is realized only by the configuration of the flow path without using an electric or mechanical flow control device.
 この際、樹脂層30は透明な樹脂材料で構成されるため、プラグ81を目視で認識することができ、当量点に達するまでに要したプラグ81の総数を確認することも容易である。プラグ81の平均体積がわかれば、当量点に達するまでに要した滴定剤の総量を容易に算出することができる。 At this time, since the resin layer 30 is made of a transparent resin material, the plugs 81 can be visually recognized, and the total number of plugs 81 required to reach the equivalent point can be easily confirmed. If the average volume of the plug 81 is known, the total amount of titrant required to reach the equivalent point can be easily calculated.
 上記の滴定装置10は、安価なガラス基板(基板11)上に安価なPDMS層(樹脂層30)を接合することによって製造することができる。また、滴定剤輸送路41等を樹脂層30に形成する加工は、フォトマスクを通した紫外線照射により形成した鋳型を用いて精密に行うことが可能であり、その再現性も高い。このため、この小型の滴定装置10を低コストで容易に得ることができる。この場合、第1プラグ輸送路43、体積制限部44、第2プラグ輸送路45等の寸法精度を高くすることができるため、第2プラグ輸送路45におけるプラグの体積の再現性も良好となる。このため、微量の被滴定試料に対する滴定の再現性も高くすることができる。すなわち、この滴定装置10は量産性にも優れる。 The titration apparatus 10 can be manufactured by bonding an inexpensive PDMS layer (resin layer 30) on an inexpensive glass substrate (substrate 11). In addition, the process of forming the titrant transport path 41 and the like in the resin layer 30 can be performed accurately using a mold formed by ultraviolet irradiation through a photomask, and the reproducibility is high. For this reason, this small titration apparatus 10 can be easily obtained at low cost. In this case, since the dimensional accuracy of the first plug transport path 43, the volume restricting portion 44, the second plug transport path 45, and the like can be increased, the reproducibility of the plug volume in the second plug transport path 45 is also improved. . For this reason, the reproducibility of the titration for a very small amount of the sample to be titrated can be improved. That is, the titration apparatus 10 is excellent in mass productivity.
 なお、基板11や樹脂層30の形状については、上記の作用が実現される限りにおいて、任意である。また、樹脂層30の加工(第1プラグ輸送路43等の形成)方法についても、同様の形状が得られる限りにおいて、任意である。また、基板11や樹脂層30を構成する材料としては、被滴定試料や滴定剤50の種類によって適宜設定することができる。プラグが樹脂層30側から目視で認識できるように、樹脂層30は透明な材料で構成されることが好ましいが、例えば基板11が透明であれば、プラグを基板11側から目視できるため、必ずしも樹脂層30は透明である必要はない。また、反応槽20に注入されるプラグを目視以外の方法で確認できる場合には、樹脂層30、基板11のいずれも透明である必要はない。 Note that the shapes of the substrate 11 and the resin layer 30 are arbitrary as long as the above action is realized. Further, the processing method of the resin layer 30 (formation of the first plug transport path 43 and the like) is optional as long as the same shape can be obtained. Further, the material constituting the substrate 11 and the resin layer 30 can be appropriately set depending on the type of the sample to be titrated and the titrant 50. The resin layer 30 is preferably made of a transparent material so that the plug can be visually recognized from the resin layer 30 side. However, for example, if the substrate 11 is transparent, the plug can be visually observed from the substrate 11 side. The resin layer 30 does not need to be transparent. Moreover, when the plug injected into the reaction vessel 20 can be confirmed by a method other than visual observation, neither the resin layer 30 nor the substrate 11 needs to be transparent.
 また、体積制限部の形状についても、第1プラグ輸送路から第2プラグ輸送路の途中で急激な体積変化を発生させ、小さなプラグをその内部で滞留させて複数個融合させることのできる形状である限りにおいて、任意である。このためには、第1プラグ輸送路から第2プラグ輸送路にかけて、流れ方向に垂直な断面積を、第1プラグ輸送路において最も小さくし、体積制限部で局所的に大きくした構成とすればよい。具体的には、例えば樹脂層の滴定剤に対する濡れ性や滴定剤の粘度、表面張力、第2プラグ輸送路において要求されるプラグの体積等によって最適な形状を適宜設定することができる。 Also, the shape of the volume restricting portion is such that a sudden volume change occurs in the middle of the first plug transport path to the second plug transport path, and a plurality of small plugs can be retained and fused together. As long as it is optional. For this purpose, the cross-sectional area perpendicular to the flow direction from the first plug transport path to the second plug transport path is minimized in the first plug transport path and is locally increased at the volume restricting portion. Good. Specifically, for example, an optimal shape can be appropriately set according to the wettability of the resin layer to the titrant, the viscosity of the titrant, the surface tension, the volume of the plug required in the second plug transport path, and the like.
 実際に、上記の滴定装置10を製造し、滴定剤の流れを調べた。ここで、滴定剤としては、KOH水溶液を用いた。樹脂層30に形成された溝の深さ(滴定剤輸送路41、気体輸送路42、第1プラグ輸送路43、体積制限部44、第2プラグ輸送路45の高さ)は150μmとした。滴定剤輸送路41、気体輸送路42、第1プラグ輸送路43、第2プラグ輸送路45の幅はそれぞれ300μm、600μm、200μm、500μmとした。 Actually, the above-described titration apparatus 10 was manufactured, and the flow of the titrant was examined. Here, a KOH aqueous solution was used as the titrant. The depths of the grooves formed in the resin layer 30 (the heights of the titrant transport path 41, the gas transport path 42, the first plug transport path 43, the volume restricting portion 44, and the second plug transport path 45) were 150 μm. The widths of the titrant transport path 41, the gas transport path 42, the first plug transport path 43, and the second plug transport path 45 were 300 μm, 600 μm, 200 μm, and 500 μm, respectively.
 図4(a)~(e)は、プラグが上記の経路を流れる際の形態を図3に対応させて撮影した写真を示す。図4(a)においては、滴定剤輸送路41、気体輸送路42の交差箇所でプラグ71が生成される状況が、図4(b)においては、このプラグ71が第1プラグ輸送路43中を進行する状況が撮影されている。図4(c)においては、先行したプラグ71が体積制限部44に留まった状態で、後行のプラグ72が第1プラグ輸送路43中を進行する状況が撮影されている。図4(d)においては、体積制限部44で大きなプラグ81が形成された状況、図4(e)においては、この大きなプラグ81が体積制限部44から出て第2プラグ輸送路45を進行する状況が撮影されている。この結果より、図3に示された状況が実際に起きていることが明らかである。 FIGS. 4 (a) to 4 (e) show photographs taken when the form of the plug flowing through the above-described route is shown in FIG. 4A, the plug 71 is generated at the intersection of the titrant transport path 41 and the gas transport path 42. In FIG. 4B, the plug 71 is in the first plug transport path 43. The situation to go through has been filmed. In FIG. 4C, a situation is shown in which the subsequent plug 72 travels through the first plug transport path 43 while the preceding plug 71 remains in the volume restricting portion 44. 4D, the large plug 81 is formed in the volume restricting portion 44. In FIG. 4E, the large plug 81 exits the volume restricting portion 44 and travels through the second plug transport path 45. The situation to be photographed. From this result, it is clear that the situation shown in FIG. 3 is actually occurring.
 次に、実際に第1プラグ輸送路43と第2プラグ輸送路45におけるプラグの大きさ(体積)の分布を調べた。第1プラグ輸送路43におけるプラグの体積、間隔は、滴定剤輸送路41における滴定剤の単位時間の流量Vliquidと気体輸送路42における気体(空気)の単位時間の流量Vairの比に依存するため、流量比Vair/Vliquidを変えて、流れるプラグの体積分布(標準偏差)を、第1プラグ輸送路43と第2プラグ輸送路45において調べた。図5は、この測定結果である。ここで、標準偏差は、平均値で規格化した値である。この結果より、プラグの体積の標準偏差は、第2プラグ輸送路45においては流量比によらずに第1プラグ輸送路43の場合の半分程度となり、10%以下と小さくなっている。すなわち、滴定を行うのに好ましい状態となっている。 Next, the plug size (volume) distribution in the first plug transport path 43 and the second plug transport path 45 was actually examined. The volume of the plug in the first plug transport path 43, the interval, depends on the ratio of the flow rate V air units of time a gas (air) in the flow rate V liquid and gas transport passage 42 of the unit time of the titrant in the titrant transport path 41 Therefore , the flow volume ratio V air / V liquid was changed, and the volume distribution (standard deviation) of the flowing plug was examined in the first plug transport path 43 and the second plug transport path 45. FIG. 5 shows the measurement results. Here, the standard deviation is a value normalized by an average value. From this result, the standard deviation of the volume of the plug is about half that of the first plug transport path 43 in the second plug transport path 45 regardless of the flow rate ratio, and is as small as 10% or less. That is, this is a preferable state for titration.
 この第2プラグ輸送路45における標準偏差が最も小さくなったのは、Vair=50μl/min、Vliquid=0.8μl/min(Vair/Vliquid=63)の場合であった。 The standard deviation in the second plug transport path 45 was the smallest when V air = 50 μl / min and V liquid = 0.8 μl / min (V air / V liquid = 63).
 また、第2プラグ輸送路45におけるプラグの体積も上記の流量比に依存する。例えば、Vair/Vliquid=200のときの体積は0.154μlであり、Vair/Vliquid=63のときの体積は0.196μlと、共に微量であった。滴定を精密に行うためには、この体積は小さいことが好ましいため、以降の実験ではVair/Vliquid=200とした。 Further, the volume of the plug in the second plug transport path 45 also depends on the above flow rate ratio. For example, the volume when V air / V liquid = 200 was 0.154 μl, and the volume when V air / V liquid = 63 was 0.196 μl, both of which were very small. In order to perform the titration accurately, it is preferable that the volume is small. Therefore, in the subsequent experiments, V air / V liquid = 200.
 図6は、この条件におけるプラグ体積の度数分布(平均値0.154μl)である。平均値を中心とした鋭い分布をしていることが確認できる。実際にこの条件で、反応槽20における被滴定試料を塩酸(HCl)、指示薬をフェノールフタレインとして、滴定実験を行った。図7は、この際の注入プラグ数と反応槽20中の色指数との関係(滴定特性)を調べた結果である。色指数がプラグが注入されるに従って徐々に変化することが確認できる。このため、この滴定装置10を用いて滴定を行うことが充分可能であることがわかる。 FIG. 6 is a frequency distribution (average value 0.154 μl) of the plug volume under these conditions. It can be confirmed that the distribution is sharp with the average value as the center. Actually, a titration experiment was performed under these conditions using a sample to be titrated in the reaction tank 20 as hydrochloric acid (HCl) and an indicator as phenolphthalein. FIG. 7 shows the result of examining the relationship (titration characteristics) between the number of injection plugs and the color index in the reaction tank 20 at this time. It can be seen that the color index gradually changes as the plug is injected. For this reason, it turns out that it can fully perform titration using this titration apparatus 10.
(第2の実施の形態:米検査方法)
 こうした小型の滴定装置10は、微量の被滴定試料に対して滴定を行う場合に特に好適に用いられる。この使用例として、米の鮮度検査がある。この際、米を一粒毎に評価することが可能である。米の鮮度を評価する方法として、米粒を粉砕した水から抽出した液のpHを測定するという方法が知られている。
(Second embodiment: rice inspection method)
Such a small titration apparatus 10 is particularly preferably used when titrating a very small amount of a sample to be titrated. An example of this use is rice freshness inspection. At this time, the rice can be evaluated for each grain. As a method for evaluating the freshness of rice, a method of measuring the pH of a liquid extracted from water obtained by pulverizing rice grains is known.
 米に含まれる脂質は、米粒に含まれる酵素(リパーゼ)によって加水分解され、脂肪酸となる。このため、鮮度の低い(古い)米ほど多くの脂肪酸が生成されている。上記の方法においては、この脂肪酸の発生量によるpHが判定される。すなわち、pHが低い場合ほど脂肪酸が多く、鮮度が低いと判定される。 Lipids contained in rice are hydrolyzed by enzymes (lipases) contained in the rice grains to become fatty acids. For this reason, the less fresh (old) rice produces more fatty acids. In the above method, the pH based on the amount of fatty acid generated is determined. That is, it is determined that the lower the pH, the more fatty acid and the lower the freshness.
 実際に上記の滴定装置10を用いて、この検査を行った。まず、被検査試料である米粒は粉砕され、無水エタノールで脂肪酸が抽出された。この抽出液0.4μlと、指示薬となる1%フェノールフタレイン溶液0.1μlとが反応槽20中で混合され、被滴定試料とされた。滴定剤としては、10mMのKOH溶液が用いられた。 Actually, the above-described titration apparatus 10 was used for this inspection. First, rice grains as the sample to be inspected were pulverized, and fatty acids were extracted with absolute ethanol. 0.4 μl of this extract and 0.1 μl of 1% phenolphthalein solution serving as an indicator were mixed in the reaction vessel 20 to obtain a sample to be titrated. A 10 mM KOH solution was used as the titrant.
 収穫年が(1)2005年、(2)2006年、(3)2009年、(4)2010年、の4種類の同一銘柄の米を被検査試料として、上記の方法で滴定を行った場合の滴定特性が図8である。滴定特性が(1)~(4)で明確に異なっていることが明らかである。鮮度の高い(3)(4)は少ない注入プラグ数で敏感に色が変化しており、これは脂肪酸の発生量が少ないことに対応している。これらよりも鮮度の低い(2)においては、脂肪酸の存在のために色の変化が(3)(4)よりも遅れて現れ、最も鮮度の低い(1)においては、注入プラグ数が14となってもまだ大きな色変化は見えていない。すなわち、鮮度の違いによる滴定特性の違いを観測することができる。 When titration is performed by the above method using four types of rice with the same year of harvest (1) 2005, (2) 2006, (3) 2009, and (4) 2010. The titration characteristics are shown in FIG. It is clear that the titration characteristics are clearly different between (1) to (4). The high freshness (3) and (4) change the color sensitively with a small number of injection plugs, which corresponds to the small amount of fatty acid generated. In (2) where the freshness is lower than these, the color change appears later than (3) and (4) due to the presence of fatty acid, and in the lowest freshness (1), the number of injection plugs is 14 Even now, no major color change has been seen. That is, a difference in titration characteristics due to a difference in freshness can be observed.
 このように、上記の滴定装置10を用いて、米の鮮度を検査することが可能である。すなわち、この滴定装置10を用いて、微量の被滴定試料に対して滴定を精密に行うことが可能である。また、この滴定装置10は小型であるため、これを携帯することも容易である。このため、任意の場所で微量の被滴定試料に対して精密に滴定を行うことができる。 Thus, it is possible to inspect the freshness of rice using the titration apparatus 10 described above. That is, using this titration apparatus 10, it is possible to precisely perform titration on a very small amount of sample to be titrated. Moreover, since this titration apparatus 10 is small, it is easy to carry it. For this reason, it is possible to precisely titrate a minute amount of the sample to be titrated at an arbitrary place.
 なお、上記においては、米の鮮度を調べるために上記の滴定装置を用いた例について説明したが、同様に被滴定試料が微量となる場合に、上記の滴定装置が有効であることは明らかである。また、滴定装置を携帯して任意の場所で滴定を行うことが必要である場合において、上記の滴定装置が有効であることも明らかである。このため、米以外の食品の検査においても、例えばそのpHがその鮮度に関わるようなものであれば、同様にこの滴定装置を用いて鮮度を調べることができることは明らかである。pH以外の指針が関わる場合であっても、滴定がその検査に有効である場合には同様である。また、医療における検査等においても有効であることは明らかである。 In the above description, the example using the titration apparatus to examine the freshness of rice has been described. However, it is obvious that the titration apparatus is effective when the amount of the titrated sample is small. is there. It is also clear that the above-described titration apparatus is effective when it is necessary to carry the titration apparatus at any place with the titration apparatus. For this reason, in the inspection of foods other than rice, for example, if the pH is related to the freshness, it is obvious that the freshness can be similarly examined using this titration apparatus. The same applies when titration is effective for the inspection, even when guidelines other than pH are involved. It is also clear that it is effective in medical examinations.
10 滴定装置
11 基板
20 反応槽
30 樹脂層
41 滴定剤輸送路
42 気体輸送路
43 第1プラグ輸送路
44 体積制限部
45 第2プラグ輸送路
50 滴定剤
51、52、71~73、81 プラグ
61、62 シリコーンチューブ
DESCRIPTION OF SYMBOLS 10 Titrating apparatus 11 Substrate 20 Reaction tank 30 Resin layer 41 Titrant transport path 42 Gas transport path 43 First plug transport path 44 Volume restricting part 45 Second plug transport path 50 Titrant 51, 52, 71 to 73, 81 Plug 61 62 Silicone tube

Claims (7)

  1.  基板上に接合された樹脂層中に形成された反応槽に被滴定試料が投入され、当該被滴定試料に対して、滴定剤の塊であるプラグを複数回にわたり注入して滴定を行う滴定装置であって、
     前記滴定剤が注入される滴定剤輸送路と、
     気体が注入される気体輸送路と、
     前記滴定剤輸送路と前記気体輸送路とが合流されることによって形成された前記プラグを前記反応層側に向かって流す第1プラグ輸送路と、
     当該第1プラグ輸送路の下流側に設けられ、流れ方向に垂直な断面積が前記第1プラグ輸送路よりも大きく、複数の前記プラグを同時に収容することが可能な体積制限部と、
     流れ方向に垂直な断面積が前記第1プラグ輸送路よりも大きくかつ前記体積制限部よりも小さく、前記体積制限部で融合された複数の前記プラグを前記反応槽まで導入する第2プラグ輸送路と、
     が、前記基板と前記樹脂層との界面に形成されたことを特徴とする滴定装置。
    A titration apparatus in which a sample to be titrated is placed in a reaction tank formed in a resin layer bonded on a substrate, and a titration agent plug is injected into the sample to be titrated multiple times to perform titration. Because
    A titrant transport path through which the titrant is injected;
    A gas transport path through which gas is injected;
    A first plug transport path for flowing the plug formed by joining the titrant transport path and the gas transport path toward the reaction layer;
    A volume limiting portion provided on the downstream side of the first plug transport path and having a cross-sectional area perpendicular to the flow direction larger than that of the first plug transport path and capable of simultaneously accommodating a plurality of the plugs;
    A second plug transport path that has a cross-sectional area perpendicular to the flow direction larger than the first plug transport path and smaller than the volume restricting section, and introduces the plurality of plugs fused in the volume restricting section to the reaction tank. When,
    Formed at the interface between the substrate and the resin layer.
  2.  前記樹脂層は透明な樹脂材料で構成されたことを特徴とする請求項1に記載の滴定装置。 The titration apparatus according to claim 1, wherein the resin layer is made of a transparent resin material.
  3.  前記基板はガラスで構成されたことを特徴とする請求項1又は2に記載の滴定装置。 The titration apparatus according to claim 1 or 2, wherein the substrate is made of glass.
  4.  前記滴定剤輸送路、前記気体輸送路、前記第1プラグ輸送路、前記体積制限部、及び前記第2プラグ輸送路を構成する溝が、前記樹脂層における前記基板側の面に形成されたことを特徴とする請求項1から請求項3までのいずれか1項に記載の滴定装置。 Grooves forming the titrant transport path, the gas transport path, the first plug transport path, the volume restricting portion, and the second plug transport path are formed on the surface of the resin layer on the substrate side. The titration apparatus according to any one of claims 1 to 3, wherein
  5.  前記樹脂層がポリジメチルシロキサン(PDMS)で構成されたことを特徴とする請求項4に記載の滴定装置。 The titration apparatus according to claim 4, wherein the resin layer is composed of polydimethylsiloxane (PDMS).
  6.  前記溝は鋳型によって形成されたことを特徴とする請求項5に記載の滴定装置。 The titration apparatus according to claim 5, wherein the groove is formed by a mold.
  7.  請求項1から請求項6までのいずれか1項に記載の滴定装置を用いて米の鮮度を検査する米検査方法であって、
     米に含まれる脂肪酸を抽出した液を前記反応槽に投入し、前記滴定剤としてアルカリ溶液を用いて滴定を行うことを特徴とする米検査方法。
    A rice inspection method for inspecting the freshness of rice using the titration device according to any one of claims 1 to 6,
    A rice inspection method, wherein a liquid obtained by extracting fatty acids contained in rice is introduced into the reaction vessel, and titration is performed using an alkaline solution as the titrant.
PCT/JP2012/061193 2011-05-20 2012-04-26 Titration device and rice inspection method using same WO2012160941A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013516266A JPWO2012160941A1 (en) 2011-05-20 2012-04-26 Titration device and rice inspection method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011113570 2011-05-20
JP2011-113570 2011-05-20

Publications (1)

Publication Number Publication Date
WO2012160941A1 true WO2012160941A1 (en) 2012-11-29

Family

ID=47217024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061193 WO2012160941A1 (en) 2011-05-20 2012-04-26 Titration device and rice inspection method using same

Country Status (2)

Country Link
JP (1) JPWO2012160941A1 (en)
WO (1) WO2012160941A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522973A (en) * 2001-03-16 2004-07-29 アクゾ ノーベル エヌ.ブイ. Continuous flow titration
JP2005062186A (en) * 2003-08-12 2005-03-10 Hewlett-Packard Development Co Lp Microfluid titration apparatus
JP2007248233A (en) * 2006-03-15 2007-09-27 Pentax Corp Microchip
JP2010216984A (en) * 2009-03-17 2010-09-30 Seiko Epson Corp Biological sample reaction container, biological sample charging device, biological sample quantifying device, and biological sample reaction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522973A (en) * 2001-03-16 2004-07-29 アクゾ ノーベル エヌ.ブイ. Continuous flow titration
JP2005062186A (en) * 2003-08-12 2005-03-10 Hewlett-Packard Development Co Lp Microfluid titration apparatus
JP2007248233A (en) * 2006-03-15 2007-09-27 Pentax Corp Microchip
JP2010216984A (en) * 2009-03-17 2010-09-30 Seiko Epson Corp Biological sample reaction container, biological sample charging device, biological sample quantifying device, and biological sample reaction method

Also Published As

Publication number Publication date
JPWO2012160941A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
CN103402641B (en) For processing liquid or the apparatus and method of material based on liquid
Chiu et al. Universally applicable three-dimensional hydrodynamic microfluidic flow focusing
US10222314B2 (en) Flow channel device, complex permittivity measuring apparatus, and dielectric cytometry system
US8490502B2 (en) Liquid sample analyzer
JP5442010B2 (en) Method and apparatus for measuring flow rate of liquid flowing in fluid channel
US8646316B2 (en) Liquid sample quantity determiner
Shimizu et al. Functionalization-free microfluidic Electronic tongue based on a single response
US9884476B2 (en) Method for manufacture of at least one component of a field device
CN104515765A (en) Microfluidic surface-enhanced Raman scattering transparent device structure and preparation method thereof
JP5053810B2 (en) Fine particle counter and fine particle counter chip
Haghayegh et al. Immuno-biosensor on a chip: a self-powered microfluidic-based electrochemical biosensing platform for point-of-care quantification of proteins
US10114032B2 (en) Blood coagulation test method
JP2003302330A (en) Planar flow cell device
WO2012160941A1 (en) Titration device and rice inspection method using same
US20030013200A1 (en) Liquid sample take-up device
KR101867187B1 (en) Calibration method for surface plasmon resonnance sensor signal
CN105699613B (en) Water quality monitoring system
KR101881228B1 (en) Method for testing surface plasmon resonance sensor
CN105699138A (en) Fluid bubble removing device and water quality monitoring system
CN107661784A (en) After a kind of quantitative shunting be pre-stored in liquid hybrid detection micro-fluidic chip
US20150212105A1 (en) Analysis system and analysis method
CN103969302B (en) A kind of method measuring dissolved oxygen coefficient of diffusion in biological membrane
JP6585557B2 (en) Flow velocity measuring method and flow velocity measuring system
CN104160275A (en) Micro-sensor based test apparatus
CN208844091U (en) dPCR in-situ chip based on through hole structure and microfluidics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12790000

Country of ref document: EP

Kind code of ref document: A1