WO2012160728A1 - Illumination method, illumination optical device, and exposure device - Google Patents

Illumination method, illumination optical device, and exposure device Download PDF

Info

Publication number
WO2012160728A1
WO2012160728A1 PCT/JP2011/077731 JP2011077731W WO2012160728A1 WO 2012160728 A1 WO2012160728 A1 WO 2012160728A1 JP 2011077731 W JP2011077731 W JP 2011077731W WO 2012160728 A1 WO2012160728 A1 WO 2012160728A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
illumination
optical elements
optical
temperature
Prior art date
Application number
PCT/JP2011/077731
Other languages
French (fr)
Japanese (ja)
Inventor
古谷 俊輔
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2013516169A priority Critical patent/JPWO2012160728A1/en
Publication of WO2012160728A1 publication Critical patent/WO2012160728A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets

Definitions

  • the present invention relates to an illumination technique for illuminating a surface to be irradiated, an exposure technique using the illumination technique, and a device manufacturing technique using the exposure technique.
  • an exposure apparatus such as a stepper or a scanning stepper used in a lithography process for manufacturing an electronic device (microdevice) such as a semiconductor element illuminates a reticle (mask) with various illumination conditions and with a uniform illumination distribution.
  • an illumination optical device is provided.
  • the light intensity distribution on the pupil plane (surface conjugate with the exit pupil) of the illumination optical system is intensified in a circular area, an annular area, or a multipolar area, depending on the illumination conditions.
  • an intensity distribution setting optical system having a plurality of replaceable diffractive optical elements (Diffractive Optical Element) was provided.
  • an object of the present invention is to suppress fluctuations in light intensity distribution when an irradiated surface is illuminated using a plurality of optical elements capable of controlling the state of incident light.
  • an illumination method for illuminating an illuminated surface using supplied light.
  • a plurality of optical elements arranged in parallel and capable of controlling the state of light incident on each of the plurality of optical elements are set with a control amount for the state of incident light, and the plurality of optical elements are set by the supplied light.
  • the illumination method which illuminates a to-be-irradiated surface using the supplied light.
  • a plurality of optical elements each capable of controlling the state of light incident thereon are divided into a plurality of blocks each including a plurality of optical elements, an array of the plurality of blocks is stored, and the plurality of blocks For each, setting a control amount for the incident light state of the plurality of optical elements, illuminating the irradiated surface via the plurality of optical elements with the supplied light, and And correcting the control amount of the plurality of optical elements for each block.
  • an illumination optical device that illuminates the irradiated surface using light from a light source.
  • This illumination optical device is arranged in the optical path of the light from the light source, and has a spatial light modulator having a plurality of optical elements capable of controlling the state of light incident on each of the illumination optical devices, and temperature information of the plurality of optical elements.
  • the temperature detection device to be monitored and the control amount for the incident light state of the plurality of optical elements are set, and the drive amount is set based on the temperature information of the plurality of optical elements monitored by the temperature detection device. And a control system for correction.
  • the illumination optical apparatus of the present invention is provided, and the illumination An exposure apparatus that uses light from an optical device as the exposure light is provided.
  • a device manufacturing method comprising: forming a pattern of a photosensitive layer on a substrate using the exposure apparatus of the present invention; and processing the substrate on which the pattern is formed. Is provided.
  • the control amount for the light incident on the plurality of optical elements is corrected for each optical element or for each of the divided blocks. Yes.
  • the control amount for the light incident on the plurality of optical elements is corrected for each optical element or for each of the divided blocks.
  • FIG. 2A is an enlarged perspective view showing a part of the mirror element array of the spatial light modulator in FIG. 1
  • FIG. 2B is a perspective view showing a drive mechanism of one mirror element in FIG.
  • It is the figure which notched a part which shows the pupil monitor in FIG. (A) is an enlarged view showing the mirror element when the temperature is low, (B) is an enlarged view showing the mirror element when the temperature is high, and (C) shows the relationship between the temperature of the mirror element, the drive signal, and the tilt angle.
  • FIG. 2A is an enlarged perspective view showing a part of the mirror element array of the spatial light modulator in FIG. 1
  • FIG. 2B is a perspective view showing a drive mechanism of one mirror element in FIG.
  • It is the figure which notched a part which shows the pupil monitor in FIG. (A) is an enlarged view showing the mirror element when the temperature is low
  • (B) is an enlarged view showing the mirror element when the temperature is high
  • (C) shows the relationship between the temperature of
  • (A) is a figure which shows the pupil shape when the temperature of a mirror element is low
  • (B) is a figure which shows the pupil shape when the temperature of a mirror element is high.
  • (A) is a diagram showing a state in which the temperature of a plurality of mirror elements is measured before the start of exposure
  • (B) is a diagram showing an image of a plurality of mirror elements including the mirror element of FIG.
  • FIG. 1 Is a diagram showing a state in which the temperatures of a plurality of mirror elements are measured after the start of exposure
  • (D) is a diagram showing images of a plurality of mirror elements including the mirror elements of FIG.
  • (A) is an enlarged view showing a part of a mirror element array divided into a plurality of blocks
  • (B) is an enlarged view showing a part of a spatial light modulator of a modification.
  • FIG. 1 shows a schematic configuration of an exposure apparatus EX according to the present embodiment.
  • the exposure apparatus EX is, for example, a scanning exposure type exposure apparatus (projection exposure apparatus) composed of a scanning stepper (scanner).
  • the exposure apparatus EX includes an illumination apparatus 8 that illuminates a reticle surface Ra, which is a pattern surface of a reticle R (mask), with exposure illumination light (exposure light) IL.
  • the illumination device 8 includes a light source 10 that generates illumination light IL, an illumination optical system ILS that illuminates the reticle surface Ra with the illumination light IL from the light source 10, and an illumination control that controls the operation of optical members in the illumination optical system ILS. And a storage device 33 connected to the illumination control unit 36.
  • the exposure apparatus EX further includes a reticle stage RST that moves the reticle R, a projection optical system PL that projects an image of the pattern of the reticle R onto the surface of the wafer W (substrate), a wafer stage WST that moves the wafer W,
  • a main control system 35 composed of a computer that comprehensively controls the operation of the entire apparatus and various control systems are provided.
  • the Z axis is set in parallel to the optical axis AX of the projection optical system PL
  • the X axis is set in a direction parallel to the paper surface of FIG. 1 in a plane perpendicular to the Z axis
  • the Y axis is set in a direction perpendicular to the paper surface of FIG.
  • An explanation will be given by setting an axis.
  • the scanning direction of the reticle R and the wafer W during exposure is a direction parallel to the Y axis (Y direction).
  • the rotational directions (inclination directions) around the axes parallel to the X axis, the Y axis, and the Z axis will be described as the ⁇ x direction, the ⁇ y direction, and the ⁇ z direction.
  • an ArF excimer laser light source that emits a pulsed laser beam of a linearly polarized light having a wavelength of 193 nm is used.
  • a KrF excimer laser light source that supplies laser light having a wavelength of 248 nm, or a harmonic generator that generates harmonics of laser light output from a solid-state laser light source (YAG laser, semiconductor laser, etc.) is also used. it can.
  • linearly polarized illumination light IL composed of laser light emitted from a light source 10 controlled by a power supply unit (not shown) is used to adjust a transmission optical system including a beam expander 11, a polarization direction, and a polarization state.
  • a transmission optical system including a beam expander 11, a polarization direction, and a polarization state.
  • a polarizing optical system 12 and a mirror 13 for bending an optical path a plurality of minute mirror elements 16 having variable inclination angles around two orthogonal axes of a spatial light modulator (SLM) 14.
  • SLM 14 spatial light modulator
  • the spatial light modulator 14 has an array of a large number of mirror elements 16 and a drive substrate portion 15 that supports and drives each mirror element 16. The tilt angle of each mirror element 16 is controlled by the SLM control system 17.
  • FIG. 2A is an enlarged perspective view showing a part of the SLM 14.
  • an array of a large number of mirror elements 16 arranged close to each other at a constant pitch in the Y direction and the Z direction is supported on the surface of the drive substrate portion 15 of the SLM 14.
  • the drive mechanism of one mirror element 16 includes, as an example, a hinge member 43 that supports the mirror element 16 via a column 41, a support substrate 44, and a hinge member on the support substrate 44.
  • the four support members 42 supporting the support 43 and the four electrodes 45A, 45B, 45C, 45D formed on the support substrate 44 are provided.
  • the electrostatic force acting between the electrodes is controlled by controlling the potential difference between the back surface of the mirror element 16 and the electrodes 45A to 45D, so that the mirror element 16 is flexibly supported via the hinge member 43.
  • the support post 41 can be swung and inclined. Thereby, the inclination angle around two orthogonal axes of the reflecting surface of the mirror element 16 fixed to the support column 41 can be continuously controlled within a predetermined variable range.
  • the mirror element 16 is a substantially square plane mirror, the shape thereof may be an arbitrary shape such as a rectangle.
  • the SLM 14 forms a predetermined light intensity distribution on an incident surface 25I of a fly-eye lens 25 described later via a large number of mirror elements 16 according to illumination conditions.
  • the SLM 14 reflects the illumination light IL and forms a light intensity distribution that increases in intensity in the annular region on the incident surface 25I.
  • a light intensity distribution having a large intensity is formed in a circular region, and during dipole or quadrupole illumination, a light intensity distribution having a large intensity is formed in two or four regions.
  • the main control system 35 supplies information on the illumination conditions to the illumination control unit 36, and the illumination control unit 36 controls the operation of the SLM 14 via the SLM control system 17 in response thereto.
  • the illumination light IL reflected by the many mirror elements 16 of the SLM 14 enters the incident optical system 18 that converts the illumination light IL into parallel light along the optical axis AXI of the illumination optical system ILS.
  • the incident optical system 18 also has a function of forming a light intensity distribution formed on the incident surface 25I on a surface between the incident surface 25I and the incident optical system 18.
  • a part of the illumination light IL that has passed through the incident optical system 18 is reflected by the beam splitter 21, and the reflected (separated) light beam enters the integrator sensor 23 formed of a photoelectric sensor via the condenser lens 22.
  • the detection signal of the integrator sensor 23 is supplied to an integration unit 40 that is a part of the lighting device 8, and the integration unit 40 performs a predetermined calculation on the detection signal and integrates the irradiation energy of the illumination light IL (integration). Light intensity).
  • the accumulated energy is supplied to the illumination control unit 36.
  • the beam splitter 21 for supplying the integrator sensor 23 with the light beam separated from the illumination light IL can be arranged at an arbitrary position on the illumination optical path.
  • the illumination light IL transmitted through the beam splitter 21 is incident on the incident surface 25I of the fly-eye lens 25 through the relay optical system 24 including the first lens system 24a and the second lens system 24b.
  • the fly-eye lens 25 has a large number of lens elements arranged in close contact with each other in the Z direction and the Y direction, and the exit surface of the fly-eye lens 25 is the pupil plane of the illumination optical system ILS (hereinafter referred to as the illumination pupil plane). ) IPP (surface conjugate with the exit pupil).
  • a surface light source including a large number of secondary light sources (light source images) is formed on the exit surface (illumination pupil plane IPP) of the fly-eye lens 25 by wavefront division.
  • the fly-eye lens 25 Since the fly-eye lens 25 has a large number of optical systems arranged in parallel, the global light intensity distribution on the entrance surface 25I is directly transmitted to the illumination pupil plane IPP which is the exit surface. In other words, there is a high correlation between the global light intensity distribution formed on the incident surface 25I and the global light intensity distribution of the entire secondary light source.
  • the incident surface 25I is a surface equivalent to the illumination pupil plane IPP, and is surrounded by an arbitrary light intensity distribution shape of the illumination light IL formed on the incident surface 25I (a contour line where the light intensity becomes a predetermined level). The shape of the region) becomes the pupil shape that is the shape of the light intensity distribution on the illumination pupil plane IPP as it is.
  • the incident surface 25I is optically almost conjugate with the reticle surface.
  • a microlens array may be used instead of the fly-eye lens 25.
  • the fly eye lens for example, a cylindrical micro fly eye lens disclosed in US Pat. No. 6,913,373 may be used.
  • Illumination light IL from the surface light source formed on the illumination pupil plane IPP includes a first relay lens 28, a reticle blind (field stop) 29, a second relay lens 30, an optical path bending mirror 31, and a condenser optical system.
  • the illumination area of the reticle surface Ra is illuminated with a uniform illuminance distribution via the reference numeral 32.
  • the optical members from the beam expander 11 to the SLM 14, the incident optical system 18, the beam splitter 21, the condenser lens 22, the integrator sensor 23, the relay optical system 24, and the optical members from the fly-eye lens 25 to the condenser optical system 32 are included.
  • the illumination optical system ILS is configured.
  • Each optical member of the illumination optical system ILS is supported by a frame (not shown).
  • the illumination device 8 includes a thermo camera 20 (infrared radiation thermometer) as a non-contact type thermometer supported by a frame (not shown) so as to face an array of a large number of mirror elements 16 of the SLM 14, and a thermometer. And a temperature map creation device 34 for processing a detection signal of the camera 20.
  • the thermo camera 20 receives infrared rays emitted from all the mirror elements 16 of the SLM 14 according to the temperature, and takes images of all the mirror elements 16 by infrared rays.
  • the temperature map creation device 34 processes the detection signal from the thermo camera 20 to obtain the temperatures of all the mirror elements 16 individually, and creates a temperature map in which the positions and temperatures of the mirror elements 16 are associated with each other.
  • the created temperature map is supplied to the illumination control unit 36.
  • an arbitrary radiation temperature sensor such as an optical thermometer that detects visible light emitted from the object to be detected according to the temperature may be used.
  • any non-contact type thermometer other than the radiation temperature sensor may be used.
  • the pattern in the illumination area of the reticle R is transferred to one shot area of the wafer W via the telecentric projection optical system PL on both sides (or one side on the wafer side).
  • the image is projected onto the exposure area at a predetermined projection magnification (for example, 1/4, 1/5, etc.).
  • the illumination pupil plane IPP is conjugate with the pupil plane (a plane conjugate with the exit pupil) of the projection optical system PL.
  • the wafer W includes a wafer having a photoresist (photosensitive material) coated at a predetermined thickness on the surface of a base material such as silicon.
  • the reticle R is attracted and held on the upper surface of the reticle stage RST, and the reticle stage RST is movable on the upper surface of the reticle base (not shown) (surface parallel to the XY plane) at a constant speed in the Y direction, and at least X It is mounted so as to be movable in the direction, the Y direction, and the ⁇ z direction.
  • the two-dimensional position of the reticle stage RST is measured by a laser interferometer (not shown). Based on this measurement information, the main control system 35 receives the position and speed of the reticle stage RST via a drive system 37 including a linear motor and the like. To control.
  • wafer W is sucked and held on the upper surface of wafer stage WST via a wafer holder (not shown), and wafer stage WST is moved in the X and Y directions on the upper surface of the wafer base (not shown) (a surface parallel to the XY plane). It can move and can move at a constant speed in the Y direction.
  • the two-dimensional position of wafer stage WST is measured by a laser interferometer (not shown), and based on this measurement information, main control system 35 moves the position and speed of wafer stage WST via drive system 38 including a linear motor and the like. To control.
  • An alignment system (not shown) for aligning the reticle R and the wafer W is also provided.
  • the illumination device 8 includes a pupil monitor 60 provided on the upper part of the wafer stage WST, and a signal processing device 39 for processing an imaging signal supplied from the pupil monitor 60.
  • the pupil monitor 60 includes a case 60c fixed to the wafer stage WST, a condensing lens 60a supported in order from the projection optical system PL side in the case 60c, and a CCD or CMOS type two-dimensional.
  • An image sensor 60b The light receiving surface of the image sensor 60b is disposed on the focal plane of the condenser lens 60a.
  • the pupil monitor 60 By moving the pupil monitor 60 into the exposure area of the projection optical system PL, the light receiving surface of the image sensor 60b and the illumination pupil plane IPP in FIG. 1 become conjugate.
  • a plain glass substrate is loaded on the reticle stage RST instead of the reticle R, the illumination light IL is generated, and the imaging signal of the imaging device 60b is processed by the signal processing device 39 to obtain the pupil shape. be able to.
  • the pupil shape information is supplied to the illumination control unit 36.
  • a detachable pupil monitor provided on the wafer stage WST or the reticle stage RST can be used.
  • an imaging unit having a photoelectric conversion surface arranged at a position optically conjugate with the exit pupil position of the illumination optical system is provided, and the illumination optical system
  • a pupil monitor system that monitors the pupil intensity distribution (pupil intensity distribution formed at the exit pupil position of the illumination optical system by the light incident on each point) for each point on the irradiated surface may be used.
  • a pupil monitor system that monitors the pupil intensity distribution (pupil intensity distribution formed at the exit pupil position of the illumination optical system by the light incident on each point) for each point on the irradiated surface.
  • the main control system 35 selects an illumination condition (pupil shape) according to the pattern of the reticle R, and sets the selected illumination condition in the illumination control unit 36.
  • the illumination control unit 36 individually controls the inclination angles around the two axes of the mirror elements 16 of the SLM 14 via the SLM control system 17 according to the illumination conditions. Subsequently, the wafer W is moved to the scanning start position by the movement (step movement) of the wafer stage WST.
  • the light source 10 starts to emit light, and the wafer R is exposed with an image of the pattern of the reticle R by the projection optical system PL, and the projection magnification of the reticle R and the wafer W is increased through the reticle stage RST and the wafer stage WST.
  • the pattern image of the reticle R is scanned and exposed on one shot area of the wafer W.
  • the image of the pattern of the reticle R is exposed on the entire shot area of the wafer W by the step-and-scan operation in which the step movement of the wafer W and the scanning exposure are repeated.
  • the X direction in FIG. 1 can be used as the scanning direction.
  • the target pupil shape on the illumination pupil plane IPP is an annular region 51 (region where the light intensity becomes a predetermined level or more) having an inner radius r1 and an outer radius r2, as shown in FIG. To do.
  • the inclination angle around the first axis of the two orthogonal axes of the mirror element 16 with the SLM 14 immediately after the start of exposure is ⁇ ty1, and the reflection angle of the illumination light IL reflected by the mirror element 16 is ⁇ 1.
  • the temperature of the mirror element 16 and its drive mechanism gradually increases due to the irradiation energy of the illumination light IL, and the rigidity of the drive mechanism (particularly the hinge member 43 in FIG. 2B) decreases. . Therefore, if the drive signal (voltage) for driving the mirror element 16 is the same, the tilt angle ⁇ ty2 of the mirror element 16 becomes larger than ⁇ ty1 and the reflection of the illumination light IL as shown in FIG. 4B.
  • the angle ⁇ 2 is also larger than ⁇ 1.
  • the tilt angle around the second axis of the two orthogonal axes of the mirror element 16 gradually increases, and the reflection angle of the reflected light also increases.
  • the pupil shape becomes an annular region 51A in which the inner radius r1A and the outer radius r2A are larger than the previous radii r1 and r2, respectively. Therefore, when the exposure is continued, if the control signal for the mirror element 16 is set to the same value, the temperature of the mirror element 16 and its drive mechanism rises, and the pupil shape gradually increases. Therefore, in the present embodiment, in order to suppress the variation of the pupil shape during the exposure, the temperature of each mirror element 16 of the SLM 14 is measured by the thermo camera 20 during the exposure, and based on the measurement result, each mirror element 16 is measured. Correct the drive signal.
  • the drive signal is a signal that defines an inclination angle around the first axis of the two orthogonal axes of the mirror element 16.
  • the correction amount of the drive signal that defines the tilt angle of the mirror element 16 around the second axis is also obtained in the same manner.
  • the illumination control unit 36 supplies the SLM control system 17 with information on the inclination angle (angle) of each mirror element 16 for annular illumination.
  • the SLM control system 17 sets a drive signal DS (voltage (V)) corresponding to the tilt angle to the drive mechanism of each mirror element 16 of the SLM 14.
  • the temperature T of each mirror element 16 before the start of exposure is set to Ta which is the same as the temperature of the atmosphere, for example.
  • the relationship between the drive signal DS (V) of each mirror element 16 and the corresponding inclination angle ⁇ ty is represented by a straight line C1.
  • Information on the coefficient of the straight line C1 is stored in the storage device 33. For example, in order to set the tilt angle of a certain mirror element 16 to ⁇ ty1, the drive signal is set to DS1.
  • next step 104 for example, a transparent glass substrate is loaded on the reticle stage RST, and the wafer stage WST is driven to move the light receiving surface of the pupil monitor 60 into the exposure area of the projection optical system PL.
  • emission of the illumination light IL from the light source 10 is started.
  • next step 108 an image of the array of all the mirror elements 16 of the SLM 14 is picked up by the thermo camera 20, and individual temperatures (temperature maps) of all the mirror elements 16 are obtained by the temperature map creation device 34, and the obtained temperature. The map is supplied to the lighting control unit 36.
  • the pupil monitor 60 captures an image of the light intensity distribution on the illumination pupil plane IPP, the pupil shape is obtained by the signal processing device 39, and the obtained pupil shape information is supplied to the illumination control unit 36.
  • steps 108 and 110 are preferably executed substantially simultaneously.
  • next step 112 it is confirmed whether or not a predetermined time (for example, about the exposure time of one wafer) has elapsed. If the predetermined time has elapsed, the process proceeds to step 114. When the measurement is continued in step 114, the process returns to step 108, the individual temperatures of all the mirror elements 16 of the SLM 14 are obtained using the thermo camera 20, and the pupil shape is obtained using the pupil monitor 60 in the next step 110. Ask for. Then, Step 108 and Step 110 are repeated until the temperature of the mirror element 16 reaches about the saturation temperature.
  • a predetermined time for example, about the exposure time of one wafer
  • step 118 the illumination control unit 36 uses the temperature of each mirror element 16 obtained in step 108 and the pupil shape obtained in step 110 to correspond to the tilt angle ⁇ ty of each mirror element 16.
  • a correction amount for the temperature change of the drive signal DS is calculated.
  • the temperature T of a certain mirror element 16 gradually increases from the initial value Ta to Tb and Tc.
  • the straight line C1 representing the relationship between the drive signal DS and the tilt angle ⁇ ty has temperatures Tb and Tc.
  • the inclination increases as shown by straight lines C2 and C3.
  • the illumination control unit 36 can obtain the straight lines C2 and C3 by obtaining the inclination angles ⁇ ty2 and ⁇ ty3 corresponding to the temperatures Tb and Tc. .
  • the straight lines C2 and C3 are obtained, when the temperature T of the mirror element 16 gradually changes from Ta to Tb and Tc, the drive signal DS for maintaining the tilt angle ⁇ ty of the mirror element 16 so as not to change is maintained.
  • Correction amounts ( ⁇ ) and ( ⁇ ) can be obtained. Therefore, the correction amount ⁇ DS of the drive signal DS can be obtained corresponding to the drive signal DS and the temperature T of the mirror element 16.
  • the correction amount ⁇ DS is stored in the storage device 33 in the form of a correction map (or table) for the driving signal DS that changes by a predetermined amount and the temperature T that changes by a predetermined amount, for example. Thereafter, when the correction amount ⁇ DS is obtained according to the drive signal DS and the temperature T of the mirror element 16, for example, interpolation of data in the map may be performed. Thereby, when the temperature of each mirror element 16 is an arbitrary temperature, the correction amount of the drive signal of each mirror element 16 can be obtained using the correction map.
  • step 120 of FIG. 7 the reticle R is loaded onto the reticle stage RST of FIG.
  • step 122 the main control system 35 reads information on the illumination conditions of the reticle R from, for example, an exposure data file and outputs the information to the illumination control unit 36.
  • the illumination control unit 36 sets the tilt angle (angle) of each mirror element 16 by setting a drive signal for each mirror element 16 of the SLM 14 via the SLM control system 17 according to the illumination condition.
  • the wafer W coated with, for example, the first photoresist of one lot is loaded onto the wafer stage WST.
  • an image of the array of all the mirror elements 16 of the SLM 14 is taken by the thermo camera 20, and individual temperatures (temperature maps) of all the mirror elements 16 are obtained by the temperature map creation device 34. The map is supplied to the lighting control unit 36.
  • FIG. 8A shows a state in which an image of a part of the mirror elements 16 of the mirror element 16 is picked up using the thermo camera 20 before the exposure of the leading wafer W is started
  • FIG. These show a part of image obtained using the image pick-up signal of thermo camera 20 of Drawing 8 (A).
  • the Y axis and the Z axis are set along two orthogonal arrangement directions of the image 16P of each mirror element 16 in the image 14P of the array of mirror elements 16 of the SLM 14.
  • the position of the image 16P of the i-th mirror element 16P in the Y direction and the j-th (i, j is an integer of 1 or more) in the Z direction is represented by P (i, j), and the image at the position P (i, j).
  • the temperature T (i, j) obtained from 16P is set as the actual temperature of the corresponding mirror element 16.
  • the drive signal of the mirror element 16 corresponding to the position P (i, j) is DS (i, j).
  • the drive signal actually includes two signals in order to set an inclination angle around two orthogonal axes.
  • the illumination control unit 36 drives the drive signal from the correction map stored in the storage device 33 according to the tilt angle (drive signal corresponding thereto) of each mirror element 16 and the measured value of the temperature. And the calculated correction amount is supplied to the SLM control system 17.
  • the drive signal of each mirror element 16 is corrected by the correction amount.
  • emission of the illumination light IL from the light source 10 is started (step 130), and the reticle R is illuminated with the illumination light IL from the surface light source formed by the reflected light from the array of the many mirror elements 16 of the SLM 14. (Step 132).
  • irradiation of the reticle R and the wafer W with the illumination light IL is controlled by opening and closing the variable blind in the reticle blind 29 of FIG. Then, the pattern image of the reticle R is scanned and exposed on each shot area of the wafer W by the step-and-scan method under the illumination light IL (step 134). Next, the emission of the illumination light IL is stopped (step 136), and the wafer W is unloaded (step 138).
  • step 124 the next wafer is loaded on the wafer stage WST, and the temperature of each mirror element 16 is measured in the next step 126.
  • the driving signal of each mirror element 16 is corrected based on the measured value of the temperature.
  • FIG. 8C shows a state in which an image of a part of the mirror elements 16 is picked up using the thermo camera 20 before the exposure of the next wafer is started
  • FIG. 8D shows the state shown in FIG. A part of an image obtained by using the imaging signal of the thermo camera 20 of FIG.
  • the density of the mirror element image 16P indicates that the temperature is changing.
  • the illumination controller 36 determines the temperature T (i, j) and the drive signal for the mirror element 16.
  • a correction amount ⁇ DS (i, j) is obtained using a correction map stored in the storage device 33 and supplied to the SLM control system 17.
  • the correction signal ⁇ DS (i, j) is used to correct the drive signal DS (i, j) of the corresponding mirror element 16 with reference to the initial value, for example.
  • steps 130 to 134 the next wafer is exposed (steps 130 to 134), the emission of the illumination light IL is stopped, and the wafer is unloaded (steps 136 and 138).
  • the operations in steps 124 to 138 are repeated for all the wafers in one lot.
  • the exposure is completed.
  • the illumination device 8 of the present embodiment includes the illumination optical system ILS, and the illumination device 8 illuminates the reticle surface Ra with the illumination light IL from the light source 10.
  • the illumination device 8 includes a plurality of mirror elements 16 that are arranged in the optical path of the illumination light IL and that can control the inclination angles around two orthogonal axes in order to control the reflection angle of light incident on each of the illumination devices.
  • the SLM 14, the thermo camera 20 that monitors the temperature of each mirror element 16, and a drive signal (control amount) for controlling the reflection angle of the incident light of the plurality of mirror elements 16 are set and monitored by the thermo camera 20.
  • the illumination control unit 36 and the SLM control system 17 that correct the drive signal based on the temperature of the plurality of mirror elements 16 are provided.
  • the illumination method using the illumination device 8 includes step 122 for setting a drive signal (control amount) for controlling the reflection angle of incident light with respect to the plurality of mirror elements 16 of the SLM 14, and illumination light from the light source 10. Illuminating the reticle surface Ra through the plurality of mirror elements 16 with IL, step 126 for monitoring the temperatures of the plurality of mirror elements 16, and drive signals for the plurality of mirror elements 16 based on the monitoring results of the temperatures And step 128 for correcting.
  • the angle variation of the reflecting surface of the mirror element 16 due to the temperature change is based on the measured value of the temperature of each mirror element 16.
  • the drive signal of each mirror element 16 is corrected so as to suppress this. Therefore, the light intensity distribution of the illumination light IL on the incident surface 25I of the fly-eye lens 25 of the illumination optical system ILS can be kept constant, and as a result, the pupil shape variation on the illumination pupil plane IPP can be suppressed.
  • the exposure apparatus EX of the present embodiment is an exposure apparatus that illuminates the pattern of the reticle R with the illumination light IL for exposure and exposes the wafer W with the illumination light IL through the pattern and the projection optical system PL.
  • the apparatus 8 is provided, and the illumination light from the illumination apparatus 8 is used as the illumination light IL. According to this exposure apparatus EX, even if the exposure is continued, the pupil shape is maintained at the target shape, so that the pattern image of the reticle R can always be exposed onto the wafer W with high accuracy.
  • the drive signal of each mirror element 16 is corrected using the measured value of the temperature of each mirror element 16 of the SLM 14, but for example, a history of temperature change of each mirror element 16 is obtained and the temperature The correction amount of the drive signal for the mirror element 16 may be changed based on the change history. That is, each mirror element 16 has a large inclination angle even with the same drive signal due to a temperature rise due to the irradiation heat of the illumination light IL. For this reason, among all the mirror elements 16, for example, in the mirror elements 16 in which the high temperature state continues for a long time due to irradiation heat, the tilt angle may change greatly even at the same temperature.
  • the illumination control unit 36 integrates the time when the temperature of each mirror element 16 exceeds a predetermined set temperature.
  • the time (temperature change history) at which each mirror element 16 is equal to or higher than the set temperature is stored in the storage device 33.
  • the amount of correction of the drive signal may be gradually increased.
  • the illumination control unit 36 sets the main control system 35 for the mirror elements 16 in which the integrated value of the time when the temperature exceeds the set temperature among the all mirror elements 16 of the SLM 14 exceeds a predetermined standard value. For example, the operator may be informed as a maintenance target. Alternatively, the maintenance priority may be set higher from the mirror element 16 having a large integrated value of the time when the temperature exceeds the set temperature. By maintenance, for example, the mirror element 16 is replaced with another mirror element 16.
  • the temperature of all the mirror elements 16 of the SLM 14 is measured using the thermo camera 20.
  • all the mirror elements 16 of the SLM 14 of FIG. 1 are divided into a plurality of blocks B (i1, j1) (i1, j1 are integers of 1 or more), and each block B (i1 , J1)
  • the temperature may be measured in units.
  • the Y-axis and the Z-axis are set along two orthogonal arrangement directions of the many mirror elements 16 of the SLM 14, and the i-th in the Y-direction and the j-th in the Z-direction (i and j are 1).
  • the position where the mirror element 16 of the above integer) is Q (i, j).
  • a plurality of blocks B are arranged in N rows in the Y direction and M columns in the Z direction (N and M are integers of 1 or more, and at least one of N and M is an integer of 2 or more).
  • the mirror element 16 is included.
  • the arrangement information of the block B (i1, j1) is stored in the storage device 33.
  • step 108 in FIG. 6 and step 126 in FIG. 7 the average temperature T (i1, j1) of the plurality of mirror elements 16 in each block B (i1, j1) is measured using the thermo camera 20.
  • step 118 of FIG. 6 the correction amount for the temperature change of the drive signal of each mirror element 16 is obtained based on the measured value of the temperature T (i1, j1).
  • the drive signal of each mirror element 16 is corrected based on the measured value of the temperature T (i1, j1).
  • the temperature of the mirror element 16 is measured by a temperature sensor made up of a non-contact type thermometer (for example, the thermo camera 20), but the temperature of the mirror element 16 is made up of a contact type thermometer. You may measure with a temperature sensor. For example, when the temperature of the plurality of mirror elements 16 of the SLM 14 is measured for each block B (i1, j1), the drive of each block B (i1, j1) is performed using a temperature measuring element as a contact-type thermometer. You may measure the temperature of the board
  • FIG. 9B shows a configuration example of the spatial light modulator provided with the temperature measuring element in this way.
  • FIG. 9B shows a part of an array of a plurality of mirrors 16 of a modified spatial light modulator 14A (hereinafter referred to as SLM 14A).
  • the array of mirror elements 16 is divided into blocks B (i1, j1) including a plurality of mirror elements 16 in the Y direction and the Z direction.
  • a temperature measuring element 52 such as a thermistor or a platinum resistor is fixed to the surface of the driving substrate unit 15 at the center of each block B (i1, j1).
  • the SLM 14A can be installed in the illumination light path instead of the SLM 14 of FIG.
  • thermometer 52 any electric thermometer including a thermocouple thermometer other than a thermistor (thermistor thermometer) or a platinum resistor (resistance thermometer), a semiconductor thermometer, or the like can be used. Furthermore, as the temperature measuring element 52, any mechanical thermometer such as a bimetal, a thermal expansion thermometer, or a magnetic thermometer can be used instead of the electric thermometer.
  • the temperature information of each block B (i1, j1) measured by the temperature measurement element 52 of the SLM 14A is supplied to the illumination control unit 36 in FIG. In this case, it is not necessary to provide the thermo camera 20 and the temperature map creation device 34.
  • the illumination control unit 36 can correct the drive signal of the mirror element 16 so that the pupil shape does not change using the measurement value of the temperature measurement element 52.
  • the drive signal is corrected for each mirror element 16 of the SLMs 14 and 14A.
  • the drive amount of all the mirror elements 16 in the block B (i1, j1) may be set to a common drive amount.
  • the temperature is measured in the block B (i1, j1), and the drive signal of the mirror element 16 is corrected with a common correction amount in units of the block B (i1, j1) based on the temperature measurement result. May be. Accordingly, even when the number of mirror elements 16 is large, control of all the mirror elements 16 is facilitated.
  • FIG. 1 A second embodiment of the present invention will be described with reference to FIG.
  • illumination is measured using the integrator sensor 23 and the integrating unit 40 in order to indirectly monitor the temperature information of the mirror element 16 of the SLM 14.
  • the integrated energy of light IL is used. Accordingly, in the present embodiment, the thermo camera 20 is not always necessary.
  • all the mirror elements 16 of the SLM 14 are arranged in a plurality of blocks B (i1, j1) (i1, j1 are integers of 1 or more) as shown in part of FIG. In other words, the drive amount of the mirror element 16 is set in units of block B (i1, j1).
  • step 150 subsequent to step 120 (loading of the reticle) in FIG. 10, the illumination control unit 36 relates to all the mirror elements 16 in the SLM 14 included in each block B (i1, j1) in FIG.
  • the arrangement information of the block diagram including the information on the position Q (i, j) of the mirror element 16 is stored in the storage device 33.
  • the illumination control unit 36 performs SLM control on the tilt angles (angles) of the mirror element 16 about the two axes for each block B (i1, j1) of the SLM 14 in accordance with the illumination conditions for the reticle R.
  • the SLM control system 17 drives each mirror element 16 with a drive signal corresponding to the tilt angle.
  • step 154 the illumination control unit 36 takes in the integrated energy ⁇ E of the illumination light IL from the integrating unit 40.
  • the illumination control unit 36 uses the relationship between the accumulated energy and the correction amount stored in the storage device 33 and the accumulated energy ⁇ E for each block B (i1, j1) of the SLM 14. Then, the correction amount of the drive signal of the mirror element 16 is obtained, and this correction amount is set in the SLM control system 17. In response to this, the SLM control system 17 corrects the drive signal of each mirror element 16 by the correction amount.
  • the illumination method of the present embodiment is an illumination method that illuminates the reticle surface Ra using the illumination light IL supplied from the light source 10 of FIG. 1, and each of the mirror elements 16 of the SLM 14 is a plurality of mirror elements.
  • step 150 for storing the arrangement of the plurality of blocks B (i1, j1), and for each of the plurality of blocks B (i1, j1), in the illumination pupil plane IPP
  • step 152 for setting the drive signals of the plurality of mirror elements 16 so as to set the pupil shape to the target shape, and the illumination light measured via the integrator sensor 23 for each of the plurality of blocks B (i1, j1)
  • step 156 of correcting the drive signals of the plurality of mirror elements 16 so that the pupil shape does not fluctuate based on the integrated energy of IL.
  • step 156 by correcting the drive signal of the mirror element 16 of the SLM 14 based on the accumulated energy, fluctuations in the pupil shape can be suppressed, and the image of the pattern of the reticle R can always be exposed on the wafer W with high accuracy.
  • the control is easy.
  • the temperature information of the mirror element 16 of the SLM 14 such as the thermo camera 20 (non-contact type thermometer) or the temperature measuring element 52 (contact type thermometer) of FIG. You may provide the temperature sensor measured for every i1, j1).
  • step 156 instead of the integrated energy ⁇ E measured via the integrator sensor 23, a plurality of blocks using the temperatures of the plurality of blocks B (i1, j1) measured by the temperature sensor. A correction amount for each B (i1, j1) may be obtained.
  • the pupil monitor 60 is used to determine the amount of change in the pupil shape, and thus the relationship between the temperature of the mirror element 16 of the SLM 14 and the tilt angle.
  • the relationship between the temperature of the mirror element 16 and the tilt angle may be obtained separately for the SLM 14 alone.
  • the operation for obtaining the correction amount of the drive signal of the mirror element 16 in FIG. 6 may be omitted.
  • the SLM 14 that can control the inclination angles around two orthogonal axes of the plurality of mirror elements 16 in order to set the light intensity distribution (light quantity distribution) on the incident surface 25I or the illumination pupil plane IPP. 14A is used.
  • the present invention can also be applied to a case where a spatial light modulator having an array of a plurality of mirror elements each capable of controlling the position of the reflecting surface in the normal direction is used instead of the SLMs 14 and 14A.
  • a spatial light modulator for example, the spatial light modulator disclosed in FIG. 1d of US Pat. No. 5,312,513 and US Pat. No. 6,885,493 may be used. it can.
  • spatial light modulators by forming a two-dimensional height distribution, an action similar to that of the diffractive surface can be given to incident light.
  • the above-mentioned spatial light modulator having a plurality of two-dimensionally arranged reflecting surfaces is disclosed in, for example, US Pat. No. 6,891,655 and US Patent Application Publication No. 2005/0095749. May be deformed according to Further, in place of the SLMs 14 and 14A, for example, when an arbitrary optical modulator including a plurality of optical elements capable of controlling the state of incident light (reflection angle, refraction angle, transmittance, etc.) is used, The invention is applicable.
  • the fly-eye lens 25 which is the wavefront division type integrator shown in FIG. 1, is used as the optical integrator.
  • the optical integrator a rod type integrator as an internal reflection type optical integrator can be used.
  • the projection optical system of the exposure apparatus may be not only a reduction system but also an equal magnification and an enlargement system.
  • the projected image may be either an inverted image or an erect image.
  • an exposure apparatus (lithography system) that forms line and space patterns on the wafer W by forming interference fringes on the wafer W.
  • two reticle patterns are synthesized on a wafer via a projection optical system, and 1 on the wafer by one scan exposure.
  • the present invention can be applied to an exposure apparatus that performs double exposure of two shot areas almost simultaneously.
  • the object on which the pattern is to be formed is not limited to the wafer, but may be another object such as a glass plate, a ceramic substrate, a film member, or a mask blank. good.
  • a so-called polarized illumination method disclosed in US Patent Application Publication No. 2006/0170901 and US Patent Application Publication No. 2007/0146676 can be applied.
  • the present invention is applied to the illumination optical system that illuminates the mask (or wafer) in the exposure apparatus.
  • the present invention is not limited to this, and an object other than the mask (or wafer) is used.
  • the present invention can also be applied to a general illumination optical system that illuminates the irradiation surface.
  • an electronic device such as a semiconductor device
  • the electronic device has a function / performance design of the device as shown in FIG. Step 221 to be performed
  • Step 222 to manufacture a mask (reticle) based on this design step
  • Step 223 to manufacture a substrate (wafer) which is a base material of the device
  • Mask exposure by the exposure apparatus EX or the exposure method of the above-described embodiment Process of exposing pattern to substrate, process of developing exposed substrate, substrate processing step 224 including heating (curing) and etching process of developed substrate, device assembly step (dicing process, bonding process, packaging process, etc.) Including the process) 225, as well as the inspection step 226, etc. It is produced through.
  • the device manufacturing method includes the steps of exposing the substrate (wafer W) through the mask pattern using the exposure apparatus EX or the exposure method of the above embodiment, and processing the exposed substrate. (I.e., developing the resist on the substrate and forming a mask layer corresponding to the mask pattern on the surface of the substrate; and processing the surface of the substrate through the mask layer (heating, etching, etc.) ) Processing step).
  • the present invention can also be applied to an immersion type exposure apparatus disclosed in, for example, US Patent Application Publication No. 2007/242247 or European Patent Application Publication No. 1420298. Furthermore, the present invention can be applied to an illumination optical apparatus that does not use a condenser optical system. Further, the present invention can also be applied to a proximity type exposure apparatus that does not use a projection optical system.
  • the present invention is not limited to the application to the manufacturing process of a semiconductor device.
  • a manufacturing process such as a liquid crystal display element and a plasma display, an imaging element (CMOS type, CCD, etc.), a micromachine, a MEMS ( Microelectromechanical systems), thin film magnetic heads, and various devices (electronic devices) such as DNA chips can be widely applied.
  • any such defining word or phrase etc. is any aspect / feature / element of one or more embodiments disclosed herein, ie, any feature, element, system, subsystem, In order to interpret the scope of the invention with respect to what the applicant has invented and claimed, whenever used to describe processing, or algorithmic steps, specific materials, etc., the following limiting Preceded by one or more or all of the phrases, i.e. "exemplarily”, “e.g.”, “as an example”, “exemplarily only”, “exemplarily only”, and / or Or read as including any one or more or all of the phrases “can do”, “may be”, “may be”, and “will be” Should.
  • any disclosed embodiment of a claim or any particular aspect / feature / element of any particular disclosed embodiment of the claim Unless otherwise expressly and specifically indicated that the applicant believes that the invention is considered to be one and only way to implement all the aspects / features / elements described in such claims Is any disclosed aspect / feature / element of any disclosed embodiment of the claimed content of this patent application, or any description of the entire embodiment, which is claimed in the claim or any aspect / feature / element of it.
  • EX ... exposure device, ILS ... illumination optical system, R ... reticle, PL ... projection optical system, W ... wafer, IPP ... illumination pupil plane, 8 ... illumination device, 10 ... light source, 14 ... spatial light modulator (SLM), 20 ... Thermo camera, 23 ... Integrator sensor, 25 ... Fly eye lens, 36 ... Illumination controller, 60 ... Pupil monitor

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A method for illuminating a reticle surface using illumination light supplied from a light source includes: setting a drive signal for defining the tilt angle of a plurality of mirror elements of a spatial optical modulator, each of the mirror elements reflecting the illumination light, and illuminating the reticle surface with the illumination light via the plurality of mirror elements; monitoring the temperature of the plurality of mirror elements using a thermo camera; and correcting the drive signal for the mirror elements on the basis of the result of monitoring the temperature. Fluctuation in the light intensity distribution can be minimized when a surface to be illuminated is illuminated using a plurality of optical elements capable of controlling the state of incident light.

Description

照明方法、照明光学装置、及び露光装置Illumination method, illumination optical apparatus, and exposure apparatus
 本発明は、被照射面を照明する照明技術、その照明技術を用いる露光技術、及びこの露光技術を用いるデバイス製造技術に関する。 The present invention relates to an illumination technique for illuminating a surface to be irradiated, an exposure technique using the illumination technique, and a device manufacturing technique using the exposure technique.
 例えば半導体素子等の電子デバイス(マイクロデバイス)を製造するためのリソグラフィー工程で使用されるステッパー又はスキャニングステッパー等の露光装置は、レチクル(マスク)を様々な照明条件で、かつ均一な照度分布で照明するために照明光学装置を備えている。従来の照明光学装置は、照明条件に応じて、照明光学系の瞳面(射出瞳と共役な面)での光強度分布を円形領域、輪帯状の領域、又は複数極の領域等で強度が大きくなる分布に設定するために、交換可能な複数の回折光学素子(Diffractive Optical Element) を有する強度分布設定光学系を備えていた。 For example, an exposure apparatus such as a stepper or a scanning stepper used in a lithography process for manufacturing an electronic device (microdevice) such as a semiconductor element illuminates a reticle (mask) with various illumination conditions and with a uniform illumination distribution. For this purpose, an illumination optical device is provided. In the conventional illumination optical device, the light intensity distribution on the pupil plane (surface conjugate with the exit pupil) of the illumination optical system is intensified in a circular area, an annular area, or a multipolar area, depending on the illumination conditions. In order to set the distribution to be larger, an intensity distribution setting optical system having a plurality of replaceable diffractive optical elements (Diffractive Optical Element) was provided.
 最近では、照明光学系の瞳面上での光強度分布の形状(以下、瞳形状という。)をレチクルのパターンに応じて様々な分布に最適化できるように、傾斜角可変の多数の微小なミラー要素を有する可動マルチミラー方式の空間光変調器(spatial light modulator)を用いる強度分布設定光学系を備えた照明光学装置も提案されている(例えば特許文献1参照)。 Recently, in order to be able to optimize the shape of the light intensity distribution on the pupil plane of the illumination optical system (hereinafter referred to as the pupil shape) to various distributions according to the reticle pattern, An illumination optical apparatus including an intensity distribution setting optical system using a movable multi-mirror spatial light modulator having a mirror element has also been proposed (see, for example, Patent Document 1).
米国特許出願公開第2003/0038225号明細書US Patent Application Publication No. 2003/0038225
 従来の空間光変調器を有する照明光学装置を使用して露光を継続すると、空間光変調器の多数のミラー要素を介して設定される瞳形状が次第に変動することが分かった。これは、空間光変調器の各ミラー要素の駆動機構の剛性がこのミラー要素に対する露光用の照明光(露光光)の照射によって変化するためであると考えられる。
 本発明は、このような事情に鑑み、入射する光の状態を制御可能な複数の光学要素を用いて被照射面を照明する場合に、光強度分布の変動を抑制することを目的とする。
It has been found that when exposure is continued using an illumination optical device having a conventional spatial light modulator, the pupil shape set via the multiple mirror elements of the spatial light modulator gradually changes. This is considered to be because the rigidity of the drive mechanism of each mirror element of the spatial light modulator is changed by irradiation of exposure illumination light (exposure light) to the mirror element.
In view of such circumstances, an object of the present invention is to suppress fluctuations in light intensity distribution when an irradiated surface is illuminated using a plurality of optical elements capable of controlling the state of incident light.
 本発明の第1の態様によれば、供給される光を用いて被照射面を照明する照明方法が提供される。この照明方法は、並列に配置されてそれぞれに入射する光の状態を制御可能な複数の光学要素のその入射する光の状態に対する制御量を設定することと、その供給される光でその複数の光学要素を介してその被照射面を照明することと、その複数の光学要素の温度情報をモニタすることと、その複数の光学要素の温度情報のモニタ結果に基づいてその複数の光学要素のその制御量を補正することと、を含むものである。 According to the first aspect of the present invention, there is provided an illumination method for illuminating an illuminated surface using supplied light. In this illumination method, a plurality of optical elements arranged in parallel and capable of controlling the state of light incident on each of the plurality of optical elements are set with a control amount for the state of incident light, and the plurality of optical elements are set by the supplied light. Illuminating the irradiated surface via the optical element; monitoring temperature information of the plurality of optical elements; and monitoring the temperature information of the plurality of optical elements based on the monitoring result of the temperature information of the plurality of optical elements. And correcting the control amount.
 また、第2の態様によれば、供給される光を用いて被照射面を照明する照明方法が提供される。この照明方法は、それぞれに入射する光の状態を制御可能な複数の光学要素をそれぞれ複数の光学要素を含む複数のブロックに分け、その複数のブロックの配列を記憶することと、その複数のブロック毎に、その複数の光学要素のその入射する光の状態に対する制御量を設定して、その供給される光でその複数の光学要素を介してその被照射面を照明することと、その複数のブロック毎にその複数の光学要素のその制御量を補正することと、を含むものである。 Moreover, according to the 2nd aspect, the illumination method which illuminates a to-be-irradiated surface using the supplied light is provided. In this illumination method, a plurality of optical elements each capable of controlling the state of light incident thereon are divided into a plurality of blocks each including a plurality of optical elements, an array of the plurality of blocks is stored, and the plurality of blocks For each, setting a control amount for the incident light state of the plurality of optical elements, illuminating the irradiated surface via the plurality of optical elements with the supplied light, and And correcting the control amount of the plurality of optical elements for each block.
 また、第3の態様によれば、光源からの光を用いて被照射面を照明する照明光学装置が提供される。この照明光学装置は、その光源からの光の光路に配置されて、それぞれに入射する光の状態を制御可能な複数の光学要素を有する空間光変調器と、その複数の光学要素の温度情報をモニタする温度検出装置と、その複数の光学要素のその入射する光の状態に対する制御量を設定するとともに、その温度検出装置でモニタされるその複数の光学要素の温度情報に基づいてその駆動量を補正する制御系と、を備えるものである。 Also, according to the third aspect, there is provided an illumination optical device that illuminates the irradiated surface using light from a light source. This illumination optical device is arranged in the optical path of the light from the light source, and has a spatial light modulator having a plurality of optical elements capable of controlling the state of light incident on each of the illumination optical devices, and temperature information of the plurality of optical elements. The temperature detection device to be monitored and the control amount for the incident light state of the plurality of optical elements are set, and the drive amount is set based on the temperature information of the plurality of optical elements monitored by the temperature detection device. And a control system for correction.
 また、第4の態様によれば、露光光でパターンを照明し、その露光光でそのパターン及び投影光学系を介して基板を露光する露光装置において、本発明の照明光学装置を備え、その照明光学装置からの光をその露光光として用いる露光装置が提供される。
 また、第5の態様によれば、本発明の露光装置を用いて基板上に感光層のパターンを形成することと、そのパターンが形成されたその基板を処理することと、を含むデバイス製造方法が提供される。
According to the fourth aspect, in the exposure apparatus that illuminates the pattern with the exposure light and exposes the substrate with the exposure light through the pattern and the projection optical system, the illumination optical apparatus of the present invention is provided, and the illumination An exposure apparatus that uses light from an optical device as the exposure light is provided.
According to a fifth aspect, there is provided a device manufacturing method comprising: forming a pattern of a photosensitive layer on a substrate using the exposure apparatus of the present invention; and processing the substrate on which the pattern is formed. Is provided.
 本発明によれば、複数の光学要素を介して被照射面を照明するときに、光学要素毎に又は複数に分けられたブロック毎に複数の光学要素の入射する光に対する制御量を補正している。このとき、例えば光学要素若しくはブロック毎の温度情報、又は入射する光の積算エネルギー等に応じてその制御量を補正することによって、複数の光学要素を用いて被照射面を照明する場合に、光強度分布の変動を抑制することができる。 According to the present invention, when illuminating the irradiated surface through a plurality of optical elements, the control amount for the light incident on the plurality of optical elements is corrected for each optical element or for each of the divided blocks. Yes. At this time, for example, when illuminating the irradiated surface using a plurality of optical elements by correcting the control amount according to temperature information for each optical element or block, or the integrated energy of incident light, etc. Variations in the intensity distribution can be suppressed.
第1の実施形態の露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the exposure apparatus of 1st Embodiment. (A)は図1中の空間光変調器のミラー要素アレイの一部を示す拡大斜視図、(B)は図2(A)中の一つのミラー要素の駆動機構を示す斜視図である。FIG. 2A is an enlarged perspective view showing a part of the mirror element array of the spatial light modulator in FIG. 1, and FIG. 2B is a perspective view showing a drive mechanism of one mirror element in FIG. 図1中の瞳モニタを示す一部を切り欠いた図である。It is the figure which notched a part which shows the pupil monitor in FIG. (A)は温度が低いときのミラー要素を示す拡大図、(B)は温度が高いときのミラー要素を示す拡大図、(C)はミラー要素の温度と駆動信号と傾斜角との関係を示す図である。(A) is an enlarged view showing the mirror element when the temperature is low, (B) is an enlarged view showing the mirror element when the temperature is high, and (C) shows the relationship between the temperature of the mirror element, the drive signal, and the tilt angle. FIG. (A)はミラー要素の温度が低いときの瞳形状を示す図、(B)はミラー要素の温度が高いときの瞳形状を示す図である。(A) is a figure which shows the pupil shape when the temperature of a mirror element is low, (B) is a figure which shows the pupil shape when the temperature of a mirror element is high. 温度変化に対するミラー要素の駆動信号の補正量を求める方法の一例を示すフローチャートである。It is a flowchart which shows an example of the method of calculating | requiring the correction amount of the drive signal of the mirror element with respect to a temperature change. 照明方法を含む露光方法の一例を示すフローチャートである。It is a flowchart which shows an example of the exposure method containing the illumination method. (A)は露光開始前に複数のミラー要素の温度を計測している状態を示す図、(B)は図8(A)のミラー要素を含む複数のミラー要素の像を示す図、(C)は露光開始後に複数のミラー要素の温度を計測している状態を示す図、(D)は図8(C)のミラー要素を含む複数のミラー要素の像を示す図である。(A) is a diagram showing a state in which the temperature of a plurality of mirror elements is measured before the start of exposure, (B) is a diagram showing an image of a plurality of mirror elements including the mirror element of FIG. ) Is a diagram showing a state in which the temperatures of a plurality of mirror elements are measured after the start of exposure, and (D) is a diagram showing images of a plurality of mirror elements including the mirror elements of FIG. (A)は複数のブロックに分けられたミラー要素アレイの一部を示す拡大図、(B)は変形例の空間光変調器の一部を示す拡大図である。(A) is an enlarged view showing a part of a mirror element array divided into a plurality of blocks, and (B) is an enlarged view showing a part of a spatial light modulator of a modification. 第2の実施形態の照明方法を含む露光方法の一例を示すフローチャートである。It is a flowchart which shows an example of the exposure method containing the illumination method of 2nd Embodiment. 電子デバイスの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of an electronic device.
 [第1の実施形態]
 本発明の第1の実施形態につき図1~図8を参照して説明する。
 図1は本実施形態に係る露光装置EXの概略構成を示す。露光装置EXは、一例としてスキャニングステッパー(スキャナー)よりなる走査露光型の露光装置(投影露光装置)である。図1において、露光装置EXは、露光用の照明光(露光光)ILでレチクルR(マスク)のパターン面であるレチクル面Raを照明する照明装置8を備えている。照明装置8は、照明光ILを発生する光源10と、光源10からの照明光ILでレチクル面Raを照明する照明光学系ILSと、照明光学系ILS内の光学部材の動作を制御する照明制御部36と、照明制御部36に接続された記憶装置33とを備えている。さらに、露光装置EXは、レチクルRを移動するレチクルステージRSTと、レチクルRのパターンの像をウエハW(基板)の表面に投影する投影光学系PLと、ウエハWを移動するウエハステージWSTと、装置全体の動作を統括的に制御するコンピュータよりなる主制御系35と、各種制御系等とを備えている。
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a schematic configuration of an exposure apparatus EX according to the present embodiment. The exposure apparatus EX is, for example, a scanning exposure type exposure apparatus (projection exposure apparatus) composed of a scanning stepper (scanner). In FIG. 1, the exposure apparatus EX includes an illumination apparatus 8 that illuminates a reticle surface Ra, which is a pattern surface of a reticle R (mask), with exposure illumination light (exposure light) IL. The illumination device 8 includes a light source 10 that generates illumination light IL, an illumination optical system ILS that illuminates the reticle surface Ra with the illumination light IL from the light source 10, and an illumination control that controls the operation of optical members in the illumination optical system ILS. And a storage device 33 connected to the illumination control unit 36. The exposure apparatus EX further includes a reticle stage RST that moves the reticle R, a projection optical system PL that projects an image of the pattern of the reticle R onto the surface of the wafer W (substrate), a wafer stage WST that moves the wafer W, A main control system 35 composed of a computer that comprehensively controls the operation of the entire apparatus and various control systems are provided.
 以下、投影光学系PLの光軸AXに平行にZ軸を設定し、Z軸に垂直な平面内において図1の紙面に平行な方向にX軸を、図1の紙面に垂直な方向にY軸を設定して説明する。本実施形態では、露光時のレチクルR及びウエハWの走査方向はY軸に平行な方向(Y方向)である。また、X軸、Y軸、及びZ軸に平行な軸の回りの回転方向(傾斜方向)をθx方向、θy方向、及びθz方向として説明する。 Hereinafter, the Z axis is set in parallel to the optical axis AX of the projection optical system PL, the X axis is set in a direction parallel to the paper surface of FIG. 1 in a plane perpendicular to the Z axis, and the Y axis is set in a direction perpendicular to the paper surface of FIG. An explanation will be given by setting an axis. In the present embodiment, the scanning direction of the reticle R and the wafer W during exposure is a direction parallel to the Y axis (Y direction). In addition, the rotational directions (inclination directions) around the axes parallel to the X axis, the Y axis, and the Z axis will be described as the θx direction, the θy direction, and the θz direction.
 光源10としては、一例として波長193nmの直線偏光のレーザ光をパルス発光するArFエキシマレーザ光源が使用されている。なお、光源10として、波長248nmのレーザ光を供給するKrFエキシマレーザ光源、又は固体レーザ光源(YAGレーザ、半導体レーザ等)から出力されるレーザ光の高調波を発生する高調波発生装置等も使用できる。 As the light source 10, for example, an ArF excimer laser light source that emits a pulsed laser beam of a linearly polarized light having a wavelength of 193 nm is used. As the light source 10, a KrF excimer laser light source that supplies laser light having a wavelength of 248 nm, or a harmonic generator that generates harmonics of laser light output from a solid-state laser light source (YAG laser, semiconductor laser, etc.) is also used. it can.
 図1において、不図示の電源部によって制御される光源10から発光されたレーザ光よりなる直線偏光の照明光ILは、ビームエキスパンダ11を含む伝達光学系、偏光方向及び偏光状態を調整するための偏光光学系12、及び光路折り曲げ用のミラー13を経て、空間光変調器(SLM: spatial light modulator )14のそれぞれ直交する2軸の回りの傾斜角が可変の多数の微小なミラー要素16の反射面に所定の小さい入射角で斜めに入射する。空間光変調器14(以下、SLM14という。)は、多数のミラー要素16のアレイと、各ミラー要素16を支持して駆動する駆動基板部15とを有する。各ミラー要素16の傾斜角はSLM制御系17によって制御される。 In FIG. 1, linearly polarized illumination light IL composed of laser light emitted from a light source 10 controlled by a power supply unit (not shown) is used to adjust a transmission optical system including a beam expander 11, a polarization direction, and a polarization state. Through a polarizing optical system 12 and a mirror 13 for bending an optical path, a plurality of minute mirror elements 16 having variable inclination angles around two orthogonal axes of a spatial light modulator (SLM) 14. Incidently incident on the reflecting surface at a predetermined small incident angle. The spatial light modulator 14 (hereinafter referred to as SLM 14) has an array of a large number of mirror elements 16 and a drive substrate portion 15 that supports and drives each mirror element 16. The tilt angle of each mirror element 16 is controlled by the SLM control system 17.
 図2(A)は、SLM14の一部を示す拡大斜視図である。図2(A)において、SLM14の駆動基板部15の表面には、ほぼY方向及びZ方向に一定ピッチで近接して配列された多数のミラー要素16のアレイが支持されている。
 図2(B)に示すように、一つのミラー要素16の駆動機構は、一例としてミラー要素16を支柱41を介して支持するヒンジ部材43と、支持基板44と、支持基板44上にヒンジ部材43を支持する4つの支柱部材42と、支持基板44上に形成された4つの電極45A,45B,45C,45Dとを備えている。この構成例では、ミラー要素16の裏面と電極45A~45Dとの間の電位差を制御して、電極間に作用する静電力を制御することで、ヒンジ部材43を介して可撓的に支持される支柱41を揺動及び傾斜させることができる。これによって、支柱41に固設されたミラー要素16の反射面の直交する2軸の回りの傾斜角を所定の可変範囲内で連続的に制御することができる。
FIG. 2A is an enlarged perspective view showing a part of the SLM 14. In FIG. 2 (A), an array of a large number of mirror elements 16 arranged close to each other at a constant pitch in the Y direction and the Z direction is supported on the surface of the drive substrate portion 15 of the SLM 14.
As shown in FIG. 2B, the drive mechanism of one mirror element 16 includes, as an example, a hinge member 43 that supports the mirror element 16 via a column 41, a support substrate 44, and a hinge member on the support substrate 44. The four support members 42 supporting the support 43 and the four electrodes 45A, 45B, 45C, 45D formed on the support substrate 44 are provided. In this configuration example, the electrostatic force acting between the electrodes is controlled by controlling the potential difference between the back surface of the mirror element 16 and the electrodes 45A to 45D, so that the mirror element 16 is flexibly supported via the hinge member 43. The support post 41 can be swung and inclined. Thereby, the inclination angle around two orthogonal axes of the reflecting surface of the mirror element 16 fixed to the support column 41 can be continuously controlled within a predetermined variable range.
 このような空間光変調器としては、例えば欧州特許公開第779530号明細書、米国特許第6,900,915号明細書等に開示されているものを使用可能である。なお、ミラー要素16はほぼ正方形の平面ミラーであるが、その形状は矩形等の任意の形状であってもよい。 As such a spatial light modulator, for example, those disclosed in European Patent Publication No. 779530, US Pat. No. 6,900,915 and the like can be used. Although the mirror element 16 is a substantially square plane mirror, the shape thereof may be an arbitrary shape such as a rectangle.
 図1において、SLM14は、照明条件に応じて、多数のミラー要素16を介して後述のフライアイレンズ25の入射面25Iに所定の光強度分布を形成する。一例として、輪帯照明を行う場合には、SLM14は、照明光ILを反射してその入射面25Iに、輪帯状の領域で強度が大きくなる光強度分布を形成する。また、通常照明時には、円形の領域で強度が大きくなる光強度分布を形成し、2極又は4極照明時には、2箇所又は4箇所の領域で強度が大きくなる光強度分布を形成する。主制御系35が、照明条件の情報を照明制御部36に供給し、これに応じて照明制御部36がSLM制御系17を介してSLM14の動作を制御する。 1, the SLM 14 forms a predetermined light intensity distribution on an incident surface 25I of a fly-eye lens 25 described later via a large number of mirror elements 16 according to illumination conditions. As an example, when performing annular illumination, the SLM 14 reflects the illumination light IL and forms a light intensity distribution that increases in intensity in the annular region on the incident surface 25I. Further, during normal illumination, a light intensity distribution having a large intensity is formed in a circular region, and during dipole or quadrupole illumination, a light intensity distribution having a large intensity is formed in two or four regions. The main control system 35 supplies information on the illumination conditions to the illumination control unit 36, and the illumination control unit 36 controls the operation of the SLM 14 via the SLM control system 17 in response thereto.
 SLM14の多数のミラー要素16で反射された照明光ILは、照明光学系ILSの光軸AXIに沿って照明光ILを平行光に変換する入射光学系18に入射する。入射光学系18は、入射面25Iに形成される光強度分布を入射面25Iと入射光学系18との間の面に形成する働きをも有する。入射光学系18を通過した照明光ILの一部がビームスプリッター21によって反射され、反射(分離)された光束が集光レンズ22を介して光電センサよりなるインテグレータセンサ23に入射する。インテグレータセンサ23の検出信号は照明装置8の一部である積算部40に供給され、積算部40は、その検出信号に所定の演算を施して照明光ILの照射エネルギーを積算した積算エネルギー(積算光量)を求める。積算エネルギーは照明制御部36に供給される。なお、インテグレータセンサ23に照明光ILから分離した光束を供給するためのビームスプリッター21は、照明光路上の任意の位置に配置可能である。 The illumination light IL reflected by the many mirror elements 16 of the SLM 14 enters the incident optical system 18 that converts the illumination light IL into parallel light along the optical axis AXI of the illumination optical system ILS. The incident optical system 18 also has a function of forming a light intensity distribution formed on the incident surface 25I on a surface between the incident surface 25I and the incident optical system 18. A part of the illumination light IL that has passed through the incident optical system 18 is reflected by the beam splitter 21, and the reflected (separated) light beam enters the integrator sensor 23 formed of a photoelectric sensor via the condenser lens 22. The detection signal of the integrator sensor 23 is supplied to an integration unit 40 that is a part of the lighting device 8, and the integration unit 40 performs a predetermined calculation on the detection signal and integrates the irradiation energy of the illumination light IL (integration). Light intensity). The accumulated energy is supplied to the illumination control unit 36. The beam splitter 21 for supplying the integrator sensor 23 with the light beam separated from the illumination light IL can be arranged at an arbitrary position on the illumination optical path.
 ビームスプリッター21を透過した照明光ILは、第1レンズ系24a及び第2レンズ系24bよりなるリレー光学系24を介してフライアイレンズ25の入射面25Iに入射する。フライアイレンズ25は、多数のレンズエレメントをZ方向及びY方向にほぼ密着するように配置したものであり、フライアイレンズ25の射出面が照明光学系ILSの瞳面(以下、照明瞳面という)IPP(射出瞳と共役な面)となる。フライアイレンズ25の射出面(照明瞳面IPP)には、波面分割によって多数の二次光源(光源像)よりなる面光源が形成される。 The illumination light IL transmitted through the beam splitter 21 is incident on the incident surface 25I of the fly-eye lens 25 through the relay optical system 24 including the first lens system 24a and the second lens system 24b. The fly-eye lens 25 has a large number of lens elements arranged in close contact with each other in the Z direction and the Y direction, and the exit surface of the fly-eye lens 25 is the pupil plane of the illumination optical system ILS (hereinafter referred to as the illumination pupil plane). ) IPP (surface conjugate with the exit pupil). A surface light source including a large number of secondary light sources (light source images) is formed on the exit surface (illumination pupil plane IPP) of the fly-eye lens 25 by wavefront division.
 フライアイレンズ25は、多数の光学系を並列に配置したものであるため、入射面25Iにおける大局的な光強度分布がそのまま射出面である照明瞳面IPPに伝達される。言い換えると、入射面25Iに形成される大局的な光強度分布と、二次光源全体の大局的な光強度分布とが高い相関を示す。ここで、入射面25Iは照明瞳面IPPと等価な面であり、入射面25Iに形成される照明光ILの任意の光強度分布の形状(光強度が所定レベルとなる輪郭線で囲まれた領域の形状)がそのまま照明瞳面IPPにおける光強度分布の形状である瞳形状となる。また、入射面25Iは、レチクル面と光学的にほぼ共役でもある。なお、フライアイレンズ25の代わりにマイクロレンズアレイを使用してもよい。また、フライアイレンズとして、例えば米国特許第6,913,373号明細書に開示されているシリンドリカルマイクロフライアイレンズを用いてもよい。 Since the fly-eye lens 25 has a large number of optical systems arranged in parallel, the global light intensity distribution on the entrance surface 25I is directly transmitted to the illumination pupil plane IPP which is the exit surface. In other words, there is a high correlation between the global light intensity distribution formed on the incident surface 25I and the global light intensity distribution of the entire secondary light source. Here, the incident surface 25I is a surface equivalent to the illumination pupil plane IPP, and is surrounded by an arbitrary light intensity distribution shape of the illumination light IL formed on the incident surface 25I (a contour line where the light intensity becomes a predetermined level). The shape of the region) becomes the pupil shape that is the shape of the light intensity distribution on the illumination pupil plane IPP as it is. Further, the incident surface 25I is optically almost conjugate with the reticle surface. Note that a microlens array may be used instead of the fly-eye lens 25. Further, as the fly eye lens, for example, a cylindrical micro fly eye lens disclosed in US Pat. No. 6,913,373 may be used.
 また、照明瞳面IPPに形成された面光源からの照明光ILは、第1リレーレンズ28、レチクルブラインド(視野絞り)29、第2リレーレンズ30、光路折り曲げ用のミラー31、及びコンデンサー光学系32を介して、レチクル面Raの照明領域を均一な照度分布で照明する。ビームエキスパンダ11からSLM14までの光学部材、入射光学系18、ビームスプリッター21、集光レンズ22、インテグレータセンサ23、リレー光学系24、及びフライアイレンズ25からコンデンサー光学系32までの光学部材を含んで照明光学系ILSが構成されている。照明光学系ILSの各光学部材は、不図示のフレームに支持されている。 Illumination light IL from the surface light source formed on the illumination pupil plane IPP includes a first relay lens 28, a reticle blind (field stop) 29, a second relay lens 30, an optical path bending mirror 31, and a condenser optical system. The illumination area of the reticle surface Ra is illuminated with a uniform illuminance distribution via the reference numeral 32. The optical members from the beam expander 11 to the SLM 14, the incident optical system 18, the beam splitter 21, the condenser lens 22, the integrator sensor 23, the relay optical system 24, and the optical members from the fly-eye lens 25 to the condenser optical system 32 are included. Thus, the illumination optical system ILS is configured. Each optical member of the illumination optical system ILS is supported by a frame (not shown).
 また、照明装置8は、SLM14の多数のミラー要素16のアレイに対向するように不図示のフレームに支持された非接触式の温度計としてのサーモカメラ20(赤外放射温度計)と、サーモカメラ20の検出信号を処理する温度マップ作成装置34とを備えている。サーモカメラ20は、一例としてSLM14の全部のミラー要素16から温度に応じて発せられる赤外線を受光して、全部のミラー要素16の赤外線による像を撮像する。温度マップ作成装置34は、サーモカメラ20からの検出信号を処理して、全部のミラー要素16の温度を個別に求め、各ミラー要素16の位置と温度とを対応させた温度マップを作成し、作成した温度マップを照明制御部36に供給する。なお、サーモカメラ20の代わりに、被検物体から温度に応じて発せられる可視光を検出する光温度計等の任意の放射線温度センサを使用してもよい。さらに、サーモカメラ20の代わりに、放射線温度センサ以外の任意の非接触式の温度計を使用してもよい。 The illumination device 8 includes a thermo camera 20 (infrared radiation thermometer) as a non-contact type thermometer supported by a frame (not shown) so as to face an array of a large number of mirror elements 16 of the SLM 14, and a thermometer. And a temperature map creation device 34 for processing a detection signal of the camera 20. As an example, the thermo camera 20 receives infrared rays emitted from all the mirror elements 16 of the SLM 14 according to the temperature, and takes images of all the mirror elements 16 by infrared rays. The temperature map creation device 34 processes the detection signal from the thermo camera 20 to obtain the temperatures of all the mirror elements 16 individually, and creates a temperature map in which the positions and temperatures of the mirror elements 16 are associated with each other. The created temperature map is supplied to the illumination control unit 36. Instead of the thermo camera 20, an arbitrary radiation temperature sensor such as an optical thermometer that detects visible light emitted from the object to be detected according to the temperature may be used. Further, instead of the thermo camera 20, any non-contact type thermometer other than the radiation temperature sensor may be used.
 照明光学系ILSからの照明光ILのもとで、レチクルRの照明領域内のパターンは、両側(又はウエハ側に片側)テレセントリックの投影光学系PLを介して、ウエハWの一つのショット領域の露光領域に所定の投影倍率(例えば1/4、1/5等)で投影される。照明瞳面IPPは、投影光学系PLの瞳面(射出瞳と共役な面)と共役である。ウエハWは、リシコン等の基材の表面にフォトレジスト(感光材料)を所定の厚さで塗布したものを含む。 Under the illumination light IL from the illumination optical system ILS, the pattern in the illumination area of the reticle R is transferred to one shot area of the wafer W via the telecentric projection optical system PL on both sides (or one side on the wafer side). The image is projected onto the exposure area at a predetermined projection magnification (for example, 1/4, 1/5, etc.). The illumination pupil plane IPP is conjugate with the pupil plane (a plane conjugate with the exit pupil) of the projection optical system PL. The wafer W includes a wafer having a photoresist (photosensitive material) coated at a predetermined thickness on the surface of a base material such as silicon.
 また、レチクルRはレチクルステージRSTの上面に吸着保持され、レチクルステージRSTは、不図示のレチクルベースの上面(XY平面に平行な面)に、Y方向に一定速度で移動可能に、かつ少なくともX方向、Y方向、及びθz方向に移動可能に載置されている。レチクルステージRSTの2次元的な位置は不図示のレーザ干渉計によって計測され、この計測情報に基づいて主制御系35が、リニアモータ等を含む駆動系37を介してレチクルステージRSTの位置及び速度を制御する。 The reticle R is attracted and held on the upper surface of the reticle stage RST, and the reticle stage RST is movable on the upper surface of the reticle base (not shown) (surface parallel to the XY plane) at a constant speed in the Y direction, and at least X It is mounted so as to be movable in the direction, the Y direction, and the θz direction. The two-dimensional position of the reticle stage RST is measured by a laser interferometer (not shown). Based on this measurement information, the main control system 35 receives the position and speed of the reticle stage RST via a drive system 37 including a linear motor and the like. To control.
 一方、ウエハWはウエハホルダ(不図示)を介してウエハステージWSTの上面に吸着保持され、ウエハステージWSTは、不図示のウエハベースの上面(XY平面に平行な面)でX方向、Y方向に移動可能であるとともに、Y方向に一定速度で移動可能である。ウエハステージWSTの2次元的な位置は不図示のレーザ干渉計によって計測され、この計測情報に基づいて主制御系35が、リニアモータ等を含む駆動系38を介してウエハステージWSTの位置及び速度を制御する。なお、レチクルR及びウエハWのアライメントを行うためのアライメント系(不図示)も備えられている。 On the other hand, wafer W is sucked and held on the upper surface of wafer stage WST via a wafer holder (not shown), and wafer stage WST is moved in the X and Y directions on the upper surface of the wafer base (not shown) (a surface parallel to the XY plane). It can move and can move at a constant speed in the Y direction. The two-dimensional position of wafer stage WST is measured by a laser interferometer (not shown), and based on this measurement information, main control system 35 moves the position and speed of wafer stage WST via drive system 38 including a linear motor and the like. To control. An alignment system (not shown) for aligning the reticle R and the wafer W is also provided.
 また、照明装置8は、ウエハステージWSTの上部に設けられた瞳モニタ60と、瞳モニタ60から供給される撮像信号を処理する信号処理装置39とを備えている。図3に示すように、瞳モニタ60は、ウエハステージWSTに固定されたケース60cと、ケース60c内に投影光学系PL側から順に支持された集光レンズ60a及びCCD又はCMOS型の2次元の撮像素子60bとを有する。集光レンズ60aの焦点面に撮像素子60bの受光面が配置されている。 Further, the illumination device 8 includes a pupil monitor 60 provided on the upper part of the wafer stage WST, and a signal processing device 39 for processing an imaging signal supplied from the pupil monitor 60. As shown in FIG. 3, the pupil monitor 60 includes a case 60c fixed to the wafer stage WST, a condensing lens 60a supported in order from the projection optical system PL side in the case 60c, and a CCD or CMOS type two-dimensional. An image sensor 60b. The light receiving surface of the image sensor 60b is disposed on the focal plane of the condenser lens 60a.
 瞳モニタ60を投影光学系PLの露光領域内に移動することで、撮像素子60bの受光面と図1の照明瞳面IPPとは共役になる。この状態で、レチクルステージRSTにレチクルRの代わりに例えば素通しのガラス基板をロードし、照明光ILを発生させて撮像素子60bの撮像信号を信号処理装置39で処理することによって、瞳形状を求めることができる。瞳形状の情報は照明制御部36に供給される。なお、ウエハステージWSTに固定された瞳モニタ60の代わりに、ウエハステージWST又はレチクルステージRSTに設けられる着脱式の瞳モニタを使用することも可能である。 By moving the pupil monitor 60 into the exposure area of the projection optical system PL, the light receiving surface of the image sensor 60b and the illumination pupil plane IPP in FIG. 1 become conjugate. In this state, for example, a plain glass substrate is loaded on the reticle stage RST instead of the reticle R, the illumination light IL is generated, and the imaging signal of the imaging device 60b is processed by the signal processing device 39 to obtain the pupil shape. be able to. The pupil shape information is supplied to the illumination control unit 36. Instead of the pupil monitor 60 fixed to the wafer stage WST, a detachable pupil monitor provided on the wafer stage WST or the reticle stage RST can be used.
 なお、瞳モニタ60の代わりに、或いは瞳モニタ60に加えて、例えば照明光学系の射出瞳位置と光学的に共役な位置に配置された光電変換面を有する撮像部を備え、照明光学系による被照射面上の各点に関する瞳強度分布(各点に入射する光が照明光学系の射出瞳位置に形成する瞳強度分布)をモニタする瞳モニタ系を使用してもよい。このような瞳モニタ系の詳細な構成および作用については、例えば米国特許出願公開第2008/0030707号明細書や米国特許出願公開第2010/0020302号明細書を参照することができる。 In addition, instead of the pupil monitor 60 or in addition to the pupil monitor 60, for example, an imaging unit having a photoelectric conversion surface arranged at a position optically conjugate with the exit pupil position of the illumination optical system is provided, and the illumination optical system A pupil monitor system that monitors the pupil intensity distribution (pupil intensity distribution formed at the exit pupil position of the illumination optical system by the light incident on each point) for each point on the irradiated surface may be used. As for the detailed configuration and operation of such a pupil monitor system, reference can be made to, for example, US Patent Application Publication No. 2008/0030707 and US Patent Application Publication No. 2010/0020302.
 露光装置EXによるウエハWの露光時に、主制御系35は、レチクルRのパターンに応じて照明条件(瞳形状)を選択し、選択した照明条件を照明制御部36に設定する。照明制御部36は、その照明条件に応じてSLM制御系17を介してSLM14の各ミラー要素16の2軸の回りの傾斜角を個別に制御する。続いて、ウエハステージWSTの移動(ステップ移動)によってウエハWが走査開始位置に移動する。その後、光源10の発光を開始して、レチクルRのパターンの投影光学系PLによる像でウエハWを露光しつつ、レチクルステージRST及びウエハステージWSTを介してレチクルR及びウエハWを投影倍率を速度比として同期して移動することで、ウエハWの一つのショット領域にレチクルRのパターンの像が走査露光される。このようにウエハWのステップ移動と走査露光とを繰り返すステップ・アンド・スキャン動作によって、ウエハWの全部のショット領域にレチクルRのパターンの像が露光される。ここで、走査方向として図1におけるX方向とすることができる。 When the wafer W is exposed by the exposure apparatus EX, the main control system 35 selects an illumination condition (pupil shape) according to the pattern of the reticle R, and sets the selected illumination condition in the illumination control unit 36. The illumination control unit 36 individually controls the inclination angles around the two axes of the mirror elements 16 of the SLM 14 via the SLM control system 17 according to the illumination conditions. Subsequently, the wafer W is moved to the scanning start position by the movement (step movement) of the wafer stage WST. Thereafter, the light source 10 starts to emit light, and the wafer R is exposed with an image of the pattern of the reticle R by the projection optical system PL, and the projection magnification of the reticle R and the wafer W is increased through the reticle stage RST and the wafer stage WST. By moving synchronously as a ratio, the pattern image of the reticle R is scanned and exposed on one shot area of the wafer W. In this way, the image of the pattern of the reticle R is exposed on the entire shot area of the wafer W by the step-and-scan operation in which the step movement of the wafer W and the scanning exposure are repeated. Here, the X direction in FIG. 1 can be used as the scanning direction.
 さて、このような露光を継続していくと、SLM14の多数のミラー要素16を介してフライアイレンズ25の入射面25Iに形成される光強度分布、ひいては照明瞳面IPPに形成される瞳形状が次第に変動することが分かった。この変動の要因につき図4(A)、(B)及び図5(A)、(B)を参照して説明する。
 先ず、照明瞳面IPPにおける目標とする瞳形状は、図5(A)に示すように内半径r1及び外半径r2の輪帯状の領域51(光強度が所定レベル以上になる領域)であるとする。このとき、露光開始直後のSLM14のあるミラー要素16の直交する2軸のうちの第1軸の回りの傾斜角をθty1、このミラー要素16で反射される照明光ILの反射角をφ1とする。その後、露光が継続されると、照明光ILの照射エネルギーによってミラー要素16及びその駆動機構の温度が次第に高くなり、その駆動機構(特に図2(B)のヒンジ部材43)の剛性が低下する。そのため、ミラー要素16を駆動するための駆動信号(電圧)が同じであると、図4(B)に示すように、ミラー要素16の傾斜角θty2はθty1よりも大きくなり、照明光ILの反射角φ2もφ1より大きくなる。同様に、ミラー要素16の温度の上昇によって、ミラー要素16の直交する2軸のうちの第2軸の回りの傾斜角も次第に大きくなり、反射光の反射角も大きくなる。
If such exposure is continued, the light intensity distribution formed on the entrance surface 25I of the fly-eye lens 25 via the many mirror elements 16 of the SLM 14, and thus the pupil shape formed on the illumination pupil plane IPP. It turns out that fluctuates gradually. The cause of this variation will be described with reference to FIGS. 4 (A) and 4 (B) and FIGS. 5 (A) and 5 (B).
First, the target pupil shape on the illumination pupil plane IPP is an annular region 51 (region where the light intensity becomes a predetermined level or more) having an inner radius r1 and an outer radius r2, as shown in FIG. To do. At this time, the inclination angle around the first axis of the two orthogonal axes of the mirror element 16 with the SLM 14 immediately after the start of exposure is θty1, and the reflection angle of the illumination light IL reflected by the mirror element 16 is φ1. . Thereafter, when the exposure is continued, the temperature of the mirror element 16 and its drive mechanism gradually increases due to the irradiation energy of the illumination light IL, and the rigidity of the drive mechanism (particularly the hinge member 43 in FIG. 2B) decreases. . Therefore, if the drive signal (voltage) for driving the mirror element 16 is the same, the tilt angle θty2 of the mirror element 16 becomes larger than θty1 and the reflection of the illumination light IL as shown in FIG. 4B. The angle φ2 is also larger than φ1. Similarly, as the temperature of the mirror element 16 increases, the tilt angle around the second axis of the two orthogonal axes of the mirror element 16 gradually increases, and the reflection angle of the reflected light also increases.
 この結果、瞳形状は、図5(B)に示すように内半径r1A及び外半径r2Aがそれぞれ前の半径r1及びr2よりも大きい輪帯状の領域51Aとなる。従って、露光を継続した場合に、ミラー要素16の制御信号を同じ値に設定しておくと、ミラー要素16及びその駆動機構の温度が上昇して、瞳形状が次第に大きくなることが分かる。
 そこで、本実施形態では、露光中の瞳形状の変動を抑制するために、露光中にサーモカメラ20でSLM14の各ミラー要素16の温度を計測し、この計測結果に基づいて各ミラー要素16の駆動信号を補正する。先ず、図6のフローチャートを参照して、温度変化に対する各ミラー要素16の駆動信号の補正量を求める方法の一例につき説明する。この動作は主制御系35によって制御される。以下では、駆動信号はミラー要素16の直交する2軸のうちの第1軸の回りの傾斜角を規定する信号であるとする。ミラー要素16の第2軸の回りの傾斜角を規定する駆動信号の補正量も同様に求められる。
As a result, as shown in FIG. 5B, the pupil shape becomes an annular region 51A in which the inner radius r1A and the outer radius r2A are larger than the previous radii r1 and r2, respectively. Therefore, when the exposure is continued, if the control signal for the mirror element 16 is set to the same value, the temperature of the mirror element 16 and its drive mechanism rises, and the pupil shape gradually increases.
Therefore, in the present embodiment, in order to suppress the variation of the pupil shape during the exposure, the temperature of each mirror element 16 of the SLM 14 is measured by the thermo camera 20 during the exposure, and based on the measurement result, each mirror element 16 is measured. Correct the drive signal. First, an example of a method for obtaining the correction amount of the drive signal of each mirror element 16 with respect to a temperature change will be described with reference to the flowchart of FIG. This operation is controlled by the main control system 35. Hereinafter, it is assumed that the drive signal is a signal that defines an inclination angle around the first axis of the two orthogonal axes of the mirror element 16. The correction amount of the drive signal that defines the tilt angle of the mirror element 16 around the second axis is also obtained in the same manner.
 図6のステップ102において、一例として輪帯照明を行うものとして、照明制御部36は、SLM制御系17に輪帯照明用の各ミラー要素16の傾斜角(角度)の情報を供給する。これに応じて、SLM制御系17では、その傾斜角に応じた駆動信号DS(電圧(V))をSLM14の各ミラー要素16の駆動機構に設定する。
 露光開始前の各ミラー要素16の温度Tを例えば雰囲気の温度と同じTaとする。このとき、図4(C)に示すように、各ミラー要素16の駆動信号DS(V)と、これに対応する傾斜角θtyとの関係は直線C1で表される。直線C1の係数の情報は記憶装置33に記憶されている。例えばあるミラー要素16の傾斜角をθty1に設定するために、その駆動信号はDS1に設定される。
In step 102 of FIG. 6, as an example of performing annular illumination, the illumination control unit 36 supplies the SLM control system 17 with information on the inclination angle (angle) of each mirror element 16 for annular illumination. In response to this, the SLM control system 17 sets a drive signal DS (voltage (V)) corresponding to the tilt angle to the drive mechanism of each mirror element 16 of the SLM 14.
The temperature T of each mirror element 16 before the start of exposure is set to Ta which is the same as the temperature of the atmosphere, for example. At this time, as shown in FIG. 4C, the relationship between the drive signal DS (V) of each mirror element 16 and the corresponding inclination angle θty is represented by a straight line C1. Information on the coefficient of the straight line C1 is stored in the storage device 33. For example, in order to set the tilt angle of a certain mirror element 16 to θty1, the drive signal is set to DS1.
 次のステップ104において、レチクルステージRSTに例えば素通しのガラス基板をロードし、ウエハステージWSTを駆動して瞳モニタ60の受光面を投影光学系PLの露光領域内に移動する。次のステップ106において、光源10からの照明光ILの発光を開始させる。次のステップ108において、サーモカメラ20でSLM14の全部のミラー要素16のアレイの像を撮像し、温度マップ作成装置34で全部のミラー要素16の個別の温度(温度マップ)を求め、求めた温度マップを照明制御部36に供給する。次のステップ110において、瞳モニタ60によって照明瞳面IPPにおける光強度分布の像を撮像し、信号処理装置39で瞳形状を求め、求めた瞳形状の情報を照明制御部36に供給する。なお、ステップ108及び110はほぼ同時に実行することが好ましい。 In the next step 104, for example, a transparent glass substrate is loaded on the reticle stage RST, and the wafer stage WST is driven to move the light receiving surface of the pupil monitor 60 into the exposure area of the projection optical system PL. In the next step 106, emission of the illumination light IL from the light source 10 is started. In the next step 108, an image of the array of all the mirror elements 16 of the SLM 14 is picked up by the thermo camera 20, and individual temperatures (temperature maps) of all the mirror elements 16 are obtained by the temperature map creation device 34, and the obtained temperature. The map is supplied to the lighting control unit 36. In the next step 110, the pupil monitor 60 captures an image of the light intensity distribution on the illumination pupil plane IPP, the pupil shape is obtained by the signal processing device 39, and the obtained pupil shape information is supplied to the illumination control unit 36. Note that steps 108 and 110 are preferably executed substantially simultaneously.
 次のステップ112で所定時間(例えば1枚のウエハの露光時間程度)経過したかどうかを確認し、その所定時間経過した場合にはステップ114に移行する。ステップ114で計測を続行する場合には、ステップ108に戻り、サーモカメラ20を用いてSLM14の全部のミラー要素16の個別の温度を求め、次のステップ110において、瞳モニタ60を用いて瞳形状を求める。そして、ミラー要素16の温度が飽和温度程度になるまで、ステップ108及びステップ110を繰り返す。 In the next step 112, it is confirmed whether or not a predetermined time (for example, about the exposure time of one wafer) has elapsed. If the predetermined time has elapsed, the process proceeds to step 114. When the measurement is continued in step 114, the process returns to step 108, the individual temperatures of all the mirror elements 16 of the SLM 14 are obtained using the thermo camera 20, and the pupil shape is obtained using the pupil monitor 60 in the next step 110. Ask for. Then, Step 108 and Step 110 are repeated until the temperature of the mirror element 16 reaches about the saturation temperature.
 その後、ステップ114で計測が終了したときには、動作はステップ116に移行して、照明光ILの発光を停止する。次のステップ118において、照明制御部36は、ステップ108で求められた各ミラー要素16の温度と、ステップ110で求められた瞳形状とを用いて、各ミラー要素16の傾斜角θtyに対応する駆動信号DSの温度変化に対する補正量を算出する。この場合、図4(C)において、あるミラー要素16の温度Tは、初期値Taから次第にTb及びTcへと上昇する。そして、ミラー要素16の温度が上昇すると、同じ駆動信号DSであっても、傾斜角θtyは大きくなるため、駆動信号DSと傾斜角θtyとの関係を表す直線C1は、温度TがTb,Tcと高くなると、直線C2及びC3に示すように傾きが大きくなる。 Thereafter, when the measurement is completed in step 114, the operation proceeds to step 116, and the emission of the illumination light IL is stopped. In the next step 118, the illumination control unit 36 uses the temperature of each mirror element 16 obtained in step 108 and the pupil shape obtained in step 110 to correspond to the tilt angle θty of each mirror element 16. A correction amount for the temperature change of the drive signal DS is calculated. In this case, in FIG. 4C, the temperature T of a certain mirror element 16 gradually increases from the initial value Ta to Tb and Tc. When the temperature of the mirror element 16 rises, the tilt angle θty increases even with the same drive signal DS. Therefore, the straight line C1 representing the relationship between the drive signal DS and the tilt angle θty has temperatures Tb and Tc. And the inclination increases as shown by straight lines C2 and C3.
 一例として、計測された瞳形状から駆動信号がDS1であるときに、温度Tb,Tcに対応する傾斜角θty2,θty3を求めることで、照明制御部36は、直線C2及びC3を求めることができる。直線C2,C3が求められると、ミラー要素16の温度TがTaから次第にTb,Tcに変化する場合に、ミラー要素16の傾斜角θtyが変化しないように維持しておくための駆動信号DSの補正量(-α)及び(-β)を求めることができる。従って、駆動信号DSとミラー要素16の温度Tとに対応して駆動信号DSの補正量ΔDSを求めることができる。補正量ΔDSは、例えば所定量ずつ変化する駆動信号DS及び所定量ずつ変化する温度Tに対して補正用マップ(又はテーブル)の形で記憶装置33に記憶される。その後、ミラー要素16の駆動信号DS及び温度Tに応じて補正量ΔDSを求める場合には、例えばそのマップ中のデータの補間を行ってもよい。これによって、各ミラー要素16の温度が任意の温度のときに、その補正用マップを用いて各ミラー要素16の駆動信号の補正量を求めることができる。 As an example, when the driving signal is DS1 from the measured pupil shape, the illumination control unit 36 can obtain the straight lines C2 and C3 by obtaining the inclination angles θty2 and θty3 corresponding to the temperatures Tb and Tc. . When the straight lines C2 and C3 are obtained, when the temperature T of the mirror element 16 gradually changes from Ta to Tb and Tc, the drive signal DS for maintaining the tilt angle θty of the mirror element 16 so as not to change is maintained. Correction amounts (−α) and (−β) can be obtained. Therefore, the correction amount ΔDS of the drive signal DS can be obtained corresponding to the drive signal DS and the temperature T of the mirror element 16. The correction amount ΔDS is stored in the storage device 33 in the form of a correction map (or table) for the driving signal DS that changes by a predetermined amount and the temperature T that changes by a predetermined amount, for example. Thereafter, when the correction amount ΔDS is obtained according to the drive signal DS and the temperature T of the mirror element 16, for example, interpolation of data in the map may be performed. Thereby, when the temperature of each mirror element 16 is an arbitrary temperature, the correction amount of the drive signal of each mirror element 16 can be obtained using the correction map.
 次に、本実施形態の露光装置EXによる照明方法を含む露光方法の一例につき、図7のフローチャートを参照して説明する。この動作は主制御系35によって制御される。
 まず、図7のステップ120において、レチクルRが図1のレチクルステージRSTにロードされる。次のステップ122において、主制御系35は、例えば露光データファイルからレチクルRの照明条件の情報を読み出して照明制御部36に出力する。照明制御部36は、その照明条件に応じて、SLM制御系17を介してSLM14の各ミラー要素16の駆動信号を設定することによって、各ミラー要素16の傾斜角(角度)を設定する。
Next, an example of an exposure method including an illumination method by the exposure apparatus EX of the present embodiment will be described with reference to the flowchart of FIG. This operation is controlled by the main control system 35.
First, in step 120 of FIG. 7, the reticle R is loaded onto the reticle stage RST of FIG. In the next step 122, the main control system 35 reads information on the illumination conditions of the reticle R from, for example, an exposure data file and outputs the information to the illumination control unit 36. The illumination control unit 36 sets the tilt angle (angle) of each mirror element 16 by setting a drive signal for each mirror element 16 of the SLM 14 via the SLM control system 17 according to the illumination condition.
 次のステップ124で、ウエハステージWSTに例えば1ロットの先頭のフォトレジストが塗布されたウエハWがロードされる。次のステップ126において、サーモカメラ20でSLM14の全部のミラー要素16のアレイの像を撮像し、温度マップ作成装置34で全部のミラー要素16の個別の温度(温度マップ)を求め、求めた温度マップを照明制御部36に供給する。 In the next step 124, the wafer W coated with, for example, the first photoresist of one lot is loaded onto the wafer stage WST. In the next step 126, an image of the array of all the mirror elements 16 of the SLM 14 is taken by the thermo camera 20, and individual temperatures (temperature maps) of all the mirror elements 16 are obtained by the temperature map creation device 34. The map is supplied to the lighting control unit 36.
 図8(A)は、その先頭のウエハWに対する露光開始前に、サーモカメラ20を用いてミラー要素16の一部のミラー要素16の像を撮像している状態を示し、図8(B)は、図8(A)のサーモカメラ20の撮像信号を用いて得られる像の一部を示す。図8(B)において、SLM14のミラー要素16のアレイの像14P中の各ミラー要素16の像16Pの直交する2つの配列方向に沿ってY軸及びZ軸を設定している。また、Y方向にi番目でZ方向にj番目(i,jは1以上の整数)のミラー要素の像16Pの位置をP(i,j)で表し、位置P(i,j)の像16Pから求められる温度T(i,j)を対応するミラー要素16の実際の温度とする。露光開始前では、一例として全部の温度T(i,j)が初期値Tiであり、位置P(i,j)に対応するミラー要素16の駆動信号はDS(i,j)である。なお、駆動信号は実際には直交する2軸の回りの傾斜角を設定するために2つの信号を含んでいる。 FIG. 8A shows a state in which an image of a part of the mirror elements 16 of the mirror element 16 is picked up using the thermo camera 20 before the exposure of the leading wafer W is started, and FIG. These show a part of image obtained using the image pick-up signal of thermo camera 20 of Drawing 8 (A). In FIG. 8B, the Y axis and the Z axis are set along two orthogonal arrangement directions of the image 16P of each mirror element 16 in the image 14P of the array of mirror elements 16 of the SLM 14. The position of the image 16P of the i-th mirror element 16P in the Y direction and the j-th (i, j is an integer of 1 or more) in the Z direction is represented by P (i, j), and the image at the position P (i, j). The temperature T (i, j) obtained from 16P is set as the actual temperature of the corresponding mirror element 16. Prior to the start of exposure, for example, all the temperatures T (i, j) are the initial values Ti, and the drive signal of the mirror element 16 corresponding to the position P (i, j) is DS (i, j). The drive signal actually includes two signals in order to set an inclination angle around two orthogonal axes.
 次のステップ128において、照明制御部36は、各ミラー要素16の傾斜角(これに対応する駆動信号)及び温度の計測値に応じて、記憶装置33に記憶されている補正用マップから駆動信号の補正量を求め、求めた補正量をSLM制御系17に供給する。SLM制御系17では、各ミラー要素16の駆動信号をその補正量分だけ補正する。この段階では、露光開始前であるため、各ミラー要素16の駆動信号の補正量はほぼ0である。次に、光源10からの照明光ILの発光が開始され(ステップ130)、SLM14の多数のミラー要素16のアレイからの反射光によって形成される面光源からの照明光ILでレチクルRが照明される(ステップ132)。なお、図1のレチクルブラインド29中の可変ブラインドの開閉によって、照明光ILのレチクルR及びウエハWに対する照射は制御されている。そして、照明光ILのもとで、ステップ・アンド・スキャン方式でウエハWの各ショット領域にレチクルRのパターンの像が走査露光される(ステップ134)。次に、照明光ILの発光が停止され(ステップ136)、ウエハWがアンロードされる(ステップ138)。 In the next step 128, the illumination control unit 36 drives the drive signal from the correction map stored in the storage device 33 according to the tilt angle (drive signal corresponding thereto) of each mirror element 16 and the measured value of the temperature. And the calculated correction amount is supplied to the SLM control system 17. In the SLM control system 17, the drive signal of each mirror element 16 is corrected by the correction amount. At this stage, since the exposure is not started, the correction amount of the drive signal of each mirror element 16 is almost zero. Next, emission of the illumination light IL from the light source 10 is started (step 130), and the reticle R is illuminated with the illumination light IL from the surface light source formed by the reflected light from the array of the many mirror elements 16 of the SLM 14. (Step 132). Note that irradiation of the reticle R and the wafer W with the illumination light IL is controlled by opening and closing the variable blind in the reticle blind 29 of FIG. Then, the pattern image of the reticle R is scanned and exposed on each shot area of the wafer W by the step-and-scan method under the illumination light IL (step 134). Next, the emission of the illumination light IL is stopped (step 136), and the wafer W is unloaded (step 138).
 次のステップ140で、未露光のウエハが残っている場合には動作はステップ124に移行して、次のウエハがウエハステージWSTにロードされ、次のステップ126で各ミラー要素16の温度が計測され、次のステップ128で、その温度の計測値に基づいて各ミラー要素16の駆動信号が補正される。
 図8(C)は、次のウエハに対する露光開始前に、サーモカメラ20を用いて一部のミラー要素16の像を撮像している状態を示し、図8(D)は、図8(C)のサーモカメラ20の撮像信号を用いて得られる像の一部を示す。図8(D)において、ミラー要素の像16Pの濃度は温度が変化していることを表している。即ち、位置P(i,j)のミラー要素の像16Pから求められる温度をT(i,j)とすると、照明制御部36は、この温度T(i,j)とミラー要素16の駆動信号DS(i,j)とに応じて、記憶装置33に記憶されている補正用マップを用いて補正量ΔDS(i,j)を求めてSLM制御系17に供給する。SLM制御系17では、その補正量ΔDS(i,j)を用いて対応するミラー要素16の駆動信号DS(i,j)を例えば初期値を基準として補正する。これによって、例えば照明瞳面IPPにおける瞳形状を図5(A)の輪帯状の領域51に設定する場合には、露光を継続して、SLM14の各ミラー要素16の駆動信号と傾斜角との特性が変化しても、瞳形状は常に図5(A)の形状に維持される。
If the unexposed wafer remains in the next step 140, the operation moves to step 124, the next wafer is loaded on the wafer stage WST, and the temperature of each mirror element 16 is measured in the next step 126. In the next step 128, the driving signal of each mirror element 16 is corrected based on the measured value of the temperature.
FIG. 8C shows a state in which an image of a part of the mirror elements 16 is picked up using the thermo camera 20 before the exposure of the next wafer is started, and FIG. 8D shows the state shown in FIG. A part of an image obtained by using the imaging signal of the thermo camera 20 of FIG. In FIG. 8D, the density of the mirror element image 16P indicates that the temperature is changing. That is, assuming that the temperature obtained from the mirror element image 16P at the position P (i, j) is T (i, j), the illumination controller 36 determines the temperature T (i, j) and the drive signal for the mirror element 16. In accordance with DS (i, j), a correction amount ΔDS (i, j) is obtained using a correction map stored in the storage device 33 and supplied to the SLM control system 17. In the SLM control system 17, the correction signal ΔDS (i, j) is used to correct the drive signal DS (i, j) of the corresponding mirror element 16 with reference to the initial value, for example. Thus, for example, when the pupil shape on the illumination pupil plane IPP is set in the annular zone region 51 of FIG. 5A, the exposure is continued and the drive signal and tilt angle of each mirror element 16 of the SLM 14 are changed. Even if the characteristics change, the pupil shape is always maintained in the shape shown in FIG.
 その後、ステップ130~134で、次のウエハに対する露光が行われ(ステップ130~134)、照明光ILの発光停止及びウエハのアンロードが行われる(ステップ136,138)。そして、1ロットの全部のウエハに対して、ステップ124~138の動作が繰り返され、ステップ140で1ロットのウエハの露光が終了しているときに、露光が終了する。 Thereafter, in steps 130 to 134, the next wafer is exposed (steps 130 to 134), the emission of the illumination light IL is stopped, and the wafer is unloaded (steps 136 and 138). The operations in steps 124 to 138 are repeated for all the wafers in one lot. When the exposure of one lot of wafers is completed in step 140, the exposure is completed.
 このように、この照明方法を含む露光方法によれば、SLM14の各ミラー要素16の温度が変化しても照明瞳面IPPにおける瞳形状が常に目標とする形状に維持される。従って、常にレチクルRのパターンの像を高精度に1ロットのウエハの各ショット領域に露光できる。
 上述のように本実施形態の照明装置8は照明光学系ILSを備え、照明装置8は光源10からの照明光ILでレチクル面Raを照明する。また、照明装置8は、照明光ILの光路に配置されて、それぞれに入射する光の反射角を制御するために直交する2軸の回りの傾斜角が制御可能な複数のミラー要素16を有するSLM14と、各ミラー要素16の温度をモニタするサーモカメラ20と、複数のミラー要素16のその入射光の反射角を制御するための駆動信号(制御量)を設定するとともに、サーモカメラ20でモニタされる複数のミラー要素16の温度に基づいてその駆動信号を補正する照明制御部36及びSLM制御系17を備えている。
Thus, according to the exposure method including this illumination method, the pupil shape on the illumination pupil plane IPP is always maintained at the target shape even if the temperature of each mirror element 16 of the SLM 14 changes. Therefore, the pattern image of the reticle R can always be exposed to each shot area of one lot of wafers with high accuracy.
As described above, the illumination device 8 of the present embodiment includes the illumination optical system ILS, and the illumination device 8 illuminates the reticle surface Ra with the illumination light IL from the light source 10. In addition, the illumination device 8 includes a plurality of mirror elements 16 that are arranged in the optical path of the illumination light IL and that can control the inclination angles around two orthogonal axes in order to control the reflection angle of light incident on each of the illumination devices. The SLM 14, the thermo camera 20 that monitors the temperature of each mirror element 16, and a drive signal (control amount) for controlling the reflection angle of the incident light of the plurality of mirror elements 16 are set and monitored by the thermo camera 20. The illumination control unit 36 and the SLM control system 17 that correct the drive signal based on the temperature of the plurality of mirror elements 16 are provided.
 また、照明装置8を用いる照明方法は、SLM14の複数のミラー要素16に対して入射光の反射角を制御するための駆動信号(制御量)を設定するステップ122と、光源10からの照明光ILで複数のミラー要素16を介してレチクル面Raを照明するステップ132と、複数のミラー要素16の温度をモニタするステップ126と、その温度のモニタ結果に基づいて複数のミラー要素16の駆動信号を補正するステップ128とを含んでいる。 The illumination method using the illumination device 8 includes step 122 for setting a drive signal (control amount) for controlling the reflection angle of incident light with respect to the plurality of mirror elements 16 of the SLM 14, and illumination light from the light source 10. Illuminating the reticle surface Ra through the plurality of mirror elements 16 with IL, step 126 for monitoring the temperatures of the plurality of mirror elements 16, and drive signals for the plurality of mirror elements 16 based on the monitoring results of the temperatures And step 128 for correcting.
 本実施形態によれば、複数のミラー要素16を介してレチクル面Raを照明するときに、各ミラー要素16の温度の計測値に基づいて、温度変化によるミラー要素16の反射面の角度の変動を抑制するように各ミラー要素16の駆動信号を補正している。従って、照明光学系ILSのフライアイレンズ25の入射面25Iにおける照明光ILの光強度分布を一定に維持することができ、この結果、照明瞳面IPPにおける瞳形状の変動を抑制できる。 According to the present embodiment, when the reticle surface Ra is illuminated through the plurality of mirror elements 16, the angle variation of the reflecting surface of the mirror element 16 due to the temperature change is based on the measured value of the temperature of each mirror element 16. The drive signal of each mirror element 16 is corrected so as to suppress this. Therefore, the light intensity distribution of the illumination light IL on the incident surface 25I of the fly-eye lens 25 of the illumination optical system ILS can be kept constant, and as a result, the pupil shape variation on the illumination pupil plane IPP can be suppressed.
 また、本実施形態の露光装置EXは、露光用の照明光ILでレチクルRのパターンを照明し、照明光ILでそのパターン及び投影光学系PLを介してウエハWを露光する露光装置において、照明装置8を備え、照明装置8からの照明光を照明光ILとして使用している。この露光装置EXによれば、露光を継続して行っても瞳形状が目標とする形状に維持されるため、レチクルRのパターンの像を常に高精度にウエハWに露光できる。 The exposure apparatus EX of the present embodiment is an exposure apparatus that illuminates the pattern of the reticle R with the illumination light IL for exposure and exposes the wafer W with the illumination light IL through the pattern and the projection optical system PL. The apparatus 8 is provided, and the illumination light from the illumination apparatus 8 is used as the illumination light IL. According to this exposure apparatus EX, even if the exposure is continued, the pupil shape is maintained at the target shape, so that the pattern image of the reticle R can always be exposed onto the wafer W with high accuracy.
 なお、本実施形態では、SLM14の各ミラー要素16の温度の計測値を用いて各ミラー要素16の駆動信号を補正しているが、例えば各ミラー要素16の温度変化の履歴を求め、その温度変化の履歴に基づいて当該ミラー要素16の駆動信号の補正量を変えてもよい。即ち、各ミラー要素16は、照明光ILの照射熱による温度の上昇によって、同じ駆動信号でも傾斜角が大きくなっている。このため、全部のミラー要素16のうちで、例えば照射熱によって温度が高い状態が長時間継続しているミラー要素16では、同じ温度であっても傾斜角が大きく変化する場合がある。このような場合には、照明制御部36は、サーモカメラ20を用いて各ミラー要素16の温度を計測するときに、各ミラー要素16の温度が所定の設定温度を超えた時間を積算して、各ミラー要素16がその設定温度以上になった時間(温度変化の履歴)を記憶装置33に記憶する。そして、各ミラー要素16の温度の計測値に基づいて、各ミラー要素16の駆動信号を補正する場合には、記憶装置33から読み出した当該ミラー要素16がその設定温度を超えていた時間に応じてその駆動信号の補正量を次第に大きくしてもよい。 In this embodiment, the drive signal of each mirror element 16 is corrected using the measured value of the temperature of each mirror element 16 of the SLM 14, but for example, a history of temperature change of each mirror element 16 is obtained and the temperature The correction amount of the drive signal for the mirror element 16 may be changed based on the change history. That is, each mirror element 16 has a large inclination angle even with the same drive signal due to a temperature rise due to the irradiation heat of the illumination light IL. For this reason, among all the mirror elements 16, for example, in the mirror elements 16 in which the high temperature state continues for a long time due to irradiation heat, the tilt angle may change greatly even at the same temperature. In such a case, when measuring the temperature of each mirror element 16 using the thermo camera 20, the illumination control unit 36 integrates the time when the temperature of each mirror element 16 exceeds a predetermined set temperature. The time (temperature change history) at which each mirror element 16 is equal to or higher than the set temperature is stored in the storage device 33. And when correcting the drive signal of each mirror element 16 based on the measured value of the temperature of each mirror element 16, according to the time when the mirror element 16 read from the storage device 33 has exceeded its set temperature. The amount of correction of the drive signal may be gradually increased.
 また、照明制御部36は、SLM14の全部のミラー要素16のうちで、温度がその設定温度を超えた時間の積算値が所定の規格値を超えたミラー要素16については、主制御系35を介して例えばメンテナンス対象としてオペレータに知らせてもよい。又は、温度がその設定温度を超えた時間の積算値の多いミラー要素16から、メンテナンスの優先順位を高く設定してもよい。メンテナンスによって、一例として、当該ミラー要素16が別のミラー要素16で代替される。 In addition, the illumination control unit 36 sets the main control system 35 for the mirror elements 16 in which the integrated value of the time when the temperature exceeds the set temperature among the all mirror elements 16 of the SLM 14 exceeds a predetermined standard value. For example, the operator may be informed as a maintenance target. Alternatively, the maintenance priority may be set higher from the mirror element 16 having a large integrated value of the time when the temperature exceeds the set temperature. By maintenance, for example, the mirror element 16 is replaced with another mirror element 16.
 なお、本実施形態では、サーモカメラ20を用いてSLM14の全部のミラー要素16の温度を計測している。しかしながら、図1のSLM14の全部のミラー要素16を図9(A)に示すように複数のブロックB(i1,j1)(i1,j1は1以上の整数)に分割し、各ブロックB(i1,j1)単位で温度を計測してもよい。図9(A)において、SLM14の多数のミラー要素16の直交する2つの配列方向に沿ってY軸及びZ軸を設定し、Y方向にi番目でZ方向にj番目(i,jは1以上の整数)のミラー要素16がある位置をQ(i,j)としている。さらに、ブロックB(i1,j1)は、Y方向にN行でZ方向にM列(N,Mは1以上の整数で、N,Mの少なくとも一方は2以上の整数)に配列された複数のミラー要素16を含んでいる。 In this embodiment, the temperature of all the mirror elements 16 of the SLM 14 is measured using the thermo camera 20. However, as shown in FIG. 9A, all the mirror elements 16 of the SLM 14 of FIG. 1 are divided into a plurality of blocks B (i1, j1) (i1, j1 are integers of 1 or more), and each block B (i1 , J1) The temperature may be measured in units. In FIG. 9A, the Y-axis and the Z-axis are set along two orthogonal arrangement directions of the many mirror elements 16 of the SLM 14, and the i-th in the Y-direction and the j-th in the Z-direction (i and j are 1). The position where the mirror element 16 of the above integer) is Q (i, j). Further, a plurality of blocks B (i1, j1) are arranged in N rows in the Y direction and M columns in the Z direction (N and M are integers of 1 or more, and at least one of N and M is an integer of 2 or more). The mirror element 16 is included.
 この場合には、ブロックB(i1,j1)の配列情報が記憶装置33に記憶される。そして、図6のステップ108及び図7のステップ126において、サーモカメラ20を用いて各ブロックB(i1,j1)内の複数のミラー要素16の平均的な温度T(i1,j1)が計測される。そして、図6のステップ118では、温度T(i1,j1)の計測値に基づいて、各ミラー要素16の駆動信号の温度変化に対する補正量が求められる。これに対応して、図7のステップ126では、温度T(i1,j1)の計測値に基づいて、各ミラー要素16の駆動信号が補正される。 In this case, the arrangement information of the block B (i1, j1) is stored in the storage device 33. In step 108 in FIG. 6 and step 126 in FIG. 7, the average temperature T (i1, j1) of the plurality of mirror elements 16 in each block B (i1, j1) is measured using the thermo camera 20. The In step 118 of FIG. 6, the correction amount for the temperature change of the drive signal of each mirror element 16 is obtained based on the measured value of the temperature T (i1, j1). Correspondingly, in step 126 of FIG. 7, the drive signal of each mirror element 16 is corrected based on the measured value of the temperature T (i1, j1).
 なお、本実施形態では、ミラー要素16の温度は非接触式の温度計(例えばサーモカメラ20)よりなる温度センサで計測されているが、ミラー要素16の温度は、接触式の温度計よりなる温度センサで計測してもよい。
 例えば、SLM14の複数のミラー要素16の温度をブロックB(i1,j1)毎に計測する場合には、接触式の温度計としての温度計測素子を用いて各ブロックB(i1,j1)の駆動基板部15の温度を直接計測してもよい。このように温度計測素子を設けた空間光変調器の構成例を図9(B)に示す。
In this embodiment, the temperature of the mirror element 16 is measured by a temperature sensor made up of a non-contact type thermometer (for example, the thermo camera 20), but the temperature of the mirror element 16 is made up of a contact type thermometer. You may measure with a temperature sensor.
For example, when the temperature of the plurality of mirror elements 16 of the SLM 14 is measured for each block B (i1, j1), the drive of each block B (i1, j1) is performed using a temperature measuring element as a contact-type thermometer. You may measure the temperature of the board | substrate part 15 directly. FIG. 9B shows a configuration example of the spatial light modulator provided with the temperature measuring element in this way.
 図9(B)は、変形例の空間光変調器14A(以下、SLM14Aという)の複数のミラー16のアレイの一部を示す。図9(B)において、ミラー要素16のアレイはY方向及びZ方向に複数のミラー要素16を含むブロックB(i1,j1)に分けられている。一例として、各ブロックB(i1,j1)の中央の駆動基板部15の表面にそれぞれ例えばサーミスタ又は白金抵抗体等の温度計測素子52が固定される。SLM14Aは図1のSLM14の代わりに照明光路に設置することができる。なお、温度計測素子52としては、サーミスタ(サーミスタ温度計)若しくは白金抵抗体(抵抗温度計)以外の熱電対温度計、半導体温度計等を含む任意の電気式の温度計が使用可能である。さらに、温度計測素子52としては、電気式の温度計の代わりに、バイメタル、熱膨張温度計、又は磁気温度計等の任意の機械式の温度計も使用可能である。 FIG. 9B shows a part of an array of a plurality of mirrors 16 of a modified spatial light modulator 14A (hereinafter referred to as SLM 14A). In FIG. 9B, the array of mirror elements 16 is divided into blocks B (i1, j1) including a plurality of mirror elements 16 in the Y direction and the Z direction. As an example, a temperature measuring element 52 such as a thermistor or a platinum resistor is fixed to the surface of the driving substrate unit 15 at the center of each block B (i1, j1). The SLM 14A can be installed in the illumination light path instead of the SLM 14 of FIG. As the temperature measuring element 52, any electric thermometer including a thermocouple thermometer other than a thermistor (thermistor thermometer) or a platinum resistor (resistance thermometer), a semiconductor thermometer, or the like can be used. Furthermore, as the temperature measuring element 52, any mechanical thermometer such as a bimetal, a thermal expansion thermometer, or a magnetic thermometer can be used instead of the electric thermometer.
 また、SLM14Aを照明光路に設置したときには、SLM14Aの温度計測素子52で計測される各ブロックB(i1,j1)の温度情報が図1の照明制御部36に供給される。この場合には、サーモカメラ20及び温度マップ作成装置34を設ける必要はない。照明制御部36では、温度計測素子52の計測値を用いて、瞳形状が変化しないように、ミラー要素16の駆動信号を補正することができる。 When the SLM 14A is installed in the illumination optical path, the temperature information of each block B (i1, j1) measured by the temperature measurement element 52 of the SLM 14A is supplied to the illumination control unit 36 in FIG. In this case, it is not necessary to provide the thermo camera 20 and the temperature map creation device 34. The illumination control unit 36 can correct the drive signal of the mirror element 16 so that the pupil shape does not change using the measurement value of the temperature measurement element 52.
 なお、SLM14Aのミラー要素16の配置スペースに余裕がある場合には、例えば各ミラー要素16の裏面に温度計測素子を設け、温度計測素子によって各ミラー要素16の温度を直接計測し、この計測値を用いて各ミラー要素16の駆動信号を補正してもよい。
 また、上記の実施形態では、SLM14,14Aのミラー要素16毎にそれぞれ駆動信号を補正している。しかしながら、その代わりに、例えば照明瞳面IPPにおける瞳形状が通常照明又は複数極照明の場合のように比較的単純である場合には、例えば図9(A)のSLM14の複数のブロックB(i1,j1)を単位として、ブロックB(i1,j1)内の全部のミラー要素16の駆動量を共通の駆動量に設定してもよい。この場合には、ブロックB(i1,j1)に温度を計測し、この温度の計測結果に基づいて、ブロックB(i1,j1)単位でミラー要素16の駆動信号を共通の補正量で補正してもよい。これによって、ミラー要素16の数が多い場合でも、全部のミラー要素16の制御が容易になる。
In addition, when there is room in the arrangement space of the mirror element 16 of the SLM 14A, for example, a temperature measurement element is provided on the back surface of each mirror element 16, and the temperature of each mirror element 16 is directly measured by the temperature measurement element. May be used to correct the driving signal of each mirror element 16.
In the above embodiment, the drive signal is corrected for each mirror element 16 of the SLMs 14 and 14A. However, instead, for example, when the pupil shape on the illumination pupil plane IPP is relatively simple as in the case of normal illumination or multipole illumination, for example, the plurality of blocks B (i1) of the SLM 14 of FIG. , J1) as a unit, the drive amount of all the mirror elements 16 in the block B (i1, j1) may be set to a common drive amount. In this case, the temperature is measured in the block B (i1, j1), and the drive signal of the mirror element 16 is corrected with a common correction amount in units of the block B (i1, j1) based on the temperature measurement result. May be. Accordingly, even when the number of mirror elements 16 is large, control of all the mirror elements 16 is facilitated.
 [第2の実施形態]
 本発明の第2の実施形態につき図10を参照して説明する。本実施形態においても図1の露光装置EXを使用するが、本実施形態ではSLM14のミラー要素16の温度情報を間接的にモニタするためにインテグレータセンサ23及び積算部40を用いて計測される照明光ILの積算エネルギーを用いる。従って、本実施形態では、サーモカメラ20は必ずしも必要ではない。さらに、本実施形態では、SLM14の全部のミラー要素16を、図9(A)にその一部を示すように、複数のブロックB(i1,j1)(i1,j1は1以上の整数)に分けて、ミラー要素16の駆動量をブロックB(i1,j1)単位で設定する。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. Although the exposure apparatus EX of FIG. 1 is also used in this embodiment, in this embodiment, illumination is measured using the integrator sensor 23 and the integrating unit 40 in order to indirectly monitor the temperature information of the mirror element 16 of the SLM 14. The integrated energy of light IL is used. Accordingly, in the present embodiment, the thermo camera 20 is not always necessary. Further, in this embodiment, all the mirror elements 16 of the SLM 14 are arranged in a plurality of blocks B (i1, j1) (i1, j1 are integers of 1 or more) as shown in part of FIG. In other words, the drive amount of the mirror element 16 is set in units of block B (i1, j1).
 本実施形態の照明方法を含む露光方法の一例につき図10のフローチャートを参照して説明する。なお、図10において、図7に対応するステップには同一の符号を付してその詳細な説明を省略する。この動作は主制御系35によって制御される。また、本実施形態では、予め各照明条件について、瞳形状(照明瞳面IPPにおける光強度分布)を一定に維持するための、照明光ILの積算エネルギーとSLM14の複数のミラー要素16のブロックB(i1,j1)毎の駆動信号の補正量との関係が求められており、その関係が記憶装置33に記憶されている。 An example of an exposure method including the illumination method of this embodiment will be described with reference to the flowchart of FIG. In FIG. 10, steps corresponding to those in FIG. 7 are denoted by the same reference numerals, and detailed description thereof is omitted. This operation is controlled by the main control system 35. In the present embodiment, the integrated energy of the illumination light IL and the block B of the plurality of mirror elements 16 of the SLM 14 for maintaining a constant pupil shape (light intensity distribution on the illumination pupil plane IPP) for each illumination condition in advance. A relationship with the correction amount of the drive signal for each (i1, j1) is obtained, and the relationship is stored in the storage device 33.
 そして、図10のステップ120(レチクルのロード)に続くステップ150において、照明制御部36は、SLM14のミラー要素16に関して図9(A)の各ブロックB(i1,j1)内に含まれる全部のミラー要素16の位置Q(i,j)の情報を含むブロック図の配列情報を記憶装置33に記憶する。次のステップ152において、照明制御部36は、レチクルR用の照明条件に応じて、SLM14のブロックB(i1,j1)毎にミラー要素16の2軸の回りの傾斜角(角度)をSLM制御系17に設定し、SLM制御系17は、その傾斜角に対応する駆動信号で各ミラー要素16を駆動する。 In step 150 subsequent to step 120 (loading of the reticle) in FIG. 10, the illumination control unit 36 relates to all the mirror elements 16 in the SLM 14 included in each block B (i1, j1) in FIG. The arrangement information of the block diagram including the information on the position Q (i, j) of the mirror element 16 is stored in the storage device 33. In the next step 152, the illumination control unit 36 performs SLM control on the tilt angles (angles) of the mirror element 16 about the two axes for each block B (i1, j1) of the SLM 14 in accordance with the illumination conditions for the reticle R. In the system 17, the SLM control system 17 drives each mirror element 16 with a drive signal corresponding to the tilt angle.
 また、次のステップ124(ウエハのロード)に続くステップ154において、照明制御部36は、積算部40から照明光ILの積算エネルギーΣEを取り込む。次のステップ156において、照明制御部36は、記憶装置33に記憶されている上記の積算エネルギーと補正量との関係、及びその積算エネルギーΣEを用いて、SLM14のブロックB(i1,j1)毎にミラー要素16の駆動信号の補正量を求め、この補正量をSLM制御系17に設定する。これに応じてSLM制御系17は、各ミラー要素16の駆動信号をその補正量だけ補正する。 Further, in step 154 following the next step 124 (wafer loading), the illumination control unit 36 takes in the integrated energy ΣE of the illumination light IL from the integrating unit 40. In the next step 156, the illumination control unit 36 uses the relationship between the accumulated energy and the correction amount stored in the storage device 33 and the accumulated energy ΣE for each block B (i1, j1) of the SLM 14. Then, the correction amount of the drive signal of the mirror element 16 is obtained, and this correction amount is set in the SLM control system 17. In response to this, the SLM control system 17 corrects the drive signal of each mirror element 16 by the correction amount.
 その後、照明光の発光(ステップ130)、SLM14のミラー要素16からの反射光によるレチクル面Raの照明(ステップ132)、及びウエハWの走査露光(ステップ134)が実行される。これ以外の動作は第1の実施形態と同様である。
 従って、本実施形態の照明方法は、図1の光源10から供給される照明光ILを用いてレチクル面Raを照明する照明方法であって、SLM14の全部のミラー要素16をそれぞれ複数のミラー要素16を含む複数のブロックB(i1,j1)に分け、複数のブロックB(i1,j1)の配列を記憶するステップ150と、複数のブロックB(i1,j1)毎に、照明瞳面IPPにおける瞳形状を目標とする形状に設定するように複数のミラー要素16の駆動信号を設定するステップ152と、複数のブロックB(i1,j1)毎に、インテグレータセンサ23を介して計測される照明光ILの積算エネルギーに基づいて、瞳形状が変動しないように、複数のミラー要素16の駆動信号を補正するステップ156と、を含んでいる。
Thereafter, emission of illumination light (step 130), illumination of the reticle surface Ra with reflected light from the mirror element 16 of the SLM 14 (step 132), and scanning exposure of the wafer W (step 134) are performed. Other operations are the same as those in the first embodiment.
Therefore, the illumination method of the present embodiment is an illumination method that illuminates the reticle surface Ra using the illumination light IL supplied from the light source 10 of FIG. 1, and each of the mirror elements 16 of the SLM 14 is a plurality of mirror elements. In step 150 for storing the arrangement of the plurality of blocks B (i1, j1), and for each of the plurality of blocks B (i1, j1), in the illumination pupil plane IPP The step 152 for setting the drive signals of the plurality of mirror elements 16 so as to set the pupil shape to the target shape, and the illumination light measured via the integrator sensor 23 for each of the plurality of blocks B (i1, j1) And a step 156 of correcting the drive signals of the plurality of mirror elements 16 so that the pupil shape does not fluctuate based on the integrated energy of IL.
 本実施形態において、ウエハの露光枚数が増加するにつれて、SLM14のミラー要素16の温度が上昇すると、照明光ILの積算エネルギーも大きくなる。従って、ステップ156で、積算エネルギーに基づいてSLM14のミラー要素16の駆動信号を補正することによって、瞳形状の変動を抑制でき、常に高精度にレチクルRのパターンの像をウエハWに露光できる。 In this embodiment, as the number of exposed wafers increases, the integrated energy of the illumination light IL increases as the temperature of the mirror element 16 of the SLM 14 increases. Accordingly, in step 156, by correcting the drive signal of the mirror element 16 of the SLM 14 based on the accumulated energy, fluctuations in the pupil shape can be suppressed, and the image of the pattern of the reticle R can always be exposed on the wafer W with high accuracy.
 さらに、複数のブロックB(i1,j1)毎に補正量を求めればよいため、制御が容易である。
 なお、本実施形態においても、サーモカメラ20(非接触式の温度計)又は図9(B)の温度計測素子52(接触式の温度計)等のSLM14のミラー要素16の温度情報をブロック(i1,j1)毎に計測する温度センサを設けてもよい。この場合には、ステップ156において、インテグレータセンサ23を介して計測される積算エネルギーΣEの代わりに、その温度センサで計測される複数のブロックB(i1,j1)毎の温度を用いて複数のブロックB(i1,j1)毎の補正量を求めてもよい。
Furthermore, since the correction amount has only to be obtained for each of the plurality of blocks B (i1, j1), the control is easy.
In this embodiment, the temperature information of the mirror element 16 of the SLM 14 such as the thermo camera 20 (non-contact type thermometer) or the temperature measuring element 52 (contact type thermometer) of FIG. You may provide the temperature sensor measured for every i1, j1). In this case, in step 156, instead of the integrated energy ΣE measured via the integrator sensor 23, a plurality of blocks using the temperatures of the plurality of blocks B (i1, j1) measured by the temperature sensor. A correction amount for each B (i1, j1) may be obtained.
 また、上記の各実施形態では、瞳モニタ60を用いて瞳形状の変化量、ひいてはSLM14のミラー要素16の温度と傾斜角との関係を求めている。しかしながら、ミラー要素16の温度と傾斜角との関係は、別途SLM14単体で求めておいてもよい。この場合には、図6のミラー要素16の駆動信号の補正量を求める動作は省略してもよい。 In each of the above embodiments, the pupil monitor 60 is used to determine the amount of change in the pupil shape, and thus the relationship between the temperature of the mirror element 16 of the SLM 14 and the tilt angle. However, the relationship between the temperature of the mirror element 16 and the tilt angle may be obtained separately for the SLM 14 alone. In this case, the operation for obtaining the correction amount of the drive signal of the mirror element 16 in FIG. 6 may be omitted.
 また、上記の実施形態では、入射面25I又は照明瞳面IPPにおける光強度分布(光量分布)を設定するために複数のミラー要素16の直交する2軸の回りの傾斜角を制御可能なSLM14,14Aが使用されている。しかしながら、SLM14,14Aの代わりに、それぞれ反射面の法線方向の位置が制御可能な複数のミラー要素のアレイを有する空間光変調器を使用する場合にも、本発明が適用可能である。このような空間光変調器としては、たとえば米国特許第5,312,513号明細書、並びに米国特許第6,885,493号明細書の図1dに開示される空間光変調器を用いることができる。これらの空間光変調器では、二次元的な高さ分布を形成することで回折面と同様の作用を入射光に与えることができる。なお、上述した二次元的に配列された複数の反射面を持つ空間光変調器を、たとえば米国特許第6,891,655号明細書や、米国特許出願公開第2005/0095749号明細書の開示に従って変形しても良い。さらに、SLM14,14Aの代わりに、例えばそれぞれ入射する光の状態(反射角、屈折角、透過率等)を制御可能な複数の光学要素を備える任意の光変調器を使用する場合にも、本発明が適用可能である。 In the above-described embodiment, the SLM 14 that can control the inclination angles around two orthogonal axes of the plurality of mirror elements 16 in order to set the light intensity distribution (light quantity distribution) on the incident surface 25I or the illumination pupil plane IPP. 14A is used. However, the present invention can also be applied to a case where a spatial light modulator having an array of a plurality of mirror elements each capable of controlling the position of the reflecting surface in the normal direction is used instead of the SLMs 14 and 14A. As such a spatial light modulator, for example, the spatial light modulator disclosed in FIG. 1d of US Pat. No. 5,312,513 and US Pat. No. 6,885,493 may be used. it can. In these spatial light modulators, by forming a two-dimensional height distribution, an action similar to that of the diffractive surface can be given to incident light. The above-mentioned spatial light modulator having a plurality of two-dimensionally arranged reflecting surfaces is disclosed in, for example, US Pat. No. 6,891,655 and US Patent Application Publication No. 2005/0095749. May be deformed according to Further, in place of the SLMs 14 and 14A, for example, when an arbitrary optical modulator including a plurality of optical elements capable of controlling the state of incident light (reflection angle, refraction angle, transmittance, etc.) is used, The invention is applicable.
 また、上記の実施形態ではオプティカルインテグレータとして図1の波面分割型のインテグレータであるフライアイレンズ25が使用されている。しかしながら、オプティカルインテグレータとしては、内面反射型のオプティカルインテグレータとしてのロッド型インテグレータを用いることもできる。 In the above embodiment, the fly-eye lens 25, which is the wavefront division type integrator shown in FIG. 1, is used as the optical integrator. However, as the optical integrator, a rod type integrator as an internal reflection type optical integrator can be used.
 また、上述の実施形態において、露光装置の投影光学系は縮小系のみならず等倍及び拡大系のいずれでも良いし、投影光学系は屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、この投影像は倒立像及び正立像のいずれでも良い。
 また、例えば国際公開第2001/035168号パンフレットに開示されているように、干渉縞をウエハW上に形成することによって、ウエハW上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)に適用することができる。
 さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを、投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置に適用することができる。
In the above-described embodiment, the projection optical system of the exposure apparatus may be not only a reduction system but also an equal magnification and an enlargement system. The projected image may be either an inverted image or an erect image.
Further, as disclosed in, for example, International Publication No. 2001/035168 pamphlet, an exposure apparatus (lithography system) that forms line and space patterns on the wafer W by forming interference fringes on the wafer W. Can be applied to.
Further, as disclosed in, for example, US Pat. No. 6,611,316, two reticle patterns are synthesized on a wafer via a projection optical system, and 1 on the wafer by one scan exposure. The present invention can be applied to an exposure apparatus that performs double exposure of two shot areas almost simultaneously.
 なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものでなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど他の物体でも良い。
 また、上記実施形態において、米国特許出願公開第2006/0170901号明細書、米国特許出願公開第2007/0146676号明細書に開示される、いわゆる偏光照明方法を適用することも可能である。
 また、上述の実施形態では、露光装置においてマスク(またはウェハ)を照明する照明光学系に対して本発明を適用しているが、これに限定されることなく、マスク(またはウェハ)以外の被照射面を照明する一般的な照明光学系に対して本発明を適用することもできる。
In the above embodiment, the object on which the pattern is to be formed (the object to be exposed to which the energy beam is irradiated) is not limited to the wafer, but may be another object such as a glass plate, a ceramic substrate, a film member, or a mask blank. good.
In the above-described embodiment, a so-called polarized illumination method disclosed in US Patent Application Publication No. 2006/0170901 and US Patent Application Publication No. 2007/0146676 can be applied.
In the above-described embodiment, the present invention is applied to the illumination optical system that illuminates the mask (or wafer) in the exposure apparatus. However, the present invention is not limited to this, and an object other than the mask (or wafer) is used. The present invention can also be applied to a general illumination optical system that illuminates the irradiation surface.
 また、上記の実施形態の露光装置EX又は露光方法を用いて半導体デバイス等の電子デバイス(マイクロデバイス)を製造する場合、この電子デバイスは、図10に示すように、デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造するステップ223、前述した実施形態の露光装置EX又は露光方法によりマスクのパターンを基板に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。 Further, when an electronic device (microdevice) such as a semiconductor device is manufactured using the exposure apparatus EX or the exposure method of the above embodiment, the electronic device has a function / performance design of the device as shown in FIG. Step 221 to be performed, Step 222 to manufacture a mask (reticle) based on this design step, Step 223 to manufacture a substrate (wafer) which is a base material of the device, Mask exposure by the exposure apparatus EX or the exposure method of the above-described embodiment Process of exposing pattern to substrate, process of developing exposed substrate, substrate processing step 224 including heating (curing) and etching process of developed substrate, device assembly step (dicing process, bonding process, packaging process, etc.) Including the process) 225, as well as the inspection step 226, etc. It is produced through.
 言い換えると、上記のデバイスの製造方法は、上記の実施形態の露光装置EX又は露光方法を用いて、マスクのパターンを介して基板(ウエハW)を露光する工程と、その露光された基板を処理する工程(即ち、基板のレジストを現像し、そのマスクのパターンに対応するマスク層をその基板の表面に形成する現像工程、及びそのマスク層を介してその基板の表面を加工(加熱及びエッチング等)する加工工程)と、を含んでいる。 In other words, the device manufacturing method includes the steps of exposing the substrate (wafer W) through the mask pattern using the exposure apparatus EX or the exposure method of the above embodiment, and processing the exposed substrate. (I.e., developing the resist on the substrate and forming a mask layer corresponding to the mask pattern on the surface of the substrate; and processing the surface of the substrate through the mask layer (heating, etching, etc.) ) Processing step).
 このデバイス製造方法によれば、露光装置EXの瞳形状の変動を防止して、レチクルのパターンの像を常に高精度にウエハに露光できるため、電子デバイスを高精度に製造できる。
 なお、本発明は、例えば米国特許出願公開第2007/242247号明細書、又は欧州特許出願公開第1420298号明細書等に開示されている液浸型露光装置にも適用できる。さらに、本発明は、コンデンサー光学系を使用しない照明光学装置にも適用可能である。さらに、本発明は、投影光学系を用いないプロキシミティ方式等の露光装置にも適用することができる。
According to this device manufacturing method, fluctuations in the pupil shape of the exposure apparatus EX can be prevented, and the image of the reticle pattern can always be exposed onto the wafer with high accuracy, so that an electronic device can be manufactured with high accuracy.
The present invention can also be applied to an immersion type exposure apparatus disclosed in, for example, US Patent Application Publication No. 2007/242247 or European Patent Application Publication No. 1420298. Furthermore, the present invention can be applied to an illumination optical apparatus that does not use a condenser optical system. Further, the present invention can also be applied to a proximity type exposure apparatus that does not use a projection optical system.
 また、本発明は、半導体デバイスの製造プロセスへの適用に限定されることなく、例えば、液晶表示素子、プラズマディスプレイ等の製造プロセスや、撮像素子(CMOS型、CCD等)、マイクロマシーン、MEMS(Microelectromechanical Systems:微小電気機械システム)、薄膜磁気ヘッド、及びDNAチップ等の各種デバイス(電子デバイス)の製造プロセスにも広く適用できる。 Further, the present invention is not limited to the application to the manufacturing process of a semiconductor device. For example, a manufacturing process such as a liquid crystal display element and a plasma display, an imaging element (CMOS type, CCD, etc.), a micromachine, a MEMS ( Microelectromechanical systems), thin film magnetic heads, and various devices (electronic devices) such as DNA chips can be widely applied.
 このように本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。また、本願に記載した上記公報、各国際公開パンフレット、米国特許、又は米国特許出願公開明細書における開示を援用して本明細書の記載の一部とする。
 また、明細書、特許請求の範囲、図面、及び要約を含む2010年5月23日付け提出の米国特許出願第61/489,002号の全ての開示内容は、そっくりそのまま引用して本願に組み込まれている。
As described above, the present invention is not limited to the above-described embodiment, and various configurations can be taken without departing from the gist of the present invention. In addition, the disclosures in the above-mentioned publications, international publication pamphlets, US patents, or US patent application publication specifications described in the present application are incorporated into the description of this specification.
The entire disclosure of US Patent Application No. 61 / 489,002 filed May 23, 2010, including the description, claims, drawings, and abstract, is incorporated herein by reference in its entirety. It is.
 また、米国特許法第112条(35U.S.C.§112)を満足するために必要とされる詳細において本特許出願において説明しかつ例示した「表題」の実施形態の特定の態様は、上述の実施形態の態様のあらゆる上述の目的、及び上述の実施形態の態様により又はその目的のあらゆる他の理由で又はその目的にために解決すべき問題を完全に達成することができるが、請求した内容の上述の実施形態のここで説明した態様は、請求した内容によって広く考察された内容を単に例示しかつ代表することは、当業者によって理解されるものとする。実施形態のここで説明しかつ主張する態様の範囲は、本明細書の教示内容に基づいて当業者に現在明らかであると考えられるか又は明らかになると考えられる他の実施形態を漏れなく包含するものである。本発明の「表題」の範囲は、単独にかつ完全に特許請求の範囲によってのみ限定され、いかなるものも特許請求の範囲の詳細説明を超えるものではない。単数形でのこのような請求項における要素への言及は、解釈において、明示的に説明していない限り、このような要素が「1つ及び1つのみ」であることを意味するように意図しておらず、かつ意味しないものとし、「1つ又はそれよりも多い」を意味する意図とし、かつ意味するものとする。当業者に公知か又は後で公知になる実施形態の上述の態様の要素のいずれかに対する全ての構造的及び機能的均等物は、引用により本明細書に明示的に組み込まれると共に、特許請求の範囲によって包含されるように意図されている。本明細書及び/又は本出願の請求項に使用され、かつ本明細書及び/又は本出願の請求項に明示的に意味を与えられたあらゆる用語は、このような用語に関するあらゆる辞書上の意味又は他の一般的に使用される意味によらず、その意味を有するものとする。実施形態のいずれかの態様として本明細書で説明した装置又は方法は、それが特許請求の範囲によって包含されるように本出願において開示する実施形態の態様によって解決するように求められる各及び全て問題に対処することを意図しておらず、また必要でもない。本発明の開示内容におけるいかなる要素、構成要素、又は方法段階も、その要素、構成要素、又は方法段階が特許請求の範囲において明示的に詳細に説明されているか否かに関係なく、一般大衆に捧げられることを意図したものではない。特許請求の範囲におけるいかなる請求項の要素も、その要素が「~のための手段」という語句を使用して明示的に列挙されるか又は方法の請求項の場合にはその要素が「作用」ではなく「段階」として列挙されていない限り、米国特許法第112条(35U.S.C.§112)第6項の規定に基づいて解釈されないものとする。 Also, certain aspects of the “title” embodiment described and illustrated in this patent application in the details required to satisfy 35 USC 112 (35 USC 112) are: Any of the above-mentioned objects of the above-described embodiments, and the problems to be solved by or for any other reason of the above-mentioned embodiments, can be fully achieved. It is to be understood by those skilled in the art that the described aspects of the above-described embodiments of the foregoing merely exemplify and represent what is broadly contemplated by the claimed content. The scope of the presently described and claimed aspects of the embodiments encompasses all other embodiments that are presently believed or will be apparent to those of ordinary skill in the art based on the teachings herein. Is. The scope of the “title” of the present invention is limited solely and completely by the claims, and nothing in any way exceeds the detailed description of the claims. References to elements in such claims in the singular are intended to mean that such elements are "one and only one" unless explicitly stated in the interpretation. Not intended and meaningless, and intended and meant to mean "one or more". All structural and functional equivalents of any of the above-described aspects of embodiments known to those skilled in the art or later known are expressly incorporated herein by reference and are It is intended to be covered by a range. Any term used in the specification and / or claims of this application and expressly given meaning to this specification and / or claims of this application shall have any dictionary meaning for such terms. Or shall have its meaning regardless of other commonly used meanings. Each or all of the apparatus or methods described herein as any aspect of an embodiment is sought to be solved by the aspects of the embodiment disclosed in this application, as it is encompassed by the claims. It is not intended or necessary to deal with the problem. Any element, component, or method step in the disclosure of the present invention will be disclosed to the general public regardless of whether the element, component, or method step is explicitly described in detail in the claims. It is not intended to be dedicated. Any claim element in a claim is either explicitly recited using the phrase “means for” or the element is “action” in the case of a method claim. Unless enumerated as “steps”, it shall not be construed in accordance with the provisions of Section 6 of 35 USC 112 (35 USC § 112).
 米国の特許法(35U.S.C.)の準拠において、本出願人は、本出願の明細書に添付されたあらゆるそれぞれの請求項、一部の場合には1つの請求項だけにおいて説明した各発明の少なくとも1つの権能付与的かつ作用する実施形態を開示したことが当業者によって理解されるであろう。本出願人は、開示内容の実施形態の態様/特徴/要素、開示内容の実施形態の作用、又は開示内容の実施形態の機能を定義し、及び/又は開示内容の実施形態の態様/特徴/要素のあらゆる他の定義を説明する際に、随時又は本出願を通して、定義的な動詞(例えば、「is」、「are」、「does」、「has」、又は「include」など)、及び/又は他の定義的な動詞(例えば、「生成する」、「引き起こす」、「サンプリングする」、「読み取る」、又は「知らせる」など)、及び/又は動名詞(例えば、「生成すること」、「使用すること」、「取ること」、「保つこと」、「製造すること」、「判断すること」、「測定すること」、又は「計算すること」など)を使用した。あらゆるこのような定義的語又は語句などが、本明細書で開示する1つ又はそれよりも多くの実施形態のいずれかの態様/特徴/要素、すなわち、あらゆる特徴、要素、システム、サブシステム、処理、又はアルゴリズムの段階、特定の材料などを説明するのに使用されている場合は、常に、本出願人が発明しかつ請求したものに関する本発明の範囲を解釈するために、以下の制限的語句、すなわち、「例示的に」、「例えば、」、「一例として」、「例示的に単に」、「例示的にのみ」などの1つ又はそれよりも多く又は全てが先行し、及び/又は語句「することができる」、「する可能性がある」、「かもしれない」、及び「することができるであろう」などのいずれか1つ又はそれよりも多く又は全てを含むと読むべきである。全てのこのような特徴、要素、段階、及び材料などは、たとえ特許法の要件の準拠において本出願人が特許請求した内容の実施形態又はいずれかの実施形態のあらゆるそのような態様/特徴/要素の単一の権能付与的な実施例だけを開示したとしても、1つ又はそれよりも多くの開示した実施形態の単に可能な態様として説明されており、いずれかの実施形態のいずれか1つ又はそれよりも多くの態様/特徴/要素の唯一の可能な実施、及び/又は特許請求した内容の唯一の可能な実施形態としで説明していないと考えるべきである。本出願又は本出願の実施において、特許請求の範囲のあらゆる開示する実施形態又はあらゆる特定の本発明の開示する実施形態の特定的な態様/特徴/要素が、特許請求の範囲の内容又はあらゆるそのような特許請求の範囲に説明されるあらゆる態様/特徴/要素を実行する1つ及び唯一の方法になると本出願人が考えていることを明示的かつ具体的に特に示さない限り、本出願人は、本特許出願の特許請求の範囲の内容のあらゆる開示する実施形態のあらゆる開示した態様/特徴/要素又は実施形態全体のあらゆる説明が、特許請求の範囲の内容又はそのあらゆる態様/特徴/要素を実行するそのような1つ及び唯一の方法であり、従って、特許請求の範囲の内容の他の可能な実施例と共にあらゆるそのように開示した実施例を包含するのに十分に広範囲にわたるものであるあらゆる特許請求の範囲をこのような開示した実施形態のそのような態様/特徴/要素又はそのような開示した実施形態に限定するように解釈されることを意図していない。本出願人は、1つ又は複数の親請求項に説明した特許請求の範囲の内容又は直接又は間接的に従属する請求項のあらゆる態様/特徴/要素、段階のようなあらゆる詳細と共にいずれかの請求項に従属する従属請求項を有するあらゆる請求項は、親請求項の説明事項が、他の実施例と共に従属請求項内に更なる詳細を包含するのに十分に広範囲にわたるものであること、及び更なる詳細が、あらゆるこのような親請求項で請求する態様/特徴/要素を実行し、従って従属請求項の更なる詳細を親請求項に取り込むことによって含むあらゆるこのような親請求項のより幅広い態様/特徴/要素の範囲をいかなる点においても制限するいずれかの従属請求項に説明されるいずれかのこのような態様/特徴/要素の更なる詳細に限られる唯一の方法ではないことを意味するように解釈されるべきであることを具体的、明示的、かつ明解に意図するものである。 In compliance with US patent law (35 USC), Applicant has described in each and every claim, and in some cases only one claim, attached to the specification of this application. It will be appreciated by those skilled in the art that at least one authoritative and working embodiment of each invention has been disclosed. Applicants define aspects / features / elements of disclosed embodiments, actions of disclosed embodiments, or functions of disclosed embodiments, and / or aspects / features / When describing any other definition of an element, at any time or throughout the application, a definitive verb (eg, “is”, “are”, “does”, “has”, “include”, etc.), and / or Or other definitive verbs (eg, “generate”, “cause”, “sample”, “read”, “notify”, etc.) and / or verbal nouns (eg, “generate,” “ Used "," taking "," keeping "," manufacturing "," determining "," measuring "or" calculating "). Any such defining word or phrase etc. is any aspect / feature / element of one or more embodiments disclosed herein, ie, any feature, element, system, subsystem, In order to interpret the scope of the invention with respect to what the applicant has invented and claimed, whenever used to describe processing, or algorithmic steps, specific materials, etc., the following limiting Preceded by one or more or all of the phrases, i.e. "exemplarily", "e.g.", "as an example", "exemplarily only", "exemplarily only", and / or Or read as including any one or more or all of the phrases "can do", "may be", "may be", and "will be" Should. All such features, elements, steps, materials, etc., are intended to be the embodiment of the subject matter claimed by the applicant in compliance with the requirements of the patent law or any such aspect / feature / Any disclosure of a single authoritative example of an element is only described as a possible aspect of one or more disclosed embodiments, and any one of any embodiments It should be considered that it is not described as the only possible implementation of one or more aspects / features / elements and / or the only possible embodiment of the claimed subject matter. In this application or in the performance of this application, any disclosed embodiment of a claim or any particular aspect / feature / element of any particular disclosed embodiment of the claim Unless otherwise expressly and specifically indicated that the applicant believes that the invention is considered to be one and only way to implement all the aspects / features / elements described in such claims Is any disclosed aspect / feature / element of any disclosed embodiment of the claimed content of this patent application, or any description of the entire embodiment, which is claimed in the claim or any aspect / feature / element of it. One and only way of performing the above, and thus encompassing all such disclosed embodiments together with other possible embodiments of the claimed subject matter. It is intended that all claims, which are sufficiently broad, be construed to limit such aspects / features / elements of such disclosed embodiments or such disclosed embodiments. Absent. The Applicant shall do so with any details such as any aspect / feature / element, step of the content of the claims as set forth in one or more of the parent claims or directly or indirectly dependent claims. Any claim that has a dependent claim that is dependent on a claim, the description of the parent claim, together with other embodiments, is sufficiently broad to encompass further details in the dependent claim; And any further details of such parental claims, including the implementation of the aspects / features / elements claimed in any such parental claims, and thus incorporating further details of the dependent claims into the parental claims. In a single way limited to further details of any such aspects / features / elements described in any dependent claims which in any way limit the scope of the broader aspects / features / elements Specifically, explicit, and in which unequivocally intended that it should be interpreted to mean that there is no.
 EX…露光装置、ILS…照明光学系、R…レチクル、PL…投影光学系、W…ウエハ、IPP…照明瞳面、8…照明装置、10…光源、14…空間光変調器(SLM)、20…サーモカメラ、23…インテグレータセンサ、25…フライアイレンズ、36…照明制御部、60…瞳モニタ EX ... exposure device, ILS ... illumination optical system, R ... reticle, PL ... projection optical system, W ... wafer, IPP ... illumination pupil plane, 8 ... illumination device, 10 ... light source, 14 ... spatial light modulator (SLM), 20 ... Thermo camera, 23 ... Integrator sensor, 25 ... Fly eye lens, 36 ... Illumination controller, 60 ... Pupil monitor

Claims (17)

  1.  供給される光を用いて被照射面を照明する照明方法において、
     並列に配置されてそれぞれに入射する光の状態を制御可能な複数の光学要素の前記入射する光の状態に対する制御量を設定することと、
     前記供給される光で前記複数の光学要素を介して前記被照射面を照明することと、
     前記複数の光学要素の温度情報をモニタすることと、
     前記複数の光学要素の温度情報のモニタ結果に基づいて前記複数の光学要素の前記制御量を補正することと、
    を含む照明方法。
    In the illumination method of illuminating the irradiated surface using the supplied light,
    Setting a control amount for the state of incident light of a plurality of optical elements arranged in parallel and capable of controlling the state of light incident on each of the optical elements;
    Illuminating the irradiated surface with the supplied light through the plurality of optical elements;
    Monitoring temperature information of the plurality of optical elements;
    Correcting the control amount of the plurality of optical elements based on a monitoring result of temperature information of the plurality of optical elements;
    Including lighting method.
  2.  前記複数の光学要素の前記制御量を補正することは、前記複数の光学要素の温度の積算値に応じて前記制御量の補正量を切り替えることを含む請求項1に記載の照明方法。 The lighting method according to claim 1, wherein correcting the control amounts of the plurality of optical elements includes switching the correction amount of the control amounts according to an integrated value of temperatures of the plurality of optical elements.
  3.  前記複数の光学要素は複数のブロックに分割されており、
     前記複数の光学要素の温度情報をモニタするために、前記複数のブロック毎に前記光学要素の温度情報をモニタし、
     前記複数の光学要素の前記制御量を補正するために、前記複数のブロック毎に前記光学要素の前記制御量を補正する請求項1又は2に記載の照明方法。
    The plurality of optical elements are divided into a plurality of blocks;
    In order to monitor the temperature information of the plurality of optical elements, the temperature information of the optical elements is monitored for each of the plurality of blocks,
    The illumination method according to claim 1, wherein the control amount of the optical element is corrected for each of the plurality of blocks in order to correct the control amount of the plurality of optical elements.
  4.  供給される光を用いて被照射面を照明する照明方法において、
     それぞれに入射する光の状態を制御可能な複数の光学要素をそれぞれ複数の光学要素を含む複数のブロックに分け、前記複数のブロックの配列を記憶することと、
     前記複数のブロック毎に、前記複数の光学要素の前記入射する光の状態に対する制御量を設定して、前記供給される光で前記複数の光学要素を介して前記被照射面を照明することと、
     前記複数のブロック毎に前記複数の光学要素の前記制御量を補正することと、
    を含む照明方法。
    In the illumination method of illuminating the irradiated surface using the supplied light,
    Dividing a plurality of optical elements capable of controlling the state of light incident on each into a plurality of blocks each including a plurality of optical elements, and storing an array of the plurality of blocks;
    Illuminating the irradiated surface through the plurality of optical elements with the supplied light by setting a control amount for the incident light state of the plurality of optical elements for each of the plurality of blocks; ,
    Correcting the control amount of the plurality of optical elements for each of the plurality of blocks;
    Including lighting method.
  5.  前記複数の光学要素の前記制御量を補正するために、温度センサを用いて前記複数のブロック毎に前記複数の光学要素の温度情報をモニタする請求項4に記載の照明方法。 5. The illumination method according to claim 4, wherein temperature information of the plurality of optical elements is monitored for each of the plurality of blocks using a temperature sensor in order to correct the control amounts of the plurality of optical elements.
  6.  前記複数の光学要素の前記制御量を補正するために、前記供給される光の積算エネルギーをモニタする請求項4に記載の照明方法。 The illumination method according to claim 4, wherein an integrated energy of the supplied light is monitored in order to correct the control amount of the plurality of optical elements.
  7.  光源からの光を用いて被照射面を照明する照明光学装置において、
     前記光源からの光の光路に配置されて、それぞれに入射する光の状態を制御可能な複数の光学要素を有する空間光変調器と、
     前記複数の光学要素の温度情報をモニタする温度検出装置と、
     前記複数の光学要素の前記入射する光の状態に対する制御量を設定するとともに、前記温度検出装置でモニタされる前記複数の光学要素の温度情報に基づいて前記駆動量を補正する制御系と、
    を備える照明光学装置。
    In an illumination optical device that illuminates an illuminated surface using light from a light source,
    A spatial light modulator having a plurality of optical elements arranged in an optical path of light from the light source and capable of controlling a state of light incident on each of the light paths;
    A temperature detection device for monitoring temperature information of the plurality of optical elements;
    A control system for setting a control amount for the incident light state of the plurality of optical elements, and correcting the driving amount based on temperature information of the plurality of optical elements monitored by the temperature detection device;
    An illumination optical device comprising:
  8.  前記温度検出装置は、温度センサである請求項7に記載の照明光学装置。 The illumination optical device according to claim 7, wherein the temperature detection device is a temperature sensor.
  9.  前記温度センサは、前記複数の光学要素を光学的に観察可能な位置に配置された放射線センサである請求項8に記載の照明光学装置。 The illumination optical device according to claim 8, wherein the temperature sensor is a radiation sensor disposed at a position where the plurality of optical elements can be optically observed.
  10.  前記温度センサは、前記空間光変調器に設けられている請求項8又は9に記載の照明光学装置。 The illumination optical device according to claim 8 or 9, wherein the temperature sensor is provided in the spatial light modulator.
  11.  前記複数の光学要素の温度の積算値の情報を記憶する記憶装置を備え、
     前記制御系は、前記記憶装置に記憶されている前記温度の積算値の情報に基づいて前記制御量の補正量を切り替える請求項7~10のいずれか一項に記載の照明光学装置。
    A storage device for storing information of integrated values of temperatures of the plurality of optical elements;
    The illumination optical device according to any one of claims 7 to 10, wherein the control system switches the correction amount of the control amount based on information on the integrated value of the temperature stored in the storage device.
  12.  前記光源からの光のエネルギーをモニタする光電検出器を備え、
     前記制御系は、前記光電検出器の検出信号の積算値の情報に基づいて前記制御量の補正量を切り替える請求項7~11のいずれか一項に記載の照明光学装置。
    Comprising a photoelectric detector for monitoring the energy of light from the light source;
    The illumination optical apparatus according to any one of claims 7 to 11, wherein the control system switches the correction amount of the control amount based on information of an integrated value of detection signals of the photoelectric detector.
  13.  前記光電検出器は、前記光源からのエネルギー分布をモニタする請求項12に記載の照明光学装置。 The illumination optical device according to claim 12, wherein the photoelectric detector monitors an energy distribution from the light source.
  14.  前記制御系は、前記複数の光学要素を複数のブロック毎に制御する請求項7~13のいずれか一項に記載の照明光学装置。 The illumination optical device according to any one of claims 7 to 13, wherein the control system controls the plurality of optical elements for each of a plurality of blocks.
  15.  前記空間光変調器は、前記照明光学装置の照明光路における所定の位置に光の光量分布を形成する光学系の一部であり、
     前記空間光変調器からの光より前記光の光量分布と等価な光量分布を持つ面光源を形成する面光源形成光学系を備える請求項7~14のいずれか一項に記載の照明光学装置。
    The spatial light modulator is a part of an optical system that forms a light quantity distribution of light at a predetermined position in an illumination optical path of the illumination optical device,
    The illumination optical device according to any one of claims 7 to 14, further comprising a surface light source forming optical system that forms a surface light source having a light amount distribution equivalent to the light amount distribution of the light from the light from the spatial light modulator.
  16.  露光光でパターンを照明し、前記露光光で前記パターン及び投影光学系を介して基板を露光する露光装置において、
     請求項7~15のいずれか一項に記載の照明光学装置を備え、
     前記照明光学装置からの光を前記露光光として用いる露光装置。
    In an exposure apparatus that illuminates a pattern with exposure light and exposes the substrate through the pattern and the projection optical system with the exposure light,
    An illumination optical device according to any one of claims 7 to 15,
    An exposure apparatus that uses light from the illumination optical apparatus as the exposure light.
  17.  請求項16に記載の露光装置を用いて基板上に感光層のパターンを形成することと、
     前記パターンが形成された前記基板を処理することと、
    を含むデバイス製造方法。
    Forming a pattern of a photosensitive layer on a substrate using the exposure apparatus according to claim 16;
    Processing the substrate on which the pattern is formed;
    A device manufacturing method including:
PCT/JP2011/077731 2011-05-23 2011-11-30 Illumination method, illumination optical device, and exposure device WO2012160728A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013516169A JPWO2012160728A1 (en) 2011-05-23 2011-11-30 Illumination method, illumination optical apparatus, and exposure apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161489002P 2011-05-23 2011-05-23
US61/489,002 2011-05-23

Publications (1)

Publication Number Publication Date
WO2012160728A1 true WO2012160728A1 (en) 2012-11-29

Family

ID=47216823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077731 WO2012160728A1 (en) 2011-05-23 2011-11-30 Illumination method, illumination optical device, and exposure device

Country Status (2)

Country Link
JP (1) JPWO2012160728A1 (en)
WO (1) WO2012160728A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012169090A1 (en) * 2011-06-06 2015-02-23 株式会社ニコン Illumination method, illumination optical apparatus, and exposure apparatus
WO2022017678A1 (en) * 2020-07-21 2022-01-27 Carl Zeiss Smt Gmbh Method for operating an optical system for microlithography, and optical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189403A (en) * 2003-12-25 2005-07-14 Fuji Photo Film Co Ltd Exposure apparatus for image forming and method for correcting misalignment of image
JP2008109132A (en) * 2006-10-17 2008-05-08 Asml Netherlands Bv Using of interferometer as high speed variable attenuator
JP2009177176A (en) * 2008-01-23 2009-08-06 Asml Netherlands Bv Polarization control device, and polarization control method
JP2010034553A (en) * 2008-07-25 2010-02-12 Asml Netherlands Bv Measurement apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189403A (en) * 2003-12-25 2005-07-14 Fuji Photo Film Co Ltd Exposure apparatus for image forming and method for correcting misalignment of image
JP2008109132A (en) * 2006-10-17 2008-05-08 Asml Netherlands Bv Using of interferometer as high speed variable attenuator
JP2009177176A (en) * 2008-01-23 2009-08-06 Asml Netherlands Bv Polarization control device, and polarization control method
JP2010034553A (en) * 2008-07-25 2010-02-12 Asml Netherlands Bv Measurement apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012169090A1 (en) * 2011-06-06 2015-02-23 株式会社ニコン Illumination method, illumination optical apparatus, and exposure apparatus
WO2022017678A1 (en) * 2020-07-21 2022-01-27 Carl Zeiss Smt Gmbh Method for operating an optical system for microlithography, and optical system

Also Published As

Publication number Publication date
JPWO2012160728A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5582287B2 (en) Illumination optical apparatus and exposure apparatus
US8111378B2 (en) Exposure method and apparatus, and device production method
JP3931039B2 (en) Lithographic projection apparatus and device manufacturing method using the same
KR102321222B1 (en) Method and device for inspecting spatial light modulator, and exposure method and device
EP1549984B1 (en) Optical apparatus, exposure apparatus, and semiconductor device fabrication method
JP2010267966A (en) Optical apparatus, exposure method and apparatus, and device manufacturing method
JP5807761B2 (en) Illumination method, illumination optical apparatus, and exposure apparatus
US7332733B2 (en) System and method to correct for field curvature of multi lens array
US7369214B2 (en) Lithographic apparatus and device manufacturing method utilizing a metrology system with sensors
JP2005311020A (en) Exposure method and method of manufacturing device
JP2006165554A (en) System and method
JP2006261607A (en) Oil immersion exposure device, manufacturing method thereof, and oil immersion exposure method device
US8717535B2 (en) SLM calibration
JP5489849B2 (en) Position measuring apparatus and method, exposure apparatus and device manufacturing method
WO1999018604A1 (en) Projection exposure method and apparatus
JP2003059799A (en) Illumination optical system, exposure system, and method of manufacturing microdevice
WO2012160728A1 (en) Illumination method, illumination optical device, and exposure device
WO2013094733A1 (en) Measurement method and device, and maintenance method and device
US20080111977A1 (en) Compensation techniques for fluid and magnetic bearings
JP2003318095A (en) Flame measuring method and flare measuring device, aligning method and aligner, and method for adjusting aligner
US20070133007A1 (en) Lithographic apparatus and device manufacturing method using laser trimming of a multiple mirror contrast device
JP2014146636A (en) Illumination method and device, method of controlling spatial optical modulator, and exposure method and device
JP2006073905A (en) Optical system, adjustment method therefor, aligner, and device manufacturing method
JP2014203905A (en) Illumination method and device, and exposure method and device
JP2011171386A (en) Displacement sensor, driving apparatus, exposure apparatus, and method for manufacturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866243

Country of ref document: EP

Kind code of ref document: A1