WO2012159442A1 - 一种实现内部链路洪泛的方法及装置 - Google Patents

一种实现内部链路洪泛的方法及装置 Download PDF

Info

Publication number
WO2012159442A1
WO2012159442A1 PCT/CN2011/085012 CN2011085012W WO2012159442A1 WO 2012159442 A1 WO2012159442 A1 WO 2012159442A1 CN 2011085012 W CN2011085012 W CN 2011085012W WO 2012159442 A1 WO2012159442 A1 WO 2012159442A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
link
path
information
internal
Prior art date
Application number
PCT/CN2011/085012
Other languages
English (en)
French (fr)
Inventor
伏小东
谢刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012159442A1 publication Critical patent/WO2012159442A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/0016Arrangements providing connection between exchanges
    • H04Q3/0062Provisions for network management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/32Flooding

Definitions

  • the present invention relates to an Automatically Switched Optical Network (ASON) technology, and in particular, to a method and apparatus for implementing internal link flooding.
  • ASON Automatically Switched Optical Network
  • the transport network has expanded from a single switching capability to a networking mode in which multiple switching capabilities are integrated into one network.
  • MSN multi-layer network
  • one end may have a time division multiplexing (TDM) capability, and the other end has a wavelength switching capability (LSC, Lambda Switch Capable ) device.
  • TDM time division multiplexing
  • LSC wavelength switching capability
  • Different switching capabilities can be on the same device or on different devices.
  • a node with only one switching capability is called a single switching capability node, and a node with at least two switching capabilities is called a multi-switching capability node.
  • the multi-switching capability node is further divided into a single node and a hybrid node, wherein a single node can terminate data links of different switching capabilities, each data link is connected to the node through a separate link interface; the hybrid node can terminate data of different switching capabilities. Link, each data link is connected to the node through the same chain.
  • a device for photoelectric conversion includes an optical transmitter and an optical receiver.
  • the optical transmitter is configured to encode the electrical signal and generate a specific wavelength by modulation and then couple into the optical fiber; the optical receiver reduces the received specific wavelength to an electrical signal by demodulating and decoding.
  • the characteristics of the optical transmitter include: whether it is tunable, tuning range and tuning time; for the processing of electrical signals, the characteristics of the optical transmitter and optical receiver include: modulation mode, forward error correction ( FEC) mode and signal type, etc.
  • FEC forward error correction
  • Node C is a hybrid node.
  • the internal structure is shown in Figure 2.
  • the other nodes are single-switching capability nodes. If the compute node hits node D
  • DPSK photoelectric phase shifting
  • DQPSK differential quaternary phase shift keying
  • node C performs Part of the internal link supports DPSK during photoelectric conversion, and some internal links support DQPSK.
  • connection relationship is proposed in the Chinese patent application with the application number of 201010219856.X, the invention of which is the routing information acquisition method and device of the electro-optical multi-layer network.
  • the internal link includes the following contents:
  • the main object of the present invention is to provide a method and system for implementing internal link flooding, which can identify and flood internal link information to implement path calculation.
  • a method for implementing internal link flooding comprising: adapting intra-node transmission resources to resource model information for control plane management;
  • the adapted resource model information is encapsulated into a routing protocol and sent to the network.
  • the resource model information for adapting the intra-node transmission resource to the control plane management includes: The internal connectivity diagram of the node is constructed according to the information about the board and the fiber connection; the external link of the optical layer is identified; and the edge boards other than the board of the external link of the optical layer are identified;
  • the analysis path identifies the internal link; the analysis path identifies the optical layer connectivity.
  • the method further includes: analyzing the path identification electrical layer external link; identifying the electrical layer connectivity.
  • the identifying the external link of the optical layer includes: determining, by the configuration, two pairs of boards having the same external link as the associated boards.
  • the analyzing the path to identify the internal link includes: determining the level of the node according to the layer attribute of the board port on the path. If the node has the OCH layer, further determining whether the node has an internal link according to the type of the board.
  • the analyzing the path to identify the optical layer connectivity includes: constructing an optical layer connectivity matrix after the internal link is identified; the optical layer connectivity includes: between an optical layer external link and an optical layer external link, And the connectivity between the optical layer external link and the internal link.
  • the analyzing the path identifying the electrical layer external link includes: if the optical layer of the node is fixedly switched, the electrical layer external link is considered to be present.
  • the identifying electrical layer connectivity includes: analyzing electrical layer connectivity according to node characteristics.
  • Encapsulating the adapted resource model information into the routing protocol and transmitting the information to the network includes: flooding the information of the internal link in a manner of extending a new sub-TLV in the routing protocol, the newly added sub-TLV content Includes: Link ID, Tuning Capability, Tuning Range, Tuning Time, FEC Type, Mode Type, and Signal Type.
  • the method further includes: receiving resource model information on the network, and assembling the obtained resource model information into a network topology.
  • An apparatus for implementing internal link flooding comprising: a resource abstraction adapter, and a flooding information transmitter; wherein a resource abstraction adapter, configured to adapt the intra-node transmission resource to resource model information of the control plane management;
  • a flooding information sender is used to encapsulate the adapted resource model information into a routing protocol and send it to the network.
  • the device further includes: a network topology assembler, and a flooding information receiver; wherein: a flooding information receiver for receiving resource model information on the network to the local; a network topology assembler for obtaining Various resource model information is assembled into a network topology.
  • the resource abstraction adapter is specifically configured to: construct an internal connectivity diagram of the node according to the board and the fiber connection information; identify the external link of the optical layer; and identify other edge boards except the board of the external link of the optical layer; The identified edge node, as the original vertex and the destination vertex, finds the path between the original vertex and the destination vertex in the connected graph of the node and stores it; analyzes the path to identify the internal link; and analyzes the path to identify the optical layer connectivity.
  • the resource abstraction adapter is further configured to analyze the path identification electrical layer external link; and identify the electrical layer connectivity.
  • the flooding information transmitter is specifically configured to: flood the information of the internal link according to the method of expanding the new sub-TLV in the routing protocol.
  • the flooding information receiver is specifically configured to: obtain various resource model information from the protocol stack, and restore various resource model information obtained from the protocol stack to various resource model information.
  • the method includes: adapting the intra-node transmission resource to the resource model information of the control plane management, and encapsulating the various resource model information into the routing protocol and transmitting the information to the network.
  • FIG. 1 is a schematic diagram of an example of an existing optical network networking
  • FIG. 2 is a schematic diagram showing the internal structure of the hybrid node C of FIG. 1; 3 is a schematic structural diagram of a device for implementing internal link flooding according to the present invention; FIG. 4 is a schematic diagram of a hierarchy of nodes;
  • FIG. 5 is a flowchart of a method for implementing internal link flooding according to the present invention.
  • FIG. 6 is a schematic flowchart diagram of an embodiment of a method for implementing internal link flooding according to the present invention. detailed description
  • FIG. 3 is a schematic structural diagram of a device for implementing internal link flooding according to the present invention. As shown in FIG. 3, the device includes: a resource abstraction adapter, and a flooding information transmitter;
  • the resource abstraction adapter is used to adapt the in-node transmission resources, such as a board and a fiber connection, to the resource model information of the control plane management, such as: an external link, an optical layer connectivity matrix, an internal link, and a layer connection. Sex matrix and so on.
  • the external link includes: an optical layer and an electrical layer.
  • the optical layer connectivity matrix refers to: an optical layer external link and an optical layer external link, and an optical layer external link and an internal link. Interconnectivity;
  • the electrical layer connectivity matrix refers to: connectivity between external links and internal links of the electrical layer, and between internal links and internal links.
  • the nodes are first layered to distinguish the optical layer and the electrical layer, and the resource model information is identified.
  • the device hierarchy is divided into three layers as shown in Figure 4: Optical Transmission Section (OTS), Optical Multiplex Section (OMS), and Optical Channel (OCH, Optical Channel).
  • OTS Optical Transmission Section
  • OMS Optical Multiplex Section
  • OCH Optical Channel
  • a node consists of a single board with various functions and a fiber connection between boards. Although the nodes can be built by a variety of boards, the boards of the different types are basically fixed at a certain level. Therefore, the boards are recorded on the board ports according to the usage.
  • the adaptation process of the resource abstraction adapter including:
  • the board is used as the apex and the fiber connection is used as the arc to construct a node internal connection diagram.
  • the specific implementation is a common technical means by those skilled in the art, and is not used to limit the protection scope of the present invention. Narration.
  • the internal connectivity graph of the node prepares for the resource model abstraction; Identifying the external link of the optical layer: All the boards that are connected to the optical fiber between the NEs are the boards that may have external links of the optical layer. These boards are the edge boards on the nodes. As the external link has two directions of sending and receiving, you can determine which two pairs of boards are the associated boards of the same external link according to the configuration. The judgment condition is determined according to the node configuration.
  • a pair of OA boards is generally an edge board corresponding to an external link of an optical layer.
  • the edge boards include: service boards and OA boards.
  • edge boards of the board except the external link of the optical layer In the external link of the identification layer, some edge boards are determined. These edge boards are the boards that establish the connection between nodes. A board that is connected to the customer service is also an edge board. You can identify it as an edge board based on the attributes of the board.
  • Analyze the path to identify the internal link Determine the level of the node based on the layer attribute of the board port on the path. If the node has an OCH layer, the board in the OCH layer may have an internal link. For a board that may have an internal link, determine whether an internal link exists based on the type of the board.
  • Analyze path identification optical layer connectivity After identifying the internal link, you can construct an optical layer connectivity matrix, including: optical layer external link and optical layer external link, and optical layer external link and internal chain Connectivity between the roads. When the internal link is identified, it is determined whether the optical layer external link and the optical layer external link, and the optical layer external link and the internal link are connected, and in the process of path analysis, the record is connected. Yes, all optical layer connectivity matrices are constructed when all paths have been analyzed.
  • the path is identified by the optical layer. Its board is connected to other network elements. Therefore, it is necessary to analyze whether the path is fixedly exchanged. If the optical layer of the node is fixedly exchanged, it is considered that there is an external link of the electrical layer;
  • Identifying electrical layer connectivity Analyze electrical layer connectivity based on node characteristics, such as connectivity between electrical layer links of the same electrical cross-subrack, electrical link and internal links on the same electrical cross shelf With connectivity and more.
  • a flooding information sender for sending control resource configurations to the network includes two functions: routing protocol encapsulation and routing message transmission.
  • Flooding information transmitters need to extend the routing protocol to flood internal links to the network. After the extended routing protocol supports the bearer of the internal link information, the flooding information sender can assemble the relevant packet according to the protocol to complete the routing protocol encapsulation, and then send the packet to the network through the protocol stack to complete the routing message. send.
  • a flooding information sender is used to encapsulate the adapted resource model information into a routing protocol and send it to the network.
  • the routing protocol extensions are described in detail below.
  • Table 1 shows the information about flooding internal links by extending the new sub-TLV in the routing protocol.
  • the extended routing protocols include OSPF-TE and IS-IS-TE.
  • the newly added sub-TLV definitions are shown in Table 1.
  • FEC Type Signal Type Reserved (Reserved)
  • the FEC type has a value of 0, indicating no FEC; the value is 1 for normal FEC, and the value is 2, expressed as advanced FEC (AFEC); mode type (8 bits): the value is 0, expressed as NRZ, the value is 1, indicating ERZ, the value is 2, the value is DPSK, the value is 3, Expressed as RZ DQPSK; signal type (8 bits), the value is inherited from RFC 4328 and extended The meaning is as follows: the value is 6, which means OCh at 2.5 Gbps, the value is 7, which means OCh at 10 Gbps; the value is 8, which means OCh at 40 Gbps, and the value is 9, which means OCh at 100 Gbps .
  • the part of the information in the resource model can also be configured to be configured and modified. Further, an interface is set on the device for implementing internal link flooding of the present invention, and the management plane configures the part of the information in the resource model through the interface. .
  • the device for implementing the internal link flooding of the present invention may further include: a network topology assembler, and a flooding information receiver; wherein
  • the flooding information receiver is configured to receive the resource model information on the network locally; specifically, when the resource model information is carried in the routing protocol packet and flooded to the node supporting the routing protocol in the network, the local node floods
  • the information receiver obtains various resource model information from the protocol stack, and restores various resource model information obtained from the protocol stack to various resource model information.
  • a network topology assembler for assembling various resource model information obtained into a network topology. Specifically, when a node receives the resource model information of each node, it needs to form a complete network topology locally.
  • the network topology includes: an inter-node path and an intra-node structure.
  • the external link constitutes an inter-node path, optical layer connectivity, electrical layer connectivity, and internal link structure.
  • the specific implementation process of the network topology assembler is the reverse process of the resource abstraction adapter. The specific implementation is easy to implement by the description of the resource abstraction adapter, and will not be described in detail herein.
  • FIG. 5 is a flowchart of a method for implementing internal link flooding according to the present invention.
  • the method includes the following steps: Step 500: Adapt intra-node transmission resources into resource model information of control plane management.
  • the specific steps include: according to the board and the fiber connection information, using the board as the apex and the fiber connection as the arc, constructing a node internal connection diagram, which is a common technical means by those skilled in the art, and is not used to limit the protection of the present invention. The scope is not repeated here.
  • the internal connectivity graph of the node prepares for the resource model abstraction; Identifying the external link of the optical layer: All the boards that are connected to the optical fiber between the NEs are the boards that may have external links of the optical layer.
  • a pair of OA boards is generally an edge board corresponding to an external link of an optical layer.
  • edge boards of the board except the external link of the optical layer In the external link of the identification layer, some edge boards are determined. These edge boards are the boards that establish the connection between nodes. A board that is connected to the customer service is also an edge board. You can identify it as an edge board based on the attributes of the board.
  • Analyze the path to identify the internal link Determine the level of the node based on the layer attribute of the board port on the path. If the node has an OCH layer, the board in the OCH layer may have an internal link. For a board that may have an internal link, determine whether an internal link exists based on the type of the board.
  • Analyze path identification optical layer connectivity After identifying the internal link, you can construct an optical layer connectivity matrix, including: optical layer external link and optical layer external link, and optical layer external link and internal chain The connectivity between the paths; when identifying the internal link, it is determined whether the optical link external link and the optical layer external link, and between the optical layer external link and the internal link are connected, and the path analysis is performed. In the process, the records are connected. When all the paths are analyzed, all the optical layer connectivity matrices are constructed.
  • the board associated with the external link of the electrical layer is not necessarily directly connected to other network elements, but through other boards of the optical layer. Other network elements are connected. Therefore, it is necessary to analyze whether the path is fixedly exchanged. If the optical layer of the node is fixedly exchanged, it is considered that there is an external link of the electrical layer;
  • Identifying electrical layer connectivity Analyze electrical layer connectivity based on node characteristics, such as connectivity between electrical layer links of the same electrical cross-subrack, electrical link and internal links on the same electrical cross shelf With connectivity and more.
  • Step 501 Encapsulate the adapted resource model information into a routing protocol and send the information to the network.
  • the step of the step specifically includes: flooding the internal link information by extending a new sub-TLV in the routing protocol, and the newly added sub-TLV definition is as shown in Table 1.
  • the newly added sub-TLV includes: , mode type, and signal type, will not be described here.
  • the method of the present invention further includes: receiving control resources on the network, and assembling the obtained various resource model information into a network topology.
  • the control resource is resource model information.
  • Step 600 Each node control plane in the network models the node device, where the node C is a hybrid node, and the description information of the node C includes two internal link information.
  • Step 601 The hybrid node C floods the internal link information by using the extended OSPF-TE protocol.
  • the flooding information is as follows:
  • ⁇ node information>:: ⁇ internal link (31)> ⁇ internal link (32)>;
  • ⁇ internal link ( 31 ) >:: ⁇ internal link ID ( 31 )> ⁇ wavelength tuning capability> ⁇ signal processing capability>;
  • ⁇ internal link ( 32 ) >:: ⁇ internal link ID ( 32 ) > ⁇ wavelength tuning capability> ⁇ signal processing capability>;
  • Step 602 The path calculation unit in the network receives the node information flooded by the node C.
  • Step 603 The management plane initiates establishment of a service starting from node A to the end of node D to the control plane of node A.
  • Step 604 The control plane of the node A receives the service establishment request, and starts the path calculation. Calculate the following path:
  • Path 1 A.l-B.2-B.3-C.4(-C.31)-C.5-D.6; where the internal link 31 is used at node C;
  • Path 2 A.l-B.2-B.3-C.4(-C.31-C.32)-C.13-F.14-F.ll-D.6; where, at the node
  • Path 3 A.7-E.8-E.9-F.10-F.14-C.13(-C.31)-C.5-D.6; where, at node C through the internal link 31.
  • the principle of the calculation path may be: using the shortest path algorithm to select a connectable alternative path in the topology map, where the internal structure is not considered; selecting the first alternative path for interface attribute matching, the attribute matching content includes Whether the modulation mode is configured, whether the wavelength is connected, etc.; if the candidate path cannot be directly connected, analyze the internal structure of the node in the path to determine whether there is an internal link. If there is an internal link, select the internal link to join the path. Then, perform attribute matching detection such as modulation mode and wavelength; if the above alternative path cannot be connected after adding the internal link analysis, analyze the next alternative path. After all the alternative paths have been analyzed, all the path calculation results that can be connected are returned.
  • the selected node and internal path information is represented in the path. It can be seen from the above principle that the final purpose of introducing the internal path in the present invention is to support the path calculation of the hybrid node and establish a service, which generally includes the following steps:
  • control plane of the hybrid node in the network abstracts the connection between the two different switching capabilities as an internal link; then, the extended OSPF-TE protocol floods the internal link information to other nodes in the network;
  • the management plane initiates a service establishment request to the control plane (two types of nodes with different switching capabilities for the first and last nodes); then, the path calculation unit in the network calculates the reachable route according to the topology information, and indicates the internal link included in the path.
  • the connection management unit of the control plane sends signaling to the downstream node according to the specified path to perform service establishment; After receiving the service establishment indication, the hybrid node in the path performs cross-setting processing according to the interface and internal link information at both ends of the node to open the actual path of the transmission plane.
  • Step 605 The connection management unit of the control plane selects one of the paths, and the selection policy generally adopts the first hit principle. In this embodiment, it is assumed that the first path is selected, and the downlink downstream node sends signaling according to the path to perform service establishment.
  • Step 606 Each node completes the cross setting according to the specified path, and opens the optical path.
  • Step 607 The hybrid node C determines the internal cross setting path to open the optical path according to the specified internal path.
  • a service from the node A to the node F is established, including: the node control planes are modeled by the control planes of the nodes in the network, where the node C is a hybrid node, and the description information of the node C includes Two internal link information;
  • Hybrid Node C floods internal link information through the extended OSPF-TE protocol
  • ⁇ node information>:: ⁇ internal link (31)> ⁇ internal link (32)>;
  • ⁇ internal link ( 31 ) >:: ⁇ internal link ID ( 31 )> ⁇ wavelength tuning capability> ⁇ signal processing capability>;
  • ⁇ internal link (32)>:: ⁇ internal link ID (32)> ⁇ wavelength tuning capability> ⁇ signal processing capability>;
  • the path calculation unit in the network receives the node information flooded by the node C;
  • the management plane initiates the establishment of a service starting from node A to the end of node F to the control plane of node A;
  • the control plane of node A receives the service establishment request, starts the path calculation, and calculates the following path:
  • Path 1 A.7-E.8-E.9-F.10; This path does not include the internal path without passing through the hybrid node C. Path information
  • Path 2 Al-B.2-B.3-C.4(-C.31-C.32)-C.13-F.14; where internal link 31 and internal link 32 are used at node C , internal path 31 and internal path 32 are exchanged by DXC;
  • Path 3 Al-B.2-B.3-C.4(-C.31)-C.5-D.6-D.12-F.ll; where, at node C, through internal link 31;
  • the connection management unit of the control plane selects one of the paths.
  • the selection strategy can generally adopt the first hit principle. In this embodiment, it is assumed that the first path is selected, and signaling is sent to the downstream node according to the path to perform service establishment.
  • Each node completes the cross setting light path according to the specified path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种实现内部链路洪泛的方法及装置,包括将节点内传送资源适配成控制平面管理的资源模型信息,将适配后的资源模型信息封装到路由协议中并发送到网络。通过本发明方法,实现了在节点中识别内部链路并将该信息洪泛,为路径计算提供了保障。

Description

一种实现内部链路洪泛的方法及装置 技术领域
本发明涉及自动交换光网络(ASON, Automatically Switched Optical Network )技术, 尤其涉及一种实现内部链路洪泛的方法及装置。 背景技术
随着智能光网络技术的发展, 传送网络从单一的交换能力扩展到多种 交换能力融合于一网的组网方式。 比如多层网(MLN, Multi-layer Network ) 的场景下, 在一条链路中, 可能一端是具有时分复用(TDM, Time Division Multiplexing )能力的设备,另一端是具有波长交换能力( LSC, Lambda Switch Capable ) 的设备。 不同的交换能力可以在同一个设备上, 也可以在不同的 设备上。 只具备一种交换能力的节点称为单交换能力节点, 具备至少两种 交换能力的节点称为多交换能力节点。 多交换能力节点又分为单一节点和 混合节点, 其中, 单一节点能够终结不同交换能力的数据链路, 每个数据 链路通过分离的链路接口连接节点; 混合节点能够终结不同交换能力的数 据链路, 每个数据链路通过同一个链 5^妻口连接节点。
在光网络中, 进行光电转换的器件包括光发射机和光接收机。 其中, 光发射机用于将电信号进行编码, 并通过调制产生一个特定波长后耦合到 光纤中; 光接收机将接收的特定波长通过解调和解码后还原为电信号。 对 于光信号的处理, 光发射机具备的特性包括: 是否可调谐、 调谐范围和调 谐时间等; 对于电信号的处理, 光发射机和光接收机具备的特性包括: 调 制方式、 前向纠错(FEC )方式和信号类型等。
以图 1的组网为例, 其中, 节点 C为混合节点, 内部组成结构示意图 如图 2所示, 其它节点均为单交换能力节点。 如果计算节点 Α到节点 D的 可用路径,经过路径计算可以得到 4条路径: A-B-C-D、 A-B-C-F-D、 A-E-F-D、 A-E-F-C-D。 假设端口 2 和端口 8 光电转换时调制方式为差分相移键控 ( DPSK, Differential Phase Shift Keying ) , 端口 11为差分四相相移键控 ( DQPSK, Differential Quaternary Phase Shift Keying ) , 而节点 C进行光电 转换时部分内部链路支持 DPSK, 部分内部链路支持 DQPSK。 可见, 由于 调制方式的限制, 通过路径计算得到的路径中, A-E-F-D是不可用的; 而剩 余的路径均经过混合节点 C,路径是否可用,取决于内部光交叉连接( OXC ) 与数字交叉连接 ( DXC )之间的连接关系。
其中, 这个连接关系在申请号为 201010219856.X, 发明名称为电光多 层网络的路由信息获取方法及装置的中国专利申请中提出过, 内部链路 ( Internal link ) 包含以下内容:
<内部链路〉:: =<内部链路 ID〉<波长调谐能力〉<信号处理能力〉; <波长调谐能力〉:: =<是否可调谐标志〉<调谐范围〉<调谐时间〉; <信号处理能力〉:: =<前向纠错能力链表〉<调制方式链表〉<信号类型 链表〉。
但是, 在有了内部链路的概念后, 如何在节点中识别内部链路并将该 信息洪泛并没有给出具体实现方案。 发明内容
有鉴于此, 本发明的主要目的在于提供一种实现内部链路洪泛的方法 及系统, 能够识别并洪泛内部链路信息, 以实现路径计算。
为达到上述目的, 本发明的技术方案是这样实现的:
一种实现内部链路洪泛的方法, 包括: 将节点内传送资源适配成控制 平面管理的资源模型信息;
将适配的资源模型信息封装到路由协议中并发送到网络。
所述将节点内传送资源适配成控制平面管理的资源模型信息, 包括: 根据单板以及光纤连接信息, 构造节点内部连通图; 识别光层外部链 路; 识别除光层外部链路的单板外的其它边缘单板;
将识别出的边缘节点, 作为原顶点和目的顶点, 在节点内部连通图中 查找原顶点和目的顶点之间的路径并存储;
分析路径识别内部链路; 分析路径识别光层连通性。
该方法还包括: 分析路径识别电层外部链路; 识别电层连通性。
所述识别光层外部链路, 包括: 根据配置确定具有同一个外部链路的 两对单板为关联单板。
所述分析路径识别内部链路, 包括: 根据路径上单板端口的层属性确 定节点所处的层次, 如果节点存在 OCH层, 则进一步根据单板类型具体确 定节点是否存在内部链路。
所述分析路径识别光层连通性, 包括: 识别出所述内部链路后, 构造 光层连通性矩阵; 所述光层连通性包括: 光层外部链路与光层外部链路之 间、 以及光层外部链路与内部链路之间的连通性。
所述分析路径识别电层外部链路, 包括: 如果所述节点的光层是固定 交换的, 则认为存在电层外部链路。
所述识别电层连通性, 包括: 根据节点特性分析电层连通性。
所述将适配的资源模型信息封装到路由协议中并发送到网络, 包括: 在路由协议中扩展新的 sub-TLV的方式洪泛内部链路的信息, 所述新 增加的 sub-TLV内容包括: 链路 ID、调谐能力、调谐范围、调谐时间、 FEC 类型、 模式类型、 以及信号类型。
该方法还包括: 接收网络上的资源模型信息, 并将、 将获得的各种资 源模型信息组装成网络拓朴。
一种实现内部链路洪泛的装置, 包括: 资源抽象适配器、 以及洪泛信 息发送器; 其中, 资源抽象适配器, 用于将节点内传送资源适配成控制平面管理的资源 模型信息;
洪泛信息发送器, 用于将适配的资源模型信息封装到路由协议中并发 送到网络上。
该装置还包括: 网络拓朴组装器、 以及洪泛信息接收器; 其中, 洪泛信息接收器, 用于将网络上的资源模型信息接收到本地; 网络拓朴组装器, 用于将获得的各种资源模型信息组装成网络拓朴。 所述资源抽象适配器, 具体用于: 根据单板以及光纤连接信息, 构造 节点内部连通图; 识别光层外部链路; 并识别除光层外部链路的单板外的 其它边缘单板; 将识别出的边缘节点, 作为原顶点和目的顶点, 在节点内 部连通图中查找原顶点和目的顶点之间的路径并存储; 分析路径识别内部 链路; 并分析路径识别光层连通性。
所述资源抽象适配器, 还用于分析路径识别电层外部链路; 并识别电 层连通性。
所述洪泛信息发送器,具体用于: 按照在路由协议中扩展新的 sub-TLV 的方式洪泛内部链路的信息。
所述洪泛信息接收器, 具体用于: 从协议栈中获取各类资源模型信息, 并将从协议栈中获取的各类资源模型信息还原为各类资源模型信息。
从上述本发明提供的技术方案可以看出, 包括: 将节点内传送资源适 配成控制平面管理的资源模型信息, 将各类资源模型信息封装到路由协议 中并发送到网络。 通过本发明方法, 实现了在节点中识别内部链路并将该 信息洪泛, 为路径计算提供了保障。 附图说明
图 1为现有光网络组网实例的示意图;
图 2为图 1中混合节点 C的内部组成结构示意图; 图 3为本发明实现内部链路洪泛的装置的组成结构示意图; 图 4为节点的层次的示意图;
图 5为本发明实现内部链路洪泛的方法的流程图;
图 6为本发明实现内部链路洪泛的方法的实施例的流程示意图。 具体实施方式
图 3为本发明实现内部链路洪泛的装置的组成结构示意图, 如图 3所 示, 该装置包括: 资源抽象适配器、 以及洪泛信息发送器; 其中,
资源抽象适配器, 用于将节点内传送资源如单板、 光纤连接等, 适配 成控制平面管理的资源模型信息, 比如: 外部链路、 光层连通性矩阵、 内 部链路、 以及电层连通性矩阵等。 其中, 外部链路包括: 光层和电层两种 链路; 光层连通性矩阵是指: 光层外部链路与光层外部链路之间、 以及光 层外部链路与内部链路之间的连通性; 电层连通性矩阵是指: 电层外部链 路与内部链路之间、 以及内部链路与内部链路之间的连通性。
具体地, 为了获取资源模型信息, 首先要将节点分层, 以便区分光层、 电层, 并识别出资源模型信息。 设备的层次如图 4所示分三层: 光传输段 ( OTS, Optical Transmission Section )、 光复用段 ( OMS, Optical Multiplex Section ), 以及光通道(OCH, Optical Channel )。 节点是由各种功能的单板、 以及单板之间的光纤连接组成。 节点虽然可以由各种各样的单板搭建而成, 但是不同类型的单板处于某一层次基本是固定的, 所以, 将各单板根据用 途将层次属性记录在单板端口上。
资源抽象适配器的适配过程, 包括:
根据单板以及光纤连接信息, 以单板为顶点, 光纤连接作为弧, 构造 一张节点内部连通图, 具体实现属于本领域技术人员惯用技术手段, 不用 于限定本发明的保护范围, 这里不再赘述。 该节点内部连通图为资源模型 抽象做准备; 识别光层外部链路: 一切存在网元间光纤连接的单板都是可能存在光 层外部链路的单板, 这些单板是节点上的边缘单板。 由于外部链路有收发 两个方向, 所以可以根据配置确定哪两对单板是同一个外部链路的关联单 板, 判断条件根据节点配置方式来定, 比如: 与一块路由转发板相连接的 一对 OA类单板, 一般就是一个光层外部链路对应的边缘单板。 其中, 对 于一个节点来说, 所有与其它节点连接光纤连接的单板均为边缘单板, 所 述边缘单板包括: 业务单板及 OA类单板。
识别除光层外部链路的单板外的其它边缘单板: 在识别光层外部链路 中, 已确定部分边缘单板, 这些边缘单板都是建立节点间联系的单板; 而 有些节点配置接入客户业务的单板, 也属于边缘单板, 根据单板属性将其 识别为边缘单板即可。
将识别出的边缘节点, 互相作为原顶点和目的顶点, 在节点内部连通 图中查找原顶点和目的顶点之间的路径并存储;
分析路径识别内部链路: 根据路径上单板端口的层属性确定该节点所 处的层次, 如果节点存在 OCH层, 则处于 OCH层的单板可能存在内部链 路。 对于可能存在内部链路的单板, 再进一步根据单板类型具体确定是否 存在内部链路;
分析路径识别光层连通性: 识别出内部链路后, 就可以构造光层连通 性矩阵, 内容包括: 光层外部链路与光层外部链路之间、 以及光层外部链 路与内部链路之间的连通性。 在识别内部链路时, 已确定光层外部链路与 光层外部链路之间、 以及光层外部链路与内部链路之间是否连通, 而进行 路径分析的过程中, 记录连通的即可, 当所有路径都分析完后, 即构造出 了所有的光层连通性矩阵。
分析路径识别电层外部链路: 通常情况下在光网络设备中, 与电层外 部链路相关联的单板并不一定直接与其它网元相连接, 而是通过光层的其 它单板与其它网元相连接。 所以, 需要分析该路径是不是固定交换的, 如 果节点的光层是固定交换的, 则认为存在电层外部链路;
识别电层连通性: 根据节点特性分析电层连通性, 比如同一个电交叉 子架上电层链路之间具有连通性, 同一个电交叉子架上的电层链路与内部 链路也具有连通性等等。
洪泛信息发送器, 用于将控制资源配置发送到网络上。 具体地, 洪泛 信息发送器包括两部分功能: 路由协议封装和路由报文发送。 洪泛信息发 送器要将内部链路洪泛到网络上, 需要扩展路由协议。 在扩展后的路由协 议支持承载内部链路信息后, 洪泛信息发送器便可以按照协议组装相关报 文即完成路由协议封装, 然后再通过协议栈将报文发送到网络上即完成路 由报文发送。 换句话说, 洪泛信息发送器, 用于将适配的资源模型信息封 装到路由协议中并发送到网络上。 下面详细介绍路由协议扩展。
表 1为在路由协议中扩展新的 sub-TLV的方式洪泛内部链路的信息, 目前需要扩展的路由协议包括 OSPF-TE和 IS-IS-TE。 新增加的 sub-TLV定 义如表 1所示。
表 1
链路 ID ( Link ID )
调谐能力 (Tunable )
调谐范围 ( Tuning range )
调谐时间 ( Tuning time )
FEC类型 (FEC Type) 模式类型 (Modulation Type) 信号类型 (Signal Type) 保留 (Reserved) 表 1中, FEC类型取值为 0,表示无 FEC;取值为 1 ,表示为普通 FEC, 取值为 2, 表示为高级的 FEC ( AFEC ); 模式类型 (8 bits): 取值为 0, 表示 为 NRZ, 取值为 1 , 表示为 ERZ, 取值为 2, 表示为 DPSK, 取值为 3, 表 示为 RZ DQPSK; 信号类型(8 bits), 取值继承于 RFC 4328并进行扩展, 定 义如下:取值为 6,表示为 OCh at 2.5 Gbps,取值为 7,表示为 OCh at 10 Gbps; 取值为 8, 表示为 OCh at 40 Gbps, 取值为 9, 表示为 OCh at 100 Gbps。
由于资源模型中的部分信息还可以支持用户配置和修改, 进一步地, 在本发明实现内部链路洪泛的装置上设置接口, 用于管理平面通过该接口 对资源模型中的这部分信息进行配置。
本发明实现内部链路洪泛的装置还可以进一步包括: 网络拓朴组装器、 以及洪泛信息接收器; 其中,
洪泛信息接收器, 用于将网络上的资源模型信息接收到本地; 具体地, 当资源模型信息承载于路由协议报文中, 洪泛到网络中支持 路由协议的节点时, 本地节点洪泛信息接收器从协议栈中获取各类资源模 型信息, 并将从协议栈中获取的各类资源模型信息还原为各类资源模型信 息。
网络拓朴组装器, 用于将获得的各种资源模型信息组装成网络拓朴。 具体地, 当一个节点收到各个节点的资源模型信息后, 需要在本地形 成一个完整的网络拓朴, 这个网络拓朴包括: 节点间路径和节点内结构。 其中, 外部链路构成节点间路径, 光层连通性、 电层连通性和内部链路构 成节点内结构。 网络拓朴组装器的具体实现过程是资源抽象适配器的逆过 程, 具体实现在资源抽象适配器的描述上对于本领域技术人员来讲是容易 实现的, 这里不再详述。
图 5为本发明实现内部链路洪泛的方法的流程图, 如图 5所示, 包括: 步驟 500: 将节点内传送资源适配成控制平面管理的资源模型信息。 本步驟具体包括: 根据单板以及光纤连接信息, 以单板为顶点, 光纤 连接作为弧, 构造一张节点内部连通图, 具体实现属于本领域技术人员惯 用技术手段, 不用于限定本发明的保护范围, 这里不再赘述。 该节点内部 连通图为资源模型抽象做准备; 识别光层外部链路: 一切存在网元间光纤连接的单板都是可能存在光 层外部链路的单板, 这些单板是节点上的边缘单板。 由于外部链路有收发 两个方向, 所以可以根据配置确定哪两对单板是同一个外部链路的关联单 板, 判断条件根据节点配置方式来定, 比如: 与一块路由转发板相连接的 一对 OA类单板, 一般就是一个光层外部链路对应的边缘单板。
识别除光层外部链路的单板外的其它边缘单板: 在识别光层外部链路 中, 已确定部分边缘单板, 这些边缘单板都是建立节点间联系的单板; 而 有些节点配置接入客户业务的单板, 也属于边缘单板, 根据单板属性将其 识别为边缘单板即可。
将识别出的边缘节点, 互相作为原顶点和目的顶点, 在节点内部连通 图中查找原顶点和目的顶点之间的路径并存储;
分析路径识别内部链路: 根据路径上单板端口的层属性确定该节点所 处的层次, 如果节点存在 OCH层, 则处于 OCH层的单板可能存在内部链 路。 对于可能存在内部链路的单板, 再进一步根据单板类型具体确定是否 存在内部链路;
分析路径识别光层连通性: 识别出内部链路后, 就可以构造光层连通 性矩阵, 内容包括: 光层外部链路与光层外部链路之间、 以及光层外部链 路与内部链路之间的连通性; 在识别内部链路时, 已确定光层外部链路与 光层外部链路之间、 以及光层外部链路与内部链路之间是否连通, 而进行 路径分析的过程中, 记录连通的即可, 当所有路径都分析完后, 即构造出 了所有的光层连通性矩阵。
分析路径识别电层外部链路: 通常情况下在光网络设备中, 与电层外 部链路相关联的单板并不一定直接与其它网元相连接, 而是通过光层的其 它单板与其它网元相连接。 所以, 需要分析该路径是不是固定交换的, 如 果节点的光层是固定交换的, 则认为存在电层外部链路; 识别电层连通性: 根据节点特性分析电层连通性, 比如同一个电交叉 子架上电层链路之间具有连通性, 同一个电交叉子架上的电层链路与内部 链路也具有连通性等等。
步驟 501 : 将适配后的资源模型信息封装到路由协议中并发送到网络。 本步驟具体包括: 在路由协议中扩展新的 sub-TLV的方式洪泛内部链 路的信息, 新增加的 sub-TLV定义如表 1所示, 所述新增加的 sub-TLV包 括: FEC类型、 模式类型、 以及信号类型, 这里不再赘述。
本发明方法还包括: 接收网络上的控制资源, 并将获得的各种资源模 型信息组装成网络拓朴。 这里, 所述控制资源即为资源模型信息。
下面结合几个实施例详细描述本发明的方法。
实施例一
本实施例, 如图 1所示, 建立一条从节点 A到节点 D的业务。 包括: 步驟 600: 网络中各节点控制平面将节点设备模型化, 其中, 节点 C 为混合节点, 节点 C的描述信息中包括两条内部链路信息。
步驟 601 : 混合节点 C通过扩展的 OSPF-TE协议洪泛内部链路信息; 这里, 本实施例中, 假设洪泛的信息如下:
<节点信息〉:: =<内部链路 ( 31 )〉<内部链路 ( 32 ) >;
<内部链路 ( 31 ) >:: =<内部链路 ID ( 31 )〉<波长调谐能力〉<信号处 理能力〉;
<内部链路 ( 32 ) >:: =<内部链路 ID ( 32 )〉<波长调谐能力〉<信号处 理能力〉;
步驟 602: 网络中的路径计算单元收到节点 C洪泛的节点信息。
步驟 603: 管理平面向节点 A的控制平面发起建立从节点 A起始, 到 节点 D结束的业务。
步驟 604: 节点 A的控制平面收到业务建立请求, 并启动路径计算, 计算出如下路径:
路径 1: A.l-B.2-B.3-C.4(-C.31)-C.5-D.6; 其中, 在节点 C使用内部链 路 31 ;
路径 2: A.l-B.2-B.3-C.4(-C.31-C.32)-C.13-F.14-F.ll-D.6; 其中, 在节点
C使用内部链路 31和内部链路 32, 内部路径 31和内部路径 32通过 DXC 进行交换;
路径 3: A.7-E.8-E.9-F.10-F.14-C.13(-C.31)-C.5-D.6; 其中, 在节点 C通 过内部链路 31。
本步驟中, 计算路径的原理可以是: 利用最短路径算法在拓朴图中选 择可连通的备选路径, 这里不考虑内部结构; 选择第一条备选路径进行接 口属性匹配, 属性匹配内容包括: 调制模式是否配置、 波长是否连通等; 如果备选路径不能直接连通, 则分析路径中节点内部结构, 确定是否存在 内部链路, 如果存在内部链路, 则依次选择内部链路加入到路径中, 再进 行调制模式、 波长等属性匹配检测; 如果以上备选路径在加入内部链路分 析后还不能连通, 则分析下一条备选路径。 直至分析完所有备选路径后, 将可连通的所有路径计算结果返回。 如果备选路径是通过内部路径连通, 则路径中表示出所选的节点和内部路径信息。 从上述原理可见, 本发明中 内部路径的引入最终目的是为了能够支持混合节点的路径计算并建立业 务, 大致包括以下步驟:
首先, 网络中混合节点的控制平面将两种不同交换能力之间的连接抽 象为内部链路; 接着, 利用扩展的 OSPF-TE协议, 将内部链路信息洪泛到 网络中其它节点; 然后, 管理平面向控制平面发起业务建立请求(首尾节 点具有不同交换能力的两类节点) ; 之后, 网络中的路径计算单元, 根据 拓朴信息计算出可达路由, 并且指明路径中包含的内部链路; 控制平面的 连接管理单元根据指定路径向下游节点发送信令, 进行业务建立; 最后, 路径中的混合节点接收到业务建立指示后, 根据节点两端的接口和内部链 路信息进行交叉设置处理, 打通传送平面的实际通路。
步驟 605: 控制平面的连接管理单元选择其中一条路径,选择策略一般 可以采用首次命中原则。 本实施例中, 假设选择了第一条路径, 根据该路 径向下游节点发送信令, 进行业务建立。
步驟 606: 各节点根据指定的路径完成交叉设置, 打通光路。
步驟 607: 混合节点 C根据指定的内部路径确定内部交叉设置路径打 通光路。
实施例二
本实施例, 如图 1所示, 建立一条从节点 A到节点 F的业务, 包括: 网络中各节点控制平面将节点设备模型化, 其中, 节点 C为混合节点, 节点 C的描述信息中包括两条内部链路信息;
混合节点 C通过扩展的 OSPF-TE协议洪泛内部链路信息;
这里, 本实施例中, 假设洪泛的信息如下:
<节点信息〉:: =<内部链路 ( 31 )〉<内部链路 ( 32 ) >;
<内部链路 ( 31 ) >:: =<内部链路 ID ( 31 )〉<波长调谐能力〉<信号处 理能力〉;
<内部链路(32 )〉:: =<内部链路 ID ( 32 )〉<波长调谐能力〉<信号处 理能力〉;
网络中的路径计算单元收到节点 C洪泛的节点信息;
管理平面向节点 A的控制平面发起建立从节点 A起始, 到节点 F结束 的业务;
节点 A的控制平面收到业务建立请求, 并启动路径计算, 计算出如下 路径:
路径 1: A.7-E.8-E.9-F.10; 该路径不经过混合节点 C, 则不包含内部路 径信息;
路径 2: A.l-B.2-B.3-C.4(-C.31-C.32)-C.13-F.14; 其中, 在节点 C使用 内部链路 31和内部链路 32, 内部路径 31和内部路径 32通过 DXC进行交 换;
路径 3: A.l-B.2-B.3-C.4(-C.31)-C.5-D.6-D.12-F.ll ; 其中, 在节点 C通 过内部链路 31;
控制平面的连接管理单元选择其中一条路径。 选择策略一般可以采用 首次命中原则。 本实施例中, 假设选择了第一条路径, 根据该路径向下游 节点发送信令, 进行业务建立。
各节点根据指定的路径完成交叉设置打通光路。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种实现内部链路洪泛的方法, 其特征在于, 该方法包括: 将节点内传送资源适配成控制平面管理的资源模型信息;
将适配的资源模型信息封装到路由协议中并发送到网络。
2、 根据权利要求 1所述的方法, 其特征在于, 所述将节点内传送资源 适配成控制平面管理的资源模型信息, 包括:
根据单板以及光纤连接信息, 构造节点内部连通图; 识别光层外部链 路; 识别除光层外部链路的单板外的其它边缘单板;
将识别出的边缘节点, 作为原顶点和目的顶点, 在节点内部连通图中 查找原顶点和目的顶点之间的路径并存储;
分析路径识别内部链路; 分析路径识别光层连通性。
3、 根据权利要求 2所述的方法, 其特征在于, 该方法还包括: 分析路 径识别电层外部链路; 识别电层连通性。
4、 根据权利要求 2或 3所述的方法, 其特征在于, 所述识别光层外部 链路, 包括: 根据配置确定具有同一个外部链路的两对单板为关联单板。
5、 根据权利要求 2或 3所述的方法, 其特征在于, 所述分析路径识别 内部链路, 包括: 根据路径上单板端口的层属性确定节点所处的层次, 如 果节点存在 OCH层, 则进一步根据单板类型具体确定节点是否存在内部链 路。
6、 根据权利要求 2或 3所述的方法, 其特征在于, 所述分析路径识别 光层连通性, 包括: 识别出所述内部链路后, 构造光层连通性矩阵;
所述光层连通性包括: 光层外部链路与光层外部链路之间、 以及光层 外部链路与内部链路之间的连通性。
7、 根据权利要求 3所述的方法, 其特征在于, 所述分析路径识别电层 外部链路, 包括: 如果所述节点的光层是固定交换的, 则认为存在电层外 部链路。
8、 根据权利要求 3所述的方法, 其特征在于, 所述识别电层连通性, 包括: 根据节点特性分析电层连通性。
9、 根据权利要求 1所述的方法, 其特征在于, 所述将适配的资源模型 信息封装到路由协议中并发送到网络, 包括:
在路由协议中扩展新的 sub-TLV的方式洪泛内部链路的信息, 所述新 的 sub-TLV内容包括: 链路 ID、 调谐能力、 调谐范围、 调谐时间、 FEC类 型、 模式类型、 以及信号类型。
10、 根据权利要求 1、 2、 3或 9所述的方法, 其特征在于, 该方法还 包括: 接收网络上的资源模型信息, 并将获得的各种资源模型信息组装成 网络拓朴。
11、 一种实现内部链路洪泛的装置, 其特征在于, 该装置包括: 资源 抽象适配器、 以及洪泛信息发送器; 其中,
资源抽象适配器, 用于将节点内传送资源适配成控制平面管理的资源 模型信息;
洪泛信息发送器, 用于将适配的资源模型信息封装到路由协议中并发 送到网络。
12、 根据权利要求 11所述的装置, 其特征在于, 该装置还包括: 网络 拓朴组装器、 以及洪泛信息接收器; 其中,
洪泛信息接收器, 用于将网络上的资源模型信息接收到本地; 网络拓朴组装器, 用于将获得的各种资源模型信息组装成网络拓朴。
13、 根据权利要求 11或 12所述的装置, 其特征在于, 所述资源抽象 适配器, 具体用于: 根据单板以及光纤连接信息, 构造节点内部连通图; 识别光层外部链路; 并识别除光层外部链路的单板外的其它边缘单板; 将 识别出的边缘节点, 作为原顶点和目的顶点, 在节点内部连通图中查找原 顶点和目的顶点之间的路径并存储; 分析路径识别内部链路; 并分析路径 识别光层连通性。
14、根据权利要求 13所述的装置, 其特征在于, 所述资源抽象适配器, 还用于分析路径识别电层外部链路; 并识别电层连通性。
15、 根据权利要求 11或 12所述的装置, 其特征在于, 所述洪泛信息 发送器, 具体用于: 按照在路由协议中扩展新的 sub-TLV的方式洪泛内部 链路的信息。
16、根据权利要求 12所述的装置, 其特征在于, 所述洪泛信息接收器, 具体用于: 从协议栈中获取各类资源模型信息, 并将从协议栈中获取的各 类资源模型信息还原为各类资源模型信息。
PCT/CN2011/085012 2011-05-26 2011-12-30 一种实现内部链路洪泛的方法及装置 WO2012159442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110138857.6A CN102801602B (zh) 2011-05-26 2011-05-26 一种实现内部链路洪泛的方法及装置
CN201110138857.6 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012159442A1 true WO2012159442A1 (zh) 2012-11-29

Family

ID=47200573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/085012 WO2012159442A1 (zh) 2011-05-26 2011-12-30 一种实现内部链路洪泛的方法及装置

Country Status (2)

Country Link
CN (1) CN102801602B (zh)
WO (1) WO2012159442A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486027A (zh) * 2014-12-03 2015-04-01 中国航空工业集团公司第六三一研究所 一种光波分复用与电交换结合的机载网络结构
CN105763348B (zh) * 2014-12-15 2020-02-14 中兴通讯股份有限公司 一种恢复光层业务的方法和系统
CN106330705A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 路径计算方法、装置及路径计算单元
CN112118497B (zh) * 2019-06-19 2023-02-17 中兴通讯股份有限公司 资源管理及配置方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1335627A2 (en) * 2002-02-06 2003-08-13 Nippon Telegraph and Telephone Corporation Optical network, optical cross-connect apparatus, photonic-IP network, and node
US7027731B1 (en) * 2001-06-28 2006-04-11 Nortel Networks Limited User-constrained optical route flooding system and method
CN1787498A (zh) * 2004-12-06 2006-06-14 大唐移动通信设备有限公司 Ima装置及利用ima装置进行atm数据传输的通信系统
CN101360349A (zh) * 2008-09-12 2009-02-04 中兴通讯股份有限公司 一种有阻边界节点及有阻边界节点间建立连接的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459469B (zh) * 2007-12-14 2012-06-27 华为技术有限公司 网元设备的光层业务调度方法及网管控制系统
CN101998184B (zh) * 2009-08-12 2015-04-01 中兴通讯股份有限公司 适配装置及方法
CN101917227B (zh) * 2010-08-27 2015-08-12 中兴通讯股份有限公司 传送节点资源状态信息的处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027731B1 (en) * 2001-06-28 2006-04-11 Nortel Networks Limited User-constrained optical route flooding system and method
EP1335627A2 (en) * 2002-02-06 2003-08-13 Nippon Telegraph and Telephone Corporation Optical network, optical cross-connect apparatus, photonic-IP network, and node
CN1787498A (zh) * 2004-12-06 2006-06-14 大唐移动通信设备有限公司 Ima装置及利用ima装置进行atm数据传输的通信系统
CN101360349A (zh) * 2008-09-12 2009-02-04 中兴通讯股份有限公司 一种有阻边界节点及有阻边界节点间建立连接的方法

Also Published As

Publication number Publication date
CN102801602B (zh) 2017-09-22
CN102801602A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
US9769054B2 (en) Network topology discovery method and system
US9225417B2 (en) Managing alternate site switching in an optical communication system
US7471669B1 (en) Routing of protocol data units within a communication network
JP3654158B2 (ja) パケット転送経路制御装置及びそれに用いるパケット転送経路制御方法
Zhang et al. Lightpath routing for intelligent optical networks
US8855487B2 (en) Method and device for obtaining routing information of electro-optical multi-layer network
WO2011110110A1 (zh) 一种建立标签交换路径的方法、系统和节点设备
EP1653639B1 (en) Signalling routing apparatus and method in optical network
JP2005252368A (ja) 経路計算システム、経路計算方法、及び通信ノード
JP2013526792A (ja) マルチステージ光バーストスイッチングシステム及び方法のための制御レイヤ
Haddaji et al. Towards end-to-end integrated optical packet network: Empirical analysis
WO2012159442A1 (zh) 一种实现内部链路洪泛的方法及装置
EP2328307B1 (en) Barrier boundary node and method for establishing connection between barrier bound ary nodes
JP2009060673A (ja) 経路計算システム、経路計算方法、及び通信ノード
US7848246B2 (en) Method and system for confirming connection of layer-1 label switched path(L1-LSP) in GMPLS-based network
Miyazawa et al. Experimental demonstrations of interworking between an optical packet and circuit integrated network and openflow-based networks
CN101176280B (zh) 一种自动交换光网络控制实体拓扑的自动发现方法
Clapp et al. Management of switched systems at 100 Tbps: The DARPA CORONET program
Nishioka et al. Multi-domain ASON/GMPLS network operation: Current status and future evolution
Ştefănescu et al. Designing a reliable DCN for control plane signaling in GMPLS networks
Papadimitriou et al. Application of the link management protocol to discovery and forwarding adjacencies
Ehsani et al. Hierarchical routing in optical networks
Liu et al. Extending OSPF routing protocol for shared mesh restoration
Clapp et al. Architectures and protocols for highly dynamic IP-over-optical networks
WO2012171191A1 (zh) 用于建立多层路径的方法及其装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866308

Country of ref document: EP

Kind code of ref document: A1