WO2012159321A1 - 服务质量控制方法和设备 - Google Patents

服务质量控制方法和设备 Download PDF

Info

Publication number
WO2012159321A1
WO2012159321A1 PCT/CN2011/076953 CN2011076953W WO2012159321A1 WO 2012159321 A1 WO2012159321 A1 WO 2012159321A1 CN 2011076953 W CN2011076953 W CN 2011076953W WO 2012159321 A1 WO2012159321 A1 WO 2012159321A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearer
gbr
gbr service
pcc rule
service
Prior art date
Application number
PCT/CN2011/076953
Other languages
English (en)
French (fr)
Inventor
周伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180001087.9A priority Critical patent/CN103119981B/zh
Priority to PCT/CN2011/076953 priority patent/WO2012159321A1/zh
Publication of WO2012159321A1 publication Critical patent/WO2012159321A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a QoS (Quality of Service) control method and apparatus.
  • QoS Quality of Service
  • Evolved Packet Core Evolved Packet System
  • the EPS network architecture is a network architecture of the entire Internet Protocol (IP), and it supports multiple 3GPP, non-3GPP wireless systems.
  • Access technologies such as Global System For Mobile Communication (GSM) Enhanced Data Rate for GSM Evolution (EDGE, Enhanced Data Rate for GSM Evolution) Radio Access Network (GERAN, GSM EDGE Radio Access Network) / Universal Land UTRAN, Universal Terrestrial Radio Access Network, E-UTRAN, Wireless Local Area Network (WLAN), WiMAX, CDMA2000, etc.
  • GSM Global System For Mobile Communication
  • EDGE Enhanced Data Rate for GSM Evolution
  • GERAN GSM EDGE Radio Access Network
  • Universal Land UTRAN Universal Terrestrial Radio Access Network
  • E-UTRAN Universal Terrestrial Radio Access Network
  • WLAN Wireless Local Area Network
  • WiMAX Code Division Multiple Access 2000
  • the service data of an application is usually transmitted through only one transmission channel at a time, that is, an application usually only contains one service data stream.
  • One of the current research hotspots is to realize the simultaneous transmission of service data of the same application on multiple transmission channels, so that one application simultaneously contains multiple service data streams.
  • This technology is called multiple sub-stream technology and belongs to multiple applications.
  • a business data stream is referred to as multiple sub-streams of the application.
  • One of the difficulties in implementing the multi-substream technology is that the existing QoS control scheme for the Guaranteed Bit Rate (GBR) service only considers the case where one application only contains one service data stream at the same time, and cannot support Hold a lot of sons and brothers. Summary of the invention
  • the embodiment of the invention provides a service quality control method and device. With the embodiment of the present invention, it is possible to perform correct QoS control on a GBR service including multiple substreams.
  • the embodiment of the present invention provides a method for QoS control, which may include: receiving a policy charging control function (PCRF, Policy and Charging Rule Function) for a policy charging control for a GBR service (PCC, Policy and Charging control), the GBR service includes two or more substreams, the PCC rule includes information of all substreams of the GBR service; and based on the GBR service included in the PCC rule The information of all the sub-flows is associated with two or more bearers for transmitting the GBR service, and the QoS control is unified.
  • PCRF Policy charging control function
  • PCC Policy and Charging Rule Function
  • the embodiment of the present invention further provides a QoS control method, where the method may include: determining that two or more substreams belong to the same GBR service; generating a PCC rule for the GBR service, where the PCC rule is Information including all substreams of the GBR service; and transmitting the PCC rules to a Policy and Charging Enforcement Function (PCEF) entity or bearer binding and event reporting function (BBERF, Bearing Binding and Event)
  • PCEF Policy and Charging Enforcement Function
  • BBERF Bearer binding and event reporting function
  • a function is such that the PCEF entity or the BBERF entity associates two or more bearers for transmitting the GBR service, and performs QoS control uniformly.
  • An embodiment of the present invention further provides an apparatus for QoS control, where the apparatus may include: a receiving unit, configured to receive, from a PCRF entity, a PCC rule for a GBR service, where the GBR service includes two or more substreams And the PCC rule includes information of all substreams of the GBR service; and a QoS control unit, configured to transmit, according to information of all substreams of the GBR service included in the PCC rule, the GBR service Two or more bearers are associated to perform QoS control uniformly.
  • a receiving unit configured to receive, from a PCRF entity, a PCC rule for a GBR service, where the GBR service includes two or more substreams And the PCC rule includes information of all substreams of the GBR service
  • a QoS control unit configured to transmit, according to information of all substreams of the GBR service included in the PCC rule, the GBR service Two or more bearers are associated to perform QoS control uniformly.
  • the embodiment of the present invention further provides an apparatus for QoS control, where the apparatus may include: a determining unit, configured to determine that two or more substreams belong to the same GBR service; and a PCC rule generating unit, configured to generate a PCC rule of the GBR service, where the PCC rule includes information about all substreams of the GBR service; and a PCC rule sending unit, configured to send the PCC rule to a PCEF entity or a BBERF entity, so that The PCEF entity or The BBERF entity associates two or more bearers for transmitting the GBR service, and performs QoS control uniformly.
  • a determining unit configured to determine that two or more substreams belong to the same GBR service
  • a PCC rule generating unit configured to generate a PCC rule of the GBR service, where the PCC rule includes information about all substreams of the GBR service
  • a PCC rule sending unit configured to send the PCC rule to a PCEF entity or a BBERF entity, so that The PC
  • the embodiment of the present invention can ensure the GBR service including multiple sub-flows by including the information of all the sub-flows belonging to the same GBR service in one PCC rule, and performing unified QoS control on all bearers for transmitting one GBR service. Correct QoS control. DRAWINGS
  • FIG. 1 is a schematic diagram showing an exemplary PCC architecture
  • FIG. 2 is a diagram showing a QoS control process of a GBR service
  • FIG. 3 is a diagram showing a QoS control process according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing a bearer creation process according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing a bearer modification process according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing a bearer deletion process according to an embodiment of the present invention.
  • FIG. 7 is a flow chart showing a QoS control process according to an embodiment of the present invention.
  • FIG. 8 is a flow chart showing a QoS control process according to another embodiment of the present invention.
  • FIG. 9 is a block diagram showing an apparatus for performing QoS control according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing an exemplary PCC architecture.
  • the PCC architecture 100 includes a PCRF entity 110, a PCEF entity 120, a BBER entity 121, an AF entity 130, and a Subscription Profile Repository (SPR) 140.
  • the PCRF entity 110 and the RCEF entity 120 exchange information through the Gx interface 170, and the PCRF entity 110 and the AF entity Information is exchanged between the 130s via the Rx interface 180.
  • Both the Gx interface 170 and the Rx interface 180 employ the Diameter protocol.
  • the Diameter protocol is a security protocol for authentication, authorization, and accounting.
  • the PCRF entity 110 primarily performs the decision control function of the policy.
  • PCRF entity 110 receives session information from AF entity 130 over Rx interface 180, and access network information from PCEF entity 120 via Gx interface 170, while PCRF entity 110 may also receive subscription user information from SPR 140.
  • the PCRF entity 110 generates a PCC rule for the service session hierarchy based on the received information and the policy rules configured by the operator, and provides the PCC rule to the PCEF entity 120 and/or the BBERF entity 121.
  • Another task of the PCRF entity 110 is to forward events for AF entity subscriptions between the BBERF entity, the PCEF entity 120, and the AF entity 130.
  • the PCEF entity 120 and the BBERF entity 121 perform PCC rules received from the PCRF entity 110 and provide user related information and access network information to the PCRF entity 110 via the Gx interface 170.
  • the AF entity 130 is responsible for providing user and application related dynamic information.
  • the AF entity 130 interacts with an application or service that needs to obtain dynamic PCC rules.
  • the application layer signaling of the service terminates on the AF entity 130.
  • the AF entity 130 may parse the application information from the application signaling message, convert the application information into session information, and then provide the session information to the PCRF entity 110 through the Rx interface 180.
  • the PCRF entity 110 may be implemented in a PCRF network element; the PCEF entity 120 may be located at a gateway, for example, in a Packet Data Network (PDN) (PDN-GW, PDN-GateWay); BBERF
  • the entity 121 may be implemented in, for example, a Serving Gate Way (S-GW) or an evolved packet data gateway (ePDG); as for the AF entity 130, it may be by a corresponding network entity in a specific network.
  • the AF entity function is completed.
  • the AF entity function can be implemented by the Proxy Call Session Control Function (P-CSCF), for example, for non-IMS, AF.
  • Entities may be implemented in an application server (for example, a video streaming server).
  • the PCC architecture 100 may also include an Offline Charging System (OFCS) and an Online Charging System (OCS) as shown in FIG. 1 and other functional entities thereof, in order to avoid obscuring the focus of the embodiments of the present invention. , a detailed description of them is omitted.
  • PCC architecture 100 supports a variety of 3GPP and non-3GPP access technologies including GERAN/UTRAN, E-UTRAN, WLAN, WiMAX, CDMA2000, and the like.
  • the UE 190 can access the network through a corresponding Access Gateway (AGW, Access GateWay) 150 using different access technologies to utilize resources of a network such as a PDN.
  • AGW Access Gateway
  • the AGW 150 may be an evolved Node B (eNodeB, evolved Node B) in a 3GPP network or an access network device in a non-3GPP network, such as an access point (AP, Access Point) or an access router (AR) , Access Router) and so on.
  • eNodeB evolved Node B
  • the PCC architecture 100 can provide corresponding policy control.
  • the PDN-GW node and the AGW node can perform QoS control according to the PCC rules provided in the PCC architecture.
  • FIG. 2 shows the QoS control procedure when a UE containing a GBR service accesses the network.
  • the UE e.g., UE 190
  • the attach procedure refers to the registration process of the UE in the network before the actual service is performed.
  • the UE can obtain the IP address assigned by the network side.
  • the PDN-GW creates a Gx session with the PCRF entity (e.g., PCRF entity 110). Gx sessions can be used to pass PCC rules.
  • the PCEF entity is implemented on the PDN-GW, so the function of the PCEF entity is performed by the PDN-GW.
  • the operations performed by the PDN-GW are performed by PCEF entities (e.g., PCEF entities 120) included in the PDN-GW, unless explicitly stated to the contrary.
  • PCEF entities e.g., PCEF entities 120
  • the descriptions below are all made for the PDN-GW (or the PCEF entity contained therein), but it should be noted that the 7-load binding operation performed by the PDN-GW may be similar depending on the access network.
  • the ground is executed by the BBERF entity.
  • the UE reports the application information to the AF entity (the AF entity 130). Specifically, the UE reports the running application information to the AF entity through a specific signaling, such as a Session Initiation Protocol (SIP).
  • SIP Session Initiation Protocol
  • the application information here refers to the application layer session information that the UE delivers through a specific signaling message (for example, in the SIP signaling, which can be described by the Session Description Protocol (SDP)), and may include the media involved in the application. Information such as type and media format, required bandwidth, access network type, and/or IP address type, used to allocate appropriate network resources on the network side.
  • the application is a GBR service, so the application information includes corresponding GBR parameters.
  • the AF entity generates session information and sends the session information to the PCRF entity. Specifically, after receiving the application information sent from the UE, the AF entity generates and receives the received response. The session information corresponding to the information is used, and the session information is sent to the PCRF entity. Correspondingly, the GBR parameters are also included in the session information. For example, the AF entity can establish an Rx session with the PCRF entity to send the session information to the PCRF entity over the Rx interface (eg, Rx interface 180) over the Rx interface.
  • the Rx interface eg, Rx interface 180
  • the PCRF entity makes a decision to generate a PCC rule. Specifically, the PCRF entity decides to generate a PCC rule for the GBR service for the UE according to the session information corresponding to the application information from the UE received from the AF entity, and the user information received from the SPR, the configuration of the operator, and the like. .
  • the QoS parameters of the GBR service are included in the PCC rule.
  • the PCRF entity sends the generated PCC rules to the PDN-GW. Specifically, the PCRF entity sends the PCC rule to the PDN-GW through the Gx interface after generating the PCC rule. As described above, the QoS parameters of the GBR service are included in the PCC rule.
  • the PDN-GW performs a bearer operation corresponding to the received PCC rule. Specifically, the PDN-GW performs a bearer operation, such as adding, modifying, or deleting a bearer according to the PCC rule, and the PDN-GW sets the QoS parameter value of the bearer according to the QoS parameter of the GBR service in the PCC rule, and according to the QoS of the bearer.
  • the parameter values perform the corresponding QoS control flow.
  • the S230 is described above as the UE reporting the application information
  • the person skilled in the art knows that the "UE reporting the application information" is actually an interactive process.
  • the AF entity receives the application information.
  • a confirmation message can be returned to the UE.
  • the information transfer in S240, S260 and the bearer operation in S270 are also related to the interaction process. Such interactions are well known to those skilled in the art and will therefore not be described in detail below.
  • the above QoS control process processes a flow according to a GBR service. Therefore, it is only applicable to the case where one GBR service has only one service data flow at the same time, and does not apply to a case where one GBR service includes multiple sub-streams at the same time. If the above QoS control process is directly used to support the GBR service of the multiple sub-flows, the QoS control is performed on the multiple sub-flows belonging to the same GBR service according to the GBR parameters of the GBR service, thereby causing erroneous QoS control processing.
  • the embodiment of the present invention provides a multi-subflow QoS control method for supporting a GBR service. When the GBR service includes multiple sub-streams, the network side can implement correct QoS control.
  • the multi-substream QoS control method when the GBR service includes multiple substreams, multiple GBR bearers for transmitting multiple substreams are associated to perform QoS control. After associating multiple bearers, the associated multiple bearers may be specified on the PDN-GW.
  • the QoS parameters are shared, for example, the GBR bandwidth is shared, so that unified QoS control is performed on multiple sub-flows of the GBR service.
  • a UE supporting multiple sub-stream technologies uses GBR services, it can implement correct QoS control for the GBR service.
  • a PCRF entity when a GBR service is connected to a core network through multiple substreams, a PCRF entity (for example, the PCRF entity 110) may information of a plurality of substreams belonging to the same GBR service ( Hereinafter, it may also be referred to as "multi-substream information") to be included in a PCC rule and sent to the PDN-GW.
  • the PDN-GW can identify multiple sub-flows belonging to the same GBR service according to the PCC rule, and associate multiple bearers of multiple sub-flows for transmitting one GBR service for QoS control.
  • the PDN-GW can enable multiple bearers transmitting the same GBR service to share QoS parameters in the PCC rules to implement unified QoS control.
  • a new resource type is defined: a joint GBR bearer (Union-GBR).
  • a bearer for transmitting at least one of the plurality of substreams belonging to the same GBR service is defined as a joint GBR bearer, and a plurality of joint GBR bearers associated with the same GBR service share the same QoS information.
  • a new resource type of the bearer that is, a joint GBR bearer, may be added to the existing GBR bearer and the non-GBR bearer.
  • the GBR bearer can be set to a joint GBR bearer by adding a joint flag in the GBR bearer.
  • the access gateway when the PDN-GW adjusts the QoS parameters of the bearer, or when the PDN-GW newly creates or deletes the bearer, the access gateway can simultaneously adjust the QoS parameters of the radio side, thereby implementing both the radio side and the network side. QoS control for GBR services.
  • the PCRF entity when a GBR service is connected to a core network through multiple sub-streams, the PCRF entity (eg, the PCRF entity 110) transmits the multi-sub-stream information to the PDN-GW after identifying the multi-sub-stream.
  • the PDN-GW can create, modify, or delete related joint GBR bearers according to the multiple sub-flow information, thereby performing unified QoS management on the GBR service.
  • FIG. 3 shows a diagram of a QoS control process 300 in accordance with an example embodiment of the present invention.
  • a PCRF entity for example, the PCRF entity 110 identifies a substream of the GBR service, and generates a PCC rule for the GBR service for all substreams of the GBR service, where the PCC rule includes Information about all substreams of the GBR service.
  • the UE may include the information of the multiple sub-flows in the application information and send the information to the AF entity, where the AF entity may The conversion to session information is sent to the PCRF entity.
  • PCRF entity can The information of the multiple substreams is detected from the session information sent by the AF entity, thereby identifying that the plurality of substreams belong to the same GBR service.
  • the PDN-GW can detect that multiple substreams belong to the same GBR service. For example, the PDN-GW can perform the detection using Deep Packet Inspection (DPI, Deep Packet Inspection) technology (e.g., using DPI devices deployed in the network). For another example, it can be determined that the data streams that are connected to the same peer and have the same connection identifier (CID, Connection IDentifier) belong to the same GBR service.
  • DPI Deep Packet Inspection
  • CID Connection IDentifier
  • the PND-GW may trigger, for example, an event reporting process to report information of multiple sub-flows belonging to the same GBR service to the PCRF.
  • the information of the substream may include one or more of the following: an IP address of each substream, a Gx session identifier of each substream, information indicating a connection in which the substream is located (eg, a connection identifier CID) ) and the access type of each substream.
  • an IP address of each substream e.g., a Gx session identifier of each substream
  • information indicating a connection in which the substream is located eg, a connection identifier CID
  • the information of the substream may also include other information about the plurality of substreams.
  • a PCRF entity can store and maintain associations between multiple substreams belonging to the same GBR service.
  • the PCRF entity When it is identified that a plurality of substreams belong to the same GBR service, the PCRF entity generates one PCC rule for the plurality of substreams, and contains information of the plurality of substreams in the PCC rule.
  • the plurality of substreams are instructed to share QoS information in the PCC rules by including information of the plurality of substreams in a PCC rule.
  • the PCRF entity sends the generated PCC rules to the PDN-GW.
  • the PCRF entity may send a PCC rule to the PDN-GW through a Gx interface (eg, Gx interface 170) using an IP-Connected IP (IP-Access) session (IP-CAN Session) process.
  • a Gx interface eg, Gx interface 170
  • IP-Connected IP (IP-Access) session IP-CAN Session
  • the PCRF entity may provide the PCC rule by sending a CC-Asked Credit Control Answer (CC-Ask, Credit Control Answer) message to the PDN-GW.
  • CC-Ask Credit Control Answer
  • the PCRF entity can provide the PCC rule by sending a Re-Auth-Request (Re-Authentication Request) message to the PDN-GW.
  • Re-Auth-Request Re-Authentication Request
  • the CC-Answer message is taken as an example for specific explanation. The following is an example of a CC-Avoid message according to an embodiment of the present invention:
  • ⁇ CC-Answer>:: ⁇ Diameter Header: 272, PXY > ⁇ Session-Id >
  • the CC-Ask message adds a new feature Sub-flow-capable in the Supported-Features attribute value pair (AVP, Attribute Value Pair), which indicates by this feature
  • AVP Supported-Features attribute value pair
  • the currently sent PCC rule is used for multiple substreams in the same GBR service.
  • the Sub-flow Description AVP describes information of multiple sub-streams belonging to the same GBR service.
  • the multi-sub-stream information may include, for example, information indicating a connection in which the sub-flow is located (for example, a connection identifier (CID)), an IP address corresponding to each sub-flow (Framed-IP-Address/Framed-IPv6-Prefix), and access One or more of the types (RAT-Type); however, the present invention is not limited thereto, and the multi-substream information described in the Sub-flow Description AVP may also include other information about the plurality of substreams.
  • a connection identifier for example, a connection identifier (CID)
  • an IP address corresponding to each sub-flow for example, an IP address corresponding to each sub-flow (Framed-IP-Address/Framed-IPv6-Prefix), and access One or more of the types (RAT-Type); however, the present invention is not limited thereto, and the multi-substream information described in the Sub-flow Description AVP may also include other information about the plurality of substreams.
  • the main QoS parameters are set in the QoS-Information AVP of messages such as CC-Ask.
  • QoS-Information The following is an example of QoS-Information:
  • QoS-Class-Identifier indicates QoS Type Identifier (QCI)
  • Guaranteed-Bitrate-UL indicates guaranteed uplink rate
  • Guaranteed-Bitrate-DL indicates guaranteed downlink rate.
  • the QoS-Information AVP is included in the Sub-flow Description AVP, it indicates that specific QoS information is set for each sub-flow in the delivered PCC rule.
  • the PDN-GW first sets QoS information for the bearer, it can be set according to the QoS information description of the substream.
  • Subsequent PDN-GW QoS modification for bearers may not be limited by this QoS information description, but is mainly limited to QoS-Information AVP information in messages such as CC-Agreement.
  • the PCC rule includes information of multiple substreams belonging to the same GBR service and QoS parameters, and the QoS parameters are shared by multiple substreams corresponding to the multiple substream information in the PCC rule.
  • the CC-Answer message shown above is merely exemplary. Other messages can also be used to transfer PCC rules, such as the Re-Auth-Request message as described above.
  • the PDN-GW receives the PCC rule, and performs unified QoS control on multiple bearers for transmitting the same GBR service according to the PCC rule.
  • the PDN-GW may obtain multiple sub-stream information from the PCC rule and confirm the QoS parameters in the multiple bearer shared PCC rules associated with the multi-sub-stream information.
  • the PDN-GW may derive multiple IP addresses from the PCC rules and thereby determine a plurality of bearers sharing QoS parameters associated with the plurality of IP addresses.
  • the PDN-GW After the PDN-GW identifies multiple bearers sharing the QoS parameters according to the multiple substream information,
  • the PDN-GW may determine or adjust respective QoS parameters of each bearer of the multiple bearers sharing the QoS parameters according to the QoS parameters shared by the multiple bearers and the characteristics and conditions of each bearer; and, in the data transmission process, the PDN-GW
  • the QoS parameters of each bearer may be adjusted according to changes in network conditions; thus, the quality of service of each substream of the same GBR service is uniformly controlled.
  • the embodiment of the present invention does not limit the specific manner of determining the QoS parameters of each bearer, and the PDN-GW may use any appropriate method to determine the QoS parameters of each bearer.
  • the PDN-GW can use this information to determine the QoS parameters of each bearer, or the PDN-GW can determine the bearer according to the access network type.
  • QoS parameters For convenience of description, the PCC rules shared by multiple bearers included in the PCC rule are referred to as "common QoS parameters", and the QoS parameters determined by the PDN-GW for a single bearer are referred to as "private QoS parameters" of the bearer.
  • a plurality of bearers sharing QoS parameters are exemplarily illustrated by taking the bandwidth in the QoS parameters as an example.
  • the bandwidth of each sub-flow is specified by the QoS-Information AVP contained in the Sub-flow Description AVP of the PCC rule; when the PDN-GW creates a payload according to the PCC rule, the PDN-GW You can set the bandwidth of the newly loaded and adjust the bandwidth of the two existing substreams so that the sum of the bandwidth of the newly created bearer and the adjusted bandwidth of the two existing substreams is equal to the public QoS parameter included in the PCC rule. Bandwidth.
  • the PDN-GW when the PDN-GW deletes the bearer according to the PCC rule and deletes one of the original three sub-flows, the PDN-GW can adjust the bandwidth of the remaining two sub-flows, so that the bandwidth of the remaining two sub-flows is And equal to the bandwidth specified by the public QoS parameters included in the PCC rules.
  • the PDN-GW when the PDN-GW modifies the bearer to change the bandwidth of the three sub-streams, the PDN-GW can adjust the bandwidth of each sub-flow to ensure that the sum of the bandwidths of the adjusted three sub-flows is equal to the PCC.
  • the bandwidth specified by the public QoS parameters included in the rule when the PDN-GW deletes the bearer according to the PCC rule and deletes one of the original three sub-flows, the PDN-GW can adjust the bandwidth of the remaining two sub-flows, so that the bandwidth of the remaining two sub-flows is And equal to the bandwidth specified by the public QoS parameters included in the PCC rules.
  • the PDN-GW can store and maintain associations between multiple sub-flows belonging to the same GBR service.
  • the PDN-GW can perform such as new bearer, modify bearer, and delete according to the instructions of the PCC rule. In addition to the bearer operation of the bearer.
  • the information of all the sub-flows belonging to the same GBR service is included in one PCC rule, so that the PDN-GW can identify the associated bearer according to the information of the sub-flow included in the PCC rule, thereby being used for transmitting a GBR service.
  • All bearers perform unified QoS control, thus ensuring correct QoS control for GBR services containing multiple substreams.
  • the PDN-GW may perform operations such as creating a bearer, modifying a bearer, or deleting a bearer according to an indication of a PCC rule.
  • the following describes the process of creating, modifying, and deleting a bearer for transmitting the GBR service when the GBR service includes multiple substreams.
  • FIG. 4 is a diagram showing a process 400 of creating a bearer for transporting GBR traffic containing multiple substreams, in accordance with an example embodiment of the present invention.
  • a PCRF entity e.g., PCRF entity 110 identifies that multiple substreams belong to the same GBR service and generates one PCC rule for the plurality of substreams.
  • the PCRF entity may identify multiple substreams belonging to the same GBR service according to the multiple substream information reported by the UE via the AF entity.
  • information of a plurality of substreams is included. The operation of identifying the multi-substream based on the information provided by the UE in S410 and the operation of generating the PCC rule and the contents of the multi-substream information are the same as those described with reference to S310, and will not be described in detail for the sake of brevity.
  • the PCRF entity sends the generated PCC rules to the PDN-GW.
  • S420 is basically the same as S320 in FIG. 3, and will not be described in detail for the sake of brevity.
  • the PDN-GW extracts the multi-substream information from the PCC rules and performs the bearer operation according to the PCC rules.
  • the PDN-GW performs an operation of creating a bearer according to the indication of the PCC rule, and the created 7 carries at least one of a plurality of substreams for transmitting the GBR service.
  • the PDN-GW When the bearer is created, the PDN-GW performs QoS control on the newly created bearer and the existing bearer used for the same GBR service. Specifically, the PDN-GW shares the newly created bearer with the existing bearer used for the same GBR service with the newly created bearer, and shares the common QoS parameters included in the PCC rule, and determines the dedicated QoS parameters of each bearer.
  • the content described with reference to S330 applies to S430 and will not be described in detail for the sake of brevity.
  • the PDN-GW may send a message to the AGW corresponding to the bearer to be created to request to create a bearer.
  • the PDN-GW may send a Create Bearer Request message to the AGW.
  • the embodiment of the present invention is not limited thereto, and the PDN-GW may also send other messages to the AGW to request to create a bearer.
  • the message requesting to create a bearer mark the resource type of the newly created bearer as a joint GBR bearer (Union-GBR) to indicate the newly created bearer and its He carries shared QoS parameters.
  • the dedicated QoS parameters determined for the new bearer may be included in the message requesting the creation of the bearer.
  • the AGW here may be an eNodeB in a 3GPP network or an AP or an AR in a non-3GPP network, or another access device, and the PDN-GW may send a Create Bearer Request message with an appropriate signaling message format to meet the requirements of the corresponding network. .
  • the existing bearer used for the same GBR service with the newly-created bearer includes a bearer whose resource type is a GBR bearer (for example, when a new bearer for the GBR service is newly created, the GBR is The resource type of the first bearer of the service may be a GBR service, and the PDN-GW may modify the resource type of the bearer to be a joint GBR bearer.
  • the AGW receives the message sent by the PDN-GW requesting to create a bearer, performs an operation of creating a bearer in response to the message, and modifies the radio side resource according to the dedicated QoS parameter in the message.
  • the AGW may map the dedicated QoS parameters included in the message requesting the creation of the bearer to the corresponding radio access QoS parameters, and perform a modification process on the radio resources to ensure the bandwidth of the GBR service on the radio side.
  • the AGW sends a response message to the PDN-GW to the bearer creation request, for example, a Create Bearer Response message, to indicate that the bearer creation has been completed and the pair is completed on the radio side.
  • a response message to the PDN-GW to the bearer creation request, for example, a Create Bearer Response message, to indicate that the bearer creation has been completed and the pair is completed on the radio side.
  • the PDN-GW can hold the association between the seven subcarriers of multiple substreams.
  • the PDN-GW can identify the associated bearer according to the information of the sub-flow included in the PCC rule; Uniform QoS control for all bearers of the GBR service ensures correct QoS control for GBR services containing multiple sub-streams.
  • one or more of the existing bearers used for the same GBR service are modified and newly created, and the GBR service including the multiple substreams can also be ensured. Make the correct QoS control.
  • FIG. 5 shows a diagram of a bearer modification process 500 in accordance with another example embodiment of the present invention.
  • the PCRF entity for example, the PCRF entity 110
  • the PCRF entity transmits the generated PCC rule to the PDN-GW.
  • S510 and S520 are substantially the same as S310 and S320 in FIG. 3, and will not be described in detail for the sake of brevity.
  • the PDN-GW extracts the multi-substream information from the PCC rules, and performs the bearer operation according to the PCC rules.
  • the PDN-GW performs an operation of modifying the bearer according to the indication of the PCC rule, and the modified 7
  • the PDN-GW may derive multiple IP addresses from the PCC rules and thereby determine a plurality of bearers sharing QoS parameters associated with the plurality of IP addresses.
  • the PDN-GW can determine the dedicated QoS parameters of each bearer according to the common QoS parameters included in the PCC rules to uniformly control multiple 7-carrier QoS for the same GBR service.
  • the content described with reference to S330 applies to S530 and will not be described in detail for the sake of brevity.
  • the PDN-GW sends a request to modify the bearer message to the AGW corresponding to the modified bearer, for example, a Modify Bearer Request message, and marks the resource type as a joint GBR bearer (Union-GBR). To indicate that the modified bearer shares QoS parameters with other bearers.
  • the dedicated QoS parameters of the modified bearer may also be included in the message requesting modification of the bearer.
  • the AGW herein may be an eNodeB in a 3GPP network or an AP or an AR in a non-3GPP network, and the PDN-GW may send a Modify Bearer Request message with an appropriate signaling message format to conform to the corresponding network. Requirements.
  • the AGW receives the message requested by the PDN-GW to modify the bearer, modifies the bearer in response to the request, and modifies the radio side resource according to the dedicated QoS parameter in the message.
  • the AGW may map the dedicated QoS parameters included in the message requesting the modification bearer to the corresponding radio access QoS parameters to modify the radio resources and ensure the bandwidth of the GBR service on the radio side.
  • the AGW sends a response message to the PDN-GW to the bearer modification request, such as a Modify Bearer Response message, to indicate that the modification of the bearer has been completed and the wireless side has been completed.
  • the QoS parameter adjustment of the connection is not limited to the bearer modification request.
  • the PDN-GW can save the association between bearers of multiple substreams belonging to the same GBR service. It should be noted that, in order to avoid frequent modification of the radio side resources, when the PDN-GW actively adjusts the QoS parameters of the joint GBR bearer, the bearer of the radio side may not be modified.
  • the PDN-GW can identify the associated bearer according to the information of the sub-flow included in the PCC rule; Uniform QoS control for all bearers of the GBR service ensures correct QoS control for GBR services containing multiple sub-streams.
  • the PCRF entity may identify the deleted substream from the information reported by the UE, and indicate the deleted substream.
  • the information is sent to the PDN-GW. If the PDN-GW finds that one or more of the originally associated multi-substreams no longer share the same QoS parameter information in the PCC rule, the corresponding bearer is deleted. For example, when the UE deletes one or more of the multiple sub-streams of the GBR service, the information about the deleted sub-flow may not be included in the application information reported by the UE, so that the PCRF receives the information from the application.
  • the PCRF entity may modify the PCC rule to delete the substream information corresponding to the deleted substream, so that the PDN-GW can identify the deleted substream according to the modified PCC rule, and delete The bearer corresponding to the deleted substream. While deleting the bearer, the PDN-GW can also modify the bearer corresponding to the substream that has not been deleted.
  • the specific processing is shown in Figure 6.
  • FIG. 6 is a diagram showing a bearer deletion process 600 in accordance with another exemplary embodiment of the present invention.
  • a PCRF entity eg, PCRF entity 110
  • the content described with reference to S310 is applicable to S610 and will not be repeated here.
  • the UE deletes one or more of the multiple sub-flows that belong to the same GBR service.
  • the PCRF entity can identify the sub-flow change of the GBR service according to the information reported by the UE.
  • the PCRF entity can modify the association between the maintained multiple substreams. In the PCC rule generated by the PCRF entity, the information of the deleted substream will no longer be included.
  • the PCRF entity sends the generated PCC rules to the PDN-GW.
  • the content described with reference to S320 applies to S620 and will not be repeated here.
  • the application information obtained by the PCRF entity no longer includes the association of the multiple substreams (for example, the information of the multiple substreams) because the substream is deleted, the association is also cancelled in the PCC rule generated by the PCRF entity.
  • the subflow support indication for example, Sub-flow Description AVP
  • the subflow support indication is included in the generated PCC rule, except that only the subflow description is included in the subflow description. It is information including a substream that currently exists, for example, only information of the substream that has not been deleted is included in the Sub-flow Description AVP.
  • the PDN-GW determines the bearer that needs to be deleted and modified according to the content in the PCC rule. For example, for the associated joint GBR bearer, if the information description of a sub-flow is no longer included in the PCC rule, the bearer corresponding to the sub-flow needs to be deleted, and one of the joint GBR bearers still existing needs to be modified. Or multiple.
  • the PDN-GW deletes and modifies the corresponding joint GBR bearer according to the PCC rule.
  • the PDN-GW sends a request to delete the bearer message to the AGW corresponding to the bearer, for example, a Delete Bearer Request message, indicating that the substream on the bearer has been deleted, and instructs the AGW to delete the bearer.
  • the operations performed by the modified bearer are similar to those of the S530, S540, and S550 in the tampering process described in FIG. 5, and will not be described in detail herein.
  • the PDN-GW also needs to set the resource type of the one bearer to a GBR bearer. The following describes only the operation of deleting a bearer.
  • the AGW may delete the bearer, and may perform a modification process on the radio resource to delete the bandwidth reserved by the radio side for the GBR service.
  • the AGW sends a response message to the PDN-GW to the bearer deletion request, for example, a Delete Bearer Response message, indicating that the bearer has been deleted, and the QoS parameter adjustment for the wireless connection has been completed on the radio side.
  • the PDN-GW can save the association between the bearers of the remaining plurality of substreams. If only one substream remains, the PDN-GW deletes the association between the bearers of the multiple substreams and restores the bearer QoS control to the single substream.
  • the information of all the sub-flows belonging to the same GBR service is included in one PCC rule, so that the PDN-GW can identify the associated bearer according to the information of the sub-flow included in the PCC rule;
  • Uniform QoS control for all bearers of the service ensures correct QoS control for GBR services containing multiple sub-flows.
  • one or more of the remaining bearers for the same GBR service and the deleted bearer are modified while deleting the bearer, so that the GBR including the multiple substreams can also be ensured.
  • the service performs the correct QoS control.
  • FIG. 7 is a flow chart showing a method of QoS control according to an embodiment of the present invention.
  • the method illustrated in Figure 7 may be performed by, for example, a PCEF entity or a BBERF entity, or a network element containing a PCEF entity or a BBERF entity in the network.
  • a PCEF entity or a BBERF entity or a network element containing a PCEF entity or a BBERF entity in the network.
  • the PDN-GW will be described as an example.
  • the PDN-GW receives the PCC rule for the GBR service sent by the PCRF entity.
  • the GBR service may include two or more substreams, and the PCC rules include information of all substreams of the GBR service.
  • the PDN-GW associates two or more bearers for transmitting the GBR service based on the information of all the sub-flows of the GBR service included in the PCC rule, and performs QoS control uniformly.
  • FIG. 8 is a flow chart showing a method of QoS control according to an embodiment of the present invention.
  • the method illustrated in Figure 8 can be performed by, for example, a PCRF entity.
  • the PCRF entity determines that two or more substreams belong to the same GBR service.
  • the PCRF entity generates a PCC rule for the GBR service, where the PCC rule includes information of all substreams of the GBR service.
  • the PCRF entity sends the PCC rule to the PCEF entity or the BBERF entity, so that the PCEF entity or the BBERF entity associates two or more bearers for transmitting the GBR service, and performs QoS control uniformly.
  • Figure 9 shows a block diagram of an apparatus 900 for performing QoS control in accordance with an embodiment of the present invention.
  • Device 900 can be a PCEF entity or a BBERF entity.
  • the apparatus 900 includes a receiving unit 910 and a QoS control unit 920.
  • the receiving unit 910 can be configured to receive a PCC rule for the GBR service from the PCRF entity.
  • the GBR service may include two or more substreams, and the PCC rule includes information of all substreams of the GBR service.
  • the QoS control unit 920 may associate two or more bearers for transmitting the GBR service based on the information of all the sub-flows of the GBR service included in the PCC rule, and perform QoS control uniformly.
  • the apparatus 900 of Figure 9 can be used to perform the method described, for example, with reference to Figure 7.
  • Figure 10 is a block diagram showing an apparatus 1000 for performing QoS control in accordance with an embodiment of the present invention.
  • Device 1000 can be a PCRF entity.
  • the device 1000 includes a determining unit 1010, a PCC rule generating unit 1020, and a PCC rule transmitting unit 1030.
  • the determining unit 1010 can be configured to determine that two or more substreams belong to the same GBR service.
  • the PCC rule generating unit 1020 may be configured to generate a PCC rule for the GBR service, where the PCC rule includes information of all substreams of the GBR service.
  • the PCC rule sending unit 1030 may be configured to send the PCC rule to the PCEF entity or the BBERF entity, so that the PCEF entity or the BBERF entity associates two or more carriers for transmitting the GBR service, and performs QoS uniformly. control.
  • the apparatus 1000 of Figure 10 can be used to perform, for example, the method described with reference to Figure 8.
  • the PCRF entity may generate a PCC rule for multiple sub-flows belonging to the same GBR service, to indicate that multiple different bearers of the PDN-GW share one GBR bandwidth, and the PDN-GW controls the QoS parameters of the bearers of each sub-flow.
  • the network side needs to implement the modification of the radio bearer in the access gateway at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了用于服务质量(QoS)控制的方法和装置。一种QoS控制的方法的特征在于,其包括:接收策略计费规则功能(PCRF)实体发送的用于保证比特率(GBR)业务的策略计费控制(PCC)规则,所述GBR业务包含两个或者两个以上子流,所述PCC规则中包含所述GBR业务的所有子流的信息;以及基于在所述PCC规则中包含的所述GBR业务的所有子流的信息,将用于传输所述GBR业务的两个或者两个以上承载关联起来,统一进行QoS控制。通过在一个PCC规则中包含属于同一GBR业务的所有子流的信息,并对用于传输一个GBR业务的所有承载进行统一的QoS控制,能够确保对包含多子流的GBR业务进行正确的QoS控制。

Description

服务质量控制方法和设备 技术领域
本发明实施例涉及通信领域, 尤其涉及服务质量 ( QoS , Quality of Service )控制方法和装置。 背景技术
移动宽带时代的到来对移动通信网络提出了更高的要求,如更高的传输 速率、 更小的时延和更高的系统容量等。 为了保持第三代合作伙伴计划 ( 3GPP, 3rd Generation Partnership Project ) 网络的优势, 3GPP标准化组织 于 2004年底启动了长期演进( LTE, Long Term Evolution )和系统架构演进 ( SAE, System Architecture Evolution ) 两大计划的研究和标准化工作。 在 3GPP LTE/SAE移动通信网络技术中, 将无线接入网和核心网分别称为演进 的通用陆地无线接入网 (E-UTRAN , Evolved Universal Terrestrial Radio Access Network ) 和演进的分组核心网 (EPC, Evolved Packet Core ), 并将 整个网络系统命名为演进的分组系统 ( EPS , Evolved Packet System )。 不同 于传统的通用移动通讯系统 (UMTS , Universal Mobile Telecommunications System ) 网络架构, EPS网絡架构是一种全网际协议( IP, Internet Protocol ) 的网络架构, 并且其支持多种 3GPP、 非 3GPP无线系统的接入技术, 如全 球移动通讯系统( GSM, Global System For Mobile Communication )增强型 数据速率 GSM演进( EDGE, Enhanced Data Rate for GSM Evolution ) 无线 接入网( GERAN, GSM EDGE Radio Access Network ) /通用陆地无线接入网 ( UTRAN, Universal Terrestrial Radio Access Network ), E-UTRAN、 无线局 域网(WLAN, Wireless Local Area Network). WiMAX、 CDMA2000等等。
在现有 EPS网络架构中,一个应用的业务数据通常在同一时间仅仅通过 一个传输通道进行传输, 即, 一个应用通常只包含一个业务数据流。 目前的 研究热点之一, 是实现同时在多个传输通道上传输同一应用的业务数据, 使 一个应用同时包含多个业务数据流, 这种技术称为多子流技术, 属于一个应 用的多个业务数据流被称为该应用的多个子流。 实现多子流技术的难点之一 是, 现有的对于保证比特率 (GBR, Guaranteed Bit Rate ) 业务的 QoS控制 方案仅仅考虑了一个应用在同一时间只包含一个业务数据流的情况, 不能支 持多子流情兄。 发明内容
本发明实施例提供了一种服务质量控制方法和设备。 通过本发明实施 例, 能够对包含多子流的 GBR业务进行正确的 QoS控制。
本发明实施例提供了一种 QoS控制的方法,该方法可以包括:接收策略 计费规则功能 ( PCRF, Policy and Charging Rule Function ) 实体发送的用于 GBR业务的策略计费控制 (PCC, Policy and Charging Control )规则, 所述 GBR业务包含两个或者两个以上子流,所述 PCC规则中包含所述 GBR业务 的所有子流的信息; 以及基于在所述 PCC规则中包含的所述 GBR业务的所 有子流的信息, 将用于传输所述 GBR业务的两个或者两个以上承载关联起 来, 统一进行 QoS控制。
本发明实施例还提供一种 QoS控制方法,该方法可以包括: 确定两个或 者两个以上的子流属于同一个 GBR业务; 生成用于所述 GBR业务的一个 PCC规则, 所述 PCC规则中包含所述 GBR业务的所有子流的信息; 以及将 所述 PCC 规则发送到策略计费执行功能 (PCEF , Policy and Charging Enforcement Function ) 实体或承载绑定及事件报告功能 (BBERF, Bearing Binding and Event Report Function ) 实体, 以使所述 PCEF实体或 BBERF实 体将用于传输所述 GBR业务的两个或者两个以上承载关联起来, 统一进行 QoS控制。
本发明实施例还提供一种用于 QoS控制的装置,该装置可以包括:接收 单元, 用于从 PCRF实体接收用于 GBR业务的 PCC规则, 所述 GBR业务 包含两个或者两个以上子流, 该 PCC规则中包含该 GBR业务的所有子流的 信息; 以及 QoS控制单元, 用于基于在 PCC规则中包含的所述 GBR业务的 所有子流的信息, 将用于传输所述 GBR业务的两个或者两个以上承载关联 起来, 统一进行 QoS控制。
本发明实施例还提供一种用于 QoS控制的装置,该装置可以包括:确定 单元, 用于确定两个或者两个以上的子流属于同一个 GBR业务; PCC规则 生成单元, 用于生成用于所述 GBR业务的一个 PCC规则, 所述 PCC规则 中包含所述 GBR业务的所有子流的信息; 以及 PCC规则发送单元, 用于将 所述 PCC规则发送到 PCEF实体或 BBERF实体, 以使所述 PCEF实体或 BBERF实体将用于传输所述 GBR业务的两个或者两个以上承载关联起来, 统一进行 QoS控制。
本发明实施例通过在一个 PCC规则中包含属于同一 GBR业务的所有子 流的信息, 并对用于传输一个 GBR业务的所有承载进行统一的 QoS控制, 能够确保对包含多子流的 GBR业务进行正确的 QoS控制。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的 前提下, 还可以根据这些附图获得其他的附图。
图 1是示出示例性的 PCC架构的示意图;
图 2是示出一种 GBR业务的 QoS控制过程的示图;
图 3是示出根据本发明实施例的 QoS控制过程的示图;
图 4是示出根据本发明实施例的承载创建过程的示图;
图 5是示出根据本发明实施例的承载修改过程的示图;
图 6是示出根据本发明实施例的承载删除过程的示图;
图 7是示出根据本发明实施例的 QoS控制过程的流程图;
图 8是示出根据本发明另一实施例的 QoS控制过程的流程图; 图 9是示出根据本发明实施例的用于进行 QoS控制的装置的框图; 图 10是示出根据本发明另一实施例的用于进行 QoS控制的装置的框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1是示出示例性的 PCC架构的示意图。 如图 1所示, PCC架构 100 包括 PCRF实体 110、 PCEF实体 120、 BBER实体 121、 AF实体 130和用户 签约数据库( SPR, Subscription Profile Repository ) 140。 PCRF实体 110与 RCEF实体 120之间通过 Gx接口 170交互信息, PCRF实体 110与 AF实体 130之间通过 Rx接口 180交互信息。 Gx接口 170和 Rx接口 180均采用 Diameter协议。 Diameter协议是一种用于认证、 授权和计费的安全协议。
PCRF实体 110主要完成策略的决策控制功能。 具体来说, PCRF实体 110通过 Rx接口 180从 AF实体 130接收会话信息,通过 Gx接口 170从 PCEF 实体 120接收接入网络信息, 同时 PCRF实体 110还可以从 SPR 140接收签 约用户信息。 PCRF实体 110基于上述所接收的信息以及运营商配置的策略 规则, 生成服务会话层次的 PCC规则, 并将此 PCC规则提供给 PCEF实体 120和 /或 BBERF实体 121。 PCRF实体 110的另一个任务是在 BBERF实体、 PCEF实体 120和 AF实体 130之间转发 AF实体订阅的事件。
PCEF实体 120和 BBERF实体 121执行从 PCRF实体 110接收的 PCC 规则, 并通过 Gx接口 170向 PCRF实体 110提供用户相关信息和接入网络 信息。
AF实体 130负责提供用户和应用相关的动态信息。 AF实体 130与需获 取动态 PCC规则的应用或服务交互。一般的, 服务的应用层信令在 AF实体 130上终止。 AF实体 130可以从应用信令报文中解析出应用信息,将该应用 信息转换为会话信息, 然后通过 Rx接口 180将该会话信息提供给 PCRF实 体 110。
在实际网络中, PCRF实体 110可以在 PCRF网元中实现; PCEF实体 120可以位于网关处, 例如, 位于分组数据网 (PDN, Packet Data Network ) 网关 (PDN-GW, PDN-GateWay ) 中; BBERF实体 121则可以在例如服务 网关( S-GW, Serving Gate Way )或增强分组数据网关( ePDG, evolved Packet Data Gateway )中实现; 至于 AF实体 130, 在特定的网络中可能由相应的网 络实体来完成 AF实体功能, 例如在 IP多媒体子系统 ( IMS , IP Multimedia Subsystem )中, AF实体功能可以由代理呼叫会话控制功能( P-CSCF, Proxy Call Session Control Function )实现, 再例如对于非 IMS, AF实体可能在一 个应用服务器 (例如, 视频流媒体服务器) 中实现。
需要注意的是, 以上描述的 PCC 架构各功能实体在实际网络中的部署 仅仅是示例性的, 本发明并不局限于此。
PCC架构 100还可以包括图 1 中示出的离线计费系统( OFCS, Offline Charging System ) 和在线计费系统( OCS , Online Charging System ) 以及其 其他功能实体, 为避免模糊本发明实施例的重点, 省略对它们的具体描述。 此外, PCC架构 100支持包括 GERAN/UTRAN、 E-UTRAN, WLAN、 WiMAX、 CDMA2000等等的多种 3GPP和非 3GPP接入技术。 UE 190可以 利用不同的接入技术、 通过相应的接入网关 ( AGW, Access GateWay ) 150 接入网络, 以利用诸如 PDN之类的网络的资源。 举例来说, AGW 150可以 是 3GPP网络中的演进型节点 B ( eNodeB , evolved Node B ) 或非 3GPP网 络中的接入网络设备, 如接入点 (AP, Access Point ) 或接入路由器 (AR, Access Router )等。 在 UE 190通过不同接入技术接入网络时, PCC架构 100 均能提供相应的策略控制。 PDN-GW节点和 AGW节点能够根据 PCC架构 中提供的 PCC规则, 进行 QoS控制。
图 2示出了一种含有 GBR业务的 UE接入到网络中时的 QoS控制过程。 如图 2所示, 在 S210, UE (例如, UE 190 )在开机后启动到核心网的 网络附着过程。附着过程是指 UE在进行实际业务之前在网络中的注册过程。 在附着过程中, UE能够获得网络侧分配的 IP地址。
在 S220 , PDN-GW新建与 PCRF实体 (例如, PCRF实体 110 ) 的 Gx 会话。 Gx会话可以用来传递 PCC规则。 在本发明实施例中, PCEF实体在 PDN-GW上实现, 因此由 PDN-GW来执行 PCEF实体的功能。 在下文中, 除非有明确地相反说明, 否则, 由 PDN-GW执行的操作均是由 PDN-GW中 包含的 PCEF实体(例如, PCEF实体 120 )执行的。 此外, 下文中的描述均 是针对 PDN-GW (或者说其中包含的 PCEF实体)进行的, 但是应注意, 取 决于接入网络的不同, 由 PDN-GW 执行的 7 载绑定操作也可以类似地由 BBERF实体执行。
在 S230, UE将应用信息上报给 AF实体( AF实体 130 )。 具体来说, UE通过特定的信令, 如会话发起协议(SIP, Session Initiation Protocol )信 令, 将所运行的应用信息上报给 AF实体。 这里的应用信息是指 UE通过特 定的信令消息(例如, 在 SIP信令中, 可以通过会话描述协议( SDP, Session Description Protocol )描述)传递的应用层会话信息, 可以包括应用所涉及 的媒体类型和媒体格式、 所需带宽、接入网络类型和 /或 IP地址类型等信息, 用于网络侧分配合适的网络资源。 在本例中, 所述应用是 GBR业务, 因此 应用信息中包含相应的 GBR参数。
在 S240 , AF实体生成会话信息, 并将该会话信息发送给 PCRF实体。 具体来说, AF实体在接收到从 UE发送的应用信息后, 生成与所接收的应 用信息对应的会话信息, 并将该会话信息发送给 PCRF实体。 相应地, 该会 话信息中也包含 GBR参数。 举例来说, AF实体可以与 PCRF实体建立 Rx 会话, 以在 Rx接口 (例如, Rx接口 180 )上通过该 Rx会话将所述会话信 息发送给 PCRF实体。
在 S250, PCRF实体做出决策, 生成 PCC规则。 具体来说, PCRF实体 根据从 AF实体接收的与来自 UE的应用信息相应的会话信息, 以及例如从 SPR接收的用户信息、 运营商的配置等, 决策生成用于 UE的该 GBR业务 的 PCC规则。 在该 PCC规则中包含 GBR业务的 QoS参数。
在 S260, PCRF实体将生成的 PCC规则发送给 PDN-GW。 具体来说, PCRF实体在生成 PCC规则之后,通过 Gx接口将 PCC规则发送给 PDN-GW。 如上所述, 在该 PCC规则中包含有 GBR业务的 QoS参数。
在 S270, PDN-GW执行与所接收的 PCC规则相对应的承载操作。 具体 来说, PDN-GW根据 PCC规则执行诸如新增、 修改或删除承载的承载操作, 并且, PDN-GW根据 PCC规则中的 GBR业务的 QoS参数设置承载的 QoS 参数值, 并根据承载的 QoS参数值执行相应的 QoS控制流程。
至此, 针对 GBR业务的 QoS控制过程完成。
需要注意的是, 虽然以上将 S230描述为 UE上报应用信息, 但本领域 技术人员知道, "UE上报应用信息" 实际是一个交互的过程, 例如, AF实 体在接收到 UE发送的应用信息后,可以向 UE返回确认信息。类似地, S240、 S260中的信息传送以及 S270中的承载操作也均涉及到交互过程。 这样的交 互是本领域技术人员熟知的, 因此以下将不再详细描述。
上述 QoS控制过程将一个流按照一个 GBR业务来处理, 因此只适用于 一个 GBR业务在同一时间只有一个业务数据流的情况, 不适用于一个 GBR 业务同时包括多个子流的情况。如果将上述 QoS控制过程直接用于支持多子 流的 GBR业务, 将导致对属于同一个 GBR业务的多个子流分别根据 GBR 业务的 GBR参数进行 QoS控制, 从而造成错误的 QoS控制处理。 考虑到这 种情况, 本发明实施例提出了一种支持 GBR业务的多子流 QoS控制方法, 通过该方法, GBR业务包括多个子流时, 网络侧能够实现正确的 QoS控制。
在根据本发明实施例的多子流 QoS控制方法中, 当 GBR业务包括多个 子流时,将用于传输多个子流的多个 GBR承载关联起来共同进行 QoS控制。 在将多个承载关联起来之后, 可以在 PDN-GW上指定相关联的多个承载共 享 QoS参数, 例如, 共享 GBR带宽, 从而实现对 GBR业务的多个子流进 行统一地 QoS控制。 通过本发明实施例, 当支持多子流技术的 UE在使用 GBR业务时, 能够实现对该 GBR业务正确的 QoS控制。
在根据本发明实施例的多子流 QoS控制方法中, 当 GBR业务通过多子 流连接到核心网络时, PCRF实体(例如, PCRF实体 110 )可以将属于同一 GBR业务的多个子流的信息 (下文中, 也可称为 "多子流信息") 包含在一 个 PCC规则中发送给 PDN-GW。 PDN-GW可以根据 PCC规则识别属于同一 GBR业务的多个子流, 将用于传输一个 GBR业务的多个子流的多个承载关 联起来进行 QoS控制。 举例来说, PDN-GW可以使传输同一 GBR业务的多 个承载共享 PCC规则中的 QoS参数, 实现统一的 QoS控制。
在本发明实施例中, 为了与现有的 GBR承载和非 GBR ( Non-GBR )承 载区分, 定义了一个新的资源类型: 联合 GBR承载(Union-GBR )。 具体来 说, 将用于传输属于同一 GBR业务的多个子流中的至少一个的承载定义为 联合 GBR承载, 并且与同一 GBR业务关联的多个联合 GBR承载共享相同 的 QoS信息。 在具体实现时, 可以在现有的 GBR承载和非 GBR承载之夕卜, 新增一个承载的资源类型, 即联合 GBR承载。 或者, 也可以通过在 GBR承 载中增加联合标志位来将该 GBR承载设置为联合 GBR承载。
在本发明实施例中, 当 PDN-GW 调整承载的 QoS 参数时, 或者当 PDN-GW新建或删除承载时, 接入网关可以同时调整无线侧的 QoS参数, 从而在无线侧和网络侧同时实现对 GBR业务的 QoS控制。
根据本发明的一个示例性实施例, 当 GBR业务通过多子流连接到核心 网络时, PCRF实体(例如, PCRF实体 110 )在识别出多子流后, 将多子流 信息发送给 PDN-GW, PDN-GW可以根据多子流信息创建、 修改或删除相 关的联合 GBR承载, 从而对 GBR业务进行统一的 QoS管理。 图 3示出了 根据本发明的一个示例实施例的 QoS控制过程 300的示图。
如图 3所示, 在 S310, PCRF实体(例如, PCRF实体 110 )识别 GBR 业务的子流, 并为该 GBR业务生成一个 PCC规则以用于该 GBR业务的所 有子流, 该 PCC规则中包含 GBR业务的所有子流的信息。
举例来说, 当 UE (例如, UE 190 )的 GBR业务通过多个子流连接到核 心网时, UE可以将多个子流的信息包含在应用信息中发送给 AF实体, AF 实体可以将该应用信息转换成会话信息发送给 PCRF实体。 PCRF实体可以 从 AF实体发送的会话信息中检测多个子流的信息, 从而识别出多个子流属 于同一 GBR业务。
再举一例, 当 UE (例如, UE 190 )的 GBR业务通过多个子流连接到核 心网时, PDN-GW可以检测到多个子流属于同一 GBR业务。例如, PDN-GW 可以利用深度包检测 ( DPI , Deep Packet Inspection )技术(例如, 利用网络 中部署的 DPI设备)进行所述检测。 再例如, 可以确定连接同一对端且具有 相同连接标识符( CID, Connection IDentifier )的数据流属于同一 GBR业务。 PND-GW在检测到多个子流属于同一 GBR业务时, 可以触发例如事件上报 流程将属于同一 GBR业务的多个子流的信息上报给 PCRF。
所述子流的信息可以包括以下各项中的一项或多项: 每个子流的 IP地 址、 每个子流的 Gx会话标识符、 指示子流所在的连接的信息 (例如, 连接 标识符 CID )以及每个子流的接入类型。 然而本发明实施例不局限于此, 子 流的信息也可以包括有关多个子流的其他信息。
PCRF实体可以保存和维护属于同一 GBR业务的多个子流之间的关联 关系。
当识别出多个子流属于同一 GBR业务时, PCRF实体生成用于所述多个 子流的一个 PCC规则, 并且在 PCC规则中包含多个子流的信息。 通过在一 个 PCC规则中包含多个子流的信息, 来指示所述多个子流共享 PCC规则中 的 QoS信息。
在 S320, PCRF实体将所生成的 PCC规则发送给 PDN-GW。
举例来说, PCRF实体可以通过 Gx接口 (例如 Gx接口 170 ) 利用 IP 连通接入网( IP-CAN, IP Connectivity Access Network )会话( IP-CAN Session ) 处理流程 , 将 PCC规则发送给 PDN-GW。
举例来说,如果是 PCEF实体发起的 PCC规则请求, 则 PCRF实体可以 通过发送符合 Diameter寸办议的信用控制响应 ( CC- Answer, Credit Control Answer ) 消息给 PDN-GW来提供 PCC规则。 再例如, 如果是 PCRF实体主 动提供 PCC 规则, 则 PCRF 实体可以通过向 PDN-GW 发送重认证请求 ( Re-Auth-Request, Re- Authentication Request )消息来提供 PCC规则。 这里 以 CC- Answer 消息为例进行具体说明。 以下是根据本发明实施例的 CC- Answer消息的示例:
<CC-Answer>:: = < Diameter Header: 272, PXY > < Session-Id >
{ Auth- Application-Id }
*[ Supported-Features ]
*[ QoS -Information ]
[ Revalidation-Time ]
[ Default-EPS-Bearer-QoS ]
[ Bearer-Usage ]
*[ Usage-Monitoring-Information ]
*[ AVP ]
与传统 CC-Answer消息相比, 根据本发明实施例的 CC- Answer消息在 Supported-Features属性值对( AVP, Attribute Value Pair ) 中增加了一个新的 特性 Sub-flow-capable,通过此特性表明当前发送的 PCC规则用于同一 GBR 业务中的多个子流。具体来说,在特性 Sub-flow-capable所包含的 AVP当中, Sub-flow Description (子流描述) AVP描述了属于同一 GBR业务的多个子 流的信息。 该多子流信息可以包括例如指示子流所在的连接的信息(例如连 接 标 识 符 ( CID ) ) 、 每 个 子 流 所 对 应 的 IP 地 址 ( Framed-IP-Address/Framed-IPv6-Prefix ), 接入类型 ( RAT-Type ) 中的一个 或多个; 然而本发明不局限于此, Sub-flow Description AVP中描述的多子流 信息也可以包括有关多个子流的其他信息。 以下是 Sub-flow-Description AVP 的示例:
<Sub-flow Description :: = < AVP Header >
< Connection-Id >
[ AF- Application-Identifier ]
*[ Media-Component-Description ]
[Service-Info-Status ]
*[ QoS-Information ]
[ RAT-Type ]
[ Framed-IP- Address ]
[ Framed-IPv6-Prefix ]
*[ AVP ] 对于 GBR 业务来说, 在所提供的 PCC 规则中, 主要的 QoS 参数在 CC- Answer等消息的 QoS -Information ( QoS信息) AVP中进行设置。 以下 是 QoS-Information的示例:
QoS -Information:: = < AVP Header: 1016 >
[ QoS-Class-Identifier ]
[ Max-Requested-Bandwidth-UL ]
[ Max-Requested-Bandwidth-DL ]
[ Guaranteed-Bitrate-UL ]
[ Guaranteed-Bitrate-DL ]
[ Bearer- Identifier ]
[ Allocation-Retention-Priority]
[ APN-Aggregate-Max-Bitrate-UL]
[ APN-Aggregate-Max-Bitrate-DL]
*[AVP]
对于 GBR业务来说, 在所提供的 PCC规则中, 主要对 QoS-Information 中的 QoS-Class-Identifier, Guaranteed-Bitrate-UL , Guaranteed-Bitrate-DL等 值进行修改。 其中, QoS-Class-Identifier 表示 QoS 类型标识符 ( QCI ), Guaranteed-Bitrate-UL表示保证上行速率, Guaranteed-Bitrate-DL表示保证下 行速率。
如果在 Sub-flow Description AVP中含有 QoS-Information AVP, 则表明 下发的 PCC规则中为每个子流设置了特定的 QoS信息。在 PDN-GW初次为 承载设置 QoS信息的时候, 可以根据子流的 QoS信息描述来进行设置。 后 续 PDN-GW针对承载的 QoS修改可以不受此 QoS信息描述的限制, 而主要 受限于 CC- Answer等消息中的 QoS-Information AVP信息。
从以上描述可以看出, 在 PCC规则中包含了属于同一 GBR业务的多个 子流的信息以及 QoS参数, 该 QoS参数由 PCC规则中的多子流信息所对应 的多个子流共享。
以上示出的 CC-Answer消息仅仅是示例性的。也可以釆用其他消息来传 输 PCC规则, 例如如上所述的 Re-Auth-Request消息。
在 S330 , PDN-GW接收 PCC规则,根据 PCC规则对用于传输同一 GBR 业务的多个承载进行统一的 QoS控制。 举例来说, PDN-GW可以从 PCC规则中得到多子流信息, 并确认与多 子流信息关联的多个承载共享 PCC规则中的 QoS参数。 例如, PDN-GW可 以从 PCC规则中得到多个 IP地址,并由此确定与所述多个 IP地址相关联的 多个承载共享 QoS参数。
当 PDN-GW根据多子流信息识别出共享 QoS 参数的多个承载之后,
PDN-GW可以根据多个承载共享的 QoS参数以及各个承载的特点和状况, 确定或调整共享 QoS参数的多个承载中每个承载各自的 QoS参数; 而且, 在数据传输过程中, PDN-GW 可以根据网絡状况的改变而调整各个承载的 QoS参数; 如此, 统一控制同一 GBR业务各个子流的服务质量。 本发明实 施例对于确定各个承载的 QoS参数的具体方式不做限定, PDN-GW可以采 用任何适当的方法来确定各个承载的 QoS 参数。 例如, 如果 PCC 规则的 Sub-flow Description AVP中含有 QoS-Information AVP, PDN-GW则可以使 用此信息来确定各个承载的 QoS参数, 或者, PDN-GW可以根据接入网络 类型来确定各个承载的 QoS参数。 为描述方便, 以下将 PCC规则中包含的 由多个承载共享的 PCC规则称为 "公用 QoS参数", 并将 PDN-GW为单个 承载确定的 QoS参数称为该承载的 "专用 QoS参数"。 以下, 以 QoS参数 中的带宽为例, 示例性地说明多个承载共享 QoS参数。 举例来说, 如果最初 GBR业务包含两个子流,每个子流的带宽由 PCC规则的 Sub-flow Description AVP中含有的 QoS-Information AVP指定; 当 PDN-GW根据 PCC规则创建 载时, PDN-GW可以设定新建 载的带宽, 并调整两个已有子流的带宽, 以使得新建承载的带宽与调整后的两个已有子流的带宽之和等于 PCC规则 中包含的公用 QoS参数所指定的带宽。 再例如, 假设 GBR业务包含三个子 流, 当 PDN-GW根据 PCC规则删除承载从而删除原有三个子流之一时, PDN-GW可以调整剩余的两个子流的带宽,使剩余两个子流的带宽之和等于 PCC规则中包含的公用 QoS参数所指定的带宽。 再例如, 假设 GBR业务包 含三个子流, 当 PDN-GW修改承载从而改变三个子流的带宽时, PDN-GW 可以调整各个子流的带宽, 以确保调整后三个子流的带宽之和等于 PCC规 则中包含的公用 QoS参数所指定的带宽。
PDN-GW 可以保存并维护属于同一 GBR 业务的多个子流之间关联关 系。
PDN-GW可以根据 PCC规则的指示执行诸如新建承载、 修改承载和删 除承载的承载操作。
在本实施中, 在一个 PCC规则中包含属于同一 GBR业务的所有子流的 信息,使 PDN-GW能够根据 PCC规则中包含的子流的信息识别关联的承载, 从而对用于传输一个 GBR业务的所有承载进行统一的 QoS控制, 这样, 能 够确保对包含多子流的 GBR业务进行正确的 QoS控制。
如上所述, PDN-GW可以根据 PCC规则的指示, 执行例如创建承载、 修改承载或删除承载的操作。 以下描述当 GBR业务包含多个子流时创建、 修改和删除用于传输该 GBR业务的承载的过程。
图 4的示图示出了根据本发明的一个示例实施例的、创建承载以用于传 输包含多子流的 GBR业务的过程 400。
如图 4所示, 在 S410, PCRF实体(例如, PCRF实体 110 )识别多个 子流属于同一 GBR业务, 并生成用于所述多个子流的一个 PCC规则。 举例 来说, PCRF实体可以根据 UE经由 AF实体上报的多子流信息识别属于同 一 GBR业务的多个子流。 在所生成的 PCC规则中, 包含多个子流的信息。 在 S410的根据 UE提供的信息识別多子流的操作和生成 PCC规则的操作以 及多子流信息的内容与参照 S310描述的相同, 为简洁起见不再详述。
在 S420, PCRF实体将所生成的 PCC规则发送给 PDN-GW。 S420与图 3中的 S320基本相同, 为简洁起见, 不再详述。
在 S430, PDN-GW从 PCC规则中提取多子流信息, 并根据 PCC规则 执行承载操作。 在本例中, PDN-GW根据 PCC规则的指示执行创建承载的 操作, 所创建的 7 载用于传输 GBR业务的多个子流中的至少一个。
PDN-GW 在创建承载时, 对新建的承载和与该新建的承载用于同一 GBR业务的已有承载统一地进行 QoS控制。 具体来说, PDN-GW使新建的 承载和与该新建的承载用于同一 GBR业务的已有承载共享包含在 PCC规则 中的公用 QoS参数, 并确定各个承载的专用 QoS参数。 参照 S330描述的内 容适用于 S430, 为简洁起见不再详述。
为了创建承载, PDN-GW可以向与待创建的承载相应的 AGW发送消息 以请求创建承载。 例如, PDN-GW可以向 AGW发送 Create Bearer Request (创建承载请求) 消息, 但本发明实施例不局限于此, PDN-GW也可以向 AGW发送其他消息来请求创建承载。 在请求创建承载的消息中, 将新建承 载的资源类型标记为联合 GBR承载(Union-GBR ), 以指示新建的承载与其 他承载共享 QoS参数。在请求创建承载的消息中可以包含为该新建承载确定 的专用 QoS参数。 这里的 AGW可以是 3GPP网络中的 eNodeB或非 3GPP 网络中的 AP或 AR, 或其他接入设备, PDN-GW可以发送具有适当信令报 文格式的 Create Bearer Request消息, 以符合相应网络的要求。
需要注意的是, 如杲由于创建承载而使与新建的承载用于同一 GBR业 务的已有承载的专用 QoS参数发生改变, 则需要对专用 QoS参数发生改变 的已有承载进行修改。 如果需要对已有承载进行修改, 则可以不仅执行创建 承载的操作(例如, S440和 S450 ),还执行以下参照图 5描述的 S540和 S550。
再有, 在创建承载过程中, 如果与新建的承载用于同一 GBR业务的已 有承载中包含资源类型为 GBR承载的承载(例如, 在新建用于 GBR业务的 第二个承载时, 该 GBR业务的第一个承载的资源类型可能为 GBR业务), 则 PDN-GW可以将该承载的资源类型修改为 "联合 GBR承载 "。
在 S440, AGW接收 PDN-GW发送的请求创建承载的消息, 响应该消 息执行创建承载的操作, 并根据该消息中的专用 QoS参数修改无线侧资源。 AGW可以将请求创建承载的消息中包含的专用 QoS参数映射成与之对应的 无线接入 QoS参数, 执行对无线资源的修改过程, 以在无线侧保证 GBR业 务的带宽。
在 S450, 在承载创建成功后, AGW向 PDN-GW发送对承载创建请求 的响应消息, 例如, Create Bearer Response (创建承载响应) 消息, 以表明 已经完成了承载创建并且已经完成了在无线侧对无线连接的 QoS参数调整。
PDN-GW可以保存多个子流的 7 载之间的联系。
在本实施例中, 通过在一个 PCC规则中包含属于同一 GBR业务的所有 子流的信息, 能够使 PDN-GW根据 PCC规则中包含的子流的信息识别关联 的承载; 通过对用于传输一个 GBR业务的所有承载进行统一的 QoS控制, 能够确保对包含多子流的 GBR业务进行正确的 QoS控制。 再有, 在本实施 例中, 在新建承载的同时, 修改与新建的承载用于同一 GBR业务的已有承 载中的一个或多个, 这样做, 也能够确保对包含多子流的 GBR业务进行正 确的 QoS控制。
根据本发明的实施例, 如果在 PCRF实体下发 PCC规则时, 已有承载 中含有可以满足该 PCC规则中 QoS参数的承载,则 PDN-GW可以使用承载 修改机制来完成承载操作。 具体的处理过程在图 5中示出。 图 5示出了根据本发明另一示例实施例的承载修改过程 500的示图。如 图 5所示, 在 S510, PCRF实体(例如, PCRF实体 110 )识别多个子流属 于同一 GBR业务, 并为所述多个子流生成一个 PCC规则, 该 PCC规则中 包含多子流信息。在 S520, PCRF实体将所生成的 PCC规则发送给 PDN-GW。 S510和 S520与图 3中的 S310和 S320基本相同, 为简洁起见, 不再详述。
在 S530, PDN-GW从 PCC规则中提取多子流信息, 并根据 PCC规则 执行承载操作。 在本例中, PDN-GW根据 PCC规则的指示执行修改承载的 操作, 所修改的 7|L载用于传输 GBR业务的多个子流中的至少一个。
如以上参照图 3描述的, 举例来说, PDN-GW可以从 PCC规则中得到 多个 IP地址, 并由此确定与所述多个 IP地址相关联的多个承载共享 QoS参 数。
PDN-GW可以根据 PCC规则中包含的公用 QoS参数, 确定各个承载的 专用 QoS参数,以统一控制用于同一 GBR业务的多个 7 载的 QoS。参照 S330 描述的内容适用于 S530, 为简洁起见不再详述。
为了修改承载, PDN-GW向与修改的承载相应的 AGW发送请求修改承 载的消息, 例如, Modify Bearer Request (修改承载请求) 消息, 并将其中 的资源类型标记为联合 GBR承载(Union-GBR ), 以表明修改后的承载与其 他承载共享 QoS参数。在请求修改承载的消息中还可以包含修改的承载的专 用 QoS参数。 与参照图 4描述的类似, 这里的 AGW可以是 3GPP网络中的 eNodeB或非 3GPP网络中的 AP或 AR, PDN-GW可以发送具有适当信令报 文格式的 Modify Bearer Request消息, 以符合相应网络的要求。
在 S540, AGW接收 PDN-GW发送的请求修改承载的消息, 响应该请 求对承载进行修改,并根据该消息中的专用 QoS参数修改无线侧资源。 AGW 可以将请求修改承载的消息中包含的专用 QoS 参数映射成相应的无线接入 QoS参数, 以对无线资源进行修改, 在无线侧保证 GBR业务的带宽。
在 S550, 当承载修改成功时, AGW向 PDN-GW发送对承载修改请求 的响应消息, 例如 Modify Bearer Response (修改承载响应)消息, 以表明已 经完成承载的修改并且已经完成了在无线侧对无线连接的 QoS参数调整。
PDN-GW可以保存属于同一 GBR业务的多个子流的承载之间的联系。 需要注意的是, 为了避免对无线侧资源的频繁修改, 当 PDN-GW主动 调整联合 GBR承载的 QoS参数时 , 可以不用修改无线侧的承载。 在本实施例中, 通过在一个 PCC规则中包含属于同一 GBR业务的所有 子流的信息, 能够使 PDN-GW根据 PCC规则中包含的子流的信息识别关联 的承载; 通过对用于传输一个 GBR业务的所有承载进行统一的 QoS控制, 能够确保对包含多子流的 GBR业务进行正确的 QoS控制。
根据本发明的另一实施例, 当 GBR业务的多个子流中的一个或多个被 删除时, PCRF实体可以从 UE上报的信息中识别出被删除的子流, 并将指 示删除的子流的信息发送给 PDN-GW。 PDN-GW如果发现原本相关联的多 子流中的一个或多个在 PCC规则中不再共享相同的 QoS参数信息, 则删除 相应的承载。 举例来说, 当 UE删除 GBR业务的多个子流中的一个或多个 时, UE上报的应用信息中可以不再包含被删除子流的信息, 以使 PCRF在 接收到从该应用信息转换而来的会话信息后, 能够例如基于所存储的 GBR 业务的多子流关联关系, 识别出会话信息中不再包含其信息的子流已被删 除。 当识别出子流已被删除时, PCRF实体可以修改 PCC规则, 从中删除与 被删除子流相应的子流信息, 以使 PDN-GW能够根据修改的 PCC规则识别 出被删除的子流, 删除与被删除子流相应的承载。 在删除承载的同时, PDN-GW还可以修改与未被删除的子流相应的承载。 具体的处理过程在图 6 中示出。
图 6是示出根据本发明另一示例实施例的承载删除过程 600的示图。如 图所示, 在 S610, PCRF实体(例如, PCRF实体 110 )识别 GBR业务的子 流, 并为识別出的 GBR业务的所有子流生成一个 PCC规则 , 该 PCC规则 中包含所有子流的信息。参照 S310描述的内容适用于 S610,在此不再重复。 此外, 在本例中, UE删除了原本属于同一 GBR业务的多个子流中的一个或 多个, 如上面描述过的, PCRF实体能够根据 UE上报的信息识别出 GBR业 务的子流变化。 PCRF 实体可以修改所维护的多子流之间的关联关系。 在 PCRF实体所生成的 PCC规则中, 将不再包含已删除子流的信息。
在 S620, PCRF实体将所生成的 PCC规则发送给 PDN-GW。 参照 S320 描述的内容适用于 S620, 在此不再重复。 此外, 如果由于子流被删除而使 PCRF实体获得的应用信息中不再包含多子流的关联(例如, 多个子流的信 息), 则在 PCRF实体生成的 PCC规则中也将这种关联取消; 另一方面, 即 使 GBR业务由于子流被删除仅包含一个子流, 在所生成的 PCC规则中也包 含子流支持指示(例如, Sub-flow Description AVP ) , 只不过在子流描述中只 是包含当前还存在的子流的信息而已, 例如, 在 Sub-flow Description AVP中 仅包含未被删除的子流的信息。
在 S630, PDN-GW在接收到 PCRF实体发送的 PCC规则后, 根据 PCC 规则中的内容确定需要删除和修改的承载。举例来说,对于关联的联合 GBR 承载, 如果在 PCC规则中不再包含某个子流的信息描述, 则需要将与该子 流相应的承载删除, 同时需要修改还存在的联合 GBR承载中的一个或多个。
在 S640, PDN-GW根据 PCC规则删除和修改相应的联合 GBR承载。 对于需要删除的联合 GBR承载, PDN-GW向与该承载相应的 AGW发 送请求删除 7 载的消息, 例如 Delete Bearer Request消息, 表示此 7 载上的 子流已经删除, 并指示 AGW删除承载。
对于需要修改的联合 GBR承载, 所执行的修改承载的操作与参照图 5 描述的 载^ fi爹改流程中的 S530、 S540和 S550类似, 在此不再详述。 与图 5 不同的是, 如果在删除承载后只剩余一个承载, 则 PDN-GW还需要将所述 一个承载的资源类型设置为 GBR承载。 以下将仅对删除承载的操作进行描 述。
在 S650, AGW在收到 PDN-GW发送的请求删除承载的消息后, 可以 删除承载, 并且可以执行对无线资源的修改流程, 删除无线侧对 GBR业务 保留的带宽。
在 S660, 当承载删除修改成功后, AGW向 PDN-GW发送对承载删除 请求的响应消息, 例如 Delete Bearer Response消息 , 表明已经删除承载, 并且已经在无线侧完成了对无线连接的 QoS参数调整。
PDN-GW可以保存剩余的多个子流的承载之间的联系。如果仅剩余一个 子流, 则 PDN-GW删除多个子流的承载之间的联系, 恢复到单一子流时的 承载 QoS控制。
在本实施例中,在一个 PCC规则中包含属于同一 GBR业务的所有子流 的信息, 使 PDN-GW能够根据 PCC规则中包含的子流的信息识别关联的承 载; 通过对用于传输一个 GBR业务的所有承载进行统一的 QoS控制, 能够 确保对包含多子流的 GBR业务进行正确的 QoS控制。再有,在本实施例中, 在删除承载的同时, 修改与被删除承载用于同一 GBR业务的仍存在的承载 中的一个或多个, 这样做, 也能够确保对包含多子流的 GBR业务进行正确 的 QoS控制。 图 7是示出根据本发明实施例的 QoS控制的方法的流程图。图 7示出的 方法可以由例如 PCEF实体或 BBERF实体, 或者网络中包含 PCEF实体或 BBERF实体的网元来执行。 以下, 以 PDN-GW为例进行说明。
如图 7所示, 在 S710, PDN-GW接收 PCRF实体发送的用于 GBR业务 的 PCC规则。所述 GBR业务可以包含两个或者两个以上子流,并且所述 PCC 规则中包含该 GBR业务的所有子流的信息。
在 S720, PDN-GW基于在 PCC规则中包含的 GBR业务的所有子流的 信息, 将用于传输该 GBR业务的两个或者两个以上承载关联起来, 统一进 行 QoS控制。
在本实施例中, 通过在一个 PCC规则中包含属于同一 GBR业务的所有 子流的信息,并对用于传输一个 GBR业务的所有 7 载进行统一的 QoS控制, 能够确保对包含多子流的 GBR业务进行正确的 QoS控制。
图 8是示出根据本发明实施例的 QoS控制的方法的流程图。图 8示出的 方法可以由例如 PCRF实体来执行。
如图 8所示, 在 S810, PCRF实体确定两个或者两个以上的子流属于同 一个 GBR业务。 在 S820, PCRF实体生成用于该 GBR业务的一个 PCC规 则, 所述 PCC规则中包含该 GBR业务的所有子流的信息。 在 S830, PCRF 实体将该 PCC规则发送到 PCEF实体或 BBERF实体, 以使 PCEF实体或 BBERF实体将用于传输所述 GBR业务的两个或者两个以上承载关联起来, 统一进行 QoS控制。
在本实施例中,通过在一个 PCC规则中包含属于同一 GBR业务的所有 子流的信息,并对用于传输一个 GBR业务的所有 7|L载进行统一的 QoS控制, 能够确保对包含多子流的 GBR业务进行正确的 QoS控制。
图 9示出了根据本发明实施例的用于执行 QoS控制的装置 900的框图。 装置 900可以是 PCEF实体或 BBERF实体。
如图 9所示, 装置 900包括接收单元 910和 QoS控制单元 920。 其中, 接收单元 910可以用于从 PCRF实体接收用于 GBR业务的 PCC规则。 该 GBR业务可以包含两个或者两个以上子流,该 PCC规则中包含该 GBR业务 的所有子流的信息。 QoS控制单元 920可以基于在 PCC规则中包含的 GBR 业务的所有子流的信息, 将用于传输该 GBR业务的两个或者两个以上承载 关联起来, 统一进行 QoS控制。 图 9的装置 900可以用来执行例如参照图 7描述的方法。
在本实施例中, 通过在一个 PCC规则中包含属于同一 GBR业务的所有 子流的信息,并对用于传输一个 GBR业务的所有 载进行统一的 QoS控制, 能够确保对包含多子流的 GBR业务进行正确的 QoS控制。
图 10示出了才艮据本发明实施例的用于执行 QoS控制的装置 1000的框 图。 装置 1000可以是 PCRF实体。
如图 10所示, 装置 1000包括确定单元 1010、 PCC规则生成单元 1020 和 PCC规则发送单元 1030。 其中, 确定单元 1010可以用于确定两个或者两 个以上的子流属于同一个 GBR业务。 PCC规则生成单元 1020可以用于生成 用于该 GBR业务的一个 PCC规则, 所述 PCC规则中包含该 GBR业务的所 有子流的信息。 PCC规则发送单元 1030可以用于将所述 PCC规则发送到 PCEF实体或 BBERF实体, 以使 PCEF实体或 BBERF实体将用于传输该 GBR业务的两个或者两个以上^载关联起来, 统一进行 QoS控制。
图 10的装置 1000可以用来执行例如参照图 8描述的方法。
在本实施例中, 通过在一个 PCC规则中包含属于同一 GBR业务的所有 子流的信息,并对用于传输一个 GBR业务的所有 7 载进行统一的 QoS控制, 能够确保对包含多子流的 GBR业务进行正确的 QoS控制。
根据本发明实施例, 通过将用于传输多子流的多个承载关联起来, 能实 现 PCC对多子流承载的 GBR带宽的统一控制。 PCRF实体可以为属于同一 GBR业务的多个子流生成一个 PCC规则,以指示 PDN-GW多个不同的承载 共享一个 GBR带宽, 同时 PDN-GW控制各子流的承载的 QoS参数。 根据 PCRF下发的 PCC规则, 网络侧需要同时实现接入网关中无线承载的修改。
以上参照附图对本发明示例实施例进行了描述。 结合本文中所公开的实 施例描述的方法或算法的步骤可以用硬件来完成,也可以通过程序来指令相 关的硬件完成, 所述程序可以存储于计算机可读存储介质中, 所述计算机可 读存储介质例如随机存储器(RAM )、 内存、 只读存储器 (ROM )、 电可编 程 ROM、 电可擦除可编程 ROM、 寄存器、 硬盘、 可移动磁盘、 CD-ROM、 或技术领域内所公知的任意其它形式的存储介质。
尽管已示出和描述了本发明的一些实施例, 但本领域技术人员应理解, 在不脱离本发明的原理和精神的情况下, 可对这些实施例进行各种修改, 这 样的修改应落入本发明的范围内。

Claims

权利要求
1、 一种服务质量 QoS控制的方法, 其特征在于, 包括:
接收策略计费规则功能 PCRF实体发送的用于保证比特率 GBR业务的 策略计费控制 PCC规则, 所述 GBR业务包含两个或者两个以上子流, 所述
PCC规则中包含所述 GBR业务的所有子流的信息; 以及
基于在所述 PCC规则中包含的所述 GBR业务的所有子流的信息, 将用 于传输所述 GBR业务的两个或者两个以上^载关联起来, 统一进行 QoS控 制。
2、 如权利要求 1所述的方法, 其特征在于, 将用于传输所述 GBR业务 的两个或者两个以上承载关联起来统一进行 QoS控制包括:
使所述两个或者两个以上承载共享 PCC规则中包含的服务质量 QoS参 数。
3、 如权利要求 1所述的方法, 其特征在于, 将用于传输所述 GBR业务 的两个或者两个以上^^载关联起来统一进行 QoS控制包括:
通过将所述两个或者两个以上承载的资源类型设置为联合 GBR承载, 来将所述两个或者两个以上承载关联起来。
4、 如权利要求 2所述的方法, 其特征在于, 还包括, 在接收到用于所 述 GBR业务的 PCC规则之后, 在根据 PCC规则的指示新建用于传输所述 GBR业务的承载时,修改已有的用于传输该 GBR业务的承载中的至少一个, 并指示与新建的承载和被修改的承载中的每一个相对应的接入网关 AGW修 改无线资源 QoS参数。
5、 如权利要求 2所述的方法, 其特征在于, 还包括, 在接收到用于所 述 GBR业务的 PCC规则之后, 在根据 PCC规则的指示修改用于传输所述 GBR业务的承载时,指示与所修改的承载相对应的 AGW修改无线资源 QoS 参数。
6、 如权利要求 2所述的方法, 其特征在于, 还包括, 在接收到用于所 述 GBR业务的 PCC规则之后, 在根据 PCC规则的指示删除用于传输所述 GBR业务的承载时, 修改未被删除的用于传输该 GBR业务的承载中的至少 一个, 并指示与删除的承载和被修改的承载中的每一个相对应的 AGW修改 无线资源 QoS参数。
7、 一种服务质量 QoS控制方法, 其特征在于, 包括: 确定两个或者两个以上的子流属于同一个保证比特率 GBR业务; 生成用于所述 GBR业务的一个策略计费控制 PCC规则, 所述 PCC规 则中包含所述 GBR业务的所有子流的信息; 以及
将所述 PCC规则发送到策略计费执行功能 PCEF实体或承载绑定及事 件报告功能 BBERF实体,以使所述 PCEF实体或 BBERF实体将用于传输所 述 GBR业务的两个或者两个以上承载关联起来, 统一进行 QoS控制。
8、 一种用于服务质量 QoS控制的装置, 其特征在于, 包括:
接收单元, 用于从策略计费规则功能 PCRF 实体接收用于保证比特率 GBR业务的策略计费控制 PCC规则,所述 GBR业务包含两个或者两个以上 子流, 该 PCC规则中包含该 GBR业务的所有子流的信息; 以及
QoS控制单元, 用于基于在 PCC规则中包含的所述 GBR业务的所有子 流的信息, 将用于传输所述 GBR业务的两个或者两个以上^ ^载关联起来, 统一进行 QoS控制。
9、 如权利要求 8所述的装置, 其特征在于, 所述 QoS控制单元通过使 用于传输所述 GBR业务的两个或者两个以上承载共享 PCC规则中包含的服 务质量 QoS参数, 来对所述两个或者两个以上承载统一进行 QoS控制。
10、 如权利要求 8所述的装置, 其特征在于, 所述 QoS控制单元通过将 用于传输所述 GBR 业务的两个或者两个以上承载的资源类型设置为联合 GBR承载, 来将所述两个或者两个以上承载关联起来。
11、 如权利要求 9所述的装置, 其特征在于, 还包括, 操作单元, 用于 根据 PCC规则的指示执行包括新建承载、 修改承载和删除承载的承载操作, 其中, 当所述操作单元根据 PCC规则的指示新建用于传输所述 GBR业 务的承载时, 该操作单元还修改已有的用于传输该 GBR业务的承载中的至 少一个, 并指示与新建的承载和被修改的承载中的每一个相对应的接入网关 AGW修改无线资源 QoS参数。
12、 如权利要求 9所述的装置, 其特征在于, 还包括, 操作单元, 用于 根据 PCC规则的指示执行包括新建承载、 修改承载和删除承载的承载操作, 其中, 当所述操作单元根据 PCC规则的指示修改用于传输所述 GBR业 务的承载时, 该操作单元还指示与所修改的承载相对应的 AGW修改无线资 源 QoS参数。
13、 如权利要求 9所述的装置, 其特征在于, 还包括, 操作单元, 用于 根据 PCC规则的指示执行包括新建承载、 修改承载和删除承载的承载操作, 其中, 当所述操作单元根据 PCC规则的指示删除用于传输所述 GBR业 务的承载时, 该操作单元还修改未被删除的用于传输该 GBR业务的承载中 的至少一个, 并指示与删除的承载和被修改的承载中的每一个相对应的 AGW修改无线资源 QoS参数。
14、 如权利要求 8所述的装置, 其特征在于, 该装置为策略计费执行功 能 PCEF实体或承载绑定及事件报告功能 BBERF实体。
15、 一种用于服务质量 QoS控制的装置, 其特征在于, 包括: 确定单元, 用于确定两个或者两个以上的子流属于同一个保证比特率
GBR业务;
PCC规则生成单元, 用于生成用于所述 GBR业务的一个策略计费控制 PCC规则, 所述 PCC规则中包含所述 GBR业务的所有子流的信息; 以及
PCC 规则发送单元, 用于将所述 PCC 规则发送到策略计费执行功能 PCEF实体或承载绑定及事件报告功能 BBERF实体,以使所述 PCEF实体或 BBERF实体将用于传输所述 GBR业务的两个或者两个以上 7 载关联起来, 统一进行 QoS控制。
PCT/CN2011/076953 2011-07-07 2011-07-07 服务质量控制方法和设备 WO2012159321A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180001087.9A CN103119981B (zh) 2011-07-07 2011-07-07 服务质量控制方法和设备
PCT/CN2011/076953 WO2012159321A1 (zh) 2011-07-07 2011-07-07 服务质量控制方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076953 WO2012159321A1 (zh) 2011-07-07 2011-07-07 服务质量控制方法和设备

Publications (1)

Publication Number Publication Date
WO2012159321A1 true WO2012159321A1 (zh) 2012-11-29

Family

ID=47216559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076953 WO2012159321A1 (zh) 2011-07-07 2011-07-07 服务质量控制方法和设备

Country Status (2)

Country Link
CN (1) CN103119981B (zh)
WO (1) WO2012159321A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140344472A1 (en) * 2013-05-17 2014-11-20 Telefonaktiebolaget L M Ericsson (Publ) Sharing resource reservation
WO2018202129A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 通信方法、基站及终端设备
WO2020063891A1 (zh) * 2018-09-28 2020-04-02 中兴通讯股份有限公司 数据的传输、发送方法,装置以及数据的传输系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3044931B1 (en) * 2013-09-10 2020-03-18 Nokia Solutions and Networks Oy Subscriber-specific tracing in communications
EP3131354B1 (en) 2014-04-30 2018-12-19 Huawei Technologies Co., Ltd. Resource management devices and corresponding methods of shared network
CN108668269B (zh) * 2017-03-28 2022-02-08 华为技术有限公司 一种直径Diameter消息路由方法、路由设备及系统
CN110519786B (zh) * 2018-05-21 2021-01-15 华为技术有限公司 业务服务质量监测方法、设备及系统
CN112994905B (zh) * 2019-12-18 2024-01-30 中兴通讯股份有限公司 策略和计费的控制方法、系统、电子设备以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009631A (zh) * 2006-01-24 2007-08-01 华为技术有限公司 一种QoS控制方法和系统
CN101047949A (zh) * 2006-03-27 2007-10-03 华为技术有限公司 业务数据流的承载控制方法
CN101374260A (zh) * 2007-08-22 2009-02-25 华为技术有限公司 Pcc规则和承载关联的实现方法、装置和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9681336B2 (en) * 2007-06-13 2017-06-13 Qualcomm Incorporated Quality of service information configuration
CN101562842B (zh) * 2008-04-16 2011-05-04 大唐移动通信设备有限公司 一种资源分配方法、系统及装置
CN101969629B (zh) * 2009-07-28 2014-08-20 中兴通讯股份有限公司 一种计费方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009631A (zh) * 2006-01-24 2007-08-01 华为技术有限公司 一种QoS控制方法和系统
CN101047949A (zh) * 2006-03-27 2007-10-03 华为技术有限公司 业务数据流的承载控制方法
CN101374260A (zh) * 2007-08-22 2009-02-25 华为技术有限公司 Pcc规则和承载关联的实现方法、装置和系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140344472A1 (en) * 2013-05-17 2014-11-20 Telefonaktiebolaget L M Ericsson (Publ) Sharing resource reservation
US10021038B2 (en) * 2013-05-17 2018-07-10 Telefonaktiebolaget Lm Ericsson (Publ) Sharing resource reservation
WO2018202129A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 通信方法、基站及终端设备
KR20200003096A (ko) * 2017-05-05 2020-01-08 후아웨이 테크놀러지 컴퍼니 리미티드 통신 방법, 기지국 및 단말 장치
CN110856223A (zh) * 2017-05-05 2020-02-28 华为技术有限公司 通信方法、集中式单元、分布式单元、基站及终端设备
CN110856223B (zh) * 2017-05-05 2020-10-27 华为技术有限公司 通信方法、集中式单元、分布式单元、基站及终端设备
US10869324B2 (en) 2017-05-05 2020-12-15 Huawei Technologies Co., Ltd. Communication method based on a CU-DU architecture
KR102271766B1 (ko) 2017-05-05 2021-06-30 후아웨이 테크놀러지 컴퍼니 리미티드 통신 방법, 기지국 및 단말 장치
WO2020063891A1 (zh) * 2018-09-28 2020-04-02 中兴通讯股份有限公司 数据的传输、发送方法,装置以及数据的传输系统
US11743758B2 (en) 2018-09-28 2023-08-29 Zte Corporation Data transmission method and apparatus, data sending method and apparatus, and data transmission system

Also Published As

Publication number Publication date
CN103119981A (zh) 2013-05-22
CN103119981B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
US8942112B2 (en) System and method for providing selective mobility invocation in a network environment
WO2012159321A1 (zh) 服务质量控制方法和设备
EP2664181B1 (en) Multiple bearer support upon congestion situations
US20210176327A1 (en) Policy-driven local offload of selected user data traffic at a mobile edge computing platform
US9326184B2 (en) Policy and charging control for multiple sub-flows
US20210014733A1 (en) A method for charging offload traffic
US20080273520A1 (en) NETWORK ARCHITECTURE FOR DYNAMICALLY SETTING END-TO-END QUALITY OF SERVICE (QoS) IN A BROADBAND WIRELESS COMMUNICATION SYSTEM
US11533655B2 (en) Method of detecting quick user datagram protocol internet connections, QUIC, traffic in a telecommunication network between a user equipment, UE, and a content provider, CP
EP2547049B1 (en) Method, system and corresponding apparatus for implementing policy and charging control
US20100154031A1 (en) Methods and Apparatus for Providing Indirect Alternative Paths to Obtain Session Policy
US20180103389A1 (en) Service rate adjustment method and apparatus
KR102176428B1 (ko) 무선 랜으로 미디어 전송 시 사용자 체감 서비스 품질을 높이는 방법 및 장치
WO2010063175A1 (zh) 实现数据网关切换的方法、装置和系统
US20120166659A1 (en) Node and Method for Quality of Service (QoS) Control
KR20140090677A (ko) 가상 사설 망을 통해 접속을 확립하기 위한 방법 및 장비
WO2009052749A1 (fr) Procédé, appareil d&#39;élément de réseau et système de réseau pour établir la connexion ethernet
WO2011095025A1 (zh) 一种对移动用户本地接入的策略控制方法和系统
WO2011022893A1 (zh) 一种资源接纳控制系统间的交互方法和装置
WO2011120222A1 (zh) 优先级业务激活、去激活方法、装置和系统
WO2011088702A1 (zh) 在全业务融合网络中控制资源的方法和系统
JP5009970B2 (ja) ネットワーク接続装置による認証方法、QoS制御方法、トラフィック制御方法およびIP移動性制御方法
US10292197B1 (en) Evolved packet data gateway priority services
WO2011157106A2 (zh) 一种实现业务数据流分流的方法、系统及相关装置
Corici et al. Enabling ambient aware service delivery in heterogeneous wireless environments
WO2011127760A1 (zh) 一种漫游场景下的资源策略决策方法和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001087.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866228

Country of ref document: EP

Kind code of ref document: A1