WO2012159263A1 - 一种酶降解聚合物及其应用 - Google Patents

一种酶降解聚合物及其应用 Download PDF

Info

Publication number
WO2012159263A1
WO2012159263A1 PCT/CN2011/074593 CN2011074593W WO2012159263A1 WO 2012159263 A1 WO2012159263 A1 WO 2012159263A1 CN 2011074593 W CN2011074593 W CN 2011074593W WO 2012159263 A1 WO2012159263 A1 WO 2012159263A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
polymer
caspase
substrate
enzyme substrate
Prior art date
Application number
PCT/CN2011/074593
Other languages
English (en)
French (fr)
Inventor
戴立军
Original Assignee
Dai Lijun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Lijun filed Critical Dai Lijun
Priority to CN201180024276.8A priority Critical patent/CN102958938B/zh
Priority to PCT/CN2011/074593 priority patent/WO2012159263A1/zh
Priority to US14/119,382 priority patent/US9200033B2/en
Publication of WO2012159263A1 publication Critical patent/WO2012159263A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2/00Peptides of undefined number of amino acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase

Definitions

  • the invention belongs to the field of biomedicine, and particularly relates to an enzymatic degradation polymer and an application thereof. Background technique
  • Enzymatically degradable polymers include natural products and synthetic materials, which are widely used in drug release, clinical diagnosis, bioassay analysis and other fields.
  • Enzyme detection is generally achieved by fluorescence, luminescence or discoloration, the most common of which is the coupling of an enzyme substrate (short peptide or other small molecule substrate) with a monofunctional or bifunctional fluorescent dye, a luminescent substrate, These fluorescent dyes, luminescent substrates, and the like are first set to a latent state by an electron-withdrawing effect, and these short peptides or other small molecule substrates are used as probes for detecting enzymes. When the corresponding biological enzyme is present, the enzyme will first cut off the substrate portion, thereby removing the electron-withdrawing effect of the fluorescent dye, the luminescent substrate, and the like.
  • the signal can be detected directly, such as by illuminating; or an external source, such as a laser, can be read later (fluorescent).
  • This type of detection substrate a single enzyme catalyzed, can only activate one molecule (monofunctional latent fluorescent or luminescent label) or 1/2 molecule (bifunctional latent fluorescent or luminescent label) signal unit. Therefore, this type of enzyme detects substrates with low sensitivity.
  • Histone deacetylases are a class of proteases that play an important role in the structural modification of chromosomes and the regulation of gene expression.
  • overexpression of HDACs leads to an increase in acetylation, which restores the gravitational pull between DNA and histones by restoring the positive charge of histones, making the relaxed nucleosomes very tight, which is not conducive to specific genes.
  • Expression including some tumor suppressor genes.
  • screening for compounds that inhibit HDAC is difficult due to the lack of convenient tools for analyzing HDAC activity. Summary of the invention
  • the present invention provides an enzymatic degradation polymer and related applications of the polymer, including degradation of a polymer based on the enzyme, preparation of a hydrogel, preparation of nanoparticles, and loading method of a drug molecule, A fluorescent dye-labeled enzyme substrate (enzyme detection reagent;) for detecting the activity and concentration of the enzyme.
  • a fluorescent dye-labeled enzyme substrate enzyme detection reagent;
  • Ben The hydrogel and the nano particle provided by the invention can be used for drug release and in vivo imaging clinical diagnosis; the photo-dye labeling substrate, biological enzyme detection or activity analysis kit (package) provided by the invention can be used for enzyme detection and analysis, and the sensitivity is relatively high. high.
  • the enzyme-degrading polymer provided by the present invention, characterized in that the polymer formula is P (aa) N -(AA) n -X,
  • N is a non-enzyme substrate domain
  • N aa may be different (without any association), and N is a non-negative integer
  • (eight eight is the enzyme substrate domain ( Enzyme substrate domain)
  • n AA can be different, n is a non-negative integer
  • ? 1 is a 01 amino protecting group or functional group
  • P 2 is an alpha amino protecting group
  • ⁇ 3 is - ⁇ 2 , small molecule compound or polymerization Piece of material.
  • the present invention further provides the enzymatically degradable polymer according to claim 1, characterized in that aa in the (aa) N is an amino acid or a derivative thereof; (AA) AA in n is an amino acid or a derivative thereof
  • the alpha amino protecting group includes t-butyloxycarbonyl, acetyl (hexanoyl), octanoyl, or benzyloxycarbonyl; P 2 is T-butyloxycarbonyl, acetyl, hexanoyl, octanoyl, benzyloxycarbonyl or H.
  • the invention further provides the enzymatic degradation polymer according to claim 2, characterized in that the polymer is first c-terminal of its enzyme at the C-terminus of (AA) n (Enzyme cleaving at C-terminal of its Substrate: (AA) n ) cleaves to expose the subsequent ⁇ -amine on polylysine; the Polylysine fragment is subsequently cleaved by type II enzymes such as trypsin or other ⁇ -amine The unprotected Lysine C-terminal (-carboxy terminal) enzyme is further cleaved to degrade into a single Lysine.
  • the mechanism is as follows:
  • the invention further provides the enzymatic degradation polymer according to claim 3, wherein the P(AA) n -X is a type I enzyme substrate, and the type I enzyme comprises: cysteine-containing Family of aspartate proteolytic enzymes (caspase family proteases: caspases-l, 2,3,6,7,8,9,10andl2), dipeptidyl peptidase IV (DPPIV), calpain (calpain) Chymotrypsin ( chymotrypsin ), serine protease, cathepsin B (K and L), granzyme B, SARS protease, kallikrein, thrombin (thrombin), aminopeptidase, serine aminopeptidase, tryptase, serine protease, histone deacetylases (HDACs), go Acetylase
  • cysteine-containing Family of aspartate proteolytic enzymes caspase family proteases: caspases-l, 2,3,
  • Enzyme cleaving at C-terminal includes, but is not limited to, the biological enzymes listed in Table 1; characterized in that the type I enzyme does not include trypsin.
  • the substrate for the type I enzyme, Pl-(AA) n- X includes, but is not limited to, the corresponding substrate of the biological enzymes listed in Table 1.
  • the present invention also provides the enzymatically degradable polymer according to the first aspect, characterized in that the structural formula of the polymer is as follows:
  • Paragraph 1 Driving a hydrophobic segment that is agglomerated into granules, (by ⁇ -amine on Lysine and biocompatible hydrophobes such as cholesterol (lecithin) and lecithin (Lecithin) are synthesized by forming a covalent bond,)
  • X 2 is a positive integer, and P 3 may be -NH 2 , other small molecule compounds or polymer fragments;
  • Paragraph 2 chemical cross-linking segment, (formed by a bifunctional or polyfunctional crosslinker (Linker) formed by a-amine reaction with Lysine, further stabilizing hydrophobic forces to drive agglomerated granulated self-assembled nanoparticles,) Integer, P 2 and n are defined as described in the first embodiment;
  • Paragraph 3 The substrate of the enzyme, the appropriate biological enzyme will cleave the substrate at its C-terminus;
  • Hydrophilic segments including hydrophilic polymers, proteins and/or peptides or hybrids, such as PEG, which increase water solubility and avoid polymer-forming nanoparticles. Inducing an immune response when not circulating in a biological system;
  • Paragraph 5 Surface functional groups carrying functional groups that can be further chemically modified, such as -COOH/NH 2 -, etc. These functional groups can be further used for chemically coupled targeting fragments (antibodies or fragments thereof, bioligands, etc.) or other organisms/ Chemical fragment.
  • hydrophilic segment, (aa) N is PEG 5000 ;
  • Paragraph 5 Surface functional group, -NH 2 .
  • the present invention also provides a hydrogel characterized in that the hydrogel is obtained by self-polymerization of an enzymatic degradation polymer according to any one of claims 1 to 4.
  • the enzymatically degradable polymer reacts with a bifunctional or polyfunctional crosslinker with alpha-amine in PolyLysine to form a hydrogel.
  • the present invention also provides a hydrogel, characterized in that the hydrogel comprises the enzymatically degradable polymer according to any one of claims 1 to 4.
  • the enzymatically degrading polymer and other polymers e.g., gelatin
  • the present invention also provides a nanoparticle, characterized in that the nanoparticle is polymerized by the enzymatic degradation polymer described in claim 5 or 6, the hydrophobic segment is inside the nanoparticle, and the surface functional group The segments and hydrophilic segments are on the surface of the nanoparticles.
  • the invention further provides the use of the nanoparticle according to claim 9, characterized in that the nanoparticle is used as a drug carrier for clinical diagnosis of drug release and in vivo imaging.
  • the present invention also provides a fluorescent dye labeling enzyme substrate having the formula Pr(aa) N -(AA)nX,
  • (aa) j ⁇ enzyme substrate region aa may be any amino acid or its derivative, N aa may be different (without any association), N is a non-negative integer;
  • AA may be an amino acid or a derivative thereof, n AA may be different, n is a non-negative integer;
  • P 2 is an alpha gas-based protecting group, including t-butyloxycarbonyl, acetyl, hexanoyl, octanoyl, or benzyloxycarbonyl; P 2 may also be a fluorescent dye, and P 3 may be -NH 2 or a small molecule or a macromolecular moiety;
  • the dye molecule is a self-quenching dye, and m is an integer greater than or equal to 1.
  • the present invention further provides a fluorescent labeling enzyme substrate according to claim 11, characterized in that the fluorescence of the dye molecule in the fluorescent labeling enzyme substrate is quenched by the dye molecules adjacent thereto, and when the fluorescent label is Fluorescence intensity of the enzyme substrate when it is degraded into single molecule dye-a-Lysine-OH or dye-linker-(a)-Lysine-OH by cleavage of type I and type II enzymes as described in Scheme 3. Can be enhanced and checked
  • the present invention also provides a method for detecting the activity or concentration of a type I enzyme as described in claim 3, using the fluorescent labeling enzyme substrate as described in claim 11, as follows: Adding the fluorescent labeling enzyme substrate (dissolved in a trace amount of an organic solvent such as DMSO) to any sample containing the enzyme of type I to be tested as described in claim 3, after mixing for a certain period of time; Excessive amount of the type II enzyme described in the third embodiment, after mixing for a certain period of time, measuring the fluorescence intensity, while the fluorescent labeling enzyme substrate, (dissolved in a trace amount of organic solvent, such as DMSO), added without testing In the blank sample of type I enzyme, after mixing for a certain period of time; add the same excess of type II enzyme, and after mixing for a certain period of time, measure the fluorescence intensity.
  • the invention further provides a fluorescent labeling enzyme substrate according to claim 12, characterized in that the dye molecule is a self-quenching dye.
  • the invention further provides a fluorescent labeling enzyme substrate according to claim 14, wherein the self-quenching dye molecule comprises Cy7, Cy5.5, Cy5, Cy3.
  • the present invention also provides a kit for biological enzyme detection or activity analysis (package), characterized in that the kit (package) is a fluorescent labeling enzyme as described in one of claims 11, 12, 14 or 15. Substrate, and corresponding enzyme, appropriate buffer composition.
  • the enzyme detecting reagent provided by the invention firstly protects the epsilon amino group on the lysine of the poly-lysine immediately adjacent to the C-terminal enzyme substrate under the action of the C-terminal cleavage enzyme to be detected, and then the poly-lysine is subsequently
  • the addition of excess biological enzymes, such as the cleavage of Trypsin releases the lysine monomer loaded with the monomolecular dye, releasing the self-quenching and releasing a large number of fluorescent molecules. This greatly improves the efficiency of the enzyme-catalyzed detection signal compared with the activation of one or half of the signal molecules by the enzyme detection substrate.
  • the enzymatically degradable polymer, hydrogel and nanoparticle provided by the invention have good biocompatibility, and can be used for clinical diagnosis of drug release and in vivo imaging; the fluorescent dye labeling enzyme substrate and organism provided by the invention
  • the enzyme detection or activity analysis kit (package) can be used for the detection and analysis of enzymes with high sensitivity.
  • FIG. 1 is a diagram showing the results of detecting a HDACs by a fluorescent dye labeling enzyme substrate provided by the present invention
  • FIG. 2 is a schematic structural view of the nanoparticles provided by the present invention
  • FIG. 3 is a particle size distribution diagram of the nanoparticles provided by the present invention. detailed description
  • Type I enzyme HDACs, Sirtuins, (histone deacetylase, sirtuin)
  • [Boc-Lys(Fmoc)-OH] m-1 refers to a total of m-1 consecutively placed Boc-Lys(Fmoc)-OH boxes, and other similar expressions have the same meaning.
  • Type I enzyme Caspase 3/Caspase 7
  • the peptide was dissolved in 1% TFA (trifluoroacetic acid) acetonitrile aqueous solution and then injected into a C18 column for reverse HPLC analysis.
  • the HPLC peaks were collected and subjected to mass spectrometry.
  • TIS Triisopropylsilane Triisopropylsilane
  • TFA Trifluoroacetic acid trifluoroacetic acid
  • DIPEA N, N-Diisopropylethylamine N , N-diisopropylethylamine DIEA (N-diisopropylethylamine)
  • NMP N-methylpyrrolidone 1 -methyl-2- ⁇ than haloxime
  • HBTU 2-( lH-Benzotriazole- 1 -yl)- 1,1,3 ,3-tetramethyluronium Hexafluorophosphate benzotriazole - hydrazine, hydrazine, hydrazine, ⁇ '-tetramethyluron hexafluorophosphate
  • [Boc-LysiFmocJ-OHho means: 10 consecutively placed Boc-Lys(Fmoc)-OH boxes. Ten consecutively placed Boc-Lys (Fmoc)-OH boxes each took 1 mmol. Other similar representations have the same meaning.
  • the resin was treated with a 2% hydrazme solution to remove the Dde group in Dde-Lys(Fmoc)-OH.
  • Lipoic acid 30 mmol of lipoic acid (Lipoic acid) was mixed with 30 mmol of HATU, 60 mmol of DIPEA (DMF solution) for 5 minutes, and then added to the above resin. After reacting for 1 hour, the resin was washed successively with DMF/DCM.
  • DIPEA DIPEA
  • the polymer was dissolved in 1% TFA (trifluoroacetic acid) acetonitrile aqueous solution and then injected into a C18 column for reverse HPLC analysis.
  • the HPLC peaks were collected and subjected to mass spectrometry.
  • the nanoparticle of the invention of claim 9 is provided as a pharmaceutical carrier.
  • Solid phase synthesis process (1) Load the first amino acid onto the Fmoc-Rink Amide TentaGel resin.
  • the Fmoc group on the TentaGel resin (0.1 mmol) was first removed with a 20% Piperidine DMF solution, and then the resin was washed with DMF/DCM.
  • 1 mmol of Dde-Lys(Fmoc)-OH (manufactured by BaChem, USA), 1 mmol of DICI and 1 mmol of HOBT DMF solution to the resin solution, react at room temperature for 2-5 hours, and wash sequentially with DMF/DCM/Methanol/DCM.
  • 3 mmol of benzoic anhydride was added to the resin, and after reacting for 30 minutes, the resin was washed again as above.
  • the resin was treated with a 2% hydrazine solution to protect the Dde group in Dde-Lys(Fmoc)-OH.
  • a 2% hydrazine solution to protect the Dde group in Dde-Lys(Fmoc)-OH.
  • 30 mmol of Cy7-NHS manufactured by GE Healthcare was added, and after 1 hour of reaction, the resin was washed successively with DMF/DCM.
  • the substrate of the HDACs obtained in Example 6 was formulated into a 100 mM DMSO solution, and the substrate was diluted to 100 ⁇ M with HDAC assay buffer, and the substrate solution was added to a 96-well plate (black, V-bottom, 96-Well Microplate). Among the two adjacent wells, each well contains 100 substrates. Then, add 1 L (1 ⁇ l) of Hela Cell Nuclear Extract (Biomol International, manufactured by US A) to a well (sample well); add ⁇ to the control well. Ionic water. After shaking for 1 hour at room temperature, Trypsin was added to both wells, and the 96-Well Microplate was immediately placed in the KODAK in vivo imager to start recording the sample wells. Wells and control wells. The results obtained are shown in Figure 1. It can be seen that the fluorescent dye labeling enzyme bottom provided by the invention
  • the method for synthesizing the nanoparticles provided by the present invention is as follows:
  • Example 4 10 mg of the polymer obtained in Example 4 was dissolved in 10-10 ml of acetone or tetrahydrofuran, and the solution was added dropwise to 10-100 ml of deionized water maintained ultrasonically. After the addition was completed, 2 mg of NHS-PEG2000- was added to the water. NHS, after stirring for 2 hours, the solution was transferred to a dialysis membrane (maximum molecular weight 10,000) and stirred overnight in 1 x PBS buffer. The obtained nanoparticles were measured by Malvern's dynamic light scattering particle size analyzer (DLS, using a known particle size polystyrene as a standard) as shown in Fig. 3.
  • DLS Malvern's dynamic light scattering particle size analyzer

Abstract

本发明属于生物医药领域,具体涉及一种酶降解聚合物及其应用。为解决现有的检测分析试剂灵敏度较低等问题,本发明提供一种酶降解聚合物以及该种聚合物的相关应用,本发明还提供基于该酶降解聚合物的水凝胶、纳米粒子,荧光染料标记酶底物,生物酶检测或活性分析试剂盒(包)。该酶降解聚合物的分子式为P1-(aa)N-(AA)n-X,其中(aa)N是非酶底物结构域,N个aa可以各不一样(没有任何关联性),N是非负整数;(AA)n为酶底物结构域,n个AA可以各不一样,n是非负整数;P1是α氨基保护基团或官能团;P2是α氨基保护基团;P3是-NH2、小分子化合物或聚合物片断。

Description

一种酶降解聚合物及其应用 技术领域
本发明属于生物医药领域, 具体涉及一种酶降解聚合物及其应用。 背景技术
酶降解聚合物包括天然产物和合成材料, 其在药物释放, 临床诊断, 生物 检测分析等领域有着广泛的应用。
酶的检测一般是通过荧光、 发光或者变色来实现的, 其中最常见的是将酶 底物 (短肽或者其它小分子底物) 与单官能团或双官能团的荧光染料、 发光底 物相偶合, 通过吸电子效应先将这些荧光染料、 发光底物等设置为潜伏态, 而 这些短肽或者其他小分子底物作为检测酶的探针。 当对应的生物酶存在时, 酶 会将其底物部分先割掉, 从而除去荧光染料、 发光底物等的吸电子效应。 最后, 可以直接检测信号, 如发光; 或者施加外部信号源, 如激光后来读取信号 (荧 光)。 这种类型的检测底物, 一次酶的催化只能激活一分子(单官能团潜伏态荧 光或发光标记物)或者 1/2分子 (双官能团潜伏态荧光或发光标记物) 的信号 单元。 因此, 这种类型的酶检测底物, 检测的灵敏度较低。
组蛋白去乙酰化酶( histone deacetylases , HDACs )是一类对染色体的结构 修饰和基因表达调控发挥着重要的作用的蛋白酶。 在癌细胞中, HDACs的过度 表达导致乙酰化作用的增强,通过恢复组蛋白正电荷, 从而增加 DNA与组蛋白 之间的引力, 使松弛的核小体变得十分紧密, 不利于特定基因的表达, 包括一 些肿瘤抑制基因。然而,由于缺乏分析 HDAC活性的方便工具,筛选抑制 HDAC 的复合物是较难的。 发明内容
有鉴于此, 本发明提供了一种酶降解聚合物以及该种聚合物的相关应用, 包括基于该酶降解聚合物的, 水凝胶的制备, 纳米粒子的制备以及药物分子的 加载方法, 用于检测酶的活性及浓度的荧光染料标记酶底物(酶检测试剂;)。 本 发明提供的水凝胶、 纳米粒子可用于药物释放、 体内成像临床诊断; 本发明提 供的光染料标记酶底物、 生物酶检测或活性分析试剂盒(包) 可用于酶的检测 分析, 灵敏度较高。
为了达到上述目的, 本发明釆用下述技术方案:
1、 本发明提供的酶降解聚合物, 其特点是, 所述聚合物分子式为 P (aa)N-(AA)n-X,
X=
Figure imgf000004_0001
其中, (aa)N是非酶底物结构域 (non-enzyme substrate domain), N 个 aa 可以各 不一样 (没有任何关联性), N 是非负整数; (八八^为酶底物结构域 (enzyme substrate domain), n个 AA可以各不一样, n是非负整数; ?1是01氨基保护基团 或官能团; P2 是 α氨基保护基团; Ρ3是 -ΝΗ2、 小分子化合物或聚合物片断。
2、 本发明还提供如技术方案 1所述的酶降解聚合物, 其特点是, 所述 (aa)N 中的 aa是氨基酸或其衍生物; (AA)n中的 AA是氨基酸或其衍生物; 所述 是 α氨基保护基团, 包括 t-叔丁氧羟基 ( t-butyloxycarbonyl ), 乙酰基 ( acetyl, hexanoyl ) , 辛酰基 ( octanoyl ) , 或节氧叛基 ( benzyloxycarbonyl ) ; P2为 t-butyloxycarbonyl , acetyl, hexanoyl , octanoyl , benzyloxycarbonyl或 H。
3、 本发明还提供如技术方案 2所述的酶降解聚合物, 其特点是, 所述聚合 物先在 (AA)n 的 C-端被 I型生物酶( Enzyme cleaving at C-terminal of its substrate: (AA)n ) 切割, 从而暴露出随后的聚赖氨酸 (Polylysine ) 上的 ε-amine; 该 Polylysine片段随后在 II型生物酶, 如胰蛋白酶( Trypsin )或其他能切割 ε-amine 未受保护的 Lysine C端(-羧基端) 的酶进一步切割下而降解成单个的 Lysine。 机理如下:
Figure imgf000005_0001
4、 本发明还提供如技术方案 3 所述的酶降解聚合物, 其特点是, 所述 P (AA)n-X为 I型酶底物, 所述 I型酶包括: 含半胱氨酸的天冬氨酸蛋白水解 酶家族(caspase 家族蛋白酶: caspases-l,2,3,6,7,8,9,10andl2) , 二肽肽酶 IV(dipeptidyl peptidase4,DPPIV) , 钙蛋白酶 ( calpain ) , 胰凝乳蛋白酶 ( chymotrypsin ), 丝氨酸蛋白酶 ( serine protease ), 组织蛋白酶 (Cathepsins B,K and L), 分泌颗粒酶 B(granzyme B), 非典型肺炎蛋白酶 ( SARS protease ), 激 肽释放酶(kallikrein ), 凝血酶( thrombin ), 氨基肽酶( Aminopeptidase ), 丝氨 酸氣肤酶 (serine aminopeptidase), 类胰蛋白酶 ( tryptase ), 丝氣酸蛋白酶 ( serine protease ) , 组蛋白去乙酰化酶 ( histone deacetylases,HDACs ), 去乙酰化酶
( sirtuins )。
I型酶( Enzyme cleaving at C-terminal )包括, 但不局限于表 1所列生物酶; 其特点是, 所述 I型酶不包括 trypsin。 I型酶的底物, Pl-(AA)n -X包括, 但不局 限于表 1所列生物酶相应底物。
Figure imgf000006_0001
Z-LETD-X caspase-8 Z-iETD-X granzyme Band caspase-6
GP-X dipepttdyt peptidase 4 (DPPIV) Z-TSAVLQ-X SARS protease
Z-LEHD-X caspase-9 2-VNSTLQ-X SARS protease
Suc-UVY-X calpain- andchymptrypsin-lilce 2-^FR-X cathepsins B/L activities of roteasome
Z^LR -X try ps in-like activity of proteasome Boc-VPR-X kaiiikreinor thrombin Z-nLPnLD-X caspas -like activity Z-GGR-X thrombin
of proteasome
Z-QEVY calpain and proteasome Z-LR-X Cathepsin
chymotrypstn-like activity
VP-X dipeptidyl peptidase 4 aminopeptidase
(DPPIV)
Z-VDVAD-X caspase-2 Suc-AAPF-X serine aminopeptidase
Z-VEID-X caspase-6 Z-PRN -X tryptase.
Z-ATAD-X caspase-12 Z-RR-X Cathepsin B
Z-VAD-X AJI Caspase caspase-1
Z-AEVD-X caspase-10 Z-PHE-X
Z- EU-X Serine Protease Ζ Λ-Χ Cathepsin K
Z-FR-X Cathepsin L Ac-X HDACs, Sirtuins
5、 本发明还提供如技术方案 1所述的酶降解聚合物, 其特点是, 所述聚合 物的结构式如下:
替换页 (细则第 26条) PiJ(aa)N-l(AA)n -j- NH
疏水基团
5 段 4 段 3 段 2: 化学交联段 段 1 : 驱动聚结成粒的疏水段
a- amine
供壳层交联 其中:
段 1 : 驱动聚结成粒的疏水段, (由 Lysine 上的 α-amine与胆固醇(cholesterol), 卵磷脂 (Lecithin ) 等生物相容性疏水物通过形成共价键偶合来合成, ) 其中,
X2为正整数, P3可以是 -NH2, 其它小分子化合物或聚合物片断;
段 2:化学交联段, (由双官能团或多官能团交联剂(Linker)与 Lysine 的 a-amine 反应形成, 进一步稳定疏水力驱动聚结成粒的自组装纳米粒子,) 其中, 为 正整数, P2与 n定义如技术方案 1所述;
段 3: 酶底物段, 合适生物酶会在其 C-端切割该底物;
段 4: 亲水段,包括亲水性高分子聚合物、 蛋白质和 /或多肽或杂合(Hydrophilic Polymer or Protein or Peptide or hybrid ), 如 PEG, 可增加水溶性并避免高分子 形成的纳米粒子不在生物体系中循环时诱发免疫反应;
段 5: 表面官能团段, 携带可进一步化学修饰的官能团, 如 -COOH/NH2-等, 这 些官能团可进一步用于化学偶合靶向片断 (抗体或其片段, 生物配体等)或其 他生物 /化学片断。
6、 本发明还提供如技术方案 5所述的酶降解聚合物, 其特点是, 段 1: 驱动聚结成粒的疏水段, 由 Lysine 上的 α-amine与硫辛酸( Lipoic acid ) 形成共价键, X2=10, P3=NH2; 段 2: 化学交联段, 由 NHS-PEG5漏 -NHS与 Lysine 的 α-amins反应形成, 所述 结构式中的 Xi=10;
段 3: 酶底物段, (AA)n=DEVD (Caspase 3/7之底物), P2=Ac;
段 4: 亲水段, (aa)N 为 PEG5000;
段 5: 表面官能团段, 为 -NH2
7、 本发明还提供一种水凝胶, 其特点是, 所述水凝胶是技术方案 1 至 4 之一所述的酶降解聚合物自聚合而成。 所述酶降解聚合物与双官能团或多官能 团交联剂与 PolyLysine 里的 α-amine反应形成水凝胶。
8、 本发明还提供一种水凝胶, 其特点是, 所述水凝胶包含技术方案 1至 4 之一所述的酶降解聚合物。 所述酶降解聚合物和其他聚合物 (如明胶) 与交联 剂反应形成水凝胶。
9、 本发明还提供一种纳米粒子, 其特点是, 所述纳米粒子由技术方案 5 或 6所述的酶降解聚合物聚合而成, 所述疏水段在纳米粒子的内部, 所述表面 官能团段和亲水段在纳米粒子的表面。
10、 本发明还提供如技术方案 9所述的纳米粒子的用途, 其特点是, 所述 纳米粒子用作药物载体, 用于药物释放、 体内成像临床诊断。
11、本发明还提供一种荧光染料标记酶底物,其分子式为 Pr(aa)N-(AA)n-X,
X=
Figure imgf000008_0001
dye 或
Figure imgf000009_0001
其中:
(aa)j^ 酶底物区域; aa可是任意氨基酸或其衍生物, N 个 aa 可以各不一样 (没有任何关联性), N是非负整数;
(八八 为酶底物区域(enzyme substrate domain); AA可是氨基酸或其衍生物, n 个 AA可以各不一样, n是非负整数;
P!, P2是 α氣基保护基团, 包括 t-butyloxycarbonyl, acetyl, hexanoyl, octanoyl, 或 benzyloxycarbonyl; P2也可以是荧光染料, P3 可是 -NH2 或小分子或大分子片 断;
染料分子为自淬灭染料 (Self-quenching dye), m 为大于或等于 1的整数 。
12、 本发明还提供如技术方案 11所述荧光标记酶底物, 其特点是, 所述荧 光标记酶底物中染料分子的荧光被其邻近的染料分子所淬灭, 而当所述荧光标 记酶底物在如技术方案 3 中所述 I 型酶与 II 型酶的切割下, 降解为单分子 dye-a-Lysine-OH或 dye-linker-( a)-Lysine-OH时, 其荧光强度才能增强而被检
13、本发明还提供如技术方案 11所述荧光标记酶底物用于检测如技术方案 3所述 I型酶的活性或浓度的使用方法, 如下所述: 将所述荧光标记酶底物, (溶于微量有机溶剂, 如 DMSO中), 加入如技术 方案 3 中所述的任一含待测 I型酶的样品, 相混一定的时间后; 再加入过量如 技术方案 3所述 II型酶, 相混一定的时间后, 测量其荧光强度, 同时将所述荧 光标记酶底物, (溶于微量有机溶剂, 如 DMSO中), 加入不含待测 I型酶的空 白样品中, 相混一定的时间后; 再加入同等过量 II型酶, 相混一定的时间后, 测量其荧光强度。
14、 本发明还提供如技术方案 12所述荧光标记酶底物, 其特点是, 所述染 料分子为自淬灭染料 (Self-quenching dye) 。
15、 本发明还提供如技术方案 14所述荧光标记酶底物, 其特点是, 所述自 淬灭染料分子包括 Cy7, Cy5.5, Cy5, Cy3 。
16、 本发明还提供一种生物酶检测或活性分析试剂盒(包), 其特点是, 所 述试剂盒 (包) 由如技术方案 11、 12、 14或 15之一所述的荧光标记酶底物, 以及对应的酶、 适当缓冲液组成。
本发明提供的酶检测试剂, 首先在待检测 C端切割酶的作用下, 去保护聚 赖氨酸上的紧邻 C 端酶底物的赖氨酸上的 ε氨基, 然后聚赖氨酸在随后加入的 过量生物酶, 如 Trypsin 的切割下, 释放出负载有单分子染料的赖氨酸单体, 解除自淬灭而释放出众多的荧光分子。 这与现有酶检测底物一次酶作用激活一 个或半个信号分子相比, 较大提高了酶催化诱发检测信号的效率。
与现有技术相比, 本发明提供的酶降解聚合物、 水凝胶、 纳米粒子生物相 容性好, 可用于药物释放、 体内成像临床诊断; 本发明提供的荧光染料标记酶 底物、 生物酶检测或活性分析试剂盒(包)可用于酶的检测分析, 灵敏度较高。 附图说明
图 1为本发明提供的荧光染料标记酶底物检测 HDACs的结果图; 图 2 为本发明提供的纳米粒子的结构示意图;
图 3 为本发明提供的纳米粒子的粒径分布图。 具体实施方式
实施例 1
本发明提供的酶降解聚合物的合成
多肽合成是使用应用生物系统公司(Applied Biosystems, Inc (ABI ) 生产的 433A 全自动固相合成仪, 使用固相多肽合成 Fmoc 方法, 不溶载体树脂釆用 Fmoc-Rink Amide TentaGel 固相合成树脂 (AnaSpec, USA 公司生产的), HBTU/HOBt ( 0.45 M in DMF ) /DIPEA ( 2 M DIPEA in NMP )或者 HATU / DIPEA作为活化剂, Piperidme 作为去保护剂。 10 倍于树脂 (O.lmmol )摩 尔量的恰当保护的氨基酸(lmmol )装在小塑料瓶 (Cartridge ) 中。 NMP用作 偶合过程中的溶剂, 而二氯甲烷(DCM )用来清洗固相树脂(偶合反应前与后)。 固相合成过程:
( 1 ) 加载第一个氨基酸到 Fmoc-Rink Amide TentaGel 树脂上。 先用 20% Piperidine DMF 溶液除去 TentaGel 树脂(O.lmmol)上的 Fmoc 基团, 然后用 DMF/DCM 洗涤树脂。 再向树脂溶液里加入 lmmol Boc-Lys(Fmoc)-OH, lmmol 的 DICI 与 lmmol 的 HOBT DMF 溶液, 室温反应 2-5 小时, 用 DMF/DCM/Methanol /DCM 依次洗涤树脂后, 向树脂中加入 3mmol 的苯甲酸 酐 ( benzoic anhydride ), 反应 30分钟后, 再次如上洗涤树脂。
( 2 )依次将下列氨基酸按下列顺序放于 ABI 433A 自动合成仪氨基酸轨道上: I型酶: HDACs, Sirtuins, (histone deacetylase, sirtuin)
(N-端) Ac-Lys(Ac)-OH, [Boc-Lys(Fmoc)-OH]m-1 ( C-端 )
备注: [Boc-Lys(Fmoc)-OH]m-1指共有 m-1 个连续摆放的 Boc-Lys(Fmoc)-OH 盒, 其它类似表示方式含义相同。
I型酶: Caspase 3/Caspase 7
(N- 端 ) Ac-Asp(OtBu)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH, [Ac-Lys(Fmoc)-OH], [Boc-Lys(Fmoc)-OH]m-1 ( C-端) I型酶: Caspase 8
(N- 端 ) Z-Leu-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Tyr(OtBu)-OH, Fmoc-Asp(OtBu)-OH, [Ac-Lys(Fmoc)-OH], [Boc-Lys(Fmoc)-OH]m-1 ( C-端) 多肽从树脂上割下釆用如下程序: 每 lOO mg 载有多肽的树脂,加入 l-1.5ml 的 下列比例的混合物: (TFA: water: Tis = 95:2.5:2.5 )。树脂混合物溶液随后被室温 下摇晃 0.5-3小时。 随后该混合物溶液经过滤除去树脂后,逐滴加入冰冷的二乙 醚中沉析出来, 经过多次离心分离与洗涤, 多肽最后在氣气保护下干燥。
多肽被溶于 1% TFA (三氟乙酸) 乙腈 ( acetonitrile )水溶液中, 然后被注入 C18 柱中进行反向 HPLC 分析。 HPLC 峰被收集后进行质谱分析。
备注:
TIS: Triisopropylsilane三异丙基桂院
TFA: Trifluoroacetic acid三氟乙酸
HOBt: 1 -Hydroxylformamidel-羟基苯并三氮唑一水物
DMF: N, N-DimethylformamideN,N-二甲基甲酰胺
DCM: Dicholoromethane二氯甲) t完
DIPEA (DIEA): N, N-DiisopropylethylamineN , N-二异丙基乙胺 DIEA(N-二异丙基 乙胺)
NMP: N-methylpyrrolidone 1 -甲基 -2-ρ比哈嫁酮
HATU:
2-(7-Aza- 1 H-benzotriazole- 1 -yl)- 1 , 1 ,3,3 -tetramethy luroniumHexafluorophosphate 2 - (7-偶氮苯并三氮唑) -Ν,Ν,Ν',Ν'-四甲基脲六氟磷酸酯
HBTU: 2-( lH-Benzotriazole- 1 -yl)- 1,1,3 ,3-tetramethyluroniumHexafluorophosphate 苯并三氮唑 -Ν,Ν,Ν',Ν'-四甲基脲六氟磷酸酯
DICI: Ν,Ν'-DiisopropylcarbodiimideN, Ν '-二异丙基碳二亚胺
实施例 2
本发明提供的技术方案 7所述的水凝胶的合成方法 水凝胶合成例子: 聚合物为: Ac-DEVD-X, P2=Ac, P3=NH2, m=10, 将 lmmol 聚合物溶解于 l-5mL 的 DMF 溶液中, 随后加入 2-5mmol 的戊二醛或 NHS- ( PEG ) 2000- HS或 NHS- ( PEG ) 5000-NHS和 6 mmol DIPEA, 搅拌 1-24 小时。 减压抽除掉绝大部分溶剂后, 加入 10倍于残留有机溶剂的 l x PBS缓冲液, 再 将溶液转入渗透膜(最高渗透分子量为 5000 ) ,隔夜在 1 x PBS缓冲液中搅拌以 除去残留有机溶液。 所得水凝胶再经低温干燥后冷冻储藏。
实施例 3
本发明提供的技术方案 8所述的水凝胶的合成方法,
水凝胶合成例子: 聚合物为: Ac-DEVD-X, P2=Ac P3=NH2, m=10 和明胶。 将 lmmol 聚合物溶与 lmmol明胶(数均分子量为 2000 )溶解于解于 2-5mL 的 DMF 溶液中, 随后加入 3-10 mmol 的戊二醛或 NHS- ( PEG ) 2 -NHS或 NHS- ( PEG ) 5000-NHS和 6 mmol DIPEA, 搅拌 1-24 小时。 减压抽除掉绝大部分溶 剂后, 加入 10倍于残留有机溶剂的 l x PBS缓冲液, 再将溶液转入渗透膜(最 高渗透分子量为 5000 ) , 隔夜在 l x PBS缓冲液中搅拌以除去残留有机溶液。 所得水凝胶再经低温干燥后冷冻储藏。
实施例 4
本发明提供的技术方案 6所述的酶降解聚合物的合成方法
固相合成过程:
( 1 ) 加载第一个氨基酸到 Fmoc-Rink Amide TentaGel 树脂上。 先用 20% Piperidine DMF 溶液除去 TentaGel 树脂(0.1 mmol)上的 Fmoc 基团, 然后用 DMF/DCM 洗涤树脂。 再向树脂溶液里加 lmmol Dde-Lys(Fmoc)-OH ( BaChem, USA公司生产的), lmmol 的 DICI与 lmmol 的 HOBT DMF 溶液, 室温反应 2-5小时, 用 DMF/DCM/Methanol /DCM依次洗涤树脂后,向树脂中加入 3mmol 的苯甲酸酐 (benzoic anhydride ), 反应 30分钟后, 再次如上洗涤树脂。
( 2 )依次将下列氨基酸 (每种氨基酸均取 lmmol)按下列顺序放于 ABI 433A 自 动合成仪氨基酸轨道上:
(N- 端 ) Fmoc-PEG5 -NHS, Boc-Asp(OtBu)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH, [Ac-Lys(Fmoc)-OH], [Boc-Lys(Fmoc)-OH]10, [Dde-Lys(Fmoc)-OH]9 ( C-端)
备注: [Boc-LysiFmocJ-OHho指: 10 个连续摆放的 Boc-Lys(Fmoc)-OH 盒。 10 个 连续摆放的 Boc-Lys(Fmoc)-OH 盒各取 lmmol。 其它类似表示方式含义相同。 固相自动合成结束后, 用 2% 的肼 (hydrazme)溶液来处理树脂来除去 Dde-Lys(Fmoc)-OH 里的 Dde 基团。
将 30 mmol硫辛酸 (Lipoic acid)与 30mmol的 HATU, 60 mmol DIPEA (DMF 溶 液) 相混 5 分钟后, 加入上述树脂中, 反应 1小时后, 先后用 DMF/DCM 洗 涤树脂。
聚合物从树脂上割下釆用如下程序: 每 lOO mg 载有多肽的树脂, 加入 lml 的 下列比例的混合物: (TFA: water: Tis = 95:2.5:2.5 )。树脂混合物溶液随后被室温 下摇晃 2小时。 随后该混合物溶液经过滤除去树脂后, 逐滴加入冰冷的二乙醚 中沉析出来, 经过多次离心分离与洗涤, 多肽最后在氮气保护下干燥。
聚合物被溶于 1% TFA (三氟乙酸) 乙膽 ( acetonitrile )水溶液中, 然后被注入 C18 柱中进行反向 HPLC 分析。 HPLC 峰被收集后进行质谱分析。
实施例 5:
本发明提供的如技术方案 9所述的纳米粒子, 用作药物载体。
将 10mg 实施例 4所得聚合物以及 0.5 mg 亚德利亚霉素 (Doxorubicin ) 溶于
1-10 ml 丙酮或四氢呋喃中, 再将该溶液逐滴加入保持超声震荡的 10-100ml 去 离子水中。 滴加完毕后, 向水中加入 2mg NHS-PEG2。。。-NHS, 其后搅拌 2小时, 再将该溶液转入渗析袋 (dialysis membrane, 最高渗透分子量为 10,000 ) , 隔 夜在 I X PBS缓冲液中搅拌。 最后将所得纳米粒子在 2-8°C下储存。
实施例 6:
本发明提供的技术方案 11所述的荧光染料标记酶底物的合成方法, 其中
N=0; n=0; m=10, dye=Cy7, 没有连接物 Linker (spacer); P3=NH2; P2=Ac; P =Ac。 此为 HDACs 底物。
固相合成过程: ( 1 ) 加载第一个氨基酸到 Fmoc-Rink Amide TentaGel 树脂上。 先用 20% Piperidine DMF 溶液除去 TentaGel 树脂(0. Immol)上的 Fmoc 基团, 然后用 DMF/DCM 洗涤树脂。再向树脂溶液里加 Immol Dde-Lys(Fmoc)-OH( BaChem, USA公司生产的), Immol 的 DICI与 Immol 的 HOBT DMF 溶液, 室温反应 2-5小时, 用 DMF/DCM/Methanol /DCM依次洗涤树脂后,向树脂中加入 3mmol 的苯甲酸酐 ( benzoic anhydride ) , 反应 30分钟后, 再次如上洗涤树脂。
( 2 )依次将下列氨基酸 (每种氨基酸各 Immol) 按下列顺序放于 ABI 433A 自 动合成仪氨基酸轨道上:
(N-端) Ac-Lys(Ac)-OH, [Dde-Lys(Fmoc)-OH]10 ( C-端)
固相自动合成结束后, 用 2% 的肼 (Hydrazine)溶液来处理树脂去保护 Dde-Lys(Fmoc)-OH 里的 Dde 基团。 加入 30 mmol Cy7-NHS (GE Healthcare公 司生产的), 反应 1小时后, 先后用 DMF/DCM 洗涤树脂。
聚合物从树脂上割下釆用如下程序: 每 lOO mg 载有多肽的树脂, 加入 lml 的 下列比例的混合物: (TFA: water: Tis = 95:2.5:2.5 )。树脂混合物溶液随后被室温 下摇晃 2小时。 随后该混合物溶液经过滤除去树脂后, 逐滴加入冰冷的二乙醚 中, 多肽沉析出来, 经过多次离心分离与洗涤, 多肽最后在氮气保护下干燥。
聚合物被溶于 1% TFA (三氟乙酸) 乙腈 ( acetonitrile )水溶液中, 然后 被注入 C18 柱中进行反向 HPLC 分析。 HPLC 峰被收集后进行质谱分析。 实施例 7 本发明提供的荧光染料标记酶底物的应用
HDACs的检测。
将实施例 6所得 HDACs 的底物配制成 lOOmM DMSO溶液, 再用 HDAC 分析 缓冲液将底物稀释至 100 μΜ, 将该底物溶液加入 96孔盘 (黑色, V形底, 96-Well Microplate )之中相邻之两孔井中, 每一孔井含 100 的底物。 然后, 向一个孔井(样品孔井)中加入 l L ( 1微升)的海拉细胞核提取物(Hela Cell Nuclear Extract ) (Biomol International, US A公司生产的); 向控制孔井中加入 Ιμί去离子水。 室温下摇晃 1小时后, 再向两孔井中同时加入 Trypsin, 并 立即将 96-Well Microplate 置于 KODAK 活体成像仪中, 开始摄像记录样品孔 井与控制孔井。 所得结果如图 1所示。 可见, 本发明提供的荧光染料标记酶底
Figure imgf000016_0001
实施例 8
本发明提供的纳米粒子的合成方法, 如下所述:
将 lOmg 实施例 4所得聚合物溶于 l-10ml 丙酮或四氢呋喃中, 再将该溶液逐 滴加入保持超声震荡的 10-100ml 去离子水中,滴加完毕后,再向水中加入 2mg NHS-PEG2000-NHS, 搅拌 2 小时后, 再将该溶液转入渗析袋(dialysis membrane, 最高渗透分子量为 10,000 ), 隔夜在 1 x PBS缓冲液中搅拌。 所得纳 米粒子用 Malvern公司的动态光散射粒度仪 (DLS, 以已知粒径聚苯乙烯作为 标样) 测得其直径如图 3所示。
纳米粒子的结构如图 2所示。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范 围。 凡是根据本发明内容所做的均等变化与修饰, 均涵盖在本发明的专利范围 内。

Claims

^ ^ ^ ^
1、一种酶降解聚合物,其特征在于,所述聚合物分子式为 Pr(aa)N-(AA)n-X,
X=
Figure imgf000017_0001
其中, (aa)N是非酶底物结构域 (non-enzyme substrate domain) , N 个 aa 可以各 不一样 (没有任何关联性), N 是非负整数; (八八:^为酶底物结构域 (enzyme substrate domain) , n个 AA可以各不一样, n是非负整数; ? 是(1氨基保护基团 或官能团; P2 是 α氨基保护基团; Ρ3是 -ΝΗ2、 小分子化合物或聚合物片断。
2、 一种如权利要求 1 所述的酶降解聚合物, 其特征在于, 所述 (&& 中的 aa是氨基酸或其衍生物; (AA)n中的 AA是氨基酸或其衍生物; 所述?1是(¾氨 基保护基团,包括 t-叔丁氧羟基( t-butyloxycarbonyl ),乙酰基( acetyl、 hexanoyl ), 辛酰基 ( octanoyl ), 或节氧叛基 ( benzyloxycarbonyl ); P2为 t-butyloxycarbonyl, acetyl, hexanoyl, octanoyl, benzyloxycarbonyl或 H。
3、 一种如权利要求 2所述的酶降解聚合物, 其特征在于, 所述聚合物先在 (AA)n 的 C-端被 I 型生物酶 (Enzyme cleaving at C-terminal of its substrate: (AA)n ) 切割, 从而暴露出随后的聚赖氨酸 (Polylysine ) 上的 ε-amine; 该 Polylysine片段随后在 II型生物酶进一步切割下而降解成单个的 Lysine。
4、 一种如权利要求 3所述的酶降解聚合物, 其特征在于, 所述 Pr(AA)n-X 为 I型酶底物,所述 I型酶包括:含半胱氨酸的天冬氨酸蛋白水解酶家族 (caspase 家族蛋 白 酶 : caspases-l ,2,3,6,7,8,9,10andl2), 二肽肽酶 IV(dipeptidyl peptidase4,DPPIV), 钙蛋白酶 ( calpain ), 胰凝乳蛋白酶 ( chymotrypsin ), 丝氨 酸蛋白酶 (serine protease ), 组织蛋白酶 (Cathepsins Β,Κ and L), 分泌颗粒酶 B(granzyme B), 非典型肺炎蛋白晦( SARS protease ), 激肽释放酶( kallikrein ), 凝血酶 ( thrombin ) , 氨基肽酶 ( Aminopeptidase ), 丝氨酸氨肽酶(serine aminopeptidase), 类胰蛋白酶 (tryptase ), 丝氨酸蛋白酶 ( serine protease ), 组 蛋白去乙酰化酶(histone deacetylases,HDACs ), 去乙酰化酶 ( sirtuins );
I型酶 ( Enzyme cleaving at C-terminal )包括表 1所列生物酶; 所述 I型酶 不包括 trypsin; I型酶的底物, Pl-(AA)n -X包括表 1所列生物酶相应底物。
Figure imgf000018_0001
ZH_ETD~X caspase-8 2 ETD-X granzyme B and caspase-6
GP-X dipeptidy! peptidase 4 (DPPIV) Z-TSAVLQ-X SA S protease
Z £HD-X caspase-9 Z-VNSTLQ-X SARS protease
Suc-UVY-X calpain- and chymotryp^n-like Z-FR-X cathepsins B/L activities of proteasome
Z-LRR- X trypsin-like activity of proteasorre Boc-VPR-X ka!tikrein or thrombin Z-nLPnLD- caspase-like activity Z-G6R-X thrombin
of proteasome
Z-QEVY calpain and proteasome Z-LR-X Cathepsin K
chymotrypsin-iike activity
VP-X dt e tidYl peptidase 4 Z-AAF-X aminopeptidase
(DPPIV)
Z-VDVAD-X caspase-2 Suc-AAPF-X serine aminopeptidase
Z-VEID-X caspase-6 Z-PRN -X tryptase
Z-ATAD-X caspase-12 2-RR-X Cathepsin B
Z-VAD-X All Caspase Z-YVAD-X caspase-l
Z-AEVD-X caspase-10 Z-PHE-X Serine Protease
Z-LEU-X Serine Protease Z-IR-X Cathepsin K
Z-FR-X Cathepsin L Ac-X HDACs, Sirtuins
5、 一种如权利要求 1所述的酶降解聚合物, 其特征在于, 所述聚合物的结 构式如下:
16
替换页 (细则第 26条) PiJ(aa)N-l(AA)n -j- NH
疏水基团
5 段 4 段 3 段 2: 化学交联段 段 1: 驱动聚结成粒的疏水段
a- amine
供壳层交联 其中:
段 1 : 驱动聚结成粒的疏水段, (由 Lysine 上的 α-amine与胆固醇(cholesterol), 卵磷脂 (Lecithin ) 等生物相容性疏水物通过形成共价键偶合来合成, ) 其中, X2为正整数, P3可以是 -NH2, 其它小分子化合物或聚合物片断;
段 2: 化学交联段, 其中, X 为正整数, P2与 n定义如权利要求 1所述; 段 3 : 酶底物段, 合适生物酶会在其 C-端切割该底物;
段 4: 亲水段,包括亲水性高分子聚合物、 蛋白质和 /或多肽或杂合(Hydrophilic Polymer or Protein or Peptide or hybrid ),可增加水溶性并避免高分子形成的纳米 粒子不在生物体系中循环时诱发免疫反应;
段 5: 表面官能团段, 携带可进一步化学修饰的官能团, 包括 -COOH NH2-, 这 些官能团可进一步用于化学偶合靶向片断 (抗体或其片段, 生物配体等)或其 他生物 /化学片断。
6、 一种如权利要求 5所述的酶降解聚合物, 其特征在于,
段 1: 驱动聚结成粒的疏水段, 由 Lysine 上的 α-amine与硫辛酸 ( Lipoic acid ) 形成共价键, X2=10,P3=NH2;
段 2: 化学交联段, 由 NHS-PEG500Q-NHS与 Lysine 的 a-amins反应形成, 所述 结构式中的 Xi=10; 段 3: 酶底物段, (AA)n=DEVD (Caspase 3/7之底物), P2=Ac;
段 4: 亲水段, (aa)N 为 PEG5000;
段 5: 表面官能团段, 为 -NH2
7、 一种水凝胶, 其特征在于, 所述水凝胶是权利要求 1至 4之一所述的酶 降解聚合物自聚合而成, 所述酶降解聚合物与双官能团或多官能团交联剂与 PolyLy sine 里的 α-amine反应形成水凝胶。
8、 一种水凝胶, 其特征在于, 所述水凝胶包含权利要求 1至 4之一所述的 酶降解聚合物, 所述酶降解聚合物和其他聚合物与交联剂反应形成水凝胶。
9、 一种纳米粒子, 其特征在于, 所述纳米粒子由权利要求 5或 6所述的酶 降解聚合物聚合而成, 所述疏水段在纳米粒子的内部, 所述表面官能团段和亲 水段在纳米粒子的表面。
10、 一种如权利要求 9所述的纳米粒子的用途, 其特征在于, 所述纳米粒 子用作药物载体, 用于药物释放、 体内成像临床诊断。
11、 一种荧光染料标记酶底物, 其分子式为 Pr(aa)N-(AA)n-X,
X=
Figure imgf000020_0001
Figure imgf000021_0001
其中:
(aa)j^ 酶底物区域; aa可是任意氨基酸或其衍生物, N 个 aa 可以各不一样 (没有任何关联性), N是非负整数;
(八 ^为酶底物区域(enzyme substrate domain); AA可是氨基酸或其衍生物, n 个 AA可以各不一样, n是非负整数;
P!, P2是 α氨基保护基团, 包括 t-butyloxycarbonyl, acetyl, hexanoyl, octanoyl, 或 benzyloxycarbonyl; P2也可以是荧光染料, P3 可是 -NH2 或小分子或大分子片 断;
染料分子为自淬灭染料 (Self-quenching dye), m 为大于或等于 1的整数 。
12、 一种如权利要求 11所述荧光标记酶底物, 其特征在于, 所述荧光标记 酶底物中染料分子的荧光被其邻近的染料分子所淬灭, 而当所述荧光标记酶底 物在如权利要求 3 中所述 I 型酶与 II 型酶的切割下, 降解为单分子 dye-a-Lysine-OH或 dye-linker-( a)-Lysine-OH时, 其荧光强度才能增强而被检
13、 一种如权利要求 11所述荧光标记酶底物用于检测如权利要求 3所述 I 型酶的活性或浓度的使用方法, 如下所述:
将所述荧光标记酶底物, (溶于微量有机溶剂, 如 DMSO中), 加入如权利 要求 3 中所述的任一含待测 I型酶的样品, 相混一定的时间后; 再加入过量如 权利要求 3所述 II型酶, 相混一定的时间后, 测量其荧光强度, 同时将所述荧 光标记酶底物, (溶于微量有机溶剂, 如 DMSO中), 加入不含待测 I型酶的空 白样品中, 相混一定的时间后; 再加入同等过量 II型酶, 相混一定的时间后, 测量其荧光强度。
14、 一种如权利要求 12所述荧光标记酶底物, 其特征在于, 所述染料分子 为自淬灭染料 (Self-quenching dye) 。
15、 一种如权利要求 14所述荧光标记酶底物, 其特征在于, 所述自淬灭染 料分子包括 Cy7, Cy5.5 , Cy5 , Cy3 。
16、一种生物酶检测或活性分析试剂盒(包),其特征在于,所述试剂盒(包) 由如权利要求 11、 12、 14或 15之一所述的荧光标记酶底物, 以及对应的酶、 适当缓冲液组成。
PCT/CN2011/074593 2011-05-24 2011-05-24 一种酶降解聚合物及其应用 WO2012159263A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180024276.8A CN102958938B (zh) 2011-05-24 2011-05-24 一种酶降解聚合物及其应用
PCT/CN2011/074593 WO2012159263A1 (zh) 2011-05-24 2011-05-24 一种酶降解聚合物及其应用
US14/119,382 US9200033B2 (en) 2011-05-24 2011-05-24 Enzyme-degradable polymer and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074593 WO2012159263A1 (zh) 2011-05-24 2011-05-24 一种酶降解聚合物及其应用

Publications (1)

Publication Number Publication Date
WO2012159263A1 true WO2012159263A1 (zh) 2012-11-29

Family

ID=47216521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074593 WO2012159263A1 (zh) 2011-05-24 2011-05-24 一种酶降解聚合物及其应用

Country Status (3)

Country Link
US (1) US9200033B2 (zh)
CN (1) CN102958938B (zh)
WO (1) WO2012159263A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110894518A (zh) * 2019-11-05 2020-03-20 上海加新生物科技有限公司 一种猴头菇小肽的制备方法
CN114341154A (zh) * 2019-09-05 2022-04-12 国立大学法人东京农工大学 类胰蛋白酶活性测定用底物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112390859B (zh) * 2020-11-20 2022-04-05 南开大学 识别Caspase蛋白的自组装多肽探针、制备方法及应用
CN113041361B (zh) * 2021-02-23 2022-08-16 广州市第一人民医院(广州消化疾病中心、广州医科大学附属市一人民医院、华南理工大学附属第二医院) 一种hdac、ctsl响应的诊疗一体化材料及其制备方法与应用
CN114874490B (zh) * 2022-06-17 2023-07-25 江南大学 一种聚苯乙烯预处理及酶降解的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009883A1 (en) * 1993-10-05 1995-04-13 Board Of Regents, The University Of Texas System Multifunctional organic polymers
WO2003104424A2 (en) * 2002-06-10 2003-12-18 The Government Of The United States, As Represented By The Secretary Of The Department Of Health And Human Services Novel molecular conjugates for signal amplification
CN1634591A (zh) * 2004-11-11 2005-07-06 东华大学 短肽修饰的聚赖氨酸-聚乳酸共聚物纳米粒及其制备方法和用途
CN1683014A (zh) * 2005-03-07 2005-10-19 天津大学 用于基因治疗的树枝状聚赖氨酸衍生物载体的制备方法
WO2007082331A1 (en) * 2006-01-20 2007-07-26 Starpharma Pty Limited Modified macromolecule

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009523174A (ja) * 2006-01-10 2009-06-18 ヒルズ・ペット・ニュートリシャン・インコーポレーテッド 脂肪の減少を促進するための組成物及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009883A1 (en) * 1993-10-05 1995-04-13 Board Of Regents, The University Of Texas System Multifunctional organic polymers
WO2003104424A2 (en) * 2002-06-10 2003-12-18 The Government Of The United States, As Represented By The Secretary Of The Department Of Health And Human Services Novel molecular conjugates for signal amplification
CN1634591A (zh) * 2004-11-11 2005-07-06 东华大学 短肽修饰的聚赖氨酸-聚乳酸共聚物纳米粒及其制备方法和用途
CN1683014A (zh) * 2005-03-07 2005-10-19 天津大学 用于基因治疗的树枝状聚赖氨酸衍生物载体的制备方法
WO2007082331A1 (en) * 2006-01-20 2007-07-26 Starpharma Pty Limited Modified macromolecule

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOMER, KAREN A. ET AL.: "Fluorometric Determination of Bacterial Protease Activity Using Fluorescein Isothiocyanate-Labeled Proteins as Substrates", ANALYTICAL BIOCHEMISTRY, vol. 191, 1990, pages 133 - 137 *
MATAYOSHI, E.D. ET AL.: "Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer", SCIENCE, vol. 247, no. 4945, 23 February 1990 (1990-02-23), pages 954 - 958 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341154A (zh) * 2019-09-05 2022-04-12 国立大学法人东京农工大学 类胰蛋白酶活性测定用底物
CN110894518A (zh) * 2019-11-05 2020-03-20 上海加新生物科技有限公司 一种猴头菇小肽的制备方法

Also Published As

Publication number Publication date
CN102958938B (zh) 2014-08-27
CN102958938A (zh) 2013-03-06
US9200033B2 (en) 2015-12-01
US20140243429A1 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
Liu et al. Peptide-based biosensors
Najjar et al. An l-to d-amino acid conversion in an endosomolytic analog of the cell-penetrating peptide TAT influences proteolytic stability, endocytic uptake, and endosomal escape
KR101103548B1 (ko) 단백질분해효소 활성 측정용 나노입자 센서 및 그 제조방법
WO2012159263A1 (zh) 一种酶降解聚合物及其应用
Caglič et al. Functional in vivo imaging of cysteine cathepsin activity in murine model of inflammation
JP2005538035A (ja) グアニジニウム輸送試薬および結合体
CA2628053A1 (en) Affinity markers for human serum albumin
Maier et al. Highly site specific, protease cleavable, hydrophobic peptide–polymer nanoparticles
AU2008221036B2 (en) Imaging probes
US8669231B2 (en) Activation of peptide prodrugs by hK2
CN113292635A (zh) 靶向cd47的多肽及其应用
Chen et al. Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines
CN102985825B (zh) 一种生物分析试剂及其使用方法
CN101652149A (zh) 成像探针
US20140113322A1 (en) Supramolecular nanobeacon imaging agents as protease sensors
KR20140119633A (ko) 형광공명에너지전이 현상을 이용한 면역반응 영상화
Smith et al. Therapeutic peptide delivery via aptamer-displaying, disulfide-linked peptide amphiphile micelles
Moustoifa et al. Novel cyclopeptides for the design of MMP directed delivery devices: a novel smart delivery paradigm
WO2011093461A1 (ja) 生理活性物質の活性制御方法、及び生理活性物質包含ゲル
US20200199177A1 (en) Dual-Enzyme Responsive Peptides
JP2023038757A (ja) マトリックスメタロプロテアーゼで開裂可能なペプチド基質
KR101385855B1 (ko) 카뎁신 검출용 다이아로마틱 아미노산 기질
WO2021251850A1 (ru) Специфические пептидные ингибиторы цистеиновых катепсинов
Liu et al. Peptide–AIEgen conjugates for biomedical diagnosis and bioimaging
WO2024036358A1 (en) A pro-moiety for forming a prodrug selectively cleaved by prostate-specific antigen (psa)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024276.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14119382

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/06/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11866351

Country of ref document: EP

Kind code of ref document: A1