WO2012158004A1 - Electromagnetic sensor of forces - Google Patents

Electromagnetic sensor of forces Download PDF

Info

Publication number
WO2012158004A1
WO2012158004A1 PCT/MA2011/000016 MA2011000016W WO2012158004A1 WO 2012158004 A1 WO2012158004 A1 WO 2012158004A1 MA 2011000016 W MA2011000016 W MA 2011000016W WO 2012158004 A1 WO2012158004 A1 WO 2012158004A1
Authority
WO
WIPO (PCT)
Prior art keywords
photo3
fixed
cylinder
sensor
spring
Prior art date
Application number
PCT/MA2011/000016
Other languages
French (fr)
Inventor
Abdelrhani NAKHELI
Mabrouk BENHAMOU
Seddik BRI
Original Assignee
Universite Moulay Ismail
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Moulay Ismail filed Critical Universite Moulay Ismail
Publication of WO2012158004A1 publication Critical patent/WO2012158004A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • G01L5/0033Force sensors associated with force applying means applying a pulling force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0057Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to spring-shaped elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/10Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
    • G01L5/103Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means using sensors fixed at one end of the flexible member
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/164Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in inductance

Definitions

  • the proposed sensor is an electromagnetic force sensor.
  • force sensors are generally electrodynamic, piezoelectric sensors or using strain gauges.
  • the operating principle of the proposed sensor is based on the fundamental laws of electromagnetism; which justifies its name "Electromagnetic force sensor”.
  • a sensor consists of a supply circuit (Cil, Photo3), a conditioning circuit (CI2, photo3)), of two identical flat coils (BF, BM, photo3), of the same diameter 1.8cm, and formed each of 30 turns, which are 0.1mm copper conductor wires, a solid support fixed to a marble base (SOC, photo3), an elastic spring (R, photo3), and a solid (CY, photo3) cylinder insulating diameter 1.8cm, height 5cm and magnetic permeability ⁇ , two hooks (CR2, CR3, photo3) are attached to the centers of the two bases of the insulating cylinder.
  • the fixed support consists of four parts: A rectangular board (Pl, photo3) 3cm thick, 20cm long and 15cm wide, glued to the marble base (SOC, photo3); a board (P2, photo3) 30cm long, 6cm wide and 3cm thick is attached to the rectangular base board and perpendicular thereto, On this board 30cm held vertically, are fixed perpendicularly two boards (P3 , P4, photo3) of 15cm length each, same thickness 1cm and same width 6cm, these two boards of 15cm in length are parallel to each other and horizontally and 10cm apart from each other.On the board P3 is pierced with a hole (OR, photo3) of diameter 2cm, in which the cylinder (CY) is introduced and can move vertically almost without friction.
  • the CRI hook, the spring, the hook CR2, the cylinder CY and the hook CR3 are aligned on the same vertical axis (Photo 3).
  • the cylinder plays a guiding role and allows the moving coil (BM) which is integral with it to approach or move away from the fixed coil (BF), when a force is exerted on the hook (CR3, photo3 ) or by hanging a tare (T, photo4) for laying masses, or hang directly masses to the CFG hook.
  • BM moving coil
  • T, photo4 hanging a tare
  • the two flat coils (BF, BM) are connected by connection wires (FC, photo5) to the conditioning circuit (CI2, photo5) which is fed by the supply circuit (Cil, photo5).
  • the output voltage of the conditioning circuit is routed to a digital voltmeter (V, photo3) of precision O.lmV.
  • A is the voltage gain.
  • This oscillator is followed by two isolation follower amplifiers, to power the fixed coil, and consequently, it is traversed by a sinusoidal current creating a sinusoidal magnetic induction along its axis.
  • B ( x) p ⁇ NIR 2/2 (R 2 + x 2 ) 3 2 , with I the current flowing through the coils, R their radius, N their number of turns, and x the distance separating the two coils.
  • B (x) ⁇ 0 NI / 2R.
  • the conditioning circuit (figl, photo2) is powered by a stabilized symmetrical power supply, ⁇ 15V (photo 1).
  • a hysteresis cycle occurs when a certain critical elongation is exceeded, and there is the appearance of a remanent deformation.
  • the proposed sensor is limited to 10g. Under these conditions, there is no hysteresis cycle, and the measurements are reversible, from 0 to 10g.
  • the proposed sensor is characterized by a drift (of origin): When the sensor is turned on, there is a slow drift, and after about 60 minutes of operation, this drift becomes very low ( ⁇ / min), and the output voltage of the sensor stabilizes at a constant.
  • V (m) The response of the sensor, V (m), is not linear, but it obeys a polynomial relation.
  • the immediate consequence of this non-linearity is a variable sensitivity, which involves the distance x separating the two coils.
  • the accuracy of this sensor obviously depends on the elements specific to the experimental device (coils, friction, inter-coil distance, number of turns, spring, and signal conditioning circuit), and the quality of the measuring apparatus used.
  • the voltmeter used gives voltages with a precision of O.lmV.
  • V (m) A + Bi m + B 2 m 2 + B 3 m 3 + B 4 m 4 + B 5 m 5 , with the adjusted coefficients:
  • Figure 1 Diagram of the conditioning circuit comprising the coils, the Wien oscillator (O), the amplifier stages, the rectifying and filtering circuit (RF), and the potentiometer for adjusting the sensitivity of the sensor.
  • Photo 1 Reproduces the printed circuit board and the components of Figure 1.
  • Photo 2 Stabilized symmetrical power supply ( ⁇ 15V) of the sensor.
  • Photo 3 Vacuum electromagnetic sensor (no load).
  • SOC Marble base
  • P1, P2, P3 and P4 Plates forming the fixed support OR: Orifice diameter 2 cm, located on P3 CY; Insulating cylinder CRI: Hook fixed on P4
  • CR2 Hook fixed in the center of the upper base of the Cylinder (CY)
  • CR3 Hook fixed in the center of the lower base of the cylinder (CY)
  • R Spring
  • BF Coil of 30 turns fixed on the contour of the orifice (OR)
  • BM Coil of 30 turns, fixed on the cylinder (CY)
  • Cil PCB of the supply circuit
  • CI2 Electronic card of the conditioning circuit
  • V Digital display voltmeter
  • Photo 4 Electromagnetic sensor, with tare
  • Photo 5 Electromagnetic sensor, with tare loaded with a mass of 5g.
  • FC Connection wires of the coils with the circuit board.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

The proposed sensor is an electromagnetic sensor of forces. Its principle of operation relies on the phenomenon of influence by magnetic induction between two flat coils, of like diameter and comprising the same number of turns, situated a certain distance, x, apart, on one and the same axis passing through their centres. One of the coils is fixed on a horizontal support, and powered by a Wien oscillator, with precise conditions of phase and amplification. This coil generates a sinusoidal voltage of 84 Hz and of amplitude 2.5 V. The second flat coil is wound on an insulating cylinder, linked to the end of a spring. The other end of this same spring is attached to a fixed support. The second coil is therefore secured to the cylinder suspended vertically from the spring. The two coils, the spring and the cylinder are aligned on one and the same vertical axis. The cylinder plays the role of guidance, since it can move vertically and pass through an orifice on the contour of which is placed the fixed coil. At the lower end of the cylinder, we have fixed a hook making it possible to suspend masses or to attach a gauge for placing masses. The magnetic induction created by the fixed coil gives rise to an electromotive force at the terminals of the moving coil which depends on the distance x between the coils. When a mass is placed on the gauge, the spring elongates, the cylinder moves downwards, and the distance x between the coils decreases. This translates into an increase in the voltage across the terminals of the moving coil. The spring therefore plays the role of a force-displacement converter. The designed device is an electromagnetic sensor of forces, and can also be considered to be a displacement sensor: - sensor for forces: from 0 to 10 g, with an accuracy of 8 mg ≤ Δm ≤ 20 mg; - sensor for displacements: from 0 to 5 mm, with an accuracy of 4 μm ≤ Δx ≤ 10 μm. Under the best operating conditions, the accuracies of these sensors become: 4 mg ≤ Δm ≤ 10 mg and 2 μm ≤ Δx ≤ 5 μm. Finally, improvements could be made to this sensor, to make it more efficacious and conducive to numerous industrial applications.

Description

CAPTEUR ELECTROMAGNETIQUE DE FORCES  ELECTROMAGNETIC SENSOR OF FORCES
Le capteur proposé est un capteur électromagnétique de forces. Dans le domaine de l'instrumentation physique, les capteurs de forces sont en général des capteurs électrodynamiques, piézoélectriques, ou utilisant des jauges de contraintes. The proposed sensor is an electromagnetic force sensor. In the field of physical instrumentation, force sensors are generally electrodynamic, piezoelectric sensors or using strain gauges.
Le principe de fonctionnement du capteur proposé repose sur les lois fondamentales de l'électromagnétisme ; ce qui justifie son appellation « Capteur électromagnétique de forces ». De tel capteur est constitué d'un circuit d'alimentation (Cil, Photo3), un circuit de conditionnement(CI2, photo3)), de deux bobines plates identiques (BF, BM, photo3), de même diamètre 1.8cm, et formée chacune de 30 spires, qui sont des fils conducteurs de cuivre de section 0.1mm, un support solide fixé à un socle en marbre(SOC,photo3), un ressort élastique(R, photo3), et un cylindre (CY,photo3) solide isolant de diamètre 1.8cm, de hauteur 5cm et de perméabilité magnétique μ, deux crochets(CR2, CR3, photo3) sont fixés aux centres des deux bases du cylindre isolant. The operating principle of the proposed sensor is based on the fundamental laws of electromagnetism; which justifies its name "Electromagnetic force sensor". Such a sensor consists of a supply circuit (Cil, Photo3), a conditioning circuit (CI2, photo3)), of two identical flat coils (BF, BM, photo3), of the same diameter 1.8cm, and formed each of 30 turns, which are 0.1mm copper conductor wires, a solid support fixed to a marble base (SOC, photo3), an elastic spring (R, photo3), and a solid (CY, photo3) cylinder insulating diameter 1.8cm, height 5cm and magnetic permeability μ, two hooks (CR2, CR3, photo3) are attached to the centers of the two bases of the insulating cylinder.
Le support fixe est constitué de quatre parties : Une Planche rectangulaire(Pl,photo3) d'épaisseur 3cm, de longueur 20cm et de largeur 15cm, collée au socle en marbre (SOC,photo3) ; une planche (P2,photo3) de 30cm de longueur, 6cm de largeur et 3cm d'épaisseur est fixée à la planche rectangulaire de baseet qui lui est perpendiculaire, Sur cette planche de 30cm maintenue verticalement, sont fixées de façon perpendiculaire deux planches (P3,P4,photo3)de 15cm de longueur chacune, de même épaisseur 1cm et même largeur 6cm, ces deux planches de 15cm de longueur sont parallèles entre elles et à l'horizontale et distantes de 10cm l'une de l'autre.Sur la planche P3 est percé une orifice(OR,photo3) de diamètre 2cm, Dans laquelle le cylindre (CY) est introduit et peut se déplacer verticalement quasiment sans frottement. Sur la planche (P4) est fixé un crochet (CRI, photo3), auquel est fixée l'extrémité supérieure du ressort (R, photo 3), à l'autre extrémité du ressort, est suspendu le cylindre (CY) par l'intermédiaire du crochet (CR2). Sur le cylindre est fixée la bobine (BM). Sur le contour de l'orifice (OR, photo3) est fixée la bobine fixe (BF, photo3). The fixed support consists of four parts: A rectangular board (Pl, photo3) 3cm thick, 20cm long and 15cm wide, glued to the marble base (SOC, photo3); a board (P2, photo3) 30cm long, 6cm wide and 3cm thick is attached to the rectangular base board and perpendicular thereto, On this board 30cm held vertically, are fixed perpendicularly two boards (P3 , P4, photo3) of 15cm length each, same thickness 1cm and same width 6cm, these two boards of 15cm in length are parallel to each other and horizontally and 10cm apart from each other.On the board P3 is pierced with a hole (OR, photo3) of diameter 2cm, in which the cylinder (CY) is introduced and can move vertically almost without friction. On the board (P4) is fixed a hook (CRI, photo3), to which is fixed the upper end of the spring (R, photo 3), at the other end of the spring, is suspended the cylinder (CY) by the intermediate hook (CR2). On the cylinder is fixed the coil (BM). On the contour of the orifice (OR, photo3) is fixed fixed coil (BF, photo3).
Le crochet CRI, le ressort, le crochet CR2, le cylindre CY et le crochet CR3 sont alignés sur un même axe vertical (Photo 3). Le cylindre joue un rôle de guidage et permet à la bobine mobile (BM) qui lui est solidaire de s'approcher ou de s'éloigner de la bobine fixe (BF), lorsqu'on exerce une force sur le crochet (CR3,photo3) soit en lui accrochant une tare (T, photo4) pour poser des masses, soit suspendre directement des masses au crochet CFG.Le cylindre est donc susceptible de se déplacer verticalement vers le haut ou vers le bas, quasiment sans frottement lorsqu'on exerce une force à son extrémité inférieure ; ce qui a pour effet d'allonger ou de comprimer le ressort. Les deux bobines plates (BF, BM) sont reliées par des fils de connexions (FC, photo5) au circuit de conditionnement (CI2, photo5) qui est alimenté par le circuit d'alimentation (Cil, photo5). La tension de sortie du circuit de conditionnement est acheminée vers un voltmètre numérique (V, photo3) de précision O.lmV. The CRI hook, the spring, the hook CR2, the cylinder CY and the hook CR3 are aligned on the same vertical axis (Photo 3). The cylinder plays a guiding role and allows the moving coil (BM) which is integral with it to approach or move away from the fixed coil (BF), when a force is exerted on the hook (CR3, photo3 ) or by hanging a tare (T, photo4) for laying masses, or hang directly masses to the CFG hook.Le cylinder is likely to move vertically up or down, almost without friction when exerting a force at its lower end; which has the effect of lengthening or compressing the spring. The two flat coils (BF, BM) are connected by connection wires (FC, photo5) to the conditioning circuit (CI2, photo5) which is fed by the supply circuit (Cil, photo5). The output voltage of the conditioning circuit is routed to a digital voltmeter (V, photo3) of precision O.lmV.
La bobine fixe (fig 1 ; BF) est alimentée par un oscillateur de Wien (figl, 0), de fréquence f0 = 84Hz, dont les conditions de phase et d'amplification sont satisfaites (f0= l/2nRC, avec R=10kO et C = 0.2μΡ). La condition d'amplification A = 1 + R2/R1 = 3 (R2 = 2.2kQ et RI = lkO). A est le gain en tension. Cet oscillateur est suivi de deux amplificateurs suiveurs d'isolement, pour alimenter la bobine fixe, et par conséquent, elle est parcourue par un courant sinusoïdal créant une induction magnétique sinusoïdale le long de son axe. Cette dernière crée, à travers la bobine mobile, un flux variable, Φ, et une force électromotrice induite variable et mesurable. La valeur maximale de cette f.e.m induite dépend naturellement de la distance x séparant les deux bobines, et le flux Φ est proportionnel à l'induction magnétique,B, dont la variation, en fonction de x,est donnée par la relation suivante : B(x) = p^NIR2/2(R2 + x2)3 2, avec I le courant parcourant les bobines, R leur rayon, N leur nombre de spire, et x la distance séparant les deux bobines. Pour x = 0, la formule précédente devient simple, et l'on a : B(x) = μ0NI/2R. The fixed coil (FIG. 1; BF) is fed by a Wien oscillator (FIG. 1), of frequency f 0 = 84 Hz, whose phase and amplification conditions are satisfied (f0 = 1 / 2nRC, with R = 10kO and C = 0.2μΡ). The amplification condition A = 1 + R2 / R1 = 3 (R2 = 2.2kQ and R1 = lkO). A is the voltage gain. This oscillator is followed by two isolation follower amplifiers, to power the fixed coil, and consequently, it is traversed by a sinusoidal current creating a sinusoidal magnetic induction along its axis. The latter creates, through the voice coil, a variable flux, Φ, and a variable and measurable induced electromotive force. The maximum value of this induced ind depends naturally on the distance x separating the two coils, and the flux Φ is proportional to the magnetic induction, B, whose variation, as a function of x, is given by the following relation: B ( x) = p ^ NIR 2/2 (R 2 + x 2 ) 3 2 , with I the current flowing through the coils, R their radius, N their number of turns, and x the distance separating the two coils. For x = 0, the preceding formula becomes simple, and we have: B (x) = μ 0 NI / 2R.
Lorsqu'on accroche une masse au crochet, le ressort s'allonge, le cylindre se déplace vers le bas, et par conséquent, la distance x séparant les deux bobines diminue ; ce qui se traduit par une augmentation de la tension maximale induite aux bornes de la bobine mobile. Cette dernière étant de faible amplitude, il a fallu apporter des circuits d'amplifications, de redressement et de filtrage (figl,RF), pour rendre cette tension exploitable. When hooking a mass to the hook, the spring lengthens, the cylinder moves downward, and therefore the distance x between the two coils decreases; which results in an increase in the maximum voltage induced at the terminals of the voice coil. The latter being of low amplitude, it was necessary to provide amplifier circuits, rectifying and filtering (figl, RF), to make this voltage exploitable.
Le circuit de conditionnement (figl, photo2) est alimenté par une alimentation symétrique stabilisée, ±15V (photo 1). The conditioning circuit (figl, photo2) is powered by a stabilized symmetrical power supply, ± 15V (photo 1).
Le capteur électromagnétique de forces proposé est caractérisé par son étendu de mesure (Og à 10g)qui dépend des caractéristiques mécaniques du ressort (k = 2g/mm). The electromagnetic force sensor proposed is characterized by its measuring range (Og at 10g) which depends on the mechanical characteristics of the spring (k = 2g / mm).
Un cycle d'hystérésis apparaît lors du dépassement d'un certain allongement critique, et il y a apparition d'une déformation rémanente. Le capteur proposé est limité à 10g. Dans ces conditions, il n'y a aucun cycle d'hystérésis, et les mesures sont réversibles, de 0 à 10g. La sensibilité du capteur a été fixée à S=200 mg/mV, à l'aide d'un potentiomètre de réglage (PO, photo 6), la sensibilité du capteur proposé dépend de la distance x inter-bobines, mais elle est pratiquement invariable, à distance fixée. A hysteresis cycle occurs when a certain critical elongation is exceeded, and there is the appearance of a remanent deformation. The proposed sensor is limited to 10g. Under these conditions, there is no hysteresis cycle, and the measurements are reversible, from 0 to 10g. The sensitivity of the sensor has been set at S = 200 mg / mV, using an adjustment potentiometer (PO, photo 6), the sensitivity of the proposed sensor depends on the inter-coil distance x, but it is practically invariable, fixed distance.
Le capteur proposé est caractérisé par une dérive (d'origine) : Lorsqu'on met le capteur en marche, il y a une dérive lente, et après environ 60 minutes de fonctionnement, cette dérive devient très faible (Ιμν/min), et la tension de sortie du capteur se stabilise à une constante. The proposed sensor is characterized by a drift (of origin): When the sensor is turned on, there is a slow drift, and after about 60 minutes of operation, this drift becomes very low (Ιμν / min), and the output voltage of the sensor stabilizes at a constant.
La réponse du capteur, V(m), n'est pas linéaire, mais elle obéit à une relation polynomiale. La conséquence immédiate de cette non-linéarité est une sensibilité variable, qui fait intervenir la distance x séparant les deux bobines. La précision de ce capteur dépend, manifestement, des éléments propres au dispositif expérimental (bobines, frottement, distance inter bobine, nombre de spires, ressort, et circuit de conditionnement du signal), et de la qualité de l'appareil de mesure utilisé. La Précision des mesures est Am = lOmg à 0g, et peut atteindre 4mg à 10g. Le voltmètre utilisé donne des tensions avec une précision de O.lmV. L'erreur de lecture est estimée à 0.05 mV, et il en résulte une erreur Am = lOmg à 0g Dans les meilleurs conditions de fonctionnement, et peut atteindre 4mg à 10g. The response of the sensor, V (m), is not linear, but it obeys a polynomial relation. The immediate consequence of this non-linearity is a variable sensitivity, which involves the distance x separating the two coils. The accuracy of this sensor obviously depends on the elements specific to the experimental device (coils, friction, inter-coil distance, number of turns, spring, and signal conditioning circuit), and the quality of the measuring apparatus used. Precision of measurements is Am = 10mg at 0g, and can reach 4mg at 10g. The voltmeter used gives voltages with a precision of O.lmV. The reading error is estimated at 0.05 mV, resulting in an error Am = 10mg at 0g under the best operating conditions, and can reach 4mg at 10g.
La courbe caractéristique du capteur, V=f(m), est obtenue, en accrochant des masses de précision allant de 0g à 10g (tableau ci-dessous), et en relevant la tension correspondante, à l'aide d'un voltmètre de précision 0.1 mV. L'analyse de cette courbe indique que la réponse n'est pas linéaire (figure 2). The characteristic curve of the sensor, V = f (m), is obtained, by hanging precision masses ranging from 0g to 10g (table below), and by raising the corresponding voltage, using a voltmeter of 0.1 mV accuracy. Analysis of this curve indicates that the response is not linear (Figure 2).
Figure imgf000005_0001
Figure imgf000005_0001
Un ajustement polynomial d'ordre 5, caractérisé par un écart-type compatible avec la précision expérimentale du capteur (AV= ±0.05 mV), parait convenable : A polynomial adjustment of order 5, characterized by a standard deviation compatible with the experimental accuracy of the sensor (AV = ± 0.05 mV), seems suitable:
V(m) = A + Bi m + B2 m2 + B3 m3+ B4 m4 + B5 m5, avec les coefficients ajustés : V (m) = A + Bi m + B 2 m 2 + B 3 m 3 + B 4 m 4 + B 5 m 5 , with the adjusted coefficients:
A= 9.87028, Bi = 4.96455, B2 = 0.41911, B3 = -0.06976, B4 = 0.00956, B4= -3.84615xl0"4 Les caractéristiques de cet ajustement polynomial sont : r2 = 0.99999 et σ = 0.043, où r2 est le coefficient de corrélation et σ est l'écart type. A = 9.87028, Bi = 4.96455, B 2 = 0.41911, B 3 = -0.06976, B 4 = 0.00956, B 4 = -3.84615 × 10 -4. The characteristics of this polynomial fit are: r 2 = 0.99999 and σ = 0.043, where r 2 is the correlation coefficient and σ is the standard deviation.
Description des figures : Description of the figures:
Figure 1 : Schéma du circuit de conditionnement comprenant les bobines, l'oscillateur de Wien (O), les étages amplificateurs, le circuit de redressement et filtrage (RF), et le potentiomètre de réglage de la sensibilité du capteur. Figure 1: Diagram of the conditioning circuit comprising the coils, the Wien oscillator (O), the amplifier stages, the rectifying and filtering circuit (RF), and the potentiometer for adjusting the sensitivity of the sensor.
Figure 2 : Réponse du capteur de Og à 10g : V = f(m). (Courbe d'étalonnage) Photo 1 : représente la réalisation du circuit imprimé et les composants de la figure 1. Photo 2 : Circuit d'alimentation symétrique stabilisée (±15V) du capteur. Photo 3 : Capteur électromagnétique à vide (sans charge). SOC : Socle en marbre Figure 2: Og sensor response at 10g: V = f (m). (Calibration curve) Photo 1: Reproduces the printed circuit board and the components of Figure 1. Photo 2: Stabilized symmetrical power supply (± 15V) of the sensor. Photo 3: Vacuum electromagnetic sensor (no load). SOC: Marble base
P1,P2, P3 et P4 : Planches formant le support fixe OR : Orifice de diamètre 2 cm, situé sur P3 CY ; Cylindre isolant CRI : Crochet fixé sur P4 P1, P2, P3 and P4: Plates forming the fixed support OR: Orifice diameter 2 cm, located on P3 CY; Insulating cylinder CRI: Hook fixed on P4
CR2 : Crochet fixé au centre de la base supérieure du Cylindre (CY) CR3 : Crochet fixé au centre de la base inférieure du cylindre (CY) R : Ressort CR2: Hook fixed in the center of the upper base of the Cylinder (CY) CR3: Hook fixed in the center of the lower base of the cylinder (CY) R: Spring
BF : Bobine plate de 30 spires fixée sur le contour de l'orifice (OR) BM : Bobine plate de 30 spires, fixée sur le cylindre (CY) Cil : Carte électronique du circuit d'alimentation CI2 : Carte électronique du circuit de conditionnement V : Voltmètre numérique d'affichage Photo 4 : Capteur électromagnétique, avec tare Photo 5 : Capteur électromagnétique, avec tare chargée d'une masse de 5g. BF: Coil of 30 turns fixed on the contour of the orifice (OR) BM: Coil of 30 turns, fixed on the cylinder (CY) Cil: PCB of the supply circuit CI2: Electronic card of the conditioning circuit V: Digital display voltmeter Photo 4: Electromagnetic sensor, with tare Photo 5: Electromagnetic sensor, with tare loaded with a mass of 5g.
Photo 6 : Capteur électromagnétique de forces (vue arrière) Photo 6: Electromagnetic force sensor (rear view)
FC : Fils de connexions des bobines avec la carte du circuit de conditionnement. FC: Connection wires of the coils with the circuit board.
Cl 1 : Circuit imprimé d'alimentation Cl 1: Power supply circuit
CI2 : Circuit imprimé de conditionnement  CI2: Printed circuit board
PO : Potentiomètre de réglage de la sensibilité du capteur  PO: Potentiometer for adjusting the sensitivity of the sensor

Claims

Revendications. Claims.
1. Dispositif formant un capteur électromagnétique de mesure de forces, caractérisé en ce qu'il comporte un support solide fixe, présentant un orifice (P3,OR, photo3) sur le contour duquel est placée une bobine fixe (BF, photo3) et dans lequel est introduit un cylindre (CY, photo3) solidaire à une bobine plate mobile (BM, photo3), et il est relié à un ressort (R, photo 3) fixé sur le support. ( P4, photo3), les deux bobines plates sont reliées à un circuit de conditionnement alimenté par une alimentation stabilisée ±15V, (photol)lorsqu'on exerce une force sur le cylindre, le ressort s'allonge et permet la mesure de la force exercée à l'aide du circuit de conditionnement (photo2)qui délivre une tension.  1. Device forming an electromagnetic force measurement sensor, characterized in that it comprises a fixed solid support, having an orifice (P3, OR, photo3) on the contour of which is placed a fixed coil (BF, photo3) and in which is inserted a cylinder (CY, photo3) integral with a moving flat coil (BM, photo3), and is connected to a spring (R, photo 3) fixed on the support. (P4, photo3), the two flat coils are connected to a conditioning circuit powered by a stabilized supply ± 15V, (photol) when a force is exerted on the cylinder, the spring extends and allows the measurement of the force exerted using the conditioning circuit (photo2) which delivers a voltage.
2. Selon la revendicationl, le support solide est caractérisé en ce qu'il comporte quatre planches (PI, P2, P3, P4, photo3), sur la planche P4 est fixé un crochet (CRI, photol), sur la planche P3 est percé un orifice de diamètre 2cm sur le contour duquel est fixé une bobine plate de 30 spires (P3, BF, photo3). 2. According to claim 1, the solid support is characterized in that it comprises four boards (PI, P2, P3, P4, photo3), on the board P4 is fixed a hook (CRI, photol), on the board P3 is pierced an orifice of diameter 2cm on the contour of which is fixed a flat coil of 30 turns (P3, BF, photo3).
3. Selon la revendicationlet 2, Le cylindre (CY, photo3) est caractérisé en ce qu'il comporte un crochet fixé sur sa base supérieure (CR2, photo3), un crochet fixé sur sa base inférieure (CR3, photo3), et une bobine plate de 30 spires (BM, photo 3) qui lui est solidaire. 3. According to claim 2, the cylinder (CY, photo3) is characterized in that it comprises a hook fixed on its upper base (CR2, photo3), a hook fixed on its lower base (CR3, photo3), and a flat coil of 30 turns (BM, photo 3) which is attached to it.
4. Selon les revendicationsl, 2 et 3, Le ressort (R, photo3) est caractérisé en ce qu'il est fixé au crochet (CRI, photo 3), et auquel est suspendu le cylindre(CY) par l'intermédiaire du crochet (CR2, photo3). 4. According to claims 1, 2 and 3, the spring (R, photo3) is characterized in that it is fixed to the hook (CRI, photo 3), and to which the cylinder (CY) is suspended by means of the hook (CR2, photo3).
5. Selon les revendications 1,2, 3 et 4, Le cylindre (CY) est caractérisé en ce qu'il est introduit dans l'orifice (OR, photo3) et susceptible de se déplacer verticalement quasiment sans frottement lorsqu'on exerce une force sur le crochet (CR3, photo3). 5. According to claims 1,2, 3 and 4, the cylinder (CY) is characterized in that it is introduced into the orifice (OR, photo3) and can move vertically almost without friction when exercising a force on the hook (CR3, photo3).
6. Selon les revendications 5, Le cylindre (CY) est caractérisé en ce qu'il contient un crochet (CR3, photo3) auquel on suspend des masses, ou en lui accrochant une tare pour poser des masses, ce qui entraine l'allongement du ressort, et se traduit par le rapprochement des bobines. 6. According to claims 5, the cylinder (CY) is characterized in that it contains a hook (CR3, photo3) which is suspended masses, or by hanging a tare for laying masses, which causes the elongation spring, and results in the approximation of the coils.
7. Selon les revendicationslet 6, Le circuit de conditionnement (Figl) est caractérisé en ce qu'il contient, un oscillateur de Wien(0, Figl) qui alimente la bobine fixe (BF), un circuit d'amplification de la tension prélevée aux bornes de la bobine mobile (BM), un circuit de redressement et de filtrage (RF, Figl), et un potentiomètre de réglage de la sensibilité du capteur (PO,photo6). 7. According to claims 6, the conditioning circuit (Figl) is characterized in that it contains, a Wien oscillator (0, Figl) which supplies the fixed coil (BF), an amplification circuit of the sampled voltage at the terminals of the voice coil (BM), a circuit of straightening and filtering (RF, Figl), and a potentiometer for adjusting the sensitivity of the sensor (PO, photo6).
8. Le capteur électromagnétique de forces est caractérisé par sa gamme d'utilisation de 0g à 10g, sa sensibilité S= 200mg/mV, sa précision4mg < Am < lOmg 8. The electromagnetic force sensor is characterized by its range of use from 0g to 10g, its sensitivity S = 200mg / mV, its precision4mg <Am <10mg
9. Le capteur électromagnétique de forces est caractérisé en ce que, Le diamètre des bobines, le nombre de spires de chaque bobine, et la section du fil peut être modifiées. Le choix de la constante k du ressort permet de fixer l'étendu de mesure et la gamme d'utilisation du capteur. 9. The electromagnetic force sensor is characterized in that, The diameter of the coils, the number of turns of each coil, and the section of the wire can be modified. The choice of the constant k of the spring makes it possible to set the measuring range and the range of use of the sensor.
10. Dispositif selon la revendication 1, caractérisé par sa faculté de mesure des déplacements Connaissant la caractéristique du ressort, k = 2mg/^m et la relation 10. Device according to claim 1, characterized by its ability to measure displacements Knowing the characteristic of the spring, k = 2mg / ^ m and the relation
Δχ= Am/k. Δχ = Am / k.
PCT/MA2011/000016 2011-05-16 2011-12-19 Electromagnetic sensor of forces WO2012158004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA33850 2011-05-16
MA33850A MA33790B1 (en) 2011-05-16 2011-05-16 Electromagnetic force sensor

Publications (1)

Publication Number Publication Date
WO2012158004A1 true WO2012158004A1 (en) 2012-11-22

Family

ID=45992808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2011/000016 WO2012158004A1 (en) 2011-05-16 2011-12-19 Electromagnetic sensor of forces

Country Status (2)

Country Link
MA (1) MA33790B1 (en)
WO (1) WO2012158004A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2597831A (en) * 1947-03-04 1952-05-20 Russell Co Inc Arthur Automatic weighing device for the feedbox of carding machines
FR1323735A (en) * 1962-03-02 1963-04-12 Electro Chimie Soc D Weight register
US3911899A (en) * 1973-11-08 1975-10-14 Chemetron Corp Respiration monitoring method and apparatus
US4173263A (en) * 1977-11-21 1979-11-06 General Electric Company Digital weighing scale
GB2040465A (en) * 1979-01-17 1980-08-28 Bideford Electronics Ltd Lever Operated Control Unit
US4405025A (en) * 1981-06-15 1983-09-20 Tanita Corporation Electronic weighing apparatus of induction type
US5764053A (en) * 1995-03-03 1998-06-09 Unisearch Associates Inc. Apparatus for use in an optical system, including a movable shutter providing an aperture, preferably for use in differential optical absorption spectroscopy (DOAS)

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2597831A (en) * 1947-03-04 1952-05-20 Russell Co Inc Arthur Automatic weighing device for the feedbox of carding machines
FR1323735A (en) * 1962-03-02 1963-04-12 Electro Chimie Soc D Weight register
US3911899A (en) * 1973-11-08 1975-10-14 Chemetron Corp Respiration monitoring method and apparatus
US4173263A (en) * 1977-11-21 1979-11-06 General Electric Company Digital weighing scale
GB2040465A (en) * 1979-01-17 1980-08-28 Bideford Electronics Ltd Lever Operated Control Unit
US4405025A (en) * 1981-06-15 1983-09-20 Tanita Corporation Electronic weighing apparatus of induction type
US5764053A (en) * 1995-03-03 1998-06-09 Unisearch Associates Inc. Apparatus for use in an optical system, including a movable shutter providing an aperture, preferably for use in differential optical absorption spectroscopy (DOAS)

Also Published As

Publication number Publication date
MA33790B1 (en) 2012-12-03

Similar Documents

Publication Publication Date Title
CN101685119B (en) Resonance miniature electric field sensor
CN206656799U (en) A kind of caliberating device for vibrating sensor
EP2618166B1 (en) Electrical sensor for a two-wire power cable
US5998742A (en) High speed high accuracy active force transducer
KR101903914B1 (en) Membrane based magnetometer
JP2007256266A (en) Compensated accelerometer with optical angle detection
CN101627311A (en) High bandwidth open-loop current sensor
CN109556647B (en) Low-frequency noise suppression device and method for tunnel magnetoresistance effect sensor
Konishi et al. Novel sensor structure and its evaluation for integrated complementary metal oxide semiconductor microelectromechanical systems accelerometer
US10175306B1 (en) Large area magnetic flux sensor
US6622577B1 (en) Single coil magnetostrictive sensors
WO2012158004A1 (en) Electromagnetic sensor of forces
CN110914664B (en) High sensitivity dynamometer with parallel bipolar line trap system
CN209857821U (en) Detection device for measuring height of lens frame in mobile electronic equipment
CN104677484A (en) Vibration and dynamic acceleration sensing using capacitors
CN108267073B (en) Low-frequency vibration displacement sensor and detection method thereof
Corodeanu et al. Long GMI sensors for the detection of repetitive deformation of a surface
JP2014153136A (en) Physical quantity sensor
WO2014193208A1 (en) Electromagnetic inclinometer
Andò et al. A novel inclinometer exploiting magnetic fluids and an IR readout strategy
WO2013105840A1 (en) Densimeter
CN111879988A (en) Device and method for detecting passive current in low-frequency mechanical vibration environment
CN216483643U (en) Ultrasonic suspension force measuring device
Benabdellah et al. New Electromagnetic Dynamometer: Measuring the Surface Tension of Liquids
CN113834952B (en) Device and method for realizing object acceleration measurement based on amorphous wire GSI effect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835324

Country of ref document: EP

Kind code of ref document: A1