WO2012157841A1 - Polymer composition having good superior thermal conductivity, and a method for preparing same - Google Patents

Polymer composition having good superior thermal conductivity, and a method for preparing same Download PDF

Info

Publication number
WO2012157841A1
WO2012157841A1 PCT/KR2012/001662 KR2012001662W WO2012157841A1 WO 2012157841 A1 WO2012157841 A1 WO 2012157841A1 KR 2012001662 W KR2012001662 W KR 2012001662W WO 2012157841 A1 WO2012157841 A1 WO 2012157841A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
polymer composition
thermal conductivity
filler
present
Prior art date
Application number
PCT/KR2012/001662
Other languages
French (fr)
Korean (ko)
Inventor
이성구
유영재
원종찬
김해운
전병국
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2012157841A1 publication Critical patent/WO2012157841A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the present invention relates to a polymer composition excellent in thermal conductivity, a molded article produced therefrom, and a method for producing the same.
  • metal is most often used as a material such as a heat sink of an electronic device having an invented component. This is because of the high thermal conductivity of metals. Metal diffuses heat faster than other materials, protecting electronic components that are sensitive to heat. In addition, the metal has a high mechanical strength has the advantage of being suitable as a heat radiation material.
  • these metals are disadvantageous due to their high density, which is difficult to reduce in weight, poor in workability, and high in manufacturing cost.
  • thermally conductive polymer compositions that can replace metals.
  • the research on the thermally conductive polymer composition has been mainly conducted through the composite technology of the polymer and the thermally conductive filler, and until now, the breakthrough technology for improving the thermal conductivity of the polymer material is insufficient except the composite technology of the polymer and the thermally conductive filler.
  • the polymer material has a thermal conductivity of 0.1 to 0.5 W / (m ⁇ K) and is a thermal resistance, and in the case of a composite material containing a large amount of thermally conductive fillers, the thermal conductivity of about 10 W / (m ⁇ K) is also common.
  • the composite material having such a thermal conductivity includes a very high content of thermally conductive fillers, workability decreases with rapid increase in viscosity, and mechanical properties are greatly reduced.
  • the composite material having such a thermal conductivity includes a very high content of thermally conductive fillers, workability decreases with rapid increase in viscosity, and mechanical properties are greatly reduced.
  • the problem that the local high temperature which arises in an electronic device causes malfunction or ignition of an electronic device is largely highlighted. Therefore, the demand for polymer materials having high thermal conductivity and excellent workability is increasing.
  • thermally conductive polymer compositions are not sufficiently high in thermal conductivity, and in the case of a material that satisfies thermal conductivity, they are poor in workability, and molding is not possible through existing extrusion or injection processes. Not enough to
  • Korean Patent Publication No. 10-2010-0075227 relates to a polymer resin composition having excellent thermal conductivity, and uses a large amount of filler by effectively constructing a network between fillers using fillers of different shapes and sizes.
  • the polymer resin composition which is excellent in thermal conductivity and excellent in mechanical strength is described.
  • the invention is an invention for improving the thermal conductivity in a way to improve the contact area between the pillars.
  • 6,899,160 also relates to a thermally conductive material having improved thermal conductivity by using two or more fillers, and the contact between the fillers by using two different thermally conductive fillers similar to the Korean Patent Publication.
  • the thermal conductivity is improved by improving the rate and reducing the thickness of the matrix.
  • Japanese Laid-Open Patent Publication No. 2009-292889 is an invention in which a filler is sufficiently included to improve thermal conductivity, and further includes polyamide fibers to prevent deterioration of mechanical properties.
  • the thermal conductivity of the composite is 10 W / (m ⁇ K) or less, so that the thermal conductivity of the composite is low so that its use is limited. Accordingly, the inventors of the present invention, while studying to improve the thermal conductivity of the polymer composition in a completely different method until now, by mixing two different polymers and fillers, and controlling their morphology (morphology) to improve the thermal conductivity of the polymer composition The present invention was improved.
  • An object of the present invention is to provide a polymer composition having excellent thermal conductivity and excellent mechanical strength, and a molded article prepared therefrom. Another object of the present invention to provide a method for producing the polymer composition and molded article.
  • the present invention is 10 to 80% by volume of a polycarbonate resin; 10 to 80% by volume polyolefin resin; And 5 to 80% by volume of thermally and electrically conductive fillers and molded articles prepared therefrom, 10 to 80% by volume of polycarbonate resins, 10 to 80% by volume of polyolefinic resins, and 5 Mixing from about 80% by volume of the thermally conductive filler; And it provides a method for producing a polymer composition comprising the step of extruding the mixture.
  • the thermal conductivity is greatly improved by effectively forming a network between the fillers by controlling the morphology of two or more polymers in the composition while using one filler. Accordingly, the molded article prepared from the polymer composition according to the present invention may be usefully applied to parts such as heat sinks of electronic devices.
  • FIG. 1 is a schematic diagram showing an enlarged conventional polymer composition including a filler
  • Figure 2 is an enlarged schematic diagram showing the polymer composition according to an embodiment of the present invention.
  • the present invention solves the problem in a method different from the known inventions in improving the thermal conductivity of the polymer composition.
  • the known inventions include: 1) a method that includes a filler sufficiently, but further includes means for preventing the mechanical properties from deteriorating; and 2) a method of improving the contact ratio between the fillers, including fillers of different types or types.
  • the thermal conductivity is improved
  • the present invention controls the morphology to form two phases by mixing two kinds of non-mixing polymers, but one of the two phases is to have a high affinity for the filler, the filler Improves thermal conductivity by effectively organizing the network of fillers in such a way that is present in a single phase.
  • the present invention is a.
  • Polycarbonate-based resins and polyolefin-based resins do not have compatibility with each other, and when they are mixed, they form two phases, and polycarbonate-based resins have a higher affinity for fillers than polyolefin-based resins, and thus polycarbonate-based resins having a specific phase. It can be significantly present on the resin.
  • the polycarbonate-based resin is excellent in mechanical strength, high heat resistance, transparent, and excellent moldability has the advantage of having excellent physical properties for producing a molded article.
  • Polyolefin resins also have advantages of excellent heat resistance and transparency and light weight.
  • the polymer composition of the present invention contain 10 to 80% by volume of polycarbonate resin.
  • the polycarbonate-based resin is included in the polymer composition in an amount outside the above range, two different phases may not be sufficiently formed, thereby making it difficult to control a desired morphology.
  • the polymer composition of the present invention contains 20 to 70% by volume of polycarbonate resin. Because, when the content of the polycarbonate-based resin is contained in 20 to 70% by volume, not only high thermal conductivity but also excellent processability, thermal conductivity, mechanical properties, thermal stability, etc. can be obtained at a certain level or more suitable for the actual use environment. Because there is.
  • the polycarbonate resin included in the polymer composition of the present invention is preferably a polycarbonate resin based on bisphenol-A, but is not limited thereto.
  • the polymer composition of the present invention contain 10 to 80% by volume of polyolefin resin.
  • the polyolefin-based resin is included in the polymer composition in an amount outside the above range, two different phases are not sufficiently formed, which makes it difficult to control a desired morphology.
  • the polymer composition of the present invention contains 20 to 70% by volume of polyolefin resin. Because, when the content of the polyolefin resin is contained in 20 to 70% by volume, not only high thermal conductivity but also excellent properties such as excellent processability, thermal conductivity, mechanical properties, and thermal stability can be secured to a certain level or more suitable for actual use environments. Because.
  • Polyolefin resins included in the polymer composition of the present invention are ethylene octene rubber (EOR), ethylene propylene rubber (EPR), ethylene-propylene-diene rubber (EPDM), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density It is preferably one kind selected from the group consisting of polyethylene (HDPE) and polypropylene (PP), but is not limited thereto.
  • EOR ethylene octene rubber
  • EPR ethylene propylene rubber
  • EPDM ethylene-propylene-diene rubber
  • LLDPE linear low density polyethylene
  • LDPE low density polyethylene
  • HDPE polyethylene
  • PP polypropylene
  • the polymer composition according to the present invention contains 5 to 80% by volume of thermally and electrically conductive fillers.
  • the filler is included in less than 5% by volume, there is a problem that the thermal and electrical conductivity of the composition is significantly lowered, and when it is included in excess of 80% by volume, the viscosity of the composition is too high and the moldability is significantly lowered, There is also a problem that the mechanical strength of the molded article is also significantly reduced.
  • the polymer composition of the present invention contains 10 to 60% by volume of thermal and electrically conductive fillers.
  • the thermally conductive filler included in the polymer composition according to the present invention is preferably a carbon-based filler, and more preferably graphite, but is not limited thereto as long as the filler has high thermal conductivity.
  • Graphite is suitable for use as a filler in the polymer composition of the present invention because it exhibits a very high thermal conductivity of 400 W / (m ⁇ K) or more.
  • the present invention is 10 to 80% by volume of a polycarbonate resin; 10 to 80% by volume polyolefin resin; And 5 to 80% by volume of thermal and electrically conductive fillers.
  • the polymer composition constituting the composition as described above using conventional molding apparatuses such as a conventional extruder, Brabender Plasticorder, Banbury Mixer, Kneader or Roll Mill It can be produced by melt mixing at 250 to 350 °C 10 to 500 rpm.
  • the polymer composition according to the present invention includes a polymer having excellent moldability and includes a filler in a range that does not impair moldability, there is an advantage in that workability is very excellent in molding it by a method such as injection molding.
  • the molded article produced by this has the advantage of excellent thermal conductivity as well as mechanical strength.
  • the molded article according to the present invention may be applied to a component for releasing heat generated from an electronic device due to excellent thermal conductivity, but is not necessarily limited thereto.
  • step 2 Mixing 10 to 80% by volume polycarbonate resin, 10 to 80% by volume polyolefin resin, and 5 to 80% by volume thermally conductive filler (step 1); And hot-extruding the mixed mixture (step 2).
  • step by step the manufacturing method of the present invention will be described in detail step by step the manufacturing method of the present invention.
  • Step 1 of the preparation method of the present invention is a step of mixing 10 to 80% by volume of the polycarbonate resin, 10 to 80% by volume of the polyolefin resin, and 5 to 80% by volume of the thermally conductive filler.
  • the polycarbonate-based resin, the polyolefin-based resin and the thermally conductive filler in the form of particles are uniformly mixed at room temperature.
  • Step 2 of the manufacturing method of the present invention is a step of hot extrusion of the uniformly mixed mixture.
  • Hot extrusion of the mixture can be carried out according to known methods using a device such as, for example, a twin-screw extruder.
  • the polycarbonate resin and the polyolefin resin are not compatible with each other, and thus, two different phases are formed during the mixing process. Among these, the polycarbonate resin has a high affinity for the filler, and thus the filler is formed by the polycarbonate resin. There is a significant amount present in the phase.
  • the mixing of the resin and the filler is an environmentally friendly process because it proceeds by the normal temperature mixing and melting process of the particles, since no solvent is used at all, the modification of the filler is not necessary, and the mixing is possible by a simple method. Can be simplified, and productivity is improved.
  • the polycarbonate resin used in the production method of the present invention is preferably a polycarbonate resin based on bisphenol-A, but is not limited thereto.
  • the polyolefin resin used in the same step is ethylene octene rubber (EOR), ethylene propylene rubber (EPR), ethylene-propylene-diene rubber (EPDM), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE), and polypropylene (PP) is preferably one selected from the group consisting of, but is not limited thereto.
  • the thermally conductive filler used in the same step is preferably a carbon-based filler, more preferably graphite, but is not limited thereto as long as the filler has high thermal conductivity.
  • Graphite is suitable for use as a filler in the polymer composition of the present invention because it exhibits a very high thermal conductivity of 400 W / (m ⁇ K) or more.
  • the content of the polycarbonate resin, polyolefin resin, and thermal and electrical conductivity fillers mixed in the manufacturing step of the present invention is 20 to 70% by volume, 20 to 70% by volume, and 10 to 60% by volume, respectively. desirable. This is because not only high thermal conductivity but also excellent processability, thermal conductivity, mechanical properties, and thermal stability in the resin content can be secured to a certain level or more suitable for actual use environments.
  • Extrusion process of the present invention is preferably carried out at a temperature of 250 to 350 °C. If the temperature at the time of extrusion is less than 250 °C there is a problem that the mixing between the resin and the filler is not sufficiently made, if the temperature exceeds 350 °C there is a problem that the physical properties are degraded due to the thermal decomposition of the resin.
  • step A Mixing 10 to 80% by volume polycarbonate resin, 10 to 80% by volume polyolefin resin, and 5 to 80% by volume thermally conductive filler (step A);
  • It provides a method for producing a molded article comprising a polymer composition comprising the step (step C) injection molding the extrudate.
  • the desired molded article may be manufactured by injection molding the polymer composition prepared according to the method of preparing the polymer composition as described in Step C.
  • Steps A and B for preparing the polymer composition are the same as steps 1 and 2 of the method for preparing the polymer, and description thereof is omitted.
  • the injection molding of step C of the manufacturing method of the present invention can be performed by a known method using a device such as an injection molding machine.
  • the molded article including the polymer composition prepared by the manufacturing method of the present invention is used for the purpose of releasing heat of the electronic device due to its excellent mechanical strength and excellent thermal conductivity, and can be usefully applied to a component that should have electrical conductivity.
  • a pellet of the polymer composition was prepared in the same manner as in Example 1, except that 20% by volume of the polycarbonate resin, 30% by volume of the polyolefin resin, and 50% by volume of the filler were mixed.
  • a pellet of a polymer composition was prepared in the same manner as in Example 1, except that 24 vol% of a polycarbonate resin, 36 vol% of a polyolefin resin, and 40 vol% of a filler were mixed.
  • a pellet of the polymer composition was prepared in the same manner as in Comparative Example 1, except that 65 vol% of the polycarbonate resin and 35 vol% of the filler were mixed.
  • a pellet of the polymer composition was prepared in the same manner as in Comparative Example 1, except that 73 vol% of the polycarbonate resin and 27 vol% of the filler were mixed.
  • a pellet of the polymer composition was manufactured in the same manner as in Comparative Example 4, except that 50 vol% of the polyolefin resin and 50 vol% of the filler were mixed.
  • a pellet of the polymer composition was prepared in the same manner as in Comparative Example 4, except that 60 vol% of the polyolefin resin and 40 vol% of the filler were mixed.
  • Example 1-Example 3 Each component composition of the said Example 1-Example 3, and Comparative Examples 1-6 was put together in following Table 1.
  • Thermal conductivity ( ⁇ ) thermal diffusivity ( ⁇ ) ⁇ specific heat (Cp) ⁇ density ( ⁇ )
  • the thermal diffusivity of the polymer composition pellets prepared according to Examples 1 to 3 and Comparative Examples 1 to 3 of the present invention was measured according to ASTM E1461 at a temperature of 25 ° C. using a Netzsch LFA 477 measuring instrument (Netzsch).
  • the specific heat was measured according to ASTM E1952 using an MDSC measuring instrument (TA instrument), and the density was measured according to ASTM D6226 using a Gas Pycnometer (Protech).
  • Thermal conductivity was calculated from the measured thermal diffusivity, specific heat, and density of each polymer composition pellet using Equation 1, and the results are shown in Table 2 below.
  • the polymer composition according to the present invention has excellent thermal conductivity.
  • the thermal conductivity of the polymer composition of Example 2 is 30 times higher.
  • the impact strength of the polymer composition pellets prepared according to Examples 1 to 3 and Comparative Examples 1 to 3 of the present invention was measured according to ASTM D256 using an Izod impact strength tester (Izod type impact strength tester). The results are shown in Table 3 below.
  • the polymer composition according to the present invention can be seen that the impact strength is very low while having a very good thermal conductivity.
  • the thermal conductivity of the polymer composition of Example 1 is four times higher, it can be seen that the impact strength is similar.
  • Comparative Example 4-6 injection molding was not possible, and thus the impact strength was not measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The present invention relates to a polymer composition having good superior thermal conductivity, to a mold manufactured from the polymer composition, and to a method for manufacturing the composition and the mold. ParticularlyMore particularly, the present invention relates to a polymer composition comprising: 10 to 80 volume % of a polycarbonate-based resin; 10 to 80 volume % of a polyolefin-based resin; and 5 to 80 volume % of a thermo thermo-conductive filler, and a mold manufactured from the polymer composition. Also provided is a method for preparing the polymer composition, comprising the steps of: mixing 10 to 80 volume % of a polycarbonate-based resin, 10 to 80 volume % of a polyolefin-based resin, and 5 to 80 volume % of a thermo thermo-conductive filler; and extruding the thus-obtained mixture. According to the present invention, the thermal conductivity of the polymer composition can be largely significantly increased by effectively forming a network between fillers through controlling the morphology of the polymers in the composition even by when using only one kind of filler. The mold manufactured by using the polymer composition of the present invention can be usefully applied as a partin products such as a heat sink for electronic instruments.

Description

열전도성이 우수한 고분자 조성물 및 이의 제조방법Polymer composition excellent in thermal conductivity and method for preparing same
본 발명은 열전도성이 우수한 고분자 조성물, 이로부터 제조되는 성형품, 및 이들의 제조방법에 관한 것이다.The present invention relates to a polymer composition excellent in thermal conductivity, a molded article produced therefrom, and a method for producing the same.
최근, 전자기기의 고성능화, 소형화, 경량화 등에 따라 반도체 패키지의 고밀도 패키징, LSI의 고집적화 및 고속화 등이 요구되고 있다. 이에 따라 각종 전자부품에서 발생되는 열이 증대되어, 이와 같이 전자부품으로부터 발생하는 열을 효과적으로 외부로 방출시키는 대책에 매우 중요한 과제로 인식되고 있다. 이러한 과제를 해결하기 위한 방열부재로서, 금속, 세라믹, 고분자 조성물 등의 방열재료를 포함하는 열전도성 성형체가 프린트 배선기판, 반도체 패키징, LED 램프 하우징용 히트 파이프, 방열판, 및 열 확산판 등에 사용되고 있다.Background Art In recent years, high-density packaging of semiconductor packages, high integration and high-speed LSIs, and the like are required in accordance with high performance, miniaturization, and light weight of electronic devices. As a result, heat generated from various electronic components is increased, and thus, it is recognized as a very important problem for measures to effectively release heat generated from electronic components to the outside. As a heat dissipation member for solving these problems, a thermally conductive molded article containing heat dissipation materials such as metals, ceramics, and polymer compositions is used in printed wiring boards, semiconductor packaging, heat pipes for LED lamp housings, heat sinks, heat spreaders, and the like. .
이 중, 금속은 발명하는 부품을 가진 전자기기의 방열판과 같은 재료로 가장 많이 사용되고 있다. 그 이유는 금속이 가진 높은 열전도율 때문이다. 금속은 다른 재료들보다 열을 빠르게 주위로 확산시켜, 열에 민감한 전자부품을 보호할 수 있다. 또한 금속은 높은 기계적 강도를 가지고 있어 방열용 재료로 적합한 장점이 있다. 그러나, 이러한 금속은 높은 밀도로 인하여 경량화가 어렵고, 가공성이 떨어지며, 제조비용이 높은 단점이 있다.Among them, metal is most often used as a material such as a heat sink of an electronic device having an invented component. This is because of the high thermal conductivity of metals. Metal diffuses heat faster than other materials, protecting electronic components that are sensitive to heat. In addition, the metal has a high mechanical strength has the advantage of being suitable as a heat radiation material. However, these metals are disadvantageous due to their high density, which is difficult to reduce in weight, poor in workability, and high in manufacturing cost.
이와 같은 금속의 단점을 극복하기 위하여, 금속을 대신할 수 있는 열전도성 고분자 조성물에 대한 연구가 계속되고 있다. 열전도성 고분자 조성물에 대한 연구는 주로 고분자와 열전도성 필러의 복합화 기술을 통해 이루어져 왔으며, 현재까지는 고분자와 열전도성 필러의 복합화 기술 외에는 고분자 재료의 열전도성을 높이기 위한 획기적인 기술은 미비한 상태이다. 일반적으로 고분자소재는 열전도도가 0.1 내지 0.5 W/(m·K)으로 열저항체이며, 다량의 열전도성 필러를 포함하는 복합재료인 경우에도 일반적으로 10 W/(m·K) 정도의 열전도도를 갖게 되지만, 이와 같은 열전도도를 갖는 복합재료의 경우는 매우 높은 함량의 열전도성 필러를 포함하기 때문에 급격한 점도 증가에 따라 가공성이 떨어지고, 기계적 물성도 크게 감소하게 된다. 최근에는 전자기기가 고집적화, 고성능화됨에 따라, 전자기기 내에서 점점 더 많은 열이 발생하고 있고, 또한 전자기기가 박막화, 소형화되면서 발생되는 열을 주위로 빠르게 확산시키는 것이 더욱 어려워지고 있다. 그로 인해, 전자기기에서 발생하는 국부적 고온 상태가 전자기기의 오작동 또는 발화 등을 초래하는 문제점이 크게 부각되고 있다. 따라서, 높은 열전도도와 우수한 가공성을 갖는 고분자소재에 대한 수요가 증가되고 있는 현실이다.In order to overcome the drawbacks of such metals, research on thermally conductive polymer compositions that can replace metals is continuing. The research on the thermally conductive polymer composition has been mainly conducted through the composite technology of the polymer and the thermally conductive filler, and until now, the breakthrough technology for improving the thermal conductivity of the polymer material is insufficient except the composite technology of the polymer and the thermally conductive filler. In general, the polymer material has a thermal conductivity of 0.1 to 0.5 W / (m · K) and is a thermal resistance, and in the case of a composite material containing a large amount of thermally conductive fillers, the thermal conductivity of about 10 W / (m · K) is also common. However, since the composite material having such a thermal conductivity includes a very high content of thermally conductive fillers, workability decreases with rapid increase in viscosity, and mechanical properties are greatly reduced. In recent years, as electronic devices have become highly integrated and high performance, more and more heat is generated in electronic devices, and it is becoming more difficult to rapidly spread heat generated as electronic devices become thinner and smaller. Therefore, the problem that the local high temperature which arises in an electronic device causes malfunction or ignition of an electronic device is largely highlighted. Therefore, the demand for polymer materials having high thermal conductivity and excellent workability is increasing.
하지만, 기존에 개발된 열전도성 고분자 조성물들은 열전도도가 충분히 높지 않고, 열전도도를 만족하는 재료의 경우에는 가공성이 불량하여, 기존의 압출공정이나 사출공정을 통해 성형이 불가하여 최근의 문제점들을 해결하기에 부족하다.However, conventionally developed thermally conductive polymer compositions are not sufficiently high in thermal conductivity, and in the case of a material that satisfies thermal conductivity, they are poor in workability, and molding is not possible through existing extrusion or injection processes. Not enough to
이에 적절한 양의 필러를 포함하면서도 열전도도 및 전기전도도가 우수한 고분자 조성물을 제조하기 위한 연구가 진행되고 있다. 예를 들어, 대한민국 공개특허 제10-2010-0075227호는 열전도성이 우수한 고분자 수지 조성물에 관한 발명으로, 서로 다른 형태 및 크기의 필러를 사용하여 필러간 네트워크를 효과적으로 구성함으로써 많은 양의 필러를 사용하지 않고도 열전도성이 우수하고 기계적 강도가 우수한 고분자 수지 조성물을 기재하고 있다. 상기 발명은 필러들간의 접촉면적을 향상시키는 방법으로 열전도도를 향상시키는 발명이다. 또한, 미국 등록특허 제6,899,160호 또한 2 종 이상의 필러를 사용하여 열전도성을 향상시킨 열전도성 물질에 관한 발명으로, 상기 대한민국 공개특허와 유사하게 서로 다른 2 종의 열전도성 필러를 사용함으로써 필러 간의 접촉율을 향상시키고, 매트릭스의 두께를 줄여줌으로써 열전도율을 향상시키고 있다. 나아가, 일본 공개특허 특개2009-292889호는 열전도도를 향상시키기 위하여 필러를 충분히 포함하되, 이에 따른 기계적 특성의 저하를 방지하기 위하여 폴리아미드 섬유를 더 포함하고 있는 발명이다.To this end, studies have been conducted to prepare polymer compositions having excellent thermal conductivity and electrical conductivity while including an appropriate amount of filler. For example, Korean Patent Publication No. 10-2010-0075227 relates to a polymer resin composition having excellent thermal conductivity, and uses a large amount of filler by effectively constructing a network between fillers using fillers of different shapes and sizes. The polymer resin composition which is excellent in thermal conductivity and excellent in mechanical strength is described. The invention is an invention for improving the thermal conductivity in a way to improve the contact area between the pillars. In addition, U.S. Patent No. 6,899,160 also relates to a thermally conductive material having improved thermal conductivity by using two or more fillers, and the contact between the fillers by using two different thermally conductive fillers similar to the Korean Patent Publication. The thermal conductivity is improved by improving the rate and reducing the thickness of the matrix. Further, Japanese Laid-Open Patent Publication No. 2009-292889 is an invention in which a filler is sufficiently included to improve thermal conductivity, and further includes polyamide fibers to prevent deterioration of mechanical properties.
그러나, 상기의 방법들은 대부분 복합체의 열전도가 10 W/(m·K)이하로 방열용 재료로 사용하기에는 열전도도가 낮아서 용도가 제한적인 문제점들이 있다. 이에 본 발명의 발명자들은 지금까지와는 전혀 다른 방법으로 고분자 조성물의 열전도도를 향상시키고자 연구하던 중 서로 다른 2종의 고분자 및 필러를 혼합하고, 이들의 모폴로지(morphology)를 제어함으로써 고분자 조성물의 열전도를 향상시키는 본 발명을 완성하였다.However, most of the above methods have a problem in that the thermal conductivity of the composite is 10 W / (m · K) or less, so that the thermal conductivity of the composite is low so that its use is limited. Accordingly, the inventors of the present invention, while studying to improve the thermal conductivity of the polymer composition in a completely different method until now, by mixing two different polymers and fillers, and controlling their morphology (morphology) to improve the thermal conductivity of the polymer composition The present invention was improved.
본 발명의 목적은 열전도도가 우수하고, 기계적 강도가 우수한 고분자 조성물 및 이로부터 제조되는 성형품을 제공하는데 있다. 본 발명의 다른 목적은 상기 고분자 조성물 및 성형품의 제조방법을 제공하는데 있다.An object of the present invention is to provide a polymer composition having excellent thermal conductivity and excellent mechanical strength, and a molded article prepared therefrom. Another object of the present invention to provide a method for producing the polymer composition and molded article.
이를 위하여 본 발명은 10 내지 80 부피%의 폴리카보네이트계 수지; 10 내지 80 부피%의 폴리올레핀계 수지; 및 5 내지 80 부피%의 열 및 전기 전도성 필러를 포함하는 고분자 조성물 및 이로부터 제조되는 성형품을 제공하고, 10 내지 80 부피%의 폴리카보네이트계 수지, 10 내지 80 부피%의 폴리올레핀계 수지, 및 5 내지 80 부피%의 열 전도성 필러를 혼합하는 단계; 및 상기 혼합물을 압출하는 단계를 포함하는 것을 특징으로 하는 고분자 조성물의 제조방법을 제공한다.To this end, the present invention is 10 to 80% by volume of a polycarbonate resin; 10 to 80% by volume polyolefin resin; And 5 to 80% by volume of thermally and electrically conductive fillers and molded articles prepared therefrom, 10 to 80% by volume of polycarbonate resins, 10 to 80% by volume of polyolefinic resins, and 5 Mixing from about 80% by volume of the thermally conductive filler; And it provides a method for producing a polymer composition comprising the step of extruding the mixture.
본 발명에 따르면, 1 종의 필러를 사용하면서도 조성물 내 2종이상의 고분자들의 모폴로지를 제어함으로써 필러들 간 네트워크를 효과적으로 형성하도록 하여 열전도율이 크게 향상되는 효과가 있다. 이에 따라, 본 발명에 다른 고분자 조성물로부터 제조되는 성형품은 전자기기의 방열판 등과 같은 부품으로 유용하게 적용될 수 있다.According to the present invention, there is an effect that the thermal conductivity is greatly improved by effectively forming a network between the fillers by controlling the morphology of two or more polymers in the composition while using one filler. Accordingly, the molded article prepared from the polymer composition according to the present invention may be usefully applied to parts such as heat sinks of electronic devices.
도 1은 기존이 필러를 포함하는 고분자 조성물을 확대하여 나타낸 모식도이고,1 is a schematic diagram showing an enlarged conventional polymer composition including a filler,
도 2는 본 발명의 일 구체예에 따른 고분자 조성물을 확대하여 나타낸 모식도이다.Figure 2 is an enlarged schematic diagram showing the polymer composition according to an embodiment of the present invention.
본 발명은 고분자 조성물의 열전도도 향상에 있어서, 공지의 발명들과는 전혀 다른 방법으로 문제를 해결하고 있다. 즉, 공지의 발명들은 1) 필러를 충분히 포함하되 기계적 특성이 저하되는 것을 방지하는 수단을 더 포함하는 방법, 2) 서로 다른 종류 또는 형태의 필러를 포함하여 필러들 간의 접촉율을 향상시키는 방법 등으로 열전도도를 향상시키고 있으나, 본 발명은 2 종의 서로 섞이지 않는 고분자를 혼합하여 두 개의 상을 형성하도록 모폴로지를 제어하되, 두 개의 상 중 하나는 필러에 대한 친화도가 높은 상이 되도록 함으로써, 필러가 하나의 상 속에 주로 존재하게 하는 방법으로 필러들의 네트워크를 효과적으로 구성하는 방법으로 열전도도를 향상시킨다.The present invention solves the problem in a method different from the known inventions in improving the thermal conductivity of the polymer composition. That is, the known inventions include: 1) a method that includes a filler sufficiently, but further includes means for preventing the mechanical properties from deteriorating; and 2) a method of improving the contact ratio between the fillers, including fillers of different types or types. Although the thermal conductivity is improved, the present invention controls the morphology to form two phases by mixing two kinds of non-mixing polymers, but one of the two phases is to have a high affinity for the filler, the filler Improves thermal conductivity by effectively organizing the network of fillers in such a way that is present in a single phase.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은The present invention
10 내지 80 부피%의 폴리카보네이트계 수지; 10 내지 80 부피%의 폴리올레핀계 수지; 및 5 내지 80 부피%의 열 전도성 필러를 포함하는 고분자 조성물을 제공한다.10 to 80% by volume of polycarbonate resin; 10 to 80% by volume polyolefin resin; And it provides a polymer composition comprising a thermally conductive filler of 5 to 80% by volume.
폴리카보네이트계 수지와 폴리올레핀계 수지는 서로 상용성이 없어, 이들을 혼합할 경우 2 개의 상을 형성하며, 폴리카보네이트계 수지는 폴리올레핀계 수지에 비하여 필러에 대한 친화도가 높아 필러가 특정 상인 폴리카보네이트계 수지 상에 현저히 많이 존재할 수 있도록 한다. 또한 폴리카보네이트계 수지는 기계적 강도가 우수하고, 내열성이 높으며, 투명하고, 성형성이 우수하여 성형품을 제조하기에 우수한 물성을 가진 장점이 있다. 폴리올레핀계 수지 또한 내열성 및 투명도가 우수하고 가벼운 장점이 있다. Polycarbonate-based resins and polyolefin-based resins do not have compatibility with each other, and when they are mixed, they form two phases, and polycarbonate-based resins have a higher affinity for fillers than polyolefin-based resins, and thus polycarbonate-based resins having a specific phase. It can be significantly present on the resin. In addition, the polycarbonate-based resin is excellent in mechanical strength, high heat resistance, transparent, and excellent moldability has the advantage of having excellent physical properties for producing a molded article. Polyolefin resins also have advantages of excellent heat resistance and transparency and light weight.
본 발명의 고분자 조성물에는 폴리카보네이트계 수지가 10 내지 80 부피%로 포함되는 것이 바람직하다. 고분자 조성물에 폴리카보네이트계 수지가 상기 범위를 벗어난 양으로 포함되는 경우에는 2 개의 서로 다른 상이 충분히 형성되지 않아 원하는 모폴로지(morphology)의 제어가 어려워지는 문제점이 있다. 한편, 본 발명의 고분자 조성물에는 폴리카보네이트계 수지가 20 내지 70 부피%로 포함되는 것이 더욱 바람직하다. 왜냐하면, 폴리카보네이트계 수지의 함량이 20 내지 70 부피%로 포함되는 경우, 높은 열전도도 뿐만 아니라, 우수한 가공성, 열전도성, 기계적 물성, 열안정성 등 실제 사용환경에 적합한 일정 수준 이상의 물성값들을 확보할 수 있기 때문이다. It is preferable that the polymer composition of the present invention contain 10 to 80% by volume of polycarbonate resin. When the polycarbonate-based resin is included in the polymer composition in an amount outside the above range, two different phases may not be sufficiently formed, thereby making it difficult to control a desired morphology. On the other hand, it is more preferable that the polymer composition of the present invention contains 20 to 70% by volume of polycarbonate resin. Because, when the content of the polycarbonate-based resin is contained in 20 to 70% by volume, not only high thermal conductivity but also excellent processability, thermal conductivity, mechanical properties, thermal stability, etc. can be obtained at a certain level or more suitable for the actual use environment. Because there is.
본 발명의 고분자 조성물에 포함되는 폴리카보네이트계 수지는 비스페놀-A를 기반으로 하는 폴리카보네이트계 수지인 것이 바람직하나, 이에 한정되는 것은 아니다.The polycarbonate resin included in the polymer composition of the present invention is preferably a polycarbonate resin based on bisphenol-A, but is not limited thereto.
본 발명의 고분자 조성물에는 폴리올레핀계 수지가 10 내지 80 부피%로 포함되는 것이 바람직하다. 고분자 조성물에 폴리올레핀계 수지가 상기 범위를 벗어난 양으로 포함되는 경우에는 2 개의 서로 다른 상이 충분히 형성되지 않아 원하는 모폴로지(morphology)의 제어가 어려워지는 문제점이 있다. 한편, 본 발명의 고분자 조성물에는 폴리올레핀계 수지가 20 내지 70 부피%로 포함되는 것이 더욱 바람직하다. 왜냐하면, 폴리올레핀계 수지의 함량이 20 내지 70 부피%로 포함되는 경우, 높은 열전도도 뿐만 아니라, 우수한 가공성, 열전도성, 기계적 물성, 열안정성 등 실제 사용환경에 적합한 일정 수준 이상의 물성값들을 확보할 수 있기 때문이다. It is preferable that the polymer composition of the present invention contain 10 to 80% by volume of polyolefin resin. When the polyolefin-based resin is included in the polymer composition in an amount outside the above range, two different phases are not sufficiently formed, which makes it difficult to control a desired morphology. On the other hand, it is more preferable that the polymer composition of the present invention contains 20 to 70% by volume of polyolefin resin. Because, when the content of the polyolefin resin is contained in 20 to 70% by volume, not only high thermal conductivity but also excellent properties such as excellent processability, thermal conductivity, mechanical properties, and thermal stability can be secured to a certain level or more suitable for actual use environments. Because.
본 발명의 고분자 조성물에 포함되는 폴리올레핀계 수지는 에틸렌옥텐 고무(EOR), 에틸렌프로필렌 고무(EPR), 에틸렌-프로필렌-디엔 고무(EPDM), 선형저밀도폴리에틸렌(LLDPE), 저밀도폴리에틸렌(LDPE), 고밀도폴리에틸렌(HDPE), 및 폴리프로필렌(PP)으로 이루어진 군으로부터 선택되는 1종인 것이 바람직하나, 이에 한정되는 것은 아니다.Polyolefin resins included in the polymer composition of the present invention are ethylene octene rubber (EOR), ethylene propylene rubber (EPR), ethylene-propylene-diene rubber (EPDM), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density It is preferably one kind selected from the group consisting of polyethylene (HDPE) and polypropylene (PP), but is not limited thereto.
본 발명에 따른 고분자 조성물에는 열 및 전기 전도성 필러가 5 내지 80 부피%로 포함되는 것이 바람직하다. 필러가 5 부피% 미만으로 포함될 경우에는 조성물의 열 및 전기 전도도가 현저히 떨어지는 문제점이 있고, 80 부피%를 초과하여 포함되는 경우에는 조성물의 점도가 지나치게 높아져 성형성이 현저히 떨어지는 문제가 있고, 이로부터 제조되는 성형품의 기계적 강도 또한 현저히 떨어지는 문제가 있다. 한편, 본 발명의 고분자 조성물에는 열 및 전기 전도성 필러가 10 내지 60 부피%로 포함되는 것이 더욱 바람직하다. It is preferable that the polymer composition according to the present invention contains 5 to 80% by volume of thermally and electrically conductive fillers. When the filler is included in less than 5% by volume, there is a problem that the thermal and electrical conductivity of the composition is significantly lowered, and when it is included in excess of 80% by volume, the viscosity of the composition is too high and the moldability is significantly lowered, There is also a problem that the mechanical strength of the molded article is also significantly reduced. On the other hand, it is more preferred that the polymer composition of the present invention contains 10 to 60% by volume of thermal and electrically conductive fillers.
본 발명의 따른 고분자 조성물에 포함되는 열 전도성 필러는 카본계 필러인 것이 바람직하고, 그라파이트(graphite)인 것이 더욱 바람직하나, 열전도도가 높은 필러라면 이에 한정되는 것은 아니다. 그라파이트는 열전도도가 400 W/(m·K) 이상으로 매우 높은 열전도를 보이므로 본 발명의 고분자 조성물에 필러로 사용되기에 적절하다.The thermally conductive filler included in the polymer composition according to the present invention is preferably a carbon-based filler, and more preferably graphite, but is not limited thereto as long as the filler has high thermal conductivity. Graphite is suitable for use as a filler in the polymer composition of the present invention because it exhibits a very high thermal conductivity of 400 W / (m · K) or more.
또한, 본 발명은 10 내지 80 부피%의 폴리카보네이트계 수지; 10 내지 80 부피%의 폴리올레핀계 수지; 및 5 내지 80 부피%의 열 및 전기 전도성 필러를 포함하는 고분자 조성물로부터 제조된 성형품을 제공한다.In addition, the present invention is 10 to 80% by volume of a polycarbonate resin; 10 to 80% by volume polyolefin resin; And 5 to 80% by volume of thermal and electrically conductive fillers.
상기한 바와 같은 조성을 이루고 있는 고분자 조성물을 통상의 압출기, 브라벤더 플라스티코더(Brabender Plasticorder), 반바리 믹서(Banbury Mixer), 니더(Kneader) 또는 롤밀(Roll Mill) 등 기존의 성형장치들을 이용하여 250 내지 350℃에서 10 ~ 500 rpm으로 용융혼합하여 성형 제조 할 수 있다.The polymer composition constituting the composition as described above using conventional molding apparatuses such as a conventional extruder, Brabender Plasticorder, Banbury Mixer, Kneader or Roll Mill It can be produced by melt mixing at 250 to 350 ℃ 10 to 500 rpm.
또한, 본 발명에 따른 고분자 조성물은 성형성이 우수한 고분자를 포함하고, 성형성을 저해하지 않는 범위의 필러를 포함하기 때문에 이를 사출성형 등의 방법으로 성형함에 있어서 작업성이 매우 우수한 장점이 있다. 또한, 이에 의하여 제조된 성형품은 열전도도 뿐만 아니라, 기계적 강도도 매우 우수한 장점이 있다. 본 발명에 따른 성형품은 우수한 열전도도로 인하여, 전자기기에서 발생하는 열을 방출시키기 위한 부품에 적용될 수 있으나, 반드시 이에 한정되는 것은 아니다.In addition, since the polymer composition according to the present invention includes a polymer having excellent moldability and includes a filler in a range that does not impair moldability, there is an advantage in that workability is very excellent in molding it by a method such as injection molding. In addition, the molded article produced by this has the advantage of excellent thermal conductivity as well as mechanical strength. The molded article according to the present invention may be applied to a component for releasing heat generated from an electronic device due to excellent thermal conductivity, but is not necessarily limited thereto.
나아가, 본 발명은 Furthermore, the present invention
10 내지 80 부피%의 폴리카보네이트계 수지, 10 내지 80 부피%의 폴리올레핀계 수지, 및 5 내지 80 부피%의 열 전도성 필러를 혼합하는 단계(단계 1); 및 상기 혼합된 혼합물을 열간압출하는 단계(단계 2)를 포함하는 것을 특징으로 하는 고분자 조성물의 제조방법을 제공한다.Mixing 10 to 80% by volume polycarbonate resin, 10 to 80% by volume polyolefin resin, and 5 to 80% by volume thermally conductive filler (step 1); And hot-extruding the mixed mixture (step 2).
이하 본 발명품의 제조방법을 단계별로 상세히 설명한다.Hereinafter will be described in detail step by step the manufacturing method of the present invention.
본 발명의 제조방법 중 단계 1은 10 내지 80 부피%의 폴리카보네이트계 수지, 10 내지 80 부피%의 폴리올레핀계 수지, 및 5 내지 80 부피%의 열전도성 필러를 혼합하는 단계이다. 상기 단계에서, 입자 형태의 폴리카보네이트계 수지, 폴리올레핀계 수지 및 열전도성 필러를 상온에서 균일하게 혼합한다.Step 1 of the preparation method of the present invention is a step of mixing 10 to 80% by volume of the polycarbonate resin, 10 to 80% by volume of the polyolefin resin, and 5 to 80% by volume of the thermally conductive filler. In this step, the polycarbonate-based resin, the polyolefin-based resin and the thermally conductive filler in the form of particles are uniformly mixed at room temperature.
이때, 폴리카보네이트계 수지 및 폴리올레핀계 수지의 조성이 상기 범위를 벗어나는 경우에는 이후 열간압출에서 2 개의 서로 다른 상이 충분히 형성되지 않아 원하는 모폴로지(morphology)의 제어가 어려워지는 문제점이 있다. 또한, 열 및 전기 전도성 필러의 양이 5 부피% 미만으로 포함될 경우에는 조성물의 열 및 전기 전도도가 현저히 떨어지는 문제점이 있고, 80 부피%를 초과하여 포함되는 경우에는 조성물의 점도가 지나치게 높아져 성형성이 현저히 떨어지는 문제가 있고, 이로부터 제조되는 성형품의 기계적 강도 또한 현저히 떨어지는 문제가 있다. In this case, when the composition of the polycarbonate resin and the polyolefin resin is out of the above range, there are problems in that two different phases are not sufficiently formed in hot extrusion, thereby making it difficult to control a desired morphology. In addition, when the amount of the thermally and electrically conductive filler is included in less than 5% by volume, there is a problem that the thermal and electrical conductivity of the composition is significantly lowered, and when included in excess of 80% by volume, the viscosity of the composition is too high to formability There is a problem that significantly falls, and there is a problem that the mechanical strength of the molded article produced therefrom also falls significantly.
본 발명의 제조방법 중 단계 2는 균일하게 혼합된 혼합물을 열간압출하는 단계이다. 혼합물의 열간압출은 예를 들어 이축압출기(twin-screw extruder)와 같은 장치를 이용하여 공지의 방법에 따라 수행될 수 있다. 폴리카보네이트계 수지와 폴리올레핀계 수지는 서로 상용성이 없어, 혼합과정에서 2 개의 서로 다른 상을 형성하게 되고, 이 중 폴리카보네이트 수지가 필러에 대한 친화도가 높기 때문에 필러는 폴리카보네이트 수지가 형성하는 상에 현저히 많이 존재하게 된다. 한편, 상기 수지 및 필러의 혼합은 입자들의 상온 혼합 및 용융공정에 의하여 진행되는 바, 용매를 전혀 사용하지 않기 때문에 환경친화적인 공정이며, 필러의 개질이 필요없고, 간단한 방법으로 혼합이 가능하여 공정을 단순화시킬 수 있고, 생산성이 향상되는 장점이 있다.Step 2 of the manufacturing method of the present invention is a step of hot extrusion of the uniformly mixed mixture. Hot extrusion of the mixture can be carried out according to known methods using a device such as, for example, a twin-screw extruder. The polycarbonate resin and the polyolefin resin are not compatible with each other, and thus, two different phases are formed during the mixing process. Among these, the polycarbonate resin has a high affinity for the filler, and thus the filler is formed by the polycarbonate resin. There is a significant amount present in the phase. On the other hand, the mixing of the resin and the filler is an environmentally friendly process because it proceeds by the normal temperature mixing and melting process of the particles, since no solvent is used at all, the modification of the filler is not necessary, and the mixing is possible by a simple method. Can be simplified, and productivity is improved.
본 발명의 제조방법에서 사용되는 폴리카보네이트계 수지는 비스페놀-A를 기반으로 하는 폴리카보네이트계 수지인 것이 바람직하나, 이에 한정되는 것은 아니다. 또한, 동일 단계에서 사용되는 폴리올레핀계 수지는 에틸렌옥텐 고무(EOR), 에틸렌프로필렌 고무(EPR), 에틸렌-프로필렌-디엔 고무(EPDM), 선형저밀도폴리에틸렌(LLDPE), 저밀도폴리에틸렌(LDPE), 고밀도폴리에틸렌(HDPE), 및 폴리프로필렌(PP)으로 이루어진 군으로부터 선택되는 1종인 것이 바람직하나, 이에 한정되는 것은 아니다. 나아가, 동일 단계에서 사용되는 열 전도성 필러는 카본계 필러인 것이 바람직하고, 그라파이트인 것이 더욱 바람직하나, 열전도도가 높은 필러라면 이에 한정되는 것은 아니다. 그라파이트는 열전도도가 400 W/(m·K) 이상으로 매우 높은 열전도도를 보이므로 본 발명의 고분자 조성물에 필러로 사용되기에 적절하다.The polycarbonate resin used in the production method of the present invention is preferably a polycarbonate resin based on bisphenol-A, but is not limited thereto. In addition, the polyolefin resin used in the same step is ethylene octene rubber (EOR), ethylene propylene rubber (EPR), ethylene-propylene-diene rubber (EPDM), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE), and polypropylene (PP) is preferably one selected from the group consisting of, but is not limited thereto. Further, the thermally conductive filler used in the same step is preferably a carbon-based filler, more preferably graphite, but is not limited thereto as long as the filler has high thermal conductivity. Graphite is suitable for use as a filler in the polymer composition of the present invention because it exhibits a very high thermal conductivity of 400 W / (m · K) or more.
한편, 본 발명의 제조 단계에서 혼합되는 폴리카보네이트계 수지, 폴리올레핀계 수지, 및 열 및 전기 전도서 필러의 함량은 각각 20 내지 70 부피%, 20 내지 70 부피%, 및 10 내지 60 부피%인 것이 더욱 바람직하다. 왜냐하면 상기 수지함량에서 높은 열전도도 뿐만 아니라, 우수한 가공성, 열전도성, 기계적 물성, 열안정성 등 실제 사용환경에 적합한 일정 수준 이상의 물성값들을 확보할 수 있기 때문이다. 또한 필러가 5 부피% 미만으로 포함될 경우에는 조성물의 열 및 전기 전도도가 현저히 떨어지는 문제점이 있고, 80 부피%를 초과하여 포함되는 경우에는 조성물의 점도가 지나치게 높아져 성형성이 현저히 떨어지는 문제가 있고, 이로부터 제조되는 성형품의 기계적 강도 또한 현저히 떨어지는 문제가 있기 때문이다.On the other hand, the content of the polycarbonate resin, polyolefin resin, and thermal and electrical conductivity fillers mixed in the manufacturing step of the present invention is 20 to 70% by volume, 20 to 70% by volume, and 10 to 60% by volume, respectively. desirable. This is because not only high thermal conductivity but also excellent processability, thermal conductivity, mechanical properties, and thermal stability in the resin content can be secured to a certain level or more suitable for actual use environments. In addition, when the filler is included in less than 5% by volume, there is a problem that the thermal and electrical conductivity of the composition is significantly lowered, and when included in excess of 80% by volume, the viscosity of the composition is too high, there is a problem that the moldability is significantly lowered, This is because there is a problem that the mechanical strength of the molded article is also significantly reduced.
본 발명의 압출공정은 250 내지 350 ℃의 온도에서 수행되는 것이 바람직하다. 압출시의 온도가 250 ℃ 미만인 경우 수지와 필러간의 혼합이 충분히 이루어지지 않는 문제점이 있고, 온도가 350 ℃를 초과하는 경우 수지의 열분해에 따라 물성이 저하되는 문제점이 있다.Extrusion process of the present invention is preferably carried out at a temperature of 250 to 350 ℃. If the temperature at the time of extrusion is less than 250 ℃ there is a problem that the mixing between the resin and the filler is not sufficiently made, if the temperature exceeds 350 ℃ there is a problem that the physical properties are degraded due to the thermal decomposition of the resin.
나아가 본 발명은Furthermore, the present invention
10 내지 80 부피%의 폴리카보네이트계 수지, 10 내지 80 부피%의 폴리올레핀계 수지, 및 5 내지 80 부피%의 열 전도성 필러를 혼합하는 단계(단계 A);Mixing 10 to 80% by volume polycarbonate resin, 10 to 80% by volume polyolefin resin, and 5 to 80% by volume thermally conductive filler (step A);
상기 혼합된 혼합물을 열간압출하는 단계(단계 B); 및Hot extruding the mixed mixture (step B); And
상기 압출물을 사출성형하는 단계(단계 C)를 포함하는 고분자 조성물을 포함하는 성형품의 제조방법을 제공한다.It provides a method for producing a molded article comprising a polymer composition comprising the step (step C) injection molding the extrudate.
상기 고분자 조성물의 제조방법에 따라 제조된 고분자 조성물을 상기 단계 C에 기재된 바와 같이 사출성형함으로써 원하는 성형품을 제조할 수 있다. 고분자 조성물을 제조하는 단계 A 및 B는 상기 고분자 제조방법의 단계 1 및 단계 2와 동일하여 설명을 생략한다. 본 발명의 제조방법 중 단계 C의 사출성형은 사출 성형기(injection molding machine)와 같은 장치를 이용하여 공지의 방법으로 수행될 수 있다.The desired molded article may be manufactured by injection molding the polymer composition prepared according to the method of preparing the polymer composition as described in Step C. Steps A and B for preparing the polymer composition are the same as steps 1 and 2 of the method for preparing the polymer, and description thereof is omitted. The injection molding of step C of the manufacturing method of the present invention can be performed by a known method using a device such as an injection molding machine.
본 발명의 제조방법으로 제조된 고분자 조성물을 포함하는 성형품은 기계적 강도가 우수하면서도 열전도도가 우수하여 전자기기의 열을 방출시키는 용도로 사용되되, 전기전도성을 가져야 하는 부품에 유용하게 적용될 수 있다.The molded article including the polymer composition prepared by the manufacturing method of the present invention is used for the purpose of releasing heat of the electronic device due to its excellent mechanical strength and excellent thermal conductivity, and can be usefully applied to a component that should have electrical conductivity.
이하 본 발명을 실시예에 의하여 더욱 구체적으로 설명한다. 단, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 하기 실시예에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only for better understanding of the present invention, and the scope of the present invention is not limited by the following examples.
<실시예 1><Example 1>
고분자 조성물의 제조 1Preparation of polymer compositions 1
폴리카보네이트계 수지로 삼양사의 3022 PJ 17 부피%, 폴리올레핀계 수지로 에틸렌/옥텐 공중합체인 Dow Chemical 사의 Engage 8842 26 부피%, 전도성 필러로 50 내지 200 ㎛의 평균 크기를 갖는 플레이크 형태의 Showa Denko 사의 그라파이트 57 부피%를 균일하게 교반하여 혼합하였다. 그 후 상기 혼합물을 이축압출기를 이용하여 압출함으로써 고분자 조성물의 펠렛을 제조하였다. 이때, 압출온도는 290 ℃였다.Samyang's 3022 PJ with polycarbonate resin 17% by volume, polyolefin resin, 26% by volume of Engage 8842 from Dow Chemical, an ethylene / octene copolymer, and 57% by volume of graphite from Showa Denko in flake form having an average size of 50 to 200 μm as a conductive filler It was. Thereafter, the mixture was extruded using a twin screw extruder to prepare pellets of the polymer composition. At this time, the extrusion temperature was 290 ℃.
<실시예 2><Example 2>
고분자 조성물의 제조 2Preparation of Polymer Composition 2
폴리카보네이트계 수지를 20 부피%, 폴리올레핀계 수지를 30 부피%, 및 필러를 50 부피%로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 고분자 조성물의 펠렛을 제조하였다.A pellet of the polymer composition was prepared in the same manner as in Example 1, except that 20% by volume of the polycarbonate resin, 30% by volume of the polyolefin resin, and 50% by volume of the filler were mixed.
<실시예 3><Example 3>
고분자 조성물의 제조 3Preparation of Polymer Composition 3
폴리카보네이트계 수지를 24 부피%, 폴리올레핀계 수지를 36 부피%, 및 필러를 40 부피%로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 고분자 조성물의 펠렛을 제조하였다.A pellet of a polymer composition was prepared in the same manner as in Example 1, except that 24 vol% of a polycarbonate resin, 36 vol% of a polyolefin resin, and 40 vol% of a filler were mixed.
<비교예 1>Comparative Example 1
고분자 조성물의 제조 4Preparation of Polymer Composition 4
폴리카보네이트계 수지로 삼양사의 3022 PJ 55 부피%, 및 전도성 필러로 50 내지 200 ㎛의 평균 크기를 갖는 플레이크 형태의 Showa Denko 사의 그라파이트 45 부피%를 교반하여 혼합하였다. 그 후 상기 혼합물을 이축압출기를 이용하여 압출함으로써 고분자 조성물의 펠렛을 제조하였다. 이때, 압출온도는 290 ℃였다.Samyang's 3022 PJ with polycarbonate resin 55% by volume, and 45% by volume of graphite of Showa Denko in the form of flakes having an average size of 50 to 200 μm with a conductive filler were stirred and mixed. Thereafter, the mixture was extruded using a twin screw extruder to prepare pellets of the polymer composition. At this time, the extrusion temperature was 290 ℃.
<비교예 2>Comparative Example 2
고분자 조성물의 제조 5Preparation of Polymer Composition 5
폴리카보네이트계 수지를 65 부피%, 및 필러를 35 부피%로 혼합한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 고분자 조성물의 펠렛을 제조하였다.A pellet of the polymer composition was prepared in the same manner as in Comparative Example 1, except that 65 vol% of the polycarbonate resin and 35 vol% of the filler were mixed.
<비교예 3>Comparative Example 3
고분자 조성물의 제조 6Preparation of Polymer Composition 6
폴리카보네이트계 수지를 73 부피%, 및 필러를 27 부피%로 혼합한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 고분자 조성물의 펠렛을 제조하였다.A pellet of the polymer composition was prepared in the same manner as in Comparative Example 1, except that 73 vol% of the polycarbonate resin and 27 vol% of the filler were mixed.
<비교예 4><Comparative Example 4>
고분자 조성물의 제조 7Preparation of Polymer Composition 7
폴리올레핀계 수지로 에틸렌/옥텐 공중합체인 Dow Chemical 사의 Engage 8842 43 부피%, 및 전도성 필러로 50 내지 200 ㎛의 평균 크기를 갖는 플레이크 형태의 Showa Denko 사의 그라파이트 57 부피%를 교반하여 혼합하였다. 그 후 상기 혼합물을 이축압출기를 이용하여 압출함으로써 고분자 조성물의 펠렛을 제조하였다. 이때, 압출온도는 290 ℃였다.43% by volume of Engage 8842 from Dow Chemical, an ethylene / octene copolymer, and 57% by volume of graphite from Showa Denko, flakes having an average size of 50 to 200 μm were mixed with the polyolefin resin. Thereafter, the mixture was extruded using a twin screw extruder to prepare pellets of the polymer composition. At this time, the extrusion temperature was 290 ℃.
<비교예 5>Comparative Example 5
고분자 조성물의 제조 8Preparation of Polymer Composition 8
폴리올레핀계 수지를 50 부피%, 및 필러를 50 부피%로 혼합한 것을 제외하고는 상기 비교예 4와 동일한 방법으로 고분자 조성물의 펠렛을 제조하였다.A pellet of the polymer composition was manufactured in the same manner as in Comparative Example 4, except that 50 vol% of the polyolefin resin and 50 vol% of the filler were mixed.
<비교예 6>Comparative Example 6
고분자 조성물의 제조 9Preparation of Polymer Composition 9
폴리올레핀계 수지를 60 부피%, 및 필러를 40 부피%로 혼합한 것을 제외하고는 상기 비교예 4와 동일한 방법으로 고분자 조성물의 펠렛을 제조하였다.A pellet of the polymer composition was prepared in the same manner as in Comparative Example 4, except that 60 vol% of the polyolefin resin and 40 vol% of the filler were mixed.
상기 실시예 1 내지 실시예 3, 및 비교예 1 내지 비교예 6의 각 성분 조성을 하기 표 1에 정리하였다.Each component composition of the said Example 1-Example 3, and Comparative Examples 1-6 was put together in following Table 1.
표 1
폴리카보네이트계 수지(부피%) 폴리올레핀계 수지(부피%) 필러(부피%)
실시예 1 17 26 57
실시예 2 20 30 50
실시예 3 24 36 40
비교예 1 55 - 45
비교예 2 65 - 35
비교예 3 73 - 27
비교예 4 - 43 57
비교예 5 - 50 50
비교예 6 - 60 40
Table 1
Polycarbonate-based resin (% by volume) Polyolefin resin (% by volume) Filler (% by volume)
Example 1 17 26 57
Example 2 20 30 50
Example 3 24 36 40
Comparative Example 1 55 - 45
Comparative Example 2 65 - 35
Comparative Example 3 73 - 27
Comparative Example 4 - 43 57
Comparative Example 5 - 50 50
Comparative Example 6 - 60 40
<실험예 1>Experimental Example 1
고분자 조성물의 열전도도 측정Thermal Conductivity Measurement of Polymer Compositions
본 발명에 따라 제조된 고분자 조성물의 열전도도를 측정하기 위하여 하기와 같은 실험을 수행하였다.In order to measure the thermal conductivity of the polymer composition prepared according to the present invention, the following experiment was performed.
열전도도(κ)는 하기 식 1에 의하여 계산되었다.Thermal conductivity (κ) was calculated by the following equation.
<식 1><Equation 1>
열전도도(κ) = 열확산도(α) × 비열(Cp) × 밀도(ρ)Thermal conductivity (κ) = thermal diffusivity (α) × specific heat (Cp) × density (ρ)
본 발명의 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3에 의하여 제조된 고분자 조성물 펠렛에 대하여 Netzsch LFA 477 측정기(Netzsch 사)를 이용하여 25 ℃의 온도에서 ASTM E1461에 따라 열확산도를 측정하였고, MDSC 측정기(TA instrument 사)를 이용하여 ASTM E1952에 따라 비열을 측정하였으며, Gas Pycnometer(Protech 사)를 이용하여 ASTM D6226에 따라 밀도를 측정하였다. 각 고분자 조성물 펠렛의 측정된 열확산도, 비열, 및 밀도로부터 상기 식 1을 이용하여 열전도를 계산하였고 그 결과를 하기 표 2에 나타내었다.The thermal diffusivity of the polymer composition pellets prepared according to Examples 1 to 3 and Comparative Examples 1 to 3 of the present invention was measured according to ASTM E1461 at a temperature of 25 ° C. using a Netzsch LFA 477 measuring instrument (Netzsch). The specific heat was measured according to ASTM E1952 using an MDSC measuring instrument (TA instrument), and the density was measured according to ASTM D6226 using a Gas Pycnometer (Protech). Thermal conductivity was calculated from the measured thermal diffusivity, specific heat, and density of each polymer composition pellet using Equation 1, and the results are shown in Table 2 below.
표 2
열확산도(cm2/s) 비열(J/(g·K)) 밀도(g/cm3) 열전도도(W/(m·K))
실시예 1 0.178 0.752 1.973 26.4
실시예 2 0.125 0.911 1.898 21.5
실시예 3 0.048 1.006 1.799 8.7
비교예 1 0.03962 0.811 1.863 5.986
비교예 2 0.03554 0.8916 1.745 5.529
비교예 3 0.01312 0.900 1.622 1.915
비교예 4 0.00363 1.961 1.0553 0.751
비교예 5 0.00346 2.06 0.9956 0.710
비교예 6 0.00289 2.443 0.9751 0.688
TABLE 2
Thermal diffusivity (cm 2 / s) Specific heat (J / (gK)) Density (g / cm 3 ) Thermal Conductivity (W / (mK))
Example 1 0.178 0.752 1.973 26.4
Example 2 0.125 0.911 1.898 21.5
Example 3 0.048 1.006 1.799 8.7
Comparative Example 1 0.03962 0.811 1.863 5.986
Comparative Example 2 0.03554 0.8916 1.745 5.529
Comparative Example 3 0.01312 0.900 1.622 1.915
Comparative Example 4 0.00363 1.961 1.0553 0.751
Comparative Example 5 0.00346 2.06 0.9956 0.710
Comparative Example 6 0.00289 2.443 0.9751 0.688
상기 표 2에서 알 수 있는 바와 같이 본 발명에 따른 고분자 조성물은 열전도도가 매우 우수하다. 특히 필러의 함량이 동일한 실시예 2와 비교예 5를 비교하면 실시예 2의 고분자 조성물의 열전도도가 30 배 이상 높은 것을 알 수 있다.As can be seen in Table 2, the polymer composition according to the present invention has excellent thermal conductivity. In particular, when Example 2 and Comparative Example 5 having the same content of the filler, it can be seen that the thermal conductivity of the polymer composition of Example 2 is 30 times higher.
<실험예 2>Experimental Example 2
고분자 조성물의 충격강도 측정Impact Strength Measurement of Polymer Composition
본 발명에 따라 제조된 고분자 조성물의 충격강도를 측정하기 위하여 하기와 같은 실험을 수행하였다.In order to measure the impact strength of the polymer composition prepared according to the present invention, the following experiment was performed.
본 발명의 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3에 의하여 제조된 고분자 조성물 펠렛에 대하여 Izod impact strength tester(Izod 타입 충격강도 시험기)를 이용하여 ASTM D256에 따라 충격강도를 측정하였고 그 결과를 하기 표 3에 나타내었다.The impact strength of the polymer composition pellets prepared according to Examples 1 to 3 and Comparative Examples 1 to 3 of the present invention was measured according to ASTM D256 using an Izod impact strength tester (Izod type impact strength tester). The results are shown in Table 3 below.
표 3
충격강도((kgf·cm)/cm)
실시예 1 1.8
실시예 2 1.8
실시예 3 1.9
비교예 1 1.8
비교예 2 2.0
비교예 3 2.6
비교예 4 -
비교예 5 -
비교예 6 -
TABLE 3
Impact Strength ((kgfcm) / cm)
Example 1 1.8
Example 2 1.8
Example 3 1.9
Comparative Example 1 1.8
Comparative Example 2 2.0
Comparative Example 3 2.6
Comparative Example 4 -
Comparative Example 5 -
Comparative Example 6 -
상기 표 3에서 알 수 있는 바와 같이 본 발명에 따른 고분자 조성물은 매우 우수한 열전도도를 가지고 있으면서도, 충격강도의 저하가 매우 적음을 알수 있다. 특히 필러의 함량이 유사한 실시예 1과와 비교예 1을 비교하면 실시예 1의 고분자 조성물의 열전도도가 4 배 이상 높으며, 충격강도는 유사한 것을 알 수 있다. 비교예 4-6의 경우에는 사출성형이 불가하여 충격강도 측정이 불가하였다.As can be seen in Table 3, the polymer composition according to the present invention can be seen that the impact strength is very low while having a very good thermal conductivity. In particular, when compared with Example 1 and Comparative Example 1 having a similar filler content, the thermal conductivity of the polymer composition of Example 1 is four times higher, it can be seen that the impact strength is similar. In Comparative Example 4-6, injection molding was not possible, and thus the impact strength was not measured.

Claims (10)

10 내지 80 부피%의 폴리카보네이트계 수지; 10 내지 80 부피%의 폴리올레핀계 수지; 및 5 내지 80 부피%의 열전도성 필러를 포함하는 고분자 조성물.10 to 80% by volume of polycarbonate resin; 10 to 80% by volume polyolefin resin; And 5 to 80% by volume of a thermally conductive filler.
제1항에 있어서 상기 폴리카보네이트계 수지는 20 내지 70 부피%, 폴리올레핀계 수지는 20 내지 70 부피%, 및 열 전도성 필러는 10 내지 60 부피%로 포함되는 것을 특징으로 하는 고분자 조성물.The polymer composition of claim 1, wherein the polycarbonate resin is 20 to 70% by volume, the polyolefin resin is 20 to 70% by volume, and the thermally conductive filler is contained at 10 to 60% by volume.
제1항에 있어서, 상기 폴리카보네이트계 수지는 비스페놀-A를 기반으로 하는 폴리카보네이트계 수지인 것을 특징으로 하는 고분자 조성물.The polymer composition of claim 1, wherein the polycarbonate resin is a polycarbonate resin based on bisphenol-A.
제1항에 있어서, 상기 폴리올레핀계 수지는 에틸렌옥텐 고무(EOR), 에틸렌프로필렌 고무(EPR), 에틸렌-프로필렌-디엔 고무(EPDM), 선형저밀도폴리에틸렌(LLDPE), 저밀도폴리에틸렌(LDPE), 고밀도폴리에틸렌(HDPE), 및 폴리프로필렌(PP)으로 이루어진 군으로부터 선택되는 1종인 것을 특징으로 하는 고분자 조성물.The method of claim 1, wherein the polyolefin resin is ethylene octene rubber (EOR), ethylene propylene rubber (EPR), ethylene-propylene-diene rubber (EPDM), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE), and a polymer composition, characterized in that one kind selected from the group consisting of polypropylene (PP).
제1항에 있어서, 상기 필러는 카본계 필러인 것을 특징으로 하는 고분자 조성물.The polymer composition of claim 1, wherein the filler is a carbon-based filler.
10 내지 80 부피%의 폴리카보네이트계 수지; 10 내지 80 부피%의 폴리올레핀계 수지; 및 5 내지 80 부피%의 열 전도성 필러를 포함하는 고분자 조성물로부터 제조된 성형품.10 to 80% by volume of polycarbonate resin; 10 to 80% by volume polyolefin resin; And 5 to 80% by volume of a thermally conductive filler.
10 내지 80 부피%의 폴리카보네이트계 수지, 10 내지 80 부피%의 폴리올레핀계 수지, 및 5 내지 80 부피%의 열 전도성 필러를 혼합하는 단계(단계 1); 및 상기 혼합된 혼합물을 열간압출하는 단계(단계 2)를 포함하는 것을 특징으로 하는 고분자 조성물의 제조방법.Mixing 10 to 80% by volume polycarbonate resin, 10 to 80% by volume polyolefin resin, and 5 to 80% by volume thermally conductive filler (step 1); And hot-extruding the mixed mixture (step 2).
제7항에 있어서, 상기 단계 1은 폴리카보네이트계 수지를 20 내지 70 부피%, 폴리올레핀계 수지를 20 내지 70 부피%, 및 열 전도성 필러를 10 내지 60 부피%로 도입하여 혼합함으로써 수행되는 것을 특징으로 하는 고분자 조성물의 제조방법.The method of claim 7, wherein step 1 is performed by introducing 20 to 70% by volume of polycarbonate resin, 20 to 70% by volume of polyolefin resin, and 10 to 60% by volume of thermally conductive filler. The manufacturing method of the polymeric composition which consists of:
제7항에 있어서, 상기 단계 2의 압출은 250 내지 350 ℃의 온도에서 수행되는 것을 특징으로 하는 고분자 조성물의 제조방법.The method of claim 7, wherein the extrusion in Step 2 is performed at a temperature of 250 to 350 ° C. 9.
10 내지 80 부피%의 폴리카보네이트계 수지, 10 내지 80 부피%의 폴리올레핀계 수지, 및 5 내지 80 부피%의 열 전도성 필러를 혼합하는 단계(단계 A);Mixing 10 to 80% by volume polycarbonate resin, 10 to 80% by volume polyolefin resin, and 5 to 80% by volume thermally conductive filler (step A);
상기 혼합된 혼합물을 열간압출하는 단계(단계 B); 및Hot extruding the mixed mixture (step B); And
상기 압출물을 사출성형하는 단계(단계 C)를 포함하는 고분자 조성물을 포함하는 성형품의 제조방법.Method of producing a molded article comprising a polymer composition comprising the step of injection molding the extrudate (step C).
PCT/KR2012/001662 2011-05-19 2012-03-07 Polymer composition having good superior thermal conductivity, and a method for preparing same WO2012157841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110047283A KR101285349B1 (en) 2011-05-19 2011-05-19 Polymer compositions having high thermal conductivity and methodes for preparing the same
KR10-2011-0047283 2011-05-19

Publications (1)

Publication Number Publication Date
WO2012157841A1 true WO2012157841A1 (en) 2012-11-22

Family

ID=47177137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001662 WO2012157841A1 (en) 2011-05-19 2012-03-07 Polymer composition having good superior thermal conductivity, and a method for preparing same

Country Status (2)

Country Link
KR (1) KR101285349B1 (en)
WO (1) WO2012157841A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428042A2 (en) * 1989-11-13 1991-05-22 Mitsubishi Chemical Corporation Conductive thermoplastic resin composition
JPH07157601A (en) * 1993-10-15 1995-06-20 Sumitomo Bakelite Co Ltd Conductive noncrystalline polyolefin resin composition
US20080234434A1 (en) * 2007-03-20 2008-09-25 Ye-Gang Lin Polycarbonate/polyolefin based resin compositions and their production processes and uses
KR20100058342A (en) * 2008-11-24 2010-06-03 한화케미칼 주식회사 Highly conductive resin composition having carbon composite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428042A2 (en) * 1989-11-13 1991-05-22 Mitsubishi Chemical Corporation Conductive thermoplastic resin composition
JPH07157601A (en) * 1993-10-15 1995-06-20 Sumitomo Bakelite Co Ltd Conductive noncrystalline polyolefin resin composition
US20080234434A1 (en) * 2007-03-20 2008-09-25 Ye-Gang Lin Polycarbonate/polyolefin based resin compositions and their production processes and uses
KR20100058342A (en) * 2008-11-24 2010-06-03 한화케미칼 주식회사 Highly conductive resin composition having carbon composite

Also Published As

Publication number Publication date
KR101285349B1 (en) 2013-07-10
KR20120129183A (en) 2012-11-28

Similar Documents

Publication Publication Date Title
US20130116371A1 (en) Thermally Conductive and Flame-Retarded Compositions
WO2014092412A1 (en) Polycarbonate resin composition having excellent light resistance and fire retardancy, and molded product comprising same
WO2012053698A1 (en) Polycarbonate resin composition and molded products using same
JP2008260830A (en) Heat-conductive resin composition
WO2013089500A1 (en) Thermoplastic elastomer composition having low hardness, and diaphragm comprising same
WO2016076503A1 (en) Polycarbonate-based thermoplastic resin composition and product using same
WO2015026014A1 (en) Thermally-conductive polycarbonate resin composition and molded product formed therefrom
TW201627400A (en) Thermal conductive composition
WO2014168290A1 (en) Thermoplastic rubber composition and molded product using same
WO2011074915A2 (en) Resin composition for polycarbonate flame retardant film, flame retardant film containing the same, and manufacturing method thereof
WO2015088239A1 (en) Halogen-based flame-retardant glass fiber-reinforced polyamide resin composition, and method for preparing same
WO2017116043A1 (en) Thermoplastic resin composition and molded product comprising same
WO2012064058A2 (en) Abs resin composition capable of maintaining high glossiness in thermoforming and abs sheet using same
WO2016108539A1 (en) Polycarbonate resin composition and molded product comprising same
KR101321098B1 (en) Composition of film for dissipating heat, and manufacturing method of film for dissipating heat using thereof
WO2012157841A1 (en) Polymer composition having good superior thermal conductivity, and a method for preparing same
WO2021107489A1 (en) Thermoplastic resin composition and molded article manufactured therefrom
WO2020197132A1 (en) Thermoplastic resin composition and molded article formed therefrom
JP2009185152A (en) Heat conductive resin composition
WO2021080215A1 (en) Thermoplastic resin composition
CN103992630A (en) Polyphenylether resin alloy material for automobile wheel hub housings and preparation method thereof
WO2018216836A1 (en) Thermally conductive insulation composition and heat sink made therefrom
WO2016182325A1 (en) High molecular weight polyethylene resin composition and method for preparing same
WO2021107540A1 (en) Thermoplastic resin composition and molded product formed therefrom
WO2022025409A1 (en) Thermoplastic resin composition and molded article formed therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785146

Country of ref document: EP

Kind code of ref document: A1