WO2012157814A1 - Metagenome library having alginate lyase activity and novel enzyme alydw - Google Patents

Metagenome library having alginate lyase activity and novel enzyme alydw Download PDF

Info

Publication number
WO2012157814A1
WO2012157814A1 PCT/KR2011/005798 KR2011005798W WO2012157814A1 WO 2012157814 A1 WO2012157814 A1 WO 2012157814A1 KR 2011005798 W KR2011005798 W KR 2011005798W WO 2012157814 A1 WO2012157814 A1 WO 2012157814A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleotide sequence
alginate
present
alginate lyase
sequence
Prior art date
Application number
PCT/KR2011/005798
Other languages
French (fr)
Korean (ko)
Inventor
김두운
신태선
성치남
백근식
심수정
Original Assignee
전남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110046195A external-priority patent/KR101245304B1/en
Priority claimed from KR1020110046207A external-priority patent/KR101277706B1/en
Application filed by 전남대학교 산학협력단 filed Critical 전남대학교 산학협력단
Priority to CN201180002031.5A priority Critical patent/CN102971426B/en
Publication of WO2012157814A1 publication Critical patent/WO2012157814A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/02Carbon-oxygen lyases (4.2) acting on polysaccharides (4.2.2)
    • C12Y402/02003Poly(beta-D-mannuronate) lyase (4.2.2.3)

Definitions

  • the present invention relates to a metagenome library with alginate lyase activity and to the novel enzyme AlyDW.
  • seaweeds are abundant habitats in the offshore waters of Korea and are a potential resource. Most seaweeds are used for food through simple processing, but they are expected to be used as bioenergy sources or as functional foods and pharmaceutical raw materials.
  • Polysaccharides make up the majority of seaweed, but the salt content is high and the surface layer is surrounded by mucopolysaccharide. Therefore, in order to utilize algae as a resource, decomposition of polysaccharides must be accompanied. Polysaccharides such as cellulose and agar are ⁇ -1,4-glycosides that can be degraded by various microorganisms.
  • microorganisms using polysaccharides of land plants as substrates and microorganisms using polysaccharides of algae as substrates differ in terms of habitat environment and salinity of substrates. For example, if several passages of bacteria having excellent cell wall resolution of maesangi can be confirmed that the cell wall resolution is significantly reduced. In order to solve such a problem, it is necessary to isolate various microorganisms having excellent polysaccharide degrading ability and establish conditions under which these microorganisms can stably decompose algae.
  • low molecular weight alginic acid is prepared by lowering the degree of polymerization by acid hydrolysis with hydrochloric acid and organic acid.
  • Low molecular weight alginic acid production process by acid is required to neutralize and discharge the acid-resistant device and discarded strong acid due to excessive acid treatment in the process, the process cost is high because a large amount of alkali is required.
  • abalone-derived microbial enzymes By using the technology of biotechnological mass production of functional polysaccharides by establishing reaction conditions that can produce low molecular weight alginic acid under mild reaction conditions without strong acid and strong alkali, There is a need to establish technologies that increase the utilization of resources.
  • the 16S rRNA gene contains information that can differentiate bacteria at the species level, and the change in the nucleotide sequence of this gene is very useful for identifying the evolutionary flexibility between microorganisms. However, even if the information on the microorganisms in the ecosystem is confirmed by molecular biological methods, it is very important to isolate the microorganisms and to identify the characteristics of the microorganisms.
  • lyase-producing microorganisms isolated from the intestinal tracts of marine organisms are algae-degraded with agarase, laminase, cellulase and alginate lyase.
  • alginate lyase alters the brown algae of microorganisms according to the ⁇ -elimination mechanism: a—Li guluronic acid (G) and ⁇ -D-mannuronic acid (M).
  • G Li guluronic acid
  • M ⁇ -D-mannuronic acid
  • I AM 14594 (AF082561), Sphingomonas sp. AKAB120939), Klebsiella pneumonia subs. aerogenes (Ll9657), Vibrio sp. QY10KAY221030) and Psuedomonas sp.
  • OS-ALG-9 (AB003330). 2 ' 4 ⁇ 13 ' 15 So far , Alginate lyase reported in the Genebank database is around 23 RF.
  • alginate lyases of many different microorganisms include G block-specific polyguluronate lyase (EC 4.2.2.11) and M block-specific polymannuronate lyase (EC 4.2). .2.3), can be classified according to two kinds of substrate specificity.
  • the screening system using an insert size of about 40 kb isolated directly from samples of 1 phosphide vector and various environments comprises chitinase, dehydrogenase, oxidoreductase, It has been used to identify a wide range of genes such as amylase, esterase, endoglucanase and cyclodextrinase. 1 , 20
  • the inventors identified a highly active alginate lyase gene in the intestinal microflora of abalone using the metagenome library.
  • Another object of the present invention is to provide a novel alginate lyase.
  • Another object of the present invention is to provide a nucleic acid molecule encoding a novel alginate lyase.
  • Another object of the present invention is to provide a recombinant vector comprising the nucleic acid molecule.
  • Another object of the present invention to provide a cell transformed by the recombinant vector.
  • Another object of the present invention is to provide a method for decomposing alginate.
  • the present invention provides the 1280-3652th nucleotide sequence, 5025-6128th nucleotide sequence, 6365-7492th nucleotide sequence, 8687-9202th nucleotide sequence, 9206-9823th nucleotide sequence of SEQ ID NO: 1 9823-11250th nucleotide sequence, 11377-12189th nucleotide sequence, 12290-13306th nucleotide sequence, 13611-14642th nucleotide sequence, 14646-15212th nucleotide sequence, 15417-16388th nucleotide sequence, 17370-19223th nucleotide sequence, 19452—21017th nucleotide sequence, 21253-22143 nucleotide sequence, 22309-23121th nucleotide Sequence, 23333-24208 nucleotide sequence, 24294—24989 nucleotide sequence, 25446-26477 nucleotide sequence, 2
  • nucleotide is a deoxyribonucleotide or ribonucleotide that exists in single- or double-stranded form and includes analogs of natural nucleotides unless otherwise specified (Scheit, Nucleotide Analogs, John Wiley). , New York (1980); Uhlman and Peyman, Chemical Reviews, 90: 543-584 (1990)).
  • the metagenome library has a nucleotide sequence of SEQ ID NO: 1, more preferably the metagenome library is constructed using genome DNA obtained from a microflora of the intestine of abalone.
  • the term "metagenome” refers to the total microbial collection present in nature, and the DNA of microorganisms obtained from various natural environments such as soil, seawater, tidal flats, rivers, air, and the large intestine of animals according to their species. Metagenome is not separated but mixed together. It is also a technology that analyzes the function or diversity of microorganisms in the form of genes. Metagenome clones metagenome, which is the genome of total microorganisms existing in various environments of nature, maintains and expresses it in host cells to make metagenome library to classify the lineage of egg cultured microorganisms, and to search for useful enzymes and secondary metabolites. It is for research.
  • the metagenome library of the present invention can be carried out through various methods known in the art. Preferably, Bruce A. Voyles (2002) The biology of viruses 2nd ed.ISBN 0-07-237031-9 and Barry G. Hal 1 (July 2004). "Predicting the evolution of antibiotic resistance genes. ". Nature Reviews Microbiology 2 (5). doi: l0.1038 / nrmicro888. PMID 15100696) to build a metagenome library.
  • the metagenome library of the present invention has utility as a research tool for searching for useful enzymes (eg, alginate lyase) and secondary metabolites.
  • the present invention provides an alginate lyase having an amino acid sequence set forth in SEQ ID NO: 2.
  • the present inventors unlike the alginate decomposition method using a conventional microorganism, in order to solve the high process cost that must be discharged by neutralizing strong acid by acid-based low-molecular alginate production method by separating the microorganism with excellent polysaccharide degradability of seaweed to stably remove algae Efforts have been made to establish conditions for degradation. As a result, a novel alginate lyase enzyme was discovered, and accordingly, it was confirmed that the molecular weight of alginate could be reduced more efficiently and more stably.
  • alginate lyase refers to an enzyme that degrades and lowers the alginate composed of G block -specific polyguluronate and M block -specific polymannuronate.
  • the alginate lyase is derived from a microorganism. Most preferably the alginate lyase is derived from the intestinal microflora of abalone. According to another aspect of the present invention, the present invention provides a nucleic acid molecule encoding the alginate lyase.
  • nucleic acid molecules of the invention comprise a sequence of the first sequence
  • Nucleotide sequence represented by the 15417-16388th nucleotide sequence represented by the 15417-16388th nucleotide sequence.
  • nucleic acid molecule is meant to encompass DNA (gDNA and cDNA) and RNA molecules inclusive, and the nucleotides that are the basic structural units in nucleic acid molecules are naturally modified nucleotides, as well as sugar or base sites modified. Analogues (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, 90: 543-584 (1990)).
  • nucleic acids do not result in changes in proteins.
  • Such nucleic acids include functionally equivalent codons or codons encoding the same amino acids (eg, due to the degeneracy of the codons, there are six codons for arginine or serine), or codons encoding biologically equivalent amino acids. And nucleic acid molecules.
  • nucleotides may result in changes in the alginate lyase itself. Even in the case of mutations that result in changes in the amino acids of the alginate lyases, those exhibiting almost the same activity as the alginate lyases of the present invention can be obtained.
  • amino acid variations are made based on the relative similarity of amino acid chain substituents, such as hydrophobicity, hydrophilicity, charge, size, and the like.
  • amino acid chain substituents such as hydrophobicity, hydrophilicity, charge, size, and the like.
  • arginine, lysine and histidine are all positively charged residues; Alanine, glycine and serine have similar sizes; It can be seen that phenylalanine, tryptophan and tyrosine have a similar shape.
  • arginine, lysine and histidine; Alanine, glycine and serine; Phenylalanine, tryptophan and tyrosine are biologically equivalent functions.
  • hydropathic idex of amino acids can be considered.
  • Each amino acid is assigned a hydrophobicity index depending on its hydrophobicity and charge: isoleucine (+4.5); Valine (+4.2); Leucine (+3.8); Phenylalanine (+2.8); Cysteine / cysteine (+2.5); Methionine (+1.9); Alanine (+1.8); Glycine (-0.4); Threonine (-0.7); Serine (-0.8); tryptophan (-0.9); Tyrosine (-1.3); Plin (-1.6); Histidine (-3.2); Glutamate (-3.5); Glutamine (-3.5); Aspartate (-3.5); Asparagine (-
  • Hydrophobic amino acid indexes are very important in conferring the interactive biological function of proteins. It is known that substitution with amino acids having similar hydrophobicity indexes can retain similar biological activity. When introducing a mutation with reference to a hydrophobic index, substitutions are made between amino acids that exhibit a hydrophobic index difference of preferably within ⁇ 2, more preferably within 1 and even more preferably within 0.5.
  • Plin (-0.5 ⁇ 1); alanine (-0.5); Histidine (-0.5); Cysteine (-1.0); Methionine (-1.3); Valine (-1.5); Leucine (-1.8); Isoleucine (-1.8); Tyrosine (-2.3); Phenylalanine (-2.5); Tryptophan (-3.4).
  • substitution is carried out between amino acids which exhibit a hydrophilicity value difference within the range of preferably within 2, more preferably within 1, and even more preferably within 0.5.
  • the alginate lyase of the present invention or nucleic acid molecules encoding the same are also construed to include sequences that exhibit substantial identity with the sequences listed in the Sequence Listing. Substantial identity of the above, the present invention By aligning a sequence with any other sequence as much as possible, and analyzing the aligned sequence using algorithms commonly used in the art, for example, a sequence exhibiting homology of at least 99) is meant. Alignment methods for sequence comparison are known in the art. Various methods and algorithms for alignment are described in Smith and Waterman, Adv. Appl. Math. 2: 482 (1981); Needleman and Wunsch, J. Mo J. Bio.
  • the present invention provides a recombinant vector comprising the above-described nucleic acid molecule of the present invention encoding an alginate lyase.
  • vector system of the present invention can be constructed through various methods known in the art, and specific methods thereof are disclosed in Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press (2001), This document is incorporated herein by reference.
  • Vectors of the present invention can typically be constructed as vectors for cloning or as vectors for expression.
  • the vector of the present invention can be constructed using prokaryotic cells as a host.
  • Vectors of the invention can typically be constructed as vectors for cloning or vectors for expression.
  • a strong promoter capable of promoting transcription for example, tac Promoter, lac promoter, / adJV5 promoter, lpp promoter, 3 ⁇ 4 ⁇ promoter, p R promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter and T7 promoter, etc.
  • ribosomal binding site for initiation of detoxification And transcription / detox termination sequences.
  • E. coli is used as the host cell, the promoter and operator site of the E. coli tryptophan biosynthetic pathway (Yanofsky, C., J. Bacteriol., 158: 1018-1024 (1984)) and the leftward promoter of phage ⁇ (p L promoter, Herskowitz, I. and Hagen,
  • vectors that can be used in the present invention are plasmids often used in the art (eg pSClOl, ColEl, pBR322, pUC8 / 9, pHC79, pUC19, pET, etc.), phages (eg g.B, ⁇ -Charon , ⁇ ⁇ , and M13) or viruses (eg, SV40, etc.).
  • the vector of the present invention includes an antibiotic resistance gene commonly used in the art as an optional marker, for example, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neomycin And resistance genes for tetracycline.
  • an antibiotic resistance gene commonly used in the art as an optional marker, for example, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neomycin And resistance genes for tetracycline.
  • the present invention provides a transformant comprising the vector of the present invention described above.
  • Host cells capable of stably and continuously cloning and expressing the vectors of the present invention are known in the art and can be used with any host cell, for example, E. coli JM109, E. coli BL2KDE3), E. coli RR1, E coli LE392,
  • E. coli B E. coli X 1776
  • E. coli W3110 Bacillus subtilis
  • Bacillus thuringiensis Bacillus thuringiensis
  • enterobacteria and strains such as Salmonella typhimurium, Serratia marcensons and various Pseudomonas species. Etc.
  • the method of carrying the vector of the present invention into a host cell includes the CaCl 2 method (Cohen, SN et al., Proc. Natl. Acac. Sci. USA, 9: 2110-2114 (1973)), one method (Cohen, SN et al., Proc. Natl. Acac. Sci. USA, 9: 2110-2114 (1973); and Hanahan, D., J. Mo J. Biol., 166: 557- 580 (1983)) and electroporation methods (Dower, WJ et al., Nucleic. Acids Res., 16: 6127-6145 (1988)) and the like.
  • Vectors injected into host cells can be expressed in host cells, in which case a large amount of alginate lyase is obtained.
  • the expression vector includes a lac promoter
  • the host cell may be treated with IPTG to induce gene expression.
  • the present invention provides a method of degrading alginate, comprising contacting the alginate lyase of claim 1 or the transformed cell of claim 5 with alginate.
  • the present inventors have attempted to find enzymes having alginate resolution and microbial strains producing such enzymes and have tried to develop low molecular weight alginates using these enzymes or strains. As a result, the alginate lyase which can decompose alginate differently from the conventional synthesis method was discovered, and from this, the production of low molecular weight alginate was confirmed.
  • the present invention can provide new microorganisms and proteins by analyzing unknown metagenomes present in a natural microbial group.
  • the present invention can provide an enzyme that can stably decompose algae by separating microorganisms having excellent polysaccharide degrading ability.
  • the present invention can provide a technique for reducing the amount of waste derived from the algae processing process and increasing the utilization of resources by utilizing the technology of biotechnological mass production of functional polysaccharides.
  • FIG. 2 is a schematic diagram of an alginolatic metagenome fragment (Aly V). Differences in contrast shown in the figure indicate functional classification of putative genes. Diagonal stripes are 0RF related to cell processes, Brake arrows are 0RF related to metabolism, and light gray are 0RF related to information storage. Dark gray color indicates unclear genes.
  • Figure 3 shows the results of reducing sugar analysis confirming the effect of pH (A) and temperature (B) on the alginate lyase activity of metazyme fragment (AlyDW).
  • Figure 4 shows the results of depolymerization of alginate by metagenome fragments (AlyDW) utilizing thin layer chromatography.
  • Left panel (a) shows the hydrolysis profiles of poly (pD-mannuronate, lane 1) and poly ( ⁇ -L-guluronate, lane 2) after incubation at 40 ° C. for 3 hours.
  • the right panel (b) shows the digested alginate product of the HPLC fractions obtained after incubation of alginate and alginolatic metagenome fragments (AlyDW).
  • M is G1 (glucose), G2 (cellobiose), G3 (cellotriose), G4 (cellotetraose), G5 (salopentaose), G6 (salonucleose), G7 (celloheptaose) and G8 (Salo Octaose) is a standard complex.
  • 5-6 show the alignment results of putative alginate lyase and metagenome fragment (0RF-11) proteins derived from metagenome fragments.
  • Amino acid sequences were aligned using the ClustalX program.
  • the compared organisms were Klebsiella pneumoniae subsp. aerogenes, Saccharophagus degradans 2-40, Microbulbifer sp. 6532A, Vibrio harveyi aDA3, Cel lulophaga lytica DSM 7489, Vibrio sp. A9m, Vibrio alginolyticus 40B, Pseudoa I teromonas sp. CY2, Vibrio spectacularus 12B01, Polaribacter sp.
  • JAM-Alra and the gene bank entry numbers of the organisms are Q59478, ABD81738, BAJ62034, ZP_0617515, YP_004263738, BAH79133, ZP_06182095, ACM89454, ⁇ — 00990010, ⁇ _01052859 and BAG70358, respectively.
  • 7 is a result of the evaluation of alginate hydrolysis using the cetylpyridinium chloride (cetylpyridinium chloride) method. 7 shows plate screening confirming activity.
  • C Arginolatic Metagenome Fragment (AlyDW) and
  • Figure 9 shows the result of reducing sugar analysis confirming the effect of pH (A) and temperature (B) on the alginate lyase activity of the recombinant alginic acid degrading enzyme.
  • (b) shows the result of degradation degree of alginic acid after reaction with recombinant alginic acid degrading enzyme with alginic acid at 45 ° C for 3 hours (column 1).
  • Row 2 was positive control, Flavobacterium sp.
  • Alginate (3 rows) and enzyme (4 rows) were used as negative controls, respectively.
  • M is G1 (glucose), G2 (cellobiose), G3 (cellotriose), G4 (cellotetraose), G5 (cellopentaose), G6 (cellonucleose), G7 (celloheptaose), Based on the combination of G8 (cellooctaose).
  • CPC Cetylpyridinium chloride
  • Shotgun DNA libraries prepared from purified phosmid DNA and PHRED / PHRAP / CONSED packages were used to combine the shotgun sequencing reads to determine the total sequence of positive clones.
  • DNA sequences were determined using ABI 9700 Thermocyclers (Applied Biosys terns) and ABI PRISM TM Bi Dye TM Terminator Cycle Sequencing kit (Appl ied Biosystems, version 3.1) according to the manufacturer's knowledge.
  • the blast program of the National Center for Biotechnology Information (NCBI) was used for database searches and sequence comparisons.
  • the complete phosphid insert was annotated using the Artemis program and the function of the protein coding portion was confirmed using the BLASTP and PSIBLAST programs.
  • the endoclucanase activity of the enzyme was determined by the Nelson-Somogyi assay, which measures the increased color intensity by enzymatic hydrolysis of glycosidic bonds of carbonates by treating large amounts of reducing sugars. . 3
  • the standard curve is 31.5 based on 525 nm absorbance measurements using a spectrophotometer (Mecassis, Korea). Glucose was prepared in the ⁇ & / ⁇ concentration range.
  • clones were cultured. Culture medium was concentrated using a protein concentration kit (Rapid-Con TM Protein Concentration Kit, Elpis, Seoul, Korea). AlyDW was treated with a 2-mercaptoethanol-free sample buffer according to the method described by Lae ⁇ ⁇ and treated with SDS-PAGE (sodium dodecyl sul fate-polyaery 1 amide gel electrophoresis) with 10% acrylamide gel. ) was analyzed. After 3 SDS-PAGE, the protein in the gel was washed three times in a regeneration buffer (50 mM Tris-HCl buffer, pH 7.0, 10 mg / t casein, 2 mM EDTA, 0.01% NaN 3 ) with 25% methanol.
  • a regeneration buffer 50 mM Tris-HCl buffer, pH 7.0, 10 mg / t casein, 2 mM EDTA, 0.01% NaN 3
  • the polyacrylamide gel was washed with 100 mM phosphate buffer 1 ( ⁇ 8) and then covered with a 1.5% agarose gel consisting of 1 mg / sodium alginate, 10 gM NaCl and 100 mM phosphate buffer KpH 8). The gel was incubated at 37 ° C. for 20 hours and then immersed in 10% CPC solution for 1 hour and then washed in distilled water. Analysis of Banung Products Using Thin Layer Chromatography
  • One bacterial metagenome fragment (AlyDW) expressing alginate lyase activity was selected from 3 840 clones selected from a total of 90,000 clones composed of the intestinal microflora of abalone (FIG. 1).
  • Analysis of the shot-gun sequence data shows that the positive metagnome fragments have genes with an average G + C content of 43.3% and a length of 31.7 kb of 22 expected 0RFs.
  • a was prepared based on TMHMM survey, b indicates that it does not belong to the C0G group (FIG. 2 and Table 1).
  • Alginate lyase Poly Klebsiella pneumoniae
  • the alginolytic activity showed more than 80% of activity at 30-45 ° C and peaked at 40 ° C. Even at low temperatures (15-25 ° C), 60 5% of the activity shown at 40 ° C was maintained, showing the characteristics of the low temperature active enzyme (Fig. 3). It showed maximum alginolitic activity at pH 8 and about 90% residual activity at pH 4 to pH 9. However, activity dropped sharply above pH 9 (FIG. 3).
  • the effects of metal ions and cofactors such as NAD + on the activity of alginate lyase are summarized in Table 2.
  • the negative control group was represented by T as a relative value, and the standard deviation value was derived from three independent experiments.
  • alginate lyases obtained from marine mollusks including Turbo cornutus are endo-poly (M) and exo-poly (G) lyases having optimal values at 25-501 and pH 4.0-9.6.
  • Enzyme activity increased in the presence of divalent cations such as Ca 2+ or Mg 2+ . 9 ' 16 ' 26 — 27 It has been reported that NAD + and metal ions are required for the hydrolysis of ⁇ -1,4 or ⁇ -1,4-glucosidic linkages in a group of glycosidase such as GH4. 25
  • alginate oligomers Another profile of alginate oligomers was confirmed by alginate degradation of alginate lyase (AlyE). After 3 hours, the alginate hydrolysis end product of AlyDW was subjected to thin-layer chromatography. Analyzes (FIG. 4). 4, AlyDW has endolitic activity and degrades poly (-1) -1113 ⁇ 111 " 011 ⁇ 6) over poly ( ⁇ -L-guluronate). Alginate lyase isolated from the most preferred endo-poly (M) lyase 27
  • AlyDW has a molecular mass of 35, 67 and 57 kDa, which is theoretically 30 RF (0RF11, 12 and 13).
  • Speculative amino acid sequence of 0RF 11 (AlyDW) and Ae_2Al & Saccharophagus degradans 2-40) and d ⁇ k ⁇ Klebsiel la pneumoniae subsp. homology with the aeri e / 2es) genes was 63% and 65%, respectively.
  • AlgispiMjcrobulbifer sp. 6532A VME_15370 (Vibrio harveyi 1DA3), Cel ⁇ y_305 (CeJluIophaga lytica DSM 7489), alg (Vibrio sp.
  • VMC_35250 Vibrio alginolyticus 40B
  • alyPI Pseudoalteromonas sp. CY2
  • V12B01_24259 Vibrio spectacularus 12B01
  • AlglA Aga / voraus sp. JAM-A1 gene was 543 ⁇ 4-60% ( Figures 5-6).
  • Polysaccharide lyase (PL) family 7 alginate lyases are believed to act as substrate binding and catalytic sites (R / E) (S / T / N) EL, Q (I / V) H and It has three kinds of highly conserved amino acid sequences of YF AG (V / I) YNQ.
  • the 0RF 11 of 24 AlyDW metagenome fragments are G and M specific lyase (AlyA) of K. pneumonia, M-specific lyase (AlxM) of marine bacteria ATCC 433367, and G-specific lyase (ALY) of Cor nebactenwn 3 ⁇ 4 ⁇ . -1) also has RSEL, QIH and YFKAGVYNQ identified.
  • the amino acid sequence is It is judged to be an essential part of maintaining the stable three-dimensional structure and function of alginate lyase. 1314
  • the extracted genomic DNA was made into 32 kb DNA fragments, end repaired and size-selected, and then the CopyControl Cloning-Ready back frame pCClFOS (POSMID).
  • POSMID CopyControl Cloning-Ready back frame pCClFOS
  • clones having an alginate degrading activity from the library clones having an endolytic alginate lyase activity that hydrolyzed alginic acid to low molecules were obtained (FIG. 7).
  • Alginate lyase gene 0RF-11 was amplified using primers with Ban l and Hind cleavage sites. After ligating into a pMAL-c2X vector (NEW ENGLAND BioLabs, UK) and placing it in E. coli BL2KDE3), PMTG-c2X-AlyDWll expressed by IPTGGs using 3ropyl-3-D-thiogalactopyranoside) was subjected to amylose affinity column. To elute the recombinant protein. 10% SDS-PAGE was used to identify AlyDWll overexpressed at about 76 kDa (FIG. 8).
  • AlyDWll showed the highest activity at 45 ° C as a result of searching for the proper pH and temperature of alginic acid degrading enzyme through reducing sugar assay. Optimum pH appeared at pH 7 and decreased activity at pH values above pH 8 (FIG. 9). Cofactors such as metal ions confirmed that the combination of NAD +, Mg 24 or Ag + was 1.6-2.1 times higher for alginate lyase activity than conditions without metal cations and NAD +, respectively (Table 3).
  • AlyDWll alginate hydrolysis with alginate lyase
  • TLC Thin-layer Chromatography
  • AlyDWll has endortic activity and shows better activity of poly ( ⁇ -D-mannuronate) than poly ( ⁇ -L-gururonate), which is endo-poly (M) in most marine molluscs. It is synonymous with lyase observed.
  • alginate low-molecular oligosaccharides ranging from 180 to 342 Da, 540 to 720 Da, and 1,080 to 1,260 Da were obtained, which shows that the enzyme can produce a lower molecular weight than commercial enzymes (FIG. 10).

Abstract

The present invention relates to a metagenome library having alginate lyase activity. The present invention provides a novel microorganism and a protein by analyzing an unknown metagenome which exist in a natural microorganism group. The present invention relates to alginate lyase and AlyDW having an amino acid sequence disclosed in the second sequence of the sequence listing. According to the present invention, provided is an enzyme for stably dissolving seaweeds by separating a microorganism having a superior ability in dissolving a polysaccharide in seaweeds. Also, the present invention provides a technique for reducing the amount of waste products derived during a seaweed processing process and enhancing resource utilization by using a technique in which a functional polysaccharide is mass-produced by means of bioengineering.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
알지네이트 라이아제 활성을 가지는 메타지놈 라이브러리 및 신규 효소 A 1 y DW  Metagenome Library and Novel Enzyme A 1 y DW with Alginate Lyase Activity
【기술분야】 Technical Field
본 발명은 알지네이트 라이아제 활성을 갖는 메타지놈 라이브러리 및 신규 효소 AlyDW에 관한 것이다. 【배경기술】  The present invention relates to a metagenome library with alginate lyase activity and to the novel enzyme AlyDW. Background Art
해조류는 우리나라 연근해에 풍부하게 서식되고 있는 생물로서 잠재적인 자원이다. 대부분의 해조류는 단순가공을 거쳐 식용으로 활용되고 있으나 앞으로는 바이오에너지원으로서 또는 기능성 식품 및 의약 원료로서 활용이 기대되는 자원이다.  Seaweeds are abundant habitats in the offshore waters of Korea and are a potential resource. Most seaweeds are used for food through simple processing, but they are expected to be used as bioenergy sources or as functional foods and pharmaceutical raw materials.
해조류의 구성 성분은 다당류가 대부분을 이루고 있으나 염분의 함량이 높으며 점액성의 다당체에 의해 표층이 둘러 쌓여있다. 따라서 해조류를 자원으로서 활용하기 위해서는 다당체의 분해가 우선 수반되어져야 한다. 섬유소와 한천 같은 다당체는 β-1,4- 글리코시드 (glycoside)로서 여러 종류의 미생물에 의해 분해가 가능하다. 그러나 육상 식물체의 다당체를 기질로 이용하는 미생물과 해조류의 다당체를 기질로 이용하는 미생물은 서식환경이나 기질의 염분도 측면에서 서로 다르다. 예로써 매생이의 세포벽 분해능이 우수한 세균을 몇 차례 계대 배양할 경우 세포벽 분해능이 현저히 줄어드는 것을 확인할 수 있다. 이와 같은 문제를 해결하기 위해서는 해조류의 다당체 분해능이 우수한 다양한 미생물을 분리하고 이 미생물들이 안정적으로 해조류를 분해 할 수 있는 조건을 확립하는 것이 필요하다.  Polysaccharides make up the majority of seaweed, but the salt content is high and the surface layer is surrounded by mucopolysaccharide. Therefore, in order to utilize algae as a resource, decomposition of polysaccharides must be accompanied. Polysaccharides such as cellulose and agar are β-1,4-glycosides that can be degraded by various microorganisms. However, microorganisms using polysaccharides of land plants as substrates and microorganisms using polysaccharides of algae as substrates differ in terms of habitat environment and salinity of substrates. For example, if several passages of bacteria having excellent cell wall resolution of maesangi can be confirmed that the cell wall resolution is significantly reduced. In order to solve such a problem, it is necessary to isolate various microorganisms having excellent polysaccharide degrading ability and establish conditions under which these microorganisms can stably decompose algae.
알긴산 같은 해조 다당체의 중합도를 낮추기 위하여 염산, 유기산에 의한 산가수분해법에 의하여 중합도를 낮추어 저분자화 알긴산을 제조하고 있다. 산에 의한 저분자화 알긴산 제조법은 공정상 과도한 산처리 때문에 내산성 장치와 폐기되는 강산을 중화시켜 배출해야 하기 때문에 다량의 알칼리가 소요됨으로써 공정비가 높다. 그러나 전복 유래 미생물 효소를 이용하여 강산과 강알칼리가 소요되지 않고 온화한 반응조건 하에서 저분자화 알긴산을 생산할 수 있는 반옹 조건을 확립함으로써 기능성 다당류를 생물공학적으로 대량생산하는 기술을 활용하여 해조류 가공공정에서 파생되는 폐기물의 양을 감소시키고 자원의 활용도를 높이는 기술 확립이 필요하다. In order to reduce the degree of polymerization of seaweed polysaccharides such as alginic acid, low molecular weight alginic acid is prepared by lowering the degree of polymerization by acid hydrolysis with hydrochloric acid and organic acid. Low molecular weight alginic acid production process by acid is required to neutralize and discharge the acid-resistant device and discarded strong acid due to excessive acid treatment in the process, the process cost is high because a large amount of alkali is required. However, abalone-derived microbial enzymes By using the technology of biotechnological mass production of functional polysaccharides by establishing reaction conditions that can produce low molecular weight alginic acid under mild reaction conditions without strong acid and strong alkali, There is a need to establish technologies that increase the utilization of resources.
자연 환경에 서식하고 있는 미생물들의 배양방법은 매우 복잡하고 까다롭다. 실제 환경 생태계로부터 분리 배양할 수 있는 미생물은 1% 미만으로 전통적인 배양기법으로는 배양이 불가능하다. 이러한 어려움을 극복하기 위해 미생물의 분리 및 배양 없이 세균군집의 다양성과 구조, 기능을 파악하기 위한 방법으로 분자 생물학적인 방법들이 응용되고 있다. 그 중 가장 많이 이용되는 부분이 핵산을 이용한 분자생물학적 방법인 16S rRNA 유전자의 염기 서열 결정을 통해 계통분류학적으로 분석함으로써 동정과 이를 웅용한 연구가 활발히 진행되고 있다. 16S rRNA 유전자는 세균들을 종 수준으로 구분할 수 있는 정보를 담고 있으며, 이 유전자의 염기서열의 변화는 미생물간의 진화적 유연관계를 파악하는데 매우 유용하다. 그러나 분자생물학적 방법에 의해 생태계에 존재하는 미생물의 정보를 확인한다 하더라도 미생물을 분리하고 분리된 미생물의 특성을 파악하는 것은 유전자원의 확보 측면에서 매우 중요하다.  Cultivation of microorganisms in the natural environment is very complicated and difficult. Less than 1% of microorganisms can be isolated and cultured from the actual environmental ecosystem, and cannot be cultured using conventional culture techniques. In order to overcome these difficulties, molecular biological methods have been applied as a method for determining the diversity, structure, and function of bacterial communities without microbial isolation and culture. Among them, the most frequently used part is systematically analyzed by sequencing analysis through nucleotide sequencing of 16S rRNA gene, which is a molecular biological method using nucleic acid, and studies are actively conducted. The 16S rRNA gene contains information that can differentiate bacteria at the species level, and the change in the nucleotide sequence of this gene is very useful for identifying the evolutionary flexibility between microorganisms. However, even if the information on the microorganisms in the ecosystem is confirmed by molecular biological methods, it is very important to isolate the microorganisms and to identify the characteristics of the microorganisms.
새로운 기능성 식품 및 발효성 바이오자원에 대한 수요로 신규 미생물의 효소에 대한 요구가 증가하고 있다. 해양 생물의 장관 (intestinal tracts)에서 분리한 라이아제 -생산 미생물은 아가라제 (agarase), 라미나라제 (laminarase), 샐를라제 (cellulase) 및 알지네이트 라이아제 (alginate lyase)가 흔합된 해조류 -분해 효소를 생산한다.18 또한, 알지네이트 라이아제는 미생물의 갈조류를 β-제거 기작 (elimination mechanism)에 따라 a—L一글루론산 (guluronic acid)(G), β-D-만누론산 (mannuronic acid)(M), alternating MG(GM) 및 heteropolymeric MG(GM)로 분해한다는 많은 보고가 있다.11 전복 (abalone) 및 Psuedoalteromonas sp. I AM 14594 (AF082561) , Sphingomonas sp. AKAB120939) , Klebsiella pneumonia subs . aerogenes(Ll9657) , Vibrio sp. QY10KAY221030) 및 Psuedomonas sp. OS-ALG— 9(AB003330)을 포함하는 많은 해양 박테리아의 내장으로부터 이러한 효소를 분리한다.2'413'15 지금까지, 진뱅크 (Genebank) 데이터베이스에 보고된 알지네이트 라이아제는 23 0RF 정도이다.24 이전의 연구에 따르면 많은 다른 미생물의 알지네이트 라이아제는 G 블록 -특이 폴리구루로네이트 (polyguluronate) 라이아제 (EC 4.2.2.11) 및 M 블록 -특이 폴리만누로네이트 (polymannuronate) 라이아제 (EC 4.2.2.3), 2 종류의 기질 특이성에 따라 분류할 수 있다.19 최근, 고등식물의 뿌리 성장 촉진, Bifidobacterium sp. 성장 속도의 가속, 인간 단핵 (mononuclear)세포의 세포독성 사이토카인 생산의 유도, IgE 의 억제, 항고혈압 효과와 같은 확실한 생물학적 활성을 갖는 효소에 의해 분해된 알지네이트를 발견하였다.5 때문에, 알지네이트 라이아제 및 알지네이트 을리고사카라이드는 식품 및 의약품 산업의 연구자들에게 주목을 받고 있다. The demand for new functional foods and fermentable biomass increases the demand for new microbial enzymes. Lyase-producing microorganisms isolated from the intestinal tracts of marine organisms are algae-degraded with agarase, laminase, cellulase and alginate lyase. To produce enzymes. In addition, alginate lyase alters the brown algae of microorganisms according to the β-elimination mechanism: a—Li guluronic acid (G) and β-D-mannuronic acid (M). There are many reports of degradation into MG (GM) and heteropolymeric MG (GM). 11 abalone and Psuedoalteromonas sp. I AM 14594 (AF082561), Sphingomonas sp. AKAB120939), Klebsiella pneumonia subs. aerogenes (Ll9657), Vibrio sp. QY10KAY221030) and Psuedomonas sp. These enzymes are isolated from the gut of many marine bacteria, including OS-ALG-9 (AB003330). 2 ' 413 ' 15 So far , Alginate lyase reported in the Genebank database is around 23 RF. 24 Previous studies have shown that alginate lyases of many different microorganisms include G block-specific polyguluronate lyase (EC 4.2.2.11) and M block-specific polymannuronate lyase (EC 4.2). .2.3), can be classified according to two kinds of substrate specificity. 19 Recently, promoting the root growth of higher plants, Bifidobacterium sp. Alginates have been found to be degraded by enzymes with certain biological activities such as acceleration of growth rate, induction of cytotoxic cytokine production in human mononuclear cells, inhibition of IgE, and antihypertensive effects. 5 , alginate lyase and alginate lolisaccharide are attracting attention from researchers in the food and pharmaceutical industry.
16s rRNA 유전자의 클론 라이브러리를 이용한 독립적 배양 연구는 Alpha-, Gamma-, Epsi lonproteobacteria 및 mollicutes Ά주요 미생물군인 전복 Haliotis discus hannai 의 내장 안의 전체 박테리아에 대한 다양성을 보여준다.21 그러나, 상기 16s rRNA 유전자의 정보로는 미생물의 생물학적 기능을 알 수 있는 효과적인 정보를 제공하지 않는다 .17'23 대조적으로, 포스미드 (fosmid) 클로닝 시스템을 이용한 메타지놈 라이브러리는 배양이 쉽지 않은 생물체의 신규 유전자를 확인할 수 있다 .1 포스미드 백터 및 다양한 환경의 샘플에서 직접 분리한 약 40 kb 의 삽입 (insert) 사이즈를 이용한 상기 스크리닝 시스템은 키티나제 (chitinase), 디하이드로제나제 (dehydrogenase), 옥시도리덕타제 (oxidoreductase), 아밀라제 (amylase), 이스터라제 (esterase), 엔도글루카나제 (endoglucanase) 및 사이클로덱스트리나제 (cyclodextrinase)와 같은 광범위한 유전자를 확인하는데 이용되어왔다 .120 발명자는 메타지놈 라이브러리를 이용하여 전복의 장내 미생물군에서 고활성의 알지네이트 라이아제 유전자를 규명하였다. Independent culture studies using clone libraries of the 16s rRNA gene show the diversity of the entire bacteria in the viscera of the abalone Haliotis discus hannai, Alpha-, Gamma-, Epsi lonproteobacteria and mollicutes. 21 However, the information of the 16s rRNA gene does not provide effective information on the biological function of the microorganism. 17 to '23, in contrast, metadata genomic library using the phosphine imide (fosmid) cloning systems can be found a novel gene of the organism culture is not easy. The screening system using an insert size of about 40 kb isolated directly from samples of 1 phosphide vector and various environments comprises chitinase, dehydrogenase, oxidoreductase, It has been used to identify a wide range of genes such as amylase, esterase, endoglucanase and cyclodextrinase. 1 , 20 The inventors identified a highly active alginate lyase gene in the intestinal microflora of abalone using the metagenome library.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.  Throughout this specification, many papers and patent documents are referenced and their citations are indicated. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly explained.
【발명의 내용】 【해결하려는 과제】 [Content of invention] [Problem to solve]
본 발명자들은 알지네이트 라이아제 활성을 가진 메타지놈 라이브러리 및 AlyDW 를 개발하고자 노력하였다. 그 결과, 전복 장내 유래의 미생물을 분리하여 알지네이트 라이아제 활성을 갖는 메타지놈 라이브러리 및 신규 효소를 규명하였고, 이러한 신규 효소가 갖는 최적 활성 조건을 규명함으로써, 본 발명을 완성하게 되었다.  We sought to develop a metagenome library and AlyDW with alginate lyase activity. As a result, the microorganisms derived from the abdominal intestine were isolated to identify metazyme libraries and novel enzymes having alginate lyase activity, and the present invention was completed by identifying the optimum activity conditions of these novel enzymes.
본 발명의 목적은 알지네이트 라이아제 활성을 갖는 메타지놈 라이브러리를 제공하는데 있다.  It is an object of the present invention to provide a metagenome library having alginate lyase activity.
본 발명의 다른 목적은 신규한 알지네이트 라이아제 (alginate lyase)를 제공하는 데 있다.  Another object of the present invention is to provide a novel alginate lyase.
본 발명의 또 다른 목적은 신규한 알지네이트 라이아제 (alginate lyase)를 코딩하는 핵산 분자를 제공하는 데 있다.  Another object of the present invention is to provide a nucleic acid molecule encoding a novel alginate lyase.
본 발명의 다른 목적은 상기 핵산 분자를 포함하는 재조합 백터를 제공하는 데 있다.  Another object of the present invention is to provide a recombinant vector comprising the nucleic acid molecule.
본 발명의 또 다른 목적은 상기 재조합 백터에 의해 형질전환된 세포를 제공하는 데 있다.  Another object of the present invention to provide a cell transformed by the recombinant vector.
본 발명의 다른 목적은 알지네이트의 분해 방법을 제공하는 데 있다. 본 발명의 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.  Another object of the present invention is to provide a method for decomposing alginate. The objects and advantages of the invention will become apparent from the following detailed description, claims and drawings.
【과제의 해결 수단】 [Measures of problem]
본 발명의 양태에 따르면, 본 발명은 서열목록 제 1서열의 1280-3652 번째 뉴클레오타이드 서열, 5025-6128 번째 뉴클레오타이드 서열, 6365- 7492 번째 뉴클레오타이드 서열, 8687-9202 번째 뉴클레오타이드 서열, 9206-9823 번째 뉴클레오타이드 서열, 9823-11250 번째 뉴클레오타이드 서열, 11377-12189 번째 뉴클레오타이드 서열, 12290-13306 번째 뉴클레오타이드 서열, 13611-14642 번째 뉴클레오타이드 서열, 14646-15212 번째 뉴클레오타이드 서열, 15417-16388 번째 뉴클레오타이드 서열, 17370- 19223 번째 뉴클레오타이드 서열, 19452—21017 번째 뉴클레오타이드 서열, 21253-22143 번째 뉴클레오타이드 서열, 22309-23121 번째 뉴클레오타이드 서열, 23333-24208 번째 뉴클레오타이드 서열, 24294—24989 번째 뉴클레오타이드 서열, 25446-26477 번째 뉴클레오타이드 서열, 26549-28063 번째 뉴클레오타이드 서열, 28362-29579 번째 뉴클레오타이드 서열, 30103- 30930 번째 뉴클레오타이드 서열 및 31010-31696 번째 뉴클레오타이드 서열을 포함하는 22 개의 0RF을 포함하는 알지네이트 라이아제 활성을 갖는 메타지놈 라이브러리를 제공한다. According to an aspect of the present invention, the present invention provides the 1280-3652th nucleotide sequence, 5025-6128th nucleotide sequence, 6365-7492th nucleotide sequence, 8687-9202th nucleotide sequence, 9206-9823th nucleotide sequence of SEQ ID NO: 1 9823-11250th nucleotide sequence, 11377-12189th nucleotide sequence, 12290-13306th nucleotide sequence, 13611-14642th nucleotide sequence, 14646-15212th nucleotide sequence, 15417-16388th nucleotide sequence, 17370-19223th nucleotide sequence, 19452—21017th nucleotide sequence, 21253-22143 nucleotide sequence, 22309-23121th nucleotide Sequence, 23333-24208 nucleotide sequence, 24294—24989 nucleotide sequence, 25446-26477 nucleotide sequence, 26549-28063 nucleotide sequence, 28362-29579 nucleotide sequence, 30103-30930 nucleotide sequence, and 31010-31696 nucleotide sequence Provided is a metagenome library having alginate lyase activity comprising 22 0RF comprising.
본 명세서에서 용어, "뉴클레오타이드' '는 단일가닥 또는 이중가닥 형태로 존재하는 디옥시리보뉴클레오타이드 또는 리보뉴클레오타이드이며, 다르게 특별하게 언급되어 있지 않은 한 자연의 뉴클레오타이드의 유사체를 포함한다 (Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90: 543-584 ( 1990) ) .  As used herein, the term "nucleotide" is a deoxyribonucleotide or ribonucleotide that exists in single- or double-stranded form and includes analogs of natural nucleotides unless otherwise specified (Scheit, Nucleotide Analogs, John Wiley). , New York (1980); Uhlman and Peyman, Chemical Reviews, 90: 543-584 (1990)).
바람직하게는 상기 메타지놈 라이브러리는 서열목록 제 1 서열의 뉴클레오타이드 서열을 가지며, 보다 바람직하게는 상기 메타지놈 라이브러리는 전복의 내장의 미생물군 (microflora)로부터 얻은 지놈 DNA 를 이용하여 구축된 것이다.  Preferably the metagenome library has a nucleotide sequence of SEQ ID NO: 1, more preferably the metagenome library is constructed using genome DNA obtained from a microflora of the intestine of abalone.
본 명세서에서 용어 "메타지놈 (metagenome)" 은 자연계에 존재하는 총 미생물집합을 뜻하며, 토양, 해수, 갯벌, 하천, 대기 및 동물의 대장 등 다양한 자연 환경으로부터 채취한 미생물의 DNA 가 그 종에 따라 분리된 것이 아니라 서로 흔재돼 섞여 있는 형태가 메타지놈이다. 또한 미생물의 기능이나 다양성을 유전자 형태로 분석하는 기술을 말한다. 메타지놈은 자연계의 여러 환경에서 존재하는 총 미생물의 유전체인 메타지놈을 클로닝 하여 숙주세포 등에서 유지, 발현시켜 메타지놈 라이브러리를 만들어 난배양 미생물의 계통을 분류하고, 유용한 효소와 이차 대사산물을 탐색하기 위한 연구이다.  As used herein, the term "metagenome" refers to the total microbial collection present in nature, and the DNA of microorganisms obtained from various natural environments such as soil, seawater, tidal flats, rivers, air, and the large intestine of animals according to their species. Metagenome is not separated but mixed together. It is also a technology that analyzes the function or diversity of microorganisms in the form of genes. Metagenome clones metagenome, which is the genome of total microorganisms existing in various environments of nature, maintains and expresses it in host cells to make metagenome library to classify the lineage of egg cultured microorganisms, and to search for useful enzymes and secondary metabolites. It is for research.
본 발명의 메타지놈 라이브러리는 당업계에 공지된 다양한 방법을 통하여 실시할 수 있다. 바람직하게는, 코스미드 (Bruce A. Voyles (2002) The biology of viruses 2nd ed. ISBN 0-07-237031-9) 및 포스미드( Barry G. Hal 1 (July 2004) . "Predicting the evolution of antibiotic resistance genes.". Nature Reviews Microbiology 2 (5 ). doi:l0.1038/nrmicro888. PMID 15100696)를 이용하여 메타지놈 라이브러리를 구축한다. 본 발명의 메타지놈 라이브러리는, 유용한 효소 (예컨대, 알지네이트 라이아제)와 이차 대사산물을 탐색하는 하기 위한 연구도구로서 유용성을 갖는다. 본 발명의 다른 양태에 따르면, 본 발명은 서열목록 제 2 서열에 기재된 아미노산 서열을 가지는 알지네이트 라이아제 (alginate lyase)를 제공한다. The metagenome library of the present invention can be carried out through various methods known in the art. Preferably, Bruce A. Voyles (2002) The biology of viruses 2nd ed.ISBN 0-07-237031-9 and Barry G. Hal 1 (July 2004). "Predicting the evolution of antibiotic resistance genes. ". Nature Reviews Microbiology 2 (5). doi: l0.1038 / nrmicro888. PMID 15100696) to build a metagenome library. The metagenome library of the present invention has utility as a research tool for searching for useful enzymes (eg, alginate lyase) and secondary metabolites. According to another aspect of the present invention, the present invention provides an alginate lyase having an amino acid sequence set forth in SEQ ID NO: 2.
본 발명자들은 종래의 미생물을 이용한 알지네이트 분해 방법과 달리, 산에 의한 저분자화 알지네이트 제조법으로 강산을 중화시켜 배출해야 하는 높은 공정비를 해소하기 위해 해조류의 다당체 분해능이 우수한 미생물을 분리하여 안정적으로 해조류를 분해할 수 있는 조건을 확립하고자 노력하였다. 그 결과, 신규 알지네이트 라이아제 효소를 발굴하였고, 이에 따르면 보다 효율적이고 보다 안정적으로 알지네이트를 저분자화 할 수 있음을 확인하였다.  The present inventors, unlike the alginate decomposition method using a conventional microorganism, in order to solve the high process cost that must be discharged by neutralizing strong acid by acid-based low-molecular alginate production method by separating the microorganism with excellent polysaccharide degradability of seaweed to stably remove algae Efforts have been made to establish conditions for degradation. As a result, a novel alginate lyase enzyme was discovered, and accordingly, it was confirmed that the molecular weight of alginate could be reduced more efficiently and more stably.
본 명세서에서 용어 "알지네이트 라이아제" 는 G 블록 -특이 폴리구루로네이트 (polyguluronate) 및 M 블록 -특이 폴리만뉴로네이트 (polymannuronate)로 구성된 알지네이트를 분해하여 저분자화 하는 효소를 의미한다.  As used herein, the term "alginate lyase" refers to an enzyme that degrades and lowers the alginate composed of G block -specific polyguluronate and M block -specific polymannuronate.
본 발명의 바람직한 구현예에 따르면, 상기 알지네이트 라이아제는 미생물로부터 유래된 것이다. 가장 바람직하게는 상기 알지네이트 라이아제는 전복의 장내 미생물로부터 유래된 것이다. 본 발명의 또 다른 양태에 따르면, 본 발명은 상기 알지네이트 라이아제를 코딩하는 핵산 분자를 제공한다.  According to a preferred embodiment of the invention, the alginate lyase is derived from a microorganism. Most preferably the alginate lyase is derived from the intestinal microflora of abalone. According to another aspect of the present invention, the present invention provides a nucleic acid molecule encoding the alginate lyase.
가장 바람직하게는, 본 발명의 핵산 분자는 서열목록 제 1 서열의 Most preferably, the nucleic acid molecules of the invention comprise a sequence of the first sequence
15417-16388 번째 뉴클레오타이드 서열로 나타내는 뉴클레오타이드 서열을 포함한다. Nucleotide sequence represented by the 15417-16388th nucleotide sequence.
본 명세서에서 용어 "핵산 분자" 는 DNA(gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 갖으며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체 (analogue)도 포함한다 (Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman , Chemical Reviews, 90:543-584(1990)). As used herein, the term "nucleic acid molecule" is meant to encompass DNA (gDNA and cDNA) and RNA molecules inclusive, and the nucleotides that are the basic structural units in nucleic acid molecules are naturally modified nucleotides, as well as sugar or base sites modified. Analogues (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, 90: 543-584 (1990)).
뉴클레오타이드에서의 변이는 단백질에서 변화를 가져오지 않는 것도 있다. 이러한 핵산은 기능적으로 균등한 코돈 또는 동일한 아미노산을 코딩하는 코돈 (예를 들어, 코돈의 축퇴성에 의해, 아르기닌 또는 세린에 대한 코돈은 여섯 개이다), 또는 생물학적으로 균등한 아미노산을 코딩하는 코돈을 포함하는 핵산분자를 포함한다.  Variations in nucleotides do not result in changes in proteins. Such nucleic acids include functionally equivalent codons or codons encoding the same amino acids (eg, due to the degeneracy of the codons, there are six codons for arginine or serine), or codons encoding biologically equivalent amino acids. And nucleic acid molecules.
또한, 뉴클레오타이드에서의 변이가 알지네이트 라이아제 자체에 변화를 가져을 수도 있다. 알지네이트 라이아제의 아미노산에 변화를 가져오는 변이인 경우에도 본 발명의 알지네이트 라이아제와 거의 동일한 활성을 나타내는 것이 얻어질 수 있다.  In addition, variations in nucleotides may result in changes in the alginate lyase itself. Even in the case of mutations that result in changes in the amino acids of the alginate lyases, those exhibiting almost the same activity as the alginate lyases of the present invention can be obtained.
본 발명의 알지네이트 라이아제에 포함될 수 있는 생물학적 기능 균등물은 본 발명의 알지네이트 라이아제와 균등한 생물학적 활성을 발휘하는 아미노산 서열의 변이에 한정될 것이라는 것은 당업자에게 명확하다.  It will be apparent to those skilled in the art that biological function equivalents that may be included in the alginate lyase of the present invention will be limited to variations in amino acid sequences that exert biological activity equivalent to the alginate lyase of the present invention.
이러한 아미노산 변이는 아미노산 결사슬 치환체의 상대적 유사성, 예컨대, 소수성, 친수성, 전하, 크기 등에 기초하여 이루어진다. 아미노산 결사슬 치환체의 크기, 모양 및 종류에 대한 분석에 의하여, 아르기닌, 라이신과 히스티딘은 모두 양전하를 띤 잔기이고; 알라닌, 글라이신과 세린은 유사한 크기를 갖으며; 페닐알라닌, 트립토판과 타이로신은 유사한 모양을 갖는다는 것을 알 수 있다. 따라서, 이러한 고려 사항에 기초하여, 아르기닌, 라이신과 히스티딘; 알라닌, 글라이신과 세린; 그리고 페닐알라닌, 트립토판과 타이로신은 생물학적으로 기능 균등물이라 할 수 있다.  Such amino acid variations are made based on the relative similarity of amino acid chain substituents, such as hydrophobicity, hydrophilicity, charge, size, and the like. By analysis of the size, shape and type of amino acid chain substituents, arginine, lysine and histidine are all positively charged residues; Alanine, glycine and serine have similar sizes; It can be seen that phenylalanine, tryptophan and tyrosine have a similar shape. Thus, based on these considerations, arginine, lysine and histidine; Alanine, glycine and serine; Phenylalanine, tryptophan and tyrosine are biologically equivalent functions.
변이를 도입하는 데 있어서, 아미노산의 소수성 인덱스 (hydropathic idex)가 고려될 수 있다. 각각의 아미노산은 소수성과 전하에 따라 소수성 인덱스가 부여되어 있다: 아이소루이신 (+4.5); 발린 (+4.2); 루이신 (+3.8); 페닐알라닌 (+2.8); 시스테인 /시스타인 (+2.5); 메티오닌 (+1.9); 알라닌 (+1.8); 글라이신 (-0.4); 쓰레오닌 (-0.7); 세린 (- 0.8); 트립토판 (-0.9); 타이로신 (-1.3); 프를린 (-1.6); 히스티딘 (-3.2); 글루타메이트 (-3.5); 글루타민 (-3.5); 아스파르테이트 (-3.5); 아스파라긴 (-In introducing variants, hydropathic idex of amino acids can be considered. Each amino acid is assigned a hydrophobicity index depending on its hydrophobicity and charge: isoleucine (+4.5); Valine (+4.2); Leucine (+3.8); Phenylalanine (+2.8); Cysteine / cysteine (+2.5); Methionine (+1.9); Alanine (+1.8); Glycine (-0.4); Threonine (-0.7); Serine (-0.8); tryptophan (-0.9); Tyrosine (-1.3); Plin (-1.6); Histidine (-3.2); Glutamate (-3.5); Glutamine (-3.5); Aspartate (-3.5); Asparagine (-
3.5); 라이신 (-3.9); 및 아르기닌 (-4.5). 3.5); lysine (-3.9); And arginine (-4.5).
단백질의 상호적인 생물학적 기능 (interactive biological function)을 부여하는 데 있어서 소수성 아미노산 인덱스는 매우 중요하다. 유사한 소수성 인덱스를 가지는 아미노산으로 치환하여야 유사한 생물학적 활성을 보유할 수 있다는 것은 공지된 사실이다. 소수성 인텍스를 참조하여 변이를 도입시키는 경우, 바람직하게는 ± 2 이내, 보다 바람직하게는 士 1 이내, 보다 더 바람직하게는 土 0.5 이내의 소수성 인덱스 차이를 나타내는 아미노산사이에 치환을 한다.  Hydrophobic amino acid indexes are very important in conferring the interactive biological function of proteins. It is known that substitution with amino acids having similar hydrophobicity indexes can retain similar biological activity. When introducing a mutation with reference to a hydrophobic index, substitutions are made between amino acids that exhibit a hydrophobic index difference of preferably within ± 2, more preferably within 1 and even more preferably within 0.5.
한편, 유사한 친수성 값 (hydrophilicity value)을 가지는 아미노산 사이의 치환이 균등한 생물학적 활성을 갖는 단백질을 초래한다는 것도 잘 알려져 있다. 미국 특허 제 4,554,101 호에 개시된 바와 같이, 다음의 친수성 값이 각각의 아미노산 잔기에 부여되어 있다: 아르기닌 (+3.0); 라이신 (+3.0); 아스팔테이트 (+3.0士 1); 글루타메이트 (+3.0土 1); 세린 (+0.3); 아스파라긴 (+0.2); 글루타민 (+0.2); 글라이신 (0); 쓰레오닌 (- On the other hand, it is also well known that substitutions between amino acids having similar hydrophilicity values result in proteins with equivalent biological activity. As disclosed in US Pat. No. 4,554,101, the following hydrophilicity values are assigned to each amino acid residue: arginine (+3.0); Lysine (+3.0); Asphaltate (+3.0 士 1); Glutamate (+ 3.0 × 1); Serine (+0.3); Asparagine (+0.2); Glutamine (+0.2); Glycine (0); Threonine (-
0.4); 프를린 (-0.5 土 1); 알라닌 (-0.5); 히스티딘 (-0.5); 시스테인 (-1.0); 메티오닌 (-1.3); 발린 (-1.5); 루이신 (-1.8); 아이소루이신 (-1.8); 타이로신 (-2.3); 페닐알라닌 (-2.5); 트립토판 (-3.4). 0.4); Plin (-0.5 土 1); alanine (-0.5); Histidine (-0.5); Cysteine (-1.0); Methionine (-1.3); Valine (-1.5); Leucine (-1.8); Isoleucine (-1.8); Tyrosine (-2.3); Phenylalanine (-2.5); Tryptophan (-3.4).
친수성 값을 참조하여 변이를 도입시키는 경우, 바람직하게는 土 2 이내, 보다 바람직하게는 土 1 이내, 보다 더 바람직하게는 士 0.5 이내의 친수성 값 차이를 나타내는 아미노산사이에 치환을 한다.  When introducing a mutation with reference to a hydrophilicity value, substitution is carried out between amino acids which exhibit a hydrophilicity value difference within the range of preferably within 2, more preferably within 1, and even more preferably within 0.5.
분자의 활성을 전체적으로 변경시키지 않는 단백질에서의 아미노산 교환은 당해 분야에 공지되어 있다 (H. Neurath, R.L.Hill, The Proteins, Amino acid exchange in proteins that do not alter the activity of the molecule as a whole is known in the art (H. Neurath, R. L. Hill, The Proteins,
Academic Press, New York, 1979) . 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser , Ala/Gly, Ala/Thr,Academic Press, New York, 1979). The most commonly occurring exchanges include amino acid residues Ala / Ser, Val / Ile, Asp / Glu, Thr / Ser, Ala / Gly, Ala / Thr,
Ser/Asn, Ala/Val, Ser/Gly, Thr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile,Ser / Asn, Ala / Val, Ser / Gly, Thr / Phe, Ala / Pro, Lys / Arg, Asp / Asn, Leu / Ile,
Leu/V l , Ala/Glu, Asp/Gly간의 교환이다. Exchange between Leu / V l, Ala / Glu, Asp / Gly.
상술한 생물학적 균둥 활성을 갖는 변이를 고려한다면, 본 발명의 알지네이트 라이아제 또는 이를 코딩하는 핵산 분자는 서열목록에 기재된 서열과 실질적인 동일성 (substantial identity)을 나타내는 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 예컨대 최소 99)의 상동성을 나타내는 서열을 의미한다. 서열비교를 위한 얼라인먼트 방법은 당업계에 공지되어 있다. 얼라인먼트에 대한 다양한 방법 및 알고리즘은 Smith and Waterman, Adv. Appl. Math. 2:482(1981); Needleman and Wunsch , J. Mo J. Bio. 48:443(1970); Pearson and Lipman, Methods in Mol . Biol. 24: 307-31(1988); Higgins and Sharp, Gene 73:237-44(1988); Higgins and Sharp, CABIOS 5:151-3(1989); Corpet et al., Nuc. Acids Res. 16:10881-90(1988); Huang et al., Comp. Appl. BioSci. 8:155-65(1992) and Pearson et al . , Meth. Mol. Biol. 24:307- 31(1994)에 개시되어 있다. NCBI Basic Local Alignment Search Tool (BLAST)(Altschul et al., J. Mol. Biol. 215 :403-10(1990))은 NCBI (National Center for Biological Information) 등에서 접근 가능하며, 인터넷 상에서 blastp, blastm, blastx, tblastn 및 tblastx 와 같은 서열 분석 프로그램과 연동되어 이용할 수 있다. BLSAT 는 http://www.ncbi. nlm.nih.gov/BLAST/에서 접속 가능하다. 이 프로그램을 이용한 서열 상동성 비교 방법은 http://丽. ncbi.nlm.nih.gov/BLAST/blast_help. html에서 확인할 수 있다. 본 발명의 다른 양태에 따르면, 본 발명은 알지네이트 라이아제를 코딩하는 상술한 본 발명의 핵산 분자를 포함하는 재조합 백터를 제공한다. 본 발명의 백터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press(2001)에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다. 본 발명의 백터는 전형적으로 클로닝을 위한 백터 또는 발현올 위한 백터로서 구축될 수 있다. 또한, 본 발명의 백터는 원핵 세포를 숙주로 하여 구축될 수 있다. 본 발명의 백터는 전형적으로 클로닝을 위한 백터 또는 발현을 위한 백터로서 구축될 수 있다. Considering the above-described variations with biological agitation activity, the alginate lyase of the present invention or nucleic acid molecules encoding the same are also construed to include sequences that exhibit substantial identity with the sequences listed in the Sequence Listing. Substantial identity of the above, the present invention By aligning a sequence with any other sequence as much as possible, and analyzing the aligned sequence using algorithms commonly used in the art, for example, a sequence exhibiting homology of at least 99) is meant. Alignment methods for sequence comparison are known in the art. Various methods and algorithms for alignment are described in Smith and Waterman, Adv. Appl. Math. 2: 482 (1981); Needleman and Wunsch, J. Mo J. Bio. 48: 443 (1970); Pearson and Lipman, Methods in Mol. Biol. 24: 307-31 (1988); Higgins and Sharp, Gene 73: 237-44 (1988); Higgins and Sharp, CABIOS 5: 151-3 (1989); Corpet et al., Nuc. Acids Res. 16: 10881-90 (1988); Huang et al., Comp. Appl. BioSci. 8: 155-65 (1992) and Pearson et al. , Meth. Mol. Biol. 24: 307-31 (1994). NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol. 215: 403-10 (1990)) can be accessed from the National Center for Biological Information (NCBI), etc. It can be used in conjunction with sequencing programs such as blastx, tblastn and tblastx. BLSAT is available at http: //www.ncbi. Accessible at nlm.nih.gov/BLAST/. Sequence homology comparison method using this program is http: // 丽. ncbi.nlm.nih.gov/BLAST/blast_help. You can check it in html. According to another aspect of the present invention, the present invention provides a recombinant vector comprising the above-described nucleic acid molecule of the present invention encoding an alginate lyase. The vector system of the present invention can be constructed through various methods known in the art, and specific methods thereof are disclosed in Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press (2001), This document is incorporated herein by reference. Vectors of the present invention can typically be constructed as vectors for cloning or as vectors for expression. In addition, the vector of the present invention can be constructed using prokaryotic cells as a host. Vectors of the invention can typically be constructed as vectors for cloning or vectors for expression.
예를 들어, 본 발명의 백터가 발현 백터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, tac 프로모터, lac 프로모터, /adJV5 프로모터, lpp 프로모터 , ¾ λ프로모터, pR 프로모터, rac5 프로모터, amp프로모터, recA프로모터, SP6 프로머터, trp프로모터 및 T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사 /해독 종결 서열을 포함하는 것이 일반적이다. 숙주 세포로서 E. coli 가 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위 (Yanofsky, C., J. Bacteriol. , 158: 1018-1024(1984)) 그리고 파아지 λ의 좌향 프로모터 (pL 프로모터, Herskowitz, I. and Hagen,For example, when the vector of the present invention is an expression vector and the prokaryotic cell is a host, a strong promoter capable of promoting transcription (for example, tac Promoter, lac promoter, / adJV5 promoter, lpp promoter, ¾ λ promoter, p R promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter and T7 promoter, etc.), ribosomal binding site for initiation of detoxification And transcription / detox termination sequences. When E. coli is used as the host cell, the promoter and operator site of the E. coli tryptophan biosynthetic pathway (Yanofsky, C., J. Bacteriol., 158: 1018-1024 (1984)) and the leftward promoter of phage λ (p L promoter, Herskowitz, I. and Hagen,
D. , Ann. Rev. Genet., 14 :399-445(1980))가 조절 부위로서 이용될 수 있다. 한편, 본 발명에 이용될 수 있는 백터는 당업계에서 종종 사용되는 플라스미드 (예: pSClOl, ColEl, pBR322, pUC8/9, pHC79, pUC19, pET 등), 파지 (예: g . B, λ -Charon, λ Δζΐ 및 M13 등) 또는 바이러스 (예: SV40등)를 조작하여 제작될 수 있다. D., Ann. Rev. Genet., 14: 399-445 (1980)) can be used as regulatory sites. On the other hand, vectors that can be used in the present invention are plasmids often used in the art (eg pSClOl, ColEl, pBR322, pUC8 / 9, pHC79, pUC19, pET, etc.), phages (eg g.B, λ-Charon , λ ζ, and M13) or viruses (eg, SV40, etc.).
한편, 본 발명의 백터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함하며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다. 본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 본 발명의 백터를 포함하는 형질전환체를 제공한다.  Meanwhile, the vector of the present invention includes an antibiotic resistance gene commonly used in the art as an optional marker, for example, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neomycin And resistance genes for tetracycline. According to another aspect of the present invention, the present invention provides a transformant comprising the vector of the present invention described above.
본 발명의 백터를 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주 세포는 당업계에 공지되어 어떠한 숙주 세포도 이용할 수 있으며, 예컨대, E. coli JM109, E. coli BL2KDE3), E. coli RR1, E. coli LE392, Host cells capable of stably and continuously cloning and expressing the vectors of the present invention are known in the art and can be used with any host cell, for example, E. coli JM109, E. coli BL2KDE3), E. coli RR1, E coli LE392,
E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있다. Strains of the genus Bacillus, such as E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringiensis, and enterobacteria and strains such as Salmonella typhimurium, Serratia marcensons and various Pseudomonas species. Etc.
본 발명의 백터를 숙주 세포 내로 운반하는 방법은, CaCl2 방법 (Cohen, S.N. et al. , Proc. Natl. Acac. Sci . USA, 9:2110- 2114(1973)), 하나한 방법 (Cohen, S.N. et al . , Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973); 및 Hanahan, D., J. Mo J. Biol. , 166:557- 580(1983)) 및 전기 천공 방법 (Dower, W.J. et al., Nucleic. Acids Res. , 16:6127-6145(1988)) 등에 의해 실시될 수 있다. The method of carrying the vector of the present invention into a host cell includes the CaCl 2 method (Cohen, SN et al., Proc. Natl. Acac. Sci. USA, 9: 2110-2114 (1973)), one method (Cohen, SN et al., Proc. Natl. Acac. Sci. USA, 9: 2110-2114 (1973); and Hanahan, D., J. Mo J. Biol., 166: 557- 580 (1983)) and electroporation methods (Dower, WJ et al., Nucleic. Acids Res., 16: 6127-6145 (1988)) and the like.
숙주 세포 내로 주입된 백터는 숙주 세포 내에서 발현될 수 있으며, 이러한 경우에는 다량의 알지네이트 라이아제를 얻게 된다. 예를 들어, 상기 발현 백터가 lac프로모터를 포함하는 경우에는 숙주 세포에 IPTG 를 처리하여 유전자 발현을 유도할 수 있다. 본 발명의 또 다른 양태에 따르면, 본 발명은 상기 제 1 항의 알지네이트 라이아제 (alginate lyase) 또는 상기 제 5 항의 형질전환된 세포를 알지네이트에 접촉시키는 단계를 포함하는 알지네이트의 분해 방법을 제공한다.  Vectors injected into host cells can be expressed in host cells, in which case a large amount of alginate lyase is obtained. For example, when the expression vector includes a lac promoter, the host cell may be treated with IPTG to induce gene expression. According to another aspect of the present invention, the present invention provides a method of degrading alginate, comprising contacting the alginate lyase of claim 1 or the transformed cell of claim 5 with alginate.
본 발명자들은 알지네이트 분해능을 갖는 효소 및 이러한 효소를 생산하는 미생물 균주를 발견하고자 하였으며 상기 효소 또는 균주를 이용하여 저분자화 알지네이트를 개발하고자 노력하였다. 그 결과, 알지네이트를 종래의 공지된 합성 방법과는 다르게 분해시킬 수 있는 알지네이트 라이아제를 발굴하였고, 이로부터 저분자화 알지네이트의 생성을 확인 하였다.  The present inventors have attempted to find enzymes having alginate resolution and microbial strains producing such enzymes and have tried to develop low molecular weight alginates using these enzymes or strains. As a result, the alginate lyase which can decompose alginate differently from the conventional synthesis method was discovered, and from this, the production of low molecular weight alginate was confirmed.
【발명의 효과】 【Effects of the Invention】
본 발명의 특징 및 이점을 요약하면 다음과 같다:  The features and advantages of the present invention are summarized as follows:
(a) 본 발명은 자연의 미생물군에 존재하는 미지의 메타지놈을 분석하여 신규 미생물 및 단백질을 제공할 수 있다.  (a) The present invention can provide new microorganisms and proteins by analyzing unknown metagenomes present in a natural microbial group.
(b) 본 발명은 해조류의 다당체 분해능이 우수한 미생물을 분리하여 안정적으로 해조류를 분해할 수 있는 효소를 제공할 수 있다.  (b) The present invention can provide an enzyme that can stably decompose algae by separating microorganisms having excellent polysaccharide degrading ability.
(c) 본 발명은 기능성 다당류를 생물공학적으로 대량생산하는 기술을 활용하여 해조류 가공공정에서 파생되는 폐기물의 양을 감소시키고 자원의 활용도를 높이는 기술을 제공할수 있다.  (c) The present invention can provide a technique for reducing the amount of waste derived from the algae processing process and increasing the utilization of resources by utilizing the technology of biotechnological mass production of functional polysaccharides.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1 은 세틸피리디늄 클로라이드 (cetylpyridinium chloride)법을 활용한 알지네이트 가수분해능 평가 결과이다. 도 1 은 활성을 확인한 플레이트 스크리닝을 보여준다. (A) Flavobacterium sp. 유래의 양성대조군; (B) E. coli 유래의 음성대조군 및 (C) 알지노라이틱 메타지놈 절편 (AlyDW)를 나타낸다. 1 is a result of the evaluation of alginate hydrolysis using the cetylpyridinium chloride (cetylpyridinium chloride) method. 1 confirms the activity Show plate screening. (A) Flavobacterium sp. Positive control group derived; (B) E. coli-derived negative control group and (C) alginolatic metagenome fragment (AlyDW).
도 2 는 알지노라이틱 메타지놈 프래그먼트 (Aly V)의 도식도이다. 도면에 나타나는 명암의 차이는 추정 유전자의 기능적인 분류를 나타낸다. 대각선 줄무늬는 세포의 프로세스와 관련된 0RF 이며, 블램크 화살표는 대사와 관련된 0RF 이고, 밝은 회색은 정보저장과 관련된 0RF 이다. 진한 회색은 상동성이 없는 불분명 유전자를 나타낸다.  2 is a schematic diagram of an alginolatic metagenome fragment (Aly V). Differences in contrast shown in the figure indicate functional classification of putative genes. Diagonal stripes are 0RF related to cell processes, Brake arrows are 0RF related to metabolism, and light gray are 0RF related to information storage. Dark gray color indicates unclear genes.
도 3 은 메타지놈 프래그먼트 (AlyDW)의 알지네이트 라이아제 활성에 대한 pH(A) 및 온도 (B)의 영향을 확인한 환원당 분석 결과를 보여준다.  Figure 3 shows the results of reducing sugar analysis confirming the effect of pH (A) and temperature (B) on the alginate lyase activity of metazyme fragment (AlyDW).
도 4 는 박막크로마토그래피를 활용한 메타지놈 프래그먼트 (AlyDW)에 의한 알지네이트의 디폴리머리제이션 결과를 보여준다. 왼쪽 패널 (a)는 40 °C, 3시간 인큐베이션 후의 폴리 (p-D-mannuronate, lane 1) 및 폴리 (α- L-guluronate, lane 2)의 가수분해 프로필을 보여준다. 오른쪽 패널 (b)는 알지네이트 및 알지노라이틱 메타지놈 프래그먼트 (AlyDW)의 인큐베이션 후에 얻은 HPLC 분획의 분해된 알지네이트 산물을 보여준다. Flavobacterium sp. 유래의 양성대조군 (lane 4), 음성대조군 (알지네이트 유일, lane 5), 음성대조군 (효소 유일, lane 6). M 은 G1 (글루코즈), G2(셀로바이오즈), G3(셀로트라이오즈), G4(셀로테트라오즈), G5(샐로펜타오즈), G6(샐로핵사오즈), G7(셀로헵타오즈) 및 G8(샐로옥타오즈)의 표준 흔합물이다. Figure 4 shows the results of depolymerization of alginate by metagenome fragments (AlyDW) utilizing thin layer chromatography. Left panel (a) shows the hydrolysis profiles of poly (pD-mannuronate, lane 1) and poly (α-L-guluronate, lane 2) after incubation at 40 ° C. for 3 hours. The right panel (b) shows the digested alginate product of the HPLC fractions obtained after incubation of alginate and alginolatic metagenome fragments (AlyDW). Flavobacterium sp. Positive control (lane 4), negative control (alginate only, lane 5), negative control (enzyme only, lane 6). M is G1 (glucose), G2 (cellobiose), G3 (cellotriose), G4 (cellotetraose), G5 (salopentaose), G6 (salonucleose), G7 (celloheptaose) and G8 (Salo Octaose) is a standard complex.
도 5-6 은 메타지놈 프래그먼트 유래의 추정 알지네이트 라이아제 및 메타지놈 프래그먼트 (0RF-11)단백질의 얼라인 결과를 보여준다. 아미노산 서열은 ClustalX 프로그램을 이용하여 얼라인하였다. 비교한 생물은 Klebsiella pneumoniae subsp . aerogenes, Saccharophagus degradans 2-40, Microbulbifer sp. 6532A , Vibrio harveyi aDA3, Cel lulophaga lytica DSM 7489, Vibrio sp. A9m, Vibrio alginolyticus 40B, Pseudoa I teromonas sp. CY2, Vibrio splendidus 12B01 , Polaribacter sp. MED152 및 Agar Ivor an s sp. JAM-Alra 이며 상기 생물의 진뱅크 가입 넘버는 각각 Q59478, ABD81738, BAJ62034, ZP_0617515, YP_004263738 , BAH79133, ZP_06182095, ACM89454, ΖΡ— 00990010, ΖΡ_01052859 및 BAG70358 이다. 도 7 은 세틸피리디늄 클로라이드 (cetylpyridinium chloride)법을 활용한 알지네이트 가수분해능 평가 결과이다. 도 7 은 활성을 확인한 플레이트 스크리닝을 보여준다. (A) Flavobacterium sp. 유래의 양성대조군; (B) E. coli 유래의 음성대조군; (C) 알지노라이틱 메타지놈 절편 (AlyDW) 및 (D) 재조합 알긴산 분해효소 (AlyDWll)를 나타낸다. 5-6 show the alignment results of putative alginate lyase and metagenome fragment (0RF-11) proteins derived from metagenome fragments. Amino acid sequences were aligned using the ClustalX program. The compared organisms were Klebsiella pneumoniae subsp. aerogenes, Saccharophagus degradans 2-40, Microbulbifer sp. 6532A, Vibrio harveyi aDA3, Cel lulophaga lytica DSM 7489, Vibrio sp. A9m, Vibrio alginolyticus 40B, Pseudoa I teromonas sp. CY2, Vibrio splendidus 12B01, Polaribacter sp. MED152 and Agar Ivor an s sp. JAM-Alra and the gene bank entry numbers of the organisms are Q59478, ABD81738, BAJ62034, ZP_0617515, YP_004263738, BAH79133, ZP_06182095, ACM89454, ΖΡ— 00990010, ΖΡ_01052859 and BAG70358, respectively. 7 is a result of the evaluation of alginate hydrolysis using the cetylpyridinium chloride (cetylpyridinium chloride) method. 7 shows plate screening confirming activity. (A) Flavobacterium sp. Positive control group derived; (B) negative control from E. coli; (C) Arginolatic Metagenome Fragment (AlyDW) and (D) Recombinant Alginic Acid Degrading Enzyme (AlyDWll).
도 8 은 재조합 알긴산 분해효소 (AlyDWll)의 SDS-PAGE 분석 및 자이모그램 (zymogram) 활성 염색의 결과를 나타낸다. (a) SDS-PAGE 후 쿠마시 브릴리언트 불루 R-250 을 이용하여 염색하였다. M 은 분자량 마커이며, 1 열은 IPTG를 이용하여 발현된 pMAL-c2X-AlyDWl 의 세포 추출물 2 열은 아밀로오스 친화 컬럼을 이용한 세척 과정, 3 열은 최종 용출된 재조합 알긴산 분해효소 (AlyDWll)이다. (b)는 자이모그램 활성 염색 결과로, 1 열은 재조합 알긴산 분해효소이며, 2 열은 Flavobacterium sp. 유래의 양성대조군이다.  8 shows the results of SDS-PAGE analysis and zymogram active staining of recombinant alginic acid degrading enzyme (AlyDWll). (a) SDS-PAGE and staining using Coomassie Brilliant Blue R-250. M is the molecular weight marker, column 1 is the cell extract of pMAL-c2X-AlyDWl expressed using IPTG, column 2 is a washing process using an amylose affinity column, column 3 is the final eluted recombinant alginic acid degrading enzyme (AlyDWll). (b) shows the result of Zymogram activity staining, row 1 is recombinant alginic acid degrading enzyme, and row 2 is Flavobacterium sp. It is a positive control group of origin.
도 9 는 재조합 알긴산 분해효소의 알지네이트 라이아제 활성에 대한 pH(A) 및 온도 (B)의 영향을 확인한 환원당 분석 결과를 보여준다.  Figure 9 shows the result of reducing sugar analysis confirming the effect of pH (A) and temperature (B) on the alginate lyase activity of the recombinant alginic acid degrading enzyme.
도 10 은 재조합 알긴산 분해효소의 알긴산 분해능을 박막 크로마토그래피를 통해 보여준 결과이다. (a) 재조합 알긴산 분해효소를 폴리 (β-D-만누로네이트, 1 열) 또는 폴리 (α-L-구루로네이트, 2 열)를 45°C에서 3시간 반웅시켰을 때 나타나는 가수분해 결과를 보여준다. 3 열 및 4 열은 양성대조군으로 avobacteriuin sp.를 폴리 ?-D-만누로네이트 또는 폴리 a-L-구루로네이트, lane 4)와 반응한 것이며, 5 열 및 6 열은 음성대조군을 폴리^ -D-만누로네이트 또는 폴리 α-L-구루로네이트와 반웅한 결과이다. (b)는 재조합 알긴산 분해효소를 알긴산과 45°C, 3 시간 반웅 후 알긴산 분해정도 결과 (1 열)를 나타낸다. 2 열은 양성대조군, Flavobacterium sp. 이며, 음성대조군으로 각각 알지네이트 (3 열) 및 효소 (4 열)을 사용하였다. M 은 G1 (글루코오즈), G2(셀로바이오즈), G3(셀로트라이오즈), G4 (셀로테트라오즈), G5(셀로펜타오즈), G6(셀로핵사오즈), G7(셀로헵타오즈), G8(셀로옥타오즈)의 흔합물을 기준으로 하였다. 【발명을 실시하기 위한 구체적인 내용】 이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. 실시예 실험 재료 및 방법 10 shows the alginate resolution of the recombinant alginic acid degrading enzyme through thin layer chromatography. (a) Hydrolysis result of reaction of recombinant alginic acid dehydrogenase with poly (β-D-mannuronate, row 1) or poly (α-L-gururonate, row 2) at 45 ° C for 3 hours. Shows. Rows 3 and 4 are positive controls that reacted avobacteriuin sp. With poly? -D-mannuronate or poly aL-gururonate, lane 4), and columns 5 and 6 were poly ^ -D negative controls. -Reacted results with mannuronate or poly α-L-gururonate. (b) shows the result of degradation degree of alginic acid after reaction with recombinant alginic acid degrading enzyme with alginic acid at 45 ° C for 3 hours (column 1). Row 2 was positive control, Flavobacterium sp. Alginate (3 rows) and enzyme (4 rows) were used as negative controls, respectively. M is G1 (glucose), G2 (cellobiose), G3 (cellotriose), G4 (cellotetraose), G5 (cellopentaose), G6 (cellonucleose), G7 (celloheptaose), Based on the combination of G8 (cellooctaose). DETAILED DESCRIPTION Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. . EXAMPLES Experimental Materials and Methods
메타지놈 라이브러리 컨스트럭션 (Met agenom i c library construction)  Meta agenom i c library construction
2009 년 2 월, 대한민국 여수 근해에서 전복 (abalone) 샘플을 수득하였다. 직접 DNA 추출 및 정제하여 DNA 를 준비하였다.7 메타지놈 라이브러리를 이전에 설명된 적절한 프로토콜을 사용하여 샘플로부터 컨스트럭트하였다.28 순수 정제된 DNA 는 적당량의 Sau3AI 제한효소로 부분절단하고 1% 아가로스 젤에서 전기영동하여 40-50 kb 부분의 DNA 만을 용출하였으며 CIAP(Calf intestinal alkaline phosphatase)로 DNA 를 탈인산화 하였다. 메타지놈 DNA 를 포스미드 백터 (pCClFOS ready vector, Epicentre, 미국)를 BamHI 제한효소로 자른 후 Sau3AI 로 부분절단된 DNA와 16°C에서 16 시간 라이게이션 반응시켰다. MAX 람다 패키징 추출 키트 (Epicentre, USA)로 인 비트로 패키징을 수행하였으며 카나마이신 (50 lig/ml)이 들어간 LB 고체 배지에 도말하여 재조합 된 콜로니만 이용하였다. 이어, 덱 균 Escherichia coif) 형질감염시켜 메가지놈 라이브러리를 구축하였다. 라이브러리스크리닝 및숏건 (shotgun)서열 분석 In February 2009, abalone samples were obtained off the coast of Yeosu, South Korea. DNA was prepared by direct DNA extraction and purification. 7 Metagenome libraries were constructed from samples using the appropriate protocol described previously. 28. The purified DNA was partial digested with Sau3AI restriction enzyme and the appropriate amount of DNA eluted only 40-50 kb piece by electrophoresis on 1% agarose gel was dephosphorylated by the DNA (Calf intestinal alkaline phosphatase) CIAP. Metagenome DNA was digested with a phosphid vector (pCClFOS ready vector, Epicentre, USA) with BamHI restriction enzyme and then ligated at 16 ° C with DNA cleaved with Sau3AI. Packaging was performed in vitro with the MAX lambda packaging extraction kit (Epicentre, USA) and only recombinant colonies were plated on LB solid medium containing kanamycin (50 lig / ml). Subsequently, Deck Escherichia coif) was transfected to construct a megnome library. Library Screening and Shotgun Sequence Analysis
활성 알지네이트 라이아제 (alginate lyase)의 분해능을 평가하기 위해 세틸피리디늄 클로라이드 (cetylpyridinium chloride, CPC) 분석을 수행하였다. 메타지놈 DNA 를 포스미드 백터 (pCClFOS ready vector, Epicentre, 미국)에 라이게이션하여 람다 (lambda) 파아지에 패킹하고 Escherichia coli 에 감염시켰다. 그 결과로 얻은 감염 세포를 0.1% 알지네이트가 포함된 LB(Luria-Bertani) 아가 (agar) 배지에서 하루 동안 배양하였다. 상기 세포에 10% CPC 용액을 첨가하고 37°C에서 1 시간동안 대기하여 형성된 클리어존을 관찰하였다 (도 1). 양성 클론의 전체 서열을 알기 위해 정제한 포스미드 DNA 및 PHRED/PHRAP/CONSED 패키지로부터 준비한 숏건 DNA 라이브러리를 숏건 시퀀싱 리드로 조합하기 위해 사용하였다. DNA 서열은 제조업자의 공지에 따라 ABI 9700 써모싸이클러 (Applied Biosys terns) 및 ABI PRISM™ Bi Dye™ Terminator Cycle Sequencing kit(Appl ied Biosystems, version 3.1)를 사용하여 결정하였다. 데이터베이스 검색 및 서열 비교를 위해 국제생명공학정보센터 (National Center for Biotechnology Information, NCBI)의 블라스트 프로그램을 사용하였다. 완전한 포스미드 삽입서열 insert 을 Artemis 프로그램을 사용하여 주석을 달고 BLASTP 및 PSIBLAST 프로그램을 사용하여 단백질 코딩 부분의 기능을 확인하였다. 예상 단백질은 이종상동성 그룹(01"1±010 003 groups, C0R)의 클러스터 범주에 따라 분류하였다.12'2223 CLUSTAL.X 프로그램을 사용하여 얻은 포스미드 클론 0RF(open reading frames: 0RF)의 완전한 뉴클레오타이드 서열을 NCBI 뉴클레오타이드 데이터베이스로부터 얻은 동종 유전자와 얼라인하였다 .6 S 활성의 결정 Cetylpyridinium chloride (CPC) analysis was performed to evaluate the resolution of the active alginate lyase. Metagenome DNA was ligated into a phosphid vector (pCClFOS ready vector, Epicentre, USA) to pack into lambda phage and infected with Escherichia coli. 0.1% of the resulting infected cells It was incubated for one day in LB (Luria-Bertani) agar medium containing alginate. 10% CPC solution was added to the cells and the clear zone formed by waiting at 37 ° C. for 1 hour (FIG. 1). Shotgun DNA libraries prepared from purified phosmid DNA and PHRED / PHRAP / CONSED packages were used to combine the shotgun sequencing reads to determine the total sequence of positive clones. DNA sequences were determined using ABI 9700 Thermocyclers (Applied Biosys terns) and ABI PRISM ™ Bi Dye ™ Terminator Cycle Sequencing kit (Appl ied Biosystems, version 3.1) according to the manufacturer's knowledge. The blast program of the National Center for Biotechnology Information (NCBI) was used for database searches and sequence comparisons. The complete phosphid insert was annotated using the Artemis program and the function of the protein coding portion was confirmed using the BLASTP and PSIBLAST programs. Of: (0RF open reading frames) Estimated protein yijongsang Bi group were classified according to the category cluster 12 '22 23 eu CLUSTAL.X program phosphine imide 0RF clones obtained using a (01 "1 ± 010 003 groups , C0R). The complete nucleotide sequence was aligned with homologous genes obtained from the NCBI nucleotide database Determination of 6 S activity
효소의 엔도글루카나제 (endoclucanase) 활성은 대량의 환원당을 처리하여 카보네이트의 글라이코시딕 본드의 효소적 가수분해로 증가된 색의 세기를 측정하는 소모기 넬슨 (Nelson-Somogyi) 분석으로 결정하였다.3 표준곡선은 분광광도계 (메카시스, 한국)를 사용하여 525 nm 흡광도 측정을 기준으로 31.5
Figure imgf000017_0001
β&/ηί 농도 범위의 글루코즈를 준비하였다. 0.1 Μ 시트레이트 -포스페이트 (citrate— phosphate) 버퍼 (pH 4.0-7.0), 10 mM 포스페이트 버퍼 (pH 8.0) 및 50 mM 글라이신-수산화나트륨 (glycine-NaOH) 버퍼 (pH 9.0-10.0)을 사용하여 온도 (15°C-50°C) 및 pH(4.0-10.0)에 서 2 시간 동안의 최적 효소 활성을 측정하였다. 최적 조건 (pH 8.0 및 40°C)의 메탈 이온 및 니코틴아마이드 아데닌 다이뉴클레오타이드 (nicotinamide adinine dinucleotide, NAD+) 존재시에 효소활성의 억제 및 증대를 결정하였다. 알지네이트 라이아제 (alginate lyase) 활성 측정
The endoclucanase activity of the enzyme was determined by the Nelson-Somogyi assay, which measures the increased color intensity by enzymatic hydrolysis of glycosidic bonds of carbonates by treating large amounts of reducing sugars. . 3 The standard curve is 31.5 based on 525 nm absorbance measurements using a spectrophotometer (Mecassis, Korea).
Figure imgf000017_0001
Glucose was prepared in the β & / ηί concentration range. Temperature using 0.1 Μ citrate-phosphate buffer (pH 4.0-7.0), 10 mM phosphate buffer (pH 8.0) and 50 mM glycine-NaOH buffer (pH 9.0-10.0) Optimum enzyme activity for 2 hours at (15 ° C-50 ° C) and pH (4.0-10.0) was determined. Metal ions and nicotinamide adenine at optimal conditions (pH 8.0 and 40 ° C) Inhibition and enhancement of enzyme activity in the presence of dinucleotide (nicotinamide adinine dinucleotide, NAD + ) was determined. Determination of alginate lyase activity
알지네이트 라이아제의 생산을 위해 16 시간 동안 40°C로 LB(Luria-LB (Luria-) at 40 ° C for 16 hours for the production of alginate lyase
Bertani) 배지에서 클론을 배양하였다. 배양 배지는 단백질 농축 키트 (Rapid-Con™ 단백질 농축 키트, 엘피스, 서울, 한국)를 사용하여 농축하였다. AlyDW 를 Lae隱 Π 에 의해 설명된 방법에 따라 2- 머갑토에탄올 (mercaptoethanol)이 없는 샘플버퍼를 처리하고 10% 아크릴아마이드 (acrylamide) 젤로 SDS-PAGE( sodium dodecyl sul fate- poly aery 1 amide gel electrophoresis)하여 분석하였다.3 SDS-PAGE 후에, 젤 안의 단백질을 25% 메탄올이 첨가된 재생버퍼 (50 mM Tris-HCl 버퍼, pH 7.0, 10 mg/ t 카세인 (casein), 2 mM EDTA, 0.01% NaN3)에서 3 회, 30 분 동안 재생하였다. 폴리아크릴아마이드 젤을 100 mM포스페이트 버퍼 1(ρΗ 8)로 세척한 후 1 mg/ 소듐 알지네이트 (sodium alginate), 10 gM NaCl 및 100 mM 포스페이트 버퍼 KpH 8)로 구성된 1.5% 아가로즈 젤에 덮어씌웠다. 상기 젤을 37°C에서 20 시간 동안 인큐베이션 한 후에 10% CPC 용액에 1시간 동안 담가둔 후에 증류수에 담궈 세척하였다. 박층크로마토그래피를 이용한 반웅산물의 분석 Bertani) clones were cultured. Culture medium was concentrated using a protein concentration kit (Rapid-Con ™ Protein Concentration Kit, Elpis, Seoul, Korea). AlyDW was treated with a 2-mercaptoethanol-free sample buffer according to the method described by Lae 隱 Π and treated with SDS-PAGE (sodium dodecyl sul fate-polyaery 1 amide gel electrophoresis) with 10% acrylamide gel. ) Was analyzed. After 3 SDS-PAGE, the protein in the gel was washed three times in a regeneration buffer (50 mM Tris-HCl buffer, pH 7.0, 10 mg / t casein, 2 mM EDTA, 0.01% NaN 3 ) with 25% methanol. And regenerated for 30 minutes. The polyacrylamide gel was washed with 100 mM phosphate buffer 1 (ρΗ 8) and then covered with a 1.5% agarose gel consisting of 1 mg / sodium alginate, 10 gM NaCl and 100 mM phosphate buffer KpH 8). The gel was incubated at 37 ° C. for 20 hours and then immersed in 10% CPC solution for 1 hour and then washed in distilled water. Analysis of Banung Products Using Thin Layer Chromatography
셀로올리고사카라이드 (eel lool igosaccharides) 표준 흔합물 (샐로바이오즈 (cellobiose), 셀로트라이오즈 (eel lotriose)ᅳ 샐로테트라오즈 (eel lotetraose), 샐로펜타오즈 (eel lopentaose) , 샐로핵사오즈 (cell ohexaose), 셀로헵타오즈 (eel loheptaose) 및 샐로옥타오즈 (cellooctaose))은 시그마-알드리치로부터 구매하였다. 테스트 클론이 갖는 알지네이트 라이아제 활성올 결정하기 위해, 0.1% 알지네이트를 37°C의 100 mM 포스페이트 버퍼 KpH 8)에 든 AlyDW(2.19 mg/m£) 50 ^와 반응하였다. 젤 여과크로마토그래피 (gel filtration chromatography: GFC)에 의한 알지네이트 올리고머의 분획에 아사히팩 (Asahipak) GS-310 컬럼 (21.5 隱 ID x 500 隨, 쇼와 덴코 쿄교 (Showa Denko Kogyo Co.Ltd.), 도쿄, 일본)을 이용한 HPLC (시마주 시스템, LC-6AD 펌프, RID-10A 디텍터, SPD-M20A 디텍터: 시마주, 도코, 일본)를 수행하였다. 물을 5
Figure imgf000019_0001
으로 홀려 샘플을 분리하였다. 분해된 알지네이트 용액의 aliquot(2 )을 주입하여 분획을 수득하였다. 반웅 산물을 1-프로판올 (propanol), 나이트로메탄 (nitromethane) 및 물 흔합물 (5:3:2 v/v/v)에서 2 시간동안 반웅한 후에 실리카 겔 폴레이트 (silica gel plate, Merck KGaA, 64271 Darmstadt, 독일)을 이용한 박막 크로마토그래피로부터 가수분해 산물을 분리하였다. 분리 이후에, 당 (sugar)에 1 ml 유황산 (sulfuric acid) 및 10 m 저장 (stock) 용액 (1 g 다이페닐아민 (diphenylamine), 1 ml 아닐린 (aniline), 100 mi 아세톤 (acetone))의 흔합물을 분무하여 가시화 하였다 .26 결과 및 토론 사항
Standard combinations of eel lool igosaccharides (cellobiose, eel lotriose ᅳ eel lotetraose, eel lopentaose, and cell ohexaose ), Eel loheptaose and cellooctaose) were purchased from Sigma-Aldrich. To determine the alginate lyase activeol possessed by the test clone, 0.1% alginate was reacted with AlyDW (2.19 mg / m £) 50 ^ in 37 ° C., 100 mM phosphate buffer KpH 8). Asahipak GS-310 column (21.5 隱 ID x 500 隨, Showa Denko Kogyo Co.Ltd., Tokyo) on fractions of alginate oligomers by gel filtration chromatography (GFC) , Japan (Shimaju) System, LC-6AD pump, RID-10A detector, SPD-M20A detector: Shimazu, Toko, Japan). Watering 5
Figure imgf000019_0001
The sample was separated by pouring. Aliquot (2) of the digested alginate solution was injected to give a fraction. The reaction product was reacted in 1-propanol, nitromethane and water mixture (5: 3: 2 v / v / v) for 2 hours before silica gel folate (silica gel plate, Merck KGaA). Hydrolysis products were isolated from thin layer chromatography using (64271 Darmstadt, Germany). After separation, in sugar 1 ml of sulfuric acid and 10 m stock solution (1 g diphenylamine, 1 ml aniline, 100 mi acetone) The mixture was sprayed and visualized. 26 Results and discussions
메타지놈프래그먼트의스크리닝 및 0RF분석  Screening and 0RF Analysis of Meta-Gnome Fragments
전복 (abalon)의 장내 미생물 식물군 (flora)으로부터 구성된 총 9 만 클론 중 선별된 3 840 클론으로부터 알지네이트 라이아제 활성을 발현하는 하나의 박테리아 메타지놈 프래그먼트 (AlyDW)를 선별하였다 (도 1). 숏건 (shot-gun) 시뭔싱 데이터의 분석은 양성 메타지놈 프래그먼트는 평균 G+C 함량 43.3% 및 22 개의 예상 0RF 의 길이 31.7 kb 를 갖는 유전자를 나타낸다. a 는 TMHMM 조사를 기초로 작성되었으며, b 는 C0G 그룹에 해당되지 않음을 나타낸다 (도 2 및 표 1).  One bacterial metagenome fragment (AlyDW) expressing alginate lyase activity was selected from 3 840 clones selected from a total of 90,000 clones composed of the intestinal microflora of abalone (FIG. 1). Analysis of the shot-gun sequence data shows that the positive metagnome fragments have genes with an average G + C content of 43.3% and a length of 31.7 kb of 22 expected 0RFs. a was prepared based on TMHMM survey, b indicates that it does not belong to the C0G group (FIG. 2 and Table 1).
【표 1】  Table 1
Figure imgf000019_0002
. /Ga aproteobacter i a
Figure imgf000019_0002
. / Ga aproteobacter ia
Vibrio sp  Vibrio sp
Hypothet ical protein 3.00E-258 1 - NA  Hypothet ical protein 3.00E-258 1-NA
. /Gammaproteobacter ia  . / Gammaproteobacter ia
Vibrio coral liilyticu  Vibrio coral liilyticu
Hypothet ical protein 1.00E-73 1 - NA  Hypothet ical protein 1.00E-73 1-NA
s/Gan aproteobacteria  s / Gan aproteobacteria
Vibrio parahaemolyt icus  Vibrio parahaemolyt icus
Transcr ipt ional egulator 2.00E一 79 0 C0G0583  Transcr ipt ional egulator 2.00E 一 79 0 C0G0583
/Gammaproteobacter i a  Gammaproteobacter i a
Photobacteriu sp.  Photobacteriu sp.
Hypothet ical protein 2.00E-61 1 - NA  Hypothet ical protein 2.00E-61 1-NA
/Gammaproteobacter i a  Gammaproteobacter i a
Mult idrug resistance Vibrio vulnificus  Mult idrug resistance Vibrio vulnificus
2.00E-166 2 Q C0G1566 ef f lux pump /Gammaproteobacter j a  2.00E-166 2 Q C0G1566 ef f lux pump / Gammaproteobacter j a
Vibrio vulnificus  Vibrio vulnificus
Hypothet ical protein 3.00E-55 3 - NA  Hypothet ical protein 3.00E-55 3-NA
/Gammaproteobacter i a  Gammaproteobacter i a
Alginate lyase (= Poly Klebsiella pneumoniae  Alginate lyase (= Poly Klebsiella pneumoniae
6.00E-117 0 - NA ji?-Dmannuronate lyase) subsp. aerogenes/Gammaproteobactern' 6.00E-117 0-NA ji? -Dmannuronate lyase) subsp. aerogenes / Gammaproteobactern ''
Vibrio splendidus  Vibrio splendidus
L-yase , putat ive 0.00E+00 - - NA  L-yase, putat ive 0.00E + 00--NA
/Gammaproteobacter j a  Gammaproteobacter j a
Vibrio sp.  Vibrio sp.
Alginate lyase 0.00E+00 0 - NA  Alginate lyase 0.00E + 00 0-NA
/Gammaproteobacter ί a  / Gammaproteobacter ί a
Transcr ipt ional Vibrio splendidus  Transcr ipt ional Vibrio splendidus
9.00E-122 0 K C0G0583 regulator , LysR fami ly /Gammaproteobacter  9.00E-122 0 K C0G0583 regulator, LysR fami ly / Gammaproteobacter
Vibrio sp.  Vibrio sp.
3robable oxidoreductase 1.00E-95 0 QR C0G1028 3 robable oxidoreductase 1.00E-95 0 QR C0G1028
/Gammaproteobacter i a  Gammaproteobacter i a
Oxygen- i ndependent  Oxygen- i ndependent
Vibrio splendidus  Vibrio splendidus
coproporphyrinogen I II 6.00E-138 0 C C0G1032 coproporphyrinogen I II 6.00E-138 0 C C0G1032
/Gammaproteobacter  / Gammaproteobacter
oxidase, putat ive oxidase, putat ive
"lavodoxin reductase Vibrio parahaemolyt icus "Lavodoxin reductase Vibrio parahaemolyt icus
4.00E-72 0 R C0G3217 fami ly 1 protein /Gammaproteobacter i a  4.00E-72 0 R C0G3217 fami ly 1 protein / Gammaproteobacter i a
Vibrio cor a lli'i lyt icus Vibrio cor a lli ' i lyt icus
)ihydroorotase 2.00E-171 0 F C0G0418  ihydroorotase 2.00E-171 0 F C0G0418
/Gammaproteobacter i a Vibrio cholera / Gammaproteobacter ia Vibrio cholera
19 Glycerol kinase 0.00E+00 0 C C0G0554  19 Glycerol kinase 0.00E + 00 0 C C0G0554
/Ga maproteobacteria  / Ga maproteobacteria
G 1 ucose- 1-phospha t e Vibrio shiloni i  G 1 ucose- 1-phospha t e Vibrio shiloni i
20 0.00E+00 0 0 C0G0448 adeny lyltr ans fer ase /Gammaproteobacteria  20 0.00E + 00 0 0 C0G0448 adeny lyltr ans fer ase / Gammaproteobacteria
ABC transporter,  ABC transporter,
Vibrionales bacterium  Vibrionales bacterium
21 periplasmic 2.00E-88 0 P C0G0226  21 periplasmic 2.00E-88 0 P C0G0226
/Gammaproteobacteria  / Gammaproteobacteria
substratebinding protein  substratebinding protein
Vibrio oriental is  Vibrio oriental is
22 ^IodN一 related protein 6.00E-80 0 I C0G32030  22 ^ IodN 一 related protein 6.00E-80 0 I C0G32030
/Gammaproteobacteria 상기 ORF 중 17 ORF 는 NCBI 뉴클레오타이드 데이터베이스에 알려진 기능의 유전자와 중요한 유사성을 보여주며, 5 0RF는 NCBI 박테리아의 게놈 데이터베이스에 가설 단백질에 상웅한다. 6 개의 0RF 는 세포의 프로세싱 및 정보 저장과 관련이 있으며, 10 0RF 는 대사작용과 관련이 있다. 3 0RF(11, 12 및 13)은 Klebsiella pneumonia 아종. aerogenes, Vibrio splendidus 및 Vibrio 종 Gammaproteobacteria 문의 알지네이트 라이아제 유전자의 단백질 서열과 유사성을 보여주었다. AJyW의 특징  / Gammaproteobacteria The 17 ORFs in the ORFs show significant similarities with the genes of the functions known in the NCBI nucleotide database, and 50 RF is a hypothetical protein in the genome database of NCBI bacteria. Six 0RFs are involved in cell processing and information storage, and 10 0RFs are involved in metabolism. 3 0RF (11, 12 and 13) are Klebsiella pneumonia subspecies. The aerogenes, Vibrio splendidus and Vibrio species showed similarity with the protein sequence of the alginate lyase gene of the Gammaproteobacteria door. AJyW features
환원당 분석에서 알지노라이틱 (alginolytic) 활성은 30-45 °C 조건에서 80% 이상의 활성을 보여주었으며, 40°C에서 최고치를 보여주었다. 저온 (15-25°C)에서도 40°C에서 보인 활성의 60士 5% 의 활성이 유지되어 저온 활성 효소의 특징을 보여주었다 (도 3). pH 8에서 최대 알지노라이틱 활성을 보였으며, pH 4 내지 pH 9 에서 약 90% 잔여 활성을 확인하였다. 그러나, 활성은 pH 9 이상에서 급감하였다 (도 3). 알지네이트 라이아제의 활성에 대한 금속이온 및 NAD+와 같은 보조인자의 영향을 표 2 에 요약하였다. 음성대조군의 값을 T 로 하여 상대값으로 나타내었으며, 3번의 독립적인 실험으로 표준편차값을 도출하였다. In the reducing sugar assay, the alginolytic activity showed more than 80% of activity at 30-45 ° C and peaked at 40 ° C. Even at low temperatures (15-25 ° C), 60 5% of the activity shown at 40 ° C was maintained, showing the characteristics of the low temperature active enzyme (Fig. 3). It showed maximum alginolitic activity at pH 8 and about 90% residual activity at pH 4 to pH 9. However, activity dropped sharply above pH 9 (FIG. 3). The effects of metal ions and cofactors such as NAD + on the activity of alginate lyase are summarized in Table 2. The negative control group was represented by T as a relative value, and the standard deviation value was derived from three independent experiments.
【표 2】  Table 2
화학물질 폴드 활성 단일 조합 (양이온 +NAD+)Chemical fold activity Single Combination (Cation + NAD +)
None 1.00+-0.05 -None 1.00 + -0.05-
NAD+ (0 0.94±0.01 -NAD + (0 0.94 ± 0.01-
EDTA (1 mM) 0.80±0.01 -EDTA (1 mM) 0.80 ± 0.01-
CaCh 0.94±0.02 1.5 0.20 CaCh 0.94 ± 0.02 1.5 0.20
MgCl 0.93±0.01 1.29±0.10  MgCl 0.93 ± 0.01 1.29 ± 0.10
KC1 (1 mM) 0.90±0.01 1.40±0.36  KC1 (1 mM) 0.90 ± 0.01 1.40 ± 0.36
MgS0 0.90±0.15 1.68±0.05  MgS0 0.90 ± 0.15 1.68 ± 0.05
FeSC (l 0.86±0.03 1.11±0.04 FeSC ( l 0.86 ± 0.03 1.11 ± 0.04
CoC 1.13±0.02 1.36±0.24  CoC 1.13 ± 0.02 1.36 ± 0.24
MllC 0.81±0.01 1.11±0.14  MllC 0.81 ± 0.01 1.11 ± 0.14
CuCl2 0.98±0.01 1.17±0.10  CuCl2 0.98 ± 0.01 1.17 ± 0.10
NaCl (1 mM) 0.94±0.02 1.16±0.05  NaCl (1 mM) 0.94 ± 0.02 1.16 ± 0.05
AgNC 1.61±0.02 2.08±0.36 상기 결과는 NAD+, Mg2+ 및 Ag+의 조합은 알지네이트 라이아제 활성에 금속 양이온 및 NAD+가 없는 대조군에 비하여 최소 1.6-2.0 배 촉진효과 (stimulatory effect)를 미치는 것을 나타낸다. NAD+는 알지네이트 라이아제 활성의 증가를 야기하나 EDTA 는 알지네이트 라이아제 활성을 약 20% 억제한다. 이는 효소활성에 필수적인 양이온의 킬레이션 때문일 것이다. 절대 효소 활성은 최적조건에서 0.15 moles/min/mg 단백질이다. Haliotis spp. , Lit tor in spp. 및 Turbo cornutus 를 포함하는 해양 연체동물 (mollusk)로부터 수득한 알지네이트 라이아제는 25- 501 및 pH 4.0-9.6 에서 최적값을 갖는 엔도 -폴리 (M) 및 엑소 -폴리 (G) 라이아제이다. 효소 활성은 Ca2+ 또는 Mg2+같은 2 가 양이온이 있을 때 효소활성이 증가하였다.9'16'2627 이는 GH4 와 같은 글리코시드 가수 분해 효소군에서 α-1,4또는 β-1,4-글루코시딕 연결의 가수분해를 위해 NAD+및 금속이온이 요구된다는 보고가 있다 .25 AgNC 1.61 ± 0.02 2.08 ± 0.36 The results indicate that the combination of NAD +, Mg 2+ and Ag + has at least 1.6-2.0 fold stimulatory effects on alginate lyase activity compared to controls without metal cations and NAD +. NAD + causes an increase in alginate lyase activity while EDTA inhibits about 20% of alginate lyase activity. This may be due to the chelation of cations essential for enzymatic activity. Absolute enzyme activity is 0.15 moles / min / mg protein at optimal conditions. Haliotis spp. , Lit tor in spp. And alginate lyases obtained from marine mollusks including Turbo cornutus are endo-poly (M) and exo-poly (G) lyases having optimal values at 25-501 and pH 4.0-9.6. Enzyme activity increased in the presence of divalent cations such as Ca 2+ or Mg 2+ . 9 ' 16 ' 2627 It has been reported that NAD + and metal ions are required for the hydrolysis of α-1,4 or β-1,4-glucosidic linkages in a group of glycosidase such as GH4. 25
알지네이트 올리고머의 다른 프로필은 알지네이트 라이아제 (AlyE )의 알지네이트 분해로 확인하였다. AlyDW의 알지네이트 가수분해 최종산물을 3 시간 후에 박막크로마토그래피 (thin-layer chromatography)로 분석하였다 (도 4). 도 4를 보면, AlyDW은 엔도라이틱 (endolyt ic) 활성을 갖으며, 폴리 ( α-L-guluronate)보다 폴리 ( -1)-1113皿111"011^6)를 우선 분해하였다. 해양 연체동물로부터 분리한 알지네이트 라이아제는 엔도- 폴리 (M) 라이아제를 가장 선호한다.27 Another profile of alginate oligomers was confirmed by alginate degradation of alginate lyase (AlyE). After 3 hours, the alginate hydrolysis end product of AlyDW was subjected to thin-layer chromatography. Analyzes (FIG. 4). 4, AlyDW has endolitic activity and degrades poly (-1) -1113 皿 111 " 011 ^ 6) over poly (α-L-guluronate). Alginate lyase isolated from the most preferred endo-poly (M) lyase 27
고성능액체크로마토그래피 (high performance liquid chromatography: High performance liquid chromatography:
HPLC)를 수행하여 20 개의 분획 중 3 개의 분획은 Flavobacteri sp. 유래의 상업적 효소와 다르게 180 kDa-342 kDa으로 분해된 알지네이트 산물 및 1,153-1,315 Da 의 핵사머 (hexamer)를 구성되어 이는 상업적 효소보다 작은 분자량의 산물을 만드는 것으로 AlyDW가 유용한 효소임을 말한다. 알지노라이틱 0RF-11의 특징 HPLC) and three of the 20 fractions were purified by Flavobacteri sp. Unlike the commercial enzymes of origin, it consists of alginate products decomposed to 180 kDa-342 kDa and hexamers of 1,153-1,315 Da, which make AlyDW a useful enzyme to make products of lower molecular weight than commercial enzymes. Arginolitic 0RF-11 features
AlyDW 는 3 0RF(0RF11, 12 및 13)은 이론적으로 35, 67 및 57 kDa 의 분자질량을 갖는다. 아미콘 (Amicon) 농축기로 메타지놈 박테리아 세포 부유액을 농축한 후에, 관련 없는 단백질 10% SDS-PAGE 시 멀티 밴드를 나타냈다. SDS-PAGE 후에 , 젤 안의 단밸질은 재생조건에서 SDS-PAGE 로 분석하고 활성염색 하였다.  AlyDW has a molecular mass of 35, 67 and 57 kDa, which is theoretically 30 RF (0RF11, 12 and 13). After concentrating the metagenome bacterial cell suspension with an Amicon concentrator, the multibands appeared on 10% SDS-PAGE of unrelated protein. After SDS-PAGE, the protein in the gel was analyzed by SDS-PAGE and activated staining under regeneration conditions.
0RF 11 (AlyDW)의 추측 아미노산 서열과 Ae_2Al& Saccharophagus degradans 2-40) 및 d\ k{Klebsiel la pneumoniae subsp . aeri e/2es)유전자와의 상동관계는 각각 63% 및 65% 였다. 반면 algispiMjcrobulbifer sp. 6532A) , VME_15370( Vibrio harveyi 1DA3), Cel \y_305 (CeJluIophaga lytica DSM 7489), alg( Vibrio sp. A9m), VMC_35250( Vibrio alginolyticus 40B), alyPI {Pseudoalteromonas sp. CY2), V12B01_24259( Vibrio splendidus 12B01), W 52_06195{PoJarjbactor sp. MED152) 및 AlglA Aga / voraus sp. JAM-A1) 유전자와는 54¾-60%였다 (도 5-6). 폴리사카라이드 라이아제 (polysaccharide lyase: PL) 패밀리 7 알지네이트 라이아제는 기질 바인딩 및 촉매 부위로 작용하는 것으로 여겨지는 (R/E)(S/T/N)EL, Q(I/V)H 및 YF AG(V/I)YNQ 의 3 종류 고보존적인 아미노산 서열을 갖는다 .24 AlyDW 메타지놈 프래그먼트의 0RF 11는 K. pneumonia의 G 및 M 특이 라이아제 (AlyA), 해양 박테리아 ATCC 433367 의 M-특이 라이아제 (AlxM), 및 Cor nebactenwn ¾σ.의 G-특이 라이아제 (ALY-1)에서도 확인된 RSEL, QIH 및 YFKAGVYNQ 를 갖는다. 상기 아미노산 서열은 알지네이트 라이아제의 안정한 3 차원 구조 및 기능을 유지하는 필수적인 부분으로 판단된다.1314 Speculative amino acid sequence of 0RF 11 (AlyDW) and Ae_2Al & Saccharophagus degradans 2-40) and d \ k {Klebsiel la pneumoniae subsp. homology with the aeri e / 2es) genes was 63% and 65%, respectively. AlgispiMjcrobulbifer sp. 6532A), VME_15370 (Vibrio harveyi 1DA3), Cel \ y_305 (CeJluIophaga lytica DSM 7489), alg (Vibrio sp. A9m), VMC_35250 (Vibrio alginolyticus 40B), alyPI (Pseudoalteromonas sp. CY2), V12B01_24259 (Vibrio splendidus 12B01), W 52_06195 {PoJarjbactor sp. MED152) and AlglA Aga / voraus sp. JAM-A1) gene was 54¾-60% (Figures 5-6). Polysaccharide lyase (PL) family 7 alginate lyases are believed to act as substrate binding and catalytic sites (R / E) (S / T / N) EL, Q (I / V) H and It has three kinds of highly conserved amino acid sequences of YF AG (V / I) YNQ. The 0RF 11 of 24 AlyDW metagenome fragments are G and M specific lyase (AlyA) of K. pneumonia, M-specific lyase (AlxM) of marine bacteria ATCC 433367, and G-specific lyase (ALY) of Cor nebactenwn ¾σ. -1) also has RSEL, QIH and YFKAGVYNQ identified. The amino acid sequence is It is judged to be an essential part of maintaining the stable three-dimensional structure and function of alginate lyase. 1314
AlyDWll의 제조 및 분석 Manufacturing and Analysis of AlyDWll
전복 소화기관에 존재하는 미생물의 DNA 를 추출한 후, 추출된 전체 지노믹 DNA를 약 32kb 의 DNA 절편을 만든 후 삽입 DNA 의 엔드 리페어링을 하고 크기 선별을 한 후, CopyControl Cloning-Ready 백테 pCClFOS (포스미드 라이브러리 제조 키트, Epicentre)에 라이게이션 하고 대장균에 형질전환을 시킨 뒤, 항생제를 함유하고 있는 평판배지에 도말하고 배양하여 항생제 내성을 나타내는 형질전환주를 선별하여 포스미드 라이브러리를 제작하였다. 라이브러리로부터 알지네이트를 분해활성을 지닌 클론을 스크리닝 한 후 알긴산을 저분자로 가수 분해하는 엔도라이틱 (endolytic) 알지네이트 라이아제 활성을 가진 클론을 확보하였다 (도 7). 알지네이트 라이아제 유전자 0RF-11 을 Ban l 및 Hind 절단부위를 가진 프라이머를 이용하여 증폭시켰다. pMAL-c2X 백터 (NEW ENGLAND BioLabs, 영국)에 라이게이션 하여 E.coli BL2KDE3)에 넣은 후, IPTGGs이 3ropyl- 3-D-thiogalactopyranoside)를 이용하여 발현된 PMAL-c2X-AlyDWll 을 아밀로오스 친화 컬럼을 이용하여 재조합 단백질을 용출하였다. 10% SDS-PAGE를 이용해 약 76 kDa에서 과발현 된 AlyDWll을 확인하였다 (도 8). AlyDWll 을 환원당 분석법을 통하여 알긴산 분해 효소의 적정 pH 및 온도를 탐색한 결과 45°C에서 가장 높은 활성을 나타내었다. 최적 pH 는 pH 7 에서 나타났고 pH 8 보다 큰 pH 값에서는 활성이 감소하였다 (도 9). 금속 이온과 같은 보조인자는 NAD+, Mg24 또는 Ag+의 조합이 각각 금속 양이온과 NAD+ 없는 조건보다, 알지네이트 라이아제 활성에 대해 1.6 내지 2.1배 높은 것을 확인하였다 (표 3). After extracting the DNA of the microorganisms in the abalone digestive system, the extracted genomic DNA was made into 32 kb DNA fragments, end repaired and size-selected, and then the CopyControl Cloning-Ready back frame pCClFOS (POSMID). After ligating to a library preparation kit (Epicentre) and transforming E. coli, plated and cultured in a plate medium containing antibiotics, transformants exhibiting antibiotic resistance were selected to produce a phosphid library. After screening clones having an alginate degrading activity from the library, clones having an endolytic alginate lyase activity that hydrolyzed alginic acid to low molecules were obtained (FIG. 7). Alginate lyase gene 0RF-11 was amplified using primers with Ban l and Hind cleavage sites. After ligating into a pMAL-c2X vector (NEW ENGLAND BioLabs, UK) and placing it in E. coli BL2KDE3), PMTG-c2X-AlyDWll expressed by IPTGGs using 3ropyl-3-D-thiogalactopyranoside) was subjected to amylose affinity column. To elute the recombinant protein. 10% SDS-PAGE was used to identify AlyDWll overexpressed at about 76 kDa (FIG. 8). AlyDWll showed the highest activity at 45 ° C as a result of searching for the proper pH and temperature of alginic acid degrading enzyme through reducing sugar assay. Optimum pH appeared at pH 7 and decreased activity at pH values above pH 8 (FIG. 9). Cofactors such as metal ions confirmed that the combination of NAD +, Mg 24 or Ag + was 1.6-2.1 times higher for alginate lyase activity than conditions without metal cations and NAD +, respectively (Table 3).
【표 3]  [Table 3]
Figure imgf000024_0001
EDTA (1 mM) 0.75 ±0.25 -
Figure imgf000024_0001
EDTA (1 mM) 0.75 ± 0.25-
CaCl2 (1 mM) 0.95 ±0.03 1.53±0.20 CaCl 2 (1 mM) 0.95 ± 0.03 1.53 ± 0.20
MgCl2 (1 mM) 0.91 ±0.03 1.27±0.12 MgCl 2 (1 mM) 0.91 ± 0.03 1.27 ± 0.12
KC1 (1 mM) 0.92±0.01 1.43±0.13  KC1 (1 mM) 0.92 ± 0.01 1.43 ± 0.13
MgS04 (1 mM) 0.93±0.15 1.65±0.05 MgS0 4 (1 mM) 0.93 ± 0.15 1.65 ± 0.05
FeS04 (1 mM) 0.90±0.14 1.20±0.04 FeS0 4 (1 mM) 0.90 ± 0.14 1.20 ± 0.04
CoCl2 (1 mM) 1.08±0.05 1.30±0.14 CoCl 2 (1 mM) 1.08 ± 0.05 1.30 ± 0.14
MnCl2 (1 mM) 0.85±0.01 U4±0.16 MnCl 2 (1 mM) 0.85 ± 0.01 U4 ± 0.16
CuCl2 (1 mM) 1.01 ±0.08 1.10±0.10 CuCl 2 (1 mM) 1.01 ± 0.08 1.10 ± 0.10
NaCl (1 mM) 0.96 ±0.06 1.20±0.05  NaCl (1 mM) 0.96 ± 0.06 1.20 ± 0.05
AgN03 (1 mM) 1.31±0.03 2.10±0.21 AgN0 3 (1 mM) 1.31 ± 0.03 2.10 ± 0.21
알지네이트 라이아제 (AlyDWll)를 갖는 알지네이트 가수분해의 최종물을 3 시간 뒤에 박막 크로마토그래피 (Thin-layer Chromatography: TLC)로 관찰하였다. AlyDWll 은 엔도라이틱 활성을 가지고 폴리 ( α-L- 구루로네이트)보다 폴리 (^-D-만누로네이트)의 활성이 좋은 것으로 나타났으며 이는 대부분의 해양 연체생물에서 엔도 -폴리 (M) 라이아제가 관찰된 점과 의미를 같이한다. 알긴산과 반웅하여 얻은 산물 중 180 에서 342 Da, 540에서 720 Da, 1,080에서 1,260 Da에 이르는 알지네이트 저분자 올리고당을 수득하였으며, 이는 상업효소보다 적은 분자량을 생산할 수 있는 효소임을 보여준다 (도 10). AlyDWll DNA 서열는 진뱅크 (GeneBank) 접속 번호, JN392921로 등록하였다. 이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. 참조문헌  The final product of alginate hydrolysis with alginate lyase (AlyDWll) was observed 3 hours later by Thin-layer Chromatography (TLC). AlyDWll has endortic activity and shows better activity of poly (^-D-mannuronate) than poly (α-L-gururonate), which is endo-poly (M) in most marine molluscs. It is synonymous with lyase observed. Among the products obtained by reacting with alginic acid, alginate low-molecular oligosaccharides ranging from 180 to 342 Da, 540 to 720 Da, and 1,080 to 1,260 Da were obtained, which shows that the enzyme can produce a lower molecular weight than commercial enzymes (FIG. 10). The AlyDWll DNA sequence was registered with GeneBank Accession Number, JN392921. Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that such a specific technology is only a preferred embodiment, and the scope of the present invention is not limited thereto. Therefore, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof. Reference
1. Ammiraju J, Yu Y, Luo Μ, Kudrna D, Kim H, Goicoechea JL, Katayose Y (2005) Random sheared fosmid library as a new genomic tool to accelerate complete finishing of rice ( Oryza sativa spp. Nipponbare) genome sequence: sequencing of gap-specific fosmid c 1 ones uncovers new euchromatic portions of the genome . Theor Appl Genet 111:1596-1607 Ammiraju J, Yu Y, Luo M, Kudrna D, Kim H, Goicoechea JL, Katayose Y (2005) Random sheared fosmid library as a new genomic tool to accelerate complete finishing of rice (Oryza sativa spp. Nipponbare) genome sequence: sequencing of gap-specific fosmid c 1 ones uncovers new euchromatic portions of the genome. Theor Appl Genet 111: 1596-1607
2. Baron AJ, Wong TY, Hicks SJ, Gacesa P, Will cock D, McPherson 2.Baron AJ, Wong TY, Hicks SJ, Gacesa P, Will cock D, McPherson
MJ (1994) Alginate lyase from Klebsiella pneumoniae subs . aerogenes'- gene cloning, sequence analysis and high-level production in Escherichia col/. Gene 143 :61ᅳ 66 MJ (1994) Alginate lyase from Klebsiella pneumoniae subs. aerogenes '' -gene cloning, sequence analysis and high-level production in Escherichia col /. Gene 143: 61 ᅳ 66
3. Green F, Clausen CA, Highley TL (1989) Adaptation of the Nelson-Sotnogyi reducing sugar assay to a microassay using microt iter plates. Anal Biochem 182:197-199  3.Green F, Clausen CA, Highley TL (1989) Adaptation of the Nelson-Sotnogyi reducing sugar assay to a microassay using microt iter plates. Anal Biochem 182: 197-199
4. Han F, Gong QH, Song K, Li JB, Yu WG (2004) Cloning, sequence analysis and expression of gene alyVI encoding alginate lyase from marine bacterium Vibrio sp. QY101. DNA Seq 15 :344-350  4.Han F, Gong QH, Song K, Li JB, Yu WG (2004) Cloning, sequence analysis and expression of gene alyVI encoding alginate lyase from marine bacterium Vibrio sp. QY101. DNA Seq 15: 344-350
5. Iwamoto M, Kurachi M, Nakashima T, Kim D, Yamaguchi K, Oda T, 5.Iwamoto M, Kurachi M, Nakashima T, Kim D, Yamaguchi K, Oda T,
Iwamoto Y, Muramatsu T (2005) Structure-act ivi ty relationship of alginate oligosaccharides in the induct ion of cytokine production from RAW264.7 cells. FEBS Lett 579:4423-4429 Iwamoto Y, Muramatsu T (2005) Structure-act ivi ty relationship of alginate oligosaccharides in the induct ion of cytokine production from RAW264.7 cells. FEBS Lett 579: 4423-4429
6. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with CLUSTAL_X . Trends Biochem Sci 6. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with CLUSTAL_X. Trends Biochem Sci
23:403-405 23: 403-405
7. Kim SJ, Lee CM, Kim MY, Yeo YS, Yoon SH, ang HC, Koo BS (2007) Screening and characterization of an enzyme with beta— glucosidase activity from environmental DNA. J Microbiol Biotechnol 17:905-912  7.Kim SJ, Lee CM, Kim MY, Yeo YS, Yoon SH, ang HC, Koo BS (2007) Screening and characterization of an enzyme with beta— glucosidase activity from environmental DNA. J Microbiol Biotechnol 17: 905-912
8. Laemml i U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 :68으 685  8.Laemml i U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 68 u 685
9. Larsen B, Hooen K, Ostgaard K (1993) Kinetics 254 and specificity of alginate lyases. Hydrobiologia 260:55그 561 30aoett577 Mr Bil L 3221:9.Larsen B, Hooen K, Ostgaard K (1993) Kinetics 254 and specificity of alginate lyases. Hydrobiologia 2 30aoett577 Mr B il L 3221 :
5 2  5 2
20 20
5 1 5 in 1
Figure imgf000027_0001
Figure imgf000027_0001
10 1 0
jwp,w, ().usLv2ut0rehi H Erink G Dikhizl L00 Hillouul: 1 LnW23hlhl,.- 19. Shimokawa T, Yoshida S, Takeuchi T, Murata K, Kobayashi H (1997) Some properties and action mode of (1→4)- α-L-guluronan lyase lyase from Enterobacter cloacae M-1. Carbohydr Res 304: 125-132 jwp, w, () .usLv2ut0reh i H Er i nk GD i kh i z l L00 H il louu l: 1 LnW23h l hl, .- Shimokawa T, Yoshida S, Takeuchi T, Murata K, Kobayashi H (1997) Some properties and action mode of (1 → 4) -α-L-guluronan lyase lyase from Enterobacter cloacae M-1. Carbohydr Res 304 : 125-132
20. Suenaga H, Ohnuki T, Miyazaki K (2007) Functional screening of a metagenoraic library for genes involved in microbial degradation of aromatic compounds . Environ Microbiol 9: 2289-2297  20. Suenaga H, Ohnuki T, Miyazaki K (2007) Functional screening of a metagenoraic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 9 : 2289-2297
21. Tanaka R, Ootsubo M, Sawabe T, Ezura Y, Taj i ma K (2004) Biodiversity and in situ abundance of gut microflora of aba lone {Ha Hot is discus hannai) determined by culture independent techniques. Aquaculture 241:453-463  21.Tanaka R, Ootsubo M, Sawabe T, Ezura Y, Taj i ma K (2004) Biodiversity and in situ abundance of gut microflora of aba lone (Ha Hot is discus hannai) determined by culture independent techniques. Aquaculture 241: 453-463
22. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28: 33-36  22. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28 : 33-36
23. Treusch AH, Kletzin A, Raddatz G, Ochsenreiter T, Quaiser A, Meurer G, Schuster SC, Sch leper C (2004) Characterization of largeᅳ insert DNA libraries from soil for environmental genomic studies of Archea. Environ Microbiol 6: 970-980  23. Treusch AH, Kletzin A, Raddatz G, Ochsenreiter T, Quaiser A, Meurer G, Schuster SC, Sch leper C (2004) Characterization of large ᅳ insert DNA libraries from soil for environmental genomic studies of Archea. Environ Microbiol 6 :: 970-980
24. Uchimura K, Miyazaki M, Nogi Y, Kobayashi T, Horikoshi K (2010) Cloning and sequencing of alginate lyase genes from deep-sea strains of Vibrio and Agarivorans and characterization of a new Vibrio enzyme . Mar Biotechnol 12: 526-533  24.Uchimura K, Miyazaki M, Nogi Y, Kobayashi T, Horikoshi K (2010) Cloning and sequencing of alginate lyase genes from deep-sea strains of Vibrio and Agarivorans and characterization of a new Vibrio enzyme. Mar Biotechnol 12 : 526-533
25. Varrot A, Yip VLY, Li Y, Raj an SS, Yang X, Anderson WF, Thompson J, Withers SG, Davies GJ (2005) NAD+ and metal ions dependent hydrolysis by family 4 glycosidase: Structural insight into specificity for phospho- a -D-g 1 ucos ides. J Mol Biol 346: 423-435  25. Varrot A, Yip VLY, Li Y, Raj an SS, Yang X, Anderson WF, Thompson J, Withers SG, Davies GJ (2005) NAD + and metal ions dependent hydrolysis by family 4 glycosidase: Structural insight into specificity for phospho- a -Dg 1 ucos ides. J Mol Biol 346 : 423-435
26. Voget S, Steele HL, Streit WR (2006) Characterization of a met agenomeᅳ derived halotolerant eel lulase. J Biotechnol 126 :26ᅳ 36  26. Voget S, Steele HL, Streit WR (2006) Characterization of a met agenome ᅳ derived halotolerant eel lulase. J Biotechnol 126: 26 ᅳ 36
27. Wong TY, Preston LA, Schiller NL (302 2000) Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles and ap lications. Annu Rev Microbiol 54:289-340 28. Yun S, Lee J, Kim S (2005) Screening and isolation of a gene encoding 4- hydroxypheny 1 pyruvate di oxygenase from a metagenomics library of soil DNA. J Korean Soc Ap l Bio Chem 48:345-351 27. Wong TY, Preston LA, Schiller NL (302 2000) Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles and ap lications. Annu Rev Microbiol 54: 289-340 28. Yun S, Lee J, Kim S (2005) Screening and isolation of a gene encoding 4-hydroxypheny 1 pyruvate di oxygenase from a metagenomics library of soil DNA. J Korean Soc Ap l Bio Chem 48: 345-351

Claims

【특허청구범위】 [Patent Claims]
【청구항 11  [Claim 11
서열목록 제 1 서열의 1280-3652 번째 뉴클레오타이드 서열, 5025- 6128 번째 뉴클레오타이드 서열, 6365-7492 번째 뉴클레오타이드 서열, 8687-9202 번째 뉴클레오타이드 서열, 9206-9823 번째 뉴클레오타이드 서열 9823-11250 번째 뉴클레오타이드 서열, 11377-12189 번째 뉴클레오타이드 서열, 12290-13306 번째 뉴클레오타이드 서열, 13611-14642 번째 뉴클레오타이드 서열, 14646-15212 번째 뉴클레오타이드 서열, 154Γ7-16388 번째 뉴클레오타이드 서열, 17370-19223 번째 뉴클레오타이드 서열, 19452- 21017 번째 뉴클레오타이드 서열, 21253-22143 번째 뉴클레오타이드 서열, 22309-23121 번째 뉴클레오타이드 서열, 23333-24208 번째 뉴클레오타이드 서열, 24294-24989 번째 뉴클레오타이드 서열, 25446-26477 번째 뉴클레오타이드 서열, 26549-28063 번째 뉴클레오타이드 서열, 28362-29579 번째 뉴클레오타이드 서열 30103-30930 번째 뉴클레오타이드 서열 및 31010-31696 번째 뉴클레오타이드 서열을 포함하는 22 개의 오픈리딩프레임을 포함하는 알지네이트 라이아제 활성을 갖는 메타지놈 라이브러리.  1280-3652th nucleotide sequence of SEQ ID NO: 1, 5025-6128 nucleotide sequence, 6365-7492 nucleotide sequence, 8687-9202 nucleotide sequence, 9206-9823 nucleotide sequence 9823-11250 nucleotide sequence, 11377-12189 1st nucleotide sequence, 12290-13306 nucleotide sequence, 13611-14642 nucleotide sequence, 14646-15212 nucleotide sequence, 154Γ7-16388 nucleotide sequence, 17370-19223 nucleotide sequence, 19452-21017 nucleotide sequence, 21253-22143 Nucleotide sequence, 22309-23121 nucleotide sequence, 23333-24208 nucleotide sequence, 24294-24989 nucleotide sequence, 25446-26477 nucleotide sequence, 26549-28063 nucleotide sequence, 28362-29579 nucleotide Leo Tide sequences 30103-30930 second nucleotide sequence and meta genome library with a second nucleotide sequence 31010-31696 alginate rayiah activity containing 22 open reading frames, including.
【청구항 2】 [Claim 2]
제 1항에 있어서, 상기 메타지놈 라이브러리는 서열목록 제 1서열의 뉴클레오타이드 서열을 가지는 것을 특징으로 하는 메타지놈 라이브러리.  [Claim 2] The metagnome library according to claim 1, wherein the metagnome library has a nucleotide sequence of SEQ ID NO: 1.
【청구항 3] [Claim 3]
제 1 항에 있어서, 상기 메타지놈 라이브러리는 전복의 내장의 미생물군 (microflora)로부터 얻은 지놈 DNA 를 이용하여 구축된 것을 특징으로 하는 메타지놈 라이브러리.  The meta-genome library according to claim 1, wherein the meta-genome library is constructed using genome DNA obtained from a microflora of intestines of abalone.
【청구항 4】 [Claim 4]
서열목록 제 2 서열에 기재된 아미노산 서열을 포함하는 알지네이트 라이아제 (alginate lyase). Alginate lyase comprising the amino acid sequence set forth in SEQ ID NO: 2 sequence.
【청구항 5】 [Claim 5]
서열목록 제 2 서열에 기재된 아미노산 서열을 포함하는 알지네이트 라이아제 (alginate lyase)를 코딩하는 핵산 분자.  A nucleic acid molecule encoding an alginate lyase comprising the amino acid sequence set forth in SEQ ID NO: 2.
【청구항 6】 [Claim 6]
제 5 항에 있어서, 상기 핵산 분자는 서열목록 제 1 서열의 15417- 16388 번째 뉴클레오타이드 서열을 포함하는 것을 특징으로 하는 핵산 분자.  The nucleic acid molecule of claim 5, wherein the nucleic acid molecule comprises the 15417-16388th nucleotide sequence of SEQ ID NO: 1.
【청구항 7】 [Claim 7]
상기 제 4 항 내지 제 6 항의 핵산 분자를 포함하는 재조합 백터 .  A recombinant vector comprising the nucleic acid molecule of claim 4.
【청구항 8] [Claim 8]
상기 제 7 항의 재조합 백터에 의해 형질전환된 세포. 【청구항 9】  Cell transformed by the recombinant vector of claim 7. [Claim 9]
상기 제 4 항의 알지네이트 라이아제 (alginate lyase) 또는 상기 제 8 항의 형질전환된 세포를 알지네이트에 접촉시키는 단계를 포함하는 알지네이트의 분해 방법 .  A method of degrading alginate, comprising contacting the alginate lyase of claim 4 or the transformed cells of claim 8 with alginate.
PCT/KR2011/005798 2011-05-17 2011-08-09 Metagenome library having alginate lyase activity and novel enzyme alydw WO2012157814A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180002031.5A CN102971426B (en) 2011-05-17 2011-08-09 Metagenome library having alginate lyase activity and novel enzyme AlyDW

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0046207 2011-05-17
KR1020110046195A KR101245304B1 (en) 2011-05-17 2011-05-17 Metagenome Libraries with Alginate Lyase Activity
KR10-2011-0046195 2011-05-17
KR1020110046207A KR101277706B1 (en) 2011-05-17 2011-05-17 Novel Enzyme AlyDW Having Alginate Lyase Activity

Publications (1)

Publication Number Publication Date
WO2012157814A1 true WO2012157814A1 (en) 2012-11-22

Family

ID=47177118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005798 WO2012157814A1 (en) 2011-05-17 2011-08-09 Metagenome library having alginate lyase activity and novel enzyme alydw

Country Status (2)

Country Link
CN (1) CN102971426B (en)
WO (1) WO2012157814A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104830880A (en) * 2015-04-13 2015-08-12 昆明理工大学 Alginate lyase SHA-I gene and expression vector thereof
KR101771307B1 (en) 2015-06-30 2017-08-25 경희대학교 산학협력단 Mutated oligoalginate lyase and process for preparing the same
CN110144341A (en) * 2018-02-12 2019-08-20 青岛蔚蓝生物集团有限公司 Alginate lyase mutant
CN112941089A (en) * 2021-02-19 2021-06-11 五洲丰农业科技有限公司 Alginate lyase mutant gene, alginate lyase mutant, engineering bacterium containing mutant, construction method and application

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105255922B (en) * 2015-10-28 2018-08-10 昆明理工大学 A kind of alginate lyase SHA-5 genes and its prokaryotic expression carrier
CN105255923B (en) * 2015-10-28 2018-08-31 昆明理工大学 A kind of alginate lyase SHA-4 genes and its prokaryotic expression carrier
CN117229979B (en) * 2023-11-08 2024-01-26 烟台大学 Extended microbubble strain for producing algin lyase and application thereof
CN117230049B (en) * 2023-11-10 2024-01-30 山东海之宝海洋科技有限公司 Algin lyase mutant with improved thermal stability and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319785A (en) * 2002-05-07 2003-11-11 Japan Science & Technology Corp Gene of alginate lyase of abalone
KR20080093525A (en) * 2007-04-17 2008-10-22 경성대학교 산학협력단 Streptomyces sp. strain having an alginate hydrolysis activity and alginate lyase
KR20090092613A (en) * 2008-02-27 2009-09-01 학교법인 동의학원 Microorganism, Pseudomonas sp. N7151-6, producing alginate lyase
US20100080788A1 (en) * 2006-10-12 2010-04-01 The Johns Hopkins University Alginate and alginate lyase compositions and methods of use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170925C (en) * 2000-07-26 2004-10-13 中国科学院微生物研究所 Fermentation production process of alkaline mycose lyase and microbe for producing the lyase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319785A (en) * 2002-05-07 2003-11-11 Japan Science & Technology Corp Gene of alginate lyase of abalone
US20100080788A1 (en) * 2006-10-12 2010-04-01 The Johns Hopkins University Alginate and alginate lyase compositions and methods of use
KR20080093525A (en) * 2007-04-17 2008-10-22 경성대학교 산학협력단 Streptomyces sp. strain having an alginate hydrolysis activity and alginate lyase
KR20090092613A (en) * 2008-02-27 2009-09-01 학교법인 동의학원 Microorganism, Pseudomonas sp. N7151-6, producing alginate lyase

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK 3 August 1994 (1994-08-03), "alginate lyase [Klebsiella pneumoniae]", accession no. AA25049 *
DATABASE GENBANK 6 June 2008 (2008-06-06), "putative alginate lyase [Saccharophagus degradans 2-40]", accession no. BD81738 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104830880A (en) * 2015-04-13 2015-08-12 昆明理工大学 Alginate lyase SHA-I gene and expression vector thereof
KR101771307B1 (en) 2015-06-30 2017-08-25 경희대학교 산학협력단 Mutated oligoalginate lyase and process for preparing the same
CN110144341A (en) * 2018-02-12 2019-08-20 青岛蔚蓝生物集团有限公司 Alginate lyase mutant
CN110144341B (en) * 2018-02-12 2022-10-28 青岛蔚蓝生物集团有限公司 Alginate lyase mutant
CN112941089A (en) * 2021-02-19 2021-06-11 五洲丰农业科技有限公司 Alginate lyase mutant gene, alginate lyase mutant, engineering bacterium containing mutant, construction method and application
CN112941089B (en) * 2021-02-19 2022-06-10 五洲丰农业科技有限公司 Alginate lyase mutant gene, alginate lyase mutant, engineering bacterium containing mutant, construction method and application

Also Published As

Publication number Publication date
CN102971426B (en) 2014-11-05
CN102971426A (en) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2012157814A1 (en) Metagenome library having alginate lyase activity and novel enzyme alydw
KR101277706B1 (en) Novel Enzyme AlyDW Having Alginate Lyase Activity
Inoue et al. The alginate lyases FlAlyA, FlAlyB, FlAlyC, and FlAlex from Flavobacterium sp. UMI-01 have distinct roles in the complete degradation of alginate
Zeng et al. Cloning, expression, and characterization of a new pH‐and heat‐stable alginate lyase from Pseudoalteromonas carrageenovora ASY5
Zhu et al. Cloning and characterization of a new pH-stable alginate lyase with high salt tolerance from marine Vibrio sp. NJ-04
An et al. Characterization and overexpression of a glycosyl hydrolase family 16 beta-agarase YM01-1 from marine bacterium Catenovulum agarivorans YM01T
Sim et al. Characterization of alginate lyase gene using a metagenomic library constructed from the gut microflora of abalone
WO2015104723A1 (en) Thermostable alginate degrading enzymes and their methods of use
Rahman et al. cDNA cloning of an alginate lyase from a marine gastropod Aplysia kurodai and assessment of catalytically important residues of this enzyme
JP5447761B2 (en) A new kind of microorganism that degrades chitin and chitosan and its utilization method
CN112430615A (en) Chitosanase gene csnbaa, chitosanase, preparation method and application thereof
Ma et al. Biochemical characterization of a truncated β-agarase from Microbulbifer sp. suitable for efficient production of neoagarotetraose
Qin et al. Heterologous expression and characterization of thermostable chitinase and β-N-acetylhexosaminidase from Caldicellulosiruptor acetigenus and their synergistic action on the bioconversion of chitin into N-acetyl-d-glucosamine
Kim et al. Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora
Kim et al. Simiduia areninigrae sp. nov., an agarolytic bacterium isolated from sea sand
Wang et al. Purification and characterization of chitinase from a new species strain, Pseudomonas sp. TKU008
Itoi et al. Identification of a novel endochitinase from a marine bacterium Vibrio proteolyticus strain No. 442
Songsiriritthigul et al. Directed evolution of a Bacillus chitinase
JP4441486B2 (en) Agar-degrading enzyme and its use
JP2020080741A (en) Agarivorans bacteria, variants thereof, seaweed degrading bacteria and bacteria for degradation of agar, alginic acid, fucoidan, carrageenan, pectin and xylan
Yoon et al. Pseudofulvibacter geojedonensis gen. nov., sp. nov., a polysaccharide-degrading member of the family Flavobacteriaceae isolated from seawater, and emended description of the genus Fulvibacter
CN106148307B (en) A kind of application of alkali protease and its encoding gene and they
KR101245304B1 (en) Metagenome Libraries with Alginate Lyase Activity
Zhang et al. Dyadobacter sandarakinus sp. nov., isolated from Arctic tundra soil, and emended descriptions of Dyadobacter alkalitolerans, Dyadobacter koreensis and Dyadobacter psychrophilus
KR101347685B1 (en) Novel microorganism, oligoalginate lyase isolated therefrom, method for saccharifying oligoalginates using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002031.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865673

Country of ref document: EP

Kind code of ref document: A1