WO2012157370A1 - Method of opening reaction chamber and vapor phase growth device - Google Patents

Method of opening reaction chamber and vapor phase growth device Download PDF

Info

Publication number
WO2012157370A1
WO2012157370A1 PCT/JP2012/059644 JP2012059644W WO2012157370A1 WO 2012157370 A1 WO2012157370 A1 WO 2012157370A1 JP 2012059644 W JP2012059644 W JP 2012059644W WO 2012157370 A1 WO2012157370 A1 WO 2012157370A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
pressure
chamber
gas
opening
Prior art date
Application number
PCT/JP2012/059644
Other languages
French (fr)
Japanese (ja)
Inventor
正明 児玉
俊範 岡田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012157370A1 publication Critical patent/WO2012157370A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4409Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber characterised by sealing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers

Definitions

  • the present invention relates to a method of opening a reaction chamber, which suppresses generation and diffusion of particles to open a reaction chamber, and a vapor phase growth apparatus.
  • Chemical vapor deposition is generally used as a method of manufacturing a semiconductor light emitting device.
  • the vapor phase growth apparatus introduces a reaction gas into the reaction chamber, and vapor-phase grows the heated substrate on the inside of the reaction chamber to form a thin film of a compound semiconductor crystal.
  • a reaction gas into the reaction chamber
  • vapor-phase grows the heated substrate on the inside of the reaction chamber to form a thin film of a compound semiconductor crystal.
  • the reaction gas When forming a thin film, the reaction gas also adheres as a by-product to the inner wall of the reaction chamber, piping, members inside the reaction chamber, etc., and among the adhered by-products, the separated by-product or fine particle by-product Are the particles.
  • the particles adhere to the surface of the substrate the characteristics of the compound semiconductor are degraded, and measures have been taken to prevent the generation and diffusion of the particles.
  • Patent Document 1 a reaction chamber into which a substrate (a wafer in Japanese Patent Application Laid-Open No. 6-177060 (Patent Document 1) is inserted), and insertion of the substrate into the reaction chamber
  • An exhaust path Japanese Patent Application Laid-Open No. 6-177060 including a work chamber (load lock room in Japanese Patent Application Laid-Open No. 6-177060) for taking out and connected to the reaction chamber
  • a gas phase growth apparatus is disclosed in which a gas exhaust line) and an exhaust path connected to the working chamber are short-circuited by a pressure equalizing path (a connecting pipe in JP-A-6-177060 (Patent Document 1)).
  • Patent Document 1 opens a pressure equalizing valve (inter-contact valve in Japanese Patent Application Laid-open No. 6-177060 (Patent Document 1)) provided in the pressure equalizing passage, By opening the reaction chamber to the working chamber after eliminating the pressure difference between the reaction chamber and the working chamber, the rapid flow of gas caused by the pressure difference between the reaction chamber and the working chamber when the reaction chamber is opened To reduce the generation of particles.
  • a pressure equalizing valve inter-contact valve in Japanese Patent Application Laid-open No. 6-177060 (Patent Document 1)
  • JP-A-6-177060 Patent Document 1
  • the pressure difference between the reaction chamber and the working chamber is eliminated and then the reaction chamber is opened to suppress the generation of particles when the reaction chamber is opened.
  • the pressure equalizing valve when the pressure equalizing valve is opened, there is a pressure difference between the reaction chamber and the working chamber, and this pressure difference causes a problem that particles are generated and are diffused to the reaction chamber or the working chamber.
  • Japanese Patent Application Laid-Open No. 6-177060 Patent Document 1
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a reaction chamber opening method and a vapor phase growth apparatus which suppress generation and diffusion of particles.
  • the reaction chamber opening method is a reaction chamber opening method for opening a reaction chamber accommodated in a working chamber, wherein a gas is introduced into the reaction chamber to increase the pressure in the reaction chamber.
  • the step of communicating the reaction chamber with the working chamber while exhausting the gas from the reaction chamber is provided in an exhaust path for exhausting the gas from the reaction chamber when the pressure difference between the reaction chamber and the working chamber becomes equal to or less than a predetermined value.
  • the discharge valve is opened, and the pressure equalizing valve provided in the pressure equalizing passage for communicating the reaction chamber with the working chamber is opened.
  • the pressure in the reaction chamber is increased until the pressure difference between the reaction chamber and the reaction chamber falls below a predetermined value.
  • the method further comprises the steps of: communicating the reaction chamber with the reaction chamber while exhausting the gas from the reaction chamber; and opening the reaction chamber after connecting the reaction chamber with the reaction chamber.
  • the step of communicating the reaction chamber with the reaction chamber while exhausting the gas from the reaction chamber is provided in an exhaust path for exhausting the gas from the reaction chamber when the pressure difference between the reaction chamber and the reaction chamber is less than a predetermined value.
  • the discharge valve is opened, and the pressure equalizing valve provided in the pressure equalizing passage for communicating the reaction chamber with the reaction chamber is opened.
  • a vapor phase growth apparatus is a vapor phase growth apparatus including a reaction chamber accommodated in a working chamber, and the pressure adjusting unit adjusts the pressure of the working chamber from a first pressure to a second pressure.
  • the pressure equalization unit for connecting the reaction chamber and the working chamber to equalize the pressure of the reaction chamber with the pressure of the working chamber, the gas is exhausted when the reaction chamber and the working chamber are communicated, and particles are discharged from the reaction chamber It is characterized by comprising an exhaust part for discharging and an opening part for opening the reaction chamber.
  • the exhaust unit preferably has an exhaust valve that is opened when the difference between the pressure in the reaction chamber and the first pressure is less than or equal to a predetermined value.
  • the exhaust unit further includes a flow control valve for adjusting the amount of gas exhausted from the reaction chamber based on the amount of gas introduced into the working chamber.
  • the exhaust unit preferably further includes a flow control valve for adjusting the amount of gas exhausted from the reaction chamber based on the amount of gas introduced into the reaction chamber and the amount of gas introduced into the working chamber.
  • reaction chamber opening method and a vapor phase growth apparatus in which the reaction chamber is opened by suppressing generation and diffusion of particles.
  • FIG. 1 is a block diagram showing an outline of a vapor phase growth apparatus 100 according to a first embodiment.
  • the vapor deposition apparatus 100 accommodates the reaction chamber 101 in the working chamber 102, introduces a gas into the reaction chamber 101 by the first introduction unit 103, and generates a thin film of a compound semiconductor crystal on a substrate in the reaction chamber 101.
  • the gas and particles in the reaction chamber 101 are exhausted from the exhaust unit 104.
  • a gas is introduced into the working chamber 102 by the second introduction unit 105 to isolate the reaction chamber 101 from the atmosphere, and the pressure of the working chamber 102 is adjusted by the pressure adjusting unit 106.
  • the substrate on which the thin film is formed is taken out by opening the reaction chamber 101.
  • the pressure detection unit 108 monitors the pressure of the reaction chamber 101
  • the pressure detection unit 109 monitors the pressure of the working chamber 102
  • the control unit 110 controls each unit.
  • the reaction chamber 101 is a space for growing a compound semiconductor composed of the reaction chamber opening portion 101a and the reaction chamber main body 101b.
  • the substrate is disposed in the reaction chamber main body 101b, and the opening of the reaction chamber main body 101b is covered with the reaction chamber opening 101a.
  • the reaction chamber 101 is opened by operating the reaction chamber opening portion 101a by the opening portion (not shown), and the processed substrate is taken out.
  • the working chamber 102 is isolated from the atmosphere so that impurities do not enter the reaction chamber 101, the substrate insertion into the reaction chamber 101, the removal of the substrate from the reaction chamber 101, the maintenance of the reaction chamber 101, etc. It is a space for It is not necessary for the entire reaction chamber 101 to be accommodated in the working chamber 102, and it is sufficient that the opening portions of the reaction chamber opening part 101a and the reaction chamber main body 101b be accommodated in the working chamber 102.
  • the first introducing unit 103 has an introducing path 103 a connected to the reaction chamber 101 and a first gas supply unit 103 b, and is an introducing unit for introducing a gas into the reaction chamber 101.
  • the first gas supply unit 103 b has a reactive gas source, an inert gas source, and a valve for performing introduction, stop, or control of the flow rate of various gases, and the first introduction unit 103 reacts via the introduction path 103 a. Introduce a gas, an inert gas, or a mixture of these.
  • the second introducing unit 105 includes an introducing path 105 a connected to the working chamber 102 and a second gas supply unit 105 b, and is an introducing unit for introducing a gas into the working chamber 102.
  • the second gas supply unit 105b has an inert gas source and a valve for introducing, stopping or controlling the flow rate of the inert gas, and the second introduction unit 105 is not connected to the working chamber 102 through the introduction passage 105a.
  • the reaction gas is a mixture of an organometallic gas such as trimethylgallium (TMG) or trimethylaluminum (TMA) and a hydrogen compound gas such as ammonia (NH 3 ), phosphine (PH 3 ), or arsine (AsH 3 ).
  • TMG trimethylgallium
  • TMA trimethylaluminum
  • a hydrogen compound gas such as ammonia (NH 3 ), phosphine (PH 3 ), or arsine (AsH 3 ).
  • These reaction gases are introduced into the reaction chamber 101 together with a carrier gas such as nitrogen (N 2 ).
  • the inert gas is nitrogen (N 2 ), hydrogen (H 2 ), argon (Ar) or the like.
  • the exhaust unit 104 includes an exhaust passage 111 connected to the reaction chamber 101, an exhaust valve 112 provided in the exhaust passage 111, and an exclusion unit 113, and exhausts gas from the reaction chamber 101.
  • the exclusion unit 113 sucks the gas from the reaction chamber 101 through the exhaust passage 111 and exhausts the gas to the atmosphere. At this time, particles are also discharged from the reaction chamber 101 together with the gas.
  • the pressure adjusting unit 106 is provided in the working chamber 102 and exhausts gas from the working chamber 102 to adjust the pressure in the working chamber 102 to a predetermined range.
  • the pressure in the working chamber 102 reaches the upper limit value
  • the pressure of the working chamber 102 is adjusted to a predetermined range.
  • the lower limit value of the pressure adjustment unit 106 is a first pressure and the upper limit value is a second pressure
  • the pressure in the working chamber 102 is adjusted in the range from the first pressure to the second pressure.
  • the pressure equalizing unit 107 includes a pressure equalizing passage 107a for communicating the reaction chamber 101 with the working chamber 102, and a pressure equalizing valve 107b provided in the pressure equalizing passage 107a.
  • the pressure equalizing portion 107 communicates the reaction chamber 101 with the working chamber 102 to equalize pressure. It is a pressure equalization part.
  • the pressure detection unit 108 and the pressure detection unit 109 are pressure detection units that detect the pressure in the reaction chamber 101 and the work chamber 102, respectively.
  • the control unit 110 receives detection signals from the pressure detection unit 108 and the pressure detection unit 109, and controls the first gas supply unit 103b, the pressure equalizing valve 107b, and the exhaust valve 112 based on the pressure in the reaction chamber 101 and the working chamber 102. .
  • the second introducing unit 105 always introduces the gas into the working chamber 102 at a constant introducing amount, but the controlling unit 110 may control the introducing amount based on the pressure of the reaction chamber 101 or the working chamber 102.
  • the control unit 110 may control the exhaust amount.
  • the control unit 110 may control the start and stop of the exhaust to adjust the pressure.
  • the vapor deposition apparatus 100 may be provided with a differential pressure detection unit that detects the pressure difference between the reaction chamber 101 and the working chamber 102, and the control unit 110 receives a detection signal from the differential pressure detection unit and sends control signals to each unit. You may send it.
  • FIG. 2 is an explanatory view for explaining the structure of the vapor phase growth apparatus of the first embodiment.
  • the control unit 110 is not shown.
  • the reaction chamber 101 is formed of a reaction chamber opening portion 101a and a reaction chamber main body 101b opened at the upper side, and the reaction chamber opening portion 101a is attached to the opening of the reaction chamber main body 101b through an O ring 114. Is sealed.
  • the reaction chamber opening portion 101a and the reaction chamber main body 101b are made of a material excellent in corrosion resistance, and are made of, for example, stainless steel.
  • the lifting device 115 is an opening part which raises and lowers the reaction chamber opening part 101a and raises the reaction chamber opening part 101a to open the reaction chamber 101.
  • the reaction chamber opening part 101a is connected to the introduction path 103a, and the reaction gas and the inert gas are introduced from the first gas supply part 103b.
  • One or more introduction paths 103a may be connected.
  • the reaction chamber opening portion 101a includes a shower plate 116, and the introduced gas is uniformly diffused by the shower plate 116 and supplied.
  • the pressure in the reaction chamber 101 is measured by the pressure detection unit 108.
  • the reaction chamber main body 101 b accommodates a disk-shaped susceptor 117, and the susceptor 117 includes a substrate holder 118.
  • the susceptor 117 may have a plurality of substrate holders 118, but may have one substrate holder 118 concentric with the susceptor 117.
  • a rotation drive shaft 119 for rotating the susceptor 117 is provided at the center of the bottom of the susceptor 117.
  • a heater 120 is provided concentrically with the susceptor 117 below the susceptor 117.
  • the substrate on which the thin film is to be produced is placed on the substrate holder 118.
  • the work chamber 102 is a space for working the reaction chamber 101 isolated from the atmosphere, and is, for example, a glove box or a clean room.
  • the work chamber 102 is connected to the introduction path 105a, and an inert gas is introduced from the second gas supply unit 105b to isolate the reaction chamber 101 from the atmosphere.
  • the pressure in the working chamber 102 is adjusted to a predetermined range by the pressure adjusting unit 106.
  • the pressure adjustment unit 106 is, for example, an oil bubbler, and exhausts the inert gas through the exhaust passage 121 connected to the working chamber 102 when the pressure in the working chamber 102 rises from the set value (first pressure). Start.
  • the pressure in the working chamber 102 decreases due to the exhaust of the inert gas, and when the pressure returns to the set value, the pressure adjustment unit 106 stops the exhaust of the inert gas.
  • the inert gas is always introduced from the second gas supply unit 105b, so when the exhaust is stopped, the pressure in the working chamber 102 rises again.
  • the pressure adjusting unit 106 repeats the start and stop of the exhaust, so that the pressure of the working chamber 102 ranges from the first pressure to the second pressure. And, for example, in the range of 101.3 [kPa] to 101.6 [kPa].
  • the pressure adjustment unit 106 may be a solenoid valve that starts exhausting when the pressure in the working chamber 102 reaches the upper limit of the setting and stops exhausting when the pressure in the working chamber 102 reaches the lower limit.
  • the pressure in the working chamber 102 is measured by the pressure detection unit 109.
  • the exhaust unit 104 includes an exhaust passage 111 connected to the reaction chamber 101, an exhaust valve 112 provided in the exhaust passage 111, a filter 122, and an exclusion unit 113.
  • the exclusion unit 113 sucks the gas from the reaction chamber 101 through the exhaust passage 111 and exhausts the gas to the atmosphere.
  • the reaction chamber 101 has a plurality of exhaust ports, and the reaction gas and the inert gas are exhausted from the exhaust port via the exhaust passage 111. In addition, the particles are exhausted together with the exhaust gas and trapped by the filter 122.
  • the exhaust passage 111 may be connected to a plurality of exhaust ports of the reaction chamber 101 and the plurality of exhaust passages 111 may join into one, the reaction chamber 101 has one exhaust port, and one exhaust passage 111 May be connected to the reaction chamber 101.
  • the exhaust passage 111 is made of, for example, stainless steel, and includes a main exhaust passage 111a, an auxiliary exhaust passage 111b, and an overpressurization preventing passage 111c.
  • the exhaust valve 112 includes a main exhaust valve 112a, an exhaust valve 112b, an overpressurization prevention valve 112c, and a flow rate adjustment valve 112d.
  • the main exhaust passage 111a is provided with a main exhaust valve 112a and a vacuum pump 123, and the vacuum pump 123 performs roughing to reduce the pressure of the reaction chamber 101 via the main exhaust passage 111a.
  • the sub-exhaust passage 111b is provided with a discharge valve 112b and a flow control valve 112d, and the flow control valve 112d adjusts the flow rate of the gas.
  • the flow rate of the auxiliary exhaust passage 111b may be set in advance, but may be arbitrarily changed.
  • the overpressure protection path 111c is provided with an overpressure protection valve 112c, and is used when the pressure in the reaction chamber 101 becomes abnormally high. That is, the overpressurization prevention valve 112 c is opened when the pressure in the reaction chamber 101 becomes an abnormally high pressure, and the gas is forcibly exhausted from the reaction chamber 101 to return the pressure in the reaction chamber 101 to the normal state.
  • the pressure equalizing path 107a is made of, for example, stainless steel, one end is connected to the reaction chamber main body 101b, the other end is connected to the working chamber 102, and the pressure equalizing valve 107b is opened to communicate the reaction chamber 101 with the working chamber 102.
  • the reaction chamber 101 and the working chamber 102 may be in communication with each other via the pressure equalizing path 107 a.
  • one end of the pressure equalizing path 107 a may be connected to the exhaust path 111 and the other end may be connected to the exhaust path 121.
  • the pressure equalizing path 107 a may be a vent provided on the wall surface of the reaction chamber main body 101 b in the working chamber 102.
  • the discharge valve 112 b When the pressure equalizing valve 107 b is opened, the discharge valve 112 b is opened and the gas is sucked from the excluding portion 113, so the inert gas introduced into the working chamber 102 by the second introducing portion 105 is the pressure equalizing path 107 a from the working chamber 102.
  • the inert gas Into the reaction chamber 101 and exhausted through the auxiliary exhaust passage 111b. That is, the inert gas is exhausted by the air flow from the working chamber 102 ⁇ the pressure equalizing path 107 a ⁇ the reaction chamber 101 ⁇ the exhaust path 111 (sub exhaust path 111 b).
  • the pressure of the working chamber 102 becomes smaller than the first pressure.
  • the valve 112 d is adjusted to be equal to or less than the introduction amount of the second introduction unit 105.
  • FIG. 3 is an explanatory view for explaining the air flow when the reaction chamber 101 is opened.
  • the reaction chamber 101 is released by releasing the seal by the O-ring 114 and the lifting device 115 raising the reaction chamber opening portion 101a.
  • the movement of the reaction chamber opening portion 101 a for opening the reaction chamber 101 generates particles.
  • the reaction chamber open part 101a ascend at an equal velocity for vibration suppression, and after an acceleration of 0.25 [mm / s 2 ], an equal velocity of 5 [mm / s] To rise.
  • the rising of the reaction chamber opening 101a may be once stopped and the rising may be started again.
  • the air flow 124 represents the flow of gas in the reaction chamber 101 and the working chamber 102 when the reaction chamber 101 is opened. That is, the inert gas introduced into the working chamber 102 from the introduction path 105a is exhausted by the air flow of the working chamber 102 ⁇ the opening of the reaction chamber main body 101 b ⁇ the reaction chamber main body 101 b ⁇ the exhaust path 111 (sub exhaust path 111b) Ru. Since the cross sectional area of the pressure equalizing path 107 a is sufficiently smaller than the opening area of the reaction chamber 101, the flow of inert gas from the working chamber 102 to the reaction chamber 101 passes through the pressure equalizing path 107 a before the reaction chamber 101 is opened. The air flow is naturally switched to the air flow passing through the opening of the reaction chamber main body 101b. Therefore, particles generated by vibration due to the movement of the reaction chamber open portion 101 a are carried to the exhaust portion 104 by the air flow 124 and discharged, and the diffusion of the particles is suppressed.
  • the reaction chamber 101 When producing a thin film, the reaction chamber 101 is evacuated of gas and the pressure is maintained in a reduced pressure environment (about 10 to 60 [kPa]). Therefore, first, the main exhaust valve 112a is opened, and the vacuum pump 123 exhausts gas of 450 [L / min].
  • the first introduction unit 103 introduces a reaction gas.
  • the substrate disposed in the substrate holder 118 is heated to a predetermined temperature by the heater 120, and is rotated together with the susceptor 117 by the rotational drive shaft 119.
  • the introduced reaction gas causes a gas phase reaction on the heated substrate to form a thin film.
  • a semiconductor substrate As the substrate, a semiconductor substrate, a wafer, a glass substrate, a sapphire substrate or the like is used.
  • TMG trimethylgallium
  • NH 3 ammonia
  • GaN gallium nitride
  • the vacuum pump 123 exhausts the reaction gas in the reaction chamber 101 via the main exhaust path 111a. The exhaust of the reaction gas is performed until the pressure in the reaction chamber 101 becomes sufficiently small, and the pressure in the reaction chamber 101 at this time is, for example, 1.0 ⁇ 10 ⁇ 2 [kPa].
  • the first introducing unit 103 starts introducing an inert gas into the reaction chamber 101 to pressurize the pressure of the reaction chamber 101 (step S101).
  • the exhaust unit 104 may not exhaust the gas from the reaction chamber 101, but may exhaust the exhaust gas with an exhaust amount smaller than the introduction amount of the inert gas.
  • the opening degree of the main exhaust valve 112a is adjusted to The exhaust gas is exhausted at a displacement smaller than the introduction amount of the inert gas through the exhaust passage 111a.
  • the introduction of the inert gas is performed until the pressure in the reaction chamber 101 becomes substantially equal to the pressure in the working chamber 102.
  • the control unit 110 determines the pressure difference from the detection values of the pressure detection unit 108 and the pressure detection unit 109.
  • control unit 110 may monitor the pressure difference between the detection value of the pressure detection unit 108 and the first pressure or the second pressure.
  • the pressure of the working chamber 102 is adjusted by the pressure adjustment unit 106 to a range of 101.3 [kPa] (atmospheric pressure) to 101.6 [kPa], and the pressure detection unit 108 detects 100 [kPa]. Introduce inert gas.
  • step S103 When the pressure difference between the reaction chamber 101 and the working chamber 102 is P 1 or less (YES at step S102), and stopping the introduction of inert gas (step S103).
  • the main exhaust valve 112a When the inert gas is exhausted through the main exhaust passage 111a simultaneously with the introduction of the inert gas in step S101, the main exhaust valve 112a is closed simultaneously with the stop of the inert gas introduction, and the exhaust of the inert gas is also stopped.
  • the pressure detecting unit 108 and the pressure detecting portion causes a pressure difference.
  • control unit 110 receives detection signals from the pressure detection unit 108 and the pressure detection unit 109, and when the pressure difference between the reaction chamber 101 and the working chamber 102 becomes zero, the first gas supply unit 103b and the main exhaust Even when the control signal for performing introduction stop and exhaust stop is transmitted to the valve 112a, the timing at which the first gas supply unit 103b receives the control signal and stops the introduction of the inert gas, and the main exhaust valve 112a performs the control The timing at which the signal is received and the inert gas exhaust is stopped is shifted due to the difference in response or the like, resulting in a pressure difference.
  • the pressure difference between the reaction chamber 101 and the working chamber 102 generates an impact or vibration, and this impact or vibration generates particles. Furthermore, while the pressure in the reaction chamber 101 is constant when the introduction and exhaust of the inert gas is stopped, the pressure in the working chamber 102 fluctuates in the range from the first pressure to the second pressure. The pressure difference also occurs between the reaction chamber 101 and the working chamber 102 depending on the timing of opening the chamber.
  • step S104 open the exhaust valve 112b opens the pressure equalizing valve 107 b, communicating the working chamber 102 and reaction chamber 101 (step S104).
  • the discharge valve 112b and the pressure equalization valve 107b may be simultaneously opened, but the discharge valve 112b may be opened earlier than the pressure equalization valve 107b.
  • particles are generated due to impact or vibration due to a pressure difference between the reaction chamber 101 and the working chamber 102 when the pressure equalizing valve 107 b is opened. Therefore, it occurs when the pressure equalization valve 107b is opened by simultaneously opening the pressure equalization valve 107b or opening the discharge valve 112b before opening the pressure equalization valve 107b and opening the pressure equalization valve 107b while exhausting the inert gas from the reaction chamber 101. It is possible to suppress the diffusion of the particles into the reaction chamber 101 and the working chamber 102 in order to discharge the particles.
  • the pressure equalizing valve 107b is opened, and after a predetermined time has elapsed, the reaction chamber 101 is opened (step S105). Since the pressure in the reaction chamber 101 is equal to the pressure in the working chamber 102 by communicating the reaction chamber 101 with the working chamber 102 for a predetermined time, vibration, impact, and the like at the moment of opening the reaction chamber 101 due to the pressure difference. Turbulence generation can be minimized and particle generation can be suppressed. However, since particles are also generated by the operation of the reaction chamber opening portion 101a for opening the reaction chamber 101, the reaction chamber 101 is opened in a state where gas exhaust is continued after step S104, and the generated particles are discharged.
  • the inner diameter of the pressure equalizing path 107a in this embodiment is sufficiently smaller than the opening area of the reaction chamber main body 101b, when the reaction chamber 101 is opened, the air flow passing through the pressure equalizing path 107a flows to the air flow passing through the opening of the reaction chamber 101.
  • the air pressure may be switched by closing the pressure equalizing valve 107b at the same time as opening the reaction chamber 101 in step S105.
  • the exhaust passage 111 of this embodiment is branched into a plurality of paths having different flow rates, and a plurality of exhaust valves 112 are provided.
  • fine flow control can be performed with one exhaust valve 112, and the flow rate in each process If it is possible to reliably switch, the exhaust passage 111 may not be branched into a plurality of paths, and one exhaust valve 112 may be provided.
  • the opening and closing of the sub exhaust path 111b and the flow control can be simultaneously performed by the discharge valve 112b, the flow control valve 112d may be omitted.
  • various valves provided in the vapor deposition apparatus 100 may be mass flow controllers.
  • this embodiment suppresses the diffusion of particles generated when the reaction chamber 101 and the working chamber 102 communicate with each other by exhausting through the sub exhaust path 111 b when the pressure equalizing valve 107 b is opened. be able to.
  • the reaction chamber 101 is opened to suppress generation of particles, and when the reaction chamber 101 is opened, the sub exhaust path 111b is used. By exhausting through the space, it is possible to suppress the diffusion of particles generated by the movement of the reaction chamber opening portion 101a.
  • Example 2 Next, a second embodiment of the present invention will be described based on FIG.
  • the structure of the vapor phase growth apparatus is the same as that of the first embodiment, the description will be omitted.
  • FIG. 5 is a flow chart for explaining the reaction chamber opening method of the vapor phase growth apparatus of the second embodiment.
  • the steps up to step S104 are the same as in the first embodiment, the description will be omitted.
  • the discharge valve 112b in step S104 and then opening the pressure equalization valve 107b, it is possible to discharge particles generated when the pressure equalization valve 107b is opened.
  • the generation of turbulent flow can be suppressed, and the generation of particles due to the turbulent flow can be suppressed to connect the reaction chamber 101 and the working chamber 102.
  • the pressure in the reaction chamber 101 and the pressure in the working chamber 102 become equal, and then the reaction chamber 101 is opened (S 206). Immediately after the reaction chamber 101 is opened, the discharge valve 112b is opened again (S207). Further, as in the first embodiment, at the same time as opening the reaction chamber 101 in step S206, the pressure equalizing valve 107b may be closed to switch the air flow.
  • the pressure equalizing valve 107b is opened and then the discharge valve 112b is closed, and the reaction chamber 101 is opened after a predetermined time elapses, so that generation of particles when the pressure equalizing valve 107b is opened is suppressed. Even when the gas flow rate of 107 a is reduced, the pressures in the reaction chamber 101 and the working chamber 102 can be equalized when the reaction chamber 101 is opened. Further, by opening the discharge valve 112b again immediately after opening the reaction chamber 101, it is possible to discharge particles generated by the movement of the reaction chamber opening part 101a when the reaction chamber 101 is opened.
  • FIG. 6 is an explanatory view for explaining the flow of the inert gas when the reaction chamber 101 is opened.
  • an inert gas is introduced from the introduction path 103a. That is, in step S105 of the first embodiment or step S206 of the second embodiment, at the same time as the reaction chamber 101 is opened, the first introduction portion 103 introduces an inert gas into the reaction chamber opening portion 101a.
  • the introduced inert gas is uniformly supplied from the shower plate 116 to the opening of the reaction chamber main body 101 b, and a down air stream 301 is generated to the exhaust unit 104.
  • the inert gas introduced by the first introduction unit 103 is exhausted from the exhaust unit 104 together with the inert gas introduced by the second introduction unit 105.
  • the particles generated by the movement of the reaction chamber opening portion 101 a for opening the reaction chamber 101 can be carried to the exhaust portion 104 by the down air flow 301 and effectively discharged.
  • the amount of the inert gas exhausted from the reaction chamber 101 that is, the exhaust amount of the sub exhaust passage 111b
  • the inert gas introduced by the introducing unit 103 flows from the reaction chamber opening unit 101 a to the working chamber 102, and the particles flow out to the working chamber 102, which is not preferable.
  • the exhaust amount of the sub-exhaust passage 111 b is equal to or more than the introduction amount of the first introduction part 103 and not more than the sum of the introduction amount of the first introduction part 103 and the introduction amount of the second introduction part 105.
  • the flow rate of the auxiliary exhaust passage 111b may be preset by the flow rate adjustment valve 112d, but the flow rate of the auxiliary exhaust passage 111b may be adjusted by the flow rate adjustment valve 112d at the same time as the first introduction part 103 introduces inert gas. Good.
  • the flow rate of the secondary exhaust passage 111b is adjusted to be equal to or less than the introduction amount of the second introduction unit 105 before the first introduction unit 103 starts the introduction of the inert gas into the reaction chamber 101, and the first introduction unit 103 is inactive.
  • gas introduction When gas introduction is started, it may be adjusted to be equal to or less than the sum of the introduction amount of the first introduction unit 103 and the introduction amount of the second introduction unit 105.
  • FIG. 7 is a view for explaining a vapor phase growth apparatus according to a fourth embodiment.
  • the vapor deposition apparatus 400 includes the second introducing unit 105 connected to the working chamber 102 and the working chamber 102 from the vapor deposition apparatus 100 of the first embodiment, the pressure adjusting unit 106, the pressure equalizing unit 107, and the pressure detecting unit 109.
  • the reaction chamber 101 is not accommodated in the working chamber, but is disposed in the atmosphere.
  • the pressure equalizing portion 401 includes a pressure equalizing passage 401 a connected at one end to the reaction chamber 101 and open to the atmosphere at the other end, and a pressure equalizing valve 401 b provided in the pressure equalizing passage 401 a.
  • the control unit 402 receives a detection signal from the pressure detection unit 108, and controls the first gas supply unit 103b, the exhaust valve 112, and the pressure equalization valve 401b based on the pressure of the reaction chamber 101.
  • FIG. 8 is a flow chart for explaining the reaction chamber opening method of the vapor phase growth apparatus of the fourth embodiment.
  • the reaction gas is exhausted and introduction of an inert gas into the reaction chamber 101 in a reduced pressure state is started (step S401).
  • the exhaust may be performed with an exhaust amount smaller than the introduction amount of the inert gas.
  • the introduction of the inert gas into the reaction chamber 101 is performed until the pressure in the reaction chamber 101 becomes substantially equal to the pressure outside the reaction chamber 101, that is, the atmospheric pressure.
  • Set the reaction chamber 101 and out of the pressure difference between P 2 at this time in advance, the pressure difference between the reaction chamber 101 and out continues to introduction of the inert gas until the P 2 less (NO at step S402).
  • the control unit 110 determines the pressure difference from the detection value of the pressure detection unit 108 and the atmospheric pressure (101.3 [kPa]).
  • the inert gas is introduced until the pressure detection unit 108 detects 100 [kPa].
  • step S 403 When the pressure difference between the inside and the outside of the reaction chamber 101 becomes P 2 or less (YES in step S 402), the introduction of the inert gas is stopped (step S 403).
  • the inert gas is exhausted simultaneously with the introduction of the inert gas in step S101, the inert gas introduction is stopped and the inert gas exhaust is also stopped simultaneously.
  • the pressure difference inside and outside the reaction chamber 101 while the P 2 below opens the exhaust valve 112b opens the pressure equalizing valve 401b, communicating inside and outside of the reaction chamber 101 (step S404).
  • the discharge valve 112b and the pressure equalization valve 401b may be simultaneously opened, but the discharge valve 112b may be opened earlier than the pressure equalization valve 401b.
  • the pressure equalizing valve 401 b By opening the pressure equalizing valve 401 b and opening the reaction chamber 101 to the atmosphere via the pressure equalizing path 401 a, the pressure inside and outside the reaction chamber 101 becomes equal.
  • exhaust valve 112b is exhausted to exhaust the gas, so that particles generated when pressure equalizing valve 401b is opened can be discharged from the inside of reaction chamber 101. Alternatively, the particles can be prevented from diffusing to the outside.
  • the pressure equalizing valve 401b is opened, and after a predetermined time has elapsed, the reaction chamber 101 is opened (step S405).
  • the pressure inside and outside the reaction chamber 101 is equal, it is possible to minimize the occurrence of vibration, impact and turbulence at the moment of opening the reaction chamber 101, and to suppress the generation of particles.
  • the discharge valve 112b opened in step S404 is opened and the reaction chamber 101 is opened, and the generated particles are generated. Drain.
  • the discharge valve 112 is closed before the reaction chamber 101 is opened in step S405, and after the reaction chamber 101 is opened in step S405, the discharge valve 112 is reopened. You may open it.
  • the first introducing unit 103 may introduce an inert gas into the reaction chamber 101 when the reaction chamber 101 is opened in step S405. At this time, in order to prevent the inert gas introduced by the first introduction unit 103 from flowing out of the reaction chamber 101 to the outside of the reaction chamber 101, the exhaust amount of the inert gas in the exhaust unit 104 is made equal to or more than the introduction amount of the first introduction unit 103. You may adjust.
  • the diffusion of particles generated when the inside and the outside of the reaction chamber 101 are communicated can be suppressed.
  • generation of particles is suppressed, and when the reaction chamber 101 is opened, movement of the reaction chamber opening portion 101a is performed. Diffusion of generated particles can be suppressed.
  • reaction chamber opening method and the vapor phase growth apparatus are not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, which are disclosed in different embodiments. Embodiments obtained by appropriately combining technical means are also included in the technical scope of the present invention.
  • the above embodiment has described the shower type vapor phase growth apparatus for supplying the reaction gas to the reaction chamber 101 via the shower plate 116, the introduction path 103a is disposed along the central axis of the reaction chamber 101.
  • the present invention can be similarly applied to a central radiation type vapor phase growth apparatus in which a reaction gas is introduced radially from the central portion to the outer peripheral portion of 101.
  • the low pressure CVD apparatus has been described in the above embodiment, the same can be applied to a normal pressure or pressurized CVD apparatus, and can also be applied to a plasma CVD apparatus or the like.
  • the reaction chamber can be opened by suppressing generation and diffusion of particles, deterioration of the characteristics of the compound semiconductor crystal due to the adhesion of particles can be prevented, and the reaction chamber and the working chamber can be By keeping it clean, the maintenance process can be shortened.
  • DESCRIPTION OF SYMBOLS 100 vapor phase growth apparatus, 101 reaction chamber, 101a reaction chamber opening part, 101b reaction chamber main body, 102 working chamber, 103 1st introduction part, 103a introduction path, 103b 1st gas supply part, 104 exhaust part, 105 2nd introduction Section, 105a introduction path, 105b second gas supply section, 106 pressure adjusting section, 107 pressure equalizing section, 107a pressure equalizing path, 107b pressure equalizing valve, 108, 109 pressure detecting section, 110 control section, 111 exhaust path, 111a main exhaust Path, 111b auxiliary exhaust path, 111c overpressure protection path, 112 exhaust valve, 112a main exhaust valve, 112b exhaust valve, 112c overpressure protection valve, 112d flow control valve, 113 exclusion portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The purpose of the present invention is to provide a method of opening a reaction chamber and a vapor phase growth device such that the reaction chamber is opened while the occurrence and the spread of particles are suppressed. A reaction chamber (101) is pressurized by gas introduced thereinto, a discharge valve (112b) and an equalizing valve (107b) are opened when the pressure difference between the reaction chamber (101) and a working chamber (102) is reduced to a given value or less, then the reaction chamber (101) communicates with the working chamber (102) through the equalizing path (107a) while discharging the gas from the reaction chamber (101), and after the pressures in the reaction chamber (101) and the working chamber (102) are equalized, the reaction chamber (101) is opened.

Description

反応室開放方法、及び気相成長装置Method of opening reaction chamber and vapor phase growth apparatus
 本発明は、パーティクルの発生と拡散を抑制して反応室を開放する反応室開放方法、及び気相成長装置に関する。 The present invention relates to a method of opening a reaction chamber, which suppresses generation and diffusion of particles to open a reaction chamber, and a vapor phase growth apparatus.
 発光ダイオード素子、レーザダイオード素子等の半導体発光素子は、高密度光ディスクやフルカラーディスプレイ、さらには環境・医療分野等、広く応用が考えられている。半導体発光素子の製造方法として化学気相成長法(CVD:Chemical Vapor Deposition)が一般的に用いられる。この化学気相成長法を用いて、気相成長装置は、反応ガスを反応室へ導入し反応室内の加熱された基板上で気相成長させることにより、化合物半導体結晶の薄膜を生成する。このような気相成長装置は、化合物半導体結晶の薄膜の品質を向上させながら、生産コストを抑えて、歩留りと生産能力とをどのように最大限確保するかということが常に高く要求されている。 Semiconductor light-emitting devices such as light-emitting diode devices and laser diode devices are considered to be widely applied to high-density optical disks, full-color displays, and further to the environment and medical fields. Chemical vapor deposition (CVD) is generally used as a method of manufacturing a semiconductor light emitting device. Using this chemical vapor deposition method, the vapor phase growth apparatus introduces a reaction gas into the reaction chamber, and vapor-phase grows the heated substrate on the inside of the reaction chamber to form a thin film of a compound semiconductor crystal. In such a vapor phase growth apparatus, while improving the quality of a thin film of a compound semiconductor crystal, it is always highly demanded how to secure the maximum yield and production capacity while suppressing the production cost. .
 薄膜を生成するとき、反応ガスは副生成物として反応室の内壁や配管、反応室内部の部材等にも付着し、付着した副生成物のうち剥離した副生成物又は微粒子状の副生成物がパーティクルとなる。このパーティクルが基板表面に付着すると化合物半導体の特性が劣化するため、パーティクルの発生や拡散を防止するための対策が行われている。 When forming a thin film, the reaction gas also adheres as a by-product to the inner wall of the reaction chamber, piping, members inside the reaction chamber, etc., and among the adhered by-products, the separated by-product or fine particle by-product Are the particles. When the particles adhere to the surface of the substrate, the characteristics of the compound semiconductor are degraded, and measures have been taken to prevent the generation and diffusion of the particles.
 例えば、特開平6-177060号公報(特許文献1)では、基板(特開平6-177060号公報(特許文献1)におけるウェーハ)が挿入される反応室と、該反応室への基板の挿入と取り出しを行うための作業室(特開平6-177060号公報(特許文献1)におけるロードロック室)を備え、該反応室に接続される排気路(特開平6-177060号公報(特許文献1)におけるガス排気ライン)と該作業室に接続される排気路とを均圧路(特開平6-177060号公報(特許文献1)における連絡管)により短絡する気相成長装置が開示されている。特開平6-177060号公報(特許文献1)の気相成長装置は、前記均圧路に設けられる均圧弁(特開平6-177060号公報(特許文献1)における連絡間バルブ)を開き、前記反応室と前記作業室との圧力差が無くなってから前記反応室を前記作業室へ開放することで、反応室を開放するときの反応室と作業室の圧力差に起因するガスの急激な流動を抑制し、パーティクルの発生を抑制している。 For example, in Japanese Patent Application Laid-Open No. 6-177060 (Patent Document 1), a reaction chamber into which a substrate (a wafer in Japanese Patent Application Laid-Open No. 6-177060 (Patent Document 1) is inserted), and insertion of the substrate into the reaction chamber An exhaust path (Japanese Patent Application Laid-Open No. 6-177060) including a work chamber (load lock room in Japanese Patent Application Laid-Open No. 6-177060) for taking out and connected to the reaction chamber A gas phase growth apparatus is disclosed in which a gas exhaust line) and an exhaust path connected to the working chamber are short-circuited by a pressure equalizing path (a connecting pipe in JP-A-6-177060 (Patent Document 1)). The vapor phase growth apparatus of Japanese Patent Application Laid-Open No. 6-177060 (Patent Document 1) opens a pressure equalizing valve (inter-contact valve in Japanese Patent Application Laid-open No. 6-177060 (Patent Document 1)) provided in the pressure equalizing passage, By opening the reaction chamber to the working chamber after eliminating the pressure difference between the reaction chamber and the working chamber, the rapid flow of gas caused by the pressure difference between the reaction chamber and the working chamber when the reaction chamber is opened To reduce the generation of particles.
特開平6-177060号公報Japanese Patent Application Laid-Open No. 6-177060
 特開平6-177060号公報(特許文献1)は、反応室と作業室との圧力差を無くしてから反応室を開放し、反応室を開放するときのパーティクルの発生を抑制している。しかし、均圧弁を開くときは反応室と作業室との間に圧力差があり、この圧力差に起因してパーティクルが発生し反応室又は作業室へ拡散してしまうという問題が生じる。また、特開平6-177060号公報(特許文献1)は、反応室を開放した後、成膜処理の終えた基板を反応室から取り出すため、基板が装填されたポートを反応室から取り出す必要があるが、基板を取り出すためポートを移動させる装置の動作による振動によって、パーティクルが発生するという問題が生じる。 In JP-A-6-177060 (Patent Document 1), the pressure difference between the reaction chamber and the working chamber is eliminated and then the reaction chamber is opened to suppress the generation of particles when the reaction chamber is opened. However, when the pressure equalizing valve is opened, there is a pressure difference between the reaction chamber and the working chamber, and this pressure difference causes a problem that particles are generated and are diffused to the reaction chamber or the working chamber. Further, in Japanese Patent Application Laid-Open No. 6-177060 (Patent Document 1), it is necessary to take out a port loaded with a substrate from the reaction chamber in order to take out the substrate after film formation processing from the reaction chamber after opening the reaction chamber. However, there is a problem that particles are generated due to the vibration caused by the operation of the device for moving the port to take out the substrate.
 本発明は上記課題を解決するためになされたものであり、パーティクルの発生及び拡散を抑制する、反応室開放方法、気相成長装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a reaction chamber opening method and a vapor phase growth apparatus which suppress generation and diffusion of particles.
 上記課題を解決するために、本発明の反応室開放方法は、作業室に収容される反応室を開放する反応室開放方法であって、反応室へガスを導入して反応室の圧力を昇圧する工程と、反応室と作業室との圧力差が所定値以下になるまで反応室の圧力を昇圧した後に反応室からガスを排気しながら反応室と作業室とを連通する工程と、反応室と作業室とを連通した後に反応室を開放する工程と、を含むことを特徴としている。 In order to solve the above problems, the reaction chamber opening method according to the present invention is a reaction chamber opening method for opening a reaction chamber accommodated in a working chamber, wherein a gas is introduced into the reaction chamber to increase the pressure in the reaction chamber. A process of communicating the reaction chamber with the working chamber while exhausting the gas from the reaction chamber after raising the pressure in the reaction chamber until the pressure difference between the reaction chamber and the working chamber becomes equal to or less than a predetermined value; And the step of opening the reaction chamber after communicating the operation chamber with the working chamber.
 反応室からガスを排気しながら反応室と作業室とを連通する工程は、反応室と作業室との圧力差が所定値以下となるときに反応室からガスを排気するための排気路に設けられる排出弁を開き、反応室と作業室を連通するための均圧路に設けられる均圧弁を開くことが好ましい。 The step of communicating the reaction chamber with the working chamber while exhausting the gas from the reaction chamber is provided in an exhaust path for exhausting the gas from the reaction chamber when the pressure difference between the reaction chamber and the working chamber becomes equal to or less than a predetermined value. Preferably, the discharge valve is opened, and the pressure equalizing valve provided in the pressure equalizing passage for communicating the reaction chamber with the working chamber is opened.
 均圧弁を開いた後反応室を開放する前に排出弁を閉じる工程と、反応室を開放した後に排出弁を開く工程と、をさらに含むことが好ましい。 It is preferable to further include the steps of closing the discharge valve before opening the reaction chamber after opening the pressure equalization valve, and opening the discharge valve after opening the reaction chamber.
 作業室へ導入するガスの量に基づいて反応室から排気するガスの量を調整することが好ましい。 It is preferable to adjust the amount of gas exhausted from the reaction chamber based on the amount of gas introduced into the working chamber.
 反応室を開放するときに反応室へガスを導入することが好ましい。
 反応室へ導入するガスの量及び作業室へ導入するガスの量に基づいて反応室から排気するガスの量を調整することが好ましい。
It is preferable to introduce a gas into the reaction chamber when the reaction chamber is opened.
It is preferable to adjust the amount of gas exhausted from the reaction chamber based on the amount of gas introduced into the reaction chamber and the amount of gas introduced into the working chamber.
 本発明の反応室開放方法は、反応室内へガスを導入して反応室内の圧力を昇圧する工程と、反応室内と反応室外との圧力差が所定値以下になるまで反応室内の圧力を昇圧した後に反応室内からガスを排気しながら反応室内と反応室外とを連通する工程と、反応室内と反応室外とを連通した後に反応室を開放する工程と、を含むことを特徴としている。 In the reaction chamber opening method of the present invention, the pressure in the reaction chamber is increased until the pressure difference between the reaction chamber and the reaction chamber falls below a predetermined value. The method further comprises the steps of: communicating the reaction chamber with the reaction chamber while exhausting the gas from the reaction chamber; and opening the reaction chamber after connecting the reaction chamber with the reaction chamber.
 反応室内からガスを排気しながら反応室内と反応室外とを連通する工程は、反応室内と反応室外との圧力差が所定値以下となるときに反応室内からガスを排気するための排気路に設けられる排出弁を開き、反応室内と反応室外を連通するための均圧路に設けられる均圧弁を開くことが好ましい。 The step of communicating the reaction chamber with the reaction chamber while exhausting the gas from the reaction chamber is provided in an exhaust path for exhausting the gas from the reaction chamber when the pressure difference between the reaction chamber and the reaction chamber is less than a predetermined value. Preferably, the discharge valve is opened, and the pressure equalizing valve provided in the pressure equalizing passage for communicating the reaction chamber with the reaction chamber is opened.
 均圧弁を開いた後反応室を開放する前に排出弁を閉じる工程と、反応室を開放した後に排出弁を開く工程と、をさらに含むことが好ましい。 It is preferable to further include the steps of closing the discharge valve before opening the reaction chamber after opening the pressure equalization valve, and opening the discharge valve after opening the reaction chamber.
 反応室を開放するときに反応室へガスを導入することが好ましい。
 反応室へ導入するガスの量に基づいて反応室から排気するガスの量を調整することが好ましい。
It is preferable to introduce a gas into the reaction chamber when the reaction chamber is opened.
It is preferable to adjust the amount of gas exhausted from the reaction chamber based on the amount of gas introduced into the reaction chamber.
 本発明の気相成長装置は、作業室に収容される反応室を備える気相成長装置であって、作業室の圧力を第1の圧力から第2の圧力の範囲に調整する圧力調整部と、反応室と作業室を連通して反応室の圧力を作業室の圧力と等しくするための均圧部と、反応室と作業室とを連通するときにガスを排気して反応室からパーティクルを排出するための排気部と、反応室を開放するための開放部と、を備えることを特徴としている。 A vapor phase growth apparatus according to the present invention is a vapor phase growth apparatus including a reaction chamber accommodated in a working chamber, and the pressure adjusting unit adjusts the pressure of the working chamber from a first pressure to a second pressure. The pressure equalization unit for connecting the reaction chamber and the working chamber to equalize the pressure of the reaction chamber with the pressure of the working chamber, the gas is exhausted when the reaction chamber and the working chamber are communicated, and particles are discharged from the reaction chamber It is characterized by comprising an exhaust part for discharging and an opening part for opening the reaction chamber.
 排気部は反応室の圧力と第1の圧力との差が所定値以下のときに開かれる排出弁を有することが好ましい。 The exhaust unit preferably has an exhaust valve that is opened when the difference between the pressure in the reaction chamber and the first pressure is less than or equal to a predetermined value.
 排気部は作業室へ導入するガスの量に基づいて反応室から排気するガスの量を調整するための流量調整弁をさらに備えることが好ましい。 Preferably, the exhaust unit further includes a flow control valve for adjusting the amount of gas exhausted from the reaction chamber based on the amount of gas introduced into the working chamber.
 排気部は反応室へ導入するガスの量及び作業室へ導入するガスの量に基づいて反応室から排気するガスの量を調整するための流量調整弁をさらに備えることが好ましい。 The exhaust unit preferably further includes a flow control valve for adjusting the amount of gas exhausted from the reaction chamber based on the amount of gas introduced into the reaction chamber and the amount of gas introduced into the working chamber.
 本発明によれば、パーティクルの発生及び拡散を抑制して反応室を開放する反応室開放方法、及び気相成長装置を提供することができる。 According to the present invention, it is possible to provide a reaction chamber opening method and a vapor phase growth apparatus in which the reaction chamber is opened by suppressing generation and diffusion of particles.
本発明の実施例1の気相成長装置を示すブロック図である。It is a block diagram which shows the vapor phase growth apparatus of Example 1 of this invention. 本発明の実施例1の気相成長装置の構造を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the vapor phase growth apparatus of Example 1 of this invention. 本発明の実施例1の気相成長装置の開放時の気流を説明するための説明図である。It is explanatory drawing for demonstrating the air flow at the time of open | release of the vapor phase growth apparatus of Example 1 of this invention. 本発明の実施例1の反応室開放方法を示すフロー図である。It is a flowchart which shows the reaction chamber open method of Example 1 of this invention. 本発明の実施例2の反応室開放方法を示すフロー図である。It is a flowchart which shows the reaction chamber open method of Example 2 of this invention. 本発明の実施例3の気相成長装置の開放時の気流を説明するための説明図である。It is explanatory drawing for demonstrating the airflow at the time of open | release of the vapor phase growth apparatus of Example 3 of this invention. 本発明の実施例4の気相成長装置を示すブロック図である。It is a block diagram which shows the vapor phase growth apparatus of Example 4 of this invention. 本発明の実施例4の反応室開放方法を示すフロー図である。It is a flowchart which shows the reaction chamber open method of Example 4 of this invention.
 (実施例1)
 以下、本発明の実施例1について図1から図4に基づいて説明する。図1は実施例1の気相成長装置100の概要を示すブロック図である。気相成長装置100は、反応室101を作業室102に収容し、第1導入部103によって反応室101へガスを導入し、反応室101内の基板へ化合物半導体結晶の薄膜を生成する。反応室101内のガスやパーティクルは排気部104から排気される。気相成長装置100は第2導入部105によって作業室102へガスを導入して反応室101を大気から隔離し、圧力調整部106によって作業室102の圧力を調整している。薄膜が生成された基板は均圧部107によって反応室101と作業室102の圧力を均圧にした後、反応室101を開放して取り出される。気相成長装置100は、圧力検出部108によって反応室101の圧力を監視し、圧力検出部109によって作業室102の圧力を監視し、制御部110によって各部を制御する。
Example 1
Hereinafter, Example 1 of the present invention will be described based on FIGS. 1 to 4. FIG. 1 is a block diagram showing an outline of a vapor phase growth apparatus 100 according to a first embodiment. The vapor deposition apparatus 100 accommodates the reaction chamber 101 in the working chamber 102, introduces a gas into the reaction chamber 101 by the first introduction unit 103, and generates a thin film of a compound semiconductor crystal on a substrate in the reaction chamber 101. The gas and particles in the reaction chamber 101 are exhausted from the exhaust unit 104. In the vapor phase growth apparatus 100, a gas is introduced into the working chamber 102 by the second introduction unit 105 to isolate the reaction chamber 101 from the atmosphere, and the pressure of the working chamber 102 is adjusted by the pressure adjusting unit 106. After the pressure of the reaction chamber 101 and the working chamber 102 is equalized by the pressure equalizing unit 107, the substrate on which the thin film is formed is taken out by opening the reaction chamber 101. In the vapor phase growth apparatus 100, the pressure detection unit 108 monitors the pressure of the reaction chamber 101, the pressure detection unit 109 monitors the pressure of the working chamber 102, and the control unit 110 controls each unit.
 反応室101は、反応室開放部101aと反応室本体101bから成る化合物半導体を成長させるための空間である。基板は反応室本体101bに配置され、反応室本体101bの開口部は反応室開放部101aで蓋をされる。薄膜生成後、開放部(図示せず)によって反応室開放部101aを操作することで反応室101は開放され、処理の終えた基板が取り出される。作業室102は反応室101内に不純物が混入しないように大気から隔離した状態で、反応室101への基板の挿入や反応室101からの基板の取り出し、反応室101のメンテナンス等の作業を行うための空間である。反応室101の全体が作業室102に収容される必要は無く、反応室開放部101a及び反応室本体101bの開口部が作業室102に収容されていればよい。 The reaction chamber 101 is a space for growing a compound semiconductor composed of the reaction chamber opening portion 101a and the reaction chamber main body 101b. The substrate is disposed in the reaction chamber main body 101b, and the opening of the reaction chamber main body 101b is covered with the reaction chamber opening 101a. After thin film formation, the reaction chamber 101 is opened by operating the reaction chamber opening portion 101a by the opening portion (not shown), and the processed substrate is taken out. In a state where the working chamber 102 is isolated from the atmosphere so that impurities do not enter the reaction chamber 101, the substrate insertion into the reaction chamber 101, the removal of the substrate from the reaction chamber 101, the maintenance of the reaction chamber 101, etc. It is a space for It is not necessary for the entire reaction chamber 101 to be accommodated in the working chamber 102, and it is sufficient that the opening portions of the reaction chamber opening part 101a and the reaction chamber main body 101b be accommodated in the working chamber 102.
 第1導入部103は反応室101に接続される導入路103aと第1ガス供給部103bを有し、反応室101へガスを導入する導入部である。第1ガス供給部103bは反応ガス源、不活性ガス源、及び各種ガスの導入、停止、又は流量の制御を行うための弁を有し、第1導入部103は導入路103aを介して反応ガス、不活性ガス、又はこれらの混合ガスを導入する。第2導入部105は作業室102に接続される導入路105aと第2ガス供給部105bを有し、作業室102へガスを導入する導入部である。第2ガス供給部105bは不活性ガス源及び不活性ガスの導入、停止、又は流量の制御を行うための弁を有し、第2導入部105は導入路105aを介して作業室102へ不活性ガスを導入する。反応ガスは、トリメチルガリウム(TMG)又はトリメチルアルミニウム(TMA)等の有機金属ガスと、アンモニア(NH)、ホスフィン(PH)、又はアルシン(AsH)等の水素化合物ガスとの混合物であり、これら反応ガスは窒素(N)等のキャリアガスと共に反応室101へ導入される。不活性ガスは窒素(N)、水素(H)、又はアルゴン(Ar)等である。 The first introducing unit 103 has an introducing path 103 a connected to the reaction chamber 101 and a first gas supply unit 103 b, and is an introducing unit for introducing a gas into the reaction chamber 101. The first gas supply unit 103 b has a reactive gas source, an inert gas source, and a valve for performing introduction, stop, or control of the flow rate of various gases, and the first introduction unit 103 reacts via the introduction path 103 a. Introduce a gas, an inert gas, or a mixture of these. The second introducing unit 105 includes an introducing path 105 a connected to the working chamber 102 and a second gas supply unit 105 b, and is an introducing unit for introducing a gas into the working chamber 102. The second gas supply unit 105b has an inert gas source and a valve for introducing, stopping or controlling the flow rate of the inert gas, and the second introduction unit 105 is not connected to the working chamber 102 through the introduction passage 105a. Introduce the active gas. The reaction gas is a mixture of an organometallic gas such as trimethylgallium (TMG) or trimethylaluminum (TMA) and a hydrogen compound gas such as ammonia (NH 3 ), phosphine (PH 3 ), or arsine (AsH 3 ). These reaction gases are introduced into the reaction chamber 101 together with a carrier gas such as nitrogen (N 2 ). The inert gas is nitrogen (N 2 ), hydrogen (H 2 ), argon (Ar) or the like.
 排気部104は反応室101に接続される排気路111と、排気路111に設けられる排気弁112と、除外部113を有し、反応室101からガスを排気する排気部である。除外部113は排気路111を介して反応室101からガスを吸引して大気中へ排気する。このとき、反応室101からはガスと共にパーティクルも排出される。 The exhaust unit 104 includes an exhaust passage 111 connected to the reaction chamber 101, an exhaust valve 112 provided in the exhaust passage 111, and an exclusion unit 113, and exhausts gas from the reaction chamber 101. The exclusion unit 113 sucks the gas from the reaction chamber 101 through the exhaust passage 111 and exhausts the gas to the atmosphere. At this time, particles are also discharged from the reaction chamber 101 together with the gas.
 圧力調整部106は作業室102に設けられ、作業室102からガスの排気を行い作業室102の圧力を所定の範囲に調整する圧力調整部であり、作業室102の圧力が上限値に達すると作業室102内の不活性ガスの排気を開始し下限値になると排気を停止することで作業室102の圧力を所定の範囲に調整している。圧力調整部106の下限値を第1の圧力とし、上限値を第2の圧力とすると、作業室102の圧力は第1の圧力から第2の圧力の範囲に調整される。 The pressure adjusting unit 106 is provided in the working chamber 102 and exhausts gas from the working chamber 102 to adjust the pressure in the working chamber 102 to a predetermined range. When the pressure in the working chamber 102 reaches the upper limit value By starting the exhaust of inert gas in the working chamber 102 and stopping the exhaust when the lower limit value is reached, the pressure of the working chamber 102 is adjusted to a predetermined range. Assuming that the lower limit value of the pressure adjustment unit 106 is a first pressure and the upper limit value is a second pressure, the pressure in the working chamber 102 is adjusted in the range from the first pressure to the second pressure.
 均圧部107は反応室101と作業室102を連通する均圧路107aと均圧路107aに設けられる均圧弁107bを有し、反応室101と作業室102を連通して圧力を均圧にする均圧部である。 The pressure equalizing unit 107 includes a pressure equalizing passage 107a for communicating the reaction chamber 101 with the working chamber 102, and a pressure equalizing valve 107b provided in the pressure equalizing passage 107a. The pressure equalizing portion 107 communicates the reaction chamber 101 with the working chamber 102 to equalize pressure. It is a pressure equalization part.
 圧力検出部108と圧力検出部109はそれぞれ反応室101と作業室102の圧力を検出する圧力検出部である。制御部110は圧力検出部108と圧力検出部109から検出信号を受信し、反応室101と作業室102の圧力に基づいて第1ガス供給部103b、均圧弁107b、及び排気弁112を制御する。第2導入部105は作業室102へ常に一定の導入量でガスを導入しているが、制御部110によって反応室101や作業室102の圧力に基づいて導入量を制御してもよい。同様に、除外部113は常にガスを排気しているが、制御部110によって排気量を制御してもよい。また、圧力調整部106は作業室102の圧力を自動で調整するが、制御部110によって排気の開始と停止を制御して圧力を調整してもよい。気相成長装置100は反応室101と作業室102の圧力差を検出する差圧検出部を備えていてもよく、制御部110は差圧検出部から検出信号を受信して各部へ制御信号を送ってもよい。 The pressure detection unit 108 and the pressure detection unit 109 are pressure detection units that detect the pressure in the reaction chamber 101 and the work chamber 102, respectively. The control unit 110 receives detection signals from the pressure detection unit 108 and the pressure detection unit 109, and controls the first gas supply unit 103b, the pressure equalizing valve 107b, and the exhaust valve 112 based on the pressure in the reaction chamber 101 and the working chamber 102. . The second introducing unit 105 always introduces the gas into the working chamber 102 at a constant introducing amount, but the controlling unit 110 may control the introducing amount based on the pressure of the reaction chamber 101 or the working chamber 102. Similarly, although the exclusion unit 113 always exhausts the gas, the control unit 110 may control the exhaust amount. Further, although the pressure adjustment unit 106 automatically adjusts the pressure in the working chamber 102, the control unit 110 may control the start and stop of the exhaust to adjust the pressure. The vapor deposition apparatus 100 may be provided with a differential pressure detection unit that detects the pressure difference between the reaction chamber 101 and the working chamber 102, and the control unit 110 receives a detection signal from the differential pressure detection unit and sends control signals to each unit. You may send it.
 図2は実施例1の気相成長装置の構造を説明するための説明図である。ただし、制御部110は図示していない。反応室101は反応室開放部101aと上方が開口した反応室本体101bから形成され、反応室開放部101aを反応室本体101bの開口部にOリング114を介して装着することで、反応室101は密封される。反応室開放部101a及び反応室本体101bは耐食性に優れている材料から構成され、例えばステンレスで構成される。昇降装置115は反応室開放部101aの昇降を行い、反応室開放部101aを上昇させて反応室101を開放する開放部である。反応室開放部101aは導入路103aが接続され、第1ガス供給部103bから反応ガスや不活性ガスが導入される。接続される導入路103aは1つでもよく、複数でもよい。また、反応室開放部101aはシャワープレート116を備え、導入されたガスをシャワープレート116によって均一に拡散させて供給する。反応室101は圧力検出部108によって内部の圧力が計測されている。 FIG. 2 is an explanatory view for explaining the structure of the vapor phase growth apparatus of the first embodiment. However, the control unit 110 is not shown. The reaction chamber 101 is formed of a reaction chamber opening portion 101a and a reaction chamber main body 101b opened at the upper side, and the reaction chamber opening portion 101a is attached to the opening of the reaction chamber main body 101b through an O ring 114. Is sealed. The reaction chamber opening portion 101a and the reaction chamber main body 101b are made of a material excellent in corrosion resistance, and are made of, for example, stainless steel. The lifting device 115 is an opening part which raises and lowers the reaction chamber opening part 101a and raises the reaction chamber opening part 101a to open the reaction chamber 101. The reaction chamber opening part 101a is connected to the introduction path 103a, and the reaction gas and the inert gas are introduced from the first gas supply part 103b. One or more introduction paths 103a may be connected. In addition, the reaction chamber opening portion 101a includes a shower plate 116, and the introduced gas is uniformly diffused by the shower plate 116 and supplied. The pressure in the reaction chamber 101 is measured by the pressure detection unit 108.
 反応室本体101bは円盤状のサセプタ117を収容し、サセプタ117は基板ホルダ118を備える。サセプタ117は基板ホルダ118を複数備えていてもよいが、サセプタ117と同心円状に1つの基板ホルダ118を備えていてもよい。サセプタ117の底部中心にはサセプタ117を回転させるための回転駆動軸119が設けられる。また、サセプタ117の下方には、ヒータ120がサセプタ117と同心円状に設けられる。薄膜が生成される基板は基板ホルダ118に配置される。 The reaction chamber main body 101 b accommodates a disk-shaped susceptor 117, and the susceptor 117 includes a substrate holder 118. The susceptor 117 may have a plurality of substrate holders 118, but may have one substrate holder 118 concentric with the susceptor 117. A rotation drive shaft 119 for rotating the susceptor 117 is provided at the center of the bottom of the susceptor 117. Further, a heater 120 is provided concentrically with the susceptor 117 below the susceptor 117. The substrate on which the thin film is to be produced is placed on the substrate holder 118.
 作業室102は、反応室101を大気から隔離して作業するための空間であり、例えばグローブボックスやクリーンルームである。作業室102は導入路105aが接続され、第2ガス供給部105bから不活性ガスが導入されて反応室101を大気から隔離している。また、作業室102は圧力調整部106によって圧力を所定の範囲に調整されている。圧力調整部106は例えばオイルバブラーであり、作業室102の圧力が設定値(第1の圧力)から上昇していくと作業室102に接続される排気路121を介して不活性ガスの排気を開始する。不活性ガスの排気によって作業室102の圧力は低下し、圧力が設定値に戻ると圧力調整部106は不活性ガスの排気を停止する。作業室102は第2ガス供給部105bから常に不活性ガスが導入されるため、排気を止めると作業室102の圧力は再び上昇する。圧力調整部106が排気を開始する圧力を第2の圧力とすると、排気の開始と停止を繰り返すことで、圧力調整部106は作業室102の圧力を第1の圧力から第2の圧力の範囲に調整し、例えば、101.3[kPa]から101.6[kPa]の範囲に調整する。圧力調整部106は作業室102の圧力が設定の上限値に達すると排気を開始し、下限値に達すると排気を停止するような電磁弁でもよい。作業室102は圧力検出部109によって内部の圧力が計測されている。 The work chamber 102 is a space for working the reaction chamber 101 isolated from the atmosphere, and is, for example, a glove box or a clean room. The work chamber 102 is connected to the introduction path 105a, and an inert gas is introduced from the second gas supply unit 105b to isolate the reaction chamber 101 from the atmosphere. The pressure in the working chamber 102 is adjusted to a predetermined range by the pressure adjusting unit 106. The pressure adjustment unit 106 is, for example, an oil bubbler, and exhausts the inert gas through the exhaust passage 121 connected to the working chamber 102 when the pressure in the working chamber 102 rises from the set value (first pressure). Start. The pressure in the working chamber 102 decreases due to the exhaust of the inert gas, and when the pressure returns to the set value, the pressure adjustment unit 106 stops the exhaust of the inert gas. In the working chamber 102, the inert gas is always introduced from the second gas supply unit 105b, so when the exhaust is stopped, the pressure in the working chamber 102 rises again. Assuming that the pressure at which the pressure adjusting unit 106 starts exhausting is the second pressure, the pressure adjusting unit 106 repeats the start and stop of the exhaust, so that the pressure of the working chamber 102 ranges from the first pressure to the second pressure. And, for example, in the range of 101.3 [kPa] to 101.6 [kPa]. The pressure adjustment unit 106 may be a solenoid valve that starts exhausting when the pressure in the working chamber 102 reaches the upper limit of the setting and stops exhausting when the pressure in the working chamber 102 reaches the lower limit. The pressure in the working chamber 102 is measured by the pressure detection unit 109.
 排気部104は、反応室101に接続される排気路111と、排気路111に設けられる排気弁112、フィルタ122、及び除外部113を有する。除外部113は排気路111を介して反応室101からガスを吸引して大気中へ排気する。反応室101は複数の排気口を有し、該排気口から排気路111を介して反応ガスや不活性ガスが排気される。また、パーティクルは排気されるガスとともに排出され、フィルタ122によってトラップされる。反応室101の複数の排気口にそれぞれ排気路111が接続され、複数の排気路111が1つに合流してもよいが、反応室101は1つの排気口を有し、1つの排気路111が反応室101に接続されていてもよい。 The exhaust unit 104 includes an exhaust passage 111 connected to the reaction chamber 101, an exhaust valve 112 provided in the exhaust passage 111, a filter 122, and an exclusion unit 113. The exclusion unit 113 sucks the gas from the reaction chamber 101 through the exhaust passage 111 and exhausts the gas to the atmosphere. The reaction chamber 101 has a plurality of exhaust ports, and the reaction gas and the inert gas are exhausted from the exhaust port via the exhaust passage 111. In addition, the particles are exhausted together with the exhaust gas and trapped by the filter 122. Although the exhaust passage 111 may be connected to a plurality of exhaust ports of the reaction chamber 101 and the plurality of exhaust passages 111 may join into one, the reaction chamber 101 has one exhaust port, and one exhaust passage 111 May be connected to the reaction chamber 101.
 排気路111は、例えばステンレス等から成り、主排気路111a、副排気路111b、及び過加圧防止路111cを含む。また、排気弁112は主排気弁112a、排出弁112b、過加圧防止弁112c、及び流量調整弁112dを含む。主排気路111aは主排気弁112aと真空ポンプ123が設けられ、真空ポンプ123は主排気路111aを介して反応室101を減圧状態にするための荒引きを行う。副排気路111bは排出弁112bと流量調整弁112dが設けられ、流量調整弁112dによってガスの流量が調整される。副排気路111bの流量は予め設定されていてもよいが、任意に変更できるようにしてもよい。過加圧防止路111cは過加圧防止弁112cが設けられ、反応室101の圧力が異常高圧となった場合に用いられる。即ち、過加圧防止弁112cは反応室101の圧力が異常高圧となったときに開かれ、反応室101からガスを強制的に排気して反応室101の圧力を通常状態に戻す。 The exhaust passage 111 is made of, for example, stainless steel, and includes a main exhaust passage 111a, an auxiliary exhaust passage 111b, and an overpressurization preventing passage 111c. In addition, the exhaust valve 112 includes a main exhaust valve 112a, an exhaust valve 112b, an overpressurization prevention valve 112c, and a flow rate adjustment valve 112d. The main exhaust passage 111a is provided with a main exhaust valve 112a and a vacuum pump 123, and the vacuum pump 123 performs roughing to reduce the pressure of the reaction chamber 101 via the main exhaust passage 111a. The sub-exhaust passage 111b is provided with a discharge valve 112b and a flow control valve 112d, and the flow control valve 112d adjusts the flow rate of the gas. The flow rate of the auxiliary exhaust passage 111b may be set in advance, but may be arbitrarily changed. The overpressure protection path 111c is provided with an overpressure protection valve 112c, and is used when the pressure in the reaction chamber 101 becomes abnormally high. That is, the overpressurization prevention valve 112 c is opened when the pressure in the reaction chamber 101 becomes an abnormally high pressure, and the gas is forcibly exhausted from the reaction chamber 101 to return the pressure in the reaction chamber 101 to the normal state.
 均圧路107aは例えばステンレス等から成り、一端が反応室本体101bに接続され、他端が作業室102に接続され、均圧弁107bを開くことで反応室101と作業室102を連通する。反応室101と作業室102は均圧路107aを介して連通されていればよく、例えば均圧路107aの一端が排気路111に接続され、他端が排気路121に接続されていてもよい。また、均圧路107aは作業室102内の反応室本体101bの壁面に設けられる通気口などでもよい。均圧弁107bを開くとき、排出弁112bが開かれ除外部113よりガスが吸引されているため、第2導入部105が作業室102へ導入する不活性ガスは、作業室102から均圧路107aを介して反応室101へ流入し、副排気路111bを介して排気される。即ち、作業室102→均圧路107a→反応室101→排気路111(副排気路111b)の気流により不活性ガスは排気される。このとき、副排気路111bの排気量が第2導入部105の導入量よりも大きいと、作業室102の圧力が第1の圧力よりも小さくなるため、副排気路111bの排気量は流量調整弁112dによって第2導入部105の導入量以下となるように調整されている。 The pressure equalizing path 107a is made of, for example, stainless steel, one end is connected to the reaction chamber main body 101b, the other end is connected to the working chamber 102, and the pressure equalizing valve 107b is opened to communicate the reaction chamber 101 with the working chamber 102. The reaction chamber 101 and the working chamber 102 may be in communication with each other via the pressure equalizing path 107 a. For example, one end of the pressure equalizing path 107 a may be connected to the exhaust path 111 and the other end may be connected to the exhaust path 121. . Further, the pressure equalizing path 107 a may be a vent provided on the wall surface of the reaction chamber main body 101 b in the working chamber 102. When the pressure equalizing valve 107 b is opened, the discharge valve 112 b is opened and the gas is sucked from the excluding portion 113, so the inert gas introduced into the working chamber 102 by the second introducing portion 105 is the pressure equalizing path 107 a from the working chamber 102. Into the reaction chamber 101 and exhausted through the auxiliary exhaust passage 111b. That is, the inert gas is exhausted by the air flow from the working chamber 102 → the pressure equalizing path 107 a → the reaction chamber 101 → the exhaust path 111 (sub exhaust path 111 b). At this time, if the displacement of the sub-exhaust passage 111b is larger than the introduction amount of the second introduction part 105, the pressure of the working chamber 102 becomes smaller than the first pressure. The valve 112 d is adjusted to be equal to or less than the introduction amount of the second introduction unit 105.
 図3は反応室101が開放されたときの気流を説明するための説明図である。反応室101は、Oリング114による密封を解除し昇降装置115が反応室開放部101aを上昇させることで開放される。反応室101を開放するための反応室開放部101aの移動によってパーティクルが発生する。パーティクルの発生を抑制するため、反応室開放部101aは、振動抑制のために等速度で上昇することが好ましく、加速度0.25[mm/s]の後に等速度5[mm/s]で上昇する。密封を解除した直後に反応室開放部101aの上昇を一旦停止し、再度上昇を開始してもよい。気流124は反応室101が開放されたときの反応室101及び作業室102内のガスの流れを表している。即ち、導入路105aから作業室102へ導入されている不活性ガスは、作業室102→反応室本体101bの開口部→反応室本体101b→排気路111(副排気路111b)の気流で排気される。均圧路107aの断面積は反応室101の開口面積よりも十分小さいため、作業室102から反応室101への不活性ガスの流れは、反応室101を開放する前の均圧路107aを通る気流から反応室本体101bの開口部を通る気流へ自然に切り替わる。そのため、反応室開放部101aの移動による振動で発生するパーティクルは気流124で排気部104へ運ばれて排出され、パーティクルの拡散が抑制される。 FIG. 3 is an explanatory view for explaining the air flow when the reaction chamber 101 is opened. The reaction chamber 101 is released by releasing the seal by the O-ring 114 and the lifting device 115 raising the reaction chamber opening portion 101a. The movement of the reaction chamber opening portion 101 a for opening the reaction chamber 101 generates particles. In order to suppress the generation of particles, it is preferable that the reaction chamber open part 101a ascend at an equal velocity for vibration suppression, and after an acceleration of 0.25 [mm / s 2 ], an equal velocity of 5 [mm / s] To rise. Immediately after the sealing is released, the rising of the reaction chamber opening 101a may be once stopped and the rising may be started again. The air flow 124 represents the flow of gas in the reaction chamber 101 and the working chamber 102 when the reaction chamber 101 is opened. That is, the inert gas introduced into the working chamber 102 from the introduction path 105a is exhausted by the air flow of the working chamber 102 → the opening of the reaction chamber main body 101 b → the reaction chamber main body 101 b → the exhaust path 111 (sub exhaust path 111b) Ru. Since the cross sectional area of the pressure equalizing path 107 a is sufficiently smaller than the opening area of the reaction chamber 101, the flow of inert gas from the working chamber 102 to the reaction chamber 101 passes through the pressure equalizing path 107 a before the reaction chamber 101 is opened. The air flow is naturally switched to the air flow passing through the opening of the reaction chamber main body 101b. Therefore, particles generated by vibration due to the movement of the reaction chamber open portion 101 a are carried to the exhaust portion 104 by the air flow 124 and discharged, and the diffusion of the particles is suppressed.
 次に、気相成長装置100を用いて薄膜を生成する方法を説明する。薄膜を生成するとき、反応室101はガスが排気され、圧力が減圧環境(約10~60[kPa])に維持される。そのため、まず、主排気弁112aを開き、真空ポンプ123によって450[L/min]のガス排気を行う。反応室101が減圧環境になると、第1導入部103は反応ガスを導入する。このとき、基板ホルダ118に配置された基板はヒータ120によって所定温度に加熱され、回転駆動軸119によってサセプタ117と共に回転される。導入された反応ガスは加熱された基板上で気相反応を起こし、薄膜を形成する。基板は、半導体基板、ウエハ、ガラス基板、サファイア基板等が用いられる。例えば、反応ガスとしてトリメチルガリウム(TMG)とアンモニア(NH)を導入して気相成長させると、基板上に窒化ガリウム(GaN)が生成される。薄膜生成後、反応ガスの導入を停止するが反応室101内には反応ガスが残っているため、真空ポンプ123によって主排気路111aを介して反応室101内の反応ガスを排気する。反応ガスの排気は反応室101の圧力が十分小さくなるまで行い、このときの反応室101の圧力を例えば1.0×10-2[kPa]とする。 Next, a method of forming a thin film using the vapor deposition apparatus 100 will be described. When producing a thin film, the reaction chamber 101 is evacuated of gas and the pressure is maintained in a reduced pressure environment (about 10 to 60 [kPa]). Therefore, first, the main exhaust valve 112a is opened, and the vacuum pump 123 exhausts gas of 450 [L / min]. When the reaction chamber 101 is in a reduced pressure environment, the first introduction unit 103 introduces a reaction gas. At this time, the substrate disposed in the substrate holder 118 is heated to a predetermined temperature by the heater 120, and is rotated together with the susceptor 117 by the rotational drive shaft 119. The introduced reaction gas causes a gas phase reaction on the heated substrate to form a thin film. As the substrate, a semiconductor substrate, a wafer, a glass substrate, a sapphire substrate or the like is used. For example, when trimethylgallium (TMG) and ammonia (NH 3 ) are introduced as reaction gases and vapor-phase grown, gallium nitride (GaN) is formed on the substrate. After the thin film is formed, the introduction of the reaction gas is stopped. However, since the reaction gas remains in the reaction chamber 101, the vacuum pump 123 exhausts the reaction gas in the reaction chamber 101 via the main exhaust path 111a. The exhaust of the reaction gas is performed until the pressure in the reaction chamber 101 becomes sufficiently small, and the pressure in the reaction chamber 101 at this time is, for example, 1.0 × 10 −2 [kPa].
 次に、図4に基づいて、反応ガスを排気して圧力を小さくした反応室101から処理を終えた基板を取り出すために、反応室101を開放するまでの反応室開放方法を説明する。まず、第1導入部103は反応室101へ不活性ガスの導入を開始して反応室101の圧力を昇圧する(ステップS101)。このとき、排気部104は反応室101からガスの排気を行っていなくてもよいが、不活性ガスの導入量よりも小さい排気量で排気を行ってもよい。排気を行いながら不活性ガスを導入することで、気流の流れを最小限にして、パーティクルの拡散を抑制しながら昇圧することができるため、ここでは主排気弁112aの開度を調整し、主排気路111aを介して不活性ガスの導入量よりも小さい排気量で排気する。不活性ガスの導入は反応室101の圧力が作業室102の圧力と略等しくなるまで行う。このときの反応室101と作業室102の圧力差Pを予め設定し、反応室101と作業室102の圧力差がP以下になるまで不活性ガスの導入を続ける(ステップS102でNO)。制御部110は圧力検出部108と圧力検出部109の検出値から圧力差を判断する。また、制御部110は圧力検出部108の検出値と第1の圧力又は第2の圧力との圧力差を監視してもよい。ここでは、作業室102の圧力が圧力調整部106によって101.3[kPa](大気圧)から101.6[kPa]の範囲に調整され、圧力検出部108が100[kPa]と検出するまで不活性ガスを導入する。 Next, based on FIG. 4, a reaction chamber opening method until the reaction chamber 101 is opened in order to take out the processed substrate from the reaction chamber 101 whose pressure is reduced by evacuating the reaction gas will be described. First, the first introducing unit 103 starts introducing an inert gas into the reaction chamber 101 to pressurize the pressure of the reaction chamber 101 (step S101). At this time, the exhaust unit 104 may not exhaust the gas from the reaction chamber 101, but may exhaust the exhaust gas with an exhaust amount smaller than the introduction amount of the inert gas. By introducing an inert gas while exhausting, the pressure of the air flow can be minimized and the pressure can be increased while suppressing the diffusion of particles. Here, the opening degree of the main exhaust valve 112a is adjusted to The exhaust gas is exhausted at a displacement smaller than the introduction amount of the inert gas through the exhaust passage 111a. The introduction of the inert gas is performed until the pressure in the reaction chamber 101 becomes substantially equal to the pressure in the working chamber 102. Set the pressure differential P 1 of the reaction chamber 101 and the working chamber 102 at this time in advance, the pressure difference between the reaction chamber 101 and the working chamber 102 continues to introduction of the inert gas until the P 1 or less (NO in step S102) . The control unit 110 determines the pressure difference from the detection values of the pressure detection unit 108 and the pressure detection unit 109. Further, the control unit 110 may monitor the pressure difference between the detection value of the pressure detection unit 108 and the first pressure or the second pressure. Here, the pressure of the working chamber 102 is adjusted by the pressure adjustment unit 106 to a range of 101.3 [kPa] (atmospheric pressure) to 101.6 [kPa], and the pressure detection unit 108 detects 100 [kPa]. Introduce inert gas.
 反応室101と作業室102の圧力差がP以下になると(ステップS102でYES)、不活性ガスの導入を停止する(ステップS103)。ステップS101で不活性ガスの導入と同時に主排気路111aを介して不活性ガスの排気を行っていた場合、不活性ガス導入停止と同時に主排気弁112aを閉じて不活性ガスの排気も停止する。ここで、仮にPを0[kPa]に設定し、圧力検出部108と圧力検出部109の検出値が等しいときに不活性ガスの導入を停止しても、圧力検出部108と圧力検出部109の特性値のばらつきにより、圧力差が生じる。また、制御部110は、圧力検出部108と圧力検出部109からの検出信号を受信し、反応室101と作業室102の圧力差が0になったときに第1ガス供給部103b及び主排気弁112aへ導入停止及び排気停止を行うための制御信号を送信したとしても、第1ガス供給部103bが該制御信号を受信し不活性ガス導入を停止するタイミングと、主排気弁112aが該制御信号を受信し不活性ガス排気を停止するタイミングは、応答の違い等によりずれてしまい、圧力差が生じる。そのため、この段階で反応室101を開放すると、反応室101と作業室102の圧力差によって衝撃や振動が発生し、この衝撃や振動によってパーティクルが発生する。さらに、不活性ガスの導入及び排気を停止した状態では反応室101の圧力は一定となるが、作業室102の圧力は第1の圧力から第2の圧力の範囲で変動するため、反応室101を開放するタイミングによっても、反応室101と作業室102の間には圧力差が生じる。 When the pressure difference between the reaction chamber 101 and the working chamber 102 is P 1 or less (YES at step S102), and stopping the introduction of inert gas (step S103). When the inert gas is exhausted through the main exhaust passage 111a simultaneously with the introduction of the inert gas in step S101, the main exhaust valve 112a is closed simultaneously with the stop of the inert gas introduction, and the exhaust of the inert gas is also stopped. . Here, if setting the P 1 to 0 [kPa], even if stopping the introduction of inert gas when the detected value of the pressure detection unit 108 and the pressure detection unit 109 is equal, the pressure detecting unit 108 and the pressure detecting portion The variation of the characteristic value of 109 causes a pressure difference. Further, the control unit 110 receives detection signals from the pressure detection unit 108 and the pressure detection unit 109, and when the pressure difference between the reaction chamber 101 and the working chamber 102 becomes zero, the first gas supply unit 103b and the main exhaust Even when the control signal for performing introduction stop and exhaust stop is transmitted to the valve 112a, the timing at which the first gas supply unit 103b receives the control signal and stops the introduction of the inert gas, and the main exhaust valve 112a performs the control The timing at which the signal is received and the inert gas exhaust is stopped is shifted due to the difference in response or the like, resulting in a pressure difference. Therefore, when the reaction chamber 101 is opened at this stage, the pressure difference between the reaction chamber 101 and the working chamber 102 generates an impact or vibration, and this impact or vibration generates particles. Furthermore, while the pressure in the reaction chamber 101 is constant when the introduction and exhaust of the inert gas is stopped, the pressure in the working chamber 102 fluctuates in the range from the first pressure to the second pressure. The pressure difference also occurs between the reaction chamber 101 and the working chamber 102 depending on the timing of opening the chamber.
 そこで、反応室101と作業室102の圧力差をP以下とした状態で、排出弁112bを開き、均圧弁107bを開き、反応室101と作業室102を連通する(ステップS104)。このとき、排出弁112bと均圧弁107bは同時に開いてもよいが、排出弁112bを均圧弁107bよりも先に開いてもよい。均圧弁107bを開き、均圧路107aを介して反応室101と作業室102を連通することで、反応室101と作業室102の圧力は等しくなる。また、均圧弁107bを開くときの反応室101と作業室102の圧力差による衝撃や振動によりパーティクルが発生する。そこで、均圧弁107bを開くと同時又は均圧弁107bを開く前に排出弁112bを開き、反応室101から不活性ガスを排気しながら均圧弁107bを開くことで、均圧弁107bを開くときに発生するパーティクルを排出するため、反応室101及び作業室102へパーティクルが拡散することを抑制することができる。 Therefore, in a state where the pressure difference between the reaction chamber 101 and the working chamber 102 and the P 1 or less, open the exhaust valve 112b opens the pressure equalizing valve 107 b, communicating the working chamber 102 and reaction chamber 101 (step S104). At this time, the discharge valve 112b and the pressure equalization valve 107b may be simultaneously opened, but the discharge valve 112b may be opened earlier than the pressure equalization valve 107b. By opening the pressure equalizing valve 107b and connecting the reaction chamber 101 and the working chamber 102 via the pressure equalizing path 107a, the pressures in the reaction chamber 101 and the working chamber 102 become equal. Further, particles are generated due to impact or vibration due to a pressure difference between the reaction chamber 101 and the working chamber 102 when the pressure equalizing valve 107 b is opened. Therefore, it occurs when the pressure equalization valve 107b is opened by simultaneously opening the pressure equalization valve 107b or opening the discharge valve 112b before opening the pressure equalization valve 107b and opening the pressure equalization valve 107b while exhausting the inert gas from the reaction chamber 101. It is possible to suppress the diffusion of the particles into the reaction chamber 101 and the working chamber 102 in order to discharge the particles.
 均圧弁107bを開き、所定時間経過後、反応室101を開放する(ステップS105)。反応室101と作業室102を連通して所定時間経過することで反応室101と作業室102の圧力が等しくなっているため、圧力差に起因する反応室101を開放する瞬間の振動、衝撃及び乱流発生を最小限に抑え、パーティクルの発生を抑制することができる。ただし、反応室101を開放するための反応室開放部101aの動作によってもパーティクルが発生するため、ステップS104以降ガスの排気を継続した状態で反応室101を開放し、発生したパーティクルを排出する。 The pressure equalizing valve 107b is opened, and after a predetermined time has elapsed, the reaction chamber 101 is opened (step S105). Since the pressure in the reaction chamber 101 is equal to the pressure in the working chamber 102 by communicating the reaction chamber 101 with the working chamber 102 for a predetermined time, vibration, impact, and the like at the moment of opening the reaction chamber 101 due to the pressure difference. Turbulence generation can be minimized and particle generation can be suppressed. However, since particles are also generated by the operation of the reaction chamber opening portion 101a for opening the reaction chamber 101, the reaction chamber 101 is opened in a state where gas exhaust is continued after step S104, and the generated particles are discharged.
 以上で反応室101を開放するための処理を終了する。また、反応室101から薄膜が生成された基板を取り出すときや気相成長装置100のメンテナンス時にもパーティクルが発生するため、反応室101を開放した後も、ガスの排気を継続し、発生したパーティクルを排出することが好ましい。 Thus, the process for opening the reaction chamber 101 is completed. In addition, since particles are generated also when taking out a substrate from which thin film has been generated from the reaction chamber 101 or at the time of maintenance of the vapor deposition apparatus 100, gas exhaust is continued even after the reaction chamber 101 is opened. It is preferable to discharge the
 本実施例の均圧路107aの内径は反応室本体101bの開口面積よりも十分小さいため、反応室101を開放すると均圧路107aを通っていた気流は反応室101の開口部を通る気流へと自然に切り替わるが、ステップS105で反応室101を開放すると同時に均圧弁107bを閉じて気流を切り替えるようにしてもよい。 Since the inner diameter of the pressure equalizing path 107a in this embodiment is sufficiently smaller than the opening area of the reaction chamber main body 101b, when the reaction chamber 101 is opened, the air flow passing through the pressure equalizing path 107a flows to the air flow passing through the opening of the reaction chamber 101. However, the air pressure may be switched by closing the pressure equalizing valve 107b at the same time as opening the reaction chamber 101 in step S105.
 本実施例の排気路111は流量が異なる複数の経路に分岐し、複数の排気弁112が設けられているが、1つの排気弁112で微細な流量の制御が可能であり、各工程で流量の切り替えを確実に行うことができる場合は、排気路111は複数の経路に分岐せず1つの排気弁112が設けられるような構成でもよい。また、排出弁112bで副排気路111bの開閉と流量制御が同時に行えるのであれば、流量調整弁112dは無くてもよい。さらに、気相成長装置100が備える各種の弁はマスフローコントローラでもよい。 The exhaust passage 111 of this embodiment is branched into a plurality of paths having different flow rates, and a plurality of exhaust valves 112 are provided. However, fine flow control can be performed with one exhaust valve 112, and the flow rate in each process If it is possible to reliably switch, the exhaust passage 111 may not be branched into a plurality of paths, and one exhaust valve 112 may be provided. In addition, if the opening and closing of the sub exhaust path 111b and the flow control can be simultaneously performed by the discharge valve 112b, the flow control valve 112d may be omitted. Furthermore, various valves provided in the vapor deposition apparatus 100 may be mass flow controllers.
 以上説明したとおり、本実施例は、均圧弁107bを開くときに副排気路111bを介して排気を行うことで、反応室101と作業室102を連通するときに発生するパーティクルの拡散を抑制することができる。また、反応室101と作業室102を連通して圧力を均圧にした後に反応室101を開放することで、パーティクルの発生を抑制するとともに、反応室101を開放するときに副排気路111bを介して排気することで、反応室開放部101aの移動によって発生するパーティクルの拡散を抑制することができる。 As described above, this embodiment suppresses the diffusion of particles generated when the reaction chamber 101 and the working chamber 102 communicate with each other by exhausting through the sub exhaust path 111 b when the pressure equalizing valve 107 b is opened. be able to. In addition, by connecting the reaction chamber 101 and the working chamber 102 and equalizing the pressure, the reaction chamber 101 is opened to suppress generation of particles, and when the reaction chamber 101 is opened, the sub exhaust path 111b is used. By exhausting through the space, it is possible to suppress the diffusion of particles generated by the movement of the reaction chamber opening portion 101a.
 (実施例2)
 次に、本発明の実施例2について、図5に基づいて説明する。ここで、気相成長装置の構造は実施例1と同様であるため、説明を省略する。
(Example 2)
Next, a second embodiment of the present invention will be described based on FIG. Here, since the structure of the vapor phase growth apparatus is the same as that of the first embodiment, the description will be omitted.
 図5は実施例2の気相成長装置の反応室開放法を説明するためのフロー図である。ここで、ステップS104までは実施例1と同様であるため説明を省略する。ステップS104で排出弁112bを開いてから均圧弁107bを開くことで、均圧弁107bを開くときに発生するパーティクルを排出することができる。ここで、均圧路107aの流量を小さくすることで、乱流の発生を抑制し、乱流によるパーティクルの発生を抑制して反応室101と作業室102を連通することができるが、流量調整弁112dによって副排気路111bの流量が均圧路107aの流量よりも大きく設定されている場合、ステップS104で排出弁112bを開いて副排気路111bから排気を続けると、反応室101の圧力が作業室102の圧力よりも小さくなっていく。そこで、均圧弁107bを開いて所定時間経過後、均圧弁107bを開いたときに発生したパーティクルを十分に排出してから排出弁112bを閉じる(S205)。排出弁112bを閉じて所定時間経過後、反応室101と作業室102の圧力が等しくなってから反応室101を開放する(S206)。反応室101を開放した直後、排出弁112bを再度開く(S207)。また、実施例1と同様に、ステップS206で反応室101を開放すると同時に均圧弁107bを閉じて気流を切り替えてもよい。 FIG. 5 is a flow chart for explaining the reaction chamber opening method of the vapor phase growth apparatus of the second embodiment. Here, since the steps up to step S104 are the same as in the first embodiment, the description will be omitted. By opening the discharge valve 112b in step S104 and then opening the pressure equalization valve 107b, it is possible to discharge particles generated when the pressure equalization valve 107b is opened. Here, by reducing the flow rate of the pressure equalizing path 107a, the generation of turbulent flow can be suppressed, and the generation of particles due to the turbulent flow can be suppressed to connect the reaction chamber 101 and the working chamber 102. When the flow rate of the sub exhaust path 111b is set larger than the flow rate of the pressure equalizing path 107a by the valve 112d, when the discharge valve 112b is opened in step S104 and the exhaust from the sub exhaust path 111b is continued, the pressure of the reaction chamber 101 is It becomes smaller than the pressure of the work room 102. Therefore, after the pressure equalization valve 107b is opened and a predetermined time has elapsed, particles generated when the pressure equalization valve 107b is opened are sufficiently discharged and then the discharge valve 112b is closed (S205). After the discharge valve 112 b is closed and a predetermined time has elapsed, the pressure in the reaction chamber 101 and the pressure in the working chamber 102 become equal, and then the reaction chamber 101 is opened (S 206). Immediately after the reaction chamber 101 is opened, the discharge valve 112b is opened again (S207). Further, as in the first embodiment, at the same time as opening the reaction chamber 101 in step S206, the pressure equalizing valve 107b may be closed to switch the air flow.
 本実施例は、均圧弁107bを開いた後に排出弁112bを閉じ、所定時間経過後に反応室101を開放することで、均圧弁107bを開いたときのパーティクルの発生を抑制するために均圧路107aのガス流量を小さくした場合でも、反応室101を開放するときに反応室101と作業室102の圧力を等しくすることができる。また、反応室101を開放した直後に再度排出弁112bを開くことで、反応室101を開放するときの反応室開放部101aの移動によって発生するパーティクルを排出することができる。 In this embodiment, the pressure equalizing valve 107b is opened and then the discharge valve 112b is closed, and the reaction chamber 101 is opened after a predetermined time elapses, so that generation of particles when the pressure equalizing valve 107b is opened is suppressed. Even when the gas flow rate of 107 a is reduced, the pressures in the reaction chamber 101 and the working chamber 102 can be equalized when the reaction chamber 101 is opened. Further, by opening the discharge valve 112b again immediately after opening the reaction chamber 101, it is possible to discharge particles generated by the movement of the reaction chamber opening part 101a when the reaction chamber 101 is opened.
 (実施例3)
 次に、本発明の実施例3について、図6に基づいて説明する。ここで、気相成長装置の構造は実施例1と同様であるため、説明を省略し、反応室開放方法は実施例1及び実施例2と異なる部分のみ説明する。
(Example 3)
Next, a third embodiment of the present invention will be described based on FIG. Here, since the structure of the vapor phase growth apparatus is the same as that of the first embodiment, the description will be omitted, and only the portions different from the first and second embodiments will be described.
 図6は反応室101が開放されたときの不活性ガスの流れを説明するための説明図である。本実施例では、反応室101を開放するときに、導入路103aから不活性ガスを導入する。即ち、実施例1のステップS105、又は実施例2のステップS206において、反応室101を開放すると同時に、第1導入部103は反応室開放部101aへ不活性ガスを導入する。導入された不活性ガスはシャワープレート116から均一に反応室本体101bの開口部へ供給され、排気部104へダウン気流301が生成される。第1導入部103が導入した不活性ガスは、第2導入部105が導入した不活性ガスと共に排気部104から排気される。反応室101を開放するための反応室開放部101aの移動によって発生したパーティクルをダウン気流301によって排気部104へと運び効果的に排出することができる。 FIG. 6 is an explanatory view for explaining the flow of the inert gas when the reaction chamber 101 is opened. In the present embodiment, when the reaction chamber 101 is opened, an inert gas is introduced from the introduction path 103a. That is, in step S105 of the first embodiment or step S206 of the second embodiment, at the same time as the reaction chamber 101 is opened, the first introduction portion 103 introduces an inert gas into the reaction chamber opening portion 101a. The introduced inert gas is uniformly supplied from the shower plate 116 to the opening of the reaction chamber main body 101 b, and a down air stream 301 is generated to the exhaust unit 104. The inert gas introduced by the first introduction unit 103 is exhausted from the exhaust unit 104 together with the inert gas introduced by the second introduction unit 105. The particles generated by the movement of the reaction chamber opening portion 101 a for opening the reaction chamber 101 can be carried to the exhaust portion 104 by the down air flow 301 and effectively discharged.
 このとき、反応室101から排気する不活性ガスの量、即ち副排気路111bの排気量を、第1導入部103が反応室101へ導入する不活性ガスの導入量よりも小さくすると、第1導入部103が導入した不活性ガスが反応室開放部101aから作業室102へ流れ、パーティクルが作業室102へ流出するため好ましくない。また、副排気路111bの排気量を第1導入部103が反応室101へ導入する不活性ガスの量と第2導入部105が作業室102へ導入する不活性ガスの量の和よりも大きくすると、作業室102の圧力が第1の圧力よりも小さくなるため好ましくない。よって、副排気路111bの排気量は、第1導入部103の導入量以上で、第1導入部103の導入量と第2導入部105の導入量の和以下とする。 At this time, if the amount of the inert gas exhausted from the reaction chamber 101, that is, the exhaust amount of the sub exhaust passage 111b, is smaller than the introduction amount of the inert gas introduced into the reaction chamber 101 by the first introduction part 103, The inert gas introduced by the introducing unit 103 flows from the reaction chamber opening unit 101 a to the working chamber 102, and the particles flow out to the working chamber 102, which is not preferable. Further, the sum of the amount of inert gas introduced into the reaction chamber 101 by the first introducing unit 103 and the amount of inert gas introduced into the working chamber 102 by the first introducing unit 103 is larger than the sum of the amount of inert gas Then, the pressure in the working chamber 102 is less than the first pressure, which is not preferable. Therefore, the exhaust amount of the sub-exhaust passage 111 b is equal to or more than the introduction amount of the first introduction part 103 and not more than the sum of the introduction amount of the first introduction part 103 and the introduction amount of the second introduction part 105.
 副排気路111bの流量は流量調整弁112dによって予め設定してもよいが、第1導入部103が不活性ガスを導入すると同時に、流量調整弁112dによって副排気路111bの流量を調整してもよい。例えば、副排気路111bの流量を、第1導入部103が反応室101へ不活性ガス導入を開始する前は第2導入部105の導入量以下に調整し、第1導入部103が不活性ガス導入を開始するときに第1導入部103の導入量と第2導入部105の導入量の和以下に調整してもよい。 The flow rate of the auxiliary exhaust passage 111b may be preset by the flow rate adjustment valve 112d, but the flow rate of the auxiliary exhaust passage 111b may be adjusted by the flow rate adjustment valve 112d at the same time as the first introduction part 103 introduces inert gas. Good. For example, the flow rate of the secondary exhaust passage 111b is adjusted to be equal to or less than the introduction amount of the second introduction unit 105 before the first introduction unit 103 starts the introduction of the inert gas into the reaction chamber 101, and the first introduction unit 103 is inactive. When gas introduction is started, it may be adjusted to be equal to or less than the sum of the introduction amount of the first introduction unit 103 and the introduction amount of the second introduction unit 105.
 (実施例4)
 次に、本発明の実施例4について、図7、8に基づいて説明する。図7は実施例4の気相成長装置を説明するための図である。ここで、実施例1から3と同じ構成要素には同じ符号を付し、説明を省略する。気相成長装置400は実施例1の気相成長装置100から作業室102、作業室102に接続されている第2導入部105、圧力調整部106、均圧部107、及び圧力検出部109を除いた構成をとり、反応室101は作業室に収容されず、大気中に配置される。均圧部401は一端が反応室101に接続され他端が大気に開放されている均圧路401aと、均圧路401aに設けられる均圧弁401bを含む。制御部402は圧力検出部108から検出信号を受信し、反応室101の圧力に基づいて第1ガス供給部103b、排気弁112、及び均圧弁401bを制御する。
(Example 4)
Next, a fourth embodiment of the present invention will be described based on FIGS. FIG. 7 is a view for explaining a vapor phase growth apparatus according to a fourth embodiment. Here, the same reference numerals are given to the same components as in the first to third embodiments, and the description will be omitted. The vapor deposition apparatus 400 includes the second introducing unit 105 connected to the working chamber 102 and the working chamber 102 from the vapor deposition apparatus 100 of the first embodiment, the pressure adjusting unit 106, the pressure equalizing unit 107, and the pressure detecting unit 109. The reaction chamber 101 is not accommodated in the working chamber, but is disposed in the atmosphere. The pressure equalizing portion 401 includes a pressure equalizing passage 401 a connected at one end to the reaction chamber 101 and open to the atmosphere at the other end, and a pressure equalizing valve 401 b provided in the pressure equalizing passage 401 a. The control unit 402 receives a detection signal from the pressure detection unit 108, and controls the first gas supply unit 103b, the exhaust valve 112, and the pressure equalization valve 401b based on the pressure of the reaction chamber 101.
 図8は実施例4の気相成長装置の反応室開放方法を説明するためのフロー図である。ここで、実施例1から3と同様に、成膜後、反応ガスを排気して減圧状態の反応室101へ不活性ガスの導入を開始する(ステップS401)。このとき、不活性ガスの導入量よりも少ない排気量で排気を行ってもよい。反応室101への不活性ガスの導入は反応室101内の圧力が反応室101外の圧力、即ち大気圧と略等しくなるまで行う。このときの反応室101内外の圧力差Pを予め設定し、反応室101内外の圧力差がP以下になるまで不活性ガスの導入を続ける(ステップS402でNO)。制御部110は圧力検出部108の検出値と大気圧(101.3[kPa])から圧力差を判断する。ここでは、実施例1と同様に、圧力検出部108が100[kPa]と検出するまで不活性ガスを導入する。 FIG. 8 is a flow chart for explaining the reaction chamber opening method of the vapor phase growth apparatus of the fourth embodiment. Here, as in the first to third embodiments, after film formation, the reaction gas is exhausted and introduction of an inert gas into the reaction chamber 101 in a reduced pressure state is started (step S401). At this time, the exhaust may be performed with an exhaust amount smaller than the introduction amount of the inert gas. The introduction of the inert gas into the reaction chamber 101 is performed until the pressure in the reaction chamber 101 becomes substantially equal to the pressure outside the reaction chamber 101, that is, the atmospheric pressure. Set the reaction chamber 101 and out of the pressure difference between P 2 at this time in advance, the pressure difference between the reaction chamber 101 and out continues to introduction of the inert gas until the P 2 less (NO at step S402). The control unit 110 determines the pressure difference from the detection value of the pressure detection unit 108 and the atmospheric pressure (101.3 [kPa]). Here, as in the first embodiment, the inert gas is introduced until the pressure detection unit 108 detects 100 [kPa].
 反応室101の内外の圧力差がP以下になると(ステップS402でYES)、不活性ガスの導入を停止する(ステップS403)。ステップS101で不活性ガスの導入と同時に不活性ガスの排気を行っていた場合、不活性ガス導入を停止すると同時に不活性ガス排気も停止する。次に、反応室101の内と外の圧力差をP以下とした状態で、排出弁112bを開き、均圧弁401bを開き、反応室101の内と外を連通する(ステップS404)。このとき、排出弁112bと均圧弁401bは同時に開いてもよいが、排出弁112bを均圧弁401bよりも先に開いてもよい。均圧弁401bを開き、均圧路401aを介して反応室101を大気開放することで、反応室101の内外の圧力は等しくなる。均圧弁401bを開くと同時、又は均圧弁401aを開く前に排出弁112bを開き、ガスの排気を行うことで、均圧弁401bを開くときに発生するパーティクルを排出するため、反応室101の内部又は外部へパーティクルが拡散することを防ぐことができる。均圧弁401bを開き、所定時間経過後、反応室101を開放する(ステップS405)。反応室101の内外の圧力が等しくなっているため、反応室101を開放する瞬間の振動、衝撃及び乱流発生を最小限に抑え、パーティクルの発生を抑制することができる。ただし、反応室101を開放するための反応室開放部101aの動作によってもパーティクルが発生するため、ステップS404で開いた排出弁112bは開いた状態のままで反応室101を開放し、発生したパーティクルを排出する。 When the pressure difference between the inside and the outside of the reaction chamber 101 becomes P 2 or less (YES in step S 402), the introduction of the inert gas is stopped (step S 403). When the inert gas is exhausted simultaneously with the introduction of the inert gas in step S101, the inert gas introduction is stopped and the inert gas exhaust is also stopped simultaneously. Then, the pressure difference inside and outside the reaction chamber 101 while the P 2 below opens the exhaust valve 112b opens the pressure equalizing valve 401b, communicating inside and outside of the reaction chamber 101 (step S404). At this time, the discharge valve 112b and the pressure equalization valve 401b may be simultaneously opened, but the discharge valve 112b may be opened earlier than the pressure equalization valve 401b. By opening the pressure equalizing valve 401 b and opening the reaction chamber 101 to the atmosphere via the pressure equalizing path 401 a, the pressure inside and outside the reaction chamber 101 becomes equal. At the same time as opening pressure equalizing valve 401b or before opening pressure equalizing valve 401a, exhaust valve 112b is exhausted to exhaust the gas, so that particles generated when pressure equalizing valve 401b is opened can be discharged from the inside of reaction chamber 101. Alternatively, the particles can be prevented from diffusing to the outside. The pressure equalizing valve 401b is opened, and after a predetermined time has elapsed, the reaction chamber 101 is opened (step S405). Since the pressure inside and outside the reaction chamber 101 is equal, it is possible to minimize the occurrence of vibration, impact and turbulence at the moment of opening the reaction chamber 101, and to suppress the generation of particles. However, since particles are also generated by the operation of the reaction chamber opening portion 101a for opening the reaction chamber 101, the discharge valve 112b opened in step S404 is opened and the reaction chamber 101 is opened, and the generated particles are generated. Drain.
 実施例2と同様に、ステップS404で均圧弁401bを開いた後、ステップS405で反応室101を開放する前に排出弁112を閉じ、ステップS405で反応室101を開放した後に再度排出弁112を開いてもよい。また、実施例3と同様に、ステップS405で反応室101を開放するときに第1導入部103は反応室101へ不活性ガスを導入してもよい。このとき、第1導入部103が導入した不活性ガスが反応室101から反応室101外へ流出しないように、排気部104の不活性ガスの排気量を第1導入部103の導入量以上に調整してもよい。 As in the second embodiment, after the pressure equalizing valve 401b is opened in step S404, the discharge valve 112 is closed before the reaction chamber 101 is opened in step S405, and after the reaction chamber 101 is opened in step S405, the discharge valve 112 is reopened. You may open it. Further, as in the third embodiment, the first introducing unit 103 may introduce an inert gas into the reaction chamber 101 when the reaction chamber 101 is opened in step S405. At this time, in order to prevent the inert gas introduced by the first introduction unit 103 from flowing out of the reaction chamber 101 to the outside of the reaction chamber 101, the exhaust amount of the inert gas in the exhaust unit 104 is made equal to or more than the introduction amount of the first introduction unit 103. You may adjust.
 以上、説明したとおり、本実施例は、反応室101の内外を連通するときに発生するパーティクルの拡散を抑制することができる。また、反応室101内外を連通して圧力を均圧にした後に反応室101を開放することで、パーティクルの発生を抑制するとともに、反応室101を開放するときに反応室開放部101aの移動によって発生するパーティクルの拡散を抑制することができる。 As described above, in the present embodiment, the diffusion of particles generated when the inside and the outside of the reaction chamber 101 are communicated can be suppressed. In addition, by connecting the inside and outside of the reaction chamber 101 and equalizing the pressure and then opening the reaction chamber 101, generation of particles is suppressed, and when the reaction chamber 101 is opened, movement of the reaction chamber opening portion 101a is performed. Diffusion of generated particles can be suppressed.
 本発明の反応室開放方法及び気相成長装置は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。例えば、上記実施形態はシャワープレート116を介して反応ガスを反応室101へ供給するシャワー型気相成長装置について説明したが、反応室101の中心軸に沿って導入路103aを配置し、反応室101の中心部から外周部へ放射状に反応ガスを導入する中央放射型気相成長装置にも同様に実施可能である。また、上記実施形態は減圧CVD装置について説明したが、常圧や加圧のCVD装置についても同様に実施可能であり、プラズマCVD装置等にも同様に実施可能である。 The reaction chamber opening method and the vapor phase growth apparatus according to the present invention are not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, which are disclosed in different embodiments. Embodiments obtained by appropriately combining technical means are also included in the technical scope of the present invention. For example, although the above embodiment has described the shower type vapor phase growth apparatus for supplying the reaction gas to the reaction chamber 101 via the shower plate 116, the introduction path 103a is disposed along the central axis of the reaction chamber 101. The present invention can be similarly applied to a central radiation type vapor phase growth apparatus in which a reaction gas is introduced radially from the central portion to the outer peripheral portion of 101. Further, although the low pressure CVD apparatus has been described in the above embodiment, the same can be applied to a normal pressure or pressurized CVD apparatus, and can also be applied to a plasma CVD apparatus or the like.
 本発明によれば、パーティクルの発生及び拡散を抑制して反応室を開放することができるため、パーティクルの付着による化合物半導体結晶の特性の劣化を防ぐことができ、また、反応室及び作業室を清潔に保つことでメンテナンス工程を短縮することができる。 According to the present invention, since the reaction chamber can be opened by suppressing generation and diffusion of particles, deterioration of the characteristics of the compound semiconductor crystal due to the adhesion of particles can be prevented, and the reaction chamber and the working chamber can be By keeping it clean, the maintenance process can be shortened.
 100 気相成長装置、101 反応室、101a 反応室開放部、101b 反応室本体、102 作業室、103 第1導入部、103a 導入路、103b 第1ガス供給部、104 排気部、105 第2導入部、105a 導入路、105b 第2ガス供給部、106 圧力調整部、107 均圧部、107a 均圧路、107b 均圧弁、108,109 圧力検出部、110 制御部、111 排気路、111a 主排気路、111b 副排気路、111c 過加圧防止路、112 排気弁、112a 主排気弁、112b 排出弁、112c 過加圧防止弁、112d 流量調整弁、113 除外部。 DESCRIPTION OF SYMBOLS 100 vapor phase growth apparatus, 101 reaction chamber, 101a reaction chamber opening part, 101b reaction chamber main body, 102 working chamber, 103 1st introduction part, 103a introduction path, 103b 1st gas supply part, 104 exhaust part, 105 2nd introduction Section, 105a introduction path, 105b second gas supply section, 106 pressure adjusting section, 107 pressure equalizing section, 107a pressure equalizing path, 107b pressure equalizing valve, 108, 109 pressure detecting section, 110 control section, 111 exhaust path, 111a main exhaust Path, 111b auxiliary exhaust path, 111c overpressure protection path, 112 exhaust valve, 112a main exhaust valve, 112b exhaust valve, 112c overpressure protection valve, 112d flow control valve, 113 exclusion portion.

Claims (15)

  1.  作業室(102)に収容される反応室(101)を開放する反応室開放方法であって、
     前記反応室(101)へガスを導入して前記反応室(101)の圧力を昇圧する工程(S101)と、
     前記反応室(101)と前記作業室(102)との圧力差が所定値(P)以下になるまで前記反応室(101)の圧力を昇圧した後に前記反応室(101)からガスを排気しながら前記反応室(101)と前記作業室(102)とを連通する工程(S104)と、
     前記反応室(101)と前記作業室(102)とを連通した後に前記反応室(101)を開放する工程(S105)と、を含むことを特徴とする反応室開放方法。
    A reaction chamber opening method for opening a reaction chamber (101) accommodated in a working chamber (102), comprising:
    Introducing a gas into the reaction chamber (101) to increase the pressure in the reaction chamber (101) (S101);
    The pressure in the reaction chamber (101) is increased until the pressure difference between the reaction chamber (101) and the working chamber (102) becomes equal to or less than a predetermined value (P 1 ), and then the gas is exhausted from the reaction chamber (101). Connecting the reaction chamber (101) and the working chamber (102) with each other (S104);
    And a step (S105) of opening the reaction chamber (101) after the reaction chamber (101) and the working chamber (102) are communicated with each other.
  2.  前記反応室(101)からガスを排気しながら前記反応室(101)と前記作業室(102)とを連通する工程(S104)は、前記反応室(101)と前記作業室(102)との圧力差が所定値(P)以下となるときに前記反応室(101)からガスを排気するための排気路(111b)に設けられる排出弁(112b)を開き、前記反応室(101)と前記作業室(102)とを連通して均圧にするための均圧路(107a)に設けられる均圧弁(107b)を開くことを特徴とする請求項1に記載の反応室開放方法。 The step (S104) of communicating the reaction chamber (101) with the working chamber (102) while exhausting the gas from the reaction chamber (101) is performed by the reaction chamber (101) and the working chamber (102). The exhaust valve (112b) provided in the exhaust passage (111b) for exhausting the gas from the reaction chamber (101) when the pressure difference becomes equal to or less than the predetermined value (P 1 ) is opened, and the reaction chamber (101) The reaction chamber opening method according to claim 1, wherein a pressure equalization valve (107b) provided in a pressure equalization path (107a) for communicating with the working chamber (102) and equalizing pressure is opened.
  3.  前記均圧弁(107b)を開いた後前記反応室(101)を開放する前に前記排出弁(112b)を閉じる工程(S205)と、前記反応室(101)を開放した後に前記排出弁(112b)を開く工程(S207)と、をさらに含むことを特徴とする請求項2に記載の反応室開放方法。 After the pressure equalizing valve (107b) is opened, the discharge valve (112b) is closed before the reaction chamber (101) is opened (S205), and after the reaction chamber (101) is opened, the discharge valve (112b) 3. The method for opening a reaction chamber according to claim 2, further comprising the step of:) (S207).
  4.  前記作業室(102)へ導入するガスの量に基づいて前記反応室(101)から排気するガスの量を調整することを特徴とする請求項1に記載の反応室開放方法。 The reaction chamber opening method according to claim 1, wherein the amount of gas exhausted from the reaction chamber (101) is adjusted based on the amount of gas introduced into the working chamber (102).
  5.  前記反応室(101)を開放するときに前記反応室(101)へガスを導入することを特徴とする請求項1に記載の反応室開放方法。 The method for opening a reaction chamber according to claim 1, wherein a gas is introduced to the reaction chamber (101) when the reaction chamber (101) is opened.
  6.  前記反応室(101)へ導入するガスの量及び前記作業室(102)へ導入するガスの量に基づいて前記反応室(101)から排気するガスの量を調整することを特徴とする請求項5に記載の反応室開放方法。 The amount of gas exhausted from the reaction chamber (101) is adjusted based on the amount of gas introduced into the reaction chamber (101) and the amount of gas introduced into the working chamber (102). The reaction chamber opening method as described in 5.
  7.  反応室(101)を開放する反応室開放方法であって、
     前記反応室(101)内へガスを導入して前記反応室(101)内の圧力を昇圧する工程(S401)と、
     前記反応室(101)内と前記反応室(101)外との圧力差が所定値(P)以下になるまで前記反応室(101)内の圧力を昇圧した後に前記反応室(101)内からガスを排気しながら前記反応室(101)内と前記反応室(101)外とを連通する工程(S404)と、
     前記反応室(101)内と前記反応室(101)外とを連通した後に前記反応室(101)を開放する工程(S405)と、を含むことを特徴とする反応室開放方法。
    A method for opening a reaction chamber (101), comprising:
    Introducing a gas into the reaction chamber (101) to increase the pressure in the reaction chamber (101) (S401);
    After raising the pressure in the reaction chamber (101) until the pressure difference between the inside of the reaction chamber (101) and the outside of the reaction chamber (101) becomes equal to or less than a predetermined value (P 2 ), the inside of the reaction chamber (101) Communicating the inside of the reaction chamber (101) with the outside of the reaction chamber (101) while exhausting the gas from the chamber (S404);
    A step (S405) of opening the reaction chamber (101) after the inside of the reaction chamber (101) is communicated with the outside of the reaction chamber (101) (S405).
  8.  前記反応室(101)内からガスを排気しながら前記反応室(101)内と前記反応室(101)外とを連通する工程(S404)は、前記反応室(101)内と前記反応室(101)外との圧力差が所定値(P)以下となるときに前記反応室(101)内からガスを排気するための排気路(111)に設けられる排出弁(112)を開き、前記反応室(101)内と前記反応室(101)外を連通して均圧にするための均圧路(401a)に設けられる均圧弁(401b)を開くことを特徴とする請求項7に記載の反応室開放方法。 The step (S404) of communicating the inside of the reaction chamber (101) with the outside of the reaction chamber (101) while exhausting the gas from the inside of the reaction chamber (101) comprises the inside of the reaction chamber (101) and the reaction chamber (101). 101) Open a discharge valve (112) provided in an exhaust passage (111) for exhausting the gas from inside the reaction chamber (101) when the pressure difference with the outside becomes equal to or less than a predetermined value (P 2 ) The pressure equalizing valve (401b) provided in the pressure equalizing path (401a) for bringing the inside of the reaction chamber (101) and the outside of the reaction chamber (101) into communication and equalizing the pressure is opened. How to open the reaction chamber.
  9.  前記均圧弁(401b)を開いた後前記反応室(101)を開放する前に前記排出弁(112)を閉じる工程と、前記反応室(101)を開放した後に前記排出弁(112)を開く工程と、をさらに含むことを特徴とする請求項8に記載の反応室開放方法。 A step of closing the discharge valve (112) after opening the pressure equalization valve (401b) and before opening the reaction chamber (101), and opening the discharge valve (112) after opening the reaction chamber (101) The method according to claim 8, further comprising the steps of:
  10.  前記反応室(101)を開放するときに前記反応室(101)へガスを導入することを特徴とする請求項7に記載の反応室開放方法。 The reaction chamber opening method according to claim 7, wherein a gas is introduced into the reaction chamber (101) when the reaction chamber (101) is opened.
  11.  前記反応室(101)へ導入するガスの量に基づいて前記反応室(101)から排気するガスの量を調整することを特徴とする請求項10に記載の反応室開放方法。 The reaction chamber opening method according to claim 10, wherein the amount of gas exhausted from the reaction chamber (101) is adjusted based on the amount of gas introduced into the reaction chamber (101).
  12.  作業室(102)に収容される反応室(101)を備える気相成長装置(100)であって、
     前記作業室(102)の圧力を第1の圧力から第2の圧力の範囲に調整する圧力調整部(106)と、
     前記反応室(101)と前記作業室(102)を連通して前記反応室(101)の圧力を前記作業室(102)の圧力と等しくするための均圧部(107)と、
     前記反応室(101)と前記作業室(102)とを連通するときにガスを排気して前記反応室(101)からパーティクルを排出するための排気部(104)と、
     前記反応室(104)を開放するための開放部(115)と、を備えることを特徴とする気相成長装置(100)。
    A vapor phase growth apparatus (100) comprising a reaction chamber (101) accommodated in a work chamber (102), wherein
    A pressure adjusting unit (106) for adjusting the pressure in the working chamber (102) from a first pressure to a second pressure;
    A pressure equalizing portion (107) for communicating the reaction chamber (101) with the working chamber (102) to make the pressure in the reaction chamber (101) equal to the pressure in the working chamber (102);
    An exhaust unit (104) for evacuating gas and discharging particles from the reaction chamber (101) when the reaction chamber (101) and the working chamber (102) are communicated with each other;
    And an opening (115) for opening the reaction chamber (104).
  13.  前記排気部(104)は前記反応室(101)の圧力と前記第1の圧力との差が所定値(P)以下のときに開かれる排出弁(112b)を有することを特徴とする請求項12に記載の気相成長装置(100)。 Wherein the exhaust unit (104) is characterized by having a discharge valve the difference between the pressure and the first pressure of the reaction chamber (101) is opened when a predetermined value (P 1) below (112b) The vapor phase growth apparatus (100) according to Item 12.
  14.  前記排気部(104)は前記作業室(102)へ導入するガスの量に基づいて前記反応室(101)から排気するガスの量を調整するための流量調整弁(112d)をさらに備えることを特徴とする請求項12に記載の気相成長装置(100)。 The exhaust unit (104) further comprises a flow control valve (112d) for adjusting the amount of gas exhausted from the reaction chamber (101) based on the amount of gas introduced into the working chamber (102). The vapor deposition apparatus (100) according to claim 12, characterized in that:
  15.  前記排気部(104)は前記反応室(101)へ導入するガスの量及び前記作業室(102)へ導入するガスの量に基づいて前記反応室(101)から排気するガスの量を調整するための流量調整弁(112d)をさらに備えることを特徴とする請求項12に記載の気相成長装置(100)。 The exhaust unit (104) adjusts the amount of gas exhausted from the reaction chamber (101) based on the amount of gas introduced into the reaction chamber (101) and the amount of gas introduced into the working chamber (102). The vapor deposition apparatus (100) according to claim 12, further comprising a flow control valve (112d).
PCT/JP2012/059644 2011-05-13 2012-04-09 Method of opening reaction chamber and vapor phase growth device WO2012157370A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011107716A JP5079902B1 (en) 2011-05-13 2011-05-13 Reaction chamber opening method and vapor phase growth apparatus
JP2011-107716 2011-05-13

Publications (1)

Publication Number Publication Date
WO2012157370A1 true WO2012157370A1 (en) 2012-11-22

Family

ID=47176711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059644 WO2012157370A1 (en) 2011-05-13 2012-04-09 Method of opening reaction chamber and vapor phase growth device

Country Status (3)

Country Link
JP (1) JP5079902B1 (en)
TW (1) TW201303972A (en)
WO (1) WO2012157370A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019220589A (en) * 2018-06-20 2019-12-26 株式会社ニューフレアテクノロジー Vapor growth device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6360315B2 (en) * 2014-02-03 2018-07-18 大陽日酸株式会社 Method for opening reactor of vapor phase growth apparatus
JP6455481B2 (en) 2016-04-25 2019-01-23 トヨタ自動車株式会社 Film forming method and film forming apparatus
US11251019B2 (en) 2016-12-15 2022-02-15 Toyota Jidosha Kabushiki Kaisha Plasma device
JP7009102B2 (en) * 2017-07-27 2022-01-25 株式会社Screenホールディングス Exhaust method of heat treatment equipment
JP6485536B1 (en) * 2017-12-28 2019-03-20 株式会社Sumco Epitaxial wafer manufacturing apparatus and manufacturing method
JP7223548B2 (en) * 2018-10-16 2023-02-16 大陽日酸株式会社 Method for replacing gas in reactor in vapor phase growth apparatus
CN117425950A (en) * 2022-05-18 2024-01-19 株式会社日立高新技术 Plasma processing apparatus and gas exhausting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177060A (en) * 1992-01-28 1994-06-24 Kokusai Electric Co Ltd Gas supply/delivery method and device of vertical diffusion cvd device
JPH07211761A (en) * 1994-01-21 1995-08-11 Tokyo Electron Ltd Transfer of material to be treated in treating device
JPH08340037A (en) * 1995-06-13 1996-12-24 Kokusai Electric Co Ltd Semiconductor manufacturing equipment
JP2006128341A (en) * 2004-10-28 2006-05-18 Tokyo Electron Ltd Method for operating substrate treatment equipment, method for controlling it, substrate treatment equipment and program controlling the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177060A (en) * 1992-01-28 1994-06-24 Kokusai Electric Co Ltd Gas supply/delivery method and device of vertical diffusion cvd device
JPH07211761A (en) * 1994-01-21 1995-08-11 Tokyo Electron Ltd Transfer of material to be treated in treating device
JPH08340037A (en) * 1995-06-13 1996-12-24 Kokusai Electric Co Ltd Semiconductor manufacturing equipment
JP2006128341A (en) * 2004-10-28 2006-05-18 Tokyo Electron Ltd Method for operating substrate treatment equipment, method for controlling it, substrate treatment equipment and program controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019220589A (en) * 2018-06-20 2019-12-26 株式会社ニューフレアテクノロジー Vapor growth device
JP7164332B2 (en) 2018-06-20 2022-11-01 株式会社ニューフレアテクノロジー Vapor deposition equipment

Also Published As

Publication number Publication date
JP5079902B1 (en) 2012-11-21
JP2012238772A (en) 2012-12-06
TW201303972A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
WO2012157370A1 (en) Method of opening reaction chamber and vapor phase growth device
US8598047B2 (en) Substrate processing apparatus and producing method of semiconductor device
JP4487338B2 (en) Film forming apparatus and film forming method
JP4759073B2 (en) Substrate support, substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
US20080087218A1 (en) Board processing apparatus and method of fabricating semiconductor apparatus
JP2010239115A (en) Substrate processing apparatus
US8011381B2 (en) Balanced purge slit valve
US20210104427A1 (en) Apparatus and methods for isolating a reaction chamber from a loading chamber resulting in reduced contamination
US6994887B2 (en) Chemical vapor deposition apparatus and film deposition method
US11414780B2 (en) Apparatus and method for manufacturing epitaxial wafer
US20100162952A1 (en) Substrate processing apparatus
US20090241834A1 (en) Substrate processing apparatus
US8246749B2 (en) Substrate processing apparatus and semiconductor device producing method
US8051870B2 (en) Pressure reduction process device, pressure reduction process method, and pressure regulation valve
US20190338443A1 (en) Method of producing epitaxial silicon wafer
CN110629199A (en) Method for manufacturing epitaxial silicon wafer
JP2001060555A (en) Substrate treating method
JP2012195422A (en) Method of manufacturing substrate, method of manufacturing semiconductor device, and substrate processing device
JP4415005B2 (en) Substrate processing equipment
JP2009272355A (en) Substrate processing system
KR20030040070A (en) Method for fabricating a semiconductor device and a substrate processing apparatus
WO2012077680A1 (en) Method for producing substrate, method for producing semiconductor device, and substrate treatment device
KR20240066911A (en) Apparatus and method for processing substrate
WO2013061659A1 (en) Vapor deposition device
JP2007073879A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786048

Country of ref document: EP

Kind code of ref document: A1