WO2012157134A1 - 密閉型開閉装置の真空度劣化検出装置 - Google Patents
密閉型開閉装置の真空度劣化検出装置 Download PDFInfo
- Publication number
- WO2012157134A1 WO2012157134A1 PCT/JP2011/074608 JP2011074608W WO2012157134A1 WO 2012157134 A1 WO2012157134 A1 WO 2012157134A1 JP 2011074608 W JP2011074608 W JP 2011074608W WO 2012157134 A1 WO2012157134 A1 WO 2012157134A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vacuum
- sensor
- temperature
- deterioration
- container
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/668—Means for obtaining or monitoring the vacuum
Definitions
- the present invention relates to a vacuum degree deterioration detecting device for a hermetic switchgear that can be used as a vacuum circuit breaker or a switchgear using a vacuum circuit breaker.
- Patent Document 2 when a temperature-sensitive paint is applied to the vacuum valve of the vacuum circuit breaker, and the internal pressure of the vacuum container decreases and the ambient temperature of the vacuum container rises to a predetermined temperature, the temperature-sensitive paint changes color. It is configured as follows. Then, the monitoring person visually checks the discoloration of the temperature-sensitive paint to detect the vacuum degree deterioration. Furthermore, in Patent Document 3, a coaxial electrode is installed on the side surface of a grounded vacuum vessel, a magnetic field is generated around the coaxial electrode by an external power source to ionize a cation current from the residual gas in the vacuum vessel, and The internal pressure in the vacuum vessel is measured by detecting the potential difference caused by the cation current.
- Patent Document 1 when a vacuum crack is suddenly deteriorated due to a large crack or the like in the vacuum container, if the rate of increase in gas pressure exceeds the discharge detection capability of the vacuum deterioration monitoring device, the vacuum container There was a problem that the degree of vacuum could not be measured because no discharge was generated in the inside. Further, the technique such as Patent Literature 2 has a problem that the degree of vacuum cannot be detected unless the monitoring person notices the discoloration. Furthermore, the technique of processing a vacuum vessel and attaching a measuring element as in Patent Document 3 has a problem that it may affect the breaking characteristics and insulation performance of the circuit breaker.
- the present invention has been made to solve the above-described problems, and is a sealed type capable of detecting that the degree of vacuum in the vacuum vessel has deteriorated even under a high pressure at which no discharge occurs in the vacuum vessel.
- An object of the present invention is to provide a vacuum degree deterioration detection device for a switchgear.
- a vacuum degree deterioration detecting device for a hermetic switchgear is provided so as to surround a vacuum vessel in which an open / close part is accommodated, and is hermetically sealed with an insulating gas between the vacuum vessel.
- a vacuum deterioration detection device for a closed type switchgear having a container, wherein a sensor device installed in the closed vessel and a detection signal of the sensor device are processed to determine a vacuum deterioration of the vacuum vessel
- a signal processing unit including a determination unit configured to detect at least one of a temperature sensor that detects a temperature in the sealed container, a pressure sensor that detects a pressure, and a gas density sensor that detects a gas density. It is characterized by comprising.
- the output signal of at least one of the temperature sensor that detects the temperature in the sealed container, the pressure sensor that detects the pressure, and the gas density sensor that detects the gas density of the insulating gas by the signal processing unit Since the vacuum deterioration of the vacuum vessel is determined by performing an arithmetic process, the vacuum degree in the vacuum vessel has deteriorated even when the inside of the vacuum vessel is under a high pressure at which no discharge occurs. It can be easily detected. In addition, since the sensor can be disposed in the sealed container in a non-contact manner with respect to the vacuum container, there is also an advantage that the blocking performance is not deteriorated.
- FIG. 2 is a reference diagram showing a Paschen curve for explaining a pressure region of a vacuum vessel detected by the vacuum degree deterioration detection device shown in FIG. 1. It is a figure which shows notionally the main structure when the vacuum degree degradation detection apparatus shown by FIG. 1 is applied to each phase of a three-phase alternating current line.
- FIG. 1 is a diagram conceptually showing a main part of a vacuum degree deterioration detecting device of a hermetic switchgear according to Embodiment 1 of the present invention.
- the hermetic switchgear includes a hermetic container 1, a vacuum container 2 disposed in the hermetic container 1, and a fixed contact 3 and a movable contact 4 that constitute an opening / closing unit disposed in the vacuum container 2.
- an operating device (not shown) installed outside the hermetic container 1, an insulating rod 5 that connects the drive shaft of this operating device and the movable contact 4, and vacuum from the outside of the hermetic container 1 via an insulator.
- a main circuit conductor 6 connected to the fixed contact 3 or the movable contact 4 of the container 2 and a bushing 7 provided around the main circuit conductor 6 are provided.
- the sealed container 1 is filled with an insulating gas such as dry air or sulfur hexafluoride (SF 6 ) gas.
- the hermetic switchgear is provided with a vacuum degree deterioration detection device 8, which is installed on the inner wall surface of the hermetic container 1 of the hermetic switchgear and the temperature inside the hermetic container 1.
- a signal processing unit 10 installed outside the sealed container 1 and connected to the sensor device 9 via a signal cable 9a.
- the sensor device 9 is composed of a temperature sensor 91, and an example is shown in which a radiation thermometer is disposed in the lower part of the hermetic container 1 that is relatively easy to install.
- the temperature sensor 91 may be installed at any position inside the sealed container 1 as long as the ambient temperature of the vacuum container 2 can be detected.
- FIG. 2 is a block diagram showing a main configuration of the signal processing unit 10 constituting the vacuum degree deterioration detecting device 8 shown in FIG. As shown in FIG. 2, the signal processing unit 10 constantly observes the temperature around the vacuum vessel 2 using the temperature sensor 91, and obtains the temperature data from the measurement unit 11 and the measurement unit 11 that converts the temperature data into a digital value.
- Recording means 12 that records temperature data in a storage medium such as a memory, and an arithmetic processing function that obtains temperature data from the recording information of the recording means 12 and calculates the amount of temperature change around the vacuum vessel 2 and its maximum value
- a degree-of-vacuum deterioration estimation unit 13 and a determination unit 14 that determines that the inside of the vacuum container 2 has been replaced by an insulating gas or the like in the sealed container 1 when a value corresponding to the estimated degree of vacuum deterioration exceeds a predetermined value;
- the output is supplied to the display device 15, and the alarm device or the warning light is operated.
- the operation of the first embodiment configured as described above will be described.
- the said insulating gas is dry air
- the value of the electric current which flows through the main circuit conductor 6 is made constant, and the contact point of the switching part is described in the on state, the case where the insulating gas is SF 6 gas, etc. It can be detected in the same way.
- the main circuit conductor 6 when the movable contact 4 is connected to the fixed contact 3, the main circuit conductor 6 generates heat when a current flows, and the heat propagates through the insulating gas filled in the sealed container 1. At this time, if the current flowing through the main circuit conductor 6 does not change, the temperature in the sealed container 1 is substantially constant. On the other hand, in the vacuum container 2, the heat of the conductor is hardly transmitted into the space, so that the heat generated in the vacuum container 2 hardly propagates in the sealed container 1.
- FIG. 3 is a diagram illustrating an output example of the temperature sensor 91 installed in the sealed container 1.
- the degree of vacuum in the vacuum vessel 2 is not deteriorated, heat is not radiated inside the vacuum vessel 2, so that the heat output around the vacuum vessel 2 is small.
- the insulating gas flows into the vacuum container 2 due to a pressure difference between the sealed container 1 and the vacuum container 2.
- the heat generated by the conductor in the vacuum container 2 is propagated to the outside of the vacuum container 2, so that the temperature in the sealed container 1 is as shown in the figure.
- the measuring means 11 acquires the temperature data in the sealed container 1 from the output signal of the temperature sensor 91 at the sampling interval ⁇ t, and converts it into a discrete value with the resolution ⁇ V (step S1).
- the temperature data at the abnormality occurrence location (i, j) in the two-dimensional plane of the temperature data is represented as h (m; i, j).
- the recording means 12 records the temperature data h (m; i, j) discretized by the measuring means 11 in a storage medium such as a memory not shown (step S2).
- the vacuum degree deterioration estimating means 13 acquires the temperature data h (m; i, j) from the recording means 12 (step S3), and h (m; i) in order to emphasize the temperature change around the vacuum container 2. , J) is preprocessed (step S4).
- the preprocessing can be used by appropriately selecting from general processing methods performed for the purpose of noise suppression, removal, enhancement of specific signal components, extraction of a region of interest, etc. It is assumed that an appropriate process is selected in advance in consideration of the situation, and conversion functions w (i, j) and z (i, j) are defined.
- the degree-of-vacuum deterioration estimation means 13 calculates a time change amount ⁇ (m; i, j) of the data f (m; i, j) (step S5), and calculates the maximum of ⁇ (m; i, j).
- the position (i max , j max ) taking the values ⁇ max and ⁇ max is calculated as follows (step S6).
- ⁇ (m; i, j)
- However, k (n ⁇ 1) ⁇ ⁇ t 1,
- (I max , j max ) argmax ⁇ i, j
- ⁇ (m; i, j) ⁇ ⁇ max (m) ⁇ (m; i max , j max )
- the determination means 14 determines whether or not ⁇ max obtained from the vacuum degree deterioration estimation means 13 exceeds a predetermined threshold (step S7). If it exceeds (YES), the vacuum degree of the vacuum vessel 2 deteriorates. Then, it is determined that the inside of the vacuum vessel 2 has been replaced with an insulating gas or the like, and position information (i, j) of f (n) is acquired (step S8), and general display means and notification means (not shown) are obtained. The monitor is notified of the deterioration detection position (i, j) and the degree of vacuum deterioration (step S9).
- the threshold value is 99.8 to 100.2% of the gas temperature at the start of observation.
- the threshold in the case of using a pressure sensor or a gas density sensor is 99.5 to 100.5% of the sensor output value at the start of observation.
- FIG. 5 is a reference diagram showing a Paschen curve for explaining the pressure region of the vacuum vessel 2 detected by the vacuum degree deterioration detecting device 8 shown in FIG.
- the horizontal axis represents the product of the distance (cm) between the electrodes provided in parallel with the gas pressure (Torr) in the vacuum vessel 2, and the vertical axis represents the discharge start voltage (volt).
- the discharge start voltage In the region A where the inside of the vacuum vessel 2 is high vacuum, the discharge start voltage is high and no discharge occurs.
- the degree of vacuum in the vacuum vessel 2 is reduced to the level of the region B due to aging deterioration or the like, the discharge start voltage is suddenly reduced and discharge is generated in the vacuum vessel 2.
- the discharge start voltage rises again and no discharge occurs in the vacuum vessel 2.
- the vacuum of the vacuum vessel 2 is reliably detected in the region C. Deterioration can be detected.
- FIG. 6 is a diagram conceptually showing a main configuration when the vacuum degree deterioration detecting device 8 shown in FIG. 1 is applied to each phase of a three-phase AC line.
- the sensor device 9 includes temperature sensors 91R, 91S, and 91T installed in the closed containers 1 for each phase, and the signal processing unit 10 sequentially switches and processes the output signals of the temperature sensors for each phase, for example.
- the signal processing unit 10 sequentially switches and processes the output signals of the temperature sensors for each phase, for example.
- a phase in which the vacuum container 2 is abnormal is detected and an alarm is generated.
- the vacuum deterioration of the vacuum container 2 is determined. Even in the case of pressure, it can be easily detected that the degree of vacuum in the vacuum vessel 2 has deteriorated. Further, since the degree of vacuum deterioration is detected from the time change of the gas temperature in the sealed container 1, the degree of vacuum deterioration of the vacuum container 2 can be detected without processing the vacuum container 2.
- the temperature data is converted to emphasize the temperature change in the vicinity of the vacuum vessel 2, the vacuum deterioration can be accurately estimated.
- the temperature sensor 91 is arrange
- FIG. FIG. 7 is a diagram conceptually showing a main part of the vacuum degree deterioration detecting device of the hermetic switchgear according to Embodiment 2 of the present invention.
- a vacuum degree deterioration detection device 8 includes a sensor device 9 including a temperature sensor 91 similar to that shown in FIG. 1 installed in the sealed container 1 and a current sensor 92 that measures a current flowing through the main circuit conductor 6, and A signal processing unit 10A to which outputs of the temperature sensor 91 and the current sensor 92 are supplied is provided.
- the recording means 12 stores in advance the relationship between the energized current measured in the normal state and the insulating gas temperature around the vacuum vessel 2 (referred to as current-temperature correlation information for convenience). Other configurations are the same as those in FIG.
- the measuring means 11 acquires the temperature in the sealed container 1 at the sampling interval ⁇ t from the temperature sensor 91 as in the first embodiment, and converts it into a discrete value with the resolution ⁇ V. To do.
- the discretized temperature is represented as h (m).
- the temperature sensor output at each time is two-dimensional data
- the temperature data at the abnormality occurrence location (i, j) in the two-dimensional plane of the temperature data is represented as h (m; i, j).
- data is acquired from the current sensor 92 at a sampling interval ⁇ t, and converted to a discrete value with a resolution ⁇ V.
- the discretized current data is represented as I (m).
- the recording unit 12 records the temperature data h (m; i, j) and current data I (m) discretized by the measuring unit 11 in a storage medium such as a memory.
- the degree-of-vacuum deterioration estimation unit 13 acquires temperature data h (m; i, j) and current data I (m) from the recording unit 12, and first, h (m; i, j) is converted to f (m; i, j). Since the temperature data conversion method is the same as described above, the description thereof is omitted.
- the vacuum degree deterioration estimating means 13 reads the current-temperature correlation information stored in the recording means 12 in advance, and reads the temperature corresponding to the current data I (m) acquired from the recording means 12. This temperature is defined as h ref (I (m)).
- the determination unit 14 determines whether or not the converted temperature data f (m; i, j) is included in a range determined by h ref (I (m)), and f (m; i, j) is within an allowable range. If not, the monitor is notified of the vacuum degree deterioration of the vacuum vessel 2.
- the allowable range of f (m; i, j) is the same as the threshold described in the first embodiment.
- the vacuum degree deterioration estimating means 13 calculates a difference ⁇ (m; i, j) between f (m; i, j) and h ref (I (m)), and ⁇ (m; i, j, The position (i max , j max ) taking the maximum values ⁇ max and ⁇ max of j) is calculated.
- the calculated information is supplied to the display device, and the monitor is notified and displayed together with the vacuum degree deterioration.
- the current-temperature correlation information in the normal operation stored in the recording unit 12 in advance is used to detect the current flowing through the main circuit conductor 6 detected by the current sensor 92.
- An appropriate temperature in the sealed container 1, that is, a temperature in normal operation is obtained, and the appropriate temperature is compared with the current temperature detected by the temperature sensor 91, so that an abnormality is determined when the appropriate temperature is exceeded. Therefore, the deterioration of the degree of vacuum can be detected easily with high accuracy.
- the calorific value of the main circuit conductor 6 is calculated from the energizing current I (m), the gas temperature h rc (I (m)) in the sealed container 1 is estimated from the calorific value, and h rc (I (m) ) And f (m; i, j) may be obtained as ⁇ c .
- the gas temperature corresponding to the energization current is calculated, but the energization current corresponding to the measured gas temperature in the sealed container 1 may be calculated.
- FIG. 8 is a diagram conceptually showing the main part of a vacuum degree deterioration detecting device for a hermetic switchgear according to Embodiment 3 of the present invention
- FIG. 9 is a difference in gas leak factors in the vacuum degree deterioration detecting device shown in FIG. It is a figure which shows the example of the pressure change of the insulating gas by.
- the degree-of-vacuum deterioration detection device 8 includes a temperature sensor 91 installed in the sealed container 1 and a pressure sensor 93 installed so as to detect the pressure of the insulating gas in the sealed container 1.
- the sensor device 9 is provided, and output signals from the temperature sensor 91 and the pressure sensor 93 are supplied to the signal processing unit 10B.
- Other configurations are the same as those in FIG.
- the recording means 12 contains the insulating gas in the sealed container 1 at the normal time. It is assumed that the relationship between pressure and temperature (referred to as pressure-temperature correlation information for convenience) is stored in advance.
- the two-dimensional temperature data obtained by the measuring means 11 is represented as h (m; i, j), and the pressure data is represented as p (m).
- the degree-of-vacuum deterioration estimation means 13 acquires temperature data h (m; i, j) and pressure data p (m) from the recording means 12 and emphasizes the temperature change around the vacuum vessel 2 in order to emphasize the temperature data.
- h (m; i, j) is converted into h (m; i, j).
- the vacuum degree deterioration estimating means 13 reads the pressure-temperature correlation information of the insulating gas stored in the recording means 12 in advance, and reads the temperature corresponding to the pressure data p (m) acquired from the recording means 12. This temperature is expressed as h ref (p (m)).
- the determination unit 14 determines whether f (m; i, j) is included in the range determined by h ref (p (m)). If f (m) is not within the allowable range, the monitoring unit is informed of the vacuum vessel. Notification of vacuum degree deterioration of 2.
- the allowable range of f (m; i, j) is the same as the threshold described in the first embodiment.
- the vacuum degree deterioration estimating means 13 calculates a difference ⁇ (m; i, j) between f (m; i, j) and h ref (I (m)) and ⁇ (m; i, j ) (I max , j max ) where the maximum values ⁇ max and ⁇ max are taken.
- the calculated information is notified to the monitoring person together with the deterioration of the degree of vacuum, and is displayed on a display device (not shown).
- the open / close device in which the vacuum vessel 2 is accommodated inside the closed vessel 1 as in the case of the closed type open / close device, in addition to the gas leak or breakage of the vacuum vessel 2, there is a failure due to the gas leak of the closed vessel 1. possible.
- the solid line in FIG. 9 shows an example of the pressure change of the insulating gas when there is a gas leak abnormality in the vacuum vessel 2 and the broken line shows the gas change in the closed vessel 1 when there is a gas leak abnormality.
- there is a relatively large gas leak but there is a clear difference in pressure change due to the difference in the internal volume between the two. Since such a difference can be detected by the pressure sensor 93, it is easy to configure the signal processing unit 10 to identify the cause of the pressure change with the same logic.
- the pressure-temperature correlation information in the sealed container 1 is used to compare the appropriate temperature for the pressure in the sealed container 1 with the temperature detected by the temperature sensor 91. Degradation of the vacuum degree of the vacuum vessel 2 can be easily detected. Further, when only the sealed container 1 is damaged, it is detected that the time change amount of the pressure sensor output is different from that when the vacuum degree of the vacuum container 2 is deteriorated as shown in FIG. Or the vacuum container 2 can be identified.
- the gas temperature of the sealed container 1 is calculated based on the pressure-temperature correlation information. However, the gas pressure corresponding to the measured gas temperature in the sealed container 1 is calculated, and the gas pressure is calculated. You may make it determine by.
- FIG. 10 is a diagram conceptually showing a main part of the vacuum degree deterioration detecting device of the hermetic switchgear according to Embodiment 4 of the present invention
- FIG. 11 is a main process of the vacuum degree deterioration detecting device shown in FIG. It is a flowchart which shows a procedure.
- the vacuum degree deterioration detection device 8 includes a plurality (three in this case) of temperature sensors 911, 912, and 913 in the sealed container 1.
- the signal cables for the temperature sensors 912 and 913 are not shown.
- These sensor devices 9 are installed in a distributed manner at predetermined positions in the sealed container 1, and all of them detect the temperature of the surface of the vacuum container 2.
- the signal processing unit 10C is the same as that shown in FIG. 2, and the other configuration is the same as that of the first embodiment, so that the description thereof is omitted.
- operations and effects of the fourth embodiment will be described with reference to FIGS. 2, 10, and 11.
- the measuring means 11 acquires the temperature in the sealed container from the temperature sensors 911, 912, and 913 arranged in the sealed container 1 at the sampling interval ⁇ t, and converts each value into a discrete value with the resolution ⁇ V (Ste S11).
- the discretized two-dimensional temperature data is represented as h 1 (m; i, j), h 2 (m; i, j), and h 3 (m; i, j), respectively.
- the recording unit 12 stores the temperature data h 1 (m; i, j), h 2 (m; i, j), h 3 (m; i, j) discretized by the measuring unit 11 in a memory or the like. Is recorded in the storage medium (step S12).
- the degree-of-vacuum deterioration estimation means 13 acquires temperature data h 1 (m; i, j), h 2 (m; i, j), h 3 (m; i, j) from the recording means 12 (step S13). These are preprocessed by the conversion function in the same manner as described above (step S14). The temperature data after this conversion is expressed as g 1 (m; i, j), g 2 (m; i, j), g 3 (m; i, j). Next, when two pairs are formed by a plurality of temperature sensors, the sensor pair ( ⁇ , ⁇ ) is selected in order from all the temperature sensor pairs that can be combined (step S15).
- the deviation ⁇ ⁇ , ⁇ (m; i) between the two sensors. , J) ( ⁇ ⁇ ) is calculated.
- the determination means 14 calculates the statistic of the distribution followed by ⁇ ⁇ , ⁇ (m; i, j) in all the sensor pairs (step S16), and compares the calculated statistic with the statistic of the preset distribution. (Step S17), if it is determined that the calculated statistic is included in the statistical range of the preset distribution (YES), the sensor pair ( ⁇ , ⁇ ) and ⁇ ⁇ , ⁇ (m; i, j ) Is recorded (step S18). For example, it is assumed that deviations ⁇ ⁇ , ⁇ (m; i, j) of healthy sensors ⁇ , ⁇ follow a normal distribution of average values ⁇ ⁇ , ⁇ and variances ⁇ 2 ⁇ , ⁇ .
- the deviation ⁇ ⁇ , ⁇ (m; i, j) of the sensor pair ( ⁇ , ⁇ ) including the unhealthy sensor ⁇ follows a normal distribution of mean values ⁇ ⁇ , ⁇ and variances ⁇ 2 ⁇ , ⁇ .
- the statistical quantity of normal distribution is defined by the following equation.
- n 1 is the number of data of ⁇ ⁇ and ⁇
- n 2 is the number of data of ⁇ ⁇ and ⁇
- N (0,1) is a normal distribution with an average value of 0 and a variance of 1. If the probability of rejecting the hypothesis that the distribution followed by a healthy sensor pair and the distribution followed by a sensor pair including an unhealthy sensor is 1%, then z 0 ⁇ 2.575 or z 0 > ⁇ 2.575. Reject the above hypothesis. That is, sensor pairs including unhealthy sensors can be extracted based on the probability of rejecting the hypothesis and the statistic calculated from the measurement data.
- step S19 it is determined whether calculation has been performed for all sensor pairs.
- the vacuum degree deterioration estimation unit 13 removes all the sensor pairs determined to be out of the allowable range from the recording unit 12. It is acquired and it is determined whether there is a temperature sensor common to these sensor pairs (step S20). If there is a common temperature sensor, it is calculated. For example, to extract the sensor pair with the (1,2) when the deviation of the sensor pair (2, 3) is out of the allowable range, any sensor pair to be a common temperature sensor S 2. Then, the position where the temperature change amount is maximum in the data g 2 (m; i, j) of the temperature sensor S 2 is estimated as the abnormality occurrence location of the vacuum vessel 2 (step S21).
- the determination unit 14 discards the sensor pair determined to be out of the allowable range. New data is acquired, and statistics are calculated for all sensor pairs using the newly acquired data. Further, when the vacuum degree deterioration estimating unit 13 estimates the abnormality occurrence point, the determination unit 14 notifies the monitoring staff of the vacuum degree deterioration (step S22), and the abnormality occurrence point estimated by the vacuum degree deterioration estimating unit 13 is also obtained. To be notified.
- the abnormal part of the vacuum container 2 can be specified.
- the degree-of-vacuum deterioration detection device can also be applied to a case where a temperature sensor is arranged in a sealed container for each phase of a three-phase AC line.
- the case where three or more temperature sensors are installed has been described.
- two temperature sensors may be installed.
- one place is installed as a first temperature sensor in a place where the temperature of the vacuum vessel 2 in the sealed container 1 can be detected, and the other one place can be used as a second temperature sensor to detect the temperature in other areas.
- Install in place the signal processing unit uses the deviation of the difference between the detection signals of the first temperature sensor and the second temperature sensor measured in the normal state for the determination of the vacuum degree deterioration of the vacuum vessel 2, and relative By using a simple temperature difference, the detection accuracy of the degree of vacuum deterioration can be increased.
- Embodiments 1 to 4 described above the one having one vacuum circuit breaker (vacuum container 2) inside the sealed container 1 has been described, but the present invention is not limited to this.
- the same effect can be obtained even in a closed switchgear in which other elements such as a disconnector are included in addition to the vacuum circuit breaker.
- the vacuum degree of the vacuum vessel is deteriorated by the same configuration. It can be detected. In this case, the vacuum degree deterioration of the vacuum vessel 2 can be detected even when the opening / closing part is in an open state.
- the accuracy may be improved by correcting changes in temperature and pressure detected by the sensor device due to changes in ambient temperature depending on the season.
- any two or more of the inventions described in Embodiments 1 to 4 can be combined.
Landscapes
- Gas-Insulated Switchgears (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Abstract
真空容器内で放電が発生しない高圧力下においても、真空容器内の真空度が劣化したことを検知可能とする。 内部に開閉部が収容された真空容器2を包囲して設けられ、真空容器2との間に絶縁性ガスが封入された密閉容器1を有する密閉型開閉装置の真空度劣化検出装置8であって、密閉容器1に設置され、該密閉容器1内の温度を検知する温度センサ、圧力を検知する圧力センサ、絶縁性ガスのガス密度を検知するガス密度センサの少なくとも一つのセンサを有するセンサ装置9と、このセンサ装置9の検知信号を演算処理することによって真空容器1の真空の劣化を判定する判定手段を有する信号処理部10とを備えたものである。
Description
この発明は、真空遮断器あるいは真空遮断器を用いた開閉装置などとして用いることができる密閉型開閉装置の真空度劣化検出装置に関するものである。
従来、タンク型あるいは碍子形真空遮断器の真空度測定は、主回路から真空容器を切り離した後、真空度チェッカなどの計測器を用いて行っていた。しかし、主回路から切り離すことができない真空遮断器の場合は、上記のような方法で真空度を測定することができない。この問題を解決するため、例えば特許文献1では、真空容器内に配置された接点の近傍にセンサを配置し、真空容器内の真空度が正常であるときにセンサが検出する交流波形と、真空容器内の真空不良時に検出する放電波形とから異常を検出し、放電波形の波高値から真空不良の開始時を検出するように構成している。
また、特許文献2では、真空遮断器の真空バルブに感温塗料を塗布し、真空容器の内部圧力が低下して真空容器の周辺温度が所定の温度まで上昇した場合に感温塗料が変色するように構成している。そして、監視員が感温塗料の変色を目視で確認することにより、真空度劣化を検出する。さらに、特許文献3では、接地された真空容器の側面に同軸電極を設置し、この同軸電極の周囲に外部電源により磁界を発生させて真空容器内の残留ガスから陽イオン電流を電離させ、そして、陽イオン電流によって生じる電位差を検出して真空容器内の内部圧力を測定するように構成している。
上記特許文献1のような技術では、真空容器に大きな亀裂等が生じて急激に真空度が劣化した場合に、ガス圧の上昇速度が真空度劣化監視装置の放電検知能力を上回ると、真空容器内で放電が発生しないため、真空度が測定できないという問題があった。また、特許文献2のような技術では、監視員が変色に気付かなければ真空度劣化を検出できないという問題があった。さらに、特許文献3のような真空容器を加工して測定素子を取り付ける技術では、遮断器の遮断特性や絶縁性能に影響を及ぼす可能性があるという問題があった。
この発明は、上記のような問題点を解決するためになされたものであり、真空容器内で放電が発生しない高圧力下においても、真空容器内の真空度が劣化したことを検知できる密閉型開閉装置の真空度劣化検出装置を提供することを目的としている。
この発明に係る密閉型開閉装置の真空度劣化検出装置は、内部に開閉部が収容された真空容器の周りを包囲して設けられ、上記真空容器との間に絶縁性ガスが封入された密閉容器を有する密閉型開閉装置の真空度劣化検出装置であって、上記密閉容器内に設置されたセンサ装置と、このセンサ装置の検知信号を演算処理することによって上記真空容器の真空の劣化を判定する判定手段とを有する信号処理部とを備え、上記センサ装置は、上記密
閉容器内の温度を検知する温度センサ、圧力を検知する圧力センサ及びガス密度を検知するガス密度センサの少なくとも一つのセンサから構成されたことを特徴としたものである。
閉容器内の温度を検知する温度センサ、圧力を検知する圧力センサ及びガス密度を検知するガス密度センサの少なくとも一つのセンサから構成されたことを特徴としたものである。
この発明によれば、信号処理部によって、密閉容器内の温度を検知する温度センサ、圧力を検知する圧力センサ、絶縁性ガスのガス密度を検知するガス密度センサの少なくとも一つのセンサ装置の出力信号を演算処理することによって真空容器の真空の劣化を判定するようにしたので、真空容器内が放電の発生しない高圧力下になっていた場合においても、真空容器内の真空度が劣化したことを容易に検出できる。また、センサは真空容器に対して非接触で密閉容器内に配置することができるので、遮断性能を低下させることがない利点もある。
実施の形態1.
図1は本発明の実施の形態1による密閉型開閉装置の真空度劣化検出装置の要部を概念的に示す図である。図において、密閉型開閉装置は、密閉容器1と、この密閉容器1の中に配置された真空容器2と、真空容器2の中に配置された開閉部を構成する固定接点3及び可動接点4と、密閉容器1の外部に設置された操作装置(図示せず)と、この操作装置の駆動軸と可動接点4を連結する絶縁ロッド5と、密閉容器1の外部から碍子を経由して真空容器2の固定接点3または可動接点4にそれぞれ接続された主回路導体6と、この主回路導体6の周囲に設けられたブッシング7などを備えている。また、密閉容器1内には、例えば乾燥空気(ドライエア)や六フッ化硫黄(SF6)ガスなどの絶縁性ガスが充填されている。
図1は本発明の実施の形態1による密閉型開閉装置の真空度劣化検出装置の要部を概念的に示す図である。図において、密閉型開閉装置は、密閉容器1と、この密閉容器1の中に配置された真空容器2と、真空容器2の中に配置された開閉部を構成する固定接点3及び可動接点4と、密閉容器1の外部に設置された操作装置(図示せず)と、この操作装置の駆動軸と可動接点4を連結する絶縁ロッド5と、密閉容器1の外部から碍子を経由して真空容器2の固定接点3または可動接点4にそれぞれ接続された主回路導体6と、この主回路導体6の周囲に設けられたブッシング7などを備えている。また、密閉容器1内には、例えば乾燥空気(ドライエア)や六フッ化硫黄(SF6)ガスなどの絶縁性ガスが充填されている。
この密閉型開閉装置には、真空度劣化検出装置8が取り付けられており、真空度劣化検出装置8は、密閉型開閉装置の密閉容器1の内側の壁面に設置され、密閉容器1内の温度を検知するセンサ装置9と、密閉容器1の外部に設置され、センサ装置9に信号ケーブル
9aを介して接続された信号処理部10とから構成されている。ここで、センサ装置9は、温度センサ91で構成されており、放射温度計を設置が比較的容易な密閉容器1の下部に配置した例を示している。なお、温度センサ91の設置位置は、真空容器2の周囲温度を検知できる範囲であれば、密閉容器1の内側のどの位置に設置してもよい。
9aを介して接続された信号処理部10とから構成されている。ここで、センサ装置9は、温度センサ91で構成されており、放射温度計を設置が比較的容易な密閉容器1の下部に配置した例を示している。なお、温度センサ91の設置位置は、真空容器2の周囲温度を検知できる範囲であれば、密閉容器1の内側のどの位置に設置してもよい。
図2は、図1に示された真空度劣化検出装置8を構成する信号処理部10の主要構成を示すブロック図である。図2に示すように、信号処理部10は、温度センサ91を使って真空容器2周辺の温度を常時観測し、この温度データをディジタル値に変換する測定手段11と、測定手段11から取得した温度データをメモリ等の記憶媒体に記録する記録手段12と、記録手段12の記録情報から温度データを取得して真空容器2周辺の温度変化量や、その最大値などを算出する演算処理機能を有する真空度劣化推定手段13と、推定した真空度劣化に対応する値が所定値を超えた場合に真空容器2内が密閉容器1内の絶縁性ガスなどにより置換されたと判定する判定手段14とを備えており、この出力を表示装置15に供給し、警報機または警告灯を動作させるように構成している。
次に、上記のように構成された実施の形態1の動作について説明する。なお、上記絶縁性ガスは乾燥空気であり、主回路導体6を流れる電流値は一定とし、開閉部の接点は投入状態である場合について説明するが、絶縁性ガスがSF6ガスである場合などにおいても同様に検出できる。
まず、可動接点4が固定接点3に接続された状態であるとき、主回路導体6は電流が流れることによって発熱し、その熱が密閉容器1内に充填された絶縁性ガス中を伝搬する。このとき、主回路導体6に流れる電流が変化しなければ、密閉容器1内の温度はほぼ一定である。一方、真空容器2内部においては、導体の熱が空間中にほとんど伝わらないため、真空容器2内部で発生する熱は、密閉容器1内にほとんど伝搬しない。
図3は、密閉容器1内部に設置した温度センサ91の出力例を示す図である。真空容器2内の真空度が劣化していない場合、真空容器2内部は熱が放射されないため、真空容器2周辺の熱の出力は小さい。図3中の時刻TLにおいて、真空容器2に大きな亀裂が発生すると、密閉容器1内と真空容器2内の圧力差により真空容器2内部に向かって絶縁性ガスが流入する。真空容器2内に密閉容器1内の絶縁性ガスが流入すると、真空容器2内の導体が発する熱は、真空容器2の外側へ伝搬されるため、密閉容器1内の温度が図示のような曲線を描いて上昇する。
次に、信号処理部10の主な処理手順を図4を用いて説明する。
まず、測定手段11は、温度センサ91の出力信号からサンプリング間隔Δtで密閉容器1内の温度データを取得し、分解能ΔVで離散値に変換する(ステップS1)。なお、離散化された温度データをh(m)(m=n・Δt、n=0,1,2,…)と表す。各時刻の温度センサ出力が2次元データであるとして、温度データの2次元平面における異常発生箇所(i,j)での温度データをh(m;i,j)と表す。そして、記録手段12は、測定手段11で離散化された温度データh(m;i,j)を図示されていないメモリ等の記憶媒体に記録する(ステップS2)。
まず、測定手段11は、温度センサ91の出力信号からサンプリング間隔Δtで密閉容器1内の温度データを取得し、分解能ΔVで離散値に変換する(ステップS1)。なお、離散化された温度データをh(m)(m=n・Δt、n=0,1,2,…)と表す。各時刻の温度センサ出力が2次元データであるとして、温度データの2次元平面における異常発生箇所(i,j)での温度データをh(m;i,j)と表す。そして、記録手段12は、測定手段11で離散化された温度データh(m;i,j)を図示されていないメモリ等の記憶媒体に記録する(ステップS2)。
次に、真空度劣化推定手段13は、記録手段12から温度データh(m;i,j)を取得し(ステップS3)、真空容器2周囲の温度変化を強調するため、h(m;i,j)に前処理を施す(ステップS4)。真空度劣化推定手段13は、例えば関数w(i,j)、z(i,j)を用いて温度データh(m;i,j)を次式のようにf(m;i,j)に変換する。
f(m;i,j)=w(i,j)・h(m;i,j)+z(i,j)
なお、前処理は、雑音の抑制、除去、特定の信号成分の強調、関心領域の切り出しなど
の目的で行なわれる一般的な処理手法から適宜選択して用いることができ、データを観測した時の状況を考慮して予め適当な処理が選択され、変換関数w(i,j)及びz(i,j)が定義されているものとする。
f(m;i,j)=w(i,j)・h(m;i,j)+z(i,j)
なお、前処理は、雑音の抑制、除去、特定の信号成分の強調、関心領域の切り出しなど
の目的で行なわれる一般的な処理手法から適宜選択して用いることができ、データを観測した時の状況を考慮して予め適当な処理が選択され、変換関数w(i,j)及びz(i,j)が定義されているものとする。
次に、真空度劣化推定手段13は、データf(m;i,j)の時間変化量σ(m;i,j)を計算し(ステップS5)、σ(m;i,j)の最大値σmax、及びσmaxをとる位置(imax,jmax)を次式のように算出する(ステップS6)。
σ(m;i,j)=|f(m;i,j)-f(k;i,j)|
但し、k=(n-1)・Δt 、|x|はxの絶対値を表す。
(imax,jmax)=argmax{i,j|σ(m;i,j)}
σmax(m)=σ(m;imax,jmax)
σ(m;i,j)=|f(m;i,j)-f(k;i,j)|
但し、k=(n-1)・Δt 、|x|はxの絶対値を表す。
(imax,jmax)=argmax{i,j|σ(m;i,j)}
σmax(m)=σ(m;imax,jmax)
判定手段14は、真空度劣化推定手段13から得たσmaxが、予め定めた閾値を超えたかを判定し(ステップS7)、超えている場合(YES)、真空容器2の真空度が劣化して真空容器2内が絶縁性ガスなどよって置換されたと判定し、f(n)の位置情報(i,j)を取得して(ステップS8)、図示していない一般的な表示手段、報知手段などによって劣化検出位置(i,j)と、真空度劣化とを監視員に通知する(ステップS9)。上記閾値は、例えば定格電圧72kVの真空遮断器の場合、観測開始時点のガス温度の99.8~100.2%とする。圧力センサまたはガス密度センサを用いる場合の閾値は、観測開始時点のセンサ出力値の99.5~100.5%とする。
なお、真空容器2の真空度劣化がない場合、σmaxは量子化誤差などの外乱によって決まる分布に従う。これを利用して、真空度が正常であるときのσmaxが従う分布の偏差を閾値として使用しても良い。
なお、真空容器2の真空度劣化がない場合、σmaxは量子化誤差などの外乱によって決まる分布に従う。これを利用して、真空度が正常であるときのσmaxが従う分布の偏差を閾値として使用しても良い。
図5は図1に示された真空度劣化検出装置8によって検出される真空容器2の圧力領域を説明するためのパッシェンカーブを示す参考図である。なお、横軸は真空容器2内における気体圧力(Torr)と平行に設けられた電極間の距離(cm)の積、縦軸は放電開始電圧(ボルト)である。真空容器2内が高真空である領域Aの場合は、放電開始電圧が高く、放電は発生しない。経年劣化等で真空容器2内の真空度が低下して領域Bのレベルになると、放電開始電圧が急激に低下して真空容器2内で放電が発生する。一方、劣化や真空容器2の破損などで内部圧力が400Torr・cm以上の領域Cになると、再び放電開始電圧が上昇し、真空容器2内で放電しなくなる。従来の放電の検出による手法では、急激な真空劣化によって領域Cに至った場合、真空劣化を検出不能であったが、上記のようなこの発明においては、領域Cにおいて確実に真空容器2の真空劣化を検出できる。
図6は、図1に示された真空度劣化検出装置8を三相交流線路の各相に適用したときの主要構成を概念的に示す図である。この場合、センサ装置9は、各相の密閉容器1に設置された温度センサ91R、91S、91Tからなり、信号処理部10は、各相の温度センサの出力信号を例えば順次切り替えて処理することにより、真空容器2に異常があった相を検知し、警報を発生するように構成される。
このように、密閉容器1内の温度を検知する温度センサ91の出力信号を演算処理することによって真空容器2の真空の劣化を判定するようにしたので、真空容器2内が放電の発生しない高圧力下になっていた場合においても、真空容器2内の真空度が劣化したことを容易に検出できる。また、密閉容器1内のガス温度の時間変化から真空度劣化を検出するので、真空容器2を加工することなく真空容器2の真空度劣化を検出できる。
さらに、温度データを変換して真空容器2近傍の温度変化を強調するので、真空劣化を精密に推定できる。また、温度センサ91は密閉容器1に配置され、真空容器2に対して非接触にできるので、真空容器2の遮断性能を低下させることがない。
また、急激な真空劣化を早期に検知できるので、真空遮断器や真空容器2の交換などに速やかに対応できるようになる。このため、密閉型開閉装置の安全性や信頼性が向上し、結果的に密閉型開閉装置の寿命を延ばすことも可能となる。
また、急激な真空劣化を早期に検知できるので、真空遮断器や真空容器2の交換などに速やかに対応できるようになる。このため、密閉型開閉装置の安全性や信頼性が向上し、結果的に密閉型開閉装置の寿命を延ばすことも可能となる。
実施の形態2.
図7は本発明の実施の形態2による密閉型開閉装置の真空度劣化検出装置の要部を概念的に示す図である。図において、真空度劣化検出装置8は、密閉容器1内に設置された図1と同様の温度センサ91と、主回路導体6に流れる電流を測定する電流センサ92とからなるセンサ装置9、および温度センサ91と電流センサ92の出力が供給される信号処理部10Aを備えている。なお、記録手段12には正常状態において測定された通電電流と真空容器2周辺の絶縁性ガス温度との関係(便宜上、電流-温度相関情報と言う)が予め保存されている。その他の構成は、図1と同様であるので、説明を省略する。
図7は本発明の実施の形態2による密閉型開閉装置の真空度劣化検出装置の要部を概念的に示す図である。図において、真空度劣化検出装置8は、密閉容器1内に設置された図1と同様の温度センサ91と、主回路導体6に流れる電流を測定する電流センサ92とからなるセンサ装置9、および温度センサ91と電流センサ92の出力が供給される信号処理部10Aを備えている。なお、記録手段12には正常状態において測定された通電電流と真空容器2周辺の絶縁性ガス温度との関係(便宜上、電流-温度相関情報と言う)が予め保存されている。その他の構成は、図1と同様であるので、説明を省略する。
上記のように構成された実施の形態2において、測定手段11は、実施の形態1と同様に温度センサ91からサンプリング間隔Δtで密閉容器1内の温度を取得し、分解能ΔVで離散値に変換する。離散化された温度をh(m)と表す。ここでは、各時刻の温度センサ出力が2次元データであるとして、温度データの2次元平面における異常発生箇所(i,j)での温度データをh(m;i,j)と表す。また、電流センサ92からも同様にサンプリング間隔Δtでデータを取得し、分解能ΔVで離散値に変換する。離散化された電流データをI(m)と表す。
次に、記録手段12は、測定手段11で離散化された温度データh(m;i,j)及び電流データI(m)をメモリ等の記憶媒体に記録する。真空度劣化推定手段13は、記録手段12から温度データh(m;i,j)及び電流データI(m)を取得し、まず、真空容器周辺の温度変化を強調するためにh(m;i,j)をf(m;i,j)に変換する。温度データの変換手法は、前述と同様なので説明は省略する。次に、真空度劣化推定手段13は、予め記録手段12に保存された電流-温度相関情報を読み込み、記録手段12から取得した電流データI(m)に対応する温度を読み取る。この温度をhref(I(m))とする。
判定手段14は、変換された温度データf(m;i,j)がhref(I(m))で決まる範囲に含まれるかを判断し、f(m;i,j)が許容範囲にない場合は、監視員に真空容器2の真空度劣化を通知する。f(m;i,j)の許容範囲は、実施の形態1に記載の閾値と同様の範囲とする。このとき、真空度劣化推定手段13は、f(m;i,j)とhref(I(m))との差σ(m;i,j)を算出すると共に、σ(m;i,j)の最大値σmax及びσmaxをとる位置(imax,jmax)を算出する。算出された情報は、表示装置に供給され、監視員に上記真空度劣化と共に通知されるとともに表示される。
このような実施の形態2によれば、予め記録手段12に保存された正常状態の運用における電流-温度相関情報を利用して、電流センサ92によって検知された主回路導体6に流れる通電電流に対する密閉容器1内の適正温度、即ち、正常状態の運用における温度を求め、その適正温度と温度センサ91で検出した現時点の温度とを比較して、適正温度を超えたときに異常と判定するようにしたので、真空度劣化を精度よく容易に検出できる。
なお、通電電流I(m)から主回路導体6の発熱量を算出し、発熱量から密閉容器1内のガス温度hrc(I(m))を推定して、hrc(I(m))とf(m;i,j)との差σcを求めても良い。また、この実施の形態2では通電電流に対応するガス温度を算出しているが、測定した密閉容器1内のガス温度に対応する通電電流を算出するようにしても良い。
実施の形態3.
図8は本発明の実施の形態3による密閉型開閉装置の真空度劣化検出装置の要部を概念的に示す図、図9は図8に示された真空度劣化検出装置におけるガスリーク要因の違いによる絶縁性ガスの圧力変化の例を示す図である。
図8において、真空度劣化検出装置8は、密閉容器1内に設置された温度センサ91と、同じく密閉容器1内の絶縁性ガスの圧力を検知し得るように設置された圧力センサ93からなるセンサ装置9を備えており、信号処理部10Bには温度センサ91と圧力センサ93の出力信号が供給される。その他の構成は、図1と同様であるので、説明を省略する。
図8は本発明の実施の形態3による密閉型開閉装置の真空度劣化検出装置の要部を概念的に示す図、図9は図8に示された真空度劣化検出装置におけるガスリーク要因の違いによる絶縁性ガスの圧力変化の例を示す図である。
図8において、真空度劣化検出装置8は、密閉容器1内に設置された温度センサ91と、同じく密閉容器1内の絶縁性ガスの圧力を検知し得るように設置された圧力センサ93からなるセンサ装置9を備えており、信号処理部10Bには温度センサ91と圧力センサ93の出力信号が供給される。その他の構成は、図1と同様であるので、説明を省略する。
なお、測定手段11及び記録手段12の動作は、この実施の形態3においても上述した実施の形態1と同様であるが、記録手段12には、正常時における密閉容器1内の絶縁性ガスの圧力と温度の関係(便宜上、圧力-温度相関情報という)が予め保存されているものとする。ここで、測定手段11で得た2次元温度データをh(m;i,j)、圧力データをp(m)と表す。
まず、真空度劣化推定手段13は、記録手段12から温度データh(m;i,j)及び圧力データp(m)を取得し、真空容器2の周辺の温度変化を強調するため、温度データh(m;i,j)を実施の形態1と同様に、h(m;i,j)に変換する。
まず、真空度劣化推定手段13は、記録手段12から温度データh(m;i,j)及び圧力データp(m)を取得し、真空容器2の周辺の温度変化を強調するため、温度データh(m;i,j)を実施の形態1と同様に、h(m;i,j)に変換する。
次に、真空度劣化推定手段13は、予め記録手段12に保存した絶縁性ガスの圧力-温度相関情報を読み込み、記録手段12から取得した圧力データp(m)に対応する温度を読み取る。この温度をhref(p(m))と表す。
判定手段14は、f(m;i,j)がhref(p(m))で決まる範囲に含まれるかを判断し、f(m)が許容範囲にない場合は、監視員に真空容器2の真空度劣化を通知する。f(m;i,j)の許容範囲は実施の形態1に記載の閾値と同様の範囲とする。このとき真空度劣化推定手段13は、f(m;i,j)とhref(I(m))との差σ(m;i,j)を算出すると共に、σ(m;i,j)の最大値σmax及びσmaxをとる位置(imax,jmax)を算出する。算出された情報は、監視員に上記真空度劣化と共に通知し、また、図示していない表示装置に表示する。
判定手段14は、f(m;i,j)がhref(p(m))で決まる範囲に含まれるかを判断し、f(m)が許容範囲にない場合は、監視員に真空容器2の真空度劣化を通知する。f(m;i,j)の許容範囲は実施の形態1に記載の閾値と同様の範囲とする。このとき真空度劣化推定手段13は、f(m;i,j)とhref(I(m))との差σ(m;i,j)を算出すると共に、σ(m;i,j)の最大値σmax及びσmaxをとる位置(imax,jmax)を算出する。算出された情報は、監視員に上記真空度劣化と共に通知し、また、図示していない表示装置に表示する。
なお、本件密閉型開閉装置のように、密閉容器1の内部に真空容器2が収容されている開閉装置においては、真空容器2のガスリークや破損の他に、密閉容器1のガスリークなどによる故障もあり得る。図9の実線は、真空容器2にガスリークの異常があった場合、破線は、密閉容器1にガスリークの異常があった場合の絶縁性ガスの圧力変化の例を示している。何れも比較的大きなガスリークがあった場合の例であるが、両者の内容積の相違等から圧力変化には明確な差がある。このような差は、上記圧力センサ93で検知することができるので、信号処理部10に同様のロジックで圧力変化の要因を識別するように構成することも容易である。
上記のように、実施の形態3によれば、密閉容器1内の圧力-温度相関情報を用いて、密閉容器1内の圧力に対する適正温度と温度センサ91で検出した温度とを比較するので、真空容器2の真空度劣化が容易に検出できる。さらに、密閉容器1にのみ損傷があった場合、図9のように圧力センサ出力の時間変化量が真空容器2の真空度劣化時と異なることを検出するので、圧力変化の要因が密閉容器1にあるのか、真空容器2にあるのかを識別できる。
なお、本実施の形態3では、圧力-温度相関情報に基づいて密閉容器1のガス温度を算出しているが、測定した密閉容器1内のガス温度に対応するガス圧を算出し、ガス圧で判定させるようにしても良い。
なお、本実施の形態3では、圧力-温度相関情報に基づいて密閉容器1のガス温度を算出しているが、測定した密閉容器1内のガス温度に対応するガス圧を算出し、ガス圧で判定させるようにしても良い。
実施の形態4.
図10は、本発明の実施の形態4による密閉型開閉装置の真空度劣化検出装置の要部を概念的に示す図、図11は図10に示された真空度劣化検出装置の主要な処理手順を示すフロー図である。図10において、真空度劣化検出装置8は、密閉容器1内に複数個(ここでは3個)の温度センサ911、912、913を備えている。なお、温度センサ912、913の信号ケーブルは図示していない。これらセンサ装置9は、密閉容器1内の所定位置に分散して設置されており、何れも真空容器2の表面の温度を検知しているものとする。信号処理部10Cは、図2と同様であり、その他の構成は実施の形態1と同様であるので説明を省略する。以下、図2、図10、及び図11を用いて実施の形態4の動作及び効果について説明する。
図10は、本発明の実施の形態4による密閉型開閉装置の真空度劣化検出装置の要部を概念的に示す図、図11は図10に示された真空度劣化検出装置の主要な処理手順を示すフロー図である。図10において、真空度劣化検出装置8は、密閉容器1内に複数個(ここでは3個)の温度センサ911、912、913を備えている。なお、温度センサ912、913の信号ケーブルは図示していない。これらセンサ装置9は、密閉容器1内の所定位置に分散して設置されており、何れも真空容器2の表面の温度を検知しているものとする。信号処理部10Cは、図2と同様であり、その他の構成は実施の形態1と同様であるので説明を省略する。以下、図2、図10、及び図11を用いて実施の形態4の動作及び効果について説明する。
まず、測定手段11は、密閉容器1内に配設された温度センサ911、912、913からサンプリング間隔Δtで密閉容器内の温度を取得し、分解能ΔVでそれぞれの値を離散値に変換する(ステップS11)。ここで、離散化された2次元温度データをそれぞれh1(m;i,j)、h2(m;i,j)、h3(m;i,j)と表す。
次に、記録手段12は、測定手段11で離散化された温度データh1(m;i,j)、h2(m;i,j)、h3(m;i,j)をメモリ等の記憶媒体に記録する(ステップS12)。
次に、記録手段12は、測定手段11で離散化された温度データh1(m;i,j)、h2(m;i,j)、h3(m;i,j)をメモリ等の記憶媒体に記録する(ステップS12)。
真空度劣化推定手段13は、記録手段12から温度データh1(m;i,j)、h2(m;i,j)、h3(m;i,j)を取得し(ステップS13)、これらを変換関数により上述と同様に前処理する(ステップS14)。
この変換後の温度データをg1(m;i,j)、g2(m;i,j)、g3(m;i,j)と表す。次に、複数の温度センサで2つずつ対を組んだ場合、組み合わせ得る全ての温度センサ対の中から順にセンサ対(α,β)を選ぶ(ステップS15)。
この変換後の温度データをg1(m;i,j)、g2(m;i,j)、g3(m;i,j)と表す。次に、複数の温度センサで2つずつ対を組んだ場合、組み合わせ得る全ての温度センサ対の中から順にセンサ対(α,β)を選ぶ(ステップS15)。
そして、g1(m;i,j)、g2(m;i,j)、g3(m;i,j)のすべての組み合わせにおいて、2センサ間の偏差γα,β(m;i,j)(α<β)を算出する。例えば、センサ911と912の温度の偏差γ12(m;i,j)は、
γ12(m;i,j)=g1(m;i,j)-g2(m;i,j)
である。
γ12(m;i,j)=g1(m;i,j)-g2(m;i,j)
である。
判定手段14は、すべてのセンサ対においてγα,β(m;i,j)が従う分布の統計量を算出し(ステップS16)、算出した統計量と予め設定した分布の統計量とを比較し(ステップS17)、算出した統計量が予め設定した分布の統計量の範囲に含まれると判定した場合(YES)、そのセンサ対(α,β)及びγα,β(m;i,j)を記録する(ステップS18)。例えば、健全なセンサα、βの偏差γα,β(m;i,j)が平均値μα,β、分散σ2
α,βの正規分布に従うとする。一方、健全でないセンサνを含むセンサ対(α、ν)の偏差γα,ν(m;i,j)が平均値μα,ν、分散σ2
α,νの正規分布に従うとする。また、正規分布の統計量は次式で定義する。
ただし、n1はγα,βのデータ数、n2はγα,νのデータ数、N(0,1)は平均値0、分散
1の正規分布である。このとき、健全なセンサ対が従う分布と健全でないセンサを含むセンサ対が従う分布とが一致するという仮説を棄却する確率が1%とすると、z0<-2.575またはz0>-2.575となった場合に上記仮説を棄却する。すなわち、仮説を棄却する確率と測定データから算出した統計量により、健全でないセンサを含むセンサ対を抽出できる。
1の正規分布である。このとき、健全なセンサ対が従う分布と健全でないセンサを含むセンサ対が従う分布とが一致するという仮説を棄却する確率が1%とすると、z0<-2.575またはz0>-2.575となった場合に上記仮説を棄却する。すなわち、仮説を棄却する確率と測定データから算出した統計量により、健全でないセンサを含むセンサ対を抽出できる。
次に、全てのセンサ対について計算したかを判定する(ステップS19)。その結果がYESの場合、判定手段14が異常なセンサを含むセンサ対を検出していたときは、真空度劣化推定手段13は、許容範囲外と判断されたすべてのセンサ対を記録手段12から取得し、これらのセンサ対において共通な温度センサがあるかを判定する(ステップS20)。
そして、共通な温度センサがあればそれを算出する。例えば、センサ対(1,2)とセンサ対(2,3)の偏差が許容範囲外であった場合、いずれのセンサ対にも共通な温度センサS2を抽出する。そして、温度センサS2のデータg2(m;i,j)において温度変化量が最大である位置を真空容器2の異常発生箇所と推定する(ステップS21)。
そして、共通な温度センサがあればそれを算出する。例えば、センサ対(1,2)とセンサ対(2,3)の偏差が許容範囲外であった場合、いずれのセンサ対にも共通な温度センサS2を抽出する。そして、温度センサS2のデータg2(m;i,j)において温度変化量が最大である位置を真空容器2の異常発生箇所と推定する(ステップS21)。
なお、許容範囲外と判断されたすべてのセンサ対において共通なセンサが見つからない場合、即ちステップS20の判定結果がNOの場合、判定手段14は許容範囲外と判断されたセンサ対を破棄して新たにデータを取得し、新たに取得したデータを使って全センサ対について統計量を計算する。
また、真空度劣化推定手段13が異常発生箇所を推定した場合、判定手段14は、監視員に真空度劣化を通知し(ステップS22)、あわせて真空度劣化推定手段13が推定した異常発生箇所を通知する。
また、真空度劣化推定手段13が異常発生箇所を推定した場合、判定手段14は、監視員に真空度劣化を通知し(ステップS22)、あわせて真空度劣化推定手段13が推定した異常発生箇所を通知する。
上記のように実施の形態4によれば、密閉容器1内に温度センサを異なる位置に少なくとも3個配置するようにしたので、真空容器2の異常箇所を特定できる。なお、真空度劣化検出装置は、三相交流線路の各相の密閉容器に温度センサを配置した場合にも適用可能であることは言うまでもない。
また、実施の形態4では、温度センサを3箇所以上設置した場合について説明したが、2箇所の設置でも良い。この場合、1箇所は第1の温度センサとして密閉容器1内における真空容器2の温度を検知できる場所に設置し、他の1箇所は第2の温度センサとしてそれ以外の領域の温度を検知できる場所に設置する。そして、信号処理部は、正常時に測定された第1の温度センサと第2の温度センサの検知信号の差の偏差を真空容器2の真空度劣化の判定に用いるようにして、両者の相対的な温度差を使うことで、真空度劣化の検知精度を高めることができる。
なお、上記実施の形態1~4では、密閉容器1の内部に1つの真空遮断器(真空容器2)を有するものについて説明したが、これに限定されるものではない。例えば真空遮断器の他に、断路器など他の要素が包含された密閉型開閉装置であっても同様の作用効果が得られる。また、何れの実施の形態も温度センサを備えた例について説明したが、温度センサを備えず、圧力センサのみ、あるいはガス密度センサのみで構成した場合でも同様の構成によって真空容器の真空度劣化を検知できる。この場合、開閉部が開極状態の場合でも真空容器2の真空度劣化を検知することができる。また、季節によって周囲温度が変化することでセンサ装置によって検出される温度や圧力が変化するのを補正することで精度を高めるようにしても良い。さらに、実施の形態1~4のそれぞれに記載された発明を任意の2以上組み合わせることができることは言うまでもない。
1:密閉容器、 2:真空容器、 3:固定接点、 4:可動接点、
5:絶縁ロッド、 6:主回路導体、 8:真空度劣化検出装置、
9:センサ装置、 91、911、912、913、91R、91S、
91T:温度センサ、92:電流センサ、 93:圧力センサ、
10:信号処理部、11:測定手段、 12: 記録手段、
13:真空度劣化推定手段、14:判定手段。
5:絶縁ロッド、 6:主回路導体、 8:真空度劣化検出装置、
9:センサ装置、 91、911、912、913、91R、91S、
91T:温度センサ、92:電流センサ、 93:圧力センサ、
10:信号処理部、11:測定手段、 12: 記録手段、
13:真空度劣化推定手段、14:判定手段。
Claims (10)
- 内部に開閉部が収容された真空容器の周りを包囲して設けられ、上記真空容器との間に絶縁性ガスが封入された密閉容器を有する密閉型開閉装置の真空度劣化検出装置であって、上記密閉容器内に設置されたセンサ装置と、このセンサ装置の検知信号を演算処理することによって上記真空容器の真空の劣化を判定する判定手段とを有する信号処理部とを備え、上記センサ装置は、上記密閉容器内の温度を検知する温度センサ、圧力を検知する圧力センサ及びガス密度を検知するガス密度センサの少なくとも一つのセンサから構成されたことを特徴とする密閉型開閉装置の真空度劣化検出装置。
- 上記信号処理部は、上記センサ装置の検知信号から時間変化量の最大値を算出し、該時間変化量の最大値が予め設定された閾値を超えたときに、上記真空容器の異常と判定することを特徴とする請求項1に記載の密閉型開閉装置の真空度劣化検出装置。
- 上記センサ装置は、上記温度センサ及び上記圧力センサからなり、上記信号処理部は、上記密閉容器内に収容された絶縁性ガスの圧力と温度との関係について正常時に予め測定された圧力-温度相関情報を有し、該信号処理部は、上記温度センサまたは上記圧力センサの検知信号と、上記圧力-温度相関情報によって上記真空容器の真空の劣化を判定することを特徴とする請求項1または請求項2に記載の密閉型開閉装置の真空度劣化検出装置。
- 上記信号処理部は、上記圧力センサの検知信号に基づいて、上記密閉容器のガス漏洩と、上記真空容器の真空の劣化を区別して検知し得るようにしたことを特徴とする請求項3に記載の密閉型開閉装置の真空度劣化検出装置。
- 上記センサ装置は、上記温度センサに加え、上記開閉部に接続された主回路導体に流れる電流を検出する電流センサを備え、上記信号処理部は、上記主回路導体に流れる電流と上記密閉容器内の温度との関係について正常時に予め測定された電流-温度相関情報を有すると共に、上記温度センサまたは上記電流センサの検知信号と上記電流-温度相関情報から上記真空容器の真空の劣化を判定する機能を有することを特徴とする請求項1または請求項2に記載の密閉型開閉装置の真空度劣化検出装置。
- 上記センサ装置は、上記ガス密度センサに加え、上記開閉部に接続された主回路導体に流れる電流を検出する電流センサを備え、上記信号処理部は、上記主回路導体に流れる電流と上記密閉容器内のガス密度との関係について正常時に予め測定された電流-ガス密度相関情報を有すると共に、上記ガス密度センサまたは上記電流センサの検知信号と上記電流-ガス密度相関情報から上記真空容器の真空の劣化を判定する機能を有することを特徴とする請求項1または請求項2に記載の密閉型開閉装置の真空度劣化検出装置。
- 上記センサ装置は、上記密閉容器内における互いに異なる位置に設置された3つ以上の温度センサまたはガス密度センサからなり、上記信号処理部は、上記センサがそれぞれ検知した温度またはガス密度の情報について、組み合わせ得る全てのセンサ対について、それぞれ偏差を算出し、該偏差が予め設定された所定値を超えたときに、当該センサ対を含む異常データを示すセンサ対を抽出し、該抽出されたセンサ対に共通して存在するセンサを特定し、該特定されたセンサの設置領域を故障箇所と判定する機能を有することを特徴とする請求項1または請求項2に記載の密閉型開閉装置の真空度劣化検出装置。
- 上記センサ装置は、上記密閉容器内における上記真空容器の温度を検知し得るように設置された第1の温度センサと、上記真空容器を外れた位置の温度を検知し得るように設置された第2の温度センサからなり、上記信号処理部は、正常時に測定された上記第1の温
度センサと上記第2の温度センサの検知信号の差の偏差を上記真空容器の真空度劣化の判定に用いるようにしたことを特徴とする請求項1または請求項2に記載の密閉型開閉装置の真空度劣化検出装置。 - 上記センサ装置は、上記密閉容器内における上記真空容器のガス密度を検知し得るように設置された第1のガス密度センサと、上記真空容器を外れた位置のガス密度を検知し得るように設置された第2のガス密度センサからなり、上記信号処理部は、正常時に測定された上記第1のガス密度センサと上記第2のガス密度センサの検知信号の差の偏差を上記真空容器の真空度劣化の判定に用いるようにしたことを特徴とする請求項1または請求項2に記載の密閉型開閉装置の真空度劣化検出装置。
- 上記温度センサとして、放射温度計を用いたことを特徴とする請求項1~請求項5、請求項7および請求項8の何れか1項に記載の密閉型開閉装置の真空度劣化検出装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011107736A JP2014142996A (ja) | 2011-05-13 | 2011-05-13 | 密閉型開閉装置の真空度劣化検出装置 |
JP2011-107736 | 2011-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012157134A1 true WO2012157134A1 (ja) | 2012-11-22 |
Family
ID=47176492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/074608 WO2012157134A1 (ja) | 2011-05-13 | 2011-10-26 | 密閉型開閉装置の真空度劣化検出装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014142996A (ja) |
WO (1) | WO2012157134A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015015172A (ja) * | 2013-07-05 | 2015-01-22 | 日新電機株式会社 | 真空バルブの真空度監視方法及び真空バルブの真空度監視装置 |
WO2024047840A1 (ja) * | 2022-09-01 | 2024-03-07 | 日新電機株式会社 | 判定装置および判定方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6919390B2 (ja) * | 2017-07-24 | 2021-08-18 | 富士電機機器制御株式会社 | 引出し形の真空遮断器 |
EP4372780A4 (en) * | 2021-07-12 | 2024-08-07 | Mitsubishi Electric Corp | VACUUM INSULATOR |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60128808A (ja) * | 1983-12-15 | 1985-07-09 | 株式会社東芝 | ガス絶縁閉鎖配電盤の耐電圧低下検出装置 |
JPH02158029A (ja) * | 1988-12-09 | 1990-06-18 | Meidensha Corp | 真空インタラプタの真空度低下検出装置 |
JPH06105426A (ja) * | 1992-09-24 | 1994-04-15 | Toshiba Corp | ガス絶縁スイッチギヤ |
JPH08306279A (ja) * | 1995-05-08 | 1996-11-22 | Mitsubishi Electric Corp | 真空遮断器の真空度監視装置 |
JP2007202298A (ja) * | 2006-01-26 | 2007-08-09 | Mitsubishi Electric Corp | 開閉装置 |
JP2010197132A (ja) * | 2009-02-24 | 2010-09-09 | Chugoku Electric Power Co Inc:The | 真空遮断器真空試験器 |
-
2011
- 2011-05-13 JP JP2011107736A patent/JP2014142996A/ja not_active Withdrawn
- 2011-10-26 WO PCT/JP2011/074608 patent/WO2012157134A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60128808A (ja) * | 1983-12-15 | 1985-07-09 | 株式会社東芝 | ガス絶縁閉鎖配電盤の耐電圧低下検出装置 |
JPH02158029A (ja) * | 1988-12-09 | 1990-06-18 | Meidensha Corp | 真空インタラプタの真空度低下検出装置 |
JPH06105426A (ja) * | 1992-09-24 | 1994-04-15 | Toshiba Corp | ガス絶縁スイッチギヤ |
JPH08306279A (ja) * | 1995-05-08 | 1996-11-22 | Mitsubishi Electric Corp | 真空遮断器の真空度監視装置 |
JP2007202298A (ja) * | 2006-01-26 | 2007-08-09 | Mitsubishi Electric Corp | 開閉装置 |
JP2010197132A (ja) * | 2009-02-24 | 2010-09-09 | Chugoku Electric Power Co Inc:The | 真空遮断器真空試験器 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015015172A (ja) * | 2013-07-05 | 2015-01-22 | 日新電機株式会社 | 真空バルブの真空度監視方法及び真空バルブの真空度監視装置 |
WO2024047840A1 (ja) * | 2022-09-01 | 2024-03-07 | 日新電機株式会社 | 判定装置および判定方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2014142996A (ja) | 2014-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112655063B (zh) | 用于气体绝缘开关设备的气体监测系统 | |
WO2012157134A1 (ja) | 密閉型開閉装置の真空度劣化検出装置 | |
KR20110108550A (ko) | 가스절연 송전선의 누기 측정장치 | |
KR101917664B1 (ko) | 아크 종류 및 위치 검출 기능을 구비한 수배전반 시스템 | |
KR101882715B1 (ko) | 부분방전 및 가스밀도 진단장치가 구비된 29kv gis 원격진단 시스템 | |
JP2017524241A (ja) | 真空テストを可能にする真空絶縁スイッチ、スイッチアセンブリ、およびテスト方法 | |
US10520539B2 (en) | System for detecting and indicating partial discharges and voltage in high-voltage electric power distribution systems | |
KR101549543B1 (ko) | 칼만 추정 기법과 상대적 확률 측정 기법 기반의 전원 공급 상태 진단 시스템 및 방법 | |
JP5721863B2 (ja) | 真空度劣化検出装置付き真空開閉器及び真空開閉器の真空度劣化検出方法 | |
JP6118627B2 (ja) | 真空バルブの真空漏れ監視装置 | |
US20230349787A1 (en) | Method for determining a gas quantity in an insulated switchgear | |
KR0169969B1 (ko) | 전력기기, 전력송배전 유닛의 트립방법 | |
JP2009189182A (ja) | 開閉装置 | |
KR20070016348A (ko) | 전기차단기의 이상 진단시스템 및 그 진단방법 | |
JP6157753B1 (ja) | 監視システムおよび監視方法 | |
JP6207805B1 (ja) | 真空バルブの真空劣化監視装置及びこれを備えた開閉装置 | |
JP4728797B2 (ja) | ガス絶縁電力機器 | |
EP2080207A1 (en) | Improved coupler | |
JP6246058B2 (ja) | 真空開閉装置の放電検出装置及び放電検出方法 | |
CN210863936U (zh) | Gis绝缘劣化检测装置及gis绝缘劣化诊断系统 | |
JPH07129870A (ja) | ガス絶縁開閉装置のガス漏れ検出装置 | |
US10153112B2 (en) | Device for monitoring the vacuum quality of a vacuum circuit breaker | |
JP4258386B2 (ja) | 絶縁診断装置 | |
US20240027298A1 (en) | Gas Pressure Monitoring Device of Gas Insulated Switchgear, Gas Pressure Monitoring Method Thereof, and Gas Leak Position Identification Method | |
KR20160049322A (ko) | 가스절연개폐기용 분해가스 감시장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11865949 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11865949 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |