WO2012157115A1 - Power reception apparatus, vehicle provided therewith, power feeding equipment, and power feeding system - Google Patents

Power reception apparatus, vehicle provided therewith, power feeding equipment, and power feeding system Download PDF

Info

Publication number
WO2012157115A1
WO2012157115A1 PCT/JP2011/061550 JP2011061550W WO2012157115A1 WO 2012157115 A1 WO2012157115 A1 WO 2012157115A1 JP 2011061550 W JP2011061550 W JP 2011061550W WO 2012157115 A1 WO2012157115 A1 WO 2012157115A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power
interval
frequency
resonance
Prior art date
Application number
PCT/JP2011/061550
Other languages
French (fr)
Japanese (ja)
Inventor
達 中村
真士 市川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/061550 priority Critical patent/WO2012157115A1/en
Publication of WO2012157115A1 publication Critical patent/WO2012157115A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a power receiving device and a vehicle including the power receiving device, a power feeding facility, and a power feeding system.
  • the present invention relates to a power receiving device, a vehicle including the power receiving system, and a power feeding facility in a power feeding system that transmits power in a contactless manner.
  • wireless power transmission As a power transmission method, wireless power transmission (contactless power transmission) that does not use a power cord or a power transmission cable has attracted attention in recent years.
  • this wireless power transmission technology three technologies known as power transmission using electromagnetic induction, power transmission using microwaves, and power transmission using a resonance method are known.
  • the resonance method is a non-contact power transmission technique in which a pair of resonators (for example, a pair of resonance coils) are resonated in an electromagnetic field (near field) and transmitted through the electromagnetic field. It is also possible to transmit power over a long distance (for example, several meters).
  • Patent Document 1 discloses a non-contact power feeding apparatus using such a resonance method.
  • This non-contact power feeding device has the same resonance frequency as a resonance element (resonance coil) having a variable mechanism for changing the resonance frequency discretely or continuously, an excitation element (electromagnetic induction coil) electromagnetically coupled to the resonance element.
  • An alternating current power source for applying an alternating current having a frequency to the excitation element. Then, the resonance frequency of the power supply source is changed by the variable mechanism according to the specific resonance frequency of the power supply destination, and power is selectively supplied to power supply destinations having different resonance frequencies. According to this non-contact power supply device, power can be selectively supplied to a specific power supply destination (see Patent Document 1).
  • the impedance of the resonance system composed of the power transmission unit on the power supply facility side and the power reception unit on the power reception device side changes. Therefore, the impedance of the resonance system can be adjusted to an appropriate value by changing the coil interval.
  • the change in the impedance of the resonance system affects the frequency characteristics of the resonance system, and thus affects the adjustment of the resonance frequency of the resonance coil.
  • the adjustment of the resonance frequency of the resonance coil is desired to be as easy as possible.
  • an object of the present invention is to facilitate adjustment of the resonance frequency of the resonance coil.
  • the power receiving device is a power receiving device that receives power from a power supply facility including a power transmission coil in a non-contact manner, the power receiving coil, the electromagnetic induction coil, the first and second changing devices, and the control Device.
  • the power receiving coil is for receiving power from the power transmitting coil in a non-contact manner by resonating with the power transmitting coil via an electromagnetic field.
  • the electromagnetic induction coil is for taking out the electric power received by the power receiving coil by electromagnetic induction.
  • the first changing device is for changing the resonance frequency of the power receiving coil.
  • the second changing device is for changing the coil interval between the power receiving coil and the electromagnetic induction coil.
  • the control device first adjusts the resonance frequency to a predetermined frequency by controlling the first changing device, and adjusts the coil interval by controlling the second changing device after adjusting the resonance frequency.
  • the control device adjusts the resonance frequency in a state where there is one peak in the frequency spectrum of the power reception state that changes depending on the coil interval.
  • control device adjusts the resonance frequency in a state where the coil interval is the narrowest within the adjustable range of the coil interval.
  • control device adjusts the coil interval by changing the coil interval in a direction in which the coil interval increases.
  • control device stops the output to the electric load connected to the power receiving device when the resonance frequency cannot be adjusted to a predetermined frequency within the adjustable range of the resonance frequency.
  • control device stops the output to the electric load connected to the power receiving device when the adjustment of the coil interval is not completed within the adjustable range of the coil interval.
  • control device outputs an alarm when the output to the electric load is stopped.
  • the first changing device includes a variable capacitor connected to the power receiving coil.
  • the vehicle includes any one of the power receiving devices described above.
  • the power supply facility is a power supply facility that supplies power to a power receiving device including a power receiving coil in a non-contact manner, the power transmitting coil, the power supply device, the electromagnetic induction coil, the first and the second.
  • a change device and a control device are a power supply facility that supplies power to a power receiving device including a power receiving coil in a non-contact manner, the power transmitting coil, the power supply device, the electromagnetic induction coil, the first and the second.
  • a change device and a control device The power transmission coil resonates with the power reception coil via an electromagnetic field to transmit power to the power reception coil in a contactless manner.
  • the power supply device generates power having a predetermined frequency.
  • the electromagnetic induction coil receives electric power from the power supply device and supplies the electric power to the power transmission coil by electromagnetic induction.
  • the first changing device is for changing the resonance frequency of the power transmission coil.
  • the second changing device is for changing the coil interval between the power transmission coil and the electromagnetic induction coil.
  • the control device first adjusts the resonance frequency to a predetermined frequency by controlling the first changing device, and adjusts the coil interval by controlling the second changing device after adjusting the resonance frequency.
  • the control device adjusts the resonance frequency in a state where the peak of the frequency spectrum of the power reception status of the power reception device, which varies depending on the coil interval, becomes one.
  • control device adjusts the resonance frequency in a state where the coil interval is the narrowest within the adjustable range of the coil interval.
  • control device adjusts the coil interval by changing the coil interval in a direction in which the coil interval increases.
  • control device stops the power supply device when the resonance frequency cannot be adjusted to a predetermined frequency in the adjustable range of the resonance frequency.
  • control device stops the power supply device when the adjustment of the coil interval is not completed within the adjustable range of the coil interval.
  • control device outputs an alarm when the power supply device is stopped.
  • the first changing device includes a variable capacitor connected to the power transmission coil.
  • the power supply system includes a power supply device, a first electromagnetic induction coil, a power transmission coil, a power reception coil, a second electromagnetic induction coil, and first and second frequency changes.
  • the power supply device generates power having a predetermined frequency.
  • the first electromagnetic induction coil receives electric power from the power supply device and supplies electric power by electromagnetic induction.
  • the power transmission coil is supplied with electric power from the first electromagnetic induction coil.
  • the power receiving coil is for receiving power from the power transmitting coil in a non-contact manner by resonating with the power transmitting coil via an electromagnetic field.
  • the second electromagnetic induction coil is for taking out the electric power received by the power receiving coil by electromagnetic induction.
  • the first frequency changing device is for changing the first resonance frequency indicating the resonance frequency of the power transmission coil.
  • the second frequency changing device is for changing the second resonance frequency indicating the resonance frequency of the power receiving coil.
  • the first interval changing device is for changing the first coil interval indicating the coil interval between the power transmission coil and the first electromagnetic induction coil.
  • the second interval changing device is for changing the second coil interval indicating the coil interval between the power receiving coil and the second electromagnetic induction coil.
  • the control device first adjusts the first and second resonance frequencies to a predetermined frequency by controlling the first and second frequency changing devices, and after adjusting the first and second resonance frequencies, the first and second resonance frequencies are adjusted.
  • the first and second coil intervals are adjusted by controlling the second interval changing device.
  • the control device adjusts the first and second resonance frequencies in a state where there is one peak in the frequency spectrum of the power reception state that changes depending on the first and second coil intervals.
  • control device sets the first and second resonance frequencies in a state in which the first and second coil intervals are the narrowest in the adjustable range of the first coil interval and the adjustable range of the second coil interval, respectively. Adjust.
  • the resonance frequency is first adjusted to a predetermined frequency, and after the resonance frequency is adjusted, the coil interval between the power receiving coil and the electromagnetic induction coil is adjusted.
  • the frequency characteristic of the power reception situation changes depending on the coil interval, and the frequency spectrum indicating the frequency dependency of the power reception situation has one peak when the coil interval is narrow, Two peaks appear as the coil spacing increases. Therefore, in the present invention, the resonance frequency is adjusted in a state where the peak of the frequency spectrum of the power reception state that changes depending on the coil interval becomes one. Therefore, according to the present invention, the resonance frequency of the resonance coil can be easily adjusted.
  • FIG. 1 is a functional block diagram showing an overall configuration of a power feeding system according to an embodiment of the present invention.
  • the power supply system includes a power supply facility 100 and a vehicle 200 as a power receiving device.
  • the power supply facility 100 includes a high frequency power supply device 110, a power sensor 115, a coaxial cable 120, an electromagnetic induction coil 130, a resonance coil 140, a variable capacitor 150, and a coil interval variable device 160.
  • the power supply facility 100 further includes a communication device 170 and an ECU (Electronic Control Unit) 190.
  • ECU Electronic Control Unit
  • the high frequency power supply device 110 generates predetermined high frequency power and outputs it to the coaxial cable 120.
  • the high frequency power supply device 110 converts electric power received from the system power supply into high frequency electric power and outputs it to the coaxial cable 120.
  • the frequency of the high frequency power generated by the high frequency power supply device 110 is set to a predetermined value in the range of 1 M to several tens MHz, for example.
  • the power sensor 115 detects the reflected power and the traveling wave power in the high frequency power supply device 110 and outputs each detected value to the ECU 190.
  • the reflected power is the power that is returned from the high frequency power supply device 110 after the power output from the high frequency power supply device 110 is reflected.
  • the traveling wave power is power output from the high frequency power supply device 110.
  • the power sensor 115 various known sensors capable of detecting reflected power and traveling wave power in the power supply device can be used.
  • the electromagnetic induction coil 130 can be magnetically coupled to the resonance coil 140 by electromagnetic induction coupling, and supplies high frequency power supplied from the high frequency power supply device 110 via the coaxial cable 120 to the resonance coil 140 by electromagnetic induction.
  • the electromagnetic induction coil 130 is disposed so that the central axis thereof coincides with the resonance coil 140.
  • the resonance coil 140 is supplied with electric power from the electromagnetic induction coil 130 by electromagnetic induction.
  • the resonance coil 140 transmits power to the vehicle 200 in a non-contact manner by resonating with the resonance coil 210 mounted on the vehicle 200 via an electromagnetic field.
  • resonance coil 140 has an appropriate coil diameter and number of turns so that the Q value is large (for example, Q> 100) and the degree of coupling ⁇ is small based on the distance from resonance coil 210 of vehicle 200, the resonance frequency, and the like. Is set.
  • the power transmission by resonance is a power transmission technique different from electromagnetic induction designed so that the Q value is small and the coupling degree ⁇ is large.
  • variable capacitor 150 is provided to change the resonance frequency of the resonance coil 140, and is connected between both ends of the resonance coil 140, for example.
  • Variable capacitor 150 can change its capacity in accordance with a command received from ECU 190, and can change the resonance frequency of resonance coil 140 according to the change in capacity.
  • the coil interval varying device 160 is an interval between the electromagnetic induction coil 130 and the resonance coil 140 (hereinafter simply referred to as “coil interval”.
  • the “coil interval” is the interval between the resonance coil and the electromagnetic induction coil.
  • the coil interval varying device 160 is constituted by a screw-type rod-shaped instrument, and by rotating the rod-shaped instrument, the position of the electromagnetic induction coil 130 with respect to the resonance coil 140 can be changed along the central axis of the coil. it can.
  • the configuration of the coil interval varying device 160 is not limited to this example, and any configuration may be used as long as the coil interval can be changed.
  • the coil interval varying device 160 is for adjusting the impedance of the resonance system composed of the electromagnetic induction coil 130 and the resonance coil 140, and the resonance coil 210 and the electromagnetic induction coil 230 (described later) mounted on the vehicle 200. That is, when the coil interval changes, the resonance impedance changes. In order to realize high-efficiency power transmission, it is necessary to match the input impedance of the resonance system with the output impedance of the high-frequency power supply device 110. By changing the coil interval using the coil interval variable device 160, the resonance The input impedance of the system can be adjusted.
  • the communication device 170 is a communication interface for performing wireless communication with the vehicle 200.
  • the communication device 170 can communicate various commands and data with the communication device 330 of the vehicle 200.
  • the ECU 190 controls power supply from the power supply facility 100 to the vehicle 200 by software processing by executing a program stored in advance by a CPU (not shown) and / or hardware processing by a dedicated electronic circuit.
  • ECU 190 controls variable capacitor 150 based on the power reception status of vehicle 200 to adjust the resonance frequency of resonance coil 140 to the power supply frequency (the frequency of the high-frequency power output from high-frequency power supply device 110).
  • ECU 190 controls coil interval varying device 160 based on the power reception status of vehicle 200 to adjust the impedance of the resonance system so that the input impedance of the resonance system matches the impedance of high-frequency power supply device 110.
  • the resonance frequency of the resonance coil is adjusted in a state where the output of the high-frequency power supply device 110 is constant (this output is higher than the output at the time of full-scale power supply for charging the power storage device 290 of the vehicle 200). This is performed based on the power reception status (for example, power reception voltage) of the vehicle 200 when the capacity of the variable capacitor 150 is swept.
  • the resonance impedance is adjusted after the resonance frequency of the resonance coil is adjusted.
  • the output of the high frequency power supply device 110 is kept constant, the coil interval of the vehicle 200 is swept by the coil interval variable device 160. This is performed based on the power reception status.
  • the ECU 190 adjusts the resonance frequency of the resonance coil 140 in a state where there is one peak of the frequency spectrum of the power reception state that changes depending on the coil interval. That is, when the coil interval changes, the power reception situation, for example, the frequency spectrum of the power reception voltage changes.
  • the number of peaks in the frequency spectrum when the coil interval is small, the frequency spectrum has one peak.
  • the frequency spectrum peak is divided into two, and the resonance frequency is adjusted by sweeping. Becomes difficult. Therefore, in this embodiment, as an example, the ECU 190 adjusts the resonance frequency of the resonance coil 140 with the coil interval narrowed so that the frequency spectrum has a single peak.
  • the vehicle 200 as a power receiving device includes a resonance coil 210, a variable capacitor 220, an electromagnetic induction coil 230, a coil interval varying device 240, a coaxial cable 250, and a rectifier 260.
  • Vehicle 200 further includes a switching device 270, a converter 280, a power storage device 290, and a power output device 300.
  • vehicle 200 further includes a resistance load 310, a detection unit 320, a communication device 330, and an ECU 350.
  • the resonance coil 210 receives power from the resonance coil 140 in a non-contact manner by resonating with the resonance coil 140 of the power supply facility 100 via an electromagnetic field. Note that the coil diameter and the number of turns of the resonance coil 210 are appropriately set based on the distance from the resonance coil 140 of the power supply facility 100, the resonance frequency, and the like so that the Q value is large and the degree of coupling ⁇ is small.
  • variable capacitor 220 is provided to change the resonance frequency of the resonance coil 210 and is connected between both ends of the resonance coil 210, for example.
  • Variable capacitor 220 changes its capacity in accordance with a command received from ECU 350, and can change the resonance frequency of resonance coil 210 according to the change in capacity.
  • the electromagnetic induction coil 230 can be magnetically coupled to the resonance coil 210 by electromagnetic induction coupling, takes out the electric power received by the resonance coil 210 by electromagnetic induction, and outputs it to the rectifier 260 via the coaxial cable 250.
  • the electromagnetic induction coil 230 is disposed so that the central axis thereof coincides with the resonance coil 210.
  • the coil interval variable device 240 is a device for changing the coil interval between the resonance coil 210 and the electromagnetic induction coil 230.
  • the coil interval varying device 240 is configured by the same mechanism as the coil interval varying device 160 of the power supply facility 100, and can change the position of the electromagnetic induction coil 230 with respect to the resonance coil 210 along the central axis of the coil. Then, by changing the coil interval using the coil interval varying device 240, the input impedance of the resonance system can be adjusted in cooperation with the coil interval varying device 160 of the power supply facility 100.
  • the rectifier 260 rectifies the electric power (AC) extracted from the resonance coil 210 using the electromagnetic induction coil 230.
  • Switching device 270 switches the output destination of rectifier 260 in accordance with a command received from ECU 350. Specifically, at the time of adjusting the resonance frequency and impedance performed before full-scale power supply for charging power storage device 290, switching device 270 electrically connects resistive load 310 with rectifier 260 in accordance with a command received from ECU 350. Connect and disconnect transducer 280 electrically. When adjustment of the resonance frequency and impedance is completed, switching device 270 electrically connects converter 280 to rectifier 260 and electrically disconnects resistive load 310 in accordance with a command received from ECU 350.
  • Converter 280 converts the power rectified by rectifier 260 into a charging voltage in accordance with a command received from ECU 350 and outputs it to power storage device 290. Note that the converter 280 is not always necessary, and the converter 280 may be omitted depending on the output voltage of the rectifier 260 and the voltage of the power storage device 290.
  • the power storage device 290 is a rechargeable DC power supply, and is configured by a secondary battery such as lithium ion or nickel metal hydride. Power storage device 290 stores power supplied from power supply facility 100 and also stores power generated by power output device 300. Then, power storage device 290 supplies the stored power to power output device 300. It is to be noted that a large-capacity capacitor can also be adopted as power storage device 290, and a power buffer capable of temporarily storing power supplied from power supply facility 100 or power output device 300 and supplying the stored power to power output device 300 Anything can be used.
  • the power output device 300 generates the driving force for driving the vehicle 200 using the electric power stored in the power storage device 290.
  • power output device 300 includes, for example, an inverter that receives electric power output from power storage device 290, a motor driven by the inverter, a drive wheel that receives a driving force from the motor, and the like.
  • Power output device 300 may include an engine capable of driving a generator for charging power storage device 290.
  • the resistive load 310 is an electrical load having a certain resistance value, and is electrically connected to the rectifier 260 by the switching device 270 when adjusting the resonance frequency and impedance as described above. Since the impedance of the power storage device 290 changes depending on the state of charge, adjustment in a state where the power storage device 290 is connected to the resonance system, in particular, impedance adjustment of the resonance system is difficult. Therefore, in this embodiment, the resonance frequency and impedance are adjusted in a state where the resistance load 310 having a constant resistance value is connected to the resonance system.
  • the detection unit 320 detects the voltage V and the current I indicating the power reception state when the resistive load 310 is electrically connected to the rectifier 260 when adjusting the resonance frequency and impedance, and outputs the detected values to the ECU 350.
  • the communication device 330 is a communication interface for performing wireless communication with the communication device 170 of the power supply facility 100.
  • the ECU 350 controls power reception from the power supply facility 100 by software processing by executing a program stored in advance by a CPU (not shown) and / or hardware processing by a dedicated electronic circuit. ECU 350 controls switching device 270 to connect resistive load 310 to rectifier 260 when adjusting the resonance frequency and impedance. Then, ECU 350 controls variable capacitor 220 based on the power reception status detected by detection unit 320, thereby adjusting the resonance frequency of resonance coil 210 to the power supply frequency. The ECU 350 controls the coil interval variable device 240 based on the power reception status detected by the detection unit 320, thereby adjusting the resonance impedance so that the resonance input impedance matches the impedance of the high frequency power supply device 110. adjust.
  • ECU 350 similarly to ECU 190 of power supply facility 100, ECU 350 also has a resonance frequency of resonance coil 210 in a state where the peak of the frequency spectrum of the power reception state that changes depending on the coil interval between resonance coil 210 and electromagnetic induction coil 230 becomes one. Adjust the frequency.
  • the ECU 350 adjusts the resonance frequency of the resonance coil 210 with the coil interval being made the narrowest so that the frequency spectrum has a single peak. Then, when the adjustment of the resonance frequency and impedance is completed, ECU 350 controls switching device 270 so that converter 280 is connected to rectifier 260.
  • FIG. 2 is an equivalent circuit diagram of a portion related to power transmission by the resonance method.
  • two resonance coils 140 and 210 resonate in an electromagnetic field (near field) in the same manner as two tuning forks resonate. Electric power is transmitted through an electromagnetic field.
  • high frequency power having a constant frequency of about several MHz to several tens of MHz is supplied from the high frequency power supply device 110 to the electromagnetic induction coil 130 and is magnetically coupled to the electromagnetic induction coil 130 by electromagnetic induction coupling.
  • Electric power is supplied to the resonance coil 140.
  • the resonance coil 140 can be electrically resonated by the inductance of the coil itself and the variable capacitor 150, and resonates with the resonance coil 210 on the vehicle 200 side (secondary side) via an electromagnetic field (near field). Then, energy (electric power) moves from the resonance coil 140 to the resonance coil 210 via the electromagnetic field.
  • resonance coils 140 and 210 are designed so that the Q value is large (for example, Q> 100) and the degree of coupling ⁇ is small.
  • the energy (power) transferred to the resonance coil 210 is taken out by the electromagnetic induction coil 230 that is magnetically coupled to the resonance coil 210 by electromagnetic induction coupling, and the electric system after the load 350 (rectifier 260 (FIG. 1)) is extracted. Supplied in general)
  • FIG. 3 is a diagram illustrating a change in frequency characteristics of a power reception situation in the vehicle 200 when the variable capacitors 150 and 220 are changed.
  • the vertical axis indicates the magnitude of the power reception voltage indicating an example of the power reception status
  • the horizontal axis indicates the frequency.
  • the frequency f0 is a frequency of high-frequency power output from the high-frequency power supply device 110, that is, a frequency (resonance frequency) of transmitted power from the power supply facility 100 to the vehicle 200.
  • Curve k11 shows the frequency characteristics when the resonance frequency of the resonance coils 140 and 210 matches the frequency f0.
  • a curve k12 shows frequency characteristics when the capacitance of the variable capacitors 150 and 220 is smaller than that of the curve k11.
  • the resonance frequency of the resonance coils 140 and 210 (frequency corresponding to the peak of the received voltage) is higher than the frequency f0. high.
  • a curve k13 shows frequency characteristics when the capacitance of the variable capacitors 150 and 220 is larger than that of the curve k11, and the resonance frequency of the resonance coils 140 and 210 is lower than the frequency f0.
  • variable capacitors 150 and 220 are provided in the resonance coils 140 and 210, respectively, and the capacitances of the variable capacitors 150 and 220 are adjusted so that the resonance frequency of the resonance coils 140 and 210 matches the frequency f0.
  • variable capacitors 150 and 220 are adjusted so that the received voltage in vehicle 200 is maximized in a state where constant power of frequency f0 is supplied.
  • FIG. 4 is a diagram showing a change in frequency characteristics of the power reception situation in the vehicle 200 when the coil interval between the resonance coil and the electromagnetic induction coil is changed.
  • the vertical and horizontal axes and the frequency f0 are the same as those in FIG.
  • the impedance of the resonance system changes. Then, the frequency characteristics of the received voltage change.
  • Curve k21 shows the frequency characteristics when the impedance of the resonance system matches the impedance of the high-frequency power supply device 110.
  • a curve k22 shows frequency characteristics when the impedance is not matched because the coil interval between the electromagnetic induction coil 130 (210) and the resonance coil 140 (230) is smaller than that in the case of the curve k21.
  • a curve k23 shows the frequency characteristic when the impedance is not matched because the coil interval is larger than that in the case of the curve k21.
  • the coil spacing variable devices 160 and 240 are provided in the power supply equipment 100 and the vehicle 200, respectively, and the resonance impedance is adjusted so that the resonance impedance matches the impedance of the high frequency power supply device 110.
  • the coil interval varying devices 160 and 240 are adjusted so that the received voltage in the vehicle 200 is maximized in a state where constant power having the frequency f0 is supplied.
  • the electromagnetic induction coil 130 (210) and the resonance coil 140 (230) are ensured so that the frequency spectrum has a single peak.
  • the coil interval is made the narrowest state.
  • the size of the resistive load 310 (FIG. 1) used when adjusting the resonance frequency and impedance is determined as follows.
  • FIG. 5 is a diagram showing the relationship between the charging current and the charging voltage for the power storage device 290.
  • line PU indicates a constant output line with maximum charging power
  • line PL indicates a constant output line with minimum charging power
  • Line SL indicates a constant SOC line whose SOC of power storage device 290 is the lower limit
  • line SU indicates a constant SOC line whose SOC of power storage device 290 is the upper limit.
  • a region A surrounded by the lines PU and PL and the lines SL and SU is a range that the charging voltage and charging current can take.
  • the line Im1 is a constant impedance line that intersects the line PU, which is the constant output line of the maximum charging power, in the approximate center of the lines SL and SU.
  • the line Im2 is a constant impedance line having a larger impedance than the line Im1. Since charging of power storage device 290 is assumed to be performed with the maximum charging power, the impedance value of line Im1 is a value that is highly likely to be obtained during charging. Therefore, in this embodiment, the size of the resistance load 310 (FIG. 1) is set to the impedance value (resistance value) of the line Im1. Thereby, the resonance frequency and the impedance of the resonance system can be adjusted in a state close to the time of actual charging of power storage device 290.
  • FIGS. 6 and 7 are flowcharts for explaining the procedure of adjustment processing of the variable capacitors 150 and 220 and the coil interval variable devices 160 and 240.
  • FIG. With reference to FIG. 1 together with FIG. 6, first, processing on the power supply equipment 100 side will be described.
  • the ECU 190 of the power supply facility 100 determines whether or not there is a charge request from the power supply facility 100 to the vehicle 200 (step S10). It is assumed that this charging request is generated, for example, when an appropriate input is made by the user in power supply facility 100 or vehicle 200. If there is no charge request (NO in step S10), ECU 190 proceeds to step S140 in FIG. 7 without executing a series of subsequent processes.
  • step S10 If it is determined in step S10 that a charging request has been made (YES in step S10), ECU 190 minimizes the coil interval between resonance coil 140 and electromagnetic induction coil 130 within a range that can be changed by coil interval varying device 160. (Step S20). At this time, communication is performed between the communication device 170 of the power supply facility 100 and the communication device 330 of the vehicle 200. Also in the vehicle 200, the resonance coil 210 and the electromagnetic induction are within a range that can be changed by the coil interval varying device 240. The coil spacing with the coil 230 is minimized.
  • the ECU 190 controls the high frequency power supply device 110 so as to output adjustment power (step S30).
  • the adjustment power is output to adjust the resonance frequency of resonance coils 140 and 210 and the impedance of the resonance system based on the power reception status of vehicle 200 and charges power storage device 290 of vehicle 200. Therefore, the power and frequency during full-scale power supply are the same (frequency f0), but the effective value is small.
  • the ECU 190 starts sweeping the variable capacitor 150 (step S40). At this time, communication is performed between the communication devices 170 and 330, and the variable capacitor 220 is also swept in the vehicle 200.
  • the resonance coils 140 and 210 are the same, and the variable capacitors 150 and 220 are also the same, and the capacitances of the variable capacitors 150 and 220 are swept so as to be the same.
  • Adjustment of the variable capacitors 150 and 220 is performed based on the power reception status of the vehicle 200 (here, the power reception voltage as an example). If an adjustment point at which the power reception voltage is maximum within the adjustable range of variable capacitor 150 is not found (NO in step S50), a stop sequence is executed (step S60). In this stop sequence, when an adjustment point at which the power reception voltage is maximized is not found, there is a possibility that the power feeding facility 100 is misaligned with the vehicle 200, more specifically, there is a possibility of misalignment between the resonance coils 140 and 210. This is processing for stopping power transmission from the power supply facility 100. This stop sequence will be described later.
  • step S50 When the adjustment point at which the power reception voltage becomes maximum within the adjustable range of the variable capacitor 150 is found (YES in step S50), the ECU 190 stops sweeping the variable capacitor 150 (step S70). Thereby, the adjustment of the resonance frequency of the resonance coil 140 by the variable capacitor 150 is completed.
  • the ECU 350 determines whether or not there is a charge request from the power supply facility 100 to the vehicle 200 (step S210). If there is no charge request (NO in step S210), ECU 350 proceeds to step S360 in FIG. 7 without executing a series of subsequent processes.
  • step S210 If it is determined in step S210 that a charging request has been made (YES in step S210), ECU 350 controls switching device 270 to electrically disconnect converter 280 from rectifier 260, and to connect resistive load 310 to the rectifier. 260 is connected (step S220). Next, ECU 350 minimizes the coil interval between resonance coil 210 and electromagnetic induction coil 230 within a range that can be changed by coil interval variable device 240 (step S230). As described above, at this time, also in the power supply facility 100, the coil interval between the resonance coil 140 and the electromagnetic induction coil 130 is minimized.
  • step S240 the ECU 350 starts sweeping the variable capacitor 220 (step S240). As described above, the variable capacitor 150 is also swept at the power supply facility 100 at this time.
  • the ECU 350 determines whether or not the voltage V (power reception voltage) detected by the detection unit 320 is the maximum (step S250). As an example, when ECU 350 detects the maximum point of voltage V that changes with the sweep of variable capacitor 220 (150), ECU 350 determines that voltage V is maximum.
  • step S270 If no adjustment point at which the received voltage is maximum within the adjustable range of the variable capacitor 220 is found (NO in step S260), a stop sequence is executed (step S270).
  • ECU 350 stops sweeping variable capacitor 220 (step S280). Thereby, the adjustment of the resonance frequency of the resonance coil 210 by the variable capacitor 220 is completed.
  • the communication device 330 notifies the power supply facility 100 of the adjustment point, and the power supply facility 100 also stops the sweep of the variable capacitor 150 in step S70.
  • ECU 190 controls coil interval variable device 160 to control the coil interval between resonance coil 140 and electromagnetic induction coil 130.
  • Starts sweeping (step S80).
  • the coil interval is minimized, and the coil interval sweep is performed in the direction in which the coil interval increases.
  • communication is performed between the communication devices 170 and 330, and also in the vehicle 200, the coil interval between the resonance coil 210 and the electromagnetic induction coil 230 is swept.
  • the electromagnetic induction coils 130 and 230 are the same, and are swept so that the coil interval in the power supply facility 100 and the coil interval in the vehicle 200 are the same.
  • the adjustment of the coil interval is also performed based on the power reception status of the vehicle 200 (here, the power reception voltage as an example). If no adjustment point at which the received voltage is maximum within the adjustable range of the coil interval is found (NO in step S90), a stop sequence is executed (step S100).
  • ECU 190 stops sweeping the coil interval (step S110). Thereby, the adjustment of the impedance of the resonance system by changing the coil interval is completed.
  • the ECU 190 controls the high-frequency power supply device 110 to stop the output of the adjustment power (step S120).
  • the ECU 190 controls the high-frequency power supply device 110 to stop the output of the adjustment power (step S120).
  • step S120 In vehicle 200, when resistive load 310 is electrically disconnected from rectifier 260 and converter 280 is connected to rectifier 260, ECU 190 performs full-scale power supply for charging power storage device 290 of vehicle 200.
  • the high frequency power supply device 110 is controlled so as to start (step S130).
  • Step S290 the ECU 350 starts sweeping the coil interval between the resonance coil 210 and the electromagnetic induction coil 230 by controlling the coil interval variable device 240.
  • the coil interval is minimized, and the coil interval sweep is performed in the direction in which the coil interval increases.
  • the coil interval between the resonance coil 140 and the electromagnetic induction coil 130 is swept.
  • the ECU 350 determines whether or not the voltage V (power reception voltage) detected by the detection unit 320 is the maximum (step S300). As an example, when ECU 350 detects the maximum point of voltage V that changes with the sweep of the coil interval, ECU 350 determines that voltage V is maximum.
  • step S320 If no adjustment point at which the received voltage is maximum within the adjustable range of the variable capacitor 220 is found (NO in step S310), a stop sequence is executed (step S320).
  • ECU 350 stops sweeping the coil interval (step S330). Thereby, the adjustment of the coil interval, that is, the adjustment of the impedance of the resonance system is completed.
  • the communication device 330 notifies the power supply facility 100 of the adjustment point, and the power supply facility 100 also stops the sweep of the coil interval in step S110.
  • the ECU 350 controls the switching device 270 to electrically disconnect the resistance load 310 from the rectifier 260 and connect the converter 280 to the rectifier 260 (step). S340). Then, with the start of full-scale power supply from the power supply facility 100, power reception is started in the vehicle 200 (step S350).
  • FIG. 8 is a flowchart for explaining the processing procedure of the stop sequence shown in FIGS.
  • ECU 190 outputs a stop command to high frequency power supply device 110 to stop power transmission to vehicle 200 (step S410).
  • the ECU 190 outputs a warning about power transmission being stopped by the stop sequence (step S420).
  • the ECU 350 monitors the voltage V (power reception voltage) detected by the detection unit 320, and determines whether or not the power reception voltage is lower than a threshold value (step S510).
  • This threshold value is a threshold value for determining whether or not power transmission from the power supply facility 100 is stopped, and is set to a sufficiently small value.
  • ECU 350 controls switching device 270 to electrically disconnect converter 280 from rectifier 260 (step S520). Then, ECU 350 outputs an alarm that power transmission has been stopped by the stop sequence (step S530).
  • the resonance frequency of the resonance coils 140 and 210 is first adjusted, and after adjustment of the resonance frequency, the coil interval between the resonance coil 140 (210) and the electromagnetic induction coil (130, 210). Is adjusted.
  • the adjustment of the resonance frequency is performed in a state where the coil interval is the narrowest in the adjustable range of the coil interval.
  • the resonance frequency is adjusted with one peak of the frequency spectrum. Therefore, according to the present invention, the resonance frequency of the resonance coils 140 and 210 can be easily adjusted.
  • the resonance frequency of the resonance coils 140 and 210 is first adjusted, and after the resonance frequency is adjusted, the impedance is adjusted by changing the coil interval. Therefore, according to this embodiment, adjustment for realizing the maximum efficiency can be easily performed.
  • the resonance frequency and coil interval of the resonance coil are adjusted based on the received voltage, but based on the reflected power detected by the power sensor 115 provided in the power supply facility 100, The resonance frequency and the coil interval may be adjusted.
  • FIG. 9 is a diagram showing changes in the frequency characteristics of the reflected power when the variable capacitors 150 and 220 are changed.
  • the vertical axis indicates the magnitude of the reflected power detected by power sensor 115 (FIG. 1), and the horizontal axis indicates the frequency.
  • the frequency f0 is a frequency of high-frequency power output from the high-frequency power supply device 110, that is, a frequency (resonance frequency) of transmitted power from the power supply facility 100 to the vehicle 200.
  • Curve k31 shows the frequency characteristics when the resonance frequency of the resonance coils 140 and 210 matches the frequency f0.
  • a curve k32 shows frequency characteristics when the capacitance of the variable capacitors 150 and 220 is smaller than that of the curve k31.
  • the resonance frequency of the resonance coils 140 and 210 (frequency corresponding to the minimum value of the reflected power) is higher than the frequency f0. Is also expensive.
  • a curve k33 shows frequency characteristics when the capacitance of the variable capacitors 150 and 220 is larger than that of the curve k31, and the resonance frequency of the resonance coils 140 and 210 is lower than the frequency f0.
  • the resonance frequency of the resonance coils 140 and 210 is adjusted by adjusting the variable capacitors 150 and 220 so that the reflected power is minimized while the constant power of the frequency f0 is output from the high frequency power supply device 110. Can do.
  • the coil interval between the resonance coil 140 (210) and the electromagnetic induction coil 130 (230) may also be adjusted based on the reflected power detected by the power sensor 115. Good.
  • the resonance frequency of the resonance coils 140 and 210 is adjusted by making the coil interval the narrowest so that the peak of the frequency spectrum of the power reception state is surely one.
  • the resonance frequency is adjusted, it is only necessary to have one peak of the frequency spectrum, and it is not essential to make the coil interval the narrowest. If the coil interval is somewhat narrow, even if the coil interval is not the narrowest state, the peak of the frequency spectrum can be one.
  • the ECU 190 of the power supply facility 100 and the ECU 350 of the vehicle 200 share functions as shown in FIGS. 6 to 8, but all of the functions of one of the ECUs 190 and 350 or A part may be provided to the other ECU.
  • the resonance coil 140 corresponds to one embodiment of the “power transmission coil” in the present invention
  • the resonance coil 210 corresponds to one embodiment of the “power reception coil” in the present invention
  • the electromagnetic induction coil 230 corresponds to one embodiment of the “electromagnetic induction coil for taking out the electric power received by the power receiving coil by electromagnetic induction” in the present invention. This corresponds to an example of the “first changing device for changing the resonance frequency of the power receiving coil”.
  • the coil interval varying device 240 corresponds to an embodiment of “a second changing device for changing the coil interval between the power receiving coil and the electromagnetic induction coil” in the present invention. This corresponds to an example of the “control device” in the invention of the present invention.
  • the high frequency power supply device 110 corresponds to an embodiment of the “power supply device” in the present invention
  • the electromagnetic induction coil 130 corresponds to “the power transmission coil by receiving electric power from the power supply device and performing electromagnetic induction” This corresponds to an embodiment of "electromagnetic induction coil for supplying to”.
  • the variable capacitor 150 corresponds to an embodiment of “a first changing device for changing the resonance frequency of the power transmission coil” according to the present invention. This corresponds to an example of the “second changing device for changing the coil interval between the power transmission coil and the electromagnetic induction coil”.
  • ECU 190 corresponds to an embodiment of “control device” in the invention of the power supply facility.
  • 100 power supply equipment 110 high frequency power supply device, 115 power sensor, 120, 250 coaxial cable, 130, 230 electromagnetic induction coil, 140, 210 resonance coil, 150, 220 variable capacitor, 160, 240 coil interval variable device, 170, 330 communication Device, 190, 350 ECU, 200 vehicle, 260 rectifier, 270 switching device, 280 converter, 290 power storage device, 300 power output device, 310 resistance load, 320 detection unit, 350 load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

An ECU (350) first adjusts the resonance frequency of a resonance coil (210) to match the power supply frequency by controlling a variable capacitor (220), and after adjusting the resonance frequency, adjusts the gap between the resonance coil (210) and an electromagnetic induction coil (230) by controlling a coil-gap changing apparatus (240). Then the ECU (350) adjusts the resonance frequency of the resonance coil (210) in a state wherein peaks of a frequency spectrum of the power-receiving state, which will change with the gap between the coils, will become one.

Description

受電装置およびそれを備える車両、給電設備、ならびに給電システムPower receiving device, vehicle including the same, power supply facility, and power supply system
 この発明は、受電装置およびそれを備える車両、給電設備、ならびに給電システムに関し、特に、給電設備の送電用コイルと受電装置の受電用コイルとが電磁場を介して共鳴することにより給電設備から受電装置へ非接触で送電する給電システムにおける受電装置およびそれを備える車両ならびに給電設備に関する。 The present invention relates to a power receiving device and a vehicle including the power receiving device, a power feeding facility, and a power feeding system. The present invention relates to a power receiving device, a vehicle including the power receiving system, and a power feeding facility in a power feeding system that transmits power in a contactless manner.
 送電方法として、電源コードや送電ケーブルを用いないワイヤレス送電(非接触送電)が近年注目されている。このワイヤレス送電技術としては、有力なものとして、電磁誘導を用いた送電、マイクロ波を用いた送電、および共鳴法による送電の3つの技術が知られている。 As a power transmission method, wireless power transmission (contactless power transmission) that does not use a power cord or a power transmission cable has attracted attention in recent years. As this wireless power transmission technology, three technologies known as power transmission using electromagnetic induction, power transmission using microwaves, and power transmission using a resonance method are known.
 このうち、共鳴法は、一対の共鳴器(たとえば一対の共振コイル)を電磁場(近接場)において共鳴させ、電磁場を介して送電する非接触の送電技術であり、数kWの大電力を比較的長距離(たとえば数m)送電することも可能である。 Among them, the resonance method is a non-contact power transmission technique in which a pair of resonators (for example, a pair of resonance coils) are resonated in an electromagnetic field (near field) and transmitted through the electromagnetic field. It is also possible to transmit power over a long distance (for example, several meters).
 特開2010-63245号公報(特許文献1)は、そのような共鳴法を用いた非接触給電装置を開示する。この非接触給電装置は、共振周波数を離散的または連続的に可変する可変機構を有する共鳴素子(共鳴コイル)と、共鳴素子と電磁誘導結合する励振素子(電磁誘導コイル)と、共振周波数と同じ周波数の交流電流を励振素子に印加する交流電源とを備える。そして、給電先の固有の共振周波数に応じて給電元の共振周波数が可変機構により変更され、異なる共振周波数を有する給電先に対して選択的に給電される。この非接触給電装置によれば、特定の給電先へ選択的に給電することができる(特許文献1参照)。 Japanese Patent Laying-Open No. 2010-63245 (Patent Document 1) discloses a non-contact power feeding apparatus using such a resonance method. This non-contact power feeding device has the same resonance frequency as a resonance element (resonance coil) having a variable mechanism for changing the resonance frequency discretely or continuously, an excitation element (electromagnetic induction coil) electromagnetically coupled to the resonance element. An alternating current power source for applying an alternating current having a frequency to the excitation element. Then, the resonance frequency of the power supply source is changed by the variable mechanism according to the specific resonance frequency of the power supply destination, and power is selectively supplied to power supply destinations having different resonance frequencies. According to this non-contact power supply device, power can be selectively supplied to a specific power supply destination (see Patent Document 1).
特開2010-63245号公報JP 2010-63245 A 特開2010-239769号公報JP 2010-239769 A 特開2010-141976号公報JP 2010-141976 A 特開2010-124522号公報JP 2010-124522 A
 共鳴コイルと電磁誘導コイルとの間隔(コイル間隔)が変化すると、給電設備側の送電ユニットと受電装置側の受電ユニットとから成る共鳴系のインピーダンスが変化する。そこで、上記のコイル間隔を変化させることによって共鳴系のインピーダンスを適切な値に調整することができる。一方、共鳴系のインピーダンスの変化は、共鳴系の周波数特性に影響を及ぼすので、共鳴コイルの共振周波数の調整に影響を与える。共鳴コイルの共振周波数の調整はできるだけ容易であることが望まれるところ、上記公報では、この点について特に検討されていない。 When the interval between the resonance coil and the electromagnetic induction coil (coil interval) changes, the impedance of the resonance system composed of the power transmission unit on the power supply facility side and the power reception unit on the power reception device side changes. Therefore, the impedance of the resonance system can be adjusted to an appropriate value by changing the coil interval. On the other hand, the change in the impedance of the resonance system affects the frequency characteristics of the resonance system, and thus affects the adjustment of the resonance frequency of the resonance coil. The adjustment of the resonance frequency of the resonance coil is desired to be as easy as possible. However, the above publication does not particularly consider this point.
 それゆえに、この発明の目的は、共鳴コイルの共振周波数の調整を容易にすることである。 Therefore, an object of the present invention is to facilitate adjustment of the resonance frequency of the resonance coil.
 この発明によれば、受電装置は、送電用コイルを含む給電設備から非接触で受電する受電装置であって、受電用コイルと、電磁誘導コイルと、第1および第2の変更装置と、制御装置とを備える。受電用コイルは、送電用コイルと電磁場を介して共鳴することにより送電用コイルから非接触で受電するためのものである。電磁誘導コイルは、受電用コイルによって受電された電力を電磁誘導により取出すためのものである。第1の変更装置は、受電用コイルの共振周波数を変更するためのものである。第2の変更装置は、受電用コイルと電磁誘導コイルとのコイル間隔を変更するためのものである。制御装置は、第1の変更装置を制御することによって共振周波数を所定の周波数にまず調整し、共振周波数の調整後、第2の変更装置を制御することによってコイル間隔を調整する。ここで、制御装置は、コイル間隔によって変化する受電状況の周波数スペクトルのピークが一つになる状態で共振周波数を調整する。 According to this invention, the power receiving device is a power receiving device that receives power from a power supply facility including a power transmission coil in a non-contact manner, the power receiving coil, the electromagnetic induction coil, the first and second changing devices, and the control Device. The power receiving coil is for receiving power from the power transmitting coil in a non-contact manner by resonating with the power transmitting coil via an electromagnetic field. The electromagnetic induction coil is for taking out the electric power received by the power receiving coil by electromagnetic induction. The first changing device is for changing the resonance frequency of the power receiving coil. The second changing device is for changing the coil interval between the power receiving coil and the electromagnetic induction coil. The control device first adjusts the resonance frequency to a predetermined frequency by controlling the first changing device, and adjusts the coil interval by controlling the second changing device after adjusting the resonance frequency. Here, the control device adjusts the resonance frequency in a state where there is one peak in the frequency spectrum of the power reception state that changes depending on the coil interval.
 好ましくは、制御装置は、コイル間隔の調整可能範囲においてコイル間隔を最も狭めた状態で共振周波数を調整する。 Preferably, the control device adjusts the resonance frequency in a state where the coil interval is the narrowest within the adjustable range of the coil interval.
 好ましくは、制御装置は、コイル間隔が増大する方向にコイル間隔を変化させることによってコイル間隔を調整する。 Preferably, the control device adjusts the coil interval by changing the coil interval in a direction in which the coil interval increases.
 好ましくは、制御装置は、共振周波数の調整可能範囲において共振周波数を所定の周波数に調整できないとき、受電装置に接続される電気負荷への出力を停止させる。 Preferably, the control device stops the output to the electric load connected to the power receiving device when the resonance frequency cannot be adjusted to a predetermined frequency within the adjustable range of the resonance frequency.
 好ましくは、制御装置は、コイル間隔の調整可能範囲においてコイル間隔の調整が完了しないとき、受電装置に接続される電気負荷への出力を停止させる。 Preferably, the control device stops the output to the electric load connected to the power receiving device when the adjustment of the coil interval is not completed within the adjustable range of the coil interval.
 さらに好ましくは、制御装置は、電気負荷への出力停止とともに警報を出力する。
 好ましくは、第1の変更装置は、受電用コイルに接続される可変コンデンサを含む。
More preferably, the control device outputs an alarm when the output to the electric load is stopped.
Preferably, the first changing device includes a variable capacitor connected to the power receiving coil.
 また、この発明によれば、車両は、上述したいずれかの受電装置を備える。
 また、この発明によれば、給電設備は、受電用コイルを含む受電装置へ非接触で給電する給電設備であって、送電用コイルと、電源装置と、電磁誘導コイルと、第1および第2の変更装置と、制御装置とを備える。送電用コイルは、受電用コイルと電磁場を介して共鳴することにより受電用コイルへ非接触で送電するためのものである。電源装置は、所定の周波数を有する電力を発生する。電磁誘導コイルは、電源装置から電力を受けて電磁誘導により送電用コイルへ供給するためのものである。第1の変更装置は、送電用コイルの共振周波数を変更するためのものである。第2の変更装置は、送電用コイルと電磁誘導コイルとのコイル間隔を変更するためのものである。制御装置は、第1の変更装置を制御することによって共振周波数を所定の周波数にまず調整し、共振周波数の調整後、第2の変更装置を制御することによってコイル間隔を調整する。ここで、制御装置は、コイル間隔によって変化する受電装置の受電状況の周波数スペクトルのピークが一つになる状態で共振周波数を調整する。
According to the invention, the vehicle includes any one of the power receiving devices described above.
Further, according to the present invention, the power supply facility is a power supply facility that supplies power to a power receiving device including a power receiving coil in a non-contact manner, the power transmitting coil, the power supply device, the electromagnetic induction coil, the first and the second. A change device and a control device. The power transmission coil resonates with the power reception coil via an electromagnetic field to transmit power to the power reception coil in a contactless manner. The power supply device generates power having a predetermined frequency. The electromagnetic induction coil receives electric power from the power supply device and supplies the electric power to the power transmission coil by electromagnetic induction. The first changing device is for changing the resonance frequency of the power transmission coil. The second changing device is for changing the coil interval between the power transmission coil and the electromagnetic induction coil. The control device first adjusts the resonance frequency to a predetermined frequency by controlling the first changing device, and adjusts the coil interval by controlling the second changing device after adjusting the resonance frequency. Here, the control device adjusts the resonance frequency in a state where the peak of the frequency spectrum of the power reception status of the power reception device, which varies depending on the coil interval, becomes one.
 好ましくは、制御装置は、コイル間隔の調整可能範囲においてコイル間隔を最も狭めた状態で共振周波数を調整する。 Preferably, the control device adjusts the resonance frequency in a state where the coil interval is the narrowest within the adjustable range of the coil interval.
 好ましくは、制御装置は、コイル間隔が増大する方向にコイル間隔を変化させることによってコイル間隔を調整する。 Preferably, the control device adjusts the coil interval by changing the coil interval in a direction in which the coil interval increases.
 好ましくは、制御装置は、共振周波数の調整可能範囲において共振周波数を所定の周波数に調整できないとき、電源装置を停止させる。 Preferably, the control device stops the power supply device when the resonance frequency cannot be adjusted to a predetermined frequency in the adjustable range of the resonance frequency.
 好ましくは、制御装置は、コイル間隔の調整可能範囲においてコイル間隔の調整が完了しないとき、電源装置を停止させる。 Preferably, the control device stops the power supply device when the adjustment of the coil interval is not completed within the adjustable range of the coil interval.
 さらに好ましくは、制御装置は、電源装置の停止とともに警報を出力する。
 好ましくは、第1の変更装置は、送電用コイルに接続される可変コンデンサを含む。
More preferably, the control device outputs an alarm when the power supply device is stopped.
Preferably, the first changing device includes a variable capacitor connected to the power transmission coil.
 また、この発明によれば、給電システムは、電源装置と、第1の電磁誘導コイルと、送電用コイルと、受電用コイルと、第2の電磁誘導コイルと、第1および第2の周波数変更装置と、第1および第2の間隔変更装置と、制御装置とを備える。電源装置は、所定の周波数を有する電力を発生する。第1の電磁誘導コイルは、電源装置から電力を受けて電磁誘導により電力を供給するためのものである。送電用コイルは、第1の電磁誘導コイルから電力の供給を受ける。受電用コイルは、送電用コイルと電磁場を介して共鳴することにより送電用コイルから非接触で受電するためのものである。第2の電磁誘導コイルは、受電用コイルによって受電された電力を電磁誘導により取出すためのものである。第1の周波数変更装置は、送電用コイルの共振周波数を示す第1の共振周波数を変更するためのものである。第2の周波数変更装置は、受電用コイルの共振周波数を示す第2の共振周波数を変更するためのものである。第1の間隔変更装置は、送電用コイルと第1の電磁誘導コイルとのコイル間隔を示す第1のコイル間隔を変更するためのものである。第2の間隔変更装置は、受電用コイルと第2の電磁誘導コイルとのコイル間隔を示す第2のコイル間隔を変更するためのものである。制御装置は、第1および第2の周波数変更装置を制御することによって第1および第2の共振周波数を所定の周波数にまず調整し、第1および第2の共振周波数の調整後、第1および第2の間隔変更装置を制御することによって第1および第2のコイル間隔を調整する。ここで、制御装置は、第1および第2のコイル間隔によって変化する受電状況の周波数スペクトルのピークが一つになる状態で第1および第2の共振周波数を調整する。 According to the present invention, the power supply system includes a power supply device, a first electromagnetic induction coil, a power transmission coil, a power reception coil, a second electromagnetic induction coil, and first and second frequency changes. A device, first and second interval changing devices, and a control device; The power supply device generates power having a predetermined frequency. The first electromagnetic induction coil receives electric power from the power supply device and supplies electric power by electromagnetic induction. The power transmission coil is supplied with electric power from the first electromagnetic induction coil. The power receiving coil is for receiving power from the power transmitting coil in a non-contact manner by resonating with the power transmitting coil via an electromagnetic field. The second electromagnetic induction coil is for taking out the electric power received by the power receiving coil by electromagnetic induction. The first frequency changing device is for changing the first resonance frequency indicating the resonance frequency of the power transmission coil. The second frequency changing device is for changing the second resonance frequency indicating the resonance frequency of the power receiving coil. The first interval changing device is for changing the first coil interval indicating the coil interval between the power transmission coil and the first electromagnetic induction coil. The second interval changing device is for changing the second coil interval indicating the coil interval between the power receiving coil and the second electromagnetic induction coil. The control device first adjusts the first and second resonance frequencies to a predetermined frequency by controlling the first and second frequency changing devices, and after adjusting the first and second resonance frequencies, the first and second resonance frequencies are adjusted. The first and second coil intervals are adjusted by controlling the second interval changing device. Here, the control device adjusts the first and second resonance frequencies in a state where there is one peak in the frequency spectrum of the power reception state that changes depending on the first and second coil intervals.
 好ましくは、制御装置は、第1のコイル間隔の調整可能範囲および第2のコイル間隔の調整可能範囲においてそれぞれ第1および第2のコイル間隔を最も狭めた状態で第1および第2の共振周波数を調整する。 Preferably, the control device sets the first and second resonance frequencies in a state in which the first and second coil intervals are the narrowest in the adjustable range of the first coil interval and the adjustable range of the second coil interval, respectively. Adjust.
 この発明においては、共振周波数が所定の周波数にまず調整され、共振周波数の調整後、受電用コイルと電磁誘導コイルとのコイル間隔が調整される。ここで、共鳴法を用いた送電では、受電状況の周波数特性が上記コイル間隔によって変化し、受電状況の周波数依存性を示す周波数スペクトルについて、コイル間隔が狭いときはピークが一つであるが、コイル間隔が大きくなると二つのピークが表われる。そこで、この発明においては、共振周波数の調整は、コイル間隔によって変化する受電状況の周波数スペクトルのピークが一つになる状態で共振周波数の調整が行なわれる。したがって、この発明によれば、共鳴コイルの共振周波数の調整を容易にすることができる。 In the present invention, the resonance frequency is first adjusted to a predetermined frequency, and after the resonance frequency is adjusted, the coil interval between the power receiving coil and the electromagnetic induction coil is adjusted. Here, in the power transmission using the resonance method, the frequency characteristic of the power reception situation changes depending on the coil interval, and the frequency spectrum indicating the frequency dependency of the power reception situation has one peak when the coil interval is narrow, Two peaks appear as the coil spacing increases. Therefore, in the present invention, the resonance frequency is adjusted in a state where the peak of the frequency spectrum of the power reception state that changes depending on the coil interval becomes one. Therefore, according to the present invention, the resonance frequency of the resonance coil can be easily adjusted.
この発明の実施の形態による給電システムの全体構成を示す機能ブロック図である。It is a functional block diagram which shows the whole structure of the electric power feeding system by embodiment of this invention. 共鳴法による送電に関する部分の等価回路図である。It is the equivalent circuit schematic of the part regarding the power transmission by the resonance method. 可変コンデンサを変化させたときの、車両における受電状況の周波数特性の変化を示した図である。It is the figure which showed the change of the frequency characteristic of the receiving condition in a vehicle when changing a variable capacitor. 共鳴コイルと電磁誘導コイルとのコイル間隔を変化させたときの、車両における受電状況の周波数特性の変化を示した図である。It is the figure which showed the change of the frequency characteristic of the receiving condition in a vehicle when changing the coil space | interval of a resonance coil and an electromagnetic induction coil. 蓄電装置への充電電流と充電電圧との関係を示した図である。It is the figure which showed the relationship between the charging current and charging voltage to an electrical storage apparatus. 可変コンデンサおよびコイル間隔可変装置の調整処理の手順を説明するための第1のフローチャートである。It is a 1st flowchart for demonstrating the procedure of the adjustment process of a variable capacitor and a coil space | interval variable apparatus. 可変コンデンサおよびコイル間隔可変装置の調整処理の手順を説明するための第2のフローチャートである。It is a 2nd flowchart for demonstrating the procedure of the adjustment process of a variable capacitor and a coil space | interval variable apparatus. 図6,7に示す停止シーケンスの処理手順を説明するためのフローチャートである。It is a flowchart for demonstrating the process sequence of the stop sequence shown to FIG. 可変コンデンサを変化させたときの、反射電力の周波数特性の変化を示した図である。It is the figure which showed the change of the frequency characteristic of reflected electric power when changing a variable capacitor.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図1は、この発明の実施の形態による給電システムの全体構成を示す機能ブロック図である。図1を参照して、この給電システムは、給電設備100と、受電装置としての車両200とを備える。 FIG. 1 is a functional block diagram showing an overall configuration of a power feeding system according to an embodiment of the present invention. Referring to FIG. 1, the power supply system includes a power supply facility 100 and a vehicle 200 as a power receiving device.
 給電設備100は、高周波電源装置110と、電力センサ115と、同軸ケーブル120と、電磁誘導コイル130と、共鳴コイル140と、可変コンデンサ150と、コイル間隔可変装置160とを含む。また、給電設備100は、通信装置170と、ECU(Electronic Control Unit)190とをさらに含む。 The power supply facility 100 includes a high frequency power supply device 110, a power sensor 115, a coaxial cable 120, an electromagnetic induction coil 130, a resonance coil 140, a variable capacitor 150, and a coil interval variable device 160. The power supply facility 100 further includes a communication device 170 and an ECU (Electronic Control Unit) 190.
 高周波電源装置110は、所定の高周波電力を生成して同軸ケーブル120へ出力する。たとえば、高周波電源装置110は、系統電源から受ける電力を高周波電力に変換して同軸ケーブル120へ出力する。なお、高周波電源装置110によって生成される高周波電力の周波数は、たとえば1M~10数MHzの範囲の所定値に設定される。 The high frequency power supply device 110 generates predetermined high frequency power and outputs it to the coaxial cable 120. For example, the high frequency power supply device 110 converts electric power received from the system power supply into high frequency electric power and outputs it to the coaxial cable 120. Note that the frequency of the high frequency power generated by the high frequency power supply device 110 is set to a predetermined value in the range of 1 M to several tens MHz, for example.
 電力センサ115は、高周波電源装置110における反射電力および進行波電力を検出し、それらの各検出値をECU190へ出力する。なお、反射電力は、高周波電源装置110から出力された電力が反射して高周波電源装置110へ戻った電力である。また、進行波電力は、高周波電源装置110から出力される電力である。なお、電力センサ115には、電源装置における反射電力および進行波電力を検出可能な種々の公知のセンサを用いることができる。 The power sensor 115 detects the reflected power and the traveling wave power in the high frequency power supply device 110 and outputs each detected value to the ECU 190. The reflected power is the power that is returned from the high frequency power supply device 110 after the power output from the high frequency power supply device 110 is reflected. The traveling wave power is power output from the high frequency power supply device 110. As the power sensor 115, various known sensors capable of detecting reflected power and traveling wave power in the power supply device can be used.
 電磁誘導コイル130は、電磁誘導結合によって共鳴コイル140と磁気的に結合可能であり、高周波電源装置110から同軸ケーブル120を介して供給される高周波電力を電磁誘導により共鳴コイル140へ供給する。電磁誘導コイル130は、たとえば、中心軸が共鳴コイル140と一致するように配設される。 The electromagnetic induction coil 130 can be magnetically coupled to the resonance coil 140 by electromagnetic induction coupling, and supplies high frequency power supplied from the high frequency power supply device 110 via the coaxial cable 120 to the resonance coil 140 by electromagnetic induction. For example, the electromagnetic induction coil 130 is disposed so that the central axis thereof coincides with the resonance coil 140.
 共鳴コイル140は、電磁誘導コイル130から電磁誘導により電力の供給を受ける。そして、共鳴コイル140は、車両200に搭載される共鳴コイル210と電磁場を介して共鳴することにより車両200へ非接触で送電する。なお、共鳴コイル140は、車両200の共鳴コイル210との距離や共鳴周波数等に基づいて、Q値が大きく(たとえば、Q>100)かつ結合度κが小さくなるようにコイル径や巻数が適宜設定される。なお、この共鳴による送電は、Q値が小さくかつ結合度κが大きくなるように設計される電磁誘導とは異なる送電技術である。 The resonance coil 140 is supplied with electric power from the electromagnetic induction coil 130 by electromagnetic induction. The resonance coil 140 transmits power to the vehicle 200 in a non-contact manner by resonating with the resonance coil 210 mounted on the vehicle 200 via an electromagnetic field. It should be noted that resonance coil 140 has an appropriate coil diameter and number of turns so that the Q value is large (for example, Q> 100) and the degree of coupling κ is small based on the distance from resonance coil 210 of vehicle 200, the resonance frequency, and the like. Is set. The power transmission by resonance is a power transmission technique different from electromagnetic induction designed so that the Q value is small and the coupling degree κ is large.
 可変コンデンサ150は、共鳴コイル140の共振周波数を変更するために設けられ、たとえば共鳴コイル140の両端部間に接続される。可変コンデンサ150は、ECU190から受ける指令に従ってその容量を変化させ、その容量変化によって共鳴コイル140の共振周波数を変更することができる。 The variable capacitor 150 is provided to change the resonance frequency of the resonance coil 140, and is connected between both ends of the resonance coil 140, for example. Variable capacitor 150 can change its capacity in accordance with a command received from ECU 190, and can change the resonance frequency of resonance coil 140 according to the change in capacity.
 コイル間隔可変装置160は、電磁誘導コイル130と共鳴コイル140との間隔(以下、単に「コイル間隔」と称する。すなわち、以下では、「コイル間隔」とは、共鳴コイルと電磁誘導コイルとの間隔を示す。)を変更するための装置である。一例として、コイル間隔可変装置160は、螺子型の棒状器具によって構成され、棒状器具を回動させることによって、共鳴コイル140に対する電磁誘導コイル130の位置をコイルの中心軸に沿って変化させることができる。なお、コイル間隔可変装置160の構成は、この一例に限定されるものではなく、コイル間隔を変更可能な機構であれば如何なるものであってもよい。 The coil interval varying device 160 is an interval between the electromagnetic induction coil 130 and the resonance coil 140 (hereinafter simply referred to as “coil interval”. In other words, hereinafter, the “coil interval” is the interval between the resonance coil and the electromagnetic induction coil. Is a device for changing. As an example, the coil interval varying device 160 is constituted by a screw-type rod-shaped instrument, and by rotating the rod-shaped instrument, the position of the electromagnetic induction coil 130 with respect to the resonance coil 140 can be changed along the central axis of the coil. it can. The configuration of the coil interval varying device 160 is not limited to this example, and any configuration may be used as long as the coil interval can be changed.
 このコイル間隔可変装置160は、電磁誘導コイル130および共鳴コイル140ならびに車両200に搭載される共鳴コイル210および電磁誘導コイル230(後述)から成る共鳴系のインピーダンスを調整するためのものである。すなわち、コイル間隔が変化すると、共鳴系のインピーダンスが変化する。そして、効率の高い送電を実現するには、共鳴系の入力インピーダンスを高周波電源装置110の出力インピーダンスと整合させる必要があるところ、コイル間隔可変装置160を用いてコイル間隔を変更することによって、共鳴系の入力インピーダンスを調整することができる。 The coil interval varying device 160 is for adjusting the impedance of the resonance system composed of the electromagnetic induction coil 130 and the resonance coil 140, and the resonance coil 210 and the electromagnetic induction coil 230 (described later) mounted on the vehicle 200. That is, when the coil interval changes, the resonance impedance changes. In order to realize high-efficiency power transmission, it is necessary to match the input impedance of the resonance system with the output impedance of the high-frequency power supply device 110. By changing the coil interval using the coil interval variable device 160, the resonance The input impedance of the system can be adjusted.
 通信装置170は、車両200と無線による通信を行なうための通信インターフェースである。通信装置170は、車両200の通信装置330と種々の指令やデータ等を交信することができる。 The communication device 170 is a communication interface for performing wireless communication with the vehicle 200. The communication device 170 can communicate various commands and data with the communication device 330 of the vehicle 200.
 ECU190は、予め記憶されたプログラムを図示しないCPUで実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、給電設備100から車両200への給電を制御する。ECU190は、車両200の受電状況に基づいて可変コンデンサ150を制御することによって、共鳴コイル140の共振周波数を電源周波数(高周波電源装置110から出力される高周波電力の周波数)に調整する。また、ECU190は、車両200の受電状況に基づいてコイル間隔可変装置160を制御することによって、共鳴系の入力インピーダンスが高周波電源装置110のインピーダンスに整合するように共鳴系のインピーダンスを調整する。 The ECU 190 controls power supply from the power supply facility 100 to the vehicle 200 by software processing by executing a program stored in advance by a CPU (not shown) and / or hardware processing by a dedicated electronic circuit. ECU 190 controls variable capacitor 150 based on the power reception status of vehicle 200 to adjust the resonance frequency of resonance coil 140 to the power supply frequency (the frequency of the high-frequency power output from high-frequency power supply device 110). ECU 190 controls coil interval varying device 160 based on the power reception status of vehicle 200 to adjust the impedance of the resonance system so that the input impedance of the resonance system matches the impedance of high-frequency power supply device 110.
 なお、共鳴コイルの共振周波数の調整は、高周波電源装置110の出力を一定にした状態で(なお、この出力は、車両200の蓄電装置290を充電するための本格的な給電時の出力よりも小さくてよい。)、可変コンデンサ150の容量を掃引したときの車両200の受電状況(たとえば受電電圧)に基づいて行なわれる。また、共鳴系のインピーダンスの調整は、共鳴コイルの共振周波数の調整後に行なわれ、高周波電源装置110の出力を一定にした状態で、コイル間隔可変装置160によりコイル間隔を掃引したときの車両200の受電状況に基づいて行なわれる。 The resonance frequency of the resonance coil is adjusted in a state where the output of the high-frequency power supply device 110 is constant (this output is higher than the output at the time of full-scale power supply for charging the power storage device 290 of the vehicle 200). This is performed based on the power reception status (for example, power reception voltage) of the vehicle 200 when the capacity of the variable capacitor 150 is swept. The resonance impedance is adjusted after the resonance frequency of the resonance coil is adjusted. When the output of the high frequency power supply device 110 is kept constant, the coil interval of the vehicle 200 is swept by the coil interval variable device 160. This is performed based on the power reception status.
 ここで、ECU190は、コイル間隔によって変化する受電状況の周波数スペクトルのピークが一つになる状態で共鳴コイル140の共振周波数を調整する。すなわち、コイル間隔が変化すると、受電状況たとえば受電電圧の周波数スペクトルが変化する。ここで、周波数スペクトルのピーク数について、コイル間隔が小さいときは、周波数スペクトルのピークは一つであるが、コイル間隔が増大すると、周波数スペクトルのピークが二つに分かれ、掃引による共振周波数の調整が難しくなる。そこで、この実施の形態では、一例として、ECU190は、周波数スペクトルのピークが確実に一つになるようにコイル間隔を最も狭めた状態にして、共鳴コイル140の共振周波数を調整する。 Here, the ECU 190 adjusts the resonance frequency of the resonance coil 140 in a state where there is one peak of the frequency spectrum of the power reception state that changes depending on the coil interval. That is, when the coil interval changes, the power reception situation, for example, the frequency spectrum of the power reception voltage changes. Here, regarding the number of peaks in the frequency spectrum, when the coil interval is small, the frequency spectrum has one peak. However, when the coil interval increases, the frequency spectrum peak is divided into two, and the resonance frequency is adjusted by sweeping. Becomes difficult. Therefore, in this embodiment, as an example, the ECU 190 adjusts the resonance frequency of the resonance coil 140 with the coil interval narrowed so that the frequency spectrum has a single peak.
 一方、受電装置としての車両200は、共鳴コイル210と、可変コンデンサ220と、電磁誘導コイル230と、コイル間隔可変装置240と、同軸ケーブル250と、整流器260とを含む。また、車両200は、切替装置270と、変換器280と、蓄電装置290と、動力出力装置300とをさらに含む。さらに、車両200は、抵抗負荷310と、検出部320と、通信装置330と、ECU350とをさらに含む。 On the other hand, the vehicle 200 as a power receiving device includes a resonance coil 210, a variable capacitor 220, an electromagnetic induction coil 230, a coil interval varying device 240, a coaxial cable 250, and a rectifier 260. Vehicle 200 further includes a switching device 270, a converter 280, a power storage device 290, and a power output device 300. Furthermore, vehicle 200 further includes a resistance load 310, a detection unit 320, a communication device 330, and an ECU 350.
 共鳴コイル210は、給電設備100の共鳴コイル140と電磁場を介して共鳴することにより共鳴コイル140から非接触で受電する。なお、この共鳴コイル210も、給電設備100の共鳴コイル140との距離や共鳴周波数等に基づいて、Q値が大きくかつ結合度κが小さくなるようにコイル径や巻数が適宜設定される。 The resonance coil 210 receives power from the resonance coil 140 in a non-contact manner by resonating with the resonance coil 140 of the power supply facility 100 via an electromagnetic field. Note that the coil diameter and the number of turns of the resonance coil 210 are appropriately set based on the distance from the resonance coil 140 of the power supply facility 100, the resonance frequency, and the like so that the Q value is large and the degree of coupling κ is small.
 可変コンデンサ220は、共鳴コイル210の共振周波数を変更するために設けられ、たとえば共鳴コイル210の両端部間に接続される。可変コンデンサ220は、ECU350から受ける指令に従ってその容量を変化させ、その容量変化によって共鳴コイル210の共振周波数を変更することができる。 The variable capacitor 220 is provided to change the resonance frequency of the resonance coil 210 and is connected between both ends of the resonance coil 210, for example. Variable capacitor 220 changes its capacity in accordance with a command received from ECU 350, and can change the resonance frequency of resonance coil 210 according to the change in capacity.
 電磁誘導コイル230は、電磁誘導結合によって共鳴コイル210と磁気的に結合可能であり、共鳴コイル210によって受電された電力を電磁誘導により取出して同軸ケーブル250を介して整流器260へ出力する。電磁誘導コイル230は、たとえば、中心軸が共鳴コイル210と一致するように配設される。 The electromagnetic induction coil 230 can be magnetically coupled to the resonance coil 210 by electromagnetic induction coupling, takes out the electric power received by the resonance coil 210 by electromagnetic induction, and outputs it to the rectifier 260 via the coaxial cable 250. For example, the electromagnetic induction coil 230 is disposed so that the central axis thereof coincides with the resonance coil 210.
 コイル間隔可変装置240は、共鳴コイル210と電磁誘導コイル230とのコイル間隔を変更するための装置である。コイル間隔可変装置240は、給電設備100のコイル間隔可変装置160と同様の機構によって構成され、共鳴コイル210に対する電磁誘導コイル230の位置をコイルの中心軸に沿って変化させることができる。そして、このコイル間隔可変装置240を用いてコイル間隔を変更することによって、給電設備100のコイル間隔可変装置160と協同して共鳴系の入力インピーダンスを調整することができる。 The coil interval variable device 240 is a device for changing the coil interval between the resonance coil 210 and the electromagnetic induction coil 230. The coil interval varying device 240 is configured by the same mechanism as the coil interval varying device 160 of the power supply facility 100, and can change the position of the electromagnetic induction coil 230 with respect to the resonance coil 210 along the central axis of the coil. Then, by changing the coil interval using the coil interval varying device 240, the input impedance of the resonance system can be adjusted in cooperation with the coil interval varying device 160 of the power supply facility 100.
 整流器260は、電磁誘導コイル230を用いて共鳴コイル210から取出された電力(交流)を整流する。切替装置270は、ECU350から受ける指令に従って、整流器260の出力先を切替える。具体的には、蓄電装置290を充電するための本格的な給電前に行なわれる共振周波数およびインピーダンスの調整時には、切替装置270は、ECU350から受ける指令に従って、抵抗負荷310を整流器260と電気的に接続し、変換器280を電気的に切離す。そして、共振周波数およびインピーダンスの調整が終了すると、切替装置270は、ECU350から受ける指令に従って、変換器280を整流器260と電気的に接続し、抵抗負荷310を電気的に切離す。 The rectifier 260 rectifies the electric power (AC) extracted from the resonance coil 210 using the electromagnetic induction coil 230. Switching device 270 switches the output destination of rectifier 260 in accordance with a command received from ECU 350. Specifically, at the time of adjusting the resonance frequency and impedance performed before full-scale power supply for charging power storage device 290, switching device 270 electrically connects resistive load 310 with rectifier 260 in accordance with a command received from ECU 350. Connect and disconnect transducer 280 electrically. When adjustment of the resonance frequency and impedance is completed, switching device 270 electrically connects converter 280 to rectifier 260 and electrically disconnects resistive load 310 in accordance with a command received from ECU 350.
 変換器280は、ECU350から受ける指令に従って、整流器260によって整流された電力を充電電圧に変換して蓄電装置290へ出力する。なお、変換器280は、必ずしも必要ではなく、整流器260の出力電圧や蓄電装置290の電圧によっては、変換器280を省略してもよい。 Converter 280 converts the power rectified by rectifier 260 into a charging voltage in accordance with a command received from ECU 350 and outputs it to power storage device 290. Note that the converter 280 is not always necessary, and the converter 280 may be omitted depending on the output voltage of the rectifier 260 and the voltage of the power storage device 290.
 蓄電装置290は、再充電可能な直流電源であり、たとえばリチウムイオンやニッケル水素などの二次電池によって構成される。蓄電装置290は、給電設備100から供給される電力を蓄えるほか、動力出力装置300によって発電される電力も蓄える。そして、蓄電装置290は、その蓄えた電力を動力出力装置300へ供給する。なお、蓄電装置290として大容量のキャパシタも採用可能であり、給電設備100や動力出力装置300から供給される電力を一時的に蓄え、その蓄えた電力を動力出力装置300へ供給可能な電力バッファであれば如何なるものでもよい。 The power storage device 290 is a rechargeable DC power supply, and is configured by a secondary battery such as lithium ion or nickel metal hydride. Power storage device 290 stores power supplied from power supply facility 100 and also stores power generated by power output device 300. Then, power storage device 290 supplies the stored power to power output device 300. It is to be noted that a large-capacity capacitor can also be adopted as power storage device 290, and a power buffer capable of temporarily storing power supplied from power supply facility 100 or power output device 300 and supplying the stored power to power output device 300 Anything can be used.
 動力出力装置300は、蓄電装置290に蓄えられる電力を用いて車両200の走行駆動力を発生する。特に図示しないが、動力出力装置300は、たとえば、蓄電装置290から出力される電力を受けるインバータ、インバータによって駆動されるモータ、モータから駆動力を受ける駆動輪等を含む。なお、動力出力装置300は、蓄電装置290を充電するための発電機を駆動可能なエンジンを含んでもよい。 The power output device 300 generates the driving force for driving the vehicle 200 using the electric power stored in the power storage device 290. Although not particularly illustrated, power output device 300 includes, for example, an inverter that receives electric power output from power storage device 290, a motor driven by the inverter, a drive wheel that receives a driving force from the motor, and the like. Power output device 300 may include an engine capable of driving a generator for charging power storage device 290.
 抵抗負荷310は、一定の抵抗値を有する電気負荷であり、上述のように、共振周波数およびインピーダンスの調整時に切替装置270によって整流器260に電気的に接続される。蓄電装置290のインピーダンスは充電状況によって変化するので、共鳴系に蓄電装置290が接続された状態での調整、特に共鳴系のインピーダンス調整は難しい。そこで、この実施の形態では、抵抗値が一定の抵抗負荷310を共鳴系に接続した状態で、共振周波数およびインピーダンスの調整が行なわれる。 The resistive load 310 is an electrical load having a certain resistance value, and is electrically connected to the rectifier 260 by the switching device 270 when adjusting the resonance frequency and impedance as described above. Since the impedance of the power storage device 290 changes depending on the state of charge, adjustment in a state where the power storage device 290 is connected to the resonance system, in particular, impedance adjustment of the resonance system is difficult. Therefore, in this embodiment, the resonance frequency and impedance are adjusted in a state where the resistance load 310 having a constant resistance value is connected to the resonance system.
 検出部320は、共振周波数およびインピーダンスの調整時に抵抗負荷310が整流器260に電気的に接続されているときの受電状況を示す電圧Vおよび電流Iを検出し、その検出値をECU350へ出力する。通信装置330は、給電設備100の通信装置170と無線通信を行なうための通信インターフェースである。 The detection unit 320 detects the voltage V and the current I indicating the power reception state when the resistive load 310 is electrically connected to the rectifier 260 when adjusting the resonance frequency and impedance, and outputs the detected values to the ECU 350. The communication device 330 is a communication interface for performing wireless communication with the communication device 170 of the power supply facility 100.
 ECU350は、予め記憶されたプログラムを図示しないCPUで実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、給電設備100からの受電を制御する。ECU350は、共振周波数およびインピーダンスの調整時、整流器260に抵抗負荷310を接続するように切替装置270を制御する。そして、ECU350は、検出部320によって検出される受電状況に基づいて可変コンデンサ220を制御することによって、共鳴コイル210の共振周波数を電源周波数に調整する。また、ECU350は、検出部320によって検出される受電状況に基づいてコイル間隔可変装置240を制御することによって、共鳴系の入力インピーダンスが高周波電源装置110のインピーダンスに整合するように共鳴系のインピーダンスを調整する。 The ECU 350 controls power reception from the power supply facility 100 by software processing by executing a program stored in advance by a CPU (not shown) and / or hardware processing by a dedicated electronic circuit. ECU 350 controls switching device 270 to connect resistive load 310 to rectifier 260 when adjusting the resonance frequency and impedance. Then, ECU 350 controls variable capacitor 220 based on the power reception status detected by detection unit 320, thereby adjusting the resonance frequency of resonance coil 210 to the power supply frequency. The ECU 350 controls the coil interval variable device 240 based on the power reception status detected by the detection unit 320, thereby adjusting the resonance impedance so that the resonance input impedance matches the impedance of the high frequency power supply device 110. adjust.
 ここで、ECU350も、給電設備100のECU190と同様に、共鳴コイル210と電磁誘導コイル230とのコイル間隔によって変化する受電状況の周波数スペクトルのピークが一つになる状態で、共鳴コイル210の共振周波数を調整する。この実施の形態では、一例として、ECU350は、周波数スペクトルのピークが確実に一つになるようにコイル間隔を最も狭めた状態にして、共鳴コイル210の共振周波数を調整する。そして、共振周波数およびインピーダンスの調整が終了すると、ECU350は、整流器260に変換器280を接続するように切替装置270を制御する。 Here, similarly to ECU 190 of power supply facility 100, ECU 350 also has a resonance frequency of resonance coil 210 in a state where the peak of the frequency spectrum of the power reception state that changes depending on the coil interval between resonance coil 210 and electromagnetic induction coil 230 becomes one. Adjust the frequency. In this embodiment, as an example, the ECU 350 adjusts the resonance frequency of the resonance coil 210 with the coil interval being made the narrowest so that the frequency spectrum has a single peak. Then, when the adjustment of the resonance frequency and impedance is completed, ECU 350 controls switching device 270 so that converter 280 is connected to rectifier 260.
 図2は、共鳴法による送電に関する部分の等価回路図である。図2を参照して、この共鳴法では、2つの音叉が共鳴するのと同様に、2つの共鳴コイル140,210が電磁場(近接場)において共鳴することによって、共鳴コイル140から共鳴コイル210へ電磁場を介して電力が伝送される。 FIG. 2 is an equivalent circuit diagram of a portion related to power transmission by the resonance method. Referring to FIG. 2, in this resonance method, two resonance coils 140 and 210 resonate in an electromagnetic field (near field) in the same manner as two tuning forks resonate. Electric power is transmitted through an electromagnetic field.
 具体的には、たとえば数MHz~10数MHz程度の一定の周波数を有する高周波電力が高周波電源装置110から電磁誘導コイル130へ供給され、電磁誘導結合によって電磁誘導コイル130と磁気的に結合される共鳴コイル140へ電力が供給される。共鳴コイル140は、コイル自身のインダクタンスと可変コンデンサ150とによって電気的に共振可能であり、車両200側(二次側)の共鳴コイル210と電磁場(近接場)を介して共鳴する。そうすると、共鳴コイル140から共鳴コイル210へ電磁場を介してエネルギー(電力)が移動する。なお、共鳴コイル140,210が共鳴するには、Q値が大きく(たとえば、Q>100)かつ結合度κが小さくなるように共鳴コイル140,210が設計される。 Specifically, for example, high frequency power having a constant frequency of about several MHz to several tens of MHz is supplied from the high frequency power supply device 110 to the electromagnetic induction coil 130 and is magnetically coupled to the electromagnetic induction coil 130 by electromagnetic induction coupling. Electric power is supplied to the resonance coil 140. The resonance coil 140 can be electrically resonated by the inductance of the coil itself and the variable capacitor 150, and resonates with the resonance coil 210 on the vehicle 200 side (secondary side) via an electromagnetic field (near field). Then, energy (electric power) moves from the resonance coil 140 to the resonance coil 210 via the electromagnetic field. In order for resonance coils 140 and 210 to resonate, resonance coils 140 and 210 are designed so that the Q value is large (for example, Q> 100) and the degree of coupling κ is small.
 そして、共鳴コイル210へ移動したエネルギー(電力)は、電磁誘導結合によって共鳴コイル210と磁気的に結合される電磁誘導コイル230によって取出され、負荷350(整流器260(図1)以降の電気システムを総括的に示したもの)へ供給される。 The energy (power) transferred to the resonance coil 210 is taken out by the electromagnetic induction coil 230 that is magnetically coupled to the resonance coil 210 by electromagnetic induction coupling, and the electric system after the load 350 (rectifier 260 (FIG. 1)) is extracted. Supplied in general)
 図3は、可変コンデンサ150,220を変化させたときの、車両200における受電状況の周波数特性の変化を示した図である。図3を参照して、縦軸は受電状況の一例を示す受電電圧の大きさを示し、横軸は周波数を示す。周波数f0は、高周波電源装置110から出力される高周波電力の周波数であり、すなわち、給電設備100から車両200への送電電力の周波数(共鳴周波数)である。 FIG. 3 is a diagram illustrating a change in frequency characteristics of a power reception situation in the vehicle 200 when the variable capacitors 150 and 220 are changed. With reference to FIG. 3, the vertical axis indicates the magnitude of the power reception voltage indicating an example of the power reception status, and the horizontal axis indicates the frequency. The frequency f0 is a frequency of high-frequency power output from the high-frequency power supply device 110, that is, a frequency (resonance frequency) of transmitted power from the power supply facility 100 to the vehicle 200.
 曲線k11は、共鳴コイル140,210の共振周波数が周波数f0に一致しているときの周波数特性を示す。曲線k12は、可変コンデンサ150,220の容量が曲線k11の場合に比べて小さいときの周波数特性を示し、共鳴コイル140,210の共振周波数(受電電圧のピークに対応する周波数)が周波数f0よりも高い。曲線k13は、可変コンデンサ150,220の容量が曲線k11の場合に比べて大きいときの周波数特性を示し、共鳴コイル140,210の共振周波数が周波数f0よりも低い。 Curve k11 shows the frequency characteristics when the resonance frequency of the resonance coils 140 and 210 matches the frequency f0. A curve k12 shows frequency characteristics when the capacitance of the variable capacitors 150 and 220 is smaller than that of the curve k11. The resonance frequency of the resonance coils 140 and 210 (frequency corresponding to the peak of the received voltage) is higher than the frequency f0. high. A curve k13 shows frequency characteristics when the capacitance of the variable capacitors 150 and 220 is larger than that of the curve k11, and the resonance frequency of the resonance coils 140 and 210 is lower than the frequency f0.
 このように、共鳴コイル140,210の共振周波数が周波数f0からずれると、周波数f0の電力が送電されるもとでは受電電圧が低下し、受電効率が低下する。そこで、この実施の形態では、共鳴コイル140,210にそれぞれ可変コンデンサ150,220が設けられ、共鳴コイル140,210の共振周波数が周波数f0に一致するように可変コンデンサ150,220の容量が調整される。具体的には、周波数f0の一定電力が給電されている状態で車両200における受電電圧が最大となるように可変コンデンサ150,220が調整される。 As described above, when the resonance frequency of the resonance coils 140 and 210 is deviated from the frequency f0, the power reception voltage is lowered and the power reception efficiency is lowered when the power of the frequency f0 is transmitted. Therefore, in this embodiment, the variable capacitors 150 and 220 are provided in the resonance coils 140 and 210, respectively, and the capacitances of the variable capacitors 150 and 220 are adjusted so that the resonance frequency of the resonance coils 140 and 210 matches the frequency f0. The Specifically, variable capacitors 150 and 220 are adjusted so that the received voltage in vehicle 200 is maximized in a state where constant power of frequency f0 is supplied.
 図4は、共鳴コイルと電磁誘導コイルとのコイル間隔を変化させたときの、車両200における受電状況の周波数特性の変化を示した図である。図4を参照して、縦軸および横軸ならびに周波数f0は、図3と同様である。 FIG. 4 is a diagram showing a change in frequency characteristics of the power reception situation in the vehicle 200 when the coil interval between the resonance coil and the electromagnetic induction coil is changed. Referring to FIG. 4, the vertical and horizontal axes and the frequency f0 are the same as those in FIG.
 上述のように、電磁誘導コイル130と共鳴コイル140とのコイル間隔、および共鳴コイル210と電磁誘導コイル230とのコイル間隔を変化させると、共鳴系のインピーダンスが変化する。そうすると、受電電圧の周波数特性が変化する。 As described above, when the coil interval between the electromagnetic induction coil 130 and the resonance coil 140 and the coil interval between the resonance coil 210 and the electromagnetic induction coil 230 are changed, the impedance of the resonance system changes. Then, the frequency characteristics of the received voltage change.
 曲線k21は、共鳴系のインピーダンスが高周波電源装置110のインピーダンスと整合しているときの周波数特性を示す。曲線k22は、電磁誘導コイル130(210)と共鳴コイル140(230)とのコイル間隔が曲線k21の場合に比べて小さいためにインピーダンスが整合していないときの周波数特性を示す。曲線k23は、コイル間隔が曲線k21の場合に比べて大きいためにインピーダンスが整合していないときの周波数特性を示す。 Curve k21 shows the frequency characteristics when the impedance of the resonance system matches the impedance of the high-frequency power supply device 110. A curve k22 shows frequency characteristics when the impedance is not matched because the coil interval between the electromagnetic induction coil 130 (210) and the resonance coil 140 (230) is smaller than that in the case of the curve k21. A curve k23 shows the frequency characteristic when the impedance is not matched because the coil interval is larger than that in the case of the curve k21.
 このように、共鳴系のインピーダンスが高周波電源装置110のインピーダンスと整合していないと、周波数f0の電力が送電されるもとでは受電電圧が低下し、受電効率が低下する。そこで、この実施の形態では、給電設備100および車両200にそれぞれコイル間隔可変装置160,240が設けられ、共鳴系のインピーダンスが高周波電源装置110のインピーダンスと整合するように共鳴系のインピーダンスが調整される。具体的には、周波数f0の一定電力が給電されている状態で車両200における受電電圧が最大となるようにコイル間隔可変装置160,240が調整される。 As described above, if the impedance of the resonance system does not match the impedance of the high-frequency power supply device 110, the power receiving voltage is lowered and the power receiving efficiency is lowered when the power of the frequency f0 is transmitted. Therefore, in this embodiment, the coil spacing variable devices 160 and 240 are provided in the power supply equipment 100 and the vehicle 200, respectively, and the resonance impedance is adjusted so that the resonance impedance matches the impedance of the high frequency power supply device 110. The Specifically, the coil interval varying devices 160 and 240 are adjusted so that the received voltage in the vehicle 200 is maximized in a state where constant power having the frequency f0 is supplied.
 ここで、曲線k23で示されるように、コイル間隔が大きいときは、周波数スペクトルのピークが二つに分かれる。このような周波数スペクトルのもとでは、可変コンデンサの容量を掃引することによる共振周波数の調整が難しくなる。そこで、この実施の形態では、共鳴コイル140(230)の共振周波数の調整中は、周波数スペクトルのピークが確実に一つになるように、電磁誘導コイル130(210)と共鳴コイル140(230)とのコイル間隔が最も狭められた状態にされる。 Here, as shown by the curve k23, when the coil interval is large, the peak of the frequency spectrum is divided into two. Under such a frequency spectrum, it becomes difficult to adjust the resonance frequency by sweeping the capacitance of the variable capacitor. Therefore, in this embodiment, during adjustment of the resonance frequency of the resonance coil 140 (230), the electromagnetic induction coil 130 (210) and the resonance coil 140 (230) are ensured so that the frequency spectrum has a single peak. The coil interval is made the narrowest state.
 なお、共振周波数およびインピーダンスの調整時に用いられる抵抗負荷310(図1)の大きさは、次のように決定される。 Note that the size of the resistive load 310 (FIG. 1) used when adjusting the resonance frequency and impedance is determined as follows.
 図5は、蓄電装置290への充電電流と充電電圧との関係を示した図である。図5を参照して、線PUは、最大充電電力の定出力線を示し、線PLは、最小充電電力の定出力線を示す。線SLは、蓄電装置290のSOCが下限である定SOC線を示し、線SUは、蓄電装置290のSOCが上限である定SOC線を示す。線PU,PLおよび線SL,SUで囲まれる領域Aが充電電圧および充電電流の取り得る範囲である。 FIG. 5 is a diagram showing the relationship between the charging current and the charging voltage for the power storage device 290. Referring to FIG. 5, line PU indicates a constant output line with maximum charging power, and line PL indicates a constant output line with minimum charging power. Line SL indicates a constant SOC line whose SOC of power storage device 290 is the lower limit, and line SU indicates a constant SOC line whose SOC of power storage device 290 is the upper limit. A region A surrounded by the lines PU and PL and the lines SL and SU is a range that the charging voltage and charging current can take.
 一方、線Im1は、線SL,SUの略中央において、最大充電電力の定出力線である線PUと交差する定インピーダンス線である。なお、線Im2は、線Im1よりもインピーダンスの大きい定インピーダンス線である。蓄電装置290の充電は、最大充電電力で行なわれることが想定されるから、線Im1のインピーダンス値は、充電時に取り得る可能性の高い値である。そこで、この実施の形態では、抵抗負荷310(図1)の大きさを線Im1のインピーダンス値(抵抗値)に設定する。これにより、蓄電装置290の実際の充電時に近い状態で共鳴周波数および共鳴系のインピーダンスを調整することができる。 On the other hand, the line Im1 is a constant impedance line that intersects the line PU, which is the constant output line of the maximum charging power, in the approximate center of the lines SL and SU. The line Im2 is a constant impedance line having a larger impedance than the line Im1. Since charging of power storage device 290 is assumed to be performed with the maximum charging power, the impedance value of line Im1 is a value that is highly likely to be obtained during charging. Therefore, in this embodiment, the size of the resistance load 310 (FIG. 1) is set to the impedance value (resistance value) of the line Im1. Thereby, the resonance frequency and the impedance of the resonance system can be adjusted in a state close to the time of actual charging of power storage device 290.
 図6,7は、可変コンデンサ150,220およびコイル間隔可変装置160,240の調整処理の手順を説明するためのフローチャートである。図6とともに図1を参照して、まず、給電設備100側の処理について説明する。 FIGS. 6 and 7 are flowcharts for explaining the procedure of adjustment processing of the variable capacitors 150 and 220 and the coil interval variable devices 160 and 240. FIG. With reference to FIG. 1 together with FIG. 6, first, processing on the power supply equipment 100 side will be described.
 給電設備100のECU190は、給電設備100から車両200への充電要求があったか否かを判定する(ステップS10)。なお、この充電要求は、たとえば、給電設備100または車両200において利用者により適当な入力がなされたときに発生するものとする。充電要求がなければ(ステップS10においてNO)、ECU190は、以降の一連の処理を実行することなく図7のステップS140へ処理を移行する。 The ECU 190 of the power supply facility 100 determines whether or not there is a charge request from the power supply facility 100 to the vehicle 200 (step S10). It is assumed that this charging request is generated, for example, when an appropriate input is made by the user in power supply facility 100 or vehicle 200. If there is no charge request (NO in step S10), ECU 190 proceeds to step S140 in FIG. 7 without executing a series of subsequent processes.
 ステップS10において充電要求があったものと判定されると(ステップS10においてYES)、ECU190は、コイル間隔可変装置160により変更可能な範囲で、共鳴コイル140と電磁誘導コイル130とのコイル間隔を最小にする(ステップS20)。なお、このとき、給電設備100の通信装置170と車両200の通信装置330との間で通信がなされ、車両200においても、コイル間隔可変装置240により変更可能な範囲で、共鳴コイル210と電磁誘導コイル230とのコイル間隔が最小にされる。 If it is determined in step S10 that a charging request has been made (YES in step S10), ECU 190 minimizes the coil interval between resonance coil 140 and electromagnetic induction coil 130 within a range that can be changed by coil interval varying device 160. (Step S20). At this time, communication is performed between the communication device 170 of the power supply facility 100 and the communication device 330 of the vehicle 200. Also in the vehicle 200, the resonance coil 210 and the electromagnetic induction are within a range that can be changed by the coil interval varying device 240. The coil spacing with the coil 230 is minimized.
 次いで、ECU190は、調整用電力を出力するように高周波電源装置110を制御する(ステップS30)。なお、この調整用電力は、車両200の受電状況に基づいて共鳴コイル140,210の共振周波数および共鳴系のインピーダンスを調整するために出力される電力であり、車両200の蓄電装置290を充電するための本格的な給電時の電力と周波数は同じ(周波数f0)であるが実効値が小さいものである。 Next, the ECU 190 controls the high frequency power supply device 110 so as to output adjustment power (step S30). The adjustment power is output to adjust the resonance frequency of resonance coils 140 and 210 and the impedance of the resonance system based on the power reception status of vehicle 200 and charges power storage device 290 of vehicle 200. Therefore, the power and frequency during full-scale power supply are the same (frequency f0), but the effective value is small.
 調整用電力の出力が開始されると、ECU190は、可変コンデンサ150の掃引を開始する(ステップS40)。なお、このとき、通信装置170,330間で通信がなされ、車両200においても、可変コンデンサ220の掃引が行なわれる。一例として、共鳴コイル140,210は同一であり、かつ、可変コンデンサ150,220も同一として、可変コンデンサ150,220の容量が互いに同じになるように掃引される。 When the output of the adjustment power is started, the ECU 190 starts sweeping the variable capacitor 150 (step S40). At this time, communication is performed between the communication devices 170 and 330, and the variable capacitor 220 is also swept in the vehicle 200. As an example, the resonance coils 140 and 210 are the same, and the variable capacitors 150 and 220 are also the same, and the capacitances of the variable capacitors 150 and 220 are swept so as to be the same.
 可変コンデンサ150,220の調整は、車両200の受電状況(ここでは、一例として受電電圧)に基づいて行なわれる。そして、可変コンデンサ150の調整可能範囲内で受電電圧が最大となる調整ポイントが見つからない場合には(ステップS50においてNO)、停止シーケンスが実行される(ステップS60)。この停止シーケンスは、受電電圧が最大となる調整ポイントが見つからない場合には、給電設備100と車両200との位置ずれ、より詳しくは共鳴コイル140,210間の位置ずれの可能性があるので、給電設備100からの送電を停止するための処理である。この停止シーケンスについては、後ほど説明する。 Adjustment of the variable capacitors 150 and 220 is performed based on the power reception status of the vehicle 200 (here, the power reception voltage as an example). If an adjustment point at which the power reception voltage is maximum within the adjustable range of variable capacitor 150 is not found (NO in step S50), a stop sequence is executed (step S60). In this stop sequence, when an adjustment point at which the power reception voltage is maximized is not found, there is a possibility that the power feeding facility 100 is misaligned with the vehicle 200, more specifically, there is a possibility of misalignment between the resonance coils 140 and 210. This is processing for stopping power transmission from the power supply facility 100. This stop sequence will be described later.
 可変コンデンサ150の調整可能範囲内で受電電圧が最大となる調整ポイントが見つかった場合には(ステップS50においてYES)、ECU190は、可変コンデンサ150の掃引を停止する(ステップS70)。これにより、可変コンデンサ150による共鳴コイル140の共振周波数の調整が完了する。 When the adjustment point at which the power reception voltage becomes maximum within the adjustable range of the variable capacitor 150 is found (YES in step S50), the ECU 190 stops sweeping the variable capacitor 150 (step S70). Thereby, the adjustment of the resonance frequency of the resonance coil 140 by the variable capacitor 150 is completed.
 一方、車両200において、ECU350は、給電設備100から車両200への充電要求があったか否かを判定する(ステップS210)。充電要求がなければ(ステップS210においてNO)、ECU350は、以降の一連の処理を実行することなく図7のステップS360へ処理を移行する。 On the other hand, in the vehicle 200, the ECU 350 determines whether or not there is a charge request from the power supply facility 100 to the vehicle 200 (step S210). If there is no charge request (NO in step S210), ECU 350 proceeds to step S360 in FIG. 7 without executing a series of subsequent processes.
 ステップS210において充電要求があったものと判定されると(ステップS210においてYES)、ECU350は、切替装置270を制御することによって、変換器280を整流器260から電気的に切離し、抵抗負荷310を整流器260に接続する(ステップS220)。次いで、ECU350は、コイル間隔可変装置240により変更可能な範囲で、共鳴コイル210と電磁誘導コイル230とのコイル間隔を最小にする(ステップS230)。なお、上述のように、このとき、給電設備100においても、共鳴コイル140と電磁誘導コイル130とのコイル間隔が最小にされる。 If it is determined in step S210 that a charging request has been made (YES in step S210), ECU 350 controls switching device 270 to electrically disconnect converter 280 from rectifier 260, and to connect resistive load 310 to the rectifier. 260 is connected (step S220). Next, ECU 350 minimizes the coil interval between resonance coil 210 and electromagnetic induction coil 230 within a range that can be changed by coil interval variable device 240 (step S230). As described above, at this time, also in the power supply facility 100, the coil interval between the resonance coil 140 and the electromagnetic induction coil 130 is minimized.
 次いで、ECU350は、可変コンデンサ220の掃引を開始する(ステップS240)。なお、上述のように、このとき、給電設備100においても、可変コンデンサ150の掃引が行なわれる。 Next, the ECU 350 starts sweeping the variable capacitor 220 (step S240). As described above, the variable capacitor 150 is also swept at the power supply facility 100 at this time.
 可変コンデンサ220(150)の掃引実行中、ECU350は、検出部320によって検出される電圧V(受電電圧)が最大であるか否かを判定する(ステップS250)。一例として、ECU350は、可変コンデンサ220(150)の掃引とともに変化する電圧Vの極大点を検出すると、その電圧Vを最大であると判定する。 During the sweep of the variable capacitor 220 (150), the ECU 350 determines whether or not the voltage V (power reception voltage) detected by the detection unit 320 is the maximum (step S250). As an example, when ECU 350 detects the maximum point of voltage V that changes with the sweep of variable capacitor 220 (150), ECU 350 determines that voltage V is maximum.
 可変コンデンサ220の調整可能範囲内で受電電圧が最大となる調整ポイントが見つからない場合には(ステップS260においてNO)、停止シーケンスが実行される(ステップS270)。 If no adjustment point at which the received voltage is maximum within the adjustable range of the variable capacitor 220 is found (NO in step S260), a stop sequence is executed (step S270).
 可変コンデンサ220の調整可能範囲内で受電電圧が最大となる調整ポイントが見つかった場合には(ステップS250においてYES)、ECU350は、可変コンデンサ220の掃引を停止する(ステップS280)。これにより、可変コンデンサ220による共鳴コイル210の共振周波数の調整が完了する。なお、受電電圧が最大となる調整ポイントが見つかると、通信装置330によって給電設備100へその旨通知され、給電設備100においても、ステップS70において可変コンデンサ150の掃引が停止される。 If an adjustment point at which the power reception voltage is maximum within the adjustable range of variable capacitor 220 is found (YES in step S250), ECU 350 stops sweeping variable capacitor 220 (step S280). Thereby, the adjustment of the resonance frequency of the resonance coil 210 by the variable capacitor 220 is completed. When an adjustment point that maximizes the power reception voltage is found, the communication device 330 notifies the power supply facility 100 of the adjustment point, and the power supply facility 100 also stops the sweep of the variable capacitor 150 in step S70.
 図7を参照して、給電設備100において、共鳴コイル140の共振周波数の調整が完了すると、ECU190は、コイル間隔可変装置160を制御することによって、共鳴コイル140と電磁誘導コイル130とのコイル間隔の掃引を開始する(ステップS80)。なお、共鳴コイル140の共振周波数の調整中は、コイル間隔は最小にされており、コイル間隔の掃引は、コイル間隔が増大していく方向に実施される。なお、このとき、通信装置170,330間で通信がなされ、車両200においても、共鳴コイル210と電磁誘導コイル230とのコイル間隔の掃引が行なわれる。一例として、電磁誘導コイル130,230も同一として、給電設備100におけるコイル間隔と、車両200におけるコイル間隔とが互いに同じになるように掃引される。 Referring to FIG. 7, when adjustment of the resonance frequency of resonance coil 140 is completed in power supply facility 100, ECU 190 controls coil interval variable device 160 to control the coil interval between resonance coil 140 and electromagnetic induction coil 130. Starts sweeping (step S80). During the adjustment of the resonance frequency of the resonance coil 140, the coil interval is minimized, and the coil interval sweep is performed in the direction in which the coil interval increases. At this time, communication is performed between the communication devices 170 and 330, and also in the vehicle 200, the coil interval between the resonance coil 210 and the electromagnetic induction coil 230 is swept. As an example, the electromagnetic induction coils 130 and 230 are the same, and are swept so that the coil interval in the power supply facility 100 and the coil interval in the vehicle 200 are the same.
 コイル間隔の調整も、車両200の受電状況(ここでは、一例として受電電圧)に基づいて行なわれる。そして、コイル間隔の調整可能範囲内で受電電圧が最大となる調整ポイントが見つからない場合には(ステップS90においてNO)、停止シーケンスが実行される(ステップS100)。 The adjustment of the coil interval is also performed based on the power reception status of the vehicle 200 (here, the power reception voltage as an example). If no adjustment point at which the received voltage is maximum within the adjustable range of the coil interval is found (NO in step S90), a stop sequence is executed (step S100).
 コイル間隔の調整可能範囲内で受電電圧が最大となる調整ポイントが見つかった場合には(ステップS90においてYES)、ECU190は、コイル間隔の掃引を停止する(ステップS110)。これにより、コイル間隔を変更することによる共鳴系のインピーダンスの調整が終了する。 If an adjustment point at which the received voltage is maximum within the adjustable range of the coil interval is found (YES in step S90), ECU 190 stops sweeping the coil interval (step S110). Thereby, the adjustment of the impedance of the resonance system by changing the coil interval is completed.
 コイル間隔の調整すなわち共鳴系のインピーダンスの調整が完了すると、ECU190は、調整用電力の出力を停止するように高周波電源装置110を制御する(ステップS120)。そして、車両200において、抵抗負荷310が整流器260から電気的に切離され、変換器280が整流器260に接続されると、ECU190は、車両200の蓄電装置290を充電するための本格的な給電を開始するように高周波電源装置110を制御する(ステップS130)。 When the adjustment of the coil interval, that is, the adjustment of the impedance of the resonance system is completed, the ECU 190 controls the high-frequency power supply device 110 to stop the output of the adjustment power (step S120). In vehicle 200, when resistive load 310 is electrically disconnected from rectifier 260 and converter 280 is connected to rectifier 260, ECU 190 performs full-scale power supply for charging power storage device 290 of vehicle 200. The high frequency power supply device 110 is controlled so as to start (step S130).
 一方、車両200においても、共鳴コイル210の共振周波数の調整が完了すると、ECU350は、コイル間隔可変装置240を制御することによって、共鳴コイル210と電磁誘導コイル230とのコイル間隔の掃引を開始する(ステップS290)。なお、共鳴コイル210の共振周波数の調整中は、コイル間隔は最小にされており、コイル間隔の掃引は、コイル間隔が増大していく方向に実施される。なお、上述のように、このとき、給電設備100においても、共鳴コイル140と電磁誘導コイル130とのコイル間隔の掃引が行なわれる。 On the other hand, in the vehicle 200, when the adjustment of the resonance frequency of the resonance coil 210 is completed, the ECU 350 starts sweeping the coil interval between the resonance coil 210 and the electromagnetic induction coil 230 by controlling the coil interval variable device 240. (Step S290). During the adjustment of the resonance frequency of the resonance coil 210, the coil interval is minimized, and the coil interval sweep is performed in the direction in which the coil interval increases. As described above, at this time, also in the power supply facility 100, the coil interval between the resonance coil 140 and the electromagnetic induction coil 130 is swept.
 コイル間隔の掃引実行中、ECU350は、検出部320によって検出される電圧V(受電電圧)が最大であるか否かを判定する(ステップS300)。一例として、ECU350は、コイル間隔の掃引とともに変化する電圧Vの極大点を検出すると、その電圧Vを最大であると判定する。 During the execution of the coil interval sweep, the ECU 350 determines whether or not the voltage V (power reception voltage) detected by the detection unit 320 is the maximum (step S300). As an example, when ECU 350 detects the maximum point of voltage V that changes with the sweep of the coil interval, ECU 350 determines that voltage V is maximum.
 可変コンデンサ220の調整可能範囲内で受電電圧が最大となる調整ポイントが見つからない場合には(ステップS310においてNO)、停止シーケンスが実行される(ステップS320)。 If no adjustment point at which the received voltage is maximum within the adjustable range of the variable capacitor 220 is found (NO in step S310), a stop sequence is executed (step S320).
 コイル間隔の調整可能範囲内で受電電圧が最大となる調整ポイントが見つかった場合には(ステップS300においてYES)、ECU350は、コイル間隔の掃引を停止する(ステップS330)。これにより、コイル間隔の調整すなわち共鳴系のインピーダンスの調整が完了する。なお、受電電圧が最大となる調整ポイントが見つかると、通信装置330によって給電設備100へその旨通知され、給電設備100においても、ステップS110においてコイル間隔の掃引が停止される。 When an adjustment point at which the received voltage is maximum within the adjustable range of the coil interval is found (YES in step S300), ECU 350 stops sweeping the coil interval (step S330). Thereby, the adjustment of the coil interval, that is, the adjustment of the impedance of the resonance system is completed. When an adjustment point that maximizes the power reception voltage is found, the communication device 330 notifies the power supply facility 100 of the adjustment point, and the power supply facility 100 also stops the sweep of the coil interval in step S110.
 コイル間隔の調整すなわち共鳴系のインピーダンスの調整が完了すると、ECU350は、切替装置270を制御することによって、抵抗負荷310を整流器260から電気的に切離し、変換器280を整流器260に接続する(ステップS340)。そして、給電設備100からの本格的な給電開始に伴ない、車両200において受電が開始される(ステップS350)。 When the adjustment of the coil interval, that is, the adjustment of the impedance of the resonance system is completed, the ECU 350 controls the switching device 270 to electrically disconnect the resistance load 310 from the rectifier 260 and connect the converter 280 to the rectifier 260 (step). S340). Then, with the start of full-scale power supply from the power supply facility 100, power reception is started in the vehicle 200 (step S350).
 図8は、図6,7に示した停止シーケンスの処理手順を説明するためのフローチャートである。図8を参照して、給電設備100において、ECU190は、高周波電源装置110へ停止指令を出力して車両200への送電を停止する(ステップS410)。次いで、ECU190は、停止シーケンスによって送電が停止されたことについて警報を出力する(ステップS420)。 FIG. 8 is a flowchart for explaining the processing procedure of the stop sequence shown in FIGS. Referring to FIG. 8, in power supply facility 100, ECU 190 outputs a stop command to high frequency power supply device 110 to stop power transmission to vehicle 200 (step S410). Next, the ECU 190 outputs a warning about power transmission being stopped by the stop sequence (step S420).
 一方、車両200においては、ECU350は、検出部320によって検出される電圧V(受電電圧)を監視し、受電電圧がしきい値よりも低くなったか否かを判定する(ステップS510)。なお、このしきい値は、給電設備100からの送電が停止されたか否かを判定するためのしきい値であり、十分小さい値に設定される。 On the other hand, in the vehicle 200, the ECU 350 monitors the voltage V (power reception voltage) detected by the detection unit 320, and determines whether or not the power reception voltage is lower than a threshold value (step S510). This threshold value is a threshold value for determining whether or not power transmission from the power supply facility 100 is stopped, and is set to a sufficiently small value.
 受電電圧がしきい値よりも低くなったと判定されると(ステップS510においてYES)、ECU350は、切替装置270を制御することによって変換器280を整流器260から電気的に切離す(ステップS520)。そして、ECU350は、停止シーケンスによって送電が停止されたことについて警報を出力する(ステップS530)。 When it is determined that the received voltage has become lower than the threshold (YES in step S510), ECU 350 controls switching device 270 to electrically disconnect converter 280 from rectifier 260 (step S520). Then, ECU 350 outputs an alarm that power transmission has been stopped by the stop sequence (step S530).
 以上のように、この実施の形態においては、共鳴コイル140,210の共振周波数がまず調整され、共振周波数の調整後、共鳴コイル140(210)と電磁誘導コイル(130,210)とのコイル間隔が調整される。ここで、共振周波数の調整は、コイル間隔の調整可能範囲においてコイル間隔を最も狭めた状態で行なわれる。これにより、図3,4で示したように、周波数スペクトルのピークが一つの状態で共振周波数の調整が行なわれる。したがって、この発明によれば、共鳴コイル140,210の共振周波数の調整を容易にすることができる。 As described above, in this embodiment, the resonance frequency of the resonance coils 140 and 210 is first adjusted, and after adjustment of the resonance frequency, the coil interval between the resonance coil 140 (210) and the electromagnetic induction coil (130, 210). Is adjusted. Here, the adjustment of the resonance frequency is performed in a state where the coil interval is the narrowest in the adjustable range of the coil interval. As a result, as shown in FIGS. 3 and 4, the resonance frequency is adjusted with one peak of the frequency spectrum. Therefore, according to the present invention, the resonance frequency of the resonance coils 140 and 210 can be easily adjusted.
 また、この実施の形態においては、共鳴コイル140,210の共振周波数をまず調整し、共振周波数の調整後、コイル間隔変更によるインピーダンスの調整が行なわれる。したがって、この実施の形態によれば、最大効率を実現するための調整を容易に行なうことができる。 In this embodiment, the resonance frequency of the resonance coils 140 and 210 is first adjusted, and after the resonance frequency is adjusted, the impedance is adjusted by changing the coil interval. Therefore, according to this embodiment, adjustment for realizing the maximum efficiency can be easily performed.
 また、この実施の形態においては、可変コンデンサ150,220およびコイル間隔可変装置160,240の調整可能範囲で調整できないときは、共鳴コイル140,210間の位置ずれの可能性があるので、送電を停止するとともに警報が出力される。したがって、この実施の形態によれば、共鳴コイル140,210間の位置ずれの場合に、送電を停止したうえで位置ずれの可能性を利用者に報知することができる。 Further, in this embodiment, when adjustment is not possible within the adjustable range of the variable capacitors 150 and 220 and the coil interval variable devices 160 and 240, there is a possibility of displacement between the resonance coils 140 and 210. When it stops, an alarm is output. Therefore, according to this embodiment, in the case of a positional deviation between the resonance coils 140 and 210, the user can be notified of the possibility of the positional deviation after power transmission is stopped.
 なお、上記の実施の形態においては、受電電圧に基づいて共鳴コイルの共振周波数およびコイル間隔を調整するものとしたが、給電設備100に設けられる電力センサ115によって検出される反射電力に基づいて、共振周波数やコイル間隔の調整を行なってもよい。 In the above embodiment, the resonance frequency and coil interval of the resonance coil are adjusted based on the received voltage, but based on the reflected power detected by the power sensor 115 provided in the power supply facility 100, The resonance frequency and the coil interval may be adjusted.
 図9は、可変コンデンサ150,220を変化させたときの、反射電力の周波数特性の変化を示した図である。図9を参照して、縦軸は電力センサ115(図1)によって検出される反射電力の大きさを示し、横軸は周波数を示す。周波数f0は、高周波電源装置110から出力される高周波電力の周波数であり、すなわち、給電設備100から車両200への送電電力の周波数(共鳴周波数)である。 FIG. 9 is a diagram showing changes in the frequency characteristics of the reflected power when the variable capacitors 150 and 220 are changed. Referring to FIG. 9, the vertical axis indicates the magnitude of the reflected power detected by power sensor 115 (FIG. 1), and the horizontal axis indicates the frequency. The frequency f0 is a frequency of high-frequency power output from the high-frequency power supply device 110, that is, a frequency (resonance frequency) of transmitted power from the power supply facility 100 to the vehicle 200.
 曲線k31は、共鳴コイル140,210の共振周波数が周波数f0に一致しているときの周波数特性を示す。曲線k32は、可変コンデンサ150,220の容量が曲線k31の場合に比べて小さいときの周波数特性を示し、共鳴コイル140,210の共振周波数(反射電力の極小値に対応する周波数)が周波数f0よりも高い。曲線k33は、可変コンデンサ150,220の容量が曲線k31の場合に比べて大きいときの周波数特性を示し、共鳴コイル140,210の共振周波数が周波数f0よりも低い。 Curve k31 shows the frequency characteristics when the resonance frequency of the resonance coils 140 and 210 matches the frequency f0. A curve k32 shows frequency characteristics when the capacitance of the variable capacitors 150 and 220 is smaller than that of the curve k31. The resonance frequency of the resonance coils 140 and 210 (frequency corresponding to the minimum value of the reflected power) is higher than the frequency f0. Is also expensive. A curve k33 shows frequency characteristics when the capacitance of the variable capacitors 150 and 220 is larger than that of the curve k31, and the resonance frequency of the resonance coils 140 and 210 is lower than the frequency f0.
 共鳴コイル140,210の共振周波数が周波数f0からずれると、送電電力の周波数f0において反射電力が増加し、受電効率が低下する。そこで、周波数f0の一定電力が高周波電源装置110から出力されている状態で反射電力が最小となるように可変コンデンサ150,220を調整することで、共鳴コイル140,210の共振周波数を調整することができる。 When the resonance frequency of the resonance coils 140 and 210 deviates from the frequency f0, the reflected power increases at the frequency f0 of the transmission power, and the power reception efficiency decreases. Therefore, the resonance frequency of the resonance coils 140 and 210 is adjusted by adjusting the variable capacitors 150 and 220 so that the reflected power is minimized while the constant power of the frequency f0 is output from the high frequency power supply device 110. Can do.
 なお、特に図示しないが、共鳴コイル140(210)と電磁誘導コイル130(230)とのコイル間隔の調整についても、電力センサ115によって検出される反射電力に基づいてコイル間隔の調整を行なってもよい。 Although not particularly illustrated, the coil interval between the resonance coil 140 (210) and the electromagnetic induction coil 130 (230) may also be adjusted based on the reflected power detected by the power sensor 115. Good.
 また、上記の実施の形態においては、受電状況の周波数スペクトルのピークが確実に一つになるように、一例としてコイル間隔を最も狭めた状態にして共鳴コイル140,210の共振周波数を調整するものとしたが、共振周波数の調整時に周波数スペクトルのピークが一つであればよく、コイル間隔を最も狭めた状態にすることは必須ではない。コイル間隔がある程度狭い状態であれば、コイル間隔を最も狭めた状態でなくても周波数スペクトルのピークは一つになり得る。 In the above embodiment, as an example, the resonance frequency of the resonance coils 140 and 210 is adjusted by making the coil interval the narrowest so that the peak of the frequency spectrum of the power reception state is surely one. However, when the resonance frequency is adjusted, it is only necessary to have one peak of the frequency spectrum, and it is not essential to make the coil interval the narrowest. If the coil interval is somewhat narrow, even if the coil interval is not the narrowest state, the peak of the frequency spectrum can be one.
 また、上記の実施の形態においては、給電設備100のECU190と車両200のECU350とで図6~8に示されるような機能分担をするものとしたが、ECU190,350の一方の機能の全部または一部を他方のECUに持たせてもよい。 In the above embodiment, the ECU 190 of the power supply facility 100 and the ECU 350 of the vehicle 200 share functions as shown in FIGS. 6 to 8, but all of the functions of one of the ECUs 190 and 350 or A part may be provided to the other ECU.
 なお、上記において、共鳴コイル140は、この発明における「送電用コイル」の一実施例に対応し、共鳴コイル210は、この発明における「受電用コイル」の一実施例に対応する。また、電磁誘導コイル230は、この発明における「前記受電用コイルによって受電された電力を電磁誘導により取出すための電磁誘導コイル」の一実施例に対応し、可変コンデンサ220は、この発明における「前記受電用コイルの共振周波数を変更するための第1の変更装置」の一実施例に対応する。さらに、コイル間隔可変装置240は、この発明における「前記受電用コイルと前記電磁誘導コイルとのコイル間隔を変更するための第2の変更装置」の一実施例に対応し、ECU350は、受電装置の発明における「制御装置」の一実施例に対応する。 In the above description, the resonance coil 140 corresponds to one embodiment of the “power transmission coil” in the present invention, and the resonance coil 210 corresponds to one embodiment of the “power reception coil” in the present invention. The electromagnetic induction coil 230 corresponds to one embodiment of the “electromagnetic induction coil for taking out the electric power received by the power receiving coil by electromagnetic induction” in the present invention. This corresponds to an example of the “first changing device for changing the resonance frequency of the power receiving coil”. Further, the coil interval varying device 240 corresponds to an embodiment of “a second changing device for changing the coil interval between the power receiving coil and the electromagnetic induction coil” in the present invention. This corresponds to an example of the “control device” in the invention of the present invention.
 また、さらに、高周波電源装置110は、この発明における「電源装置」の一実施例に対応し、電磁誘導コイル130は、この発明における「前記電源装置から電力を受けて電磁誘導により前記送電用コイルへ供給するための電磁誘導コイル」の一実施例に対応する。また、さらに、可変コンデンサ150は、この発明における「前記送電用コイルの共振周波数を変更するための第1の変更装置」の一実施例に対応し、コイル間隔可変装置160は、この発明における「前記送電用コイルと前記電磁誘導コイルとのコイル間隔を変更するための第2の変更装置」の一実施例に対応する。また、さらに、ECU190は、給電設備の発明における「制御装置」の一実施例に対応する。 Furthermore, the high frequency power supply device 110 corresponds to an embodiment of the “power supply device” in the present invention, and the electromagnetic induction coil 130 corresponds to “the power transmission coil by receiving electric power from the power supply device and performing electromagnetic induction” This corresponds to an embodiment of "electromagnetic induction coil for supplying to". Furthermore, the variable capacitor 150 corresponds to an embodiment of “a first changing device for changing the resonance frequency of the power transmission coil” according to the present invention. This corresponds to an example of the “second changing device for changing the coil interval between the power transmission coil and the electromagnetic induction coil”. Further, ECU 190 corresponds to an embodiment of “control device” in the invention of the power supply facility.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 100 給電設備、110 高周波電源装置、115 電力センサ、120,250 同軸ケーブル、130,230 電磁誘導コイル、140,210 共鳴コイル、150,220 可変コンデンサ、160,240 コイル間隔可変装置、170,330 通信装置、190,350 ECU、200 車両、260 整流器、270 切替装置、280 変換器、290 蓄電装置、300 動力出力装置、310 抵抗負荷、320 検出部、350 負荷。 100 power supply equipment, 110 high frequency power supply device, 115 power sensor, 120, 250 coaxial cable, 130, 230 electromagnetic induction coil, 140, 210 resonance coil, 150, 220 variable capacitor, 160, 240 coil interval variable device, 170, 330 communication Device, 190, 350 ECU, 200 vehicle, 260 rectifier, 270 switching device, 280 converter, 290 power storage device, 300 power output device, 310 resistance load, 320 detection unit, 350 load.

Claims (17)

  1.  送電用コイル(140)を含む給電設備(100)から非接触で受電する受電装置であって、
     前記送電用コイルと電磁場を介して共鳴することにより前記送電用コイルから非接触で受電するための受電用コイル(210)と、
     前記受電用コイルによって受電された電力を電磁誘導により取出すための電磁誘導コイル(230)と、
     前記受電用コイルの共振周波数を変更するための第1の変更装置(220)と、
     前記受電用コイルと前記電磁誘導コイルとのコイル間隔を変更するための第2の変更装置(240)と、
     前記第1の変更装置を制御することによって前記共振周波数を所定の周波数にまず調整し、前記共振周波数の調整後、前記第2の変更装置を制御することによって前記コイル間隔を調整する制御装置(350)とを備え、
     前記制御装置は、前記コイル間隔によって変化する受電状況の周波数スペクトルのピークが一つになる状態で前記共振周波数を調整する、受電装置。
    A power receiving device for receiving power from a power supply facility (100) including a power transmission coil (140) in a non-contact manner,
    A power receiving coil (210) for receiving power from the power transmitting coil in a non-contact manner by resonating with the power transmitting coil via an electromagnetic field;
    An electromagnetic induction coil (230) for extracting the electric power received by the power receiving coil by electromagnetic induction;
    A first changing device (220) for changing a resonance frequency of the power receiving coil;
    A second changing device (240) for changing a coil interval between the power receiving coil and the electromagnetic induction coil;
    A control device that first adjusts the resonance frequency to a predetermined frequency by controlling the first changing device, and adjusts the coil interval by controlling the second changing device after adjusting the resonance frequency ( 350),
    The control device is a power reception device that adjusts the resonance frequency in a state where there is one peak of a frequency spectrum of a power reception state that changes depending on the coil interval.
  2.  前記制御装置は、前記コイル間隔の調整可能範囲において前記コイル間隔を最も狭めた状態で前記共振周波数を調整する、請求項1に記載の受電装置。 2. The power receiving device according to claim 1, wherein the control device adjusts the resonance frequency in a state where the coil interval is the narrowest in an adjustable range of the coil interval.
  3.  前記制御装置は、前記コイル間隔が増大する方向に前記コイル間隔を変化させることによって前記コイル間隔を調整する、請求項1または2に記載の受電装置。 The power receiving device according to claim 1 or 2, wherein the control device adjusts the coil interval by changing the coil interval in a direction in which the coil interval increases.
  4.  前記制御装置は、前記共振周波数の調整可能範囲において前記共振周波数を前記所定の周波数に調整できないとき、前記受電装置に接続される電気負荷への出力を停止させる、請求項1に記載の受電装置。 2. The power receiving device according to claim 1, wherein the control device stops output to an electric load connected to the power receiving device when the resonance frequency cannot be adjusted to the predetermined frequency within an adjustable range of the resonance frequency. .
  5.  前記制御装置は、前記コイル間隔の調整可能範囲において前記コイル間隔の調整が完了しないとき、前記受電装置に接続される電気負荷への出力を停止させる、請求項1に記載の受電装置。 The power receiving device according to claim 1, wherein the control device stops output to an electric load connected to the power receiving device when the adjustment of the coil interval is not completed within the adjustable range of the coil interval.
  6.  前記制御装置は、前記電気負荷への出力停止とともに警報を出力する、請求項4または5に記載の受電装置。 The power receiving device according to claim 4 or 5, wherein the control device outputs an alarm when the output to the electric load is stopped.
  7.  前記第1の変更装置は、前記受電用コイルに接続される可変コンデンサ(220)を含む、請求項1または2に記載の受電装置。 The power receiving device according to claim 1 or 2, wherein the first changing device includes a variable capacitor (220) connected to the power receiving coil.
  8.  請求項1または2に記載の受電装置を備える車両。 A vehicle comprising the power receiving device according to claim 1 or 2.
  9.  受電用コイル(210)を含む受電装置(200)へ非接触で給電する給電設備であって、
     前記受電用コイルと電磁場を介して共鳴することにより前記受電用コイルへ非接触で送電するための送電用コイル(140)と、
     所定の周波数を有する電力を発生する電源装置(110)と、
     前記電源装置から電力を受けて電磁誘導により前記送電用コイルへ供給するための電磁誘導コイル(130)と、
     前記送電用コイルの共振周波数を変更するための第1の変更装置(150)と、
     前記送電用コイルと前記電磁誘導コイルとのコイル間隔を変更するための第2の変更装置(160)と、
     前記第1の変更装置を制御することによって前記共振周波数を所定の周波数にまず調整し、前記共振周波数の調整後、前記第2の変更装置を制御することによって前記コイル間隔を調整する制御装置(190)とを備え、
     前記制御装置は、前記コイル間隔によって変化する前記受電装置の受電状況の周波数スペクトルのピークが一つになる状態で前記共振周波数を調整する、給電設備。
    A power supply facility for supplying power in a non-contact manner to a power receiving device (200) including a power receiving coil (210),
    A power transmission coil (140) for non-contact power transmission to the power reception coil by resonating with the power reception coil via an electromagnetic field;
    A power supply device (110) for generating power having a predetermined frequency;
    An electromagnetic induction coil (130) for receiving electric power from the power supply device and supplying the electric power to the power transmission coil by electromagnetic induction;
    A first changing device (150) for changing a resonance frequency of the power transmission coil;
    A second changing device (160) for changing a coil interval between the power transmission coil and the electromagnetic induction coil;
    A control device that first adjusts the resonance frequency to a predetermined frequency by controlling the first changing device, and adjusts the coil interval by controlling the second changing device after adjusting the resonance frequency ( 190)
    The said control apparatus is electric power feeding equipment which adjusts the said resonant frequency in the state in which the peak of the frequency spectrum of the power receiving condition of the said power receiving apparatus which changes with the said coil space | interval becomes one.
  10.  前記制御装置は、前記コイル間隔の調整可能範囲において前記コイル間隔を最も狭めた状態で前記共振周波数を調整する、請求項9に記載の給電設備。 The power supply equipment according to claim 9, wherein the control device adjusts the resonance frequency in a state in which the coil interval is narrowed within the adjustable range of the coil interval.
  11.  前記制御装置は、前記コイル間隔が増大する方向に前記コイル間隔を変化させることによって前記コイル間隔を調整する、請求項9または10に記載の給電設備。 The power supply equipment according to claim 9 or 10, wherein the control device adjusts the coil interval by changing the coil interval in a direction in which the coil interval increases.
  12.  前記制御装置は、前記共振周波数の調整可能範囲において前記共振周波数を前記所定の周波数に調整できないとき、前記電源装置を停止させる、請求項9に記載の給電設備。 The power supply equipment according to claim 9, wherein the control device stops the power supply device when the resonance frequency cannot be adjusted to the predetermined frequency within an adjustable range of the resonance frequency.
  13.  前記制御装置は、前記コイル間隔の調整可能範囲において前記コイル間隔の調整が完了しないとき、前記電源装置を停止させる、請求項9に記載の給電設備。 The power supply equipment according to claim 9, wherein the control device stops the power supply device when the adjustment of the coil interval is not completed within the adjustable range of the coil interval.
  14.  前記制御装置は、前記電源装置の停止とともに警報を出力する、請求項12または13に記載の給電設備。 The power supply facility according to claim 12 or 13, wherein the control device outputs an alarm when the power supply device is stopped.
  15.  前記第1の変更装置は、前記送電用コイルに接続される可変コンデンサ(150)を含む、請求項9または10に記載の給電設備。 The power supply equipment according to claim 9 or 10, wherein the first changing device includes a variable capacitor (150) connected to the power transmission coil.
  16.  所定の周波数を有する電力を発生する電源装置(110)と、
     前記電源装置から電力を受けて電磁誘導により電力を供給するための第1の電磁誘導コイル(130)と、
     前記第1の電磁誘導コイルから電力の供給を受ける送電用コイル(140)と、
     前記送電用コイルと電磁場を介して共鳴することにより前記送電用コイルから非接触で受電するための受電用コイル(210)と、
     前記受電用コイルによって受電された電力を電磁誘導により取出すための第2の電磁誘導コイル(230)と、
     前記送電用コイルの共振周波数を示す第1の共振周波数を変更するための第1の周波数変更装置(150)と、
     前記受電用コイルの共振周波数を示す第2の共振周波数を変更するための第2の周波数変更装置(220)と、
     前記送電用コイルと前記第1の電磁誘導コイルとのコイル間隔を示す第1のコイル間隔を変更するための第1の間隔変更装置(160)と、
     前記受電用コイルと前記第2の電磁誘導コイルとのコイル間隔を示す第2のコイル間隔を変更するための第2の間隔変更装置(240)と、
     前記第1および第2の周波数変更装置を制御することによって前記第1および第2の共振周波数を所定の周波数にまず調整し、前記第1および第2の共振周波数の調整後、前記第1および第2の間隔変更装置を制御することによって前記第1および第2のコイル間隔を調整する制御装置(190,350)とを備え、
     前記制御装置は、前記第1および第2のコイル間隔によって変化する受電状況の周波数スペクトルのピークが一つになる状態で前記第1および第2の共振周波数を調整する、給電システム。
    A power supply device (110) for generating power having a predetermined frequency;
    A first electromagnetic induction coil (130) for receiving power from the power supply and supplying power by electromagnetic induction;
    A power transmission coil (140) that receives power from the first electromagnetic induction coil;
    A power receiving coil (210) for receiving power from the power transmitting coil in a non-contact manner by resonating with the power transmitting coil via an electromagnetic field;
    A second electromagnetic induction coil (230) for taking out the electric power received by the power reception coil by electromagnetic induction;
    A first frequency changing device (150) for changing a first resonant frequency indicating a resonant frequency of the power transmission coil;
    A second frequency changing device (220) for changing a second resonance frequency indicating the resonance frequency of the power receiving coil;
    A first interval changing device (160) for changing a first coil interval indicating a coil interval between the power transmission coil and the first electromagnetic induction coil;
    A second interval changing device (240) for changing a second coil interval indicating a coil interval between the power receiving coil and the second electromagnetic induction coil;
    The first and second resonance frequencies are first adjusted to a predetermined frequency by controlling the first and second frequency changing devices, and after the adjustment of the first and second resonance frequencies, the first and second resonance frequencies are adjusted. A control device (190, 350) for adjusting the first and second coil intervals by controlling a second interval changing device;
    The power supply system, wherein the control device adjusts the first and second resonance frequencies in a state where a peak of a frequency spectrum of a power reception state that changes depending on a distance between the first and second coils becomes one.
  17.  前記制御装置は、前記第1のコイル間隔の調整可能範囲および前記第2のコイル間隔の調整可能範囲においてそれぞれ前記第1および第2のコイル間隔を最も狭めた状態で前記第1および第2の共振周波数を調整する、請求項16に記載の給電システム。 The control device is configured such that the first and second coil intervals are the narrowest in the adjustable range of the first coil interval and the adjustable range of the second coil interval, respectively. The power feeding system according to claim 16, wherein the resonance frequency is adjusted.
PCT/JP2011/061550 2011-05-19 2011-05-19 Power reception apparatus, vehicle provided therewith, power feeding equipment, and power feeding system WO2012157115A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/061550 WO2012157115A1 (en) 2011-05-19 2011-05-19 Power reception apparatus, vehicle provided therewith, power feeding equipment, and power feeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/061550 WO2012157115A1 (en) 2011-05-19 2011-05-19 Power reception apparatus, vehicle provided therewith, power feeding equipment, and power feeding system

Publications (1)

Publication Number Publication Date
WO2012157115A1 true WO2012157115A1 (en) 2012-11-22

Family

ID=47176477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061550 WO2012157115A1 (en) 2011-05-19 2011-05-19 Power reception apparatus, vehicle provided therewith, power feeding equipment, and power feeding system

Country Status (1)

Country Link
WO (1) WO2012157115A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156106A1 (en) * 2013-03-27 2014-10-02 パナソニック株式会社 Power supply device, power receiving device, and charging system
JP2014187843A (en) * 2013-03-25 2014-10-02 Nitto Denko Corp Power receiving voltage control method of power-supplied apparatus supplied with power by wireless power transmission, wireless power transmission device adjusted by the power receiving voltage control method, and manufacturing method of the wireless power transmission device
JP2015042088A (en) * 2013-08-22 2015-03-02 三菱電機株式会社 Power relay and wireless power transmission system
JPWO2013061440A1 (en) * 2011-10-27 2015-04-02 トヨタ自動車株式会社 Non-contact power receiving device, non-contact power transmission device and non-contact power transmission / reception system
WO2015056539A1 (en) * 2013-10-15 2015-04-23 日東電工株式会社 Wireless power transmission device capable of forming magnetic field space, and magnetic field space formation method
CN105226846A (en) * 2014-06-13 2016-01-06 英派尔科技开发有限公司 The resonance power transmission of frequency change coding
EP2879273A4 (en) * 2013-03-06 2016-04-27 Heads Co Ltd Contactless power supply device
WO2018051936A1 (en) * 2016-09-15 2018-03-22 日本電気株式会社 Wireless power supply device and wireless power supply method
JP2018511293A (en) * 2015-03-27 2018-04-19 クアルコム,インコーポレイテッド Auxiliary receiver coil for adjusting receiver voltage and reactance
US10069324B2 (en) 2014-09-08 2018-09-04 Empire Technology Development Llc Systems and methods for coupling power to devices
US10320228B2 (en) 2014-09-08 2019-06-11 Empire Technology Development Llc Power coupling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124522A (en) * 2008-11-17 2010-06-03 Toyota Central R&D Labs Inc Feed system
JP2010239769A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Wireless power supply system
JP2010252497A (en) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd Radio power transfer device and radio power transfer method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124522A (en) * 2008-11-17 2010-06-03 Toyota Central R&D Labs Inc Feed system
JP2010239769A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Wireless power supply system
JP2010252497A (en) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd Radio power transfer device and radio power transfer method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013061440A1 (en) * 2011-10-27 2015-04-02 トヨタ自動車株式会社 Non-contact power receiving device, non-contact power transmission device and non-contact power transmission / reception system
US9716386B2 (en) 2013-03-06 2017-07-25 Heads Co., Ltd. Contactless power supply system
CN106505643A (en) * 2013-03-06 2017-03-15 海兹株式会社 Noncontact power supply device
EP2879273A4 (en) * 2013-03-06 2016-04-27 Heads Co Ltd Contactless power supply device
CN105103406A (en) * 2013-03-25 2015-11-25 日东电工株式会社 Method for controlling receiving voltage for device to be powered by wireless power transmission, wireless power transmission device adjusted by method for controlling receiving voltage, and method for manufacturing wireless power transmission device
EP2985869A4 (en) * 2013-03-25 2016-10-19 Nitto Denko Corp Method for controlling receiving voltage for device to be powered by wireless power transmission, wireless power transmission device adjusted by method for controlling receiving voltage, and method for manufacturing wireless power transmission device
JP2014187843A (en) * 2013-03-25 2014-10-02 Nitto Denko Corp Power receiving voltage control method of power-supplied apparatus supplied with power by wireless power transmission, wireless power transmission device adjusted by the power receiving voltage control method, and manufacturing method of the wireless power transmission device
US9815380B2 (en) 2013-03-27 2017-11-14 Panasonic Intellectual Property Management Co., Ltd. Power supply device, power receiving device, and charging system
WO2014156106A1 (en) * 2013-03-27 2014-10-02 パナソニック株式会社 Power supply device, power receiving device, and charging system
JP2014193013A (en) * 2013-03-27 2014-10-06 Panasonic Corp Power supply apparatus, power receiver and charging system
JP2015042088A (en) * 2013-08-22 2015-03-02 三菱電機株式会社 Power relay and wireless power transmission system
CN105684262A (en) * 2013-10-15 2016-06-15 日东电工株式会社 Wireless power transmission device capable of forming magnetic field space, and magnetic field space formation method
TWI581539B (en) * 2013-10-15 2017-05-01 Nitto Denko Corp Wireless power transmission device capable of forming magnetic field space and method of forming same
JP2015080295A (en) * 2013-10-15 2015-04-23 日東電工株式会社 Wireless power transmission device capable of forming magnetic field space, and formation method thereof
WO2015056539A1 (en) * 2013-10-15 2015-04-23 日東電工株式会社 Wireless power transmission device capable of forming magnetic field space, and magnetic field space formation method
US10305328B2 (en) 2013-10-15 2019-05-28 Nitto Denko Corporation Wireless power transmission device capable of forming magnetic field space, and magnetic field space formation method
CN105226846A (en) * 2014-06-13 2016-01-06 英派尔科技开发有限公司 The resonance power transmission of frequency change coding
CN105226846B (en) * 2014-06-13 2018-09-18 英派尔科技开发有限公司 The resonance power transmission of frequency variation coding
US10084343B2 (en) 2014-06-13 2018-09-25 Empire Technology Development Llc Frequency changing encoded resonant power transfer
US10320228B2 (en) 2014-09-08 2019-06-11 Empire Technology Development Llc Power coupling device
US10069324B2 (en) 2014-09-08 2018-09-04 Empire Technology Development Llc Systems and methods for coupling power to devices
US10418844B2 (en) 2014-09-08 2019-09-17 Empire Technology Development Llc Systems and methods for coupling power to devices
JP2018511293A (en) * 2015-03-27 2018-04-19 クアルコム,インコーポレイテッド Auxiliary receiver coil for adjusting receiver voltage and reactance
WO2018051936A1 (en) * 2016-09-15 2018-03-22 日本電気株式会社 Wireless power supply device and wireless power supply method
JPWO2018051936A1 (en) * 2016-09-15 2019-06-24 日本電気株式会社 Wireless power feeding apparatus and wireless power feeding method
GB2568200A (en) * 2016-09-15 2019-05-08 Nec Corp Wireless power supply device and wireless power supply method
US10951066B2 (en) 2016-09-15 2021-03-16 Nec Corporation Wireless power supply device and wireless power supply method
GB2568200B (en) * 2016-09-15 2021-12-08 Nec Corp Wireless power supply device and wireless power supply method

Similar Documents

Publication Publication Date Title
WO2012157115A1 (en) Power reception apparatus, vehicle provided therewith, power feeding equipment, and power feeding system
JP5126324B2 (en) Power supply apparatus and control method of power supply system
JP5211088B2 (en) Power feeding device and vehicle power feeding system
KR101318848B1 (en) Wireless power feeding apparatus, vehicle, and method of controlling wireless power feeding system
JP5648694B2 (en) Non-contact power supply system and power supply equipment
US20140103711A1 (en) Contactless power receiving device, vehicle equipped with the same, contactless power transmitting device, and contactless power transfer system
JP5594375B2 (en) Non-contact power receiving device and vehicle equipped with the same, non-contact power feeding equipment, control method for non-contact power receiving device, and control method for non-contact power feeding equipment
JP5585098B2 (en) Non-contact power supply apparatus and method
EP2530811B1 (en) Wireless electric power feeding equipment
WO2012164744A1 (en) Non-contact power reception device, vehicle comprising same, non-contact power transmission device, and non-contact power transmission system
JP6001355B2 (en) Non-contact power feeding device
KR101634889B1 (en) Power receiving device for vehicle, vehicle provided with same, power supply apparatus, and electric-power transmission system
WO2011093292A1 (en) Non-contact power transmission system and non-contact power transmission apparatus
JP5678852B2 (en) Power transmission device, power transmission system, and method for controlling power transmission system
JP5751327B2 (en) Resonant contactless power supply system
JP2011167036A (en) Electric power feed device for vehicle, and electric power reception device
JP2011155733A (en) Noncontact power transmission system and noncontact power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP