WO2012157050A1 - Vehicle braking device - Google Patents

Vehicle braking device Download PDF

Info

Publication number
WO2012157050A1
WO2012157050A1 PCT/JP2011/061107 JP2011061107W WO2012157050A1 WO 2012157050 A1 WO2012157050 A1 WO 2012157050A1 JP 2011061107 W JP2011061107 W JP 2011061107W WO 2012157050 A1 WO2012157050 A1 WO 2012157050A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
pressure
hydraulic
hydraulic circuit
control
Prior art date
Application number
PCT/JP2011/061107
Other languages
French (fr)
Japanese (ja)
Inventor
山田 芳久
洋司 溝口
聡 宇▲高▼
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/061107 priority Critical patent/WO2012157050A1/en
Publication of WO2012157050A1 publication Critical patent/WO2012157050A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels

Definitions

  • the present invention relates to a braking device for a vehicle including a first system and a second system hydraulic circuit.
  • an object of the present invention is to provide a vehicle braking device that can appropriately increase the hydraulic pressure for each system during automatic braking when emergency deceleration is required.
  • a first system hydraulic circuit that supplies hydraulic pressure to a wheel cylinder of a first wheel of a vehicle; A second hydraulic circuit for supplying hydraulic pressure to the wheel cylinder of the second wheel of the vehicle; A first hydraulic pressure generating source that is provided in the hydraulic circuit of the first system and generates hydraulic pressure supplied to the wheel cylinder of the first wheel by the hydraulic circuit of the first system; A first valve provided in the hydraulic circuit of the first system and configured to vary a wheel cylinder pressure of the first wheel; A second hydraulic pressure generating source that is provided in the second hydraulic circuit and generates hydraulic pressure supplied to the wheel cylinder of the second wheel by the second hydraulic circuit; A second valve provided in the hydraulic circuit of the second system and configured to vary a wheel cylinder pressure of the second wheel; A third hydraulic pressure generating source that is connected to the hydraulic circuit of the first system and the hydraulic circuit of the second system, and generates hydraulic pressure according to the operation of the brake pedal of the driver; A control device that executes emergency braking control independent of the driver's operation of the brake pedal when
  • FIG. 1 is a schematic configuration diagram showing a main configuration of a vehicle braking device 1 according to an embodiment of the present invention and a main part of a vehicle 102 on which the vehicle braking device 1 is mounted. It is a figure which shows an example of the hydraulic circuit 200 by front and rear piping.
  • FIG. 3 is a diagram schematically showing the flow of oil when the pumps 260F and 260R in the hydraulic circuit 200 shown in FIG. 2 are operated. It is explanatory drawing of operation
  • movement of the M / C cut valve 206F. 3 is a flowchart illustrating an example of hydraulic control executed by the control device 10 in a hydraulic circuit 200 using front and rear piping.
  • FIG. 1 It is a figure which shows typically an example of the pressure increase suppression method with respect to a rear-wheel system, and is a figure which shows an example of the time series of the target control value set with respect to each of a front-wheel system and a rear-wheel system. It is a figure which shows the simultaneous series by the comparative example which applies the same (common) target control value with respect to a front-wheel system and a rear-wheel system. It is a characteristic view which shows an example of the relationship between a wheel cylinder pressure and oil consumption. It is a characteristic view showing an example of the relationship of the discharge oil amount with respect to the time of the pump 260F in the front wheel system hydraulic circuit 201F.
  • FIG. 5 is a flowchart showing another example of hydraulic control executed by the control device 10. It is a figure which shows an example of each map 1, 2, 3 used by the process shown in FIG. It is a figure which shows an example of the hydraulic circuit 200 'by X piping. 4 is a flowchart illustrating an example of hydraulic control executed by the control device 10 in a hydraulic circuit 200 ′ using X piping.
  • FIG. 1 is a schematic configuration diagram showing a main configuration of a vehicle braking device 1 according to an embodiment of the present invention and a main part of a vehicle 102 on which the vehicle braking device 1 is mounted.
  • 100FL and 100FR respectively indicate left and right front wheels of the vehicle 102
  • 100RL and 100RR respectively indicate left and right rear wheels that are driving wheels of the vehicle.
  • the left and right front wheels 100FL and 100FR may be steered via tie rods by a power steering device that is driven in response to steering of the steering wheel.
  • the vehicle braking device 1 includes a control device 10 and a hydraulic circuit 200.
  • the braking force of each wheel 100FR, 100FL, 100RR, 100RL is generated by the hydraulic pressure supplied to the wheel cylinders 224FR, 224FL, 224RR, 224RL by the hydraulic circuit 200, respectively.
  • the hydraulic circuit 200 is provided with a master cylinder 202.
  • the master cylinder 202 generates hydraulic pressure to be supplied to the wheel cylinders 224FR, 224FL, 224RR, 224RL in response to the depression operation of the brake pedal 190 by the driver.
  • the control device 10 may be configured by an ECU (electronic control unit) including a microcomputer.
  • the function of the control device 10 may be realized by any hardware, software, firmware, or a combination thereof.
  • any part or all of the functions of the control device 10 may be applied to an application-specific ASIC (application-specific). integrated circuit), FPGA (Field Programmable Gate) Array) or a DSP (digital signal processor).
  • the function of the control device 10 may be realized in cooperation with a plurality of ECUs.
  • the front radar sensor 134 is connected to the control device 10.
  • the front radar sensor 134 detects the state of a front obstacle (typically, the front vehicle) in front of the vehicle using radio waves (for example, millimeter waves), light waves (for example, lasers), or ultrasonic waves as detection waves.
  • the front radar sensor 134 detects information indicating a relationship between the front obstacle and the own vehicle, for example, a relative speed, a relative distance, and an azimuth (lateral position) of the front obstacle based on the own vehicle at a predetermined cycle.
  • the front radar sensor 134 is a millimeter wave radar sensor
  • the millimeter wave radar sensor may be, for example, an electronic scan type millimeter wave radar.
  • the front obstacle is detected using the Doppler frequency (frequency shift) of the radio wave.
  • the relative speed of the front obstacle is detected using the delay time of the reflected wave, and the direction of the front obstacle is detected based on the phase difference of the received wave among the plurality of receiving antennas.
  • the control device 10 is connected with wheel speed sensors 138FR, 138FL, 138RR, 138RL arranged on each wheel of the vehicle.
  • the wheel speed sensors 138FR, 138FL, 138RR, 138RL may be active sensors or passive sensors.
  • the control device 10 is connected to an acceleration sensor 136 that detects acceleration in the vehicle longitudinal direction generated in the vehicle.
  • the acceleration sensor 136 is attached, for example, under the center console of the vehicle.
  • the acceleration sensor 136 includes an acceleration sensor unit that outputs a signal corresponding to the acceleration in the vehicle longitudinal direction or the vehicle width direction that occurs in the mounted vehicle, and a yaw rate sensor unit that outputs a signal corresponding to the angular velocity generated around the center of gravity axis of the vehicle. May be realized by a semiconductor sensor.
  • the hydraulic circuit 200 is connected to the control device 10.
  • the control device 10 controls the braking force of each wheel 100FL, 100FR, 100RL, 100RR by controlling various valves (described later) provided in the hydraulic circuit 200.
  • the control method by the control device 10 will be described in detail later.
  • FIG. 2 is a diagram showing an example of a hydraulic circuit 200 using front and rear piping.
  • the hydraulic circuit 200 shown in FIG. 2 includes two systems of hydraulic circuits 201F and 201R.
  • the two hydraulic circuits 201F and 201R are composed of front and rear pipes that are divided into systems of front wheels 100FL and 100FR and rear wheels 100RL and 100RR.
  • the hydraulic circuit 201F is referred to as a front wheel system hydraulic circuit 201F
  • the hydraulic circuit 201R is referred to as a rear wheel system hydraulic circuit 201R.
  • a portion 220 surrounded by a two-dot chain line may be embodied as a brake actuator.
  • the master cylinder 202 has a first master cylinder chamber 202F and a second master cylinder chamber 202R defined by free pistons (not shown) urged to predetermined positions by compression coil springs on both sides thereof. is doing.
  • the front wheel system hydraulic circuit 201F will be described.
  • One end of a front wheel master passage 204F is connected to the first master cylinder chamber 202F.
  • the other end of the front wheel master passage 204F is connected to a master cylinder cut solenoid valve 206F (hereinafter referred to as an M / C cut valve 206F).
  • the M / C cut valve 206F is a normally open valve that is open when not controlled.
  • the M / C cut valve 206F has a function of regulating the hydraulic pressure generated by the pump 260F by controlling the open / closed state of the M / C cut valve 206F by the control device 10.
  • the opening degree of the M / C cut valve 206F can be controlled linearly, and a control hydraulic pressure corresponding to the opening degree is generated.
  • a flow path 205F is connected between the M / C cut valve 206F and the master cylinder 202 in the front wheel master passage 204F.
  • the channel 205F communicates with the reservoir 250F.
  • One end of a pump flow path 210F is connected to the reservoir 250F.
  • the other end of the pump channel 210F is connected to the high-pressure channel 208F.
  • a pump 260F and a check valve 262F are provided in the pump flow path 210F.
  • the discharge side of the pump 260F is connected to the high pressure flow path 208F via a check valve 262F.
  • the pump 260F is driven by, for example, a motor (not shown).
  • the pump 260F is controlled by the control device 10.
  • Pump 260F may be of any type including a piston type.
  • the pump 260F may include a camshaft that is eccentric with respect to the rotation shaft of the motor, and a piston in a cylinder that is disposed along the outer periphery of the camshaft.
  • the piston in the cylinder reciprocates when the camshaft rotates due to the rotation of the motor, sucks oil when moving to the center side, and pressurizes oil when moving to the outer periphery side. Is discharged.
  • the pump 260F pumps oil from the reservoir 250F and pumps the oil to the high-pressure channel 208F by the pump channel 210F via the check valve 262F (see FIG. 3).
  • the hydraulic circuit 200 does not include an accumulator that stores high-pressure oil discharged from the pump 260F.
  • the high pressure flow path 208F communicating with the wheel cylinders 224FL and 224FR is connected to the M / C cut valve 206F.
  • the high-pressure channel 208F branches into two and communicates with the wheel cylinders 224FL and 224FR.
  • holding solenoid valves 212FL and 212FR are respectively provided, and pressure reducing solenoid valves 214FL and 214FR are respectively provided.
  • Holding solenoid valves 212FL and 212FR are normally open valves that are open when not controlled.
  • the open / close state of the holding solenoid valves 212FL and 212FR is controlled by the control device 10.
  • the decompression solenoid valves 214FL and 214FR are normally closed valves that are closed when not controlled.
  • the controller 10 controls the open / close state of the decompression solenoid valves 214FL and 214FR.
  • the decompression solenoid valves 214FL and 214FR are connected to the reservoir 250F via the decompression passage
  • a rear wheel system hydraulic circuit 201R One end of a rear wheel master passage 204R is connected to the second master cylinder chamber 202R.
  • a master cylinder pressure sensor 265 is provided in the rear wheel master passage 204R.
  • the master cylinder pressure sensor 265 outputs a signal corresponding to the master cylinder pressure generated in the master passage 204R.
  • the output signal of the master cylinder pressure sensor 265 is supplied to the control device 10.
  • the other end of the rear wheel master passage 204R is connected to a master cylinder cut solenoid valve 206R (hereinafter referred to as an M / C cut valve 206R).
  • the M / C cut valve 206R is a normally open valve that is open when not controlled.
  • the M / C cut valve 206R has a function of regulating the hydraulic pressure generated by the pump 260R by controlling the open / close state of the M / C cut valve 206R by the control device 10.
  • the opening degree of the M / C cut valve 206R can be controlled linearly, and a control hydraulic pressure corresponding to the opening degree is generated.
  • a flow path 205R is connected between the M / C cut valve 206R and the master cylinder 202 in the rear wheel master passage 204R.
  • the flow path 205R communicates with the reservoir 250R.
  • One end of a pump flow path 210R is connected to the reservoir 250R.
  • the other end of the pump flow path 210R is connected to the high pressure flow path 208R.
  • a pump 260R and a check valve 262R are provided in the pump flow path 210R.
  • the discharge side of the pump 260R is connected to the high-pressure channel 208R via a check valve 262R.
  • the pump 260R is driven by, for example, a motor (not shown). This motor may be the same as the motor that drives the pump 260F for the front wheels.
  • the pump 260R is controlled by the control device 10. During operation, the pump 260R pumps oil from the reservoir 250R and pumps the oil to the high-pressure channel 208R through the pump channel 210R via the check valve 262R (see FIG. 3).
  • the hydraulic circuit 200 does not include an accumulator that stores high-pressure oil discharged from the pump 260R.
  • the M / C cut valve 206R is connected to a high pressure flow path 208R communicating with the wheel cylinders 224RL and 224RR.
  • the high-pressure channel 208R branches into two and communicates with the wheel cylinders 224RL and 224RR.
  • holding solenoid valves 212RL and 212RR are provided, and pressure reducing solenoid valves 214RL and 214RR are provided.
  • Holding solenoid valves 212RL and 212RR are normally open valves that are open when not controlled.
  • the open / close state of the holding solenoid valves 212RL and 212RR is controlled by the control device 10.
  • the decompression solenoid valves 214RL and 214RR are normally closed valves that are closed when not controlled.
  • the open / close state of the decompression solenoid valves 214RL and 214RR is controlled by the control device 10.
  • the decompression solenoid valves 214RL and 214RR are connected to the reservoir 250R via the decompression
  • each valve (M / C cut valves 206F, 206R, holding solenoid valves 212FL, 212FR, 212RL, 212RR, and pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR) is in the non-control position.
  • the pumps 260F and 260R are in a non-operating state.
  • the pressure in the first master cylinder chamber 202F is supplied to the wheel cylinders 224FL and 224FR
  • the pressure in the second master cylinder chamber 202R is supplied to the wheel cylinders 224RL and 224RR. Therefore, during normal braking, the pressure in the wheel cylinder of each wheel, that is, the braking force, is increased or decreased according to the operation amount (depression force) of the brake pedal 190.
  • FIG. 3 is a diagram schematically showing the oil flow when the pumps 260F and 260R in the hydraulic circuit 200 shown in FIG. 2 are operated.
  • the flow of oil when the pump 260F is operated in the front wheel system hydraulic circuit 201F will be described.
  • the operation of the pump 260R is substantially the same as the operation of the pump 260F.
  • the oil in the reservoir 250F flowing in from the master cylinder 202 via the flow path 205F is pumped to the high pressure flow path 208F by the pump flow path 210F via the check valve 262F.
  • the holding solenoid valves 212FL and 212FR are in the open position, this oil is supplied to the wheel cylinders 224FL and 224FR from the high pressure passage 208F, and the pressure in the wheel cylinders 224FL and 224FR (wheel cylinder pressure) is increased.
  • the pressure reducing solenoid valves 214FL and 214FR are in the closed position, and the wheel cylinder pressure is increased.
  • the oil pumped to the high pressure channel 208F flows to the master passage 204F via the M / C cut valve 206F.
  • the flow rate of this oil changes according to the open / closed state (opening degree) of the M / C cut valve 206F (see FIG. 4).
  • the pressures pumped up by the pump 260F are supplied to the wheel cylinders 224FL and 224FR, and the pressures pumped up by the pump 260R are supplied to the wheel cylinders 224RL and 224RR.
  • the braking pressure of each wheel is independent of the amount of operation of the brake pedal 190 (the M / C cut valves 206F and 206R, the holding solenoid valves 212FL, 212FR, 212RL, 212RR, and the pressure reducing solenoid).
  • the valve 214FL, 214FR, 214RL, 214RR can be controlled according to the operating state.
  • FIG. 4A and 4B are explanatory diagrams of the operation of the M / C cut valve 206F.
  • FIG. 4A shows a state in which the opening degree of the M / C cut valve 206F is relatively small
  • FIG. 4B shows the M / C cut valve 206F.
  • the state where the opening degree of 206F is smaller is shown.
  • the operation of the M / C cut valve 206R may be the same.
  • the M / C cut valve 206F has a valve element 274 disposed in the valve chamber 270 so as to be able to reciprocate.
  • the valve chamber 270 is connected to a front wheel master passage 204F from the master cylinder 202 and a high pressure passage 208F communicating with the wheel cylinders 224FR and 224FL via an internal passage 278 and a port 280.
  • a solenoid 282 is disposed around the valve element 274, and the valve element 274 is urged to a valve opening position by a compression coil spring 284. When a drive voltage is applied to the solenoid 282, the valve element 274 is biased against the port 280 against the spring force of the compression coil spring 284.
  • the control device 10 controls the magnitude of the applied current (differential pressure instruction value) to the solenoid 282 of the M / C cut valve 206F, so that the hydraulic pressure in the high-pressure flow path 208F (in the master passage 204F) is controlled.
  • the differential pressure between the hydraulic pressure and the hydraulic pressure in the high-pressure channel 208F can be controlled.
  • the M / C cut valve 206F incorporates a check valve 286 that allows only the flow of oil from the valve chamber 270 toward the high-pressure channel 208F.
  • FIG. 5 is a flowchart showing an example of hydraulic control executed by the control device 10.
  • the processing routine shown in FIG. 5 may be repeatedly executed at predetermined intervals while the vehicle is traveling.
  • the control device 10 determines a sudden braking command start condition.
  • the sudden braking command start condition may be satisfied when a predetermined emergency deceleration is requested.
  • TTC Time to Collation
  • the control device 10 calculates a TTC for a front obstacle in a predetermined direction (lateral position) based on the detection result from the front radar sensor 134, and the calculated TTC calculates a predetermined value (for example, 1 second). If so, go to Step 502.
  • the TTC may be derived by dividing the relative distance to the front obstacle by the relative speed with respect to the front obstacle.
  • the automatic driving control for example, it may be satisfied when the magnitude of the deceleration required to maintain a predetermined lower distance between the vehicle ahead and the vehicle ahead exceeds a predetermined value.
  • the sudden braking command start condition may not be satisfied in the automatic driving control but may be satisfied only in the collision avoidance control. If the sudden braking command start condition is satisfied, the process proceeds to step 502. Otherwise, the process ends.
  • the control device 10 executes a four-wheel automatic brake in which the pressure increase by the rear wheel system hydraulic circuit 201R is suppressed based on the target control value.
  • the control device 10 operates the pumps 260F and 260R and controls the M / C cut valves 206F and 206R to increase the wheel cylinder pressures of the wheel cylinders 224FL, 224FR, 224RL and 224RR.
  • the control device 10 controls the M / C cut valves 206F and 206R so that the wheel cylinder pressures of the rear wheel cylinders 224RL and 224RR do not exceed the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR. To control.
  • the pressure increase suppression for the rear wheel system can be realized in a wide variety of modes, and may be realized in any mode.
  • the pressure increase start timing by the rear wheel system hydraulic circuit 201R may be delayed by a predetermined delay time ⁇ T with respect to the pressure increase start timing by the front wheel system hydraulic circuit 201F.
  • ⁇ T a predetermined delay time
  • Other specific examples of the method for suppressing pressure increase with respect to the rear wheel system will be described later.
  • the target control value may be set for any physical quantity related to the wheel cylinder pressure of the wheel.
  • the target control value may be a target deceleration, a hydraulic target value for the wheel cylinder pressure, a target value of a pressure increase gradient for the wheel cylinder pressure, or M / It may be a target value of a differential pressure instruction value (applied current value) for the C cut valves 206F and 206R.
  • the target control value may be a fixed value or a variable value set according to a relative relationship (such as TTC) with the front obstacle. In the case of a fixed value, the target control value may be, for example, a target deceleration of 6.0 m / s 2 or a hydraulic target value for each wheel cylinder pressure of 5 Mpa.
  • step 504 the control device 10 determines a sudden braking command end condition.
  • the sudden braking command end condition is, for example, when a collision is detected based on the acceleration sensor 136 or the like, when the vehicle body speed becomes 0 km / h, or when the TTC exceeds 1.5 [seconds], May be satisfied when it continues for a predetermined time (for example, 3 seconds) or longer. If the sudden braking command termination condition is satisfied, the routine ends. Otherwise, the process returns to step 502.
  • the four-wheel automatic braking in step 502 is typically executed in a situation where the driver does not operate the brake pedal 190. That is, the target control value used in step 502 is a value (including a fixed value) determined based on factors other than the operation amount of the brake pedal 190. If the driver operates the brake pedal 190 (for example, detected based on the pedaling force switch 192) after starting the four-wheel automatic braking, the operation of the brake pedal 190 is ignored and the four-wheel automatic braking is performed. May be continued. Alternatively, when the driver operates the brake pedal 190 after starting the four-wheel automatic braking, for example, when the master cylinder pressure becomes equal to or higher than a predetermined pressure, the normal braking may be performed.
  • the wheel cylinders 224FL, 224FR are added by adding both hydraulic pressures (or selecting the larger one). It is good also as applying to 224RL and 224RR.
  • the four-wheel automatic braking in step 502 may be executed under a situation where the driver is operating the brake pedal 190.
  • the sudden braking command start condition may be varied depending on whether the driver operates the brake pedal 190 or not.
  • the TTC as a threshold value that satisfies the sudden braking command start condition may be changed to a long time (for example, 1.5 seconds).
  • the target control value used in step 502 may be determined based on factors other than the operation amount of the brake pedal 190.
  • the holding solenoid valves 212FL, 212FR, 212RL, 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR are all maintained in the normal state. That is, the holding solenoid valves 212FL, 212FR, 212RL, 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR are VSC (Vehicle In the vehicle stabilization control such as Stability Control), each wheel is individually controlled.
  • VSC Vehicle In the vehicle stabilization control such as Stability Control
  • the four-wheel automatic brake in step 502 is control for each system, and different control is not executed in the same system.
  • the ABS (anti-lock) vehicle stabilization control such as a brake system) or VSC may be activated.
  • the four-wheel automatic brake may be stopped, or such other control may be executed while continuing the four-wheel automatic brake.
  • the holding solenoid valves 212FL, 212FR, 212RL, 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR are controlled while performing the same control as the M / C cut valves 206F, 206R during the four-wheel automatic braking. It is good also as performing control according to the control law of ABS or vehicle stabilization control.
  • FIG. 6 is a diagram showing an example of a time series (target control value pattern) of target control values set for each of the front wheel system and the rear wheel system.
  • the target control value is a hydraulic target value for the wheel cylinder pressure.
  • the rise timing of the rear hydraulic target value is delayed by a predetermined delay time ⁇ T from the rise timing of the front hydraulic target value.
  • the front hydraulic pressure target value increases toward the final front hydraulic pressure target value (5 Mpa in this example) at the start of the sudden braking command.
  • the rear hydraulic pressure target value increases toward the final rear hydraulic pressure target value (5 Mpa in this example) after a predetermined delay time ⁇ T from the start of the sudden braking command.
  • the final target value (the final front hydraulic pressure target value and the final rear hydraulic pressure target value) may correspond to a target control value that should be finally realized by the four-wheel automatic brake.
  • FIG. 7 is a diagram showing a simultaneous sequence according to a comparative example in which the same (common) target control value is applied to the front wheel system and the rear wheel system.
  • both the front hydraulic pressure target value and the rear hydraulic pressure target value increase toward the final hydraulic pressure target value (5 Mpa in this example) at the start of the sudden braking command.
  • the rear wheel system hydraulic circuit 201R due to the characteristic difference between the rear wheel system hydraulic circuit 201R and the front wheel system hydraulic circuit 201F, as shown by the solid lines attached to the front actual hydraulic pressure and the rear actual hydraulic pressure in FIG.
  • the wheel cylinder pressures of the wheel cylinders 224RL and 224RR exceed the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR.
  • the front wheel system hydraulic circuit 201F has a significantly larger capacity of the front caliper than the rear caliper, so that the consumed oil required to generate the same oil pressure as the rear wheel system hydraulic circuit 201R.
  • the amount increases (see FIG. 8). Therefore, in this comparative example, during four-wheel automatic braking, the wheel cylinder pressures of the rear wheel cylinders 224RL and 224RR increase before the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR, and the rear wheel lock tendency become.
  • the rising timing of the rear hydraulic target value is delayed by a predetermined delay time ⁇ T from the rising timing of the front hydraulic target value, so as shown in FIG. It is possible to prevent the wheel cylinder pressures of 224RL and 224RR from exceeding the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR. As a result, the tendency to lock the rear wheel during four-wheel automatic braking when emergency deceleration is required can be prevented, and vehicle stability can be improved.
  • the predetermined delay time ⁇ T is preferably a difference in characteristics between the rear wheel system hydraulic circuit 201R and the front wheel system hydraulic circuit 201F, in particular, the oil consumption necessary for generating the same wheel cylinder pressure. It is set in consideration of the amount difference.
  • the predetermined delay time ⁇ T may be a fixed value such as 200 msec.
  • the front hydraulic pressure target value and the rear hydraulic pressure target value rise steeply and rise toward the final front hydraulic pressure target value and the final rear hydraulic pressure target value, respectively. It may be increased in steps.
  • FIG. 8 is a characteristic diagram showing an example of the relationship between wheel cylinder pressure and oil consumption.
  • FIG. 8 shows the same relationship in the front wheel system hydraulic circuit 201F and the same relationship in the rear wheel system hydraulic circuit 201R.
  • the amount of oil consumed to generate the same wheel cylinder pressure differs between the front wheel system hydraulic circuit 201F and the rear wheel system hydraulic circuit 201R. This is mainly based on the structural difference (for example, the difference between the capacity of the front caliper and the capacity of the rear caliper).
  • Such a characteristic diagram may be obtained based on a test or calculation, or a design value may be used.
  • FIG. 9 is a characteristic diagram showing an example of the discharge capacity (discharge oil amount with respect to time) of the pump 260F in the front wheel system hydraulic circuit 201F. Similarly, such a characteristic diagram may be obtained based on a test or calculation, or a design value may be used.
  • the final hydraulic target value for the wheel cylinder pressure is Pt.
  • consumption of the wheel system hydraulic circuit 201R after required for implementing the final and oil consumption Q F in the front line hydraulic circuit 201F necessary for realizing the hydraulic target value Pt of the final hydraulic target value Pt and an oil amount Q R, as shown in FIG. 8 is obtained from the characteristic diagram.
  • These oil consumption difference Q diff is Q F ⁇ Q R.
  • the operation time T t of the pump 260F required until oil consumption Q F is obtained, as shown in FIG. 9 is obtained from the characteristic diagram.
  • the predetermined delay time ⁇ T may be calculated by the following equation.
  • the control device 10 determines the predetermined delay time based on the final hydraulic target value Pt and the characteristic diagrams shown in FIGS. 8 and 9 in the process of step 502 shown in FIG. ⁇ T may be calculated.
  • the relationship between the final hydraulic pressure target value Pt and the predetermined delay time ⁇ T may be created in advance as a map and stored in the memory.
  • a predetermined delay time ⁇ T may be calculated for each of a plurality of final hydraulic target values Pt (for example, 1 Mpa, 3 Mpa, 5 Mpa, and 7 Mpa) using Equation (1) to create a map.
  • the control device 10 may read the predetermined delay time ⁇ T corresponding to the final hydraulic pressure target value Pt.
  • the final hydraulic pressure target value not specified in the map is obtained by interpolating a predetermined delay time ⁇ T corresponding to the two final hydraulic pressure target values close thereto.
  • a predetermined delay time ⁇ T corresponding to the above may be calculated.
  • the predetermined delay time ⁇ T may be calculated by the following equation.
  • ⁇ T T t ⁇ T tR equation (2)
  • Q R is the operating time of the pump 260R required until obtained.
  • T tR is a characteristic diagram as shown in FIG. 9 and may be similarly calculated based on a characteristic diagram of the discharge oil amount with respect to time of the pump 260R in the rear wheel system hydraulic circuit 201R.
  • a predetermined delay time ⁇ T may be calculated for each of a plurality of final hydraulic target values Pt (for example, 1 Mpa, 3 Mpa, 5 Mpa, and 7 Mpa) according to the equation (2), and a map may be created. .
  • FIG. 10 is a diagram showing another example of a time series (target control value pattern) of target control values set for each of the front wheel system and the rear wheel system.
  • the target control value is a hydraulic target value for the wheel cylinder pressure.
  • the time series of the values are indicated by dotted lines, and the actual wheel cylinder pressures (front actual hydraulic pressure) of the front wheel cylinders 224FL and 224FR when controlled by these hydraulic target value patterns are shown.
  • the time series and the time series of the actual wheel cylinder pressures (rear actual hydraulic pressure) of the wheel cylinders 224RL and 224RR of the rear wheels are indicated by solid lines.
  • the rise timing of the rear hydraulic target value is the same as the rise timing of the front hydraulic target value, but the increase gradient of the rear hydraulic target value is set lower than the increase gradient of the front hydraulic target value.
  • the front hydraulic pressure target value increases at a relatively steep slope toward the final front hydraulic pressure target value (5 Mpa in this example) at the start of the sudden braking command.
  • the rear hydraulic pressure target value increases with a relatively gentle gradient toward the final front hydraulic pressure target value (5 Mpa in this example) at the start of the sudden braking command.
  • an upper limit value lower than the increase gradient of the front hydraulic pressure target value may be set for the increase gradient of the rear hydraulic pressure target value.
  • the upper limit value (or the difference between the increase gradient of the rear hydraulic pressure target value and the increase gradient of the front hydraulic pressure target value) with respect to the increase gradient of the rear hydraulic pressure target value is determined by the wheel cylinder pressure of the rear wheel cylinders 224RL and 224RR.
  • the wheel cylinder pressure is set so as not to exceed the wheel cylinder pressure of the wheel cylinders 224FL and 224FR.
  • the rear actual hydraulic pressure target value and the rear hydraulic pressure target value increase at the same gradient with respect to time, as indicated by the solid lines attached to the front actual hydraulic pressure and the rear actual hydraulic pressure in FIGS. Due to the difference in oil consumption between the front wheel system hydraulic circuit 201F and the rear wheel system hydraulic circuit 201R as shown in FIG. 8, the rear actual hydraulic pressure increases with a steeper slope than the front actual hydraulic pressure. .
  • the increase gradient of the rear hydraulic target value is smaller than the increase gradient of the front hydraulic target value, and thus the difference between the increase gradient of the rear actual hydraulic pressure and the increase gradient of the front actual hydraulic pressure. Can be reduced.
  • the method shown in FIG. 10 can be combined with the method shown in FIG. That is, it is possible to delay the rise timing of the rear hydraulic pressure target value from the rise timing of the front hydraulic pressure target value and set the increase gradient of the rear hydraulic pressure target value lower than the increase gradient of the front hydraulic pressure target value.
  • the front hydraulic pressure target value rises steeply and rises toward the final front hydraulic pressure target value, but it may increase in two or more steps.
  • the rear hydraulic pressure target value rises gently and rises toward the final rear hydraulic pressure target value, but may increase in two or more steps.
  • FIG. 11 is a flowchart showing another example of hydraulic control executed by the control device 10.
  • the processing routine shown in FIG. 11 may be repeatedly executed at predetermined intervals while the vehicle is traveling.
  • FIG. 12 is a diagram showing an example of each map 1, 2, 3 used in the processing shown in FIG.
  • the control device 10 determines a sudden braking command start condition.
  • the sudden braking command start condition may be satisfied when a predetermined emergency deceleration is requested.
  • the sudden braking command start condition is satisfied when there is a request from a pre-crash system that performs collision avoidance control with a forward obstacle.
  • a predetermined value for example, 1 second.
  • the control device 10 may constitute a pre-crash system control device.
  • the sudden braking command start condition is also satisfied when there is a request from a system other than the pre-crash system (a system that performs preceding vehicle tracking control, auto cruise control, or similar automatic driving control). .
  • control device 10 may constitute a control device for a system that performs automatic driving control such as preceding vehicle following control and auto cruise control. If the sudden braking command start condition is satisfied, the process proceeds to step 1102; otherwise, the process ends.
  • step 1102 the control device 10 determines whether or not the request is an emergency deceleration request from the pre-crash system. If it is a request for emergency deceleration from the pre-crash system, the process proceeds to step 1104. If it is a request for emergency deceleration from other systems, the process proceeds to step 1108.
  • step 1104 the control device 10 executes a four-wheel automatic brake in which pressure increase by the rear wheel system hydraulic circuit 201R is suppressed based on the map 1 (see FIG. 12).
  • the control device 10 operates the pumps 260F and 260R, and calculates the pressure increase gradient instruction amount in common for the front wheel system hydraulic circuit 201F and the rear wheel system hydraulic circuit 201R. That is, a common pressure increase gradient command amount is calculated for the M / C cut valve 206F of the front wheel system hydraulic circuit 201F and the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R.
  • the pressure increase gradient instruction amount may be calculated in a manner that gradually increases with time toward the final pressure increase gradient instruction amount.
  • the final pressure increase gradient instruction amount may be a fixed value or a variable value set according to a relative relationship (such as TTC) with the front obstacle.
  • the control device 10 calculates a differential pressure command value corresponding to the calculated pressure increase gradient command amount based on the map 1, and calculates the differential pressure command value (current) as the M / C cut valves 206F and 206R, respectively. Apply to.
  • the differential pressure command value with respect to the pressure increase gradient command amount is respectively determined for the M / C cut valve 206F of the front wheel system hydraulic circuit 201F and the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R. Different.
  • the differential pressure command value becomes the predetermined gradient G1 and the predetermined value S1 ( (The value close to the upper limit value or a value close to the upper limit value), while the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R has a pressure increase gradient instruction amount of the second predetermined value ⁇ P A2.
  • the differential pressure indication value does not increase until it exceeds (> ⁇ P A1 ).
  • the same effect as the case where the predetermined delay time ⁇ T as described with reference to FIG. 6 is set can be obtained.
  • the difference between the first predetermined value ⁇ P A1 and the second predetermined value ⁇ P A2 may be set in the same way as when the predetermined delay time ⁇ T is set.
  • step 1106 the control device 10 determines the sudden braking command end condition. For example, when the collision is detected, the vehicle speed becomes 0 km / h, or when the TTC exceeds 1.5 [seconds], the sudden braking command is terminated for a predetermined time (for example, 3 seconds). ) It may be satisfied if it continues for the above. If the sudden braking command end condition is satisfied, the process ends as it is. Otherwise, the process returns to step 1104.
  • step 1108 the control unit 10 calculates in common to the rear wheel system hydraulic circuit 201R and the front wheel system hydraulic circuit 201F the pressure increase gradient indicated amounts, or pressure-increase gradient instruction amount is larger than the predetermined value [Delta] P A not Determine whether. If the pressure increase gradient instruction amount is larger than the predetermined value [Delta] P A, the process proceeds to step 1110, if the pressure increase gradient instructed amount is smaller than the predetermined value [Delta] P A, the process proceeds to step 1114.
  • the determination increasing gradient indicated amounts of whether greater than a predetermined value [Delta] P A may be performed only for the pressure increase gradient instruction amount calculated for the first time. In this case, after the next cycle, the process may proceed to step 1110 or 1114 according to the determination result for the pressure increase gradient instruction amount calculated for the first time.
  • step 1110 the control device 10 executes a four-wheel automatic brake in which pressure increase by the rear wheel system hydraulic circuit 201R is suppressed based on the map 2 (see FIG. 12). Specifically, the control device 10 operates the pumps 260F and 260R. Then, the control device 10 calculates a differential pressure command value corresponding to the calculated pressure increase gradient command amount based on the map 2, and uses the differential pressure command value (current) as the M / C cut valves 206F and 206R, respectively. Apply to.
  • the differential pressure command value with respect to the pressure increase gradient command amount is respectively determined for the M / C cut valve 206F of the front wheel system hydraulic circuit 201F and the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R. Different.
  • the pressure-increase gradient instruction amount exceeds a predetermined value [Delta] P A, differential pressure instruction value toward a predetermined value S1 at a predetermined gradient G1 whereas increasing Te, for M / C cut valve 206R for the rear wheels system hydraulic circuit 201R, the pressure-increase gradient instruction amount exceeds a predetermined value [Delta] P a, differential pressure instruction value is a predetermined gradient G2 ( ⁇ G1) increases toward a predetermined value S2 ( ⁇ S1).
  • the differential pressure command value for the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R is compared with the differential pressure command value for the M / C cut valve 206F of the front wheel system hydraulic circuit 201F.
  • it increases toward a small predetermined value S2 with a gentle slope.
  • the pressure increase gradient command amount (target decrease) is lower than when emergency deceleration is requested from the pre-crash system. (Speed) tends to be small. That is, at the time of emergency deceleration by a system that performs automatic driving control such as preceding vehicle tracking control or auto cruise control, the wheel cylinder pressures of the rear wheel cylinders 224RL and 224RR are set in contrast to emergency deceleration by the pre-crash system. The need for increasing pressure to near the upper limit can be reduced.
  • the predetermined value S2 of the differential pressure instruction value for the M / C cut valve 206R is smaller than the predetermined value S1 of the differential pressure instruction value for the M / C cut valve 206F.
  • the vehicle wheel stability can be improved by preventing the wheel cylinder pressure on the side from being increased to the same level as the wheel cylinder pressure on the front wheel side.
  • step 1112 the control device 10 determines a sudden braking command end condition.
  • the sudden braking command end condition may be satisfied, for example, when a necessary inter-vehicle distance from the preceding vehicle is maintained, or when the sudden braking command continues for a predetermined time (for example, 3 seconds) or longer. If the sudden braking command end condition is satisfied, the process ends as it is. Otherwise, the process returns to step 1108.
  • the control device 10 executes the four-wheel automatic braking that does not suppress the pressure increase by the rear wheel system hydraulic circuit 201R based on the map 3 (see FIG. 12). Specifically, the control device 10 operates the pumps 260F and 260R. The control device 10 calculates a differential pressure command value corresponding to the calculated pressure increase gradient command amount based on the map 2, and applies the differential pressure command value (current) to the M / C cut valves 206F and 206R. To do.
  • Map 3 the differential pressure command value for the pressure increase gradient command amount is the same for the M / C cut valve 206F of the front wheel system hydraulic circuit 201F and the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R. .
  • the differential pressure instruction value increases toward a predetermined value S3 ( ⁇ S2) with a gentle predetermined gradient G3 ( ⁇ G2).
  • step 1116 the control device 10 determines the sudden braking command end condition.
  • the sudden braking command end condition may be satisfied, for example, when the necessary inter-vehicle distance from the preceding vehicle is maintained, or when the sudden braking command continues for a predetermined time (for example, 2 seconds). If the sudden braking command end condition is satisfied, the process ends as it is. Otherwise, the process returns to step 1108.
  • FIG. 13 is a diagram illustrating an example of a hydraulic circuit 200 ′ using X piping.
  • the hydraulic circuit 200 'shown in FIG. 13 includes two systems of hydraulic circuits 201A and 201B.
  • the two systems of hydraulic circuits 201A and 201B are composed of X pipes that are divided into systems of a right front wheel 100FR and a left rear wheel 100RL, and a left front wheel 100FL and a right rear wheel 100RR.
  • the hydraulic circuit 201A related to the right front wheel 100FR and the left rear wheel 100RL is referred to as a first system hydraulic circuit 201A
  • the hydraulic circuit 201B related to the left front wheel 100FL and the right rear wheel 100RR is referred to as a second system hydraulic circuit 201B.
  • a portion 220 surrounded by a two-dot chain line may be embodied as a brake actuator.
  • the hydraulic circuit 200 ′ with X piping has a front wheel cylinders 224 FL and 224 FR and rear wheel cylinders 224 RL and 224 RR arranged with respect to the hydraulic circuit 200 with front and rear piping shown in FIG. Except for differences, they may be substantially the same. Therefore, in FIG. 13, the components that may be the same as those of the hydraulic circuit 200 with the front and rear pipes shown in FIG. “R” is changed to “A” and “B”, respectively, and the description is omitted.
  • FIG. 14 is a flowchart illustrating an example of hydraulic control executed by the control device 10.
  • the processing routine shown in FIG. 14 may be repeatedly executed at predetermined intervals while the vehicle is traveling.
  • Steps 1400 and 1404 may be the same as steps 500 and 504 in the flowchart described with reference to FIG.
  • step 1402 the control unit 10 based on the target control value, the four-wheel automatic braking in a manner to keep the pressure difference between the systems in the first system hydraulic circuit 201A and the second system hydraulic circuit 201B within a predetermined value D Th Execute.
  • the control device 10 operates the pumps 260A and 260B and controls the M / C cut valves 206A and 206B to increase the wheel cylinder pressures of the wheel cylinders 224FL, 224FR, 224RL and 224RR.
  • the control device 10 determines the pressure difference between the wheel cylinder pressures of the wheel cylinders 224FL and 224RR related to the first system hydraulic circuit 201A and the wheel cylinder pressures of the wheel cylinders 224FL and 224RR related to the second system hydraulic circuit 201B. in a fit such embodiments within a predetermined value D Th, controls the M / C cut valve 206A, 206B.
  • the target control value may be set for any physical quantity related to the wheel cylinder pressure of the wheel.
  • the target control value may be a target deceleration, a hydraulic pressure target value for the wheel cylinder pressure, a pressure increase gradient target value for the wheel cylinder pressure, or M / C. It may be a differential pressure target value (applied current value) for the cut valves 206A and 206B.
  • the target control value may be a fixed value or a variable value set according to a relative relationship (such as TTC) with the front obstacle.
  • the method for reducing the pressure difference between the systems in Step 1402 can be realized in a wide variety of modes, and may be realized in any mode. For example, based on the difference in the amount of oil consumed between the systems in the first system hydraulic circuit 201A and the second system hydraulic circuit 201B (difference caused by the difference in piping length, etc.), the system with the larger amount of oil consumption On the other hand, the target control value may be raised. For example, the consumed oil amount necessary to achieve the oil consumption Q A required to achieve the final target control value in the first system hydraulic circuit 201A, the final target control value in the second system hydraulic circuit 201B Q B is obtained based on the characteristic diagram as shown in FIG.
  • N Q diff / Q min
  • Q min is the smaller of the consumed oil amount Q A and the consumed oil amount Q B.
  • the relationship between the index value N and the target control value raising amount ⁇ P may be created in advance as a map.
  • the target control value is a hydraulic pressure target value for the wheel cylinder pressure and the final target control value is a fixed value (for example, 5 Mpa)
  • the target control value raising amount ⁇ P is also a fixed value (for example, , 0.2 Mpa) may be determined in advance.
  • the constant value DTh is set so that the pressure difference between the systems in the first system hydraulic circuit 201A and the second system hydraulic circuit 201B does not affect the vehicle behavior.
  • the constant value DTh may be determined based on a minimum pressure difference that can affect the vehicle behavior. Such a minimum pressure difference depends on the performance of the vehicle (a wide variety of factors) and may be adapted by testing or the like.
  • the wheel speed of the right front wheel 100FR related to the first system hydraulic circuit 201A and the second system hydraulic circuit based on the output signals of the wheel speed sensors 138FR, 138FL, 138RR, 138RL.
  • the target control value for the system with the smaller wheel speed decrease (sag) of the right front wheel 100FR and the left front wheel 100FL is set to the other system. It may be set higher (raised) than the target control value.
  • the target control value for the system with the smaller wheel speed reduction (sag) of the left rear wheel 100RL and the right rear wheel 100RR is set to be higher than the target control value for the other system. It is good also as setting high (raising).
  • the target control value is a hydraulic target value for the wheel cylinder pressure and the final target control value is a fixed value (for example, 5 Mpa)
  • the target control value raising amount ⁇ P is also fixed.
  • a value (for example, 0.2 Mpa) may be determined in advance.
  • the target control value raising amount ⁇ P may be varied in accordance with the magnitude of the difference in the reduction speed of the wheel speed.
  • the relationship between the difference between the wheel speed reduction speeds and the raised amount ⁇ P may be created in advance as a map.
  • the four-wheel automatic braking in step 1402 is typically executed under a situation where the driver does not operate the brake pedal 190. That is, the target control value used in step 1402 is a value (including a fixed value) determined based on factors other than the operation amount of the brake pedal 190.
  • the target control value used in step 1402 is a value (including a fixed value) determined based on factors other than the operation amount of the brake pedal 190.
  • the driver operates the brake pedal 190 after starting the four-wheel automatic braking for example, the operation of the brake pedal 190 may be ignored and the four-wheel automatic braking may be continued.
  • the driver operates the brake pedal 190 after starting the four-wheel automatic braking for example, when the master cylinder pressure becomes equal to or higher than a predetermined pressure, the normal braking may be performed.
  • the wheel cylinders 224FL It is good also as applying to 224FR, 224RL, 224RR.
  • the four-wheel automatic braking in step 1402 may be executed under a situation where the driver is operating the brake pedal 190.
  • the sudden braking command start condition may be varied depending on whether the driver operates the brake pedal 190 or not.
  • the TTC as a threshold value that satisfies the sudden braking command start condition may be changed to a long time (for example, 1.5 seconds).
  • the target control value used in step 1402 may be determined based on factors other than the operation amount of the brake pedal 190.
  • the holding solenoid valves 212FL, 212FR, 212RL, 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR are all maintained in the normal state. That is, the holding solenoid valves 212FL, 212FR, 212RL, and 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, and 214RR are individually controlled for each wheel in the vehicle stabilization control such as VSC.
  • the four-wheel automatic brake is control for each system, and different control is not executed in the same system. However, vehicle stabilization control such as ABS or VSC may be activated after the start of the four-wheel automatic braking in step 1402.
  • the four-wheel automatic brake may be stopped, or such other control may be executed while continuing the four-wheel automatic brake.
  • the M / C cut valves 206A and 206B are controlled in the same manner as in the four-wheel automatic braking, while the holding solenoid valves 212FL, 212FR, 212RL, 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR are used. It is good also as performing control according to the control law of ABS or vehicle stabilization control.
  • FIG. 15 is a diagram illustrating an example of a time series (target control value pattern) of target control values set for each of the first system hydraulic circuit 201A and the second system hydraulic circuit 201B.
  • the target control value is a hydraulic target value for the wheel cylinder pressure.
  • the time series of the values are indicated by dotted lines, and the actual wheel cylinder pressure (first system) of the wheel cylinder 224FR of the first system when controlled by these hydraulic target value patterns.
  • the time series of the actual hydraulic pressure) and the time series of the actual wheel cylinder pressure (second system actual hydraulic pressure) of the wheel cylinder 224FL of the second system are indicated by solid lines.
  • the first system hydraulic pressure target value increases toward the final first system hydraulic pressure target value (5 Mpa in this example) at the start of the sudden braking command.
  • the second system hydraulic pressure target value is the final second system hydraulic target value (5.2 Mpa in this example) that is raised by the raising amount ⁇ P from the final first system hydraulic target value at the start of the sudden braking command.
  • FIG. 16 is a diagram illustrating a simultaneous sequence according to a comparative example in which the same (common) target control value is applied to the first system hydraulic circuit 201A and the second system hydraulic circuit 201B.
  • both the first system hydraulic target value and the second system hydraulic target value increase toward the final hydraulic target value (5 Mpa in this example) at the start of the sudden braking command.
  • FIG. 16 due to the characteristic difference between the second system hydraulic circuit 201B and the first system hydraulic circuit 201A (difference in the amount of oil consumed due to the difference in piping length, design variation of various valves, etc.), FIG.
  • the difference between the wheel cylinder pressure of the wheel cylinder 224FL of the second system and the wheel cylinder pressure of the wheel cylinder 224FR of the first system is constant, as shown by the solid lines attached to the first system actual hydraulic pressure and the second system actual hydraulic pressure. It becomes larger than the value DTh .
  • the final second system hydraulic pressure target value is set to a value higher than the original final hydraulic pressure target value by the raised amount ⁇ P.
  • the wheel cylinder pressure of the first system wheel cylinder 224FR and the wheel cylinder pressure of the second system wheel cylinder 224FL can be increased in substantially the same manner.
  • the target control value is a hydraulic pressure target value with respect to the wheel cylinder pressure, and therefore the raising amount ⁇ P is a dimension of the hydraulic pressure.
  • the front wheel will be described, but the same may be applied to the rear wheel.
  • FIG. 17 is a diagram showing an example of the relationship between the vehicle speed and the wheel speed.
  • FIG. 17 shows an example of a change mode of the vehicle body speed Vx during actual emergency deceleration, an example of a change mode of the wheel speed VwFL of the left front wheel 100FL, and an example of a change mode of the wheel speed VwFR of the right front wheel 100FR.
  • the vehicle body speed Vx, the wheel speed VwFL of the left front wheel 100FL, and the wheel speed VwFR of the right front wheel 100FR shown in FIG. 17 may be calculated based on output signals of the wheel speed sensors 138FR, 138FL, 138RR, 138RL.
  • FIG. 18 is a diagram showing an example of the relationship between the slip ratio and the braking force.
  • 0.08 is shown as an example of the slip ratio that exhibits the maximum braking force
  • 8000 [N] is shown as an example of the maximum braking force.
  • Such a characteristic diagram may be obtained based on a test or calculation, or a design value may be used.
  • the slip ratio SFR of the right front wheel 100FR and the slip ratio SFL of the left front wheel 100FL are obtained from the following equations.
  • SFR (Vx ⁇ VwFR) / Vx
  • SFL (Vx ⁇ VwFL) / Vx
  • the braking force BFR and the braking force BFL are calculated by linear approximation as shown by the dotted line P in FIG. Also good.
  • This braking force difference B diff may be converted into a dimension of the hydraulic pressure P diff .
  • a relationship (characteristic) between a hydraulic pressure (for example, 7 Mpa) and a braking force necessary to realize a deceleration of 1 G (9.8 m / s 2 ) may be used.
  • the raising amount ⁇ P related to the left front wheel 100FL may be a hydraulic pressure P diff obtained by converting the braking force difference B diff .
  • the control device 10 is based on the output signals of the wheel speed sensors 138FR, 138FL, 138RR, 138RL and the characteristic diagram shown in FIG. 18, for example, in the process of step 1402 shown in FIG. Then, the raising amount ⁇ P may be calculated.
  • the relationship between the difference between the slip ratio SFR of the right front wheel 100FR and the slip ratio SFL of the left front wheel 100FL (or the braking force difference B diff or the difference between the wheel speed VwFL and the wheel speed VwFR) and the raising amount ⁇ P is determined in advance. It may be created as a map and stored in memory. For example, the map may be created by calculating the raising amount ⁇ P for a plurality of slip ratio differences.
  • control device 10 may calculate the slip ratio difference based on the output signals of the wheel speed sensors 138FR, 138FL, 138RR, 138RL, and read the raised amount ⁇ P corresponding to the calculated slip ratio difference.
  • an increase amount ⁇ P corresponding to a slip ratio difference that is not defined in the map is obtained by interpolating an increase amount ⁇ P corresponding to two slip ratio differences that are close to the difference. It may be calculated.
  • the wheel cylinder pressure sensor is not provided in the wheel cylinders 224FR, 224FL, 224RR, and 224RL. Even with such an inexpensive configuration, the vehicle stability during four-wheel automatic braking is improved by the feedforward control as described above, not by the feedback control based on the detection value of the wheel cylinder pressure sensor as described above. Is possible. However, the target control value may be fed back and set based on the output signals of the wheel speed sensors 138FR, 138FL, 138RR, and 138RL. In addition, this invention is applicable also to the structure provided with a wheel cylinder pressure sensor. In this case, the detected value of the wheel cylinder pressure sensor may be used as feedback control during four-wheel automatic braking, or the detected value of the wheel cylinder pressure sensor may not be used as feedback control during four-wheel automatic braking.
  • the pumps 260F and 260R are provided for each system, but one common pump may be provided for the two systems.
  • the reservoirs 250F and 250R are integrated into one, the pumps 260F and 260R are replaced with one common pump, and the discharge side of the common one pump is branched so that the pump flow path 210F, 210R may be formed.
  • the hydraulic circuit 200 ' the “first hydraulic pressure generation source” and the “second hydraulic pressure generation source” in the claims are realized by the one common pump.
  • one common pump may be provided with an accumulator.
  • the above-described embodiment relates to the hydraulic circuit 200 using the front and rear pipes and the hydraulic circuit 200 ′ using the X pipe, but the same idea as the hydraulic circuit 200 ′ using the X pipe is applied to the hydraulic circuit using the left and right pipes. be able to.
  • the illustrated hydraulic circuit 200 using the front and rear piping and the hydraulic circuit 200 ′ using the X piping are merely examples, and may be changed in various ways.
  • the hydraulic circuit 200 may be configured to turn on / off the flow of hydraulic pressure from the master cylinder 202 to the pumps 260F, 260R by providing suction solenoid valves in the flow paths 205F, 205R.
  • two check valves may be provided on the suction sides of the pumps 260F and 260R in the pump channels 210F and 210R from the reservoirs 250F and 250R, respectively, and the channels 205F and 205R may be connected between the two check valves, respectively. .
  • the pumps 260F and 260R suck and discharge the oil from the master cylinder 202 without passing through the reservoirs 250F and 250R.
  • the holding solenoid valves 212FL, 212FR, 212RL, 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR may be linear valves.
  • the structure which uses a common reservoir by the master cylinder 202 and the pumps 260F and 260R may be sufficient. These changes can be similarly made in the hydraulic circuit 200 '.
  • the M / C cut valves 206F and 206R are controlled in different modes during four-wheel automatic braking to control the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR and the rear wheel wheel cylinders 224RL and 224RR.
  • the wheel cylinder pressure is increased, it is also possible to realize a similar pressure increasing mode by controlling the pumps 260F and 260R in different modes during four-wheel automatic braking.
  • the pumps 260F and 260R may be driven by separate motors, and the M / C cut valves 206F and 206R may be on / off valves.
  • the M / C cut valves 206F and 206R are closed, and the pump 260F and the pump 260R are controlled in different modes, that is, the rotational speed of the pump 260F (the discharge amount associated therewith).
  • the number of revolutions of pump 260R are controlled in different modes, so that boosting of wheel cylinders 224FL, 224FR, 224RL, 224RR can be realized in the same manner as in the above-described embodiment. Good.
  • These changes can be similarly made in the hydraulic circuit 200 '.
  • the M / C cut valves 206F and 206R are controlled in different modes during four-wheel automatic braking to control the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR and the rear wheel wheel cylinders 224RL and 224RR.
  • 212RR and pressure-reducing solenoid valves 214RL and 214RR can be controlled in different modes to achieve the same boosting mode.
  • the M / C cut valves 206F and 206R may be on / off valves. More specifically, during four-wheel automatic braking, the M / C cut valves 206F and 206R are closed, the holding solenoid valves 212FL and 212FR and the pressure reducing solenoid valves 214FL and 214FR related to the front wheel system hydraulic circuit 201F, and the rear wheel system hydraulic pressure. By controlling the holding solenoid valves 212RL and 212RR and the pressure reducing solenoid valves 214RL and 214RR related to the circuit 201R in different modes, the boosting of the wheel cylinders 224FL, 224FR, 224RL and 224RR is realized in the same manner as in the above-described embodiment.
  • the holding solenoid valves 212FL and 212FR related to the front wheel system hydraulic circuit 201F are controlled in the same manner, and the pressure reducing solenoid valves 214FL and 214FR related to the front wheel system hydraulic circuit 201F are controlled in the same manner.
  • holding solenoid valves 212RL and 212RR related to rear wheel system hydraulic circuit 201R are controlled in the same manner, and pressure reducing solenoid valves 214RL and 214RR related to rear wheel system hydraulic circuit 201R are controlled in the same manner.
  • a circuit configuration typically used in a brake-by-wire system represented by ECB may be employed.
  • ECB Electrical Control Braking System
  • a circuit configuration as disclosed in Japanese Patent Application Laid-Open No. 2006-103547 may be employed.
  • the “first hydraulic pressure generation source” and the “second hydraulic pressure generation source” in the claims are realized by the common one pump.
  • the M / C cut valve may be an on / off valve.
  • the front radar sensor 134 is used for detecting a front obstacle, but a camera may be used instead of or in addition to the front radar sensor 134.
  • the front obstacle may be detected in cooperation with the front radar sensor 134 and the camera.

Abstract

The present invention is provided with: a hydraulic path for a first system; a hydraulic path for a second system; a first hydraulic pressure source that generates hydraulic pressure supplied to the wheel cylinder of a first wheel; a first valve that varies the wheel cylinder pressure of the first wheel; a second hydraulic pressure source that generates hydraulic pressure supplied to the wheel cylinder of a second wheel by means of the hydraulic path for the second system; a second valve that varies the wheel cylinder pressure of the second wheel; a third hydraulic pressure source that generates hydraulic pressure in accordance with the operation of a brake pedal by a driver; and a control device that executes emergency braking control wherein, when a predetermined emergency deceleration is called for, controls the first valve and the second valve via differing embodiments, and on the basis of the hydraulic pressure generated by the first hydraulic pressure source and the second hydraulic pressure source, increases the wheel cylinder pressure of the first wheel and the wheel cylinder pressure of the second wheel.

Description

車両用制動装置Braking device for vehicle
 本発明は、第1系統及び第2系統の油圧回路を備える車両用制動装置に関する。 The present invention relates to a braking device for a vehicle including a first system and a second system hydraulic circuit.
 従来から、マニュアルブレーキ(通常ブレーキ)と自動ブレーキが同時に行われる場合、マスタシリンダ圧に、障害物に衝突する危険性の度合いを示す衝突危険レベルに応じたアシスト圧を付加してホイールシリンダに発生させる技術が知られている(例えば、特許文献1参照)。 Conventionally, when manual braking (normal braking) and automatic braking are performed at the same time, it is generated in the wheel cylinder by adding an assist pressure corresponding to the collision danger level indicating the degree of danger of colliding with an obstacle to the master cylinder pressure. The technique to make is known (for example, refer patent document 1).
特許4415617号公報Japanese Patent No. 4415617
 ところで、衝突回避制御等では、緊急減速が必要な場合に、通常ブレーキを行わないで自動ブレーキを行うような場合がある。しかしながら、通常ブレーキと自動ブレーキとでは、油の供給経路が異なるため、オリフィスの昇圧抵抗の相違等に起因して、系統間で油圧の昇圧態様に差が発生する場合がある。また、自動ブレーキでは、前後配管の場合、容量の大きいフロントキャリパーの昇圧が遅れてリア先行ブレーキになりやすい。このため、自動ブレーキ時に、後輪ロック傾向となり車両安定性が悪くなりうるという問題がある。また、X配管の場合、左右のブレーキ配分が異なる要因となり、自動ブレーキ時に急な車両偏向が生じうるという問題がある。 By the way, in collision avoidance control and the like, when emergency deceleration is necessary, automatic braking may be performed without performing normal braking. However, since the oil supply path is different between the normal brake and the automatic brake, there may be a difference in the pressure increase mode of the hydraulic pressure between the systems due to the difference in the pressure increase resistance of the orifice. Further, in the case of the automatic brake, in the case of the front and rear pipes, the pressure increase of the large capacity caliper is delayed and it is likely to become the rear preceding brake. For this reason, at the time of automatic braking, there is a problem that the rear wheel tends to be locked and vehicle stability may be deteriorated. Further, in the case of X piping, there is a problem in that the left and right brake distributions are different, and a sudden vehicle deflection may occur during automatic braking.
 そこで、本発明は、緊急減速が必要な場合の自動ブレーキ時に系統毎に油圧を適切に昇圧することができる車両用制動装置の提供を目的とする。 Therefore, an object of the present invention is to provide a vehicle braking device that can appropriately increase the hydraulic pressure for each system during automatic braking when emergency deceleration is required.
 本発明の一局面によれば、車両の第1車輪のホイールシリンダに油圧を供給する第1系統の油圧回路と、
 車両の第2車輪のホイールシリンダに油圧を供給する第2系統の油圧回路と、
 前記第1系統の油圧回路に設けられ、前記第1系統の油圧回路により前記第1車輪のホイールシリンダに供給される油圧を生成する第1油圧生成源と、
 前記第1系統の油圧回路に設けられ、前記第1車輪のホイールシリンダ圧を可変する第1弁と、
 前記第2系統の油圧回路に設けられ、前記第2系統の油圧回路により前記第2車輪のホイールシリンダに供給される油圧を生成する第2油圧生成源と、
 前記第2系統の油圧回路に設けられ、前記第2車輪のホイールシリンダ圧を可変する第2弁と、
 前記第1系統の油圧回路及び前記第2系統の油圧回路に接続され、運転者のブレーキペダルの操作に応じた油圧を発生する第3油圧生成源と、
 所定の緊急減速が要求された場合に、運転者のブレーキペダルの操作に依存しない緊急制動制御を実行する制御装置とを備え、
 前記制御装置は、前記緊急制動制御において、前記第1弁及び前記第2弁を互いに異なる態様で制御して、前記第1油圧生成源及び前記第2油圧生成源により生成された油圧に基づいて、前記第1系統の油圧回路及び前記第2系統の油圧回路により前記第1車輪のホイールシリンダ圧及び前記第2車輪のホイールシリンダ圧をそれぞれ昇圧することを特徴とする、車両用制動装置が提供される。
According to one aspect of the present invention, a first system hydraulic circuit that supplies hydraulic pressure to a wheel cylinder of a first wheel of a vehicle;
A second hydraulic circuit for supplying hydraulic pressure to the wheel cylinder of the second wheel of the vehicle;
A first hydraulic pressure generating source that is provided in the hydraulic circuit of the first system and generates hydraulic pressure supplied to the wheel cylinder of the first wheel by the hydraulic circuit of the first system;
A first valve provided in the hydraulic circuit of the first system and configured to vary a wheel cylinder pressure of the first wheel;
A second hydraulic pressure generating source that is provided in the second hydraulic circuit and generates hydraulic pressure supplied to the wheel cylinder of the second wheel by the second hydraulic circuit;
A second valve provided in the hydraulic circuit of the second system and configured to vary a wheel cylinder pressure of the second wheel;
A third hydraulic pressure generating source that is connected to the hydraulic circuit of the first system and the hydraulic circuit of the second system, and generates hydraulic pressure according to the operation of the brake pedal of the driver;
A control device that executes emergency braking control independent of the driver's operation of the brake pedal when a predetermined emergency deceleration is requested,
In the emergency braking control, the control device controls the first valve and the second valve in different modes, and based on the hydraulic pressure generated by the first hydraulic pressure generation source and the second hydraulic pressure generation source. The vehicle brake device is characterized in that the wheel cylinder pressure of the first wheel and the wheel cylinder pressure of the second wheel are respectively increased by the hydraulic circuit of the first system and the hydraulic circuit of the second system. Is done.
 本発明によれば、緊急減速が必要な場合の自動ブレーキ時に系統毎に油圧を適切に昇圧することができる車両用制動装置が得られる。 According to the present invention, it is possible to obtain a vehicular braking apparatus that can appropriately increase the hydraulic pressure for each system during automatic braking when emergency deceleration is required.
本発明の一実施例による車両用制動装置1の主要構成と、車両用制動装置1が搭載される車両102の要部とを示す概略構成図である。1 is a schematic configuration diagram showing a main configuration of a vehicle braking device 1 according to an embodiment of the present invention and a main part of a vehicle 102 on which the vehicle braking device 1 is mounted. 前後配管による油圧回路200の一例を示す図である。It is a figure which shows an example of the hydraulic circuit 200 by front and rear piping. 図2に示す油圧回路200におけるポンプ260F、260Rの作動時に油の流れを模式的に示す図である。FIG. 3 is a diagram schematically showing the flow of oil when the pumps 260F and 260R in the hydraulic circuit 200 shown in FIG. 2 are operated. M/Cカットバルブ206Fの動作の説明図である。It is explanatory drawing of operation | movement of the M / C cut valve 206F. 前後配管による油圧回路200において制御装置10により実行される油圧制御の一例を示すフローチャートである。3 is a flowchart illustrating an example of hydraulic control executed by the control device 10 in a hydraulic circuit 200 using front and rear piping. 後輪系統に対する増圧抑制方法の一例を模式的に示す図であり、前輪系統と後輪系統のそれぞれに対して設定される目標制御値の時系列の一例を示す図である。It is a figure which shows typically an example of the pressure increase suppression method with respect to a rear-wheel system, and is a figure which shows an example of the time series of the target control value set with respect to each of a front-wheel system and a rear-wheel system. 前輪系統と後輪系統に対して同一(共通)の目標制御値を適用する比較例による同時系列を示す図である。It is a figure which shows the simultaneous series by the comparative example which applies the same (common) target control value with respect to a front-wheel system and a rear-wheel system. ホイールシリンダ圧と消費油量の関係の一例を示す特性図である。It is a characteristic view which shows an example of the relationship between a wheel cylinder pressure and oil consumption. 前輪系統油圧回路201Fにおけるポンプ260Fの時間に対する吐出油量の関係の一例を示す特性図である。It is a characteristic view showing an example of the relationship of the discharge oil amount with respect to the time of the pump 260F in the front wheel system hydraulic circuit 201F. 前輪系統と後輪系統のそれぞれに対して設定される目標制御値の時系列(目標制御値パターン)の他の一例を示す図である。It is a figure which shows another example of the time series (target control value pattern) of the target control value set with respect to each of a front-wheel system and a rear-wheel system. 制御装置10により実行される油圧制御の他の一例を示すフローチャートである。5 is a flowchart showing another example of hydraulic control executed by the control device 10. 図11に示す処理で使用される各マップ1、2、3の一例を示す図である。It is a figure which shows an example of each map 1, 2, 3 used by the process shown in FIG. X配管による油圧回路200’の一例を示す図である。It is a figure which shows an example of the hydraulic circuit 200 'by X piping. X配管による油圧回路200’において制御装置10により実行される油圧制御の一例を示すフローチャートである。4 is a flowchart illustrating an example of hydraulic control executed by the control device 10 in a hydraulic circuit 200 ′ using X piping. 第1系統油圧回路201Aと第2系統油圧回路201Bのそれぞれに対して設定される目標制御値の時系列(目標制御値パターン)の一例を示す図である。It is a figure which shows an example of the time series (target control value pattern) of the target control value set with respect to each of the 1st system hydraulic circuit 201A and the 2nd system hydraulic circuit 201B. 第1系統油圧回路201Aと第2系統油圧回路201Bに対して同一(共通)の目標制御値を適用する比較例による同時系列を示す図である。It is a figure which shows the simultaneous series by the comparative example which applies the same (common) target control value with respect to 201 A of 1st system hydraulic circuits, and the 2nd system hydraulic circuit 201B. 車体速度と車輪速度の関係の一例を示す図である。It is a figure which shows an example of the relationship between a vehicle body speed and a wheel speed. スリップ率と制動力の関係の一例を示す図である。It is a figure which shows an example of the relationship between a slip ratio and braking force.
 以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
 図1は、本発明の一実施例による車両用制動装置1の主要構成と、車両用制動装置1が搭載される車両102の要部とを示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing a main configuration of a vehicle braking device 1 according to an embodiment of the present invention and a main part of a vehicle 102 on which the vehicle braking device 1 is mounted.
 図1において、100FL及び100FRはそれぞれ車両102の左右の前輪を示し、100RL及び100RRはそれぞれ車両の駆動輪である左右の後輪を示している。尚、左右の前輪100FL及び100FRは、ステアリングホイールの転舵に応答して駆動されるパワーステアリング装置によりタイロッドを介して操舵されてよい。 1, 100FL and 100FR respectively indicate left and right front wheels of the vehicle 102, and 100RL and 100RR respectively indicate left and right rear wheels that are driving wheels of the vehicle. The left and right front wheels 100FL and 100FR may be steered via tie rods by a power steering device that is driven in response to steering of the steering wheel.
 車両用制動装置1は、制御装置10と、油圧回路200とを含む。各車輪100FR、100FL、100RR、100RLの制動力は、油圧回路200によりホイールシリンダ224FR、224FL、224RR、224RLに供給される油圧によりそれぞれ発生される。油圧回路200には、マスタシリンダ202が設けられる。マスタシリンダ202は、運転者によるブレーキペダル190の踏み込み操作に応答して、ホイールシリンダ224FR、224FL、224RR、224RLに供給される油圧を生成する。 The vehicle braking device 1 includes a control device 10 and a hydraulic circuit 200. The braking force of each wheel 100FR, 100FL, 100RR, 100RL is generated by the hydraulic pressure supplied to the wheel cylinders 224FR, 224FL, 224RR, 224RL by the hydraulic circuit 200, respectively. The hydraulic circuit 200 is provided with a master cylinder 202. The master cylinder 202 generates hydraulic pressure to be supplied to the wheel cylinders 224FR, 224FL, 224RR, 224RL in response to the depression operation of the brake pedal 190 by the driver.
 制御装置10は、マイクロコンピューターを含むECU(電子制御ユニット)により構成されてもよい。制御装置10の機能は、任意のハードウェア、ソフトウェア、ファームウェア又はそれらの組み合わせにより実現されてもよい。例えば、制御装置10の機能の任意の一部又は全部は、特定用途向けASIC(application-specific
integrated circuit)、FPGA(Field Programmable Gate
Array)、DSP(digital signal processor)により実現されてもよい。また、制御装置10の機能は、複数のECUにより協動して実現されてもよい。
The control device 10 may be configured by an ECU (electronic control unit) including a microcomputer. The function of the control device 10 may be realized by any hardware, software, firmware, or a combination thereof. For example, any part or all of the functions of the control device 10 may be applied to an application-specific ASIC (application-specific).
integrated circuit), FPGA (Field Programmable Gate)
Array) or a DSP (digital signal processor). Further, the function of the control device 10 may be realized in cooperation with a plurality of ECUs.
 制御装置10には、前方レーダセンサ134が接続される。前方レーダセンサ134は、電波(例えばミリ波)、光波(例えばレーザー)又は超音波を検出波として用いて、車両前方における前方障害物(典型的には、前方車両)の状態を検出する。前方レーダセンサ134は、前方障害物と自車との関係を示す情報、例えば自車を基準とした前方障害物の相対速度や相対距離、方位(横位置)を所定の周期で検出する。尚、前方レーダセンサ134がミリ波レーダセンサの場合、ミリ波レーダセンサは、例えば電子スキャン型のミリ波レーダーであって良く、この場合、電波のドップラー周波数(周波数シフト)を用いて前方障害物の相対速度が検出され、反射波の遅れ時間を用いて前方障害物の相対距離が検出され、複数の受信アンテナ間での受信波の位相差に基づいて前方障害物の方位が検出される。これらの検出データは、制御装置10に所定の周期で送信される。 The front radar sensor 134 is connected to the control device 10. The front radar sensor 134 detects the state of a front obstacle (typically, the front vehicle) in front of the vehicle using radio waves (for example, millimeter waves), light waves (for example, lasers), or ultrasonic waves as detection waves. The front radar sensor 134 detects information indicating a relationship between the front obstacle and the own vehicle, for example, a relative speed, a relative distance, and an azimuth (lateral position) of the front obstacle based on the own vehicle at a predetermined cycle. When the front radar sensor 134 is a millimeter wave radar sensor, the millimeter wave radar sensor may be, for example, an electronic scan type millimeter wave radar. In this case, the front obstacle is detected using the Doppler frequency (frequency shift) of the radio wave. The relative speed of the front obstacle is detected using the delay time of the reflected wave, and the direction of the front obstacle is detected based on the phase difference of the received wave among the plurality of receiving antennas. These detection data are transmitted to the control device 10 at a predetermined cycle.
 制御装置10には、車両の各輪に配置される車輪速センサ138FR、138FL、138RR、138RLが接続される。車輪速センサ138FR、138FL、138RR、138RLは、アクティブセンサであってもよいし、パッシブセンサであってもよい。また、制御装置10には、車両に発生する車両前後方向の加速度を検出する加速度センサ136が接続される。加速度センサ136は、例えば車両のセンターコンソール下に取り付けられる。加速度センサ136は、搭載される車両に生ずる車体前後方向又は車幅方向の加速度に応じた信号を出力する加速度センサ部と、車両の重心軸回りに生ずる角速度に応じた信号を出力するヨーレートセンサ部とを一体に構成した半導体式のセンサにより実現されてもよい。 The control device 10 is connected with wheel speed sensors 138FR, 138FL, 138RR, 138RL arranged on each wheel of the vehicle. The wheel speed sensors 138FR, 138FL, 138RR, 138RL may be active sensors or passive sensors. The control device 10 is connected to an acceleration sensor 136 that detects acceleration in the vehicle longitudinal direction generated in the vehicle. The acceleration sensor 136 is attached, for example, under the center console of the vehicle. The acceleration sensor 136 includes an acceleration sensor unit that outputs a signal corresponding to the acceleration in the vehicle longitudinal direction or the vehicle width direction that occurs in the mounted vehicle, and a yaw rate sensor unit that outputs a signal corresponding to the angular velocity generated around the center of gravity axis of the vehicle. May be realized by a semiconductor sensor.
 制御装置10には、油圧回路200が接続される。制御装置10は、油圧回路200に設けられる各種バルブ(後述)等を制御することで、各車輪100FL、100FR、100RL、100RRの制動力を制御する。制御装置10による制御方法について、後に詳説する。 The hydraulic circuit 200 is connected to the control device 10. The control device 10 controls the braking force of each wheel 100FL, 100FR, 100RL, 100RR by controlling various valves (described later) provided in the hydraulic circuit 200. The control method by the control device 10 will be described in detail later.
 図2は、前後配管による油圧回路200の一例を示す図である。 FIG. 2 is a diagram showing an example of a hydraulic circuit 200 using front and rear piping.
 図2に示す油圧回路200は、二系統の油圧回路201F、201Rを備える。図示の例では、二系統の油圧回路201F、201Rは、前輪100FL、100FRと後輪100RL、100RRとで系統を分けた前後配管からなる。以下では、油圧回路201Fについては、前輪系統油圧回路201Fと称し、油圧回路201Rについては、後輪系統油圧回路201Rと称する。尚、図2において、二点鎖線で囲まれた部分220は、ブレーキアクチュエータとして具現化されてもよい。 The hydraulic circuit 200 shown in FIG. 2 includes two systems of hydraulic circuits 201F and 201R. In the illustrated example, the two hydraulic circuits 201F and 201R are composed of front and rear pipes that are divided into systems of front wheels 100FL and 100FR and rear wheels 100RL and 100RR. Hereinafter, the hydraulic circuit 201F is referred to as a front wheel system hydraulic circuit 201F, and the hydraulic circuit 201R is referred to as a rear wheel system hydraulic circuit 201R. In FIG. 2, a portion 220 surrounded by a two-dot chain line may be embodied as a brake actuator.
 マスタシリンダ202は、その両側の圧縮コイルばねにより所定の位置に付勢されたフリーピストン(図示せず)により画成された第一のマスタシリンダ室202Fと第二のマスタシリンダ室202Rとを有している。 The master cylinder 202 has a first master cylinder chamber 202F and a second master cylinder chamber 202R defined by free pistons (not shown) urged to predetermined positions by compression coil springs on both sides thereof. is doing.
 先ず、前輪系統油圧回路201Fについて説明する。第一のマスタシリンダ室202Fには前輪用のマスタ通路204Fの一端が接続される。前輪用のマスタ通路204Fの他端は、マスタシリンダカットソレノイドバルブ206F(以下、M/Cカットバルブ206Fという)に接続される。M/Cカットバルブ206Fは、非制御時に開状態であるノーマルオープンバルブである。M/Cカットバルブ206Fは、その開閉状態を制御装置10により制御されることにより、ポンプ260Fで発生する油圧を調圧する機能を有する。M/Cカットバルブ206Fは、開度がリニアに制御可能であり、開度に応じた制御油圧を発生する。 First, the front wheel system hydraulic circuit 201F will be described. One end of a front wheel master passage 204F is connected to the first master cylinder chamber 202F. The other end of the front wheel master passage 204F is connected to a master cylinder cut solenoid valve 206F (hereinafter referred to as an M / C cut valve 206F). The M / C cut valve 206F is a normally open valve that is open when not controlled. The M / C cut valve 206F has a function of regulating the hydraulic pressure generated by the pump 260F by controlling the open / closed state of the M / C cut valve 206F by the control device 10. The opening degree of the M / C cut valve 206F can be controlled linearly, and a control hydraulic pressure corresponding to the opening degree is generated.
 前輪用のマスタ通路204Fには、M/Cカットバルブ206Fとマスタシリンダ202との間に流路205Fが接続される。流路205Fは、リザーバ250Fに連通する。リザーバ250Fには、ポンプ流路210Fの一端が接続される。ポンプ流路210Fの他端は、高圧流路208Fに接続される。ポンプ流路210Fには、ポンプ260F及び逆止弁262Fが設けられる。ポンプ260Fの吐出側は、逆止弁262Fを介して高圧流路208Fに接続される。ポンプ260Fは、例えばモータ(図示せず)により駆動される。ポンプ260Fは制御装置10により制御される。ポンプ260Fは、ピストンタイプを含む任意の形式であってよい。例えば、ポンプ260Fは、図示しないが、モータの回転軸に対して偏心したカムシャフトと、カムシャフトの外周に沿って配置されたシリンダ内のピストンとを備えてよい。この構成では、シリンダ内のピストンは、モータの回転によりカムシャフトが回転する際に往復運動を行い、中心側に移動するときに油を吸入し、外周側に移動するときに加圧された油を吐出する。ポンプ260Fは、作動時、リザーバ250Fから油を汲み上げて逆止弁262Fを介してポンプ流路210Fにより油を高圧流路208Fへと圧送する(図3参照)。尚、油圧回路200は、ポンプ260Fから吐出される高圧の油を蓄えるアキュムレータを備えていない。 A flow path 205F is connected between the M / C cut valve 206F and the master cylinder 202 in the front wheel master passage 204F. The channel 205F communicates with the reservoir 250F. One end of a pump flow path 210F is connected to the reservoir 250F. The other end of the pump channel 210F is connected to the high-pressure channel 208F. A pump 260F and a check valve 262F are provided in the pump flow path 210F. The discharge side of the pump 260F is connected to the high pressure flow path 208F via a check valve 262F. The pump 260F is driven by, for example, a motor (not shown). The pump 260F is controlled by the control device 10. Pump 260F may be of any type including a piston type. For example, although not shown, the pump 260F may include a camshaft that is eccentric with respect to the rotation shaft of the motor, and a piston in a cylinder that is disposed along the outer periphery of the camshaft. In this configuration, the piston in the cylinder reciprocates when the camshaft rotates due to the rotation of the motor, sucks oil when moving to the center side, and pressurizes oil when moving to the outer periphery side. Is discharged. During operation, the pump 260F pumps oil from the reservoir 250F and pumps the oil to the high-pressure channel 208F by the pump channel 210F via the check valve 262F (see FIG. 3). The hydraulic circuit 200 does not include an accumulator that stores high-pressure oil discharged from the pump 260F.
 M/Cカットバルブ206Fには、ホイールシリンダ224FL、224FRに連通する高圧流路208Fが接続される。高圧流路208Fは、2つに分岐して、ホイールシリンダ224FL、224FRに連通する。分岐後のそれぞれの流路部分において、保持ソレノイドバルブ212FL、212FRがそれぞれ設けられると共に、減圧ソレノイドバルブ214FL、214FRがそれぞれ設けられる。保持ソレノイドバルブ212FL、212FRは、非制御時に開状態であるノーマルオープンバルブである。保持ソレノイドバルブ212FL、212FRの開閉状態は、制御装置10により制御される。減圧ソレノイドバルブ214FL、214FRは、非制御時に閉状態であるノーマルクローズバルブである。減圧ソレノイドバルブ214FL、214FRの開閉状態は、制御装置10により制御される。減圧ソレノイドバルブ214FL、214FRは、減圧通路216Fを介してリザーバ250Fに接続される。 The high pressure flow path 208F communicating with the wheel cylinders 224FL and 224FR is connected to the M / C cut valve 206F. The high-pressure channel 208F branches into two and communicates with the wheel cylinders 224FL and 224FR. In each flow path portion after branching, holding solenoid valves 212FL and 212FR are respectively provided, and pressure reducing solenoid valves 214FL and 214FR are respectively provided. Holding solenoid valves 212FL and 212FR are normally open valves that are open when not controlled. The open / close state of the holding solenoid valves 212FL and 212FR is controlled by the control device 10. The decompression solenoid valves 214FL and 214FR are normally closed valves that are closed when not controlled. The controller 10 controls the open / close state of the decompression solenoid valves 214FL and 214FR. The decompression solenoid valves 214FL and 214FR are connected to the reservoir 250F via the decompression passage 216F.
 次に、後輪系統油圧回路201Rについて説明する。第二のマスタシリンダ室202Rには後輪用のマスタ通路204Rの一端が接続される。後輪用のマスタ通路204Rには、マスタシリンダ圧力センサ265が設けられる。マスタシリンダ圧力センサ265は、マスタ通路204Rに発生するマスタシリンダ圧に応じた信号を出力する。マスタシリンダ圧力センサ265の出力信号は制御装置10に供給される。 Next, the rear wheel system hydraulic circuit 201R will be described. One end of a rear wheel master passage 204R is connected to the second master cylinder chamber 202R. A master cylinder pressure sensor 265 is provided in the rear wheel master passage 204R. The master cylinder pressure sensor 265 outputs a signal corresponding to the master cylinder pressure generated in the master passage 204R. The output signal of the master cylinder pressure sensor 265 is supplied to the control device 10.
 後輪用のマスタ通路204Rの他端は、マスタシリンダカットソレノイドバルブ206R(以下、M/Cカットバルブ206Rという)に接続される。M/Cカットバルブ206Rは、非制御時に開状態であるノーマルオープンバルブである。M/Cカットバルブ206Rは、その開閉状態を制御装置10により制御されることにより、ポンプ260Rで発生する油圧を調圧する機能を有する。M/Cカットバルブ206Rは、開度がリニアに制御可能であり、開度に応じた制御油圧を発生する。 The other end of the rear wheel master passage 204R is connected to a master cylinder cut solenoid valve 206R (hereinafter referred to as an M / C cut valve 206R). The M / C cut valve 206R is a normally open valve that is open when not controlled. The M / C cut valve 206R has a function of regulating the hydraulic pressure generated by the pump 260R by controlling the open / close state of the M / C cut valve 206R by the control device 10. The opening degree of the M / C cut valve 206R can be controlled linearly, and a control hydraulic pressure corresponding to the opening degree is generated.
 後輪用のマスタ通路204Rには、M/Cカットバルブ206Rとマスタシリンダ202との間に流路205Rが接続される。流路205Rは、リザーバ250Rに連通する。リザーバ250Rには、ポンプ流路210Rの一端が接続される。ポンプ流路210Rの他端は、高圧流路208Rに接続される。ポンプ流路210Rには、ポンプ260R及び逆止弁262Rが設けられる。ポンプ260Rの吐出側は、逆止弁262Rを介して高圧流路208Rに接続される。ポンプ260Rは、例えばモータ(図示せず)により駆動される。このモータは、前輪用のポンプ260Fを駆動するモータと共通であってよい。ポンプ260Rは制御装置10により制御される。ポンプ260Rは、作動時、リザーバ250Rから油を汲み上げて逆止弁262Rを介してポンプ流路210Rにより油を高圧流路208Rへと圧送する(図3参照)。尚、油圧回路200は、ポンプ260Rから吐出される高圧の油を蓄えるアキュムレータを備えていない。 A flow path 205R is connected between the M / C cut valve 206R and the master cylinder 202 in the rear wheel master passage 204R. The flow path 205R communicates with the reservoir 250R. One end of a pump flow path 210R is connected to the reservoir 250R. The other end of the pump flow path 210R is connected to the high pressure flow path 208R. A pump 260R and a check valve 262R are provided in the pump flow path 210R. The discharge side of the pump 260R is connected to the high-pressure channel 208R via a check valve 262R. The pump 260R is driven by, for example, a motor (not shown). This motor may be the same as the motor that drives the pump 260F for the front wheels. The pump 260R is controlled by the control device 10. During operation, the pump 260R pumps oil from the reservoir 250R and pumps the oil to the high-pressure channel 208R through the pump channel 210R via the check valve 262R (see FIG. 3). The hydraulic circuit 200 does not include an accumulator that stores high-pressure oil discharged from the pump 260R.
 M/Cカットバルブ206Rには、ホイールシリンダ224RL、224RRに連通する高圧流路208Rが接続される。高圧流路208Rは、2つに分岐して、ホイールシリンダ224RL、224RRに連通する。分岐後のそれぞれの流路部分において、保持ソレノイドバルブ212RL、212RRがそれぞれ設けられると共に、減圧ソレノイドバルブ214RL、214RRがそれぞれ設けられる。保持ソレノイドバルブ212RL、212RRは、非制御時に開状態であるノーマルオープンバルブである。保持ソレノイドバルブ212RL、212RRの開閉状態は、制御装置10により制御される。減圧ソレノイドバルブ214RL、214RRは、非制御時に閉状態であるノーマルクローズバルブである。減圧ソレノイドバルブ214RL、214RRの開閉状態は、制御装置10により制御される。減圧ソレノイドバルブ214RL、214RRは、減圧通路216Rを介してリザーバ250Rに接続される。 The M / C cut valve 206R is connected to a high pressure flow path 208R communicating with the wheel cylinders 224RL and 224RR. The high-pressure channel 208R branches into two and communicates with the wheel cylinders 224RL and 224RR. In each flow path portion after branching, holding solenoid valves 212RL and 212RR are provided, and pressure reducing solenoid valves 214RL and 214RR are provided. Holding solenoid valves 212RL and 212RR are normally open valves that are open when not controlled. The open / close state of the holding solenoid valves 212RL and 212RR is controlled by the control device 10. The decompression solenoid valves 214RL and 214RR are normally closed valves that are closed when not controlled. The open / close state of the decompression solenoid valves 214RL and 214RR is controlled by the control device 10. The decompression solenoid valves 214RL and 214RR are connected to the reservoir 250R via the decompression passage 216R.
 ここで、図2に示す状態では、各バルブ(M/Cカットバルブ206F、206R、保持ソレノイドバルブ212FL、212FR、212RL、212RR、及び、減圧ソレノイドバルブ214FL、214FR、214RL、214RR)が非制御位置(常態位置)にあり、ポンプ260F、260Rが非作動状態である。これにより、ホイールシリンダ224FL及び224FRには第一のマスタシリンダ室202F内の圧力が供給され、ホイールシリンダ224RL及び224RRには第二のマスタシリンダ室202R内の圧力が供給される。従って、通常ブレーキ時には、各車輪のホイールシリンダ内の圧力、即ち制動力はブレーキペダル190の操作量(踏力)に応じて増減される。 Here, in the state shown in FIG. 2, each valve (M / C cut valves 206F, 206R, holding solenoid valves 212FL, 212FR, 212RL, 212RR, and pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR) is in the non-control position. The pumps 260F and 260R are in a non-operating state. Thus, the pressure in the first master cylinder chamber 202F is supplied to the wheel cylinders 224FL and 224FR, and the pressure in the second master cylinder chamber 202R is supplied to the wheel cylinders 224RL and 224RR. Therefore, during normal braking, the pressure in the wheel cylinder of each wheel, that is, the braking force, is increased or decreased according to the operation amount (depression force) of the brake pedal 190.
 次に、ポンプ260F、260Rの作動時に油の流れについて説明する。 Next, the flow of oil will be described when the pumps 260F and 260R are operated.
 図3は、図2に示す油圧回路200におけるポンプ260F、260Rの作動時に油の流れを模式的に示す図である。以下では、前輪系統油圧回路201Fにおけるポンプ260Fの作動時の油の流れについて説明する。但し、ポンプ260Rの作動時については、ポンプ260Fの作動時と実質的に同様である。 FIG. 3 is a diagram schematically showing the oil flow when the pumps 260F and 260R in the hydraulic circuit 200 shown in FIG. 2 are operated. Hereinafter, the flow of oil when the pump 260F is operated in the front wheel system hydraulic circuit 201F will be described. However, the operation of the pump 260R is substantially the same as the operation of the pump 260F.
 ポンプ260Fの作動時は、マスタシリンダ202から流路205Fを介して流入するリザーバ250F内の油は、逆止弁262Fを介してポンプ流路210Fにより高圧流路208Fへと圧送される。この油は、保持ソレノイドバルブ212FL、212FRが開位置にあるとき、高圧流路208Fからホイールシリンダ224FL、224FRに供給され、ホイールシリンダ224FL、224FR内の圧力(ホイールシリンダ圧)が上昇される。尚、図示の状態は、減圧ソレノイドバルブ214FL、214FRは、閉位置にあり、ホイールシリンダ圧が増圧する増圧状態である。この状態から、減圧ソレノイドバルブ214FL、214FRが開弁されると、減圧通路216Fを介してリザーバ250Fに油が流れ、ホイールシリンダ224FL、224FRのホイールシリンダ圧が減少する。他方、図示の状態で、保持ソレノイドバルブ212FL、212FRが閉弁されると、ホイールシリンダ224FL、224FRのホイールシリンダ圧が保持される。 When the pump 260F is operated, the oil in the reservoir 250F flowing in from the master cylinder 202 via the flow path 205F is pumped to the high pressure flow path 208F by the pump flow path 210F via the check valve 262F. When the holding solenoid valves 212FL and 212FR are in the open position, this oil is supplied to the wheel cylinders 224FL and 224FR from the high pressure passage 208F, and the pressure in the wheel cylinders 224FL and 224FR (wheel cylinder pressure) is increased. In the state shown in the figure, the pressure reducing solenoid valves 214FL and 214FR are in the closed position, and the wheel cylinder pressure is increased. When the pressure reducing solenoid valves 214FL and 214FR are opened from this state, oil flows into the reservoir 250F through the pressure reducing passage 216F, and the wheel cylinder pressures of the wheel cylinders 224FL and 224FR are reduced. On the other hand, when the holding solenoid valves 212FL and 212FR are closed in the illustrated state, the wheel cylinder pressures of the wheel cylinders 224FL and 224FR are held.
 また、高圧流路208Fへと圧送された油は、M/Cカットバルブ206Fを介してマスタ通路204Fに流れる。この油の流量は、M/Cカットバルブ206Fの開閉状態(開度)に応じて変化する(図4参照)。 Also, the oil pumped to the high pressure channel 208F flows to the master passage 204F via the M / C cut valve 206F. The flow rate of this oil changes according to the open / closed state (opening degree) of the M / C cut valve 206F (see FIG. 4).
 このように、ポンプ260F、260Rの作動時は、ホイールシリンダ224FL、224FRにはポンプ260Fによりポンプアップされた圧力が供給され、ホイールシリンダ224RL、224RRにはポンプ260Rによりポンプアップされた圧力が供給されるようになるので、各車輪の制動圧は、ブレーキペダル190の操作量に関係なく、各バルブ(M/Cカットバルブ206F、206R、保持ソレノイドバルブ212FL、212FR、212RL、212RR、及び、減圧ソレノイドバルブ214FL、214FR、214RL、214RR)の作動状態に応じて制御することができる。 As described above, when the pumps 260F and 260R are operated, the pressures pumped up by the pump 260F are supplied to the wheel cylinders 224FL and 224FR, and the pressures pumped up by the pump 260R are supplied to the wheel cylinders 224RL and 224RR. As a result, the braking pressure of each wheel is independent of the amount of operation of the brake pedal 190 (the M / C cut valves 206F and 206R, the holding solenoid valves 212FL, 212FR, 212RL, 212RR, and the pressure reducing solenoid). The valve 214FL, 214FR, 214RL, 214RR) can be controlled according to the operating state.
 次に、M/Cカットバルブ206F、206Rの動作の動作について説明する。 Next, the operation of the M / C cut valves 206F and 206R will be described.
 図4は、M/Cカットバルブ206Fの動作の説明図であり、(A)は、M/Cカットバルブ206Fの開度が比較的小さい状態を示し、(B)は、M/Cカットバルブ206Fの開度が更に小さい状態を示す。尚、M/Cカットバルブ206Rの動作についても同様であってよい。 4A and 4B are explanatory diagrams of the operation of the M / C cut valve 206F. FIG. 4A shows a state in which the opening degree of the M / C cut valve 206F is relatively small, and FIG. 4B shows the M / C cut valve 206F. The state where the opening degree of 206F is smaller is shown. The operation of the M / C cut valve 206R may be the same.
 図示の例では、M/Cカットバルブ206Fは、弁室270には弁要素274が往復動可能に配置されている。弁室270には、マスタシリンダ202からの前輪用のマスタ通路204Fが接続されると共に、ホイールシリンダ224FR、224FLに連通する高圧流路208Fが、内部通路278及びポート280を介して接続される。弁要素274の周りにはソレノイド282が配設されており、弁要素274は圧縮コイルばね284により開弁位置へ付勢されている。弁要素274は、ソレノイド282に駆動電圧が印加されると、圧縮コイルばね284のばね力に抗してポート280に対して付勢される。 In the illustrated example, the M / C cut valve 206F has a valve element 274 disposed in the valve chamber 270 so as to be able to reciprocate. The valve chamber 270 is connected to a front wheel master passage 204F from the master cylinder 202 and a high pressure passage 208F communicating with the wheel cylinders 224FR and 224FL via an internal passage 278 and a port 280. A solenoid 282 is disposed around the valve element 274, and the valve element 274 is urged to a valve opening position by a compression coil spring 284. When a drive voltage is applied to the solenoid 282, the valve element 274 is biased against the port 280 against the spring force of the compression coil spring 284.
 図4に示すように、M/Cカットバルブ206Fの開度が小さくなると、ポンプ260Fから高圧流路208Fへと圧送された油のうち、M/Cカットバルブ206Fを介してマスタ通路204Fに流れる油は少なくなる。これにより、ホイールシリンダ224FL、224FRに大きいホイールシリンダ圧を発生させることができる。このようにして、制御装置10は、M/Cカットバルブ206Fのソレノイド282に対する印加電流(差圧指示値)の大きさを制御することで、高圧流路208F内の油圧(マスタ通路204F内の油圧と高圧流路208F内の油圧の差圧)を制御することができる。尚、図示の例では、M/Cカットバルブ206Fは、弁室270より高圧流路208Fへ向かう油の流れのみを許す逆止弁286を内蔵する。 As shown in FIG. 4, when the opening degree of the M / C cut valve 206F decreases, the oil pumped from the pump 260F to the high pressure flow path 208F flows to the master passage 204F via the M / C cut valve 206F. Less oil. Thereby, a large wheel cylinder pressure can be generated in the wheel cylinders 224FL and 224FR. In this way, the control device 10 controls the magnitude of the applied current (differential pressure instruction value) to the solenoid 282 of the M / C cut valve 206F, so that the hydraulic pressure in the high-pressure flow path 208F (in the master passage 204F) is controlled. The differential pressure between the hydraulic pressure and the hydraulic pressure in the high-pressure channel 208F can be controlled. In the illustrated example, the M / C cut valve 206F incorporates a check valve 286 that allows only the flow of oil from the valve chamber 270 toward the high-pressure channel 208F.
 次に、所定の緊急減速が要求された場合の制御装置10により実行される油圧制御であって、前後配管による油圧回路200における油圧制御について説明する。 Next, the hydraulic control executed by the control device 10 when a predetermined emergency deceleration is requested, and the hydraulic control in the hydraulic circuit 200 using the front and rear piping will be described.
 図5は、制御装置10により実行される油圧制御の一例を示すフローチャートである。図5に示す処理ルーチンは、車両走行中に所定周期毎に繰り返し実行されてもよい。 FIG. 5 is a flowchart showing an example of hydraulic control executed by the control device 10. The processing routine shown in FIG. 5 may be repeatedly executed at predetermined intervals while the vehicle is traveling.
 ステップ500では、制御装置10は、急制動指令開始条件を判定する。急制動指令開始条件は、所定の緊急減速が要求された場合に満たされるものであってよい。例えば、前方障害物との衝突回避制御では、前方障害物との衝突までの時間:TTC(Time
to Collision)を算出し、当該算出したTTCが所定値(例えば1秒)を下回った場合に満たされるものであってよい。この場合、制御装置10は、前方レーダセンサ134からの検出結果に基づいて、所定方位(横位置)内の前方障害物についてTTCを算出し、当該算出したTTCが所定値(例えば1秒)を下回った場合に、ステップ502に進む。尚、TTCは、前方障害物までの相対距離を、前方障害物に対する相対速度で割り算することで導出されてもよい。また、自動運転制御では、例えば、前方車両と所定の車間距離下限値を保つのに必要な減速度の大きさが所定値を上回った場合に満たされるものであってよい。尚、急制動指令開始条件は、自動運転制御では満たされず、衝突回避制御においてのみ満たされるものであってもよい。急制動指令開始条件が満たされた場合には、ステップ502に進み、それ以外の場合は、そのまま終了する。
In step 500, the control device 10 determines a sudden braking command start condition. The sudden braking command start condition may be satisfied when a predetermined emergency deceleration is requested. For example, in the collision avoidance control with the front obstacle, the time until the collision with the front obstacle: TTC (Time
to Collation), and may be satisfied when the calculated TTC falls below a predetermined value (for example, 1 second). In this case, the control device 10 calculates a TTC for a front obstacle in a predetermined direction (lateral position) based on the detection result from the front radar sensor 134, and the calculated TTC calculates a predetermined value (for example, 1 second). If so, go to Step 502. Note that the TTC may be derived by dividing the relative distance to the front obstacle by the relative speed with respect to the front obstacle. In the automatic driving control, for example, it may be satisfied when the magnitude of the deceleration required to maintain a predetermined lower distance between the vehicle ahead and the vehicle ahead exceeds a predetermined value. Note that the sudden braking command start condition may not be satisfied in the automatic driving control but may be satisfied only in the collision avoidance control. If the sudden braking command start condition is satisfied, the process proceeds to step 502. Otherwise, the process ends.
 ステップ502では、制御装置10は、目標制御値に基づいて、後輪系統油圧回路201Rによる増圧を抑制した4輪自動ブレーキを実行する。具体的には、制御装置10は、ポンプ260F、260Rを作動させると共に、M/Cカットバルブ206F、206Rを制御して、ホイールシリンダ224FL、224FR、224RL、224RRのホイールシリンダ圧を増圧する。この際、制御装置10は、後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧が前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧を上回ることがないような態様で、M/Cカットバルブ206F、206Rを制御する。この後輪系統に対する増圧抑制は、多種多様な態様で実現することができ、任意の態様で実現されてもよい。例えば、油圧目標値に向けた増圧開始タイミングについて、後輪系統油圧回路201Rによる増圧開始タイミングを、前輪系統油圧回路201Fによる増圧開始タイミングに対して、所定遅延時間ΔT遅らせてもよい。尚、後輪系統に対する増圧抑制方法の他の具体例については後述する。 In step 502, the control device 10 executes a four-wheel automatic brake in which the pressure increase by the rear wheel system hydraulic circuit 201R is suppressed based on the target control value. Specifically, the control device 10 operates the pumps 260F and 260R and controls the M / C cut valves 206F and 206R to increase the wheel cylinder pressures of the wheel cylinders 224FL, 224FR, 224RL and 224RR. At this time, the control device 10 controls the M / C cut valves 206F and 206R so that the wheel cylinder pressures of the rear wheel cylinders 224RL and 224RR do not exceed the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR. To control. The pressure increase suppression for the rear wheel system can be realized in a wide variety of modes, and may be realized in any mode. For example, with respect to the pressure increase start timing toward the hydraulic target value, the pressure increase start timing by the rear wheel system hydraulic circuit 201R may be delayed by a predetermined delay time ΔT with respect to the pressure increase start timing by the front wheel system hydraulic circuit 201F. Other specific examples of the method for suppressing pressure increase with respect to the rear wheel system will be described later.
 目標制御値は、車輪のホイールシリンダ圧に関連する任意の物理量に対して設定されてもよい。例えば、目標制御値は、目標減速度であってもよいし、ホイールシリンダ圧に対する油圧目標値であってもよいし、ホイールシリンダ圧に対する増圧勾配の目標値であってもよいし、M/Cカットバルブ206F、206Rに対する差圧指示値(印加電流値)の目標値であってもよい。目標制御値は、固定値であってもよいし、前方障害物との相対関係(TTC等)に応じて設定される可変値であってもよい。固定値の場合、目標制御値は、例えば目標減速度が6.0m/s又は各ホイールシリンダ圧に対する油圧目標値が5Mpaであってよい。 The target control value may be set for any physical quantity related to the wheel cylinder pressure of the wheel. For example, the target control value may be a target deceleration, a hydraulic target value for the wheel cylinder pressure, a target value of a pressure increase gradient for the wheel cylinder pressure, or M / It may be a target value of a differential pressure instruction value (applied current value) for the C cut valves 206F and 206R. The target control value may be a fixed value or a variable value set according to a relative relationship (such as TTC) with the front obstacle. In the case of a fixed value, the target control value may be, for example, a target deceleration of 6.0 m / s 2 or a hydraulic target value for each wheel cylinder pressure of 5 Mpa.
 ステップ504では、制御装置10は、急制動指令終了条件を判定する。急制動指令終了条件は、例えば加速度センサ136等に基づいて衝突が検知された場合や、車体速度が0km/hになった場合、TTCが1.5[秒]を上回った場合、急制動指令が所定時間(例えば3秒)以上継続した場合に満たされてもよい。急制動指令終了条件が満たされた場合には、そのまま終了し、それ以外の場合は、ステップ502に戻る。 In step 504, the control device 10 determines a sudden braking command end condition. The sudden braking command end condition is, for example, when a collision is detected based on the acceleration sensor 136 or the like, when the vehicle body speed becomes 0 km / h, or when the TTC exceeds 1.5 [seconds], May be satisfied when it continues for a predetermined time (for example, 3 seconds) or longer. If the sudden braking command termination condition is satisfied, the routine ends. Otherwise, the process returns to step 502.
 尚、上記ステップ502の4輪自動ブレーキは、典型的には、運転者によるブレーキペダル190の操作が行われていない状況下で実行される。即ち、上記ステップ502で使用される目標制御値は、ブレーキペダル190の操作量以外の因子に基づいて決定される値(固定値を含む)である。尚、4輪自動ブレーキ開始後に、運転者によるブレーキペダル190の操作(例えば踏力スイッチ192に基づいて検出)が行われた場合には、例えばブレーキペダル190の操作が無視されて、4輪自動ブレーキが継続されてもよい。或いは、4輪自動ブレーキ開始後に、運転者によるブレーキペダル190の操作が行われた場合には、例えばマスタシリンダ圧が所定圧以上となった段階で、通常ブレーキに移行することとしてもよいし、又は、図2に示す油圧回路200の構成では可能でないが、他の油圧回路構成であり可能である場合は、双方の油圧を足しあわせて(或いは大きい方を選択して)ホイールシリンダ224FL、224FR、224RL、224RRに印加することとしてもよい。 It should be noted that the four-wheel automatic braking in step 502 is typically executed in a situation where the driver does not operate the brake pedal 190. That is, the target control value used in step 502 is a value (including a fixed value) determined based on factors other than the operation amount of the brake pedal 190. If the driver operates the brake pedal 190 (for example, detected based on the pedaling force switch 192) after starting the four-wheel automatic braking, the operation of the brake pedal 190 is ignored and the four-wheel automatic braking is performed. May be continued. Alternatively, when the driver operates the brake pedal 190 after starting the four-wheel automatic braking, for example, when the master cylinder pressure becomes equal to or higher than a predetermined pressure, the normal braking may be performed. Alternatively, although not possible with the configuration of the hydraulic circuit 200 shown in FIG. 2, when other hydraulic circuit configurations are possible, the wheel cylinders 224FL, 224FR are added by adding both hydraulic pressures (or selecting the larger one). It is good also as applying to 224RL and 224RR.
 但し、上記ステップ502の4輪自動ブレーキは、運転者によるブレーキペダル190の操作が行われている状況下で実行されてもよい。この場合、運転者によるブレーキペダル190の操作の有無に応じて、急制動指令開始条件が可変されてもよい。例えば運転者によるブレーキペダル190の操作がある場合には、急制動指令開始条件が満たされる閾値としてのTTCが長い時間(例えば、1.5秒)に変更されてもよい。いずれにしても、4輪自動ブレーキが開始されると、以後、ブレーキペダル190の操作が無視されてよい。即ち上記ステップ502で使用される目標制御値は、ブレーキペダル190の操作量以外の因子に基づいて決定されてよい。或いは、上述と同様、4輪自動ブレーキ開始後に、運転者によるブレーキペダル190の操作が依然として行われている場合には、例えばマスタシリンダ圧が所定圧以上となった段階で、通常ブレーキに移行することとしてもよいし、又は、図2に示す油圧回路200の構成では可能でないが、他の油圧回路構成であり可能である場合は、双方の油圧を足しあわせて(或いは大きい方を選択して)ホイールシリンダ224FL、224FR、224RL、224RRに印加することとしてもよい。 However, the four-wheel automatic braking in step 502 may be executed under a situation where the driver is operating the brake pedal 190. In this case, the sudden braking command start condition may be varied depending on whether the driver operates the brake pedal 190 or not. For example, when there is an operation of the brake pedal 190 by the driver, the TTC as a threshold value that satisfies the sudden braking command start condition may be changed to a long time (for example, 1.5 seconds). In any case, when the four-wheel automatic brake is started, the operation of the brake pedal 190 may be ignored thereafter. That is, the target control value used in step 502 may be determined based on factors other than the operation amount of the brake pedal 190. Alternatively, as described above, when the driver still operates the brake pedal 190 after starting the four-wheel automatic braking, for example, when the master cylinder pressure becomes a predetermined pressure or more, the process shifts to the normal brake. However, if the hydraulic circuit 200 shown in FIG. 2 is not possible, other hydraulic circuit configurations can be used. ) It may be applied to the wheel cylinders 224FL, 224FR, 224RL, 224RR.
 また、上記ステップ502の4輪自動ブレーキでは、保持ソレノイドバルブ212FL、212FR、212RL、212RR、及び、減圧ソレノイドバルブ214FL、214FR、214RL、214RRについては全てノーマル状態に維持される。即ち、保持ソレノイドバルブ212FL、212FR、212RL、212RR、及び、減圧ソレノイドバルブ214FL、214FR、214RL、214RRは、VSC(Vehicle
Stability Control)のような車両安定化制御では車輪毎に個別に制御されるが、上記ステップ502の4輪自動ブレーキは、系統毎の制御であり、同一系統内で異なる制御は実行されない。但し、上記ステップ502の4輪自動ブレーキの開始後に、ABS(anti-lock
brake system)や、VSCのような車両安定化制御が作動してもよい。この場合、4輪自動ブレーキが中止されてもよいし、4輪自動ブレーキを継続しつつ、かかる他の制御が実行されてもよい。後者の場合、M/Cカットバルブ206F、206Rについては4輪自動ブレーキ時と同様の制御を行いつつ、保持ソレノイドバルブ212FL、212FR、212RL、212RR、及び、減圧ソレノイドバルブ214FL、214FR、214RL、214RRについてABSや車両安定化制御の制御則に従った制御を実行することとしてもよい。
In the four-wheel automatic brake in step 502, the holding solenoid valves 212FL, 212FR, 212RL, 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR are all maintained in the normal state. That is, the holding solenoid valves 212FL, 212FR, 212RL, 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR are VSC (Vehicle
In the vehicle stabilization control such as Stability Control), each wheel is individually controlled. However, the four-wheel automatic brake in step 502 is control for each system, and different control is not executed in the same system. However, after the start of the four-wheel automatic braking in step 502, the ABS (anti-lock)
vehicle stabilization control such as a brake system) or VSC may be activated. In this case, the four-wheel automatic brake may be stopped, or such other control may be executed while continuing the four-wheel automatic brake. In the latter case, the holding solenoid valves 212FL, 212FR, 212RL, 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR are controlled while performing the same control as the M / C cut valves 206F, 206R during the four-wheel automatic braking. It is good also as performing control according to the control law of ABS or vehicle stabilization control.
 次に、上述の図5に示すステップ502において採用されてもよい後輪系統に対する増圧抑制方法の具体例について説明する。 Next, a specific example of the pressure increase suppression method for the rear wheel system that may be employed in step 502 shown in FIG. 5 will be described.
 図6は、前輪系統と後輪系統のそれぞれに対して設定される目標制御値の時系列(目標制御値パターン)の一例を示す図である。ここでは、一例として、目標制御値は、ホイールシリンダ圧に対する油圧目標値とする。図6では、前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧に対する油圧目標値(フロント油圧目標値)の時系列と、後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧に対する油圧目標値(リア油圧目標値)の時系列とが点線で示されると共に、これらの油圧目標値のパターンで制御したときの、実際の前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧(フロント実油圧)の時系列と、実際の後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧(リア実油圧)の時系列とが実線で示される。 FIG. 6 is a diagram showing an example of a time series (target control value pattern) of target control values set for each of the front wheel system and the rear wheel system. Here, as an example, the target control value is a hydraulic target value for the wheel cylinder pressure. In FIG. 6, the time series of the hydraulic target value (front hydraulic target value) with respect to the wheel cylinder pressure of the front wheel cylinders 224FL, 224FR, and the hydraulic target value (rear hydraulic target) with respect to the wheel cylinder pressure of the rear wheel wheel cylinders 224RL, 224RR. Value) is indicated by a dotted line, and the time series of the actual wheel cylinder pressures (front actual hydraulic pressure) of the front wheel cylinders 224FL and 224FR when controlled by these hydraulic target value patterns and the actual The time series of the wheel cylinder pressures (rear actual hydraulic pressure) of the rear wheel wheel cylinders 224RL and 224RR are shown by solid lines.
 図6に示す例では、リア油圧目標値の立ち上がりタイミングは、フロント油圧目標値の立ち上がりタイミングより所定遅延時間ΔT遅らされる。具体的には、フロント油圧目標値は、急制動指令開始時に、最終のフロント油圧目標値(本例では、5Mpa)に向けて増加する。他方、リア油圧目標値は、急制動指令開始時から所定遅延時間ΔT後に、最終のリア油圧目標値(本例では、5Mpa)に向けて増加する。尚、最終の目標値(最終のフロント油圧目標値及び最終のリア油圧目標値)とは、4輪自動ブレーキで最終的に実現すべき目標制御値に対応してよい。 In the example shown in FIG. 6, the rise timing of the rear hydraulic target value is delayed by a predetermined delay time ΔT from the rise timing of the front hydraulic target value. Specifically, the front hydraulic pressure target value increases toward the final front hydraulic pressure target value (5 Mpa in this example) at the start of the sudden braking command. On the other hand, the rear hydraulic pressure target value increases toward the final rear hydraulic pressure target value (5 Mpa in this example) after a predetermined delay time ΔT from the start of the sudden braking command. The final target value (the final front hydraulic pressure target value and the final rear hydraulic pressure target value) may correspond to a target control value that should be finally realized by the four-wheel automatic brake.
 図7は、前輪系統と後輪系統に対して同一(共通)の目標制御値を適用する比較例による同時系列を示す図である。この比較例では、フロント油圧目標値及びリア油圧目標値は共に、急制動指令開始時に、最終の油圧目標値(本例では、5Mpa)に向けて増加する。かかる構成では、後輪系統油圧回路201Rと前輪系統油圧回路201Fとの間の特性差に起因して、図7にフロント実油圧及びリア実油圧と付した実線にて示すように、後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧が前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧を上回ることになる。より具体的には、前輪系統油圧回路201Fは、フロントキャリパーの容量がリアキャリパーの容量よりも有意に大きいため、後輪系統油圧回路201Rよりも、同一の油圧を発生させるのに必要な消費油量が大きくなる(図8参照)。このため、この比較例では、4輪自動ブレーキ時に、後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧が、前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧より先に大きくなり、後輪ロック傾向となる。 FIG. 7 is a diagram showing a simultaneous sequence according to a comparative example in which the same (common) target control value is applied to the front wheel system and the rear wheel system. In this comparative example, both the front hydraulic pressure target value and the rear hydraulic pressure target value increase toward the final hydraulic pressure target value (5 Mpa in this example) at the start of the sudden braking command. In such a configuration, due to the characteristic difference between the rear wheel system hydraulic circuit 201R and the front wheel system hydraulic circuit 201F, as shown by the solid lines attached to the front actual hydraulic pressure and the rear actual hydraulic pressure in FIG. The wheel cylinder pressures of the wheel cylinders 224RL and 224RR exceed the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR. More specifically, the front wheel system hydraulic circuit 201F has a significantly larger capacity of the front caliper than the rear caliper, so that the consumed oil required to generate the same oil pressure as the rear wheel system hydraulic circuit 201R. The amount increases (see FIG. 8). Therefore, in this comparative example, during four-wheel automatic braking, the wheel cylinder pressures of the rear wheel cylinders 224RL and 224RR increase before the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR, and the rear wheel lock tendency Become.
 これに対して、図6に示す例では、リア油圧目標値の立ち上がりタイミングがフロント油圧目標値の立ち上がりタイミングより所定遅延時間ΔT遅らされるので、図6に示すように、後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧が前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧を上回ることを防止することができる。これにより、緊急減速が必要な場合の4輪自動ブレーキ時に、後輪ロック傾向となることが防止され、車両安定性を高めることができる。このような観点から、所定遅延時間ΔTは、好ましくは、後輪系統油圧回路201Rと前輪系統油圧回路201Fとの間の特性差、特に、同一のホイールシリンダ圧を発生させるのに必要な消費油量の差を考慮して設定される。所定遅延時間ΔTは、例えば200msecのような固定値であってよい。 On the other hand, in the example shown in FIG. 6, the rising timing of the rear hydraulic target value is delayed by a predetermined delay time ΔT from the rising timing of the front hydraulic target value, so as shown in FIG. It is possible to prevent the wheel cylinder pressures of 224RL and 224RR from exceeding the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR. As a result, the tendency to lock the rear wheel during four-wheel automatic braking when emergency deceleration is required can be prevented, and vehicle stability can be improved. From this point of view, the predetermined delay time ΔT is preferably a difference in characteristics between the rear wheel system hydraulic circuit 201R and the front wheel system hydraulic circuit 201F, in particular, the oil consumption necessary for generating the same wheel cylinder pressure. It is set in consideration of the amount difference. The predetermined delay time ΔT may be a fixed value such as 200 msec.
 尚、図6に示す例では、フロント油圧目標値及びリア油圧目標値は、それぞれ最終のフロント油圧目標値及び最終のリア油圧目標値に向けて急峻に立ち上がって上昇しているが、2段階以上のステップ状に増加してもよい。 In the example shown in FIG. 6, the front hydraulic pressure target value and the rear hydraulic pressure target value rise steeply and rise toward the final front hydraulic pressure target value and the final rear hydraulic pressure target value, respectively. It may be increased in steps.
 次に、図6に示す例を参照して上述した所定遅延時間ΔTの設定方法の好ましい例について、図8及び図9を参照して説明する。 Next, a preferred example of the method for setting the predetermined delay time ΔT described above with reference to the example shown in FIG. 6 will be described with reference to FIGS.
 図8は、ホイールシリンダ圧と消費油量の関係の一例を示す特性図である。図8には、前輪系統油圧回路201Fにおける同関係と、後輪系統油圧回路201Rにおける同関係とが示される。図8に示すように、同一のホイールシリンダ圧を発生させるのに必要な消費油量は、前輪系統油圧回路201Fと後輪系統油圧回路201Rとで異なる。これは、主に構造上の相違(例えばフロントキャリパーの容量とリアキャリパーの容量の相違)に基づく。このような特性図は、試験又は計算に基づいて取得されてもよいし、設計値を使用してもよい。 FIG. 8 is a characteristic diagram showing an example of the relationship between wheel cylinder pressure and oil consumption. FIG. 8 shows the same relationship in the front wheel system hydraulic circuit 201F and the same relationship in the rear wheel system hydraulic circuit 201R. As shown in FIG. 8, the amount of oil consumed to generate the same wheel cylinder pressure differs between the front wheel system hydraulic circuit 201F and the rear wheel system hydraulic circuit 201R. This is mainly based on the structural difference (for example, the difference between the capacity of the front caliper and the capacity of the rear caliper). Such a characteristic diagram may be obtained based on a test or calculation, or a design value may be used.
 図9は、前輪系統油圧回路201Fにおけるポンプ260Fの吐出能力(時間に対する吐出油量)の一例を示す特性図である。このような特性図も、同様に、試験又は計算に基づいて取得されてもよいし、設計値を使用してもよい。 FIG. 9 is a characteristic diagram showing an example of the discharge capacity (discharge oil amount with respect to time) of the pump 260F in the front wheel system hydraulic circuit 201F. Similarly, such a characteristic diagram may be obtained based on a test or calculation, or a design value may be used.
 ここで、ホイールシリンダ圧に対する最終の油圧目標値がPtである場合を想定する。このとき、最終の油圧目標値Ptを実現するために必要な前輪系統油圧回路201Fにおける消費油量Qと、最終の油圧目標値Ptを実現するために必要な後輪系統油圧回路201Rにおける消費油量Qとを、図8に示すように、特性図から求める。これらの消費油量差Qdiffは、Q-Qとなる。このとき、消費油量Qが得られるまでに要するポンプ260Fの作動時間Tを、図9に示すように、特性図から求める。そして、所定遅延時間ΔTは、以下の式で算出されてもよい。
ΔT=T×(Qdiff/Q)   式(1)
 尚、この算出方法を採用する場合、制御装置10は、例えば図5に示すステップ502の処理において、最終の油圧目標値Ptと図8及び図9に示した特性図に基づいて、所定遅延時間ΔTを算出してもよい。或いは、最終の油圧目標値Ptと、所定遅延時間ΔTとの関係は、予めマップとして作成され、メモリに記憶されてもよい。例えば、複数の最終の油圧目標値Pt(例えば、1Mpa、3Mpa、5Mpa、7Mpa)について、式(1)によりそれぞれ所定遅延時間ΔTを算出しておき、マップを作成してもよい。この場合、制御装置10は、最終の油圧目標値Ptに対応する所定遅延時間ΔTを読み出せばよい。尚、マップに規定されていない最終の油圧目標値については、それに近い2つの最終の油圧目標値に対応する所定遅延時間ΔTを補間することで、当該マップに規定されていない最終の油圧目標値に対応する所定遅延時間ΔTを算出してもよい。
Here, it is assumed that the final hydraulic target value for the wheel cylinder pressure is Pt. In this case, consumption of the wheel system hydraulic circuit 201R after required for implementing the final and oil consumption Q F in the front line hydraulic circuit 201F necessary for realizing the hydraulic target value Pt of the final hydraulic target value Pt and an oil amount Q R, as shown in FIG. 8 is obtained from the characteristic diagram. These oil consumption difference Q diff is Q F −Q R. At this time, the operation time T t of the pump 260F required until oil consumption Q F is obtained, as shown in FIG. 9 is obtained from the characteristic diagram. The predetermined delay time ΔT may be calculated by the following equation.
ΔT = T t × (Q diff / Q F ) Formula (1)
When this calculation method is adopted, the control device 10 determines the predetermined delay time based on the final hydraulic target value Pt and the characteristic diagrams shown in FIGS. 8 and 9 in the process of step 502 shown in FIG. ΔT may be calculated. Alternatively, the relationship between the final hydraulic pressure target value Pt and the predetermined delay time ΔT may be created in advance as a map and stored in the memory. For example, a predetermined delay time ΔT may be calculated for each of a plurality of final hydraulic target values Pt (for example, 1 Mpa, 3 Mpa, 5 Mpa, and 7 Mpa) using Equation (1) to create a map. In this case, the control device 10 may read the predetermined delay time ΔT corresponding to the final hydraulic pressure target value Pt. For the final hydraulic pressure target value not specified in the map, the final hydraulic pressure target value not specified in the map is obtained by interpolating a predetermined delay time ΔT corresponding to the two final hydraulic pressure target values close thereto. A predetermined delay time ΔT corresponding to the above may be calculated.
 また、その他の所定遅延時間ΔTの算出方法として、
所定遅延時間ΔTは、以下の式で算出されてもよい。
ΔT=T-TtR   式(2)
ここで、TtRは、消費油量Qが得られるまでに要するポンプ260Rの作動時間である。TtRは、図9に示したような特性図であって、後輪系統油圧回路201Rにおけるポンプ260Rの時間に対する吐出油量の特性図に基づいて、同様に算出されてよい。この場合も同様に、複数の最終の油圧目標値Pt(例えば、1Mpa、3Mpa、5Mpa、7Mpa)について、式(2)によりそれぞれ所定遅延時間ΔTを算出しておき、マップを作成してもよい。
As another method for calculating the predetermined delay time ΔT,
The predetermined delay time ΔT may be calculated by the following equation.
ΔT = T t −T tR equation (2)
Here, T tR is consumed oil amount Q R is the operating time of the pump 260R required until obtained. T tR is a characteristic diagram as shown in FIG. 9 and may be similarly calculated based on a characteristic diagram of the discharge oil amount with respect to time of the pump 260R in the rear wheel system hydraulic circuit 201R. Similarly, in this case, a predetermined delay time ΔT may be calculated for each of a plurality of final hydraulic target values Pt (for example, 1 Mpa, 3 Mpa, 5 Mpa, and 7 Mpa) according to the equation (2), and a map may be created. .
 図10は、前輪系統と後輪系統のそれぞれに対して設定される目標制御値の時系列(目標制御値パターン)の他の一例を示す図である。ここでは、一例として、目標制御値は、ホイールシリンダ圧に対する油圧目標値とする。図10では、図6と同様、前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧に対する油圧目標値(フロント油圧目標値)の時系列と、後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧に対する油圧目標値(リア油圧目標値)の時系列とが点線で示されると共に、これらの油圧目標値のパターンで制御したときの、実際の前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧(フロント実油圧)の時系列と、実際の後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧(リア実油圧)の時系列とが実線で示される。 FIG. 10 is a diagram showing another example of a time series (target control value pattern) of target control values set for each of the front wheel system and the rear wheel system. Here, as an example, the target control value is a hydraulic target value for the wheel cylinder pressure. In FIG. 10, as in FIG. 6, the time series of the hydraulic target value (front hydraulic target value) with respect to the wheel cylinder pressure of the front wheel cylinders 224FL and 224FR, and the hydraulic target with respect to the wheel cylinder pressure of the rear wheel wheel cylinders 224RL and 224RR. The time series of the values (rear hydraulic target values) are indicated by dotted lines, and the actual wheel cylinder pressures (front actual hydraulic pressure) of the front wheel cylinders 224FL and 224FR when controlled by these hydraulic target value patterns are shown. The time series and the time series of the actual wheel cylinder pressures (rear actual hydraulic pressure) of the wheel cylinders 224RL and 224RR of the rear wheels are indicated by solid lines.
 図10に示す例では、リア油圧目標値の立ち上がりタイミングは、フロント油圧目標値の立ち上がりタイミングと同一であるが、リア油圧目標値の増加勾配が、フロント油圧目標値の増加勾配よりも低く設定される。具体的には、フロント油圧目標値は、急制動指令開始時に、最終のフロント油圧目標値(本例では、5Mpa)に向けて比較的急な勾配で増加する。他方、リア油圧目標値は、急制動指令開始時に、最終のフロント油圧目標値(本例では、5Mpa)に向けて比較的緩やかな勾配で増加する。このように、リア油圧目標値の増加勾配に対して、フロント油圧目標値の増加勾配よりも低い上限値を設定してもよい。尚、リア油圧目標値の増加勾配に対する上限値(又は、リア油圧目標値の増加勾配とフロント油圧目標値の増加勾配との差)は、後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧が前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧を上回ることが無いように設定される。 In the example shown in FIG. 10, the rise timing of the rear hydraulic target value is the same as the rise timing of the front hydraulic target value, but the increase gradient of the rear hydraulic target value is set lower than the increase gradient of the front hydraulic target value. The Specifically, the front hydraulic pressure target value increases at a relatively steep slope toward the final front hydraulic pressure target value (5 Mpa in this example) at the start of the sudden braking command. On the other hand, the rear hydraulic pressure target value increases with a relatively gentle gradient toward the final front hydraulic pressure target value (5 Mpa in this example) at the start of the sudden braking command. In this manner, an upper limit value lower than the increase gradient of the front hydraulic pressure target value may be set for the increase gradient of the rear hydraulic pressure target value. The upper limit value (or the difference between the increase gradient of the rear hydraulic pressure target value and the increase gradient of the front hydraulic pressure target value) with respect to the increase gradient of the rear hydraulic pressure target value is determined by the wheel cylinder pressure of the rear wheel cylinders 224RL and 224RR. The wheel cylinder pressure is set so as not to exceed the wheel cylinder pressure of the wheel cylinders 224FL and 224FR.
 ここで、図6及び図7にフロント実油圧及びリア実油圧と付した実線にて示したように、フロント油圧目標値とリア油圧目標値とが時間に対して同一の勾配で上昇する場合、図8に示したような前輪系統油圧回路201Fと後輪系統油圧回路201Rとの間の消費油量の差に起因して、リア実油圧の方がフロント実油圧よりも急な勾配で増加する。この点、図10に示す例では、上述の如く、リア油圧目標値の増加勾配がフロント油圧目標値の増加勾配よりも小さいので、リア実油圧の増加勾配とフロント実油圧の増加勾配との差を低減することができる。これにより、緊急減速が必要な場合の4輪自動ブレーキ時に、後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧が前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧を上回ることを防止して、後輪ロック傾向となることを防止することが可能となり、車両安定性を高めることができる。 Here, when the front hydraulic pressure target value and the rear hydraulic pressure target value increase at the same gradient with respect to time, as indicated by the solid lines attached to the front actual hydraulic pressure and the rear actual hydraulic pressure in FIGS. Due to the difference in oil consumption between the front wheel system hydraulic circuit 201F and the rear wheel system hydraulic circuit 201R as shown in FIG. 8, the rear actual hydraulic pressure increases with a steeper slope than the front actual hydraulic pressure. . In this regard, in the example shown in FIG. 10, as described above, the increase gradient of the rear hydraulic target value is smaller than the increase gradient of the front hydraulic target value, and thus the difference between the increase gradient of the rear actual hydraulic pressure and the increase gradient of the front actual hydraulic pressure. Can be reduced. This prevents the wheel cylinder pressures of the rear wheel cylinders 224RL and 224RR from exceeding the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR at the time of four-wheel automatic braking when emergency deceleration is required. It becomes possible to prevent the tendency to lock, and the vehicle stability can be improved.
 尚、図10に示す方法は、図6に示した方法と組み合わせることも可能である。即ち、リア油圧目標値の立ち上がりタイミングを、フロント油圧目標値の立ち上がりタイミングよりも遅らせると共に、リア油圧目標値の増加勾配を、フロント油圧目標値の増加勾配よりも低く設定することも可能である。また、図10に示す例では、フロント油圧目標値は、最終のフロント油圧目標値に向けて急峻に立ち上がって上昇しているが、2段階以上のステップ状に増加してもよい。リア油圧目標値は、最終のリア油圧目標値に向けて穏やかに立ち上がって上昇しているが、2段階以上のステップ状に増加してもよい。 Note that the method shown in FIG. 10 can be combined with the method shown in FIG. That is, it is possible to delay the rise timing of the rear hydraulic pressure target value from the rise timing of the front hydraulic pressure target value and set the increase gradient of the rear hydraulic pressure target value lower than the increase gradient of the front hydraulic pressure target value. Further, in the example shown in FIG. 10, the front hydraulic pressure target value rises steeply and rises toward the final front hydraulic pressure target value, but it may increase in two or more steps. The rear hydraulic pressure target value rises gently and rises toward the final rear hydraulic pressure target value, but may increase in two or more steps.
 次に、所定の緊急減速が要求された場合の制御装置10により実行される油圧制御の他の一例について説明する。 Next, another example of hydraulic control executed by the control device 10 when a predetermined emergency deceleration is requested will be described.
 図11は、制御装置10により実行される油圧制御の他の一例を示すフローチャートである。図11に示す処理ルーチンは、車両走行中に所定周期毎に繰り返し実行されてもよい。図12は、図11に示す処理で使用される各マップ1、2、3の一例を示す図である。 FIG. 11 is a flowchart showing another example of hydraulic control executed by the control device 10. The processing routine shown in FIG. 11 may be repeatedly executed at predetermined intervals while the vehicle is traveling. FIG. 12 is a diagram showing an example of each map 1, 2, 3 used in the processing shown in FIG.
 ステップ1100では、制御装置10は、急制動指令開始条件を判定する。急制動指令開始条件は、所定の緊急減速が要求された場合に満たされるものであってよい。本例では、急制動指令開始条件は、前方障害物との衝突回避制御を行うプリクラッシュシステムからの要求があった場合に満たされる。例えば、プリクラッシュシステムでは、TTCが所定値(例えば1秒)を下回った場合に、緊急減速が要求される。尚、制御装置10は、プリクラッシュシステムの制御装置を構成してもよい。また、本例では、急制動指令開始条件は、プリクラッシュシステム以外のシステム(先行車追従制御やオートクルーズコントロールまたはその類の自動運転制御を行うシステム)からの要求があった場合にも満たされる。例えば、先行車追従制御やオートクルーズコントロールのような自動運転制御を行うシステムでは、目標減速度の大きさが所定値を上回った場合に、緊急減速が要求される。尚、制御装置10は、先行車追従制御やオートクルーズコントロールのような自動運転制御を行うシステムの制御装置を構成してもよい。急制動指令開始条件が満たされた場合には、ステップ1102に進み、それ以外の場合は、そのまま終了する。 In step 1100, the control device 10 determines a sudden braking command start condition. The sudden braking command start condition may be satisfied when a predetermined emergency deceleration is requested. In this example, the sudden braking command start condition is satisfied when there is a request from a pre-crash system that performs collision avoidance control with a forward obstacle. For example, in a pre-crash system, emergency deceleration is required when TTC falls below a predetermined value (for example, 1 second). The control device 10 may constitute a pre-crash system control device. In this example, the sudden braking command start condition is also satisfied when there is a request from a system other than the pre-crash system (a system that performs preceding vehicle tracking control, auto cruise control, or similar automatic driving control). . For example, in a system that performs automatic driving control such as preceding vehicle following control and auto cruise control, emergency deceleration is required when the target deceleration exceeds a predetermined value. The control device 10 may constitute a control device for a system that performs automatic driving control such as preceding vehicle following control and auto cruise control. If the sudden braking command start condition is satisfied, the process proceeds to step 1102; otherwise, the process ends.
 ステップ1102では、制御装置10は、プリクラッシュシステムからの緊急減速の要求であるか否かを判定する。プリクラッシュシステムからの緊急減速の要求である場合には、ステップ1104に進み、それ以外のシステムからの緊急減速の要求である場合には、ステップ1108に進む。 In step 1102, the control device 10 determines whether or not the request is an emergency deceleration request from the pre-crash system. If it is a request for emergency deceleration from the pre-crash system, the process proceeds to step 1104. If it is a request for emergency deceleration from other systems, the process proceeds to step 1108.
 ステップ1104では、制御装置10は、マップ1(図12参照)に基づいて、後輪系統油圧回路201Rによる増圧を抑制した4輪自動ブレーキを実行する。具体的には、制御装置10は、ポンプ260F、260Rを作動させると共に、増圧勾配指示量を前輪系統油圧回路201F及び後輪系統油圧回路201Rに対して共通に算出する。即ち、前輪系統油圧回路201FのM/Cカットバルブ206F及び後輪系統油圧回路201RのM/Cカットバルブ206Rに対して共通の増圧勾配指示量を算出する。増圧勾配指示量は、最終の増圧勾配指示量に向けて時間と共に徐々に増加する態様で算出されてもよい。最終の増圧勾配指示量は、固定値であってもよいし、前方障害物との相対関係(TTC等)に応じて設定される可変値であってもよい。そして、制御装置10は、マップ1に基づいて、算出した増圧勾配指示量に対応した差圧指示値をそれぞれ算出し、当該差圧指示値(電流)をそれぞれM/Cカットバルブ206F、206Rに印加する。ここで、マップ1では、増圧勾配指示量に対する差圧指示値が、前輪系統油圧回路201FのM/Cカットバルブ206Fと後輪系統油圧回路201RのM/Cカットバルブ206Rとに対してそれぞれ異なる。具体的には、前輪系統油圧回路201FのM/Cカットバルブ206Fに対しては、増圧勾配指示量が第1所定値ΔPA1を上回ると差圧指示値が所定勾配G1で所定値S1(上限値又は略上限値に近い値)に向けて増加するのに対して、後輪系統油圧回路201RのM/Cカットバルブ206Rに対しては、増圧勾配指示量が第2所定値ΔPA2(>ΔPA1)を上回るまで差圧指示値が増加しない。尚、後輪系統油圧回路201RのM/Cカットバルブ206Rに対しては、増圧勾配指示量が第2所定値ΔPA2を上回ると、差圧指示値が同勾配G1で同所定値S1に向けて増加する。従って、後輪系統油圧回路201RのM/Cカットバルブ206R及び前輪系統油圧回路201FのM/Cカットバルブ206Fに対して共通の増圧勾配指示量が時間と共に増加する態様で算出されると、M/Cカットバルブ206Rに対する差圧指示値の増加態様は、M/Cカットバルブ206Fに対する差圧指示値の増加態様に対して時間遅れが生じる。これにより、上述の図6を参照して説明したような所定遅延時間ΔTを設定した場合と同様の効果を得ることができる。尚、第1所定値ΔPA1と第2所定値ΔPA2との差は、所定遅延時間ΔTを設定する場合と同様の考え方で設定されてよい。 In step 1104, the control device 10 executes a four-wheel automatic brake in which pressure increase by the rear wheel system hydraulic circuit 201R is suppressed based on the map 1 (see FIG. 12). Specifically, the control device 10 operates the pumps 260F and 260R, and calculates the pressure increase gradient instruction amount in common for the front wheel system hydraulic circuit 201F and the rear wheel system hydraulic circuit 201R. That is, a common pressure increase gradient command amount is calculated for the M / C cut valve 206F of the front wheel system hydraulic circuit 201F and the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R. The pressure increase gradient instruction amount may be calculated in a manner that gradually increases with time toward the final pressure increase gradient instruction amount. The final pressure increase gradient instruction amount may be a fixed value or a variable value set according to a relative relationship (such as TTC) with the front obstacle. Then, the control device 10 calculates a differential pressure command value corresponding to the calculated pressure increase gradient command amount based on the map 1, and calculates the differential pressure command value (current) as the M / C cut valves 206F and 206R, respectively. Apply to. Here, in the map 1, the differential pressure command value with respect to the pressure increase gradient command amount is respectively determined for the M / C cut valve 206F of the front wheel system hydraulic circuit 201F and the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R. Different. Specifically, for the M / C cut valve 206F of the front wheel system hydraulic circuit 201F, when the pressure increase gradient command amount exceeds the first predetermined value ΔP A1 , the differential pressure command value becomes the predetermined gradient G1 and the predetermined value S1 ( (The value close to the upper limit value or a value close to the upper limit value), while the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R has a pressure increase gradient instruction amount of the second predetermined value ΔP A2. The differential pressure indication value does not increase until it exceeds (> ΔP A1 ). Incidentally, with respect to the M / C cut valve 206R for the rear wheels system hydraulic circuit 201R, increasing the gradient indicated amount exceeds a second predetermined value [Delta] P A2, in the same predetermined value S1 differential pressure instruction value is the same gradient G1 Increase towards. Therefore, when the common pressure increase gradient command amount is calculated over time for the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R and the M / C cut valve 206F of the front wheel system hydraulic circuit 201F, The manner in which the differential pressure command value for the M / C cut valve 206R increases is delayed in time from the mode in which the differential pressure command value for the M / C cut valve 206F increases. Thereby, the same effect as the case where the predetermined delay time ΔT as described with reference to FIG. 6 is set can be obtained. Note that the difference between the first predetermined value ΔP A1 and the second predetermined value ΔP A2 may be set in the same way as when the predetermined delay time ΔT is set.
 ステップ1106では、制御装置10は、急制動指令終了条件を判定する。急制動指令終了条件は、例えば衝突が検知された場合や、車体速度が0km/hになった場合、TTCが1.5[秒]を上回った場合、急制動指令が所定時間(例えば3秒)以上継続した場合に満たされてもよい。急制動指令終了条件が満たされた場合には、そのまま終了し、それ以外の場合は、ステップ1104に戻る。 In step 1106, the control device 10 determines the sudden braking command end condition. For example, when the collision is detected, the vehicle speed becomes 0 km / h, or when the TTC exceeds 1.5 [seconds], the sudden braking command is terminated for a predetermined time (for example, 3 seconds). ) It may be satisfied if it continues for the above. If the sudden braking command end condition is satisfied, the process ends as it is. Otherwise, the process returns to step 1104.
 ステップ1108では、制御装置10は、増圧勾配指示量を後輪系統油圧回路201R及び前輪系統油圧回路201Fに対して共通に算出し、増圧勾配指示量が所定値ΔPよりも大きいか否かを判定する。増圧勾配指示量が所定値ΔPよりも大きい場合は、ステップ1110に進み、増圧勾配指示量が所定値ΔPより小さい場合は、ステップ1114に進む。尚、増圧勾配指示量が所定値ΔPよりも大きいか否かの判定は、初回に算出される増圧勾配指示量に対してのみ実行されてもよい。この場合、次回周期以降は、初回に算出される増圧勾配指示量に対する判定結果に応じて、ステップ1110又は1114に進むこととしてもよい。 In step 1108, the control unit 10 calculates in common to the rear wheel system hydraulic circuit 201R and the front wheel system hydraulic circuit 201F the pressure increase gradient indicated amounts, or pressure-increase gradient instruction amount is larger than the predetermined value [Delta] P A not Determine whether. If the pressure increase gradient instruction amount is larger than the predetermined value [Delta] P A, the process proceeds to step 1110, if the pressure increase gradient instructed amount is smaller than the predetermined value [Delta] P A, the process proceeds to step 1114. The determination increasing gradient indicated amounts of whether greater than a predetermined value [Delta] P A may be performed only for the pressure increase gradient instruction amount calculated for the first time. In this case, after the next cycle, the process may proceed to step 1110 or 1114 according to the determination result for the pressure increase gradient instruction amount calculated for the first time.
 ステップ1110では、制御装置10は、マップ2(図12参照)に基づいて、後輪系統油圧回路201Rによる増圧を抑制した4輪自動ブレーキを実行する。具体的には、制御装置10は、ポンプ260F、260Rを作動させる。そして、制御装置10は、マップ2に基づいて、算出した増圧勾配指示量に対応した差圧指示値をそれぞれ算出し、当該差圧指示値(電流)をそれぞれM/Cカットバルブ206F、206Rに印加する。ここで、マップ2では、増圧勾配指示量に対する差圧指示値が、前輪系統油圧回路201FのM/Cカットバルブ206Fと後輪系統油圧回路201RのM/Cカットバルブ206Rとに対してそれぞれ異なる。具体的には、前輪系統油圧回路201FのM/Cカットバルブ206Fに対しては、増圧勾配指示量が所定値ΔPを上回ると、差圧指示値が所定勾配G1で所定値S1に向けて増加するのに対して、後輪系統油圧回路201RのM/Cカットバルブ206Rに対しては、増圧勾配指示量が所定値ΔPを上回ると、差圧指示値が所定勾配G2(<G1)で所定値S2(<S1)に向けて増加する。即ち、増圧勾配指示量が増加すると、後輪系統油圧回路201RのM/Cカットバルブ206Rに対する差圧指示値は、前輪系統油圧回路201FのM/Cカットバルブ206Fに対する差圧指示値に比べて、緩やかな傾きで小さい所定値S2に向けて増加する。従って、後輪系統油圧回路201RのM/Cカットバルブ206R及び前輪系統油圧回路201FのM/Cカットバルブ206Fに対して共通の増圧勾配指示量が時間と共に増加する態様で算出されると、M/Cカットバルブ206Rに対する差圧指示値の増加態様は、M/Cカットバルブ206Fに対する差圧指示値の増加態様に対して、増加勾配が小さくなる。これにより、上述の図10を参照して説明したような場合と同様の効果を得ることができる。 In step 1110, the control device 10 executes a four-wheel automatic brake in which pressure increase by the rear wheel system hydraulic circuit 201R is suppressed based on the map 2 (see FIG. 12). Specifically, the control device 10 operates the pumps 260F and 260R. Then, the control device 10 calculates a differential pressure command value corresponding to the calculated pressure increase gradient command amount based on the map 2, and uses the differential pressure command value (current) as the M / C cut valves 206F and 206R, respectively. Apply to. Here, in the map 2, the differential pressure command value with respect to the pressure increase gradient command amount is respectively determined for the M / C cut valve 206F of the front wheel system hydraulic circuit 201F and the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R. Different. Specifically, with respect to the M / C cut valve 206F of the front wheel system hydraulic circuit 201F, the pressure-increase gradient instruction amount exceeds a predetermined value [Delta] P A, differential pressure instruction value toward a predetermined value S1 at a predetermined gradient G1 whereas increasing Te, for M / C cut valve 206R for the rear wheels system hydraulic circuit 201R, the pressure-increase gradient instruction amount exceeds a predetermined value [Delta] P a, differential pressure instruction value is a predetermined gradient G2 (< G1) increases toward a predetermined value S2 (<S1). That is, when the pressure increase gradient command amount increases, the differential pressure command value for the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R is compared with the differential pressure command value for the M / C cut valve 206F of the front wheel system hydraulic circuit 201F. Thus, it increases toward a small predetermined value S2 with a gentle slope. Therefore, when the common pressure increase gradient command amount is calculated over time for the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R and the M / C cut valve 206F of the front wheel system hydraulic circuit 201F, The increasing aspect of the differential pressure instruction value for the M / C cut valve 206R has a smaller increase gradient than the increasing aspect of the differential pressure instruction value for the M / C cut valve 206F. Thereby, the same effect as the case described with reference to FIG. 10 described above can be obtained.
 ここで、先行車追従制御やオートクルーズコントロールのような自動運転制御を行うシステムからの緊急減速の要求時は、プリクラッシュシステムからの緊急減速の要求時よりも、増圧勾配指示量(目標減速度)が小さくなる傾向がある。即ち、先行車追従制御やオートクルーズコントロールのような自動運転制御を行うシステムによる緊急減速時には、プリクラッシュシステムによる緊急減速時とは対照的に、後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧を上限値付近まで増圧する必要性が低くなりうる。この点を考慮して、マップ2では、M/Cカットバルブ206Rに対する差圧指示値の所定値S2が、M/Cカットバルブ206Fに対する差圧指示値の所定値S1よりも小さいので、後輪側のホイールシリンダ圧が前輪側のホイールシリンダ圧と同等のレベルまで昇圧されるのを防止して、車両安定性を高めることができる。 Here, when an emergency deceleration request is issued from a system that performs automatic driving control such as preceding vehicle tracking control or auto cruise control, the pressure increase gradient command amount (target decrease) is lower than when emergency deceleration is requested from the pre-crash system. (Speed) tends to be small. That is, at the time of emergency deceleration by a system that performs automatic driving control such as preceding vehicle tracking control or auto cruise control, the wheel cylinder pressures of the rear wheel cylinders 224RL and 224RR are set in contrast to emergency deceleration by the pre-crash system. The need for increasing pressure to near the upper limit can be reduced. Considering this point, in Map 2, the predetermined value S2 of the differential pressure instruction value for the M / C cut valve 206R is smaller than the predetermined value S1 of the differential pressure instruction value for the M / C cut valve 206F. The vehicle wheel stability can be improved by preventing the wheel cylinder pressure on the side from being increased to the same level as the wheel cylinder pressure on the front wheel side.
 ステップ1112では、制御装置10は、急制動指令終了条件を判定する。急制動指令終了条件は、例えば先行車との必要な車間距離が維持された場合や、急制動指令が所定時間(例えば3秒)以上継続した場合に満たされてもよい。急制動指令終了条件が満たされた場合には、そのまま終了し、それ以外の場合は、ステップ1108に戻る。 In step 1112, the control device 10 determines a sudden braking command end condition. The sudden braking command end condition may be satisfied, for example, when a necessary inter-vehicle distance from the preceding vehicle is maintained, or when the sudden braking command continues for a predetermined time (for example, 3 seconds) or longer. If the sudden braking command end condition is satisfied, the process ends as it is. Otherwise, the process returns to step 1108.
 ステップ1114では、制御装置10は、マップ3(図12参照)に基づいて、後輪系統油圧回路201Rによる増圧を抑制しない4輪自動ブレーキを実行する。具体的には、制御装置10は、ポンプ260F、260Rを作動させる。そして、制御装置10は、マップ2に基づいて、算出した増圧勾配指示量に対応した差圧指示値を算出し、当該差圧指示値(電流)をM/Cカットバルブ206F、206Rに印加する。ここで、マップ3では、増圧勾配指示量に対する差圧指示値が、前輪系統油圧回路201FのM/Cカットバルブ206Fと後輪系統油圧回路201RのM/Cカットバルブ206Rとで同一である。具体的には、前輪系統油圧回路201FのM/Cカットバルブ206F及び後輪系統油圧回路201RのM/Cカットバルブ206Rに対しては、増圧勾配指示量が所定値ΔPに至るまで、差圧指示値が緩やかな所定勾配G3(<G2)で所定値S3(<S2)に向けて増加する。 In step 1114, the control device 10 executes the four-wheel automatic braking that does not suppress the pressure increase by the rear wheel system hydraulic circuit 201R based on the map 3 (see FIG. 12). Specifically, the control device 10 operates the pumps 260F and 260R. The control device 10 calculates a differential pressure command value corresponding to the calculated pressure increase gradient command amount based on the map 2, and applies the differential pressure command value (current) to the M / C cut valves 206F and 206R. To do. Here, in Map 3, the differential pressure command value for the pressure increase gradient command amount is the same for the M / C cut valve 206F of the front wheel system hydraulic circuit 201F and the M / C cut valve 206R of the rear wheel system hydraulic circuit 201R. . Specifically, for the front wheel system hydraulic circuit 201F of the M / C cut valve 206F and a rear wheel system hydraulic circuit 201R of M / C cut valve 206R, until the pressure-increase gradient indicated amount reaches a predetermined value [Delta] P A, The differential pressure instruction value increases toward a predetermined value S3 (<S2) with a gentle predetermined gradient G3 (<G2).
 ステップ1116では、制御装置10は、急制動指令終了条件を判定する。急制動指令終了条件は、例えば先行車との必要な車間距離が維持された場合や、急制動指令が所定時間(例えば2秒)以上継続した場合に満たされてもよい。急制動指令終了条件が満たされた場合には、そのまま終了し、それ以外の場合は、ステップ1108に戻る。 In step 1116, the control device 10 determines the sudden braking command end condition. The sudden braking command end condition may be satisfied, for example, when the necessary inter-vehicle distance from the preceding vehicle is maintained, or when the sudden braking command continues for a predetermined time (for example, 2 seconds). If the sudden braking command end condition is satisfied, the process ends as it is. Otherwise, the process returns to step 1108.
 このように図11に示す制御方法によれば、増圧勾配指示量が大きくなる急制動指令が発生した場合にも、後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧が前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧を上回ることを防止して、後輪ロック傾向となることを防止することが可能となり、車両安定性を高めることができる。また、プリクラッシュシステムからの緊急減速と他のシステムからの緊急減速とに対してそれぞれ異なるマップ(図12)を使用することで、それぞれのシステムの特徴に応じた急制動を、車両安定性を維持しつつ実現することができる。 As described above, according to the control method shown in FIG. 11, even when a sudden braking command for increasing the pressure increase gradient command amount is generated, the wheel cylinder pressures of the rear wheel cylinders 224RL and 224RR are changed to the front wheel wheel cylinders 224FL, It is possible to prevent the wheel cylinder pressure of 224FR from being exceeded, and to prevent a tendency to lock the rear wheel, thereby improving vehicle stability. Also, by using different maps (Fig. 12) for emergency deceleration from the pre-crash system and emergency deceleration from other systems, rapid braking according to the characteristics of each system can be achieved. It can be realized while maintaining.
 次に、X配管による油圧回路200’の場合について説明する。 Next, the case of the hydraulic circuit 200 'using X piping will be described.
 図13は、X配管による油圧回路200’の一例を示す図である。図13に示す油圧回路200’は、二系統の油圧回路201A、201Bを備える。図示の例では、二系統の油圧回路201A、201Bは、右前輪100FR及び左後輪100RLと、左前輪100FL及び右後輪100RRとで系統を分けたX配管からなる。以下では、右前輪100FR及び左後輪100RLに係る油圧回路201Aについては、第1系統油圧回路201Aと称し、左前輪100FL及び右後輪100RRに係る油圧回路201Bについては、第2系統油圧回路201Bと称する。尚、図13において、二点鎖線で囲まれた部分220は、ブレーキアクチュエータとして具現化されてもよい。 FIG. 13 is a diagram illustrating an example of a hydraulic circuit 200 ′ using X piping. The hydraulic circuit 200 'shown in FIG. 13 includes two systems of hydraulic circuits 201A and 201B. In the illustrated example, the two systems of hydraulic circuits 201A and 201B are composed of X pipes that are divided into systems of a right front wheel 100FR and a left rear wheel 100RL, and a left front wheel 100FL and a right rear wheel 100RR. Hereinafter, the hydraulic circuit 201A related to the right front wheel 100FR and the left rear wheel 100RL is referred to as a first system hydraulic circuit 201A, and the hydraulic circuit 201B related to the left front wheel 100FL and the right rear wheel 100RR is referred to as a second system hydraulic circuit 201B. Called. In FIG. 13, a portion 220 surrounded by a two-dot chain line may be embodied as a brake actuator.
 図13に示すように、X配管による油圧回路200’は、図2に示した前後配管による油圧回路200に対して、前輪のホイールシリンダ224FL、224FR及び後輪のホイールシリンダ224RL、224RRの配置が異なる以外は、実質的に同一であってよい。従って、図13においては、X配管による油圧回路200’において図2に示した前後配管による油圧回路200と同一であってよい構成要素については、符号の末尾に単独で付された「F」及び「R」を、それぞれ、「A」及び「B」と変更して、説明を省略する。 As shown in FIG. 13, the hydraulic circuit 200 ′ with X piping has a front wheel cylinders 224 FL and 224 FR and rear wheel cylinders 224 RL and 224 RR arranged with respect to the hydraulic circuit 200 with front and rear piping shown in FIG. Except for differences, they may be substantially the same. Therefore, in FIG. 13, the components that may be the same as those of the hydraulic circuit 200 with the front and rear pipes shown in FIG. “R” is changed to “A” and “B”, respectively, and the description is omitted.
 次に、所定の緊急減速が要求された場合の制御装置10により実行される油圧制御であって、X配管による油圧回路200’における油圧制御について説明する。 Next, the hydraulic control executed by the control device 10 when a predetermined emergency deceleration is requested, that is, the hydraulic control in the hydraulic circuit 200 'using X piping will be described.
 図14は、制御装置10により実行される油圧制御の一例を示すフローチャートである。図14に示す処理ルーチンは、車両走行中に所定周期毎に繰り返し実行されてもよい。 FIG. 14 is a flowchart illustrating an example of hydraulic control executed by the control device 10. The processing routine shown in FIG. 14 may be repeatedly executed at predetermined intervals while the vehicle is traveling.
 ステップ1400及び1404は、上述の図5を参照して説明したフローチャートのステップ500及び504とそれぞれ同様であってよい。 Steps 1400 and 1404 may be the same as steps 500 and 504 in the flowchart described with reference to FIG.
 ステップ1402では、制御装置10は、目標制御値に基づいて、第1系統油圧回路201Aと第2系統油圧回路201Bにおける系統間の圧力差を一定値DTh内に収める態様で4輪自動ブレーキを実行する。具体的には、制御装置10は、ポンプ260A、260Bを作動させると共に、M/Cカットバルブ206A、206Bを制御して、ホイールシリンダ224FL、224FR、224RL、224RRのホイールシリンダ圧を増圧する。この際、制御装置10は、第1系統油圧回路201Aに係るホイールシリンダ224FL、224RRのホイールシリンダ圧と、第2系統油圧回路201Bに係るホイールシリンダ224FL、224RRのホイールシリンダ圧との間の圧力差を一定値DTh内に収まるような態様で、M/Cカットバルブ206A、206Bを制御する。 In step 1402, the control unit 10 based on the target control value, the four-wheel automatic braking in a manner to keep the pressure difference between the systems in the first system hydraulic circuit 201A and the second system hydraulic circuit 201B within a predetermined value D Th Execute. Specifically, the control device 10 operates the pumps 260A and 260B and controls the M / C cut valves 206A and 206B to increase the wheel cylinder pressures of the wheel cylinders 224FL, 224FR, 224RL and 224RR. At this time, the control device 10 determines the pressure difference between the wheel cylinder pressures of the wheel cylinders 224FL and 224RR related to the first system hydraulic circuit 201A and the wheel cylinder pressures of the wheel cylinders 224FL and 224RR related to the second system hydraulic circuit 201B. in a fit such embodiments within a predetermined value D Th, controls the M / C cut valve 206A, 206B.
 尚、同様に、目標制御値は、車輪のホイールシリンダ圧に関連する任意の物理量に対して設定されてもよい。例えば、目標制御値は、目標減速度であってもよいし、ホイールシリンダ圧に対する油圧目標値であってもよいし、ホイールシリンダ圧に対する増圧勾配目標値であってもよいし、M/Cカットバルブ206A、206Bに対する差圧目標値(印加電流値)であってもよい。目標制御値は、固定値であってもよいし、前方障害物との相対関係(TTC等)に応じて設定される可変値であってもよい。 Similarly, the target control value may be set for any physical quantity related to the wheel cylinder pressure of the wheel. For example, the target control value may be a target deceleration, a hydraulic pressure target value for the wheel cylinder pressure, a pressure increase gradient target value for the wheel cylinder pressure, or M / C. It may be a differential pressure target value (applied current value) for the cut valves 206A and 206B. The target control value may be a fixed value or a variable value set according to a relative relationship (such as TTC) with the front obstacle.
 本ステップ1402における系統間の圧力差の低減方法は、多種多様な態様で実現することができ、任意の態様で実現されてもよい。例えば、第1系統油圧回路201Aと第2系統油圧回路201Bにおける系統間の消費油量の相違(配管長の違い等に起因して発生する相違)に基づいて、消費油量の多い方の系統に対して、目標制御値を嵩上げしてもよい。例えば、第1系統油圧回路201Aにおいて最終の目標制御値を実現するのに必要な消費油量Qと、第2系統油圧回路201Bにおいて最終の目標制御値を実現するのに必要な消費油量Qとを、図8に示したような特性図に基づいて求め、それらの系統間の差(消費油量差Qdiff=|Q-Q|)を求めて、以下の指標値Nを算出してもよい。
N=Qdiff/Qmin
ここで、Qminは、消費油量Qと消費油量Qとのうちの小さい方である。この指標値Nと、目標制御値の嵩上げ量ΔPとの関係を予めマップとして作成しておいてもよい。また、目標制御値がホイールシリンダ圧に対する油圧目標値である場合であって、最終の目標制御値が固定値(例えば、5Mpa)である場合、目標制御値の嵩上げ量ΔPについても固定値(例えば、0.2Mpa)として予め決定しておいてもよい。このとき、一定値DThは、第1系統油圧回路201Aと第2系統油圧回路201Bにおける系統間の圧力差が車両挙動に影響を与えない範囲となるように設定される。例えば、一定値DThは、車両挙動に影響を与えうる最小の圧力差に基づいて決定されてもよい。かかる最小の圧力差は、車両の性能(多種多様な因子)に依存するので、試験等により適合されてもよい。
The method for reducing the pressure difference between the systems in Step 1402 can be realized in a wide variety of modes, and may be realized in any mode. For example, based on the difference in the amount of oil consumed between the systems in the first system hydraulic circuit 201A and the second system hydraulic circuit 201B (difference caused by the difference in piping length, etc.), the system with the larger amount of oil consumption On the other hand, the target control value may be raised. For example, the consumed oil amount necessary to achieve the oil consumption Q A required to achieve the final target control value in the first system hydraulic circuit 201A, the final target control value in the second system hydraulic circuit 201B Q B is obtained based on the characteristic diagram as shown in FIG. 8, and a difference between these systems (difference in oil consumption Q diff = | Q A −Q B |) is obtained, and the following index value N May be calculated.
N = Q diff / Q min
Here, Q min is the smaller of the consumed oil amount Q A and the consumed oil amount Q B. The relationship between the index value N and the target control value raising amount ΔP may be created in advance as a map. When the target control value is a hydraulic pressure target value for the wheel cylinder pressure and the final target control value is a fixed value (for example, 5 Mpa), the target control value raising amount ΔP is also a fixed value (for example, , 0.2 Mpa) may be determined in advance. At this time, the constant value DTh is set so that the pressure difference between the systems in the first system hydraulic circuit 201A and the second system hydraulic circuit 201B does not affect the vehicle behavior. For example, the constant value DTh may be determined based on a minimum pressure difference that can affect the vehicle behavior. Such a minimum pressure difference depends on the performance of the vehicle (a wide variety of factors) and may be adapted by testing or the like.
 その他の系統間の圧力差の低減方法として、車輪速センサ138FR、138FL、138RR、138RLの出力信号に基づいて、第1系統油圧回路201Aに係る右前輪100FRの車輪速と、第2系統油圧回路201Bに係る左前輪100FLの車輪速との差に基づいて、右前輪100FR及び左前輪100FLのうちの、車輪速の減少(落ち込み)が小さい方の系統に係る目標制御値を、他方の系統に係る目標制御値よりも高く設定する(嵩上げする)こととしてもよい。或いは、車輪速センサ138FR、138FL、138RR、138RLの出力信号に基づいて、第1系統油圧回路201Aに係る左後輪100RLの車輪速と、第2系統油圧回路201Bに係る右後輪100RRの車輪速との差に基づいて、左後輪100RL及び右後輪100RRのうちの、車輪速の減少(落ち込み)が小さい方の系統に係る目標制御値を、他方の系統に係る目標制御値よりも高く設定する(嵩上げする)こととしてもよい。同様に、例えば、目標制御値がホイールシリンダ圧に対する油圧目標値である場合であって、最終の目標制御値が固定値(例えば、5Mpa)である場合、目標制御値の嵩上げ量ΔPについても固定値(例えば、0.2Mpa)として予め決定しておいてもよい。或いは、目標制御値の嵩上げ量ΔPは、車輪速の減少速度の差の大きさに応じて可変されてもよい。この場合、車輪速の減少速度の差の大きさと嵩上げ量ΔPとの関係を予めマップとして作成しておいてもよい。 As another method of reducing the pressure difference between the systems, the wheel speed of the right front wheel 100FR related to the first system hydraulic circuit 201A and the second system hydraulic circuit based on the output signals of the wheel speed sensors 138FR, 138FL, 138RR, 138RL. Based on the difference from the wheel speed of the left front wheel 100FL according to 201B, the target control value for the system with the smaller wheel speed decrease (sag) of the right front wheel 100FR and the left front wheel 100FL is set to the other system. It may be set higher (raised) than the target control value. Alternatively, based on the output signals of the wheel speed sensors 138FR, 138FL, 138RR, 138RL, the wheel speed of the left rear wheel 100RL related to the first system hydraulic circuit 201A and the wheel of the right rear wheel 100RR related to the second system hydraulic circuit 201B Based on the difference from the speed, the target control value for the system with the smaller wheel speed reduction (sag) of the left rear wheel 100RL and the right rear wheel 100RR is set to be higher than the target control value for the other system. It is good also as setting high (raising). Similarly, for example, when the target control value is a hydraulic target value for the wheel cylinder pressure and the final target control value is a fixed value (for example, 5 Mpa), the target control value raising amount ΔP is also fixed. A value (for example, 0.2 Mpa) may be determined in advance. Alternatively, the target control value raising amount ΔP may be varied in accordance with the magnitude of the difference in the reduction speed of the wheel speed. In this case, the relationship between the difference between the wheel speed reduction speeds and the raised amount ΔP may be created in advance as a map.
 尚、上記ステップ1402の4輪自動ブレーキは、典型的には、運転者によるブレーキペダル190の操作が行われていない状況下で実行される。即ち、上記ステップ1402で使用される目標制御値は、ブレーキペダル190の操作量以外の因子に基づいて決定される値(固定値を含む)である。尚、4輪自動ブレーキ開始後に、運転者によるブレーキペダル190の操作が行われた場合には、例えばブレーキペダル190の操作が無視されて、4輪自動ブレーキが継続されてもよい。或いは、4輪自動ブレーキ開始後に、運転者によるブレーキペダル190の操作が行われた場合には、例えばマスタシリンダ圧が所定圧以上となった段階で、通常ブレーキに移行することとしてもよいし、又は、図13に示す油圧回路200’の構成では可能でないが、他の油圧回路構成であり可能である場合は、双方の油圧を足しあわせて(或いは大きい方を選択して)ホイールシリンダ224FL、224FR、224RL、224RRに印加することとしてもよい。 Note that the four-wheel automatic braking in step 1402 is typically executed under a situation where the driver does not operate the brake pedal 190. That is, the target control value used in step 1402 is a value (including a fixed value) determined based on factors other than the operation amount of the brake pedal 190. When the driver operates the brake pedal 190 after starting the four-wheel automatic braking, for example, the operation of the brake pedal 190 may be ignored and the four-wheel automatic braking may be continued. Alternatively, when the driver operates the brake pedal 190 after starting the four-wheel automatic braking, for example, when the master cylinder pressure becomes equal to or higher than a predetermined pressure, the normal braking may be performed. Alternatively, if the configuration of the hydraulic circuit 200 ′ shown in FIG. 13 is not possible, but other hydraulic circuit configurations are possible, the wheel cylinders 224FL, It is good also as applying to 224FR, 224RL, 224RR.
 但し、上記ステップ1402の4輪自動ブレーキは、運転者によるブレーキペダル190の操作が行われている状況下で実行されてもよい。この場合、運転者によるブレーキペダル190の操作の有無に応じて、急制動指令開始条件が可変されてもよい。例えば運転者によるブレーキペダル190の操作がある場合には、急制動指令開始条件が満たされる閾値としてのTTCが長い時間(例えば、1.5秒)に変更されてもよい。いずれにしても、4輪自動ブレーキが開始されると、以後、ブレーキペダル190の操作が無視されてよい。即ち上記ステップ1402で使用される目標制御値は、ブレーキペダル190の操作量以外の因子に基づいて決定されてよい。或いは、上述と同様、4輪自動ブレーキ開始後に、運転者によるブレーキペダル190の操作が依然として行われている場合には、例えばマスタシリンダ圧が所定圧以上となった段階で、通常ブレーキに移行することとしてもよいし、又は、図13に示す油圧回路200’の構成では可能でないが、他の油圧回路構成であり可能である場合は、双方の油圧を足しあわせて(或いは大きい方を選択して)ホイールシリンダ224FL、224FR、224RL、224RRに印加することとしてもよい。 However, the four-wheel automatic braking in step 1402 may be executed under a situation where the driver is operating the brake pedal 190. In this case, the sudden braking command start condition may be varied depending on whether the driver operates the brake pedal 190 or not. For example, when there is an operation of the brake pedal 190 by the driver, the TTC as a threshold value that satisfies the sudden braking command start condition may be changed to a long time (for example, 1.5 seconds). In any case, when the four-wheel automatic brake is started, the operation of the brake pedal 190 may be ignored thereafter. That is, the target control value used in step 1402 may be determined based on factors other than the operation amount of the brake pedal 190. Alternatively, as described above, when the driver still operates the brake pedal 190 after starting the four-wheel automatic braking, for example, when the master cylinder pressure becomes a predetermined pressure or more, the process shifts to the normal brake. Alternatively, it is not possible with the configuration of the hydraulic circuit 200 ′ shown in FIG. 13, but when other hydraulic circuit configurations are possible, add both hydraulic pressures (or select the larger one). And may be applied to the wheel cylinders 224FL, 224FR, 224RL, 224RR.
 また、上記ステップ1402の4輪自動ブレーキでは、保持ソレノイドバルブ212FL、212FR、212RL、212RR、及び、減圧ソレノイドバルブ214FL、214FR、214RL、214RRについては全てノーマル状態に維持される。即ち、保持ソレノイドバルブ212FL、212FR、212RL、212RR、及び、減圧ソレノイドバルブ214FL、214FR、214RL、214RRは、VSCのような車両安定化制御では車輪毎に個別に制御されるが、上記ステップ1402の4輪自動ブレーキは、系統毎の制御であり、同一系統内で異なる制御は実行されない。但し、上記ステップ1402の4輪自動ブレーキの開始後に、ABSやVSCのような車両安定化制御が作動してもよい。この場合、4輪自動ブレーキが中止されてもよいし、4輪自動ブレーキを継続しつつ、かかる他の制御が実行されてもよい。後者の場合、M/Cカットバルブ206A、206Bについては4輪自動ブレーキ時と同様の制御を行いつつ、保持ソレノイドバルブ212FL、212FR、212RL、212RR、及び、減圧ソレノイドバルブ214FL、214FR、214RL、214RRについてABSや車両安定化制御の制御則に従った制御を実行することとしてもよい。 Further, in the four-wheel automatic brake in step 1402, the holding solenoid valves 212FL, 212FR, 212RL, 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR are all maintained in the normal state. That is, the holding solenoid valves 212FL, 212FR, 212RL, and 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, and 214RR are individually controlled for each wheel in the vehicle stabilization control such as VSC. The four-wheel automatic brake is control for each system, and different control is not executed in the same system. However, vehicle stabilization control such as ABS or VSC may be activated after the start of the four-wheel automatic braking in step 1402. In this case, the four-wheel automatic brake may be stopped, or such other control may be executed while continuing the four-wheel automatic brake. In the latter case, the M / C cut valves 206A and 206B are controlled in the same manner as in the four-wheel automatic braking, while the holding solenoid valves 212FL, 212FR, 212RL, 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR are used. It is good also as performing control according to the control law of ABS or vehicle stabilization control.
 図15は、第1系統油圧回路201Aと第2系統油圧回路201Bのそれぞれに対して設定される目標制御値の時系列(目標制御値パターン)の一例を示す図である。ここでは、一例として、目標制御値は、ホイールシリンダ圧に対する油圧目標値とする。図15では、第1系統のホイールシリンダ224RL、224FRのホイールシリンダ圧に対する油圧目標値(第1系統油圧目標値)の時系列と、第2系統のホイールシリンダ224FL、224RRのホイールシリンダ圧に対する油圧目標値(第2系統油圧目標値)の時系列とが点線で示されると共に、これらの油圧目標値のパターンで制御したときの、実際の第1系統のホイールシリンダ224FRのホイールシリンダ圧(第1系統実油圧)の時系列と、実際の第2系統のホイールシリンダ224FLのホイールシリンダ圧(第2系統実油圧)の時系列とが実線で示される。 FIG. 15 is a diagram illustrating an example of a time series (target control value pattern) of target control values set for each of the first system hydraulic circuit 201A and the second system hydraulic circuit 201B. Here, as an example, the target control value is a hydraulic target value for the wheel cylinder pressure. In FIG. 15, a time series of hydraulic target values (first system hydraulic target values) with respect to the wheel cylinder pressures of the first system wheel cylinders 224RL and 224FR, and a hydraulic target with respect to the wheel cylinder pressures of the second system wheel cylinders 224FL and 224RR. The time series of the values (second system hydraulic target value) are indicated by dotted lines, and the actual wheel cylinder pressure (first system) of the wheel cylinder 224FR of the first system when controlled by these hydraulic target value patterns. The time series of the actual hydraulic pressure) and the time series of the actual wheel cylinder pressure (second system actual hydraulic pressure) of the wheel cylinder 224FL of the second system are indicated by solid lines.
 図15に示す例では、最終の第2系統油圧目標値は、本来の最終の油圧目標値(=最終の第1系統油圧目標値)よりも嵩上げ量ΔPだけ高い値に設定される。具体的には、第1系統油圧目標値は、急制動指令開始時に、最終の第1系統油圧目標値(本例では、5Mpa)に向けて増加する。他方、第2系統油圧目標値は、急制動指令開始時に、最終の第1系統油圧目標値よりも嵩上げ量ΔPだけ嵩上げされた最終の第2系統油圧目標値(本例では、5.2Mpa)に向けて増加する。 In the example shown in FIG. 15, the final second system hydraulic pressure target value is set to a value higher than the original final hydraulic target value (= final first system hydraulic target value) by the raising amount ΔP. Specifically, the first system hydraulic pressure target value increases toward the final first system hydraulic pressure target value (5 Mpa in this example) at the start of the sudden braking command. On the other hand, the second system hydraulic pressure target value is the final second system hydraulic target value (5.2 Mpa in this example) that is raised by the raising amount ΔP from the final first system hydraulic target value at the start of the sudden braking command. Increase towards
 図16は、第1系統油圧回路201Aと第2系統油圧回路201Bに対して同一(共通)の目標制御値を適用する比較例による同時系列を示す図である。この比較例では、第1系統油圧目標値及び第2系統油圧目標値は共に、急制動指令開始時に、最終の油圧目標値(本例では、5Mpa)に向けて増加する。かかる構成では、第2系統油圧回路201Bと第1系統油圧回路201Aとの間の特性差(配管長の違いよる消費油量の差や、各種バルブの設計ばらつき等)に起因して、図16に第1系統実油圧及び第2系統実油圧と付した実線にて示すように、第2系統のホイールシリンダ224FLのホイールシリンダ圧と第1系統のホイールシリンダ224FRのホイールシリンダ圧との差が一定値DThより大きくなる。 FIG. 16 is a diagram illustrating a simultaneous sequence according to a comparative example in which the same (common) target control value is applied to the first system hydraulic circuit 201A and the second system hydraulic circuit 201B. In this comparative example, both the first system hydraulic target value and the second system hydraulic target value increase toward the final hydraulic target value (5 Mpa in this example) at the start of the sudden braking command. In such a configuration, due to the characteristic difference between the second system hydraulic circuit 201B and the first system hydraulic circuit 201A (difference in the amount of oil consumed due to the difference in piping length, design variation of various valves, etc.), FIG. The difference between the wheel cylinder pressure of the wheel cylinder 224FL of the second system and the wheel cylinder pressure of the wheel cylinder 224FR of the first system is constant, as shown by the solid lines attached to the first system actual hydraulic pressure and the second system actual hydraulic pressure. It becomes larger than the value DTh .
 これに対して、図15に示す例では、最終の第2系統油圧目標値が、本来の最終の油圧目標値よりも嵩上げ量ΔPだけ高い値に設定されるので、図15に示すように、第1系統のホイールシリンダ224FRのホイールシリンダ圧と第2系統のホイールシリンダ224FLのホイールシリンダ圧とを略同様の態様で増圧することができる。これにより、緊急減速が必要な場合の4輪自動ブレーキ時に、急な車両偏向が生じるのが防止され、車両安定性を高めることができる。 On the other hand, in the example shown in FIG. 15, the final second system hydraulic pressure target value is set to a value higher than the original final hydraulic pressure target value by the raised amount ΔP. The wheel cylinder pressure of the first system wheel cylinder 224FR and the wheel cylinder pressure of the second system wheel cylinder 224FL can be increased in substantially the same manner. Thus, sudden vehicle deflection is prevented during four-wheel automatic braking when emergency deceleration is necessary, and vehicle stability can be improved.
 次に、図14に示す例を参照して上述した目標制御値の嵩上げ量ΔPの設定方法の好ましい例について、図17及び図18を参照して説明する。ここでは、一例として、目標制御値は、ホイールシリンダ圧に対する油圧目標値とし、従って、嵩上げ量ΔPは、油圧の次元であるとする。また、ここでは、前輪に対して説明するが、後輪についても同様であってもよい。 Next, a preferred example of the method for setting the target control value raising amount ΔP described above with reference to the example shown in FIG. 14 will be described with reference to FIGS. 17 and 18. Here, as an example, it is assumed that the target control value is a hydraulic pressure target value with respect to the wheel cylinder pressure, and therefore the raising amount ΔP is a dimension of the hydraulic pressure. Further, here, the front wheel will be described, but the same may be applied to the rear wheel.
 図17は、車体速度と車輪速度の関係の一例を示す図である。図17には、実際の緊急減速時における車体速度Vxの変化態様の一例と、左前輪100FLの車輪速度VwFLの変化態様の一例と、右前輪100FRの車輪速度VwFRの変化態様の一例とが示されている。図17に示す車体速度Vx、左前輪100FLの車輪速度VwFL及び右前輪100FRの車輪速度VwFRは、車輪速センサ138FR、138FL、138RR、138RLの出力信号に基づいて算出されてもよい。 FIG. 17 is a diagram showing an example of the relationship between the vehicle speed and the wheel speed. FIG. 17 shows an example of a change mode of the vehicle body speed Vx during actual emergency deceleration, an example of a change mode of the wheel speed VwFL of the left front wheel 100FL, and an example of a change mode of the wheel speed VwFR of the right front wheel 100FR. Has been. The vehicle body speed Vx, the wheel speed VwFL of the left front wheel 100FL, and the wheel speed VwFR of the right front wheel 100FR shown in FIG. 17 may be calculated based on output signals of the wheel speed sensors 138FR, 138FL, 138RR, 138RL.
 図18は、スリップ率と制動力の関係の一例を示す図である。図18には、最大制動力を発揮するスリップ率の一例として0.08が示され、最大制動力の一例として8000[N]が示されている。このような特性図は、試験又は計算に基づいて取得されてもよいし、設計値を使用してもよい。 FIG. 18 is a diagram showing an example of the relationship between the slip ratio and the braking force. In FIG. 18, 0.08 is shown as an example of the slip ratio that exhibits the maximum braking force, and 8000 [N] is shown as an example of the maximum braking force. Such a characteristic diagram may be obtained based on a test or calculation, or a design value may be used.
 ここでは、先ず、右前輪100FRのスリップ率SFRと左前輪100FLのスリップ率SFLとを次式から求める。
SFR=(Vx-VwFR)/Vx
SFL=(Vx-VwFL)/Vx
次いで、図18に示すような特性図に基づいて、求めた右前輪100FRのスリップ率SFRと左前輪100FLのスリップ率SFLに対応する右前輪100FRの制動力BFRと左前輪100FLの制動力BFLとをそれぞれ求める。この際、最大制動力を発揮するスリップ率(本例では0.08)よりも小さい領域では、図18にて点線Pに示すように、線形近似により制動力BFR、制動力BFLが算出されてもよい。このとき、算出された制動力BFRと制動力BFLの差が、左右の制動力差Bdiff(=BFR-BFL)となる。この制動力差Bdiffは、油圧Pdiffの次元に変換されてもよい。変換方法は、例えば、1G(9.8m/s)の減速度を実現するのに必要な油圧(例えば7Mpa)と制動力の関係(特性)を使用してよい。この場合、左前輪100FLに係る嵩上げ量ΔPは、制動力差Bdiffを変換した油圧Pdiffであってよい。
Here, first, the slip ratio SFR of the right front wheel 100FR and the slip ratio SFL of the left front wheel 100FL are obtained from the following equations.
SFR = (Vx−VwFR) / Vx
SFL = (Vx−VwFL) / Vx
Next, based on the characteristic diagram as shown in FIG. 18, the braking rate BFR of the right front wheel 100FR and the braking force BFL of the left front wheel 100FL corresponding to the obtained slip rate SFR of the right front wheel 100FR, the slip rate SFL of the left front wheel 100FL, and For each. At this time, in a region smaller than the slip ratio that exhibits the maximum braking force (0.08 in this example), the braking force BFR and the braking force BFL are calculated by linear approximation as shown by the dotted line P in FIG. Also good. At this time, the difference between the calculated braking force BFR and the braking force BFL is the left-right braking force difference B diff (= BFR−BFL). This braking force difference B diff may be converted into a dimension of the hydraulic pressure P diff . As the conversion method, for example, a relationship (characteristic) between a hydraulic pressure (for example, 7 Mpa) and a braking force necessary to realize a deceleration of 1 G (9.8 m / s 2 ) may be used. In this case, the raising amount ΔP related to the left front wheel 100FL may be a hydraulic pressure P diff obtained by converting the braking force difference B diff .
 尚、この算出方法を採用する場合、制御装置10は、例えば図14に示すステップ1402の処理において、車輪速センサ138FR、138FL、138RR、138RLの出力信号と図18に示した特性図とに基づいて、嵩上げ量ΔPを算出してもよい。或いは、右前輪100FRのスリップ率SFRと左前輪100FLのスリップ率SFLの差(又は制動力差Bdiff、若しくは、車輪速度VwFLと車輪速度VwFRの差)と、嵩上げ量ΔPとの関係は、予めマップとして作成され、メモリに記憶されてもよい。例えば、複数のスリップ率の差について、嵩上げ量ΔPを算出しておき、マップを作成してもよい。この場合、制御装置10は、車輪速センサ138FR、138FL、138RR、138RLの出力信号に基づいてスリップ率の差を算出し、算出したスリップ率の差に対応する嵩上げ量ΔPを読み出せばよい。尚、マップに規定されていないスリップ率差については、それに近い2つのスリップ率差に対応する嵩上げ量ΔPを補間することで、当該マップに規定されていないスリップ率差に対応する嵩上げ量ΔPを算出してもよい。 When this calculation method is adopted, the control device 10 is based on the output signals of the wheel speed sensors 138FR, 138FL, 138RR, 138RL and the characteristic diagram shown in FIG. 18, for example, in the process of step 1402 shown in FIG. Then, the raising amount ΔP may be calculated. Alternatively, the relationship between the difference between the slip ratio SFR of the right front wheel 100FR and the slip ratio SFL of the left front wheel 100FL (or the braking force difference B diff or the difference between the wheel speed VwFL and the wheel speed VwFR) and the raising amount ΔP is determined in advance. It may be created as a map and stored in memory. For example, the map may be created by calculating the raising amount ΔP for a plurality of slip ratio differences. In this case, the control device 10 may calculate the slip ratio difference based on the output signals of the wheel speed sensors 138FR, 138FL, 138RR, 138RL, and read the raised amount ΔP corresponding to the calculated slip ratio difference. For slip rate differences that are not defined in the map, an increase amount ΔP corresponding to a slip ratio difference that is not defined in the map is obtained by interpolating an increase amount ΔP corresponding to two slip ratio differences that are close to the difference. It may be calculated.
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.
 例えば、上述した実施例では、ホイールシリンダ224FR、224FL、224RR、224RLにホイールシリンダ圧センサを備えていない構成が想定されている。このような安価の構成であっても、上述の如く、ホイールシリンダ圧センサの検出値に基づくフィードバック制御によるのではなく、上述の如くフィードフォワード制御により4輪自動ブレーキ時の車両安定性を高めることが可能である。但し、車輪速センサ138FR、138FL、138RR、138RLの出力信号に基づいて目標制御値をフィードバックして設定してもよい。尚、本発明は、ホイールシリンダ圧センサを備える構成にも適用可能である。この場合、ホイールシリンダ圧センサの検出値を4輪自動ブレーキ時にフィードバック制御として使用してもよいし、ホイールシリンダ圧センサの検出値を4輪自動ブレーキ時にフィードバック制御として使用しなくてもよい。 For example, in the above-described embodiment, a configuration in which the wheel cylinder pressure sensor is not provided in the wheel cylinders 224FR, 224FL, 224RR, and 224RL is assumed. Even with such an inexpensive configuration, the vehicle stability during four-wheel automatic braking is improved by the feedforward control as described above, not by the feedback control based on the detection value of the wheel cylinder pressure sensor as described above. Is possible. However, the target control value may be fed back and set based on the output signals of the wheel speed sensors 138FR, 138FL, 138RR, and 138RL. In addition, this invention is applicable also to the structure provided with a wheel cylinder pressure sensor. In this case, the detected value of the wheel cylinder pressure sensor may be used as feedback control during four-wheel automatic braking, or the detected value of the wheel cylinder pressure sensor may not be used as feedback control during four-wheel automatic braking.
 また、上述した実施例では、ポンプ260F、260R(ポンプ260A、260B)から吐出される高圧の油を蓄えるアキュムレータを備えていない構成が想定されている。このような安価の構成では、アキュムレータから大量の高圧の油を短時間に供給することができないため、特に系統間の圧力差が問題となる。従って、上述した実施例は、ポンプ260F、260R(ポンプ260A、260B)がアキュムレータを備えていない場合に特に効果的である。但し、本発明は、アキュムレータを備えた構成にも適用可能である。 In the above-described embodiment, a configuration is assumed in which an accumulator that stores high-pressure oil discharged from the pumps 260F and 260R ( pumps 260A and 260B) is not provided. In such a low-cost configuration, a large amount of high-pressure oil cannot be supplied from the accumulator in a short time, and thus a pressure difference between systems is particularly problematic. Therefore, the embodiment described above is particularly effective when the pumps 260F and 260R ( pumps 260A and 260B) do not include an accumulator. However, the present invention is also applicable to a configuration provided with an accumulator.
 また、上述した実施例では、系統毎にポンプ260F、260R(ポンプ260A、260B)を設けているが、2つの系統に対して共通の1つのポンプを設けてもよい。例えば、油圧回路200において、リザーバ250F、250Rを1つに統合すると共に、ポンプ260F、260Rを共通の1つのポンプに置き換え、当該共通の1つのポンプの吐出側を分岐させてポンプ流路210F、210Rを形成してもよい。油圧回路200’についても同様である。この場合、特許請求の範囲における「第1油圧生成源」及び「第2油圧生成源」は、当該共通の1つのポンプにより実現される。また、この場合も同様、共通の1つのポンプはアキュムレータを備えてもよい。 In the above-described embodiment, the pumps 260F and 260R ( pumps 260A and 260B) are provided for each system, but one common pump may be provided for the two systems. For example, in the hydraulic circuit 200, the reservoirs 250F and 250R are integrated into one, the pumps 260F and 260R are replaced with one common pump, and the discharge side of the common one pump is branched so that the pump flow path 210F, 210R may be formed. The same applies to the hydraulic circuit 200 '. In this case, the “first hydraulic pressure generation source” and the “second hydraulic pressure generation source” in the claims are realized by the one common pump. In this case as well, one common pump may be provided with an accumulator.
 また、上述した実施例は、前後配管による油圧回路200やX配管による油圧回路200’に関するものであるが、左右配管による油圧回路についても、X配管による油圧回路200’と同様の考え方を適用することができる。 The above-described embodiment relates to the hydraulic circuit 200 using the front and rear pipes and the hydraulic circuit 200 ′ using the X pipe, but the same idea as the hydraulic circuit 200 ′ using the X pipe is applied to the hydraulic circuit using the left and right pipes. be able to.
 また、図示した前後配管による油圧回路200やX配管による油圧回路200’は、あくまで一例であり、多種多様な態様で変更されてもよい。例えば、油圧回路200において、流路205F、205Rに吸入ソレノイドバルブを設けることで、マスタシリンダ202からポンプ260F、260Rへの油圧の流れをオン・オフする構成を実現してもよい。また、リザーバ250F、250Rからのポンプ流路210F、210Rにおけるポンプ260F、260Rの吸引側にそれぞれ2つの逆止弁を設け、2つの逆止弁の間にそれぞれ流路205F、205Rを繋いでもよい。この場合、ポンプ260F、260Rは、リザーバ250F、250Rを介せずにマスタシリンダ202からの油を吸入して吐出する。また、保持ソレノイドバルブ212FL、212FR、212RL、212RR、及び、減圧ソレノイドバルブ214FL、214FR、214RL、214RRは、リニアバルブであってもよい。また、マスタシリンダ202とポンプ260F、260Rとで共通のリザーバを使用する構成であってもよい。これら変更は、油圧回路200’においても同様に可能である。 The illustrated hydraulic circuit 200 using the front and rear piping and the hydraulic circuit 200 ′ using the X piping are merely examples, and may be changed in various ways. For example, the hydraulic circuit 200 may be configured to turn on / off the flow of hydraulic pressure from the master cylinder 202 to the pumps 260F, 260R by providing suction solenoid valves in the flow paths 205F, 205R. In addition, two check valves may be provided on the suction sides of the pumps 260F and 260R in the pump channels 210F and 210R from the reservoirs 250F and 250R, respectively, and the channels 205F and 205R may be connected between the two check valves, respectively. . In this case, the pumps 260F and 260R suck and discharge the oil from the master cylinder 202 without passing through the reservoirs 250F and 250R. Further, the holding solenoid valves 212FL, 212FR, 212RL, 212RR and the pressure reducing solenoid valves 214FL, 214FR, 214RL, 214RR may be linear valves. Moreover, the structure which uses a common reservoir by the master cylinder 202 and the pumps 260F and 260R may be sufficient. These changes can be similarly made in the hydraulic circuit 200 '.
 また、上述した実施例では、4輪自動ブレーキ時にM/Cカットバルブ206F、206Rを互いに異なる態様で制御して前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧と後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧とを昇圧しているが、4輪自動ブレーキ時にポンプ260F、260Rを互いに異なる態様で制御して同様の昇圧態様を実現することも可能である。この場合、ポンプ260F、260Rは、別々のモータで駆動され、M/Cカットバルブ206F、206Rはオン/オフバルブであってよい。より具体的には、4輪自動ブレーキ時には、M/Cカットバルブ206F、206Rを閉じると共に、ポンプ260Fとポンプ260Rを互いに異なる態様で制御すること、即ち、ポンプ260Fの回転数(それに伴い吐出量)とポンプ260Rの回転数(それに伴い吐出量)とを互いに異なる態様で制御することにより、上述した実施例と同様の態様でホイールシリンダ224FL、224FR、224RL、224RRの昇圧を実現することとしてもよい。これら変更は、油圧回路200’においても同様に可能である。 In the above-described embodiment, the M / C cut valves 206F and 206R are controlled in different modes during four-wheel automatic braking to control the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR and the rear wheel wheel cylinders 224RL and 224RR. Although the wheel cylinder pressure is increased, it is also possible to realize a similar pressure increasing mode by controlling the pumps 260F and 260R in different modes during four-wheel automatic braking. In this case, the pumps 260F and 260R may be driven by separate motors, and the M / C cut valves 206F and 206R may be on / off valves. More specifically, at the time of four-wheel automatic braking, the M / C cut valves 206F and 206R are closed, and the pump 260F and the pump 260R are controlled in different modes, that is, the rotational speed of the pump 260F (the discharge amount associated therewith). ) And the number of revolutions of pump 260R (and thus the discharge amount) are controlled in different modes, so that boosting of wheel cylinders 224FL, 224FR, 224RL, 224RR can be realized in the same manner as in the above-described embodiment. Good. These changes can be similarly made in the hydraulic circuit 200 '.
 また、上述した実施例では、4輪自動ブレーキ時にM/Cカットバルブ206F、206Rを互いに異なる態様で制御して前輪のホイールシリンダ224FL、224FRのホイールシリンダ圧と後輪のホイールシリンダ224RL、224RRのホイールシリンダ圧とを昇圧しているが、4輪自動ブレーキ時に前輪系統油圧回路201Fに係る保持ソレノイドバルブ212FL、212FR及び減圧ソレノイドバルブ214FL、214FRと、後輪系統油圧回路201Rに係る保持ソレノイドバルブ212RL、212RR及び減圧ソレノイドバルブ214RL、214RRとを互いに異なる態様で制御して同様の昇圧態様を実現することも可能である。この場合、M/Cカットバルブ206F、206Rはオン/オフバルブであってよい。より具体的には、4輪自動ブレーキ時には、M/Cカットバルブ206F、206Rを閉じると共に、前輪系統油圧回路201Fに係る保持ソレノイドバルブ212FL、212FR及び減圧ソレノイドバルブ214FL、214FRと、後輪系統油圧回路201Rに係る保持ソレノイドバルブ212RL、212RR及び減圧ソレノイドバルブ214RL、214RRとを互いに異なる態様で制御することにより、上述した実施例と同様の態様でホイールシリンダ224FL、224FR、224RL、224RRの昇圧を実現することとしてもよい。但し、この場合、前輪系統油圧回路201Fに係る保持ソレノイドバルブ212FL、212FRは互いに同一の態様で制御され、前輪系統油圧回路201Fに係る減圧ソレノイドバルブ214FL、214FRは互いに同一の態様で制御される。同様に、後輪系統油圧回路201Rに係る保持ソレノイドバルブ212RL、212RRは互いに同一の態様で制御され、後輪系統油圧回路201Rに係る減圧ソレノイドバルブ214RL、214RRは互いに同一の態様で制御される。これら変更は、油圧回路200’においても同様に可能である。 In the above-described embodiment, the M / C cut valves 206F and 206R are controlled in different modes during four-wheel automatic braking to control the wheel cylinder pressures of the front wheel cylinders 224FL and 224FR and the rear wheel wheel cylinders 224RL and 224RR. Although the wheel cylinder pressure is increased, the holding solenoid valves 212FL and 212FR and the pressure reducing solenoid valves 214FL and 214FR related to the front wheel system hydraulic circuit 201F and the holding solenoid valve 212RL related to the rear wheel system hydraulic circuit 201R during four-wheel automatic braking. 212RR and pressure-reducing solenoid valves 214RL and 214RR can be controlled in different modes to achieve the same boosting mode. In this case, the M / C cut valves 206F and 206R may be on / off valves. More specifically, during four-wheel automatic braking, the M / C cut valves 206F and 206R are closed, the holding solenoid valves 212FL and 212FR and the pressure reducing solenoid valves 214FL and 214FR related to the front wheel system hydraulic circuit 201F, and the rear wheel system hydraulic pressure. By controlling the holding solenoid valves 212RL and 212RR and the pressure reducing solenoid valves 214RL and 214RR related to the circuit 201R in different modes, the boosting of the wheel cylinders 224FL, 224FR, 224RL and 224RR is realized in the same manner as in the above-described embodiment. It is good to do. However, in this case, the holding solenoid valves 212FL and 212FR related to the front wheel system hydraulic circuit 201F are controlled in the same manner, and the pressure reducing solenoid valves 214FL and 214FR related to the front wheel system hydraulic circuit 201F are controlled in the same manner. Similarly, holding solenoid valves 212RL and 212RR related to rear wheel system hydraulic circuit 201R are controlled in the same manner, and pressure reducing solenoid valves 214RL and 214RR related to rear wheel system hydraulic circuit 201R are controlled in the same manner. These changes can be similarly made in the hydraulic circuit 200 '.
 また、ECB(Electric Control Braking system)に代表されるようなブレーキバイワイヤシステムで典型的に使用される回路構成が採用されてもよい。例えば、特開2006-103547号に開示されるような回路構成(但し、減圧カット弁90は省略可能)が採用されてもよい。この場合も、特許請求の範囲における「第1油圧生成源」及び「第2油圧生成源」は、当該共通の1つのポンプにより実現される。また、この場合、M/Cカットバルブはオン/オフバルブであってよい。かかる回路構成が採用された場合、同様に、4輪自動ブレーキ時には、M/Cカットバルブを閉じると共に、系統毎に保持ソレノイドバルブ及び減圧ソレノイドバルブを互いに異なる態様で制御することにより、上述した実施例と同様の態様で各ホイールシリンダの昇圧を実現することとしてもよい。但し、この場合も同様に、各系統内では保持ソレノイドバルブ及び減圧ソレノイドバルブは同一の態様で制御される。 Also, a circuit configuration typically used in a brake-by-wire system represented by ECB (Electric Control Braking System) may be employed. For example, a circuit configuration as disclosed in Japanese Patent Application Laid-Open No. 2006-103547 (however, the pressure reducing cut valve 90 can be omitted) may be employed. Also in this case, the “first hydraulic pressure generation source” and the “second hydraulic pressure generation source” in the claims are realized by the common one pump. In this case, the M / C cut valve may be an on / off valve. When such a circuit configuration is adopted, similarly, during the four-wheel automatic braking, the M / C cut valve is closed, and the holding solenoid valve and the pressure reducing solenoid valve are controlled in different modes for each system, thereby implementing the above-described implementation. The pressure increase of each wheel cylinder may be realized in the same manner as in the example. However, in this case as well, the holding solenoid valve and the pressure reducing solenoid valve are controlled in the same manner in each system.
 また、上述した実施例では、前方障害物の検出に前方レーダセンサ134が利用されているが、それに代えて若しくは加えて、カメラが利用されてもよい。例えば、前方障害物は、前方レーダセンサ134とカメラにより協動して検出されてもよい。 In the above-described embodiment, the front radar sensor 134 is used for detecting a front obstacle, but a camera may be used instead of or in addition to the front radar sensor 134. For example, the front obstacle may be detected in cooperation with the front radar sensor 134 and the camera.
 1  車両用制動装置
 10  制御装置
 100FL  左前輪
 100FR  右前輪
 100RL  左後輪
 100RR  右後輪
 134  前方レーダセンサ
 136  加速度センサ
 138FL、FR、RL、RR  車輪速センサ
 190  ブレーキペダル
 200、200’  油圧回路
 201A  第1系統油圧回路
 201B  第2系統油圧回路
 201F  前輪系統油圧回路
 201R  後輪系統油圧回路
 202  マスタシリンダ
 204F、R  マスタ通路
 205F、R  流路
 206F、R、A、B  M/Cカットバルブ
 208F、R  高圧流路
 210F、R  ポンプ流路
 212F、R  保持ソレノイドバルブ
 214F、R  減圧ソレノイドバルブ
 216F、R  減圧通路
 224FL、FR、RL、RR  ホイールシリンダ
 250F、R  リザーバ
 260F、R、A、B  ポンプ
 262F、R  逆止弁
 265  マスタシリンダ圧力センサ
DESCRIPTION OF SYMBOLS 1 Vehicle braking device 10 Control apparatus 100FL Left front wheel 100FR Right front wheel 100RL Left rear wheel 100RR Right rear wheel 134 Front radar sensor 136 Acceleration sensor 138FL, FR, RL, RR Wheel speed sensor 190 Brake pedal 200, 200 'Hydraulic circuit 201A 1st 1 system hydraulic circuit 201B 2nd system hydraulic circuit 201F front wheel system hydraulic circuit 201R rear wheel system hydraulic circuit 202 master cylinder 204F, R master passage 205F, R flow path 206F, R, A, B M / C cut valve 208F, R high pressure Flow path 210F, R Pump flow path 212F, R Holding solenoid valve 214F, R Pressure reducing solenoid valve 216F, R Pressure reducing passage 224FL, FR, RL, RR Wheel cylinder 250F, R reservoir 260F, R, A, B Pump 262F, R Check valve 265 Master cylinder pressure sensor

Claims (15)

  1.  車両の第1車輪のホイールシリンダに油圧を供給する第1系統の油圧回路と、
     車両の第2車輪のホイールシリンダに油圧を供給する第2系統の油圧回路と、
     前記第1系統の油圧回路に設けられ、前記第1系統の油圧回路により前記第1車輪のホイールシリンダに供給される油圧を生成する第1油圧生成源と、
     前記第1系統の油圧回路に設けられ、前記第1車輪のホイールシリンダ圧を可変する第1弁と、
     前記第2系統の油圧回路に設けられ、前記第2系統の油圧回路により前記第2車輪のホイールシリンダに供給される油圧を生成する第2油圧生成源と、
     前記第2系統の油圧回路に設けられ、前記第2車輪のホイールシリンダ圧を可変する第2弁と、
     前記第1系統の油圧回路及び前記第2系統の油圧回路に接続され、運転者のブレーキペダルの操作に応じた油圧を発生する第3油圧生成源と、
     所定の緊急減速が要求された場合に、運転者のブレーキペダルの操作に依存しない緊急制動制御を実行する制御装置とを備え、
     前記制御装置は、前記緊急制動制御において、前記第1弁及び前記第2弁を互いに異なる態様で制御して、又は、前記第1油圧生成源及び前記第2油圧生成源を互いに異なる態様で制御して、前記第1油圧生成源及び前記第2油圧生成源により生成された油圧に基づいて、前記第1系統の油圧回路及び前記第2系統の油圧回路により前記第1車輪のホイールシリンダ圧及び前記第2車輪のホイールシリンダ圧をそれぞれ昇圧することを特徴とする、車両用制動装置。
    A first system hydraulic circuit for supplying hydraulic pressure to a wheel cylinder of a first wheel of the vehicle;
    A second hydraulic circuit for supplying hydraulic pressure to the wheel cylinder of the second wheel of the vehicle;
    A first hydraulic pressure generating source that is provided in the hydraulic circuit of the first system and generates hydraulic pressure supplied to the wheel cylinder of the first wheel by the hydraulic circuit of the first system;
    A first valve provided in the hydraulic circuit of the first system and configured to vary a wheel cylinder pressure of the first wheel;
    A second hydraulic pressure generating source that is provided in the second hydraulic circuit and generates hydraulic pressure supplied to the wheel cylinder of the second wheel by the second hydraulic circuit;
    A second valve provided in the hydraulic circuit of the second system and configured to vary a wheel cylinder pressure of the second wheel;
    A third hydraulic pressure generating source that is connected to the hydraulic circuit of the first system and the hydraulic circuit of the second system, and generates hydraulic pressure according to the operation of the brake pedal of the driver;
    A control device that executes emergency braking control independent of the driver's operation of the brake pedal when a predetermined emergency deceleration is requested,
    In the emergency braking control, the control device controls the first valve and the second valve in different modes, or controls the first hydraulic pressure generation source and the second hydraulic pressure generation source in different modes. Then, based on the hydraulic pressure generated by the first hydraulic pressure generation source and the second hydraulic pressure generation source, the wheel cylinder pressure of the first wheel by the hydraulic circuit of the first system and the hydraulic circuit of the second system, and A vehicle braking device, wherein the wheel cylinder pressure of each of the second wheels is increased.
  2.  前記制御装置は、前記緊急制動制御において、運転者のブレーキペダルの操作量以外に因子に基づいて、前記第1車輪のホイールシリンダ圧に関する目標値及び前記第2車輪のホイールシリンダ圧に関する目標値を設定する、請求項1に記載の車両用制動装置。 In the emergency braking control, the control device determines a target value related to the wheel cylinder pressure of the first wheel and a target value related to the wheel cylinder pressure of the second wheel based on factors other than the operation amount of the brake pedal of the driver. The vehicle braking device according to claim 1, wherein the braking device is set.
  3.  前記制御装置は、前記第1系統の油圧回路における消費油量と前記第2系統の油圧回路における消費油量との差に基づいて、前記目標値を設定する、請求項2に記載の車両用制動装置。 The vehicle control device according to claim 2, wherein the control device sets the target value based on a difference between an oil consumption amount in the hydraulic circuit of the first system and an oil consumption amount in the hydraulic circuit of the second system. Braking device.
  4.  前記第1系統及び第2系統の油圧回路は、前後配管から構成され、前記第1車輪が前輪であり、前記第2車輪が後輪である、請求項1~3のうちのいずれか1項に記載の車両用制動装置。 The hydraulic circuit of the first system and the second system is configured by front and rear piping, the first wheel is a front wheel, and the second wheel is a rear wheel. The vehicle brake device described in 1.
  5.  前記制御装置は、前記緊急制動制御において、後輪のホイールシリンダ圧の昇圧開始タイミングを前輪のホイールシリンダ圧の昇圧開始タイミングより遅らせる、請求項4に記載の車両用制動装置。 5. The vehicle braking device according to claim 4, wherein the control device delays the pressure increase start timing of the wheel cylinder pressure of the rear wheel from the pressure increase start timing of the wheel cylinder pressure of the front wheel in the emergency braking control.
  6.  前記制御装置は、前記緊急制動制御において、後輪のホイールシリンダ圧が前輪のホイールシリンダ圧よりも先に高くならないような態様で、前記第1弁及び前記第2弁又は前記第1油圧生成源及び前記第2油圧生成源を制御する、請求項4に記載の車両用制動装置。 In the emergency braking control, the control device is configured so that the wheel cylinder pressure of the rear wheel does not become higher than the wheel cylinder pressure of the front wheel, and the first valve and the second valve or the first hydraulic pressure generation source. The vehicle braking device according to claim 4, wherein the second hydraulic pressure generating source is controlled.
  7.  前記制御装置は、前記緊急制動制御において、後輪のホイールシリンダ圧の昇圧勾配に対して、前輪のホイールシリンダ圧の昇圧勾配に対してよりも低い上限値を適用する、請求項4に記載の車両用制動装置。 5. The control device according to claim 4, wherein in the emergency braking control, an upper limit value that is lower than a pressure increase gradient of a wheel cylinder pressure of a front wheel is applied to a pressure increase gradient of a wheel cylinder pressure of a front wheel. Brake device for vehicles.
  8.  前記第1系統及び第2系統の油圧回路は、X配管から構成され、前記第1車輪が前左輪及び後右輪であり、前記第2車輪が前右輪及び後左輪である、請求項1~3のうちのいずれか1項に記載の車両用制動装置。 2. The hydraulic circuit of the first system and the second system is configured by X piping, the first wheel is a front left wheel and a rear right wheel, and the second wheel is a front right wheel and a rear left wheel. 4. The vehicle braking device according to any one of 1 to 3.
  9.  前記制御装置は、前記緊急制動制御において、前記第1車輪の車輪速と、前記第2車輪の車輪速との差に基づいて、前記第1車輪及び前記第2車輪のうちの、車輪速の減少が小さい方の車輪のホイールシリンダ圧に関する目標値を、他方の車輪のホイールシリンダ圧に関する目標値よりも高く設定する、請求項8に記載の車両用制動装置。 In the emergency braking control, the control device determines a wheel speed of the first wheel and the second wheel based on a difference between a wheel speed of the first wheel and a wheel speed of the second wheel. The vehicle braking device according to claim 8, wherein the target value related to the wheel cylinder pressure of the wheel with the smaller decrease is set higher than the target value related to the wheel cylinder pressure of the other wheel.
  10.  前記第1油圧生成源及び前記第2油圧生成源は、それぞれ、アキュムレータを備えないポンプからなる、請求項1~9のうちのいずれか1項に記載の車両用制動装置。 10. The vehicle braking device according to claim 1, wherein each of the first hydraulic pressure generation source and the second hydraulic pressure generation source includes a pump that does not include an accumulator.
  11.  前記第1車輪のホイールシリンダ及び前記第2車輪のホイールシリンダには、ホイールシリンダ圧センサが設けられない、請求項1~10のうちのいずれか1項に記載の車両用制動装置。 The vehicle brake device according to any one of claims 1 to 10, wherein a wheel cylinder pressure sensor is not provided in the wheel cylinder of the first wheel and the wheel cylinder of the second wheel.
  12.  前記第1弁及び前記第2弁は、それぞれ、マスタシリンダカットバルブ、保持ソレノイドバルブ及び減圧ソレノイドバルブを含み、
     前記制御装置は、前記緊急制動制御において、前記第1弁に係るマスタシリンダカットバルブ、又は、保持ソレノイドバルブ及び減圧ソレノイドバルブと、前記第2弁に係るマスタシリンダカットバルブ、又は、保持ソレノイドバルブ及び減圧ソレノイドバルブとを、互いに異なる態様で制御する、請求項1~11のうちのいずれか1項に記載の車両用制動装置。
    The first valve and the second valve each include a master cylinder cut valve, a holding solenoid valve, and a pressure reducing solenoid valve,
    In the emergency braking control, the control device includes a master cylinder cut valve or a holding solenoid valve and a pressure reducing solenoid valve according to the first valve, and a master cylinder cut valve or a holding solenoid valve according to the second valve. The vehicle braking device according to any one of claims 1 to 11, wherein the pressure-reducing solenoid valve is controlled in a different manner.
  13.  前記第1油圧生成源及び前記第2油圧生成源は、それぞれ、回転数が可変のポンプを含み、
     前記制御装置は、前記緊急制動制御において、前記第1油圧生成源に係るポンプの回転数と、前記第2油圧生成源に係るポンプの回転数とを、互いに異なる態様で制御する、請求項1~11のうちのいずれか1項に記載の車両用制動装置。
    Each of the first hydraulic pressure generation source and the second hydraulic pressure generation source includes a pump having a variable rotation speed,
    The said control apparatus controls the rotation speed of the pump which concerns on a said 1st oil pressure generation source, and the rotation speed of the pump which concerns on a said 2nd oil pressure generation source in the said emergency braking control in a mutually different aspect. 12. The vehicle braking device according to any one of .about.11.
  14.  前記第1車輪は、2つの車輪を含み、
     前記第2車輪は、2つの車輪を含み、
     前記制御装置は、前記緊急制動制御において、前記第1車輪の各輪に対して同一態様の制御を行うと共に、前記第2車輪の各輪に対して同一態様の制御を行う、請求項1~13のうちのいずれか1項に記載の車両用制動装置。
    The first wheel includes two wheels,
    The second wheel includes two wheels;
    The control device performs, in the emergency braking control, the same mode of control for each wheel of the first wheel and the same mode of control for each wheel of the second wheel. The vehicle braking device according to any one of 13.
  15.  前記制御装置は、前記緊急制動制御において、前記第1車輪の各輪に係る2組の保持ソレノイドバルブ及び減圧ソレノイドバルブを同一態様で制御すると共に、前記第2車輪の各輪に係る2組の保持ソレノイドバルブ及び減圧ソレノイドバルブを同一態様で制御する、請求項14に記載の車両用制動装置。 In the emergency braking control, the control device controls two sets of holding solenoid valves and pressure reducing solenoid valves related to each wheel of the first wheel in the same manner, and two sets of related wheels related to each wheel of the second wheel. The vehicle braking device according to claim 14, wherein the holding solenoid valve and the pressure reducing solenoid valve are controlled in the same manner.
PCT/JP2011/061107 2011-05-13 2011-05-13 Vehicle braking device WO2012157050A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/061107 WO2012157050A1 (en) 2011-05-13 2011-05-13 Vehicle braking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/061107 WO2012157050A1 (en) 2011-05-13 2011-05-13 Vehicle braking device

Publications (1)

Publication Number Publication Date
WO2012157050A1 true WO2012157050A1 (en) 2012-11-22

Family

ID=47176420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061107 WO2012157050A1 (en) 2011-05-13 2011-05-13 Vehicle braking device

Country Status (1)

Country Link
WO (1) WO2012157050A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160368465A1 (en) * 2015-06-22 2016-12-22 Honda Motor Co., Ltd. Vehicle brake system
JP2017007487A (en) * 2015-06-22 2017-01-12 本田技研工業株式会社 Vehicular brake device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1120647A (en) * 1997-06-30 1999-01-26 Aisin Seiki Co Ltd Brake hydraulic controller for vehicle
JP2002087234A (en) * 2000-09-18 2002-03-27 Bosch Braking Systems Co Ltd Fluid pressure balancing method in brake system for automobile
JP2003165428A (en) * 2001-11-30 2003-06-10 Daihatsu Motor Co Ltd Device and method for controlling vehicle braking
JP2006506271A (en) * 2002-11-16 2006-02-23 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Method and apparatus for controlling a braking system for an automobile
JP2006160051A (en) * 2004-12-07 2006-06-22 Toyota Motor Corp Vehicular braking force control device
JP2007216773A (en) * 2006-02-15 2007-08-30 Advics:Kk Vehicular brake control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1120647A (en) * 1997-06-30 1999-01-26 Aisin Seiki Co Ltd Brake hydraulic controller for vehicle
JP2002087234A (en) * 2000-09-18 2002-03-27 Bosch Braking Systems Co Ltd Fluid pressure balancing method in brake system for automobile
JP2003165428A (en) * 2001-11-30 2003-06-10 Daihatsu Motor Co Ltd Device and method for controlling vehicle braking
JP2006506271A (en) * 2002-11-16 2006-02-23 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Method and apparatus for controlling a braking system for an automobile
JP2006160051A (en) * 2004-12-07 2006-06-22 Toyota Motor Corp Vehicular braking force control device
JP2007216773A (en) * 2006-02-15 2007-08-30 Advics:Kk Vehicular brake control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160368465A1 (en) * 2015-06-22 2016-12-22 Honda Motor Co., Ltd. Vehicle brake system
JP2017007487A (en) * 2015-06-22 2017-01-12 本田技研工業株式会社 Vehicular brake device
US10053066B2 (en) * 2015-06-22 2018-08-21 Honda Motor Co., Ltd. Vehicle brake system
US10266161B2 (en) 2015-06-22 2019-04-23 Honda Motor Co., Ltd. Vehicle brake system

Similar Documents

Publication Publication Date Title
JP5751346B2 (en) Braking device for vehicle
US10137872B2 (en) Acceleration/deceleration control apparatus
US5882093A (en) Brake control system for an electrically operated vehicle
CN107074215B (en) Brake control device
US8788172B2 (en) Method and device for controlling an electrohydraulic braking system for motor vehicles
US5967628A (en) Vehicular brake system
US8977465B2 (en) Vehicle braking system and control method thereof
US20150066326A1 (en) Brake System, Brake Apparatus, and Method for Controlling Brake System
CN103140395B (en) Power actuated vehicle, automobile braking system and control thereof or control method
US20130138316A1 (en) Brake Control Apparatus
CN107697047B (en) Brake control apparatus for vehicle
JP4615899B2 (en) Vehicle turning control device
KR20140006003A (en) Method and device for controlling an electrohydraulic brake system
JP2018069923A (en) Control device for vehicle
US20110184620A1 (en) Vehicle braking apparatus suppressing excessive slip of wheel during braking
WO2012157050A1 (en) Vehicle braking device
JP6337865B2 (en) Vehicle stop control device
US8155855B2 (en) Vehicle motion control apparatus
JP2002067917A (en) Braking control device for vehicle
JP2018088735A (en) Brake control device
US10315633B2 (en) Vehicle behavior control device
JP4733453B2 (en) Brake hydraulic pressure control device for vehicles
CN113631441B (en) Method and control device for avoiding jerk torque during deceleration of a vehicle
KR102656039B1 (en) Method for determining the start point of the recharge process in the plunger device of the electronic slip-controlled power brake system and the electronic slip-controlled power brake system with plunger device
JP4046142B2 (en) Brake device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP