WO2012156030A1 - Procédé de production d'un élément électrochimique et batterie dotée d'un certain nombre de ces éléments électrochimiques - Google Patents

Procédé de production d'un élément électrochimique et batterie dotée d'un certain nombre de ces éléments électrochimiques Download PDF

Info

Publication number
WO2012156030A1
WO2012156030A1 PCT/EP2012/001884 EP2012001884W WO2012156030A1 WO 2012156030 A1 WO2012156030 A1 WO 2012156030A1 EP 2012001884 W EP2012001884 W EP 2012001884W WO 2012156030 A1 WO2012156030 A1 WO 2012156030A1
Authority
WO
WIPO (PCT)
Prior art keywords
par
electrochemical cell
predetermined
parameter data
selecting
Prior art date
Application number
PCT/EP2012/001884
Other languages
German (de)
English (en)
Inventor
Tim Schaefer
Original Assignee
Li-Tec Battery Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li-Tec Battery Gmbh filed Critical Li-Tec Battery Gmbh
Priority to CN201280023517.1A priority Critical patent/CN103534866A/zh
Priority to EP12719275.5A priority patent/EP2710661A1/fr
Priority to KR1020137033394A priority patent/KR20140031320A/ko
Priority to JP2014510682A priority patent/JP2014517464A/ja
Publication of WO2012156030A1 publication Critical patent/WO2012156030A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a method for producing an electrochemical cell and a battery having a number of electrochemical cells produced by this method.
  • Electrochemical energy stores also referred to below as electrochemical or galvanic cells
  • electrochemical or galvanic cells are often produced in the form of stackable units, from which by combining a plurality of such cells batteries for different applications, in particular for use in electrically powered vehicles can be produced.
  • the invention will be described in relation to the use in a motor vehicle, although it should be noted that such a method and a correspondingly designed electrochemical cell, regardless of motor vehicles z. B. can be operated in a stationary operation.
  • Various methods for producing an electrochemical cell, corresponding electrochemical cells and batteries with a number of electrochemical cells are known from the prior art.
  • the present invention has for its object to provide an improved method for producing an electrochemical cell and a battery with a number of correspondingly produced electrochemical cells.
  • the manufacturing method comprises the following steps: acquiring parameter data of an individual electrochemical cell to be investigated for determining at least one subsequent treatment step for the individual electrochemical cell, transmitting the parameter data to a control unit, assigning the electrochemical cell to the parameter data, preferably storing the parameter data to the electrochemical cell, determining by means of the control unit whether a predetermined relationship exists for the electrochemical cell assigned to the parameter data Parameter data is present with respect to predetermined parameter values, and performing a first predetermined treatment step of the electrochemical cell, if a presence of the predetermined the relationship of the parameter data with respect to the predetermined parameter values has been determined, and preferably performing a second predetermined electrochemical cell processing step, if a non-existence of the predetermined relationship of the parameter data with respect to the predetermined parameter values has been determined.
  • An advantage of this Method is that for the individual cell after a first treatment targeted subsequent treatment steps are determined, whereby their quality and yield in the manufacturing process can be increased.
  • an electrode assembly with electrodes and separator is first made and this electrode assembly is placed in a sheath, where appropriate, the electrolyte can then be added if the separator has been processed without electrolyte.
  • charging of the electrochemical cell to preferably 47 percent of their nominal capacity or 3.65 V cell voltage and processing steps such.
  • z. B the capture of parameter data to determine further treatment steps to increase the quality or yield, so that optionally a further treatment such.
  • hardening, rolling, brushing, stripping, doctoring, resting bearings, tempering, forming or degassing can be done.
  • an electrochemical cell is to be understood as meaning an electrochemical energy store, that is to say a device which stores energy in chemical form, delivers it in electrical form to a consumer and, preferably, can also receive it in electrical form from a charging device.
  • electrochemical energy stores are galvanic cells or fuel cells.
  • the electrochemical cell has at least one first and one second device for storing electrically different charges, as well as a means for producing an electrically active connection of these two devices, whereby charge carriers can be displaced between these two devices. Under the means for producing an electrical active compound z. B. to understand an electrolyte, which acts as an ion conductor.
  • parameter data should be understood to mean not only a plurality of parameter data, but possibly also a single parameter data. Accordingly, in this context, under predetermined parameter values, not only a number of predetermined ones Parameter values, but possibly also a single predetermined parameter value are understood.
  • the step of acquiring parameter data comprises detecting a change in the internal resistance of the electrochemical cell after applying a pressure, in particular on side surfaces of the preferably flat designed electrochemical cell.
  • the change in the internal resistance of the electrochemical cell upon application of pressure to side surfaces of the electrochemical cell has proven to be a preferred parameter for evaluating the quality of an electrochemical cell or determining subsequent processing steps of that electrochemical cell.
  • this electrochemical cell can pre-shape depending on its stiffness, resulting in a change in the internal resistance of the electrochemical cell upon application of an external pressure having a predetermined relationship with the state electrochemical cell stands.
  • the electrochemical cells which are relatively hard and whose internal resistance changes little after applying a pressure on the side surfaces, do not gas after closing.
  • a particularly simple and reliable assignment of the electrochemical cell to different types of quality and thus to corresponding subsequent treatment steps to increase the quality can thus take place.
  • the quality z For example, with the following relationship where c / R, the change of the internal resistance and dF the change of the applied force means:
  • a flat electrochemical cell is to be understood as meaning an electrochemical cell whose external shape is characterized by two essentially parallel surfaces whose perpendicular distance shorter than the measured parallel to these surfaces mean length of the cell. Between these surfaces, often surrounded by a packaging or a cell housing, the electrochemically active components of the cell are arranged. Such cells are often surrounded by a multi-layered foil packaging, which has at the edges of the cell packaging a sealed seam, which is formed by a permanent joining or closing of the foil packaging in the region of the sealed seam. Such cells are often referred to as pouch cells or as coffeebag cells.
  • the step of acquiring parameter data may comprise: detecting an internal resistance of the electrochemical cell, detecting an internal pressure of the electrochemical cell, detecting a quiescent voltage of the electrochemical cell, detecting a capacitance of the electrochemical cell, or detecting internal structures of the electrochemical cell X-ray procedures.
  • the method according to the invention can also be used in the formatting of the electrochemical cells in combination with a GITT method (electrostatic intermittent titration technique), which is adapted to the formatting.
  • the step of determining by means of the control unit has at least one of the following determining steps: determining whether the transmitted parameter data have predetermined first parameter values and / or determining whether the transmitted parameter data does not have predetermined second parameter values.
  • the step of determining by means of the control unit has at least one of the following determining steps: determining whether the transmitted parameter data exceed predetermined third parameter values and / or determining whether the transmitted parameter data falls below predetermined fourth parameter values.
  • the step of determining by means of the control unit may include the step of: determining whether the parameter data is within at least one predetermined parameter value range by a predetermined fifth parameter value.
  • the manufacturing method comprises at least one of the following treatment steps: selecting and performing at least one predetermined charging of the electrochemical cell depending on at least one result of the determining steps, selecting and performing at least one predetermined curing of the electrochemical cell depending on at least one result of the determining steps selecting and performing at least one predetermined rest storage of the electrochemical cell in response to at least one result of the determining steps, selecting and performing at least one predetermined forming of the electrochemical cell in response to at least one result of the determining steps, selecting and performing at least one predetermined rolling electrochemical cell depending on at least one result of the determining steps, selecting and performing at least one predetermined sweep of the electrochemical cell in response to at least one result of the determining steps, selecting and performing at least one predetermined sweeping of the electrochemical cell in response to at least one result of the determining steps selecting and performing at least one predetermined doctoring of the electrochemical cell in response to at least one result of the determining steps or selecting and performing at least one predetermined outgassing of the electrochemical cell in dependence on at least one result
  • An advantage of this embodiment is that when z. B. has been determined by the determination step that the electrochemical cell is particularly soft subsequent steps for curing can be performed, whereas when z. B. has been determined by the determination step that the electrochemical cell a has sufficient hardness, subsequent processing steps can be saved.
  • the object is achieved in that the electrochemical cells have been prepared according to one of the above-mentioned manufacturing method.
  • FIG. 8 is an illustration of preferred steps in a subsequent treatment for the individual electrochemical cell.
  • FIG. 1 shows a flow chart for a manufacturing method of an electrochemical cell according to a first embodiment.
  • step S1 parameter data D Par of an electrochemical cell to be examined is detected.
  • step S2 the parameter data D par . a control unit and, in a step S3, these parameter data D Par are assigned to the electrochemical cell.
  • the control unit it is determined whether these parameter data D Par . have a predetermined relationship with respect to predetermined parameter values W Par . If the parameter data D par . have the predetermined relationship with respect to the predetermined parameter values W Par. , a first predetermined subsequent treatment step S5 is determined for this electrochemical cell. Otherwise, if the parameter data D par . the predetermined relationship with respect to the predetermined parameter values W Par . If desired, a second predetermined subsequent treatment step S5 'can optionally be determined for this electrochemical cell.
  • Fig. 2 shows a flow chart for a manufacturing method of electrochemical cells according to a second embodiment, whose steps S1 to S3 correspond to those of the first embodiment, to which reference is made to avoid repetition.
  • a first predetermined subsequent treatment step S 5 is determined for this electrochemical cell. Otherwise, if the parameter data D par . If the predetermined first parameter values W Par are not present, a second predetermined subsequent treatment step S5 'can be determined for this electrochemical cell.
  • Fig. 3 shows a flow chart for a manufacturing method of electrochemical cells according to a third embodiment, whose steps S1 to S3 correspond to those of the first embodiment, which is referred to avoid repetition.
  • control unit determines whether these parameter data D Par . have predetermined second parameter values W Par 2 not. If the para- meter data D par . If the predetermined second parameter values Wp ar .2 are not present, a first predetermined subsequent treatment step S5 is determined for this electrochemical cell. Otherwise, if the parameter data Dpar have the predetermined second parameter values W Par .2, a second predetermined subsequent treatment step S5 'can be determined for this electrochemical cell.
  • Fig. 4 shows a flowchart for a manufacturing method of electrochemical cells according to a fourth embodiment, whose steps S1 to S3 correspond to those of the first embodiment, which is referred to avoid repetition.
  • control unit determines whether these parameter data D Par . exceed predetermined third parameter values Wp ar .3. If the parameter data D Par exceed the predetermined third parameter values Wp ar .3, a first predetermined subsequent treatment step S5 is determined for this electrochemical cell. Otherwise, if the parameter data D par . If the predetermined third parameter values W Par 3 are not exceeded, a second predetermined subsequent treatment step S5 'can be determined for this electrochemical cell.
  • FIG. 5 shows a flowchart for a method of producing electrochemical cells according to a fifth embodiment, whose steps S1 to S3 correspond to the first embodiment, which is referred to for avoiding repetitions.
  • control unit determines whether these parameter data Dp ar . predetermined fourth parameter values W Par . do not exceed. If the parameter data D par . If the predetermined fourth parameter values W Par are undershot, a first predetermined subsequent treatment step S5 is determined for this electrochemical cell. Otherwise, if the parameter data D par . the predetermined fourth parameter values W Par not fall below, a second predetermined subsequent treatment step S5 'can be determined for this electrochemical cell.
  • FIG. 6 shows a flow chart for a method of producing electrochemical cells according to a sixth embodiment, whose steps S1 to S3 correspond to those of the first embodiment, to which reference is made in order to avoid repetition.
  • control unit determines whether these parameter data D Par . are within a predetermined parameter range by a predetermined fifth parameter value W Par 5 . If the parameter data D par . within the predetermined parameter range by the predetermined fifth parameter value Wp ar . 5 , a first predetermined subsequent treatment step S5 is determined for this electrochemical cell. Otherwise, if the parameter data D par . are not within the predetermined parameter range by the predetermined fifth parameter value W Par 5 , a second predetermined subsequent treatment step S5 'can be determined for this electrochemical cell.
  • the step of acquiring parameter data may include a step S1a of detecting a change in the internal resistance of the electrochemical cell after application of a pressure, particularly on side surfaces of the preferably flat-shaped electrochemical cell and / or a step S1 b of detecting an internal resistance of the electrochemical cell and / or a step Si c of detecting an internal pressure of the electrochemical cell and / or a step S1 d of detecting a rest voltage of the electrochemical cell and / or a step Si e of detecting a capacitance of the electrochemical cell and / or a step S1 f of detecting internal structures of the electrochemical cell by means of an X-ray method.
  • the subsequent electrochemical cell treating process may include a step S5a of selecting and performing at least one predetermined charging of the electrochemical cell depending on at least one result of the determining steps S4, S4a, S4b, S4c, S4d, S4e and / or a step S5b of selecting and performing at least one predetermined hardening of the electrochemical cell in response to at least one result of the determining steps S4, S4a, S4b, S4c, S4d, S4e and / or a step S5c of selecting and performing at least one predetermined rest the electrochemical cell in dependence on at least one result of the determination steps S4, S4a, S4b, S4c, S4d, S4e and / or a step S5d of selecting and performing at least one predetermined forming of the electrochemical cell in dependence on at least one result of the determination steps S4, S4a , S4a , S4
  • the present invention furthermore relates to a battery which has these electrochemical cells, in particular a battery designed for use in a motor vehicle, which has these electrochemical cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un procédé de production d'éléments électrochimiques pour une batterie présentant les étapes consistant à : (S1) détecter des données paramètres (Dpar.) d'un élément électrochimique individuel à examiner pour déterminer au moins un étape de traitement (S5) subséquente pour ledit élément électrochimique individuel, (S2) transmettre les données paramètres (Dpar.) à une unité de commande, (S3) affecter l'élément électrochimique aux données paramètres (Dpar.), de préférence enregistrer les données paramètres (Dpar.) affectées à l'élément électrochimique, (S4) déterminer à l'aide de l'unité de commande l'éventuelle présence d'une relation prédéfinie des données paramètres (Dpar.) pour l'élément électrochimique affecté aux données paramètres quant aux valeurs paramètres (Wpar., Wpar.1, Wpar.2, Wpar.3, Wpar.4, Wpar.5) prédéfinies, et exécuter les étapes de traitement prédéfinies de l'élément électrochimique en présence de la relation prédéfinie des données paramètres (Dpar.) par rapport aux valeurs paramètres (Wpar., Wpar.1, Wpar.2, Wpar.3, WPar.4, Wpar.5) prédéfinies et, de préférence, exécuter une deuxième étape de traitement prédéfinie de l'élément électrochimique en l'absence de la relation prédéterminée des données paramètres (Dpar.) quant aux valeurs paramètres (Wpar., Wpar.1, Wpar.2, Wpar.3, WPar.4, Wpar.5) prédéfinies.
PCT/EP2012/001884 2011-05-17 2012-05-02 Procédé de production d'un élément électrochimique et batterie dotée d'un certain nombre de ces éléments électrochimiques WO2012156030A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280023517.1A CN103534866A (zh) 2011-05-17 2012-05-02 用于制造电化学单电池的方法和具有多个这种电化学单电池的电池组
EP12719275.5A EP2710661A1 (fr) 2011-05-17 2012-05-02 Procédé de production d'un élément électrochimique et batterie dotée d'un certain nombre de ces éléments électrochimiques
KR1020137033394A KR20140031320A (ko) 2011-05-17 2012-05-02 전기화학 전지의 제조 방법 및 다수의 상기 전기화학 전지를 포함하는 배터리
JP2014510682A JP2014517464A (ja) 2011-05-17 2012-05-02 電気化学セルの製造方法および多数のこの電気化学セルを有する電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011101795A DE102011101795A1 (de) 2011-05-17 2011-05-17 Verfahren zur Herstellung einer elektrochemischen Zelle und Batterie mit einer Anzahl dieser elektrochemischen Zellen
DE102011101795.3 2011-05-17

Publications (1)

Publication Number Publication Date
WO2012156030A1 true WO2012156030A1 (fr) 2012-11-22

Family

ID=46044633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/001884 WO2012156030A1 (fr) 2011-05-17 2012-05-02 Procédé de production d'un élément électrochimique et batterie dotée d'un certain nombre de ces éléments électrochimiques

Country Status (6)

Country Link
EP (1) EP2710661A1 (fr)
JP (1) JP2014517464A (fr)
KR (1) KR20140031320A (fr)
CN (1) CN103534866A (fr)
DE (1) DE102011101795A1 (fr)
WO (1) WO2012156030A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017902A1 (de) * 2014-12-04 2016-06-09 Li-Tec Battery Gmbh Verfahren zur Funktionsüberprüfung einer elektrischen Einzelzelle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686815A (en) * 1991-02-14 1997-11-11 Chartec Laboratories A/S Method and apparatus for controlling the charging of a rechargeable battery to ensure that full charge is achieved without damaging the battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686815A (en) * 1991-02-14 1997-11-11 Chartec Laboratories A/S Method and apparatus for controlling the charging of a rechargeable battery to ensure that full charge is achieved without damaging the battery

Also Published As

Publication number Publication date
KR20140031320A (ko) 2014-03-12
DE102011101795A1 (de) 2012-11-22
JP2014517464A (ja) 2014-07-17
EP2710661A1 (fr) 2014-03-26
CN103534866A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
DE102010052397A1 (de) Verfahren und Vorrichtung zum Befüllen einer elektrochemischen Zelle
EP2633570B1 (fr) Agencement d'une pile d'électrodes d'un dispositif d'accumulation d'énergie électrochimique
WO2012084180A2 (fr) Procédé et système de fabrication de cellules électriques pour des dispositifs accumulateurs d'énergie électrochimiques
DE102011102231A1 (de) Batteriestapelanordnung unter Verwendung verkleideter elektrischer Verbindungen
DE102009013345A1 (de) Elektrodenstapel für eine galvanische Zelle
WO2012156031A1 (fr) Procédé de sélection d'éléments électrochimiques lors de la fabrication d'une batterie et batterie présentant des éléments électrochimiques
DE102014106204A1 (de) Batteriezelle sowie Batterie mit ein oder mehreren Batteriezellen
DE102015008345A1 (de) Elektrochemischer Energiespeicher
EP2443686B1 (fr) Bloc de pile et méthode de sa fabrication
DE102008046498A1 (de) Elektrode und Separatormaterial für Lithium-Ionen-Zellen sowie Verfahren zu deren Herstellung
DE102014015237A1 (de) Batterie und Verfahren zur Herstellung einer solchen Batterie
DE102017218567A1 (de) Speichereinrichtung zum Speichern von elektrischer Energie, insbesondere für ein Kraftfahrzeug, sowie Kraftfahrzeug mit einer solchen Speichereinrichtung
EP2710661A1 (fr) Procédé de production d'un élément électrochimique et batterie dotée d'un certain nombre de ces éléments électrochimiques
WO2012175169A2 (fr) Procédé de traitement et/ou de réparation d'une cellule électrochimique et batterie comportant un certain nombre desdites cellules électrochimiques
DE102014012345A1 (de) Funktionsüberwachung von Batterien
DE102011122658A1 (de) Verfahren und System zur Herstellung elektrochemischer Zellen für elektrochemische Energiespeicher
WO2014012619A1 (fr) Procédé de production d'un empilement d'électrodes d'une cellule électrochimique et empilement d'électrodes d'une cellule électrochimique
DE10341355B4 (de) Als Lamellenverbund ausgebildete elektrische Zelle mit einem Ableiterabschnitt und Verfahren zur Herstellung der Zelle
WO2011042111A1 (fr) Cellule électrochimique et procédé de fabrication d'une telle cellule
DE102010053341A1 (de) Verfahren und System zum Schneiden von blatt- oder plattenförmigen Objekten
DE102011120278A1 (de) Verfahren und System zur Herstellung von blatt- oder plattenförmigen Objekten
WO2013013764A2 (fr) Procédé et système de fabrication d'une cellule électrochimique et batterie pourvue d'un certain nombre desdites cellules électrochimiques
DE102013216488B4 (de) Verfahren und Vorrichtung zur Herstellung einer Energiespeichereinheit
DE102011115495A1 (de) Verfahren und System zur Herstellung einer elektrochemischen Zelle und Batterie mit einer Anzahl dieser elektrochemischen Zellen
DE102015003228A1 (de) Messverfahren zum Erfassen der Qualität bzw. der Funktionstüchtigkeit einer Energiespeichereinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12719275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012719275

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014510682

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137033394

Country of ref document: KR

Kind code of ref document: A