WO2012155680A1 - Method and device for configuring guard interval in communication system - Google Patents
Method and device for configuring guard interval in communication system Download PDFInfo
- Publication number
- WO2012155680A1 WO2012155680A1 PCT/CN2012/072917 CN2012072917W WO2012155680A1 WO 2012155680 A1 WO2012155680 A1 WO 2012155680A1 CN 2012072917 W CN2012072917 W CN 2012072917W WO 2012155680 A1 WO2012155680 A1 WO 2012155680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dugi
- udgi
- length
- frame
- ofdm
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/2605—Symbol extensions, e.g. Zero Tail, Unique Word [UW]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/16—Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for configuring a transition interval in a communication system using OFDM (Orthogonal Frequency Division Multiplexing) technology.
- OFDM Orthogonal Frequency Division Multiplexing
- the existing solutions for nomadic/local wireless data access mainly include the IEEE ( Institute of Electrical and Electronics Engineers) 802.11 series of standards, and the domestic new shoreline company-led NUHT (Next Ultra-High). Throughout) standard.
- the NUHT standard uses OFDM technology and configures the frame structure of TDD.
- the downlink-to-uplink transition interval (DGI) and the uplink-to-downlink transition interval (UGI) are described by an integer multiple of the OFDM symbol length.
- the terminal and the terminal have different requirements for the conversion delay.
- the DGI time length is required to be larger than the UGI. Since the types of terminals in indoor and hotspot environments vary widely, the conversion delay requirements are also different.
- the OFDM symbol length is used as the minimum time unit for describing DGI and UGI, some resources will be wasted due to excessive quantization granularity.
- T1 the reasonable DGI value of the terminal after the conversion delay requirement
- the DGI is configured as an integer multiple of the OFDM symbol length, only two OFDM symbols can be allocated for the DGI, resulting in resources. waste.
- a fixed-length frame structure since the length of the frame is not necessarily an integer multiple of the length of the OFDM symbol, a time-frequency resource smaller than the length of the OFDM symbol is generated, and this part should be considered in the design of DGI and UGI. Use of resources.
- the main purpose of the present invention is to provide a method and a device for configuring an uplink and downlink transition interval in a communication system, which is used to solve the problem that the existing DGI and UGI configuration methods are easy to waste resources, and cannot satisfy the base station and the terminal in different scenarios.
- Technical issues for conversion latency requirements are used to solve the problem that the existing DGI and UGI configuration methods are easy to waste resources, and cannot satisfy the base station and the terminal in different scenarios.
- a method for designing an uplink and downlink conversion interval in a communication system comprising:
- the downlink-to-uplink transition interval DUGI has a length of N1*(N2*Ts)+T1
- the uplink-to-downlink transition interval UDGI has a length of M1*(M2*Ts)+T2, where the N1, N2, T1, Ml, ⁇ 2, ⁇ 2 are sent by the base station to the terminal through the downlink channel, or the default configuration value is adopted.
- the sampling frequency F is the maximum sampling frequency of the system or is an integer multiple of the maximum sampling frequency of the system.
- the (N2*Ts) is a minimum quantization granularity of the DUGI, and N1 is a multiple of a minimum quantization granularity of the DUGI;
- the (M2*Ts) is a minimum quantization granularity of the UDGI, Ml a multiple of the minimum quantization granularity of the UDGI; wherein Nl, N2, Ml, M2 are positive integers greater than or equal to zero.
- the minimum quantization granularity of the DUGI and the minimum quantization granularity of the UDGI are both configured as an OFDM symbol length T OTDM , that is, the (N2*Ts) and the (M2*Ts) Both are configured as T OFDM , whereby the DUGI length is Nl*T OFDM +Tl and the UDGI length is M1*T OTDM +T2.
- FDM ;
- L represents the rounding down operation and L is a positive integer greater than zero
- L represents a downward rounding operation
- L is a positive integer greater than zero
- N DUGI and N UDG are positive integers greater than or equal to 1;
- the present invention further provides a configuration apparatus for uplink and downlink transition intervals in a communication system, which is applied to a communication system using OFDM technology and a time domain sampling interval of Ts seconds.
- the device includes:
- the parameter configuration module is configured to configure the values of the parameters N1, N2, kl, Ml, M2, and k2, and configure the foregoing parameters to the terminal through the downlink channel, or configure the default values of the foregoing parameters for the network side or the terminal side.
- the present invention sets the downlink-to-uplink transition interval DUGI length in the frame to N1*(N2*Ts)+T1, and sets the uplink-to-downlink transition interval UDGI length in the frame to M1*(M2*Ts)+T2;
- the network side can flexibly configure the base station and the terminal according to the requirements of the conversion delay in different scenarios. Parameters such as Nl, N2, Tl, Ml, M2, and T2 can use time-frequency resources to the maximum extent without causing waste of resources.
- FIG. 1 is a schematic diagram of position distribution of DGI and UGI in a frame in a communication system
- FIG. 2 is a schematic diagram of a DUGI and UDGI position distribution in the method of the present invention
- FIG. 3 is another DUGI and UDGI position in the method of the present invention
- Schematic diagram of the distribution
- N1, N2, Tl, Ml, M2, and T2 are positive integers greater than or equal to zero;
- N2*Ts is the minimum quantization granularity of DUGI
- the value of T1 is an integer multiple of Ts
- Tl kl*Ts
- N1 is a multiple of the minimum quantization granularity of the DUGI
- (M2*Ts) is the minimum quantization granularity of UDGI, and the value of T2 is an integer multiple of Ts.
- T2 k2*Ts, Ml is a multiple of the minimum quantization granularity of the UDGI;
- the N1, N2, T1, M1, ⁇ 2, ⁇ 2, kl, k2 are sent by the base station to the terminal through the downlink channel, or adopt a default configuration set by the protocol;
- the OFDM symbol length T OFDM is selected as the minimum quantization granularity of the downlink-to-uplink transition interval DUGI and the uplink-to-downlink transition interval UDGI
- the DUGI length is N1*T OTDM +T1
- the UDGI length is M1*T OTDM +T2;
- Nl, Ml, kl, k2 are sent by the base station to the terminal through the downlink channel, or adopt a default configuration set by the protocol;
- ⁇ is the length of the remaining resources other than the integer multiple of the OFDM symbol in one frame in the time domain:
- N DUGI is a positive integer greater than 1
- DUGI is a positive integer greater than 1
- N UDGI is a positive integer greater than 1
- the bandwidth is 20MHz
- the sampling frequency is 30.72MHz
- the subcarrier spacing is 120KHz
- the cyclic prefix CP of an OFDM symbol contains 24 sample points with a length of approximately 0.781 us and a length r of the entire OFDM symbol.
- the FDM is approximately 9.115us. Calculate the length r R of the resource included in the time domain in addition to the OFDM symbol containing an integer multiple in one frame according to the following formula.
- the DUGI length is Nl*T OF DM+Tl
- the UDGI length is Ml*T OFDM +T2, where Nl and Ml are positive integers greater than or equal to zero;
- the bandwidth is 20MHz
- the sampling frequency is 30.72MHz.
- the subcarrier spacing is 120 ⁇
- the CP of an OFDM symbol contains 24 sample points with a length of approximately 0.781 us and a length r of the entire OFDM symbol.
- FDM is about 9.15us
- the DUGI length is N1*TOFDM+T1
- the UDGI length is Ml*T OFDM +T2, where Nl and Ml are positive integers greater than or equal to zero;
- Nl 2
- the bandwidth is 20MHz
- the sampling frequency is 30.72MHz.
- the subcarrier spacing is 120KHz
- the CP of an OFDM symbol contains 24 sample points with a length of approximately 0.781 us and a length r of the entire OFDM symbol.
- the FDM is approximately 9.115us. According to the following formula, in addition to the OFDM symbol containing integer multiples in one frame, the length of the resource included in the time domain is r R réelle ;
- the DUGI length is Nl*T OF DM+Tl
- the UDGI length is Ml*T OFDM +T2, where N1 and Ml are positive integers greater than or equal to zero;
- Tl+T2 r Remaifact , and the values of T1 and T2 are flexibly configured according to the processing capabilities of the terminal and the base station;
- K is a positive integer greater than 1
- the bandwidth is 20MHz
- the sampling frequency is 30.72MHz
- the subcarrier spacing is 120KHz
- the CP of an OFDM symbol contains 24 sample points with a length of approximately 0.781 us and a length r of the entire OFDM symbol.
- the FDM is approximately 9.115us. Calculate the length r R of the resource included in the time domain in addition to the OFDM symbol containing an integer multiple in one frame according to the following formula.
- the DUGI length is Nl*T OF DM+Tl
- the UDGI length is Ml*T OFDM +T2, where N1 and Ml are positive integers greater than or equal to zero;
- the bandwidth is 20MHz
- the sampling frequency is 30.72MHz.
- the subcarrier spacing is 120KHz
- the CP of an OFDM symbol contains 24 sample points with a length of approximately 0.781 us and a length r of the entire OFDM symbol.
- FDM is about 9.15us
- the length of the UDGI is Ml*T OFDM +T2, where Nl and Ml are positive integers greater than or equal to zero;
- the bandwidth is 20MHz
- the sampling frequency is 30.72MHz.
- the subcarrier spacing is 120KHz
- the CP of an OFDM symbol contains 24 sample points with a length of approximately 0.781 us and a length r of the entire OFDM symbol.
- TOM is about 9.15us
- the length of the resource in the time domain is 7;
- the DUGI length is Nl*T OF DM+Tl
- the UDGI length is Ml*T OFDM +T2, where Nl and Ml are positive integers greater than or equal to zero;
- Tl+T2 r Remaifact , and the values of T1 and T2 are flexibly configured according to the processing capabilities of the terminal and the base station;
- the present invention further provides a configuration apparatus for uplink and downlink switching intervals in a communication system, which is applied to a communication system using OFDM technology and a time domain sampling interval of Ts seconds, and the apparatus includes:
- the parameter configuration module is configured to configure values of N1, N2, kl, Ml, M2, and k2, and configure the foregoing parameters to the terminal through the downlink channel, or configure the default of the foregoing parameters for the network side or the terminal side. Value.
- the DUGI configuration module configures that (N2*Ts) is a minimum quantization granularity of the DUGI, and N1 is a multiple of a minimum quantization granularity of the DUGI; and the UDGI configuration module configures the (M2*Ts) as a UDGI
- the minimum quantization granularity, Ml is a multiple of the minimum quantization granularity of the UDGI.
- the DUGI configuration module configures a minimum quantization granularity of the DUGI as an OFDM symbol length T OFDM , that is, the (N2*Ts ) is configured as T OFDM ; and the UDGI configuration module sets a minimum quantization granularity of the UDGI Configured as OFDM symbol length T OFDM , that is, the (M2*Ts ) is configured as T OFDM .
- ⁇ Remain ⁇ Frame
- L represents a downward rounding operation
- L is a positive integer greater than zero
- N DUGI and N UDGI are positive integers greater than or equal to 1;
- N DUGI *kl+ N u ⁇ I *k2 L.
- the present invention can flexibly meet the requirements of the base station and the terminal for the conversion delay in different scenarios, and can use the time-frequency resources to the maximum extent without causing waste of resources.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Disclosed are a method and device for configuring an uplink/downlink guard interval in a communication system. In the present invention, in a communication system where an OFDM technology is used, the sampling frequency is F hertz, and the time domain sampling interval is Ts seconds, the length of a downlink-to-uplink guard interval (DUGI) of a frame is set to N1*(N2*Ts)+T1, and the length of an uplink-to-downlink guard interval (UDGI) of a frame is set to M1*(M2*Ts)+T2. N1, N2, T1, M1, M2, and T2 are all positive integers greater than or equal to zero, which are configured by a base station to a terminal through a downlink channel, or are default configured values. The present invention can flexibly satisfy requirements of a base station and a terminal on conversion of delays and can make full use of time and frequency resources, thereby not wasting the resources.
Description
一种通信系统中转换间隔的配置方法及装置 技术领域 Configuration method and device for switching interval in communication system
本发明涉及通信技术领域, 尤其涉及一种采用 OFDM ( Orthogonal Frequency Division Multiplexing , 正交频分复用)技术的通信系统中的转换 间隔的配置方法及装置。 背景技术 The present invention relates to the field of communications technologies, and in particular, to a method and apparatus for configuring a transition interval in a communication system using OFDM (Orthogonal Frequency Division Multiplexing) technology. Background technique
随着移动互联网的发展和智能手机的普及, 移动数据流量需求飞速增 长, 快速增长的数据业务对移动通信网络的传输能力提出了严峻挑战。 根 据权威机构预测, 未来十年内 (2011-2020年), 移动数据业务量还将每年 翻一番, 十年将增长一千倍。 With the development of mobile Internet and the popularity of smart phones, the demand for mobile data traffic is growing rapidly, and the rapid growth of data services poses a serious challenge to the transmission capabilities of mobile communication networks. According to authoritative forecasts, in the next decade (2011-2020), mobile data traffic will double every year and will increase by a thousand times in ten years.
大部分的移动数据业务主要发生在室内和热点环境, 体现为游牧 /本地 无线接入场景。 据统计, 目前移动数据业务量的近 70%发生在室内, 而且 这一比例还将继续增长, 预计到 2012年将会超过 80%。 数据业务主要为互 联网业务, 对服务质量的要求比较单一, 且远低于传统电信业务对服务质 量的要求。 蜂窝移动通信系统主要面向的是高速移动, 无缝切换的传统电 信业务设计, 当其承载大流量低速 IP (互联网协议)数据包业务时, 效率 偏低, 成本过高。 Most mobile data services occur mainly in indoor and hotspot environments, as reflected in nomadic/local wireless access scenarios. According to statistics, nearly 70% of mobile data traffic is currently indoors, and this proportion will continue to grow, and is expected to exceed 80% by 2012. The data service is mainly for Internet services, and the requirements for service quality are relatively simple, and far lower than the requirements for service quality of traditional telecommunication services. The cellular mobile communication system is mainly designed for high-speed mobile, seamless telecommunication traditional telecommunication service design. When it carries large-flow and low-speed IP (Internet Protocol) packet services, the efficiency is low and the cost is too high.
目前已有的适合游牧 /本地无线数据接入的解决方案主要有 IEEE ( Institute of Electrical and Electronics Engineers , 电子电气工程师十办会) 802.11 系列标准, 国内新岸线公司主导的 NUHT ( Next Ultra-High Throughout )标准。 NUHT标准采用的是 OFDM技术并且配置 TDD的帧结 构, 下行到上行的转换间隔(DGI )与上行到下行的转换间隔(UGI )采用 了整数倍的 OFDM符号长度来描述。考虑到基站(接入点, AP, Access Point )
和终端对于转换时延要求不一致, 一般要求 DGI时间长度要大于 UGI。 由 于在室内和热点环境中的终端的种类千差万别, 对于转换时延要求也并不 相同, 如果将 OFDM符号长度作为描述 DGI和 UGI的最小时间单位, 会 由于量化粒度过大, 导致部分资源被浪费, 如图 1 所示, 考虑终端对于转 换时延要求后合理的 DGI取值为 T1 ,但是由于 DGI配置为整数倍的 OFDM 符号长度, 所以只能为 DGI分配 2个 OFDM符号, 造成了资源的浪费。 并 且当使用了固定长度的帧结构时, 由于帧的长度并不一定为 OFDM符号长 度的整数倍, 所以会产生一个小于 OFDM符号长度的时频资源, 在 DGI和 UGI的设计时要考虑这部分资源的使用。 The existing solutions for nomadic/local wireless data access mainly include the IEEE ( Institute of Electrical and Electronics Engineers) 802.11 series of standards, and the domestic new shoreline company-led NUHT (Next Ultra-High). Throughout) standard. The NUHT standard uses OFDM technology and configures the frame structure of TDD. The downlink-to-uplink transition interval (DGI) and the uplink-to-downlink transition interval (UGI) are described by an integer multiple of the OFDM symbol length. Considering the base station (access point, AP, Access Point) The terminal and the terminal have different requirements for the conversion delay. Generally, the DGI time length is required to be larger than the UGI. Since the types of terminals in indoor and hotspot environments vary widely, the conversion delay requirements are also different. If the OFDM symbol length is used as the minimum time unit for describing DGI and UGI, some resources will be wasted due to excessive quantization granularity. As shown in Figure 1, consider that the reasonable DGI value of the terminal after the conversion delay requirement is T1. However, since the DGI is configured as an integer multiple of the OFDM symbol length, only two OFDM symbols can be allocated for the DGI, resulting in resources. waste. And when a fixed-length frame structure is used, since the length of the frame is not necessarily an integer multiple of the length of the OFDM symbol, a time-frequency resource smaller than the length of the OFDM symbol is generated, and this part should be considered in the design of DGI and UGI. Use of resources.
发明内容 Summary of the invention
有鉴于此, 本发明的主要目的在于提供一种通信系统中上下行转换间 隔的配置方法及装置, 用于解决现有 DGI和 UGI的配置方法容易造成资源 浪费, 无法满足不同场景下基站和终端对于转换时延需求的技术问题。 In view of the above, the main purpose of the present invention is to provide a method and a device for configuring an uplink and downlink transition interval in a communication system, which is used to solve the problem that the existing DGI and UGI configuration methods are easy to waste resources, and cannot satisfy the base station and the terminal in different scenarios. Technical issues for conversion latency requirements.
为达到上述目的, 本发明的技术方案是这样实现的: In order to achieve the above object, the technical solution of the present invention is achieved as follows:
技术方案 1: 根据本发明的一个方面,提供了一种通信系统中上下行转 换间隔的设计方法, 该方法包括: Technical Solution 1: According to an aspect of the present invention, a method for designing an uplink and downlink conversion interval in a communication system is provided, the method comprising:
采用 OFDM技术、 采样频率为 F (赫兹, Hz ) 的通信系统中, 时域采 样间隔为 Ts (秒, s),其中 Ts=l/F。下行到上行的转换间隔 DUGI长度为 N1* ( N2*Ts ) +T1 , 上行到下行的转换间隔 UDGI长度为 Ml* ( M2*Ts ) +T2, 其中, 所述 Nl、 N2、 Tl、 Ml、 Μ2、 Τ2 均由基站通过下行信道发送给终 端, 或采用默认配置值。 In a communication system using OFDM technology with a sampling frequency of F (Hertz, Hz), the time domain sampling interval is Ts (seconds, s), where Ts = l/F. The downlink-to-uplink transition interval DUGI has a length of N1*(N2*Ts)+T1, and the uplink-to-downlink transition interval UDGI has a length of M1*(M2*Ts)+T2, where the N1, N2, T1, Ml, Μ2, Τ2 are sent by the base station to the terminal through the downlink channel, or the default configuration value is adopted.
所述采样频率 F为系统的最大采样频率或者为系统的最大采样频率的 整数倍分频。
技术方案 2: 基于技术方案 1 , 所述 T1的配置为 Tl=kl*Ts, 所述 T2 配置为 T2=k2*Ts, 其中 kl和 k2为大于等于零的正整数, 由基站通过下行 信道发送给终端, 或采用默认配置值。 The sampling frequency F is the maximum sampling frequency of the system or is an integer multiple of the maximum sampling frequency of the system. Technical Solution 2: Based on the technical solution 1, the configuration of the T1 is T1=kl*Ts, and the T2 is configured as T2=k2*Ts, where k1 and k2 are positive integers greater than or equal to zero, and are sent by the base station to the downlink channel. Terminal, or use the default configuration values.
技术方案 3: 基于技术方案 2, 所述(N2*Ts ) 为 DUGI的最小量化 粒度, N1为所述 DUGI的最小量化粒度的倍数; 所述(M2*Ts ) 为 UDGI 的最小量化粒度, Ml为所述 UDGI的最小量化粒度的倍数; 其中, Nl、 N2、 Ml、 M2为大于等于零的正整数。 Technical Solution 3: Based on the technical solution 2, the (N2*Ts) is a minimum quantization granularity of the DUGI, and N1 is a multiple of a minimum quantization granularity of the DUGI; the (M2*Ts) is a minimum quantization granularity of the UDGI, Ml a multiple of the minimum quantization granularity of the UDGI; wherein Nl, N2, Ml, M2 are positive integers greater than or equal to zero.
技术方案 4: 基于技术方案 3, 将所述 DUGI 的最小量化粒度和所述 UDGI的最小量化粒度都配置为 OFDM符号长度 TOTDM,即将所述( N2*Ts ) 和所述 ( M2*Ts )都配置为 TOFDM,由此可以得到 DUGI长度为 Nl*TOFDM+Tl , UDGI长度为 M1*TOTDM+T2。 Solution 4: Based on the technical solution 3, the minimum quantization granularity of the DUGI and the minimum quantization granularity of the UDGI are both configured as an OFDM symbol length T OTDM , that is, the (N2*Ts) and the (M2*Ts) Both are configured as T OFDM , whereby the DUGI length is Nl*T OFDM +Tl and the UDGI length is M1*T OTDM +T2.
优选地, 基于技术方案 1 , 所述 DUGI长度大于等于所述 UDGI长度; 优选地,基于技术方案 4, Tl=kl*Ts和 T2=k2*Ts的取值都小于 OFDM 符号的长度 T。FDM; Preferably, based on the technical solution 1, the DUGI length is greater than or equal to the UDGI length; preferably, based on the technical solution 4, the values of T1=kl*Ts and T2=k2*Ts are all smaller than the length T of the OFDM symbol. FDM ;
技术方案 5: 基于技术方案 4, 当帧长度为!^^且 1帧之内只配置 1 个 DUGI和 1个 UDGI时,以 rRemai„表示 1帧内除整数倍的 OFDM符号之外 的剩余资源在时域的长度: Technical Solution 5: Based on Technical Plan 4, when the frame length is! ^^ and only one DUGI and one UDGI are configured within one frame, and r Remai „ indicates the length of the remaining resources in the time domain except for an integer multiple of the OFDM symbol within one frame:
T T
τ Frame τ Frame
Remain =τ Frame 1 OFDM ~ L 1 S Remain =τ Frame 1 OFDM ~ L 1 S
Τ 1 OFDM Τ 1 OFDM
其中 L」表示向下取整的运算, L为大于零的正整数; Where L" represents the rounding down operation and L is a positive integer greater than zero;
当 T1的长度配置为 rRemai„时, 则 kl=L, 同时, T2=0, 即 k2=0; When the length of T1 is configured as r Remai „, then kl=L, and at the same time, T2=0, ie k2=0;
当 T2的长度配置为 rRemai„时, 则 k2=L, 同时, T1=0, 即 kl=0; When the length of T2 is configured as r Remai „, then k2=L, and at the same time, T1=0, that is, kl=0;
当 T1+T2的长度配置为 rR .„时, 则 kl+k2=L。
技术方案 6: 基于技术方案 4, 当帧长度为 1^^且 1帧之内配置 NDUGI 个 DUGI和 NU∞I个 UDGI时, 以 TR iri表示 1帧内除整数倍的 OFDM符号 之外的剩余资源在时域的长度: When the length of T1+T2 is configured as r R . , then kl+k2=L. Technical Solution 6: 4 aspect based on, when the configuration number N DUGI Dugi and UDGI 1 ^^ N U∞I number and the frame length is within an order represents a frame T R iri addition to an integral multiple of the OFDM symbols The length of the remaining resources in the time domain:
T T
τ Frame τ Frame
Remain = τ Frame τ 1 OFDM ~ L 1 S Remain = τ Frame τ 1 OFDM ~ L 1 S
1 OFDM 1 OFDM
其中 L」表示向下取整的运算, L为大于零的正整数, NDUGI和 NUDG 均为大于等于 1的正整数; 当 T1的长度配置为丁 'N 时,则 kl=L/NDTirTT,同时, T2=0,即 k2=0; Where L" represents a downward rounding operation, L is a positive integer greater than zero, N DUGI and N UDG are positive integers greater than or equal to 1; when the length of T1 is configured as D 'N, then kl = L / N DTirTT , meanwhile, T2=0, ie k2=0;
DUGI 当 T2的长度配置为 ™'·"/, 时,则 k2=L/ NUDGI,同时,T1=0,即 kl=0; 当将 NDUGI *T1+ NUDGI *T2 的长度配置为 rR .„时, 则 NDUGI *kl+ NUDGI*k2=L。 DUGI When the length of T2 is configured as TM'·"/, then k2=L/N UDGI , and at the same time, T1=0, that is, kl=0; when the length of N DUGI *T1+ NUDGI *T2 is configured as r R . „, then NDUGI *kl+ N UDGI *k2=L.
基于本发明实施例, 本发明还提供一种通信系统中上下行转换间隔的 配置装置,该装置应用于采用 OFDM技术、 时域采样间隔为 Ts秒的通信系 统中, 该装置包括: The present invention further provides a configuration apparatus for uplink and downlink transition intervals in a communication system, which is applied to a communication system using OFDM technology and a time domain sampling interval of Ts seconds. The device includes:
DUGI配置模块,用于将帧中的下行到上行的转换间隔 DUGI长度设置 为 Nl* ( N2*Ts ) + T1 , 其中, Tl=kl*Ts; The DUGI configuration module is configured to set the downlink to uplink transition interval DUGI length in the frame to Nl*(N2*Ts) + T1, where Tl=kl*Ts;
UDGI配置模块,用于将帧中的上行到下行的转换间隔 UDGI长度设置 为 Ml* ( M2*Ts ) + T2, 其中, T2=k2*Ts; The UDGI configuration module is configured to set the uplink to downlink transition interval UDGI length in the frame to Ml* ( M2*Ts ) + T2, where T2=k2*Ts;
参数配置模块, 用于配置参数 Nl、 N2、 kl、 Ml、 M2、 k2的值, 及通 过下行信道将上述参数配置给终端, 或为网络侧或终端侧配置上述参数的 默认值。 The parameter configuration module is configured to configure the values of the parameters N1, N2, kl, Ml, M2, and k2, and configure the foregoing parameters to the terminal through the downlink channel, or configure the default values of the foregoing parameters for the network side or the terminal side.
本发明将帧中的下行到上行的转换间隔 DUGI长度设置为 Nl*( N2*Ts ) +T1 ,将帧中的上行到下行的转换间隔 UDGI长度设置为 Ml*( M2*Ts )+T2; 网络侧可以根据不同场景下基站和终端对于转换时延的需求, 灵活的配置
Nl、 N2、 Tl、 Ml、 M2、 T2等参数, 可以最大限度的使用时频资源, 不造 成资源的浪费。 附图说明 The present invention sets the downlink-to-uplink transition interval DUGI length in the frame to N1*(N2*Ts)+T1, and sets the uplink-to-downlink transition interval UDGI length in the frame to M1*(M2*Ts)+T2; The network side can flexibly configure the base station and the terminal according to the requirements of the conversion delay in different scenarios. Parameters such as Nl, N2, Tl, Ml, M2, and T2 can use time-frequency resources to the maximum extent without causing waste of resources. DRAWINGS
图 1为一种通信系统中 DGI和 UGI在帧中位置分布的示意图; 图 2为本发明方法中一种 DUGI和 UDGI位置分布的示意图; 图 3为本发明方法中另一种 DUGI和 UDGI位置分布的示意图。 具体实施方式 1 is a schematic diagram of position distribution of DGI and UGI in a frame in a communication system; FIG. 2 is a schematic diagram of a DUGI and UDGI position distribution in the method of the present invention; FIG. 3 is another DUGI and UDGI position in the method of the present invention; Schematic diagram of the distribution. detailed description
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。 The present invention will be further described in detail below with reference to the accompanying drawings.
实施例 1 Example 1
采用 OFDM技术、 采样频率为 F (赫兹, Hz ) 的通信系统中, 时域采 样间隔为 Ts (秒, s), 其中 Ts=l/F。 In a communication system using OFDM technology with a sampling frequency of F (Hertz, Hz), the time domain sampling interval is Ts (seconds, s), where Ts = l/F.
将下行到上行的转换间隔( Downlink to Uplink Gap Interval, DUGI )长 度配置为 Nl* ( N2*Ts ) +Tl ,将上行到下行的转换间隔(Uplink to Downlink Gap Interval, UDGI )长度配置为 Ml* ( M2*Ts ) +T2, 如图 2所示。 Configure the length of the Downlink to Uplink Gap Interval (DUGI) to Nl* ( N2*Ts ) +Tl and the length of the Uplink to Downlink Gap Interval (UDGI) to Ml*. (M2*Ts) +T2, as shown in Figure 2.
其中, among them,
所述 Nl、 N2、 Tl、 Ml、 M2、 T2均为大于等于零的正整数; The N1, N2, Tl, Ml, M2, and T2 are positive integers greater than or equal to zero;
( N2*Ts ) 为 DUGI 的最小量化粒度, T1 的取值为 Ts 的整数倍, Tl=kl*Ts, N1为所述 DUGI的最小量化粒度的倍数; (N2*Ts) is the minimum quantization granularity of DUGI, the value of T1 is an integer multiple of Ts, Tl=kl*Ts, and N1 is a multiple of the minimum quantization granularity of the DUGI;
( M2*Ts ) 为 UDGI 的最小量化粒度, T2 的取值为 Ts 的整数倍, (M2*Ts) is the minimum quantization granularity of UDGI, and the value of T2 is an integer multiple of Ts.
T2=k2*Ts, Ml为所述 UDGI的最小量化粒度的倍数; T2=k2*Ts, Ml is a multiple of the minimum quantization granularity of the UDGI;
所述 Nl、 N2、 Tl、 Ml、 Μ2、 Τ2、 kl、 k2 由基站通过下行信道发送 给终端, 或者采用协议设定的默认配置;
实施例 2 The N1, N2, T1, M1, Μ2, Τ2, kl, k2 are sent by the base station to the terminal through the downlink channel, or adopt a default configuration set by the protocol; Example 2
采用 OFDM技术、 采样频率为 F (赫兹, Hz ) 的通信系统中, 时域采 样间隔为 Ts (秒, s), 其中 Ts=l/F。 In a communication system using OFDM technology with a sampling frequency of F (Hertz, Hz), the time domain sampling interval is Ts (seconds, s), where Ts = l/F.
当选择 OFDM符号长度 TOFDM作为下行到上行的转换间隔 DUGI和上 行到下行的转换间隔 UDGI的最小量化粒度时, DUGI长度为 N1*TOTDM+T1 , UDGI长度为 M1*TOTDM+T2; When the OFDM symbol length T OFDM is selected as the minimum quantization granularity of the downlink-to-uplink transition interval DUGI and the uplink-to-downlink transition interval UDGI, the DUGI length is N1*T OTDM +T1 , and the UDGI length is M1*T OTDM +T2;
其中, Tl=kl*Ts和 T2=k2*Ts的取值都小于 OFDM符号的长度 TOFDM;Wherein, the values of Tl=kl*Ts and T2=k2*Ts are both smaller than the length of the OFDM symbol T OFDM ;
Nl、 Ml、 kl、 k2由基站通过下行信道发送给终端, 或者采用协议设定 的默认配置; Nl, Ml, kl, k2 are sent by the base station to the terminal through the downlink channel, or adopt a default configuration set by the protocol;
( 1 )当帧长度为固定值!^^且 1帧之内只有 1个 DUGI和 1个 UDGI 时,以^ 表示 1帧内除整数倍的 OFDM符号之外的剩余资源在时域的长 度: (1) When the frame length is a fixed value! ^^ And when there is only one DUGI and one UDGI within one frame, ^ is the length of the remaining resources other than the integer multiple of the OFDM symbol in one frame in the time domain:
T T
τ Frame τ Frame
Remain =τ Frame 1 OFDM ~ L I S Remain =τ Frame 1 OFDM ~ L IS
Τ 1 OFDM Τ 1 OFDM
其中, L」表示向下取整。 Where L" means rounding down.
当所述 T1的长度等于 rR .„时, 则 kl=L, 同时, T2=0, 即 k2=0; When the length of the T1 is equal to r R . , then kl=L, and at the same time, T2=0, that is, k2=0;
当所述 T2的长度等于 rR .„时, 则 k2=L, 同时, T1=0, 即 kl=0; When the length of the T2 is equal to r R . „, then k2=L, and at the same time, T1=0, that is, kl=0;
当所述 T1+T2的长度等于 rR .„时, 则 kl+k2=L; When the length of the T1+T2 is equal to r R . , then kl+k2=L;
( 2 ) 当帧长度为固定值 TFrame且 1帧之内有 NDUGI ( NDUGI为大于 1的 正整数)个 DUGI 和 NUDGI ( NUDGI为大于 1 的正整数)个 UDGI 时, (2) When the frame length is a fixed value T Frame and there are N DUGI (N DUGI is a positive integer greater than 1) DUGI and N UDGI (NUDGI is a positive integer greater than 1) UDGI within 1 frame,
T T
τ Frame τ Frame
Remain二 τ Frame τ * L*7 ^表示 1帧内除整数倍的 OFDM符号之 丄 OFDM Remain two τ Frame τ * L*7 ^ denotes OFDM of OFDM symbols except one integer multiple of 1 frame
外的剩余资源在时域的长度。 The length of the remaining resources in the time domain.
当所述 T1的长度等于 ™ 时, 则 kl=L/NDUCI, 同时, T2=0, 即
k2=0; N丽, 同时, T1=0, 即
When the length of the T1 is equal to TM, then kl=L/N DUCI , and at the same time, T2=0, ie K2=0; N Li, meanwhile, T1=0, ie
kl=0; Kl=0;
当所述 NDUGI *T1+ NUDGI *Τ2 的长度等于 时, 则 NDUGI *kl+
When the length of the N DUGI *T1+ NUDGI *Τ2 is equal, then NDUGI *kl+
实施例 3 Example 3
采用 OFDM 技术, 带宽为 20MHz, 帧长为 rF =5ms , 采样频率为 30.72MHz 的通信系统中, 子载波间隔为 120KHz , 时域采样间隔为 Ts=l/30.72MHz=32.55ns。 In the communication system with OFDM technology, the bandwidth is 20MHz, the frame length is r F =5ms, and the sampling frequency is 30.72MHz, the subcarrier spacing is 120KHz, and the time domain sampling interval is Ts=l/30.72MHz=32.55ns.
所述通信系统使用 30.72*1000/120=256点的快速傅里叶反变换 IFFT运 算生成时域 OFDM符号并发送。 The communication system generates a time domain OFDM symbol and transmits it using an inverse fast Fourier transform IFFT operation of 30.72 * 1000 / 120 = 256 points.
OFDM符号的循环前缀 CP包含 24个采样点, 长度约为 0.781us, 整个 OFDM符号的长度 r。FDM约为 9.115us。 按照下面公式计算 1帧内除了包含整数倍的 OFDM符号外, 还包括的 资源在时域的长度 rR, The cyclic prefix CP of an OFDM symbol contains 24 sample points with a length of approximately 0.781 us and a length r of the entire OFDM symbol. The FDM is approximately 9.115us. Calculate the length r R of the resource included in the time domain in addition to the OFDM symbol containing an integer multiple in one frame according to the following formula.
T T
τ Frame * 7" τ Frame * 7"
Re main = τ Frame 1 OFDM Re main = τ Frame 1 OFDM
T A OFDM T A OFDM
5000 5000
= 5000 *9.115^ = 5000 *9.115^
9.115 9.115
= 4.98^ - 153*7^ = 4.98^ - 153*7^
当 r。FDM为 DUGI 和 UDGI 的最小量化粒度时, DUGI 长度为 Nl*TOFDM+Tl , UDGI长度为 Ml*TOFDM+T2, 其中, Nl和 Ml为大于等于 零的正整数; When r. When FDM is the minimum quantization granularity of DUGI and UDGI, the DUGI length is Nl*T OF DM+Tl, and the UDGI length is Ml*T OFDM +T2, where Nl and Ml are positive integers greater than or equal to zero;
当 1帧内只有 1个 DUGI和 1个 UDGI时, Tl=rRemai„ , T2=0; 优选地, Nl=2, Ml=2, 即 DUGI=23.21us, UDGI=18.23us;
优选地, Nl=3, Ml=2, 即 DUGI=32.325us, UDGI=18.23us; When there is only one DUGI and one UDGI in one frame, Tl=r Remai „ , T2=0; preferably, Nl=2, Ml=2, ie DUGI=23.21us, UDGI=18.23us; Preferably, Nl=3, Ml=2, ie DUGI=32.325us, UDGI=18.23us;
当 1帧内只有 K (Κ为大于 1的正整数)个 DUGI和 Κ个 UDGI时, K*Tl=rRe T2=0, 其中, N1 和 Ml 为大于等于零的正整数, 则 DUGI 长度为 Nl*TOFDM+rR „/k, UDGI长度为 Ml*TOFDM+T2/rR „; When there are only K (Κ is a positive integer greater than 1) DUGI and UD UDGI in 1 frame, K*Tl=r Re T2=0, where N1 and Ml are positive integers greater than or equal to zero, then the length of DUGI is Nl *T OFDM+ r R „/k, UDGI length is Ml*T OFDM+ T2/r R „;
优选地, Nl=2, Ml=2; Preferably, Nl=2, Ml=2;
优选地, Nl=3, Ml=2; 实施例 4 Preferably, Nl=3, Ml=2; Example 4
采用 OFDM 技术, 带宽为 20MHz, 帧长为 rF =5ms, 采样频率为 30.72MHz 的通信系统中, 子载波间隔为 120ΚΗζ , 时域采样间隔为 Ts=l/30.72MHz=32.55ns In OFDM technology, the bandwidth is 20MHz, the frame length is r F =5ms, and the sampling frequency is 30.72MHz. The subcarrier spacing is 120ΚΗζ, and the time domain sampling interval is Ts=l/30.72MHz=32.55ns.
所述通信系统使用 30.72*1000/120=256点的 IFFT运算生成时域 OFDM 符号并发送。 The communication system generates a time domain OFDM symbol and transmits using an IFFT operation of 30.72*1000/120 = 256 points.
OFDM符号的 CP包含 24个采样点, 长度约为 0.781us, 整个 OFDM 符号的长度 r。FDM约为 9.115us The CP of an OFDM symbol contains 24 sample points with a length of approximately 0.781 us and a length r of the entire OFDM symbol. FDM is about 9.15us
按照下面公式计算 1帧内除了包含整数倍的 OFDM符号外, 还包括的 资源在时域的长度 rR,
Calculate the length r R of the resource included in the time domain in addition to the OFDM symbol containing an integer multiple in one frame according to the following formula.
5000us 5000us
= 5000us- *9.ll5us = 5000us- *9.ll5us
9.115 9.115
= 4.98^-153*7^ = 4.98^-153*7^
当 r。FDM为 DUGI 和 UDGI 的最小量化粒度时, DUGI 长度为 N1*TOFDM+T1, UDGI长度为 Ml*TOFDM+T2, 其中, Nl和 Ml为大于等于 零的正整数; When r. When FDM is the minimum quantization granularity of DUGI and UDGI, the DUGI length is N1*TOFDM+T1, and the UDGI length is Ml*T OFDM +T2, where Nl and Ml are positive integers greater than or equal to zero;
当 1帧内只有 1个 DUGI和 1个 UDGI时, Τ1=0, Ί2=Ττ
优选地, Nl=3, Ml=2, 即 DUGI=27.345us, UDGI=23.21us; When there is only one DUGI and one UDGI in one frame, Τ1=0, Ί2=Τ τ Preferably, Nl=3, Ml=2, ie DUGI=27.345us, UDGI=23.21us;
优选地, Nl=2, Ml=l, 即 DUGI=18.23us, UDGI=14.095us; Preferably, Nl=2, Ml=l, that is, DUGI=18.23us, UDGI=14.095us;
优选地, Nl=3, Ml=l , 即 DUGI=27.345us, UDGI=14.095us; Preferably, Nl=3, Ml=l, ie DUGI=27.345us, UDGI=14.095us;
当 1帧内只有 K ( K为大于 1的正整数)个 DUGI和 Κ个 UDGI时, K*Tl=rRemai„, T2=0, 其中, N1 和 Ml 为大于等于零的正整数, 则 DUGI 长度为 Nl*TOFDM+rRe„,„/k, UDGI长度为 Ml*TOFDM+T2/rRe ; 优选地, Nl=2, Ml =2; When there are only K (K is a positive integer greater than 1) DUGI and one UDGI in one frame, K*Tl=r Remai „, T2=0, where N1 and Ml are positive integers greater than or equal to zero, then DUGI length Nl*T OFDM +r Re „, „/k, UDGI length is Ml*T OFDM +T2/r Re ; preferably, Nl=2, Ml=2;
优选地, Nl=3, Ml=2; Preferably, Nl=3, Ml=2;
实施例 5 Example 5
采用 OFDM 技术, 带宽为 20MHz, 帧长为 7 =5ms, 采样频率为 30.72MHz 的通信系统中, 子载波间隔为 120KHz , 时域采样间隔为 Ts=l/30.72MHz=32.55ns。 In OFDM technology, the bandwidth is 20MHz, the frame length is 7 = 5ms, and the sampling frequency is 30.72MHz. The subcarrier spacing is 120KHz, and the time domain sampling interval is Ts=l/30.72MHz=32.55ns.
所述通信系统使用 30.72*1000/120=256点的 IFFT运算生成时域 OFDM 符号并发送。 The communication system generates a time domain OFDM symbol and transmits using an IFFT operation of 30.72*1000/120 = 256 points.
OFDM符号的 CP包含 24个采样点, 长度约为 0.781us, 整个 OFDM 符号的长度 r。FDM约为 9.115us。 按照下面公式计算 1帧内除了包含整数倍的 OFDM符号外, 还包括的 资源在时域的长度 rR „;
The CP of an OFDM symbol contains 24 sample points with a length of approximately 0.781 us and a length r of the entire OFDM symbol. The FDM is approximately 9.115us. According to the following formula, in addition to the OFDM symbol containing integer multiples in one frame, the length of the resource included in the time domain is r R „ ;
5000^ 5000^
= 5000^ - *9.115^ = 5000^ - *9.115^
9.115 9.115
= 4.98M 153*7^
当 r。FDM为 DUGI 和 UDGI 的最小量化粒度时, DUGI 长度为 Nl*TOFDM+Tl , UDGI长度为 Ml*TOFDM+T2, 其中, N1和 Ml为大于等于 零的正整数; = 4.98M 153*7^ When r. When FDM is the minimum quantization granularity of DUGI and UDGI, the DUGI length is Nl*T OF DM+Tl, and the UDGI length is Ml*T OFDM +T2, where N1 and Ml are positive integers greater than or equal to zero;
当 1帧内只有 1个 DUGI和 1个 UDGI时, Tl+T2=rRemai„ , 并且根据终 端和基站的处理能力灵活配置 T1和 T2的取值; When there is only one DUGI and one UDGI in one frame, Tl+T2=r Remai „ , and the values of T1 and T2 are flexibly configured according to the processing capabilities of the terminal and the base station;
当 1帧内只有 K ( K为大于 1的正整数)个 DUGI和 K个 UDGI时, K*(Tl+T2)=rRemai„ ,并且根据终端和基站的处理能力灵活配置 T1和 T2的取 值。 When there are only K (K is a positive integer greater than 1) DUGI and K UDGI in one frame, K*(Tl+T2)=r Remai „ , and the T1 and T2 are flexibly configured according to the processing capabilities of the terminal and the base station. value.
实施例 6 Example 6
采用 OFDM技术, 带宽为 20MHz, 帧长为 rF =10ms, 采样频率为 30.72MHz 的通信系统中, 子载波间隔为 120KHz , 时域采样间隔为 Ts=l/30.72MHz=32.55ns。 In the communication system with OFDM technology, the bandwidth is 20MHz, the frame length is r F =10ms, and the sampling frequency is 30.72MHz, the subcarrier spacing is 120KHz, and the time domain sampling interval is Ts=l/30.72MHz=32.55ns.
所述通信系统使用 30.72*1000/120=256点的 IFFT运算生成时域 OFDM 符号并发送。 The communication system generates a time domain OFDM symbol and transmits using an IFFT operation of 30.72*1000/120 = 256 points.
OFDM符号的 CP包含 24个采样点, 长度约为 0.781us, 整个 OFDM 符号的长度 r。FDM约为 9.115us。 按照下面公式计算 1帧内除了包含整数倍的 OFDM符号外, 还包括的 资源在时域的长度 rR, The CP of an OFDM symbol contains 24 sample points with a length of approximately 0.781 us and a length r of the entire OFDM symbol. The FDM is approximately 9.115us. Calculate the length r R of the resource included in the time domain in addition to the OFDM symbol containing an integer multiple in one frame according to the following formula.
TT
T Frame T Frame
Re main Τ Frame OFDM Re main Τ Frame OFDM
T OFDM T OFDM
当 r。FDM为 DUGI 和 UDGI 的最小量化粒度时, DUGI 长度为 Nl*TOFDM+Tl , UDGI长度为 Ml*TOFDM+T2, 其中, N1和 Ml为大于等于 零的正整数; When r. When FDM is the minimum quantization granularity of DUGI and UDGI, the DUGI length is Nl*T OF DM+Tl, and the UDGI length is Ml*T OFDM +T2, where N1 and Ml are positive integers greater than or equal to zero;
当 1帧内只有 1个 DUGI和 1个 UDGI时, Tl=rRemai„ , T2=0; When there is only one DUGI and one UDGI in one frame, Tl=r Remai „ , T2=0;
优选地, Nl=2, Ml=2, 即 DUGI=19.075us, UDGI=18.23us; Preferably, Nl=2, Ml=2, ie DUGI=19.075us, UDGI=18.23us;
优选地, Nl=3, Ml=2, 即 DUGI=28.19us, UDGI=18.23us; Preferably, Nl=3, Ml=2, ie DUGI=28.19us, UDGI=18.23us;
当 1帧内只有 K ( Κ为大于 1的正整数)个 DUGI和 Κ个 UDGI时, K*Tl=rRe T2=0, 其中, N1 和 Ml 为大于等于零的正整数, 则 DUGI 长度为 Nl*TOFDM+rR „/k, UDGI长度为 Ml*TOFDM+T2/rR „; When there are only K (Κ is a positive integer greater than 1) DUGI and UD UDGI in 1 frame, K*Tl=r Re T2=0, where N1 and Ml are positive integers greater than or equal to zero, then the length of DUGI is Nl *T OFDM+ r R „/k, UDGI length is Ml*T OFDM+ T2/r R „;
优选地, Nl=2, Ml=2; Preferably, Nl=2, Ml=2;
优选地, Nl=3, Ml=2; 实施例 7 Preferably, Nl=3, Ml=2; Example 7
采用 OFDM技术, 带宽为 20MHz, 帧长为 rF =10ms, 采样频率为 30.72MHz 的通信系统中, 子载波间隔为 120KHz , 时域采样间隔为 Ts=l/30.72MHz=32.55ns In OFDM technology, the bandwidth is 20MHz, the frame length is r F =10ms, and the sampling frequency is 30.72MHz. The subcarrier spacing is 120KHz, and the time domain sampling interval is Ts=l/30.72MHz=32.55ns.
所述通信系统使用 30.72*1000/120=256点的 IFFT运算生成时域 OFDM 符号并发送。 The communication system generates a time domain OFDM symbol and transmits using an IFFT operation of 30.72*1000/120 = 256 points.
OFDM符号的 CP包含 24个采样点, 长度约为 0.781us, 整个 OFDM 符号的长度 r。FDM约为 9.115us The CP of an OFDM symbol contains 24 sample points with a length of approximately 0.781 us and a length r of the entire OFDM symbol. FDM is about 9.15us
按照下面公式计算 1帧内除了包含整数倍的 OFDM符号外, 还包括的 资源在时域的长度 rRR ;
Calculate the length r RR of the resource included in the time domain in addition to the OFDM symbol containing an integer multiple in one frame according to the following formula ;
10000 10000
= 10000 - *9.115 = 10000 - *9.115
= 0.845 « 26 * = 0.845 « 26 *
当 r。FDM为 DUGI 和 UDGI 的最小量化粒度时, DUGI 长度为 When r. When FDM is the minimum quantization granularity of DUGI and UDGI, the DUGI length is
N1*TOFDM+T1 , UDGI长度为 Ml*TOFDM+T2, 其中, Nl和 Ml为大于等于 零的正整数; N1*TOFDM+T1, the length of the UDGI is Ml*T OFDM +T2, where Nl and Ml are positive integers greater than or equal to zero;
当 1帧内只有 1个 DUGI和 1个 UDGI时, T1=0, T2=rRemai„; 优选地, Nl=3, Ml=2, 即 DUGI=27.345us, UDGI=19.075us; When there is only one DUGI and one UDGI in one frame, T1=0, T2=r Remai „; preferably, Nl=3, Ml=2, ie DUGI=27.345us, UDGI=19.075us;
优选地, Nl=2, Ml=l , 即 DUGI=18.23us, UDGI=9.96us; Preferably, Nl=2, Ml=l, ie DUGI=18.23us, UDGI=9.96us;
优选地, Nl=3, Ml=l , 即 DUGI=27.345us, UDGI=9.96us; Preferably, Nl=3, Ml=l, ie DUGI=27.345us, UDGI=9.96us;
当 1帧内只有 K ( Κ为大于 1的正整数)个 DUGI和 Κ个 UDGI时, K*Tl=rRe T2=0, 其中, N1 和 Ml 为大于等于零的正整数, 则 DUGI 长度为 Nl*TOFDM+rR „/k, UDGI长度为 Ml*TOFDM+T2/rRi When there are only K (Κ is a positive integer greater than 1) DUGI and UD UDGI in 1 frame, K*Tl=r Re T2=0, where N1 and Ml are positive integers greater than or equal to zero, then the length of DUGI is Nl *T OFDM +r R „/k, UDGI length is Ml*T OFDM +T2/r Ri
优选地, Nl=2, Ml=2; Preferably, Nl=2, Ml=2;
优选地, Nl=3, Ml=2; Preferably, Nl=3, Ml=2;
实施例 8 Example 8
采用 OFDM技术, 带宽为 20MHz, 帧长为 rF =10ms, 采样频率为 30.72MHz 的通信系统中, 子载波间隔为 120KHz , 时域采样间隔为 Ts=l/30.72MHz=32.55ns In OFDM technology, the bandwidth is 20MHz, the frame length is r F =10ms, and the sampling frequency is 30.72MHz. The subcarrier spacing is 120KHz, and the time domain sampling interval is Ts=l/30.72MHz=32.55ns.
所述通信系统使用 30.72*1000/120=256点的 IFFT运算生成时域 OFDM 符号并发送。 The communication system generates a time domain OFDM symbol and transmits using an IFFT operation of 30.72*1000/120 = 256 points.
OFDM符号的 CP包含 24个采样点, 长度约为 0.781us, 整个 OFDM 符号的长度 r。TOM约为 9.115us
资源在时域的长度 7; The CP of an OFDM symbol contains 24 sample points with a length of approximately 0.781 us and a length r of the entire OFDM symbol. TOM is about 9.15us The length of the resource in the time domain is 7;
当 r。FDM为 DUGI 和 UDGI 的最小量化粒度时, DUGI 长度为 Nl*TOFDM+Tl , UDGI长度为 Ml*TOFDM+T2, 其中, Nl和 Ml为大于等于 零的正整数; When r. When FDM is the minimum quantization granularity of DUGI and UDGI, the DUGI length is Nl*T OF DM+Tl, and the UDGI length is Ml*T OFDM +T2, where Nl and Ml are positive integers greater than or equal to zero;
当 1帧内只有 1个 DUGI和 1个 UDGI时, Tl+T2=rRemai„ , 并且根据终 端和基站的处理能力灵活配置 T1和 T2的取值; When there is only one DUGI and one UDGI in one frame, Tl+T2=r Remai „ , and the values of T1 and T2 are flexibly configured according to the processing capabilities of the terminal and the base station;
当 1帧内只有 K ( K为大于 1的正整数)个 DUGI和 K个 UDGI时, K*(Tl+T2)=rRemai„ ,并且根据终端和基站的处理能力灵活配置 T1和 T2的取 值。 实施例 9 When there are only K (K is a positive integer greater than 1) DUGI and K UDGI in one frame, K*(Tl+T2)=r Remai „ , and the T1 and T2 are flexibly configured according to the processing capabilities of the terminal and the base station. Value. Example 9
基于上述实施例, 本发明还提供一种通信系统中上下行转换间隔的配 置装置, 应用于采用 OFDM技术、 时域采样间隔为 Ts秒的通信系统中, 该 装置包括: Based on the foregoing embodiments, the present invention further provides a configuration apparatus for uplink and downlink switching intervals in a communication system, which is applied to a communication system using OFDM technology and a time domain sampling interval of Ts seconds, and the apparatus includes:
DUGI配置模块,用于将帧中的下行到上行的转换间隔 DUGI长度设置 为 Nl* ( N2*Ts ) + T1 , 其中, Tl=kl*Ts; The DUGI configuration module is configured to set the downlink to uplink transition interval DUGI length in the frame to Nl*(N2*Ts) + T1, where Tl=kl*Ts;
UDGI配置模块,用于将帧中的上行到下行的转换间隔 UDGI长度设置 为 Ml* ( M2*Ts ) + T2, 其中, T2=k2*Ts; The UDGI configuration module is configured to set the uplink to downlink transition interval UDGI length in the frame to Ml* ( M2*Ts ) + T2, where T2=k2*Ts;
参数配置模块, 用于配置 Nl、 N2、 kl、 Ml、 M2、 k2的值, 及通过下 行信道将上述参数配置给终端, 或为网络侧或终端侧配置上述参数的默认
值。 The parameter configuration module is configured to configure values of N1, N2, kl, Ml, M2, and k2, and configure the foregoing parameters to the terminal through the downlink channel, or configure the default of the foregoing parameters for the network side or the terminal side. Value.
进一步地, 所述 DUGI配置模块配置所述( N2*Ts )为 DUGI的最小量 化粒度, N1为所述 DUGI的最小量化粒度的倍数; 所述 UDGI配置模块配 置所述(M2*Ts )为 UDGI的最小量化粒度, Ml为所述 UDGI的最小量化 粒度的倍数。 Further, the DUGI configuration module configures that (N2*Ts) is a minimum quantization granularity of the DUGI, and N1 is a multiple of a minimum quantization granularity of the DUGI; and the UDGI configuration module configures the (M2*Ts) as a UDGI The minimum quantization granularity, Ml is a multiple of the minimum quantization granularity of the UDGI.
进一步地, 所述 DUGI配置模块将所述 DUGI的最小量化粒度配置为 OFDM符号长度 TOFDM, 即将所述( N2*Ts ) 配置为 TOFDM; 所述 UDGI配 置模块将所述 UDGI的最小量化粒度配置为 OFDM符号长度 TOFDM, 即将 所述(M2*Ts ) 配置为 TOFDM。 Further, the DUGI configuration module configures a minimum quantization granularity of the DUGI as an OFDM symbol length T OFDM , that is, the (N2*Ts ) is configured as T OFDM ; and the UDGI configuration module sets a minimum quantization granularity of the UDGI Configured as OFDM symbol length T OFDM , that is, the (M2*Ts ) is configured as T OFDM .
进一步地,当帧长度为丁^^且 1帧之内只配置 1个 DUGI和 1个 UDGI 时,以^ 表示 1帧内除整数倍的 OFDM符号之外的剩余资源在时域的长 度: τ Remain =τ Frame Further, when only one DUGI and one UDGI are configured within a frame length, and ^ is used to represent the length of the remaining resources in the time domain except for an integer multiple of the OFDM symbol in one frame: τ Remain =τ Frame
Frame 1 OFDM ~ L 1 S Frame 1 OFDM ~ L 1 S
T A OFDM 所述 DUGI配置模块将 Tl的长度配置为 TRemain时, 则 kl=L, k2=0; 所述 UDGI配置模块将 T2的长度配置为 rR .„时, 则 k2=L, kl=0; 当所述 DUGI配置模块和所述 UDGI配置模块 ^!寻 T1+T2的长度配置 为 U于, 则 kl+k2=L。 T A OFDM When the DUGI configuration module configures the length of T1 as T Remain , then kl=L, k2=0; the UDGI configuration module configures the length of T2 as r R . „, then k2=L, kl =0; when the length of the DUGI configuration module and the UDGI configuration module ^! T1 + T2 is configured as U, then kl + k2 = L.
进一步地, 当帧长度为 1^,且 1帧之内配置 NDUGI个 DUGI和 NUDGI 个 UDGI时,以 TRemai„表示 1帧内除整数倍的 OFDM符号之外的剩余资源在 时域的长度: τ me Further, when the frame length is 1^, and N DUGI DUGIs and N UDGI UDGIs are configured within one frame, the remaining resources other than the integer multiple of the OFDM symbols in one frame are represented in the time domain by T Remai „ Length: τ me
Remai =τ Fra Remai =τ Fra
n Frame 1 OFDM ~ L 1 S n Frame 1 OFDM ~ L 1 S
T A OFDM
其中 L」表示向下取整的运算, L为大于零的正整数, NDUGI和 N UDGI 均为大于等于 1的正整数; T A OFDM Where L" represents a downward rounding operation, L is a positive integer greater than zero, and N DUGI and N UDGI are positive integers greater than or equal to 1;
所述 DUGI配置模块将 T1的长度配置为 时,则 kl=L/N DUGI ' When the DUGI configuration module configures the length of T1 as time, then kl=L/N DUGI '
k2=0; 所述 UDGI配置模块将 T2的长度配置为 T^ /N 时,则 k2=L/ NU∞I,K2=0; when the UDGI configuration module configures the length of T2 to T ^ / N , then k2=L/ N U∞I ,
, UDGI , UDGI
kl=0; Kl=0;
当所述 DUGI配置模块和所述 UDGI配置模块将 NDUC}I *T1+ NUDGI *T2的长度配置为 TRemmn时, 则 NDUGI *kl+ Nu∞I*k2=L。 When the DUGI configuration module and the UDGI configuration module configure the length of N DUC}I *T1+ N UDGI *T2 to T Remmn , then N DUGI *kl+ N u∞I *k2=L.
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 工业实用性 The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention. Industrial applicability
本发明可灵活的满足不同场景下基站和终端对于转换时延的需求, 并 且可以最大限度的使用时频资源, 不造成资源的浪费。
The present invention can flexibly meet the requirements of the base station and the terminal for the conversion delay in different scenarios, and can use the time-frequency resources to the maximum extent without causing waste of resources.
Claims
1、 一种通信系统中上下行转换间隔的配置方法, 该方法包括: 在采用正交频分复用 OFDM技术、时域采样间隔为 Ts秒的通信系统中 , 将帧中的下行到上行的转换间隔 DUGI长度设置为 Nl* ( N2*Ts ) +T1 , 将 帧中的上行到下行的转换间隔 UDGI长度设置为 Ml* ( M2*Ts ) +T2; A method for configuring an uplink-downlink transition interval in a communication system, the method comprising: in a communication system using orthogonal frequency division multiplexing (OFDM) technology and a time domain sampling interval of Ts seconds, downlink to uplink in a frame The transition interval DUGI length is set to Nl* ( N2 * Ts ) + T1 , and the uplink to downlink transition interval UDGI length in the frame is set to Ml * ( M2 * Ts ) + T2;
所述 Nl N2 Tl Ml Μ2 Τ2均由基站通过下行信道配置给终端, 或采用默认配置值。 The N1 N2 T1 M1 Μ2 Τ2 is configured by the base station to the terminal through the downlink channel, or adopts a default configuration value.
2、 根据权利要求 1所述的方法, 其中, 所述 T1的配置为 Tl=kl*Ts, 所述 T2配置为 T2=k2*Ts, 其中 kl和 k2为大于等于零的正整数, 由基站 通过下行信道发送给终端, 或采用默认配置值。 2. The method according to claim 1, wherein the configuration of the T1 is T1=k1*Ts, and the T2 is configured as T2=k2*Ts, where k1 and k2 are positive integers greater than or equal to zero, and are passed by the base station. The downlink channel is sent to the terminal, or the default configuration value is adopted.
3、 根据权利要求 2所述的方法, 其中, 所述(N2*Ts ) 为 DUGI的最 小量化粒度, N1为所述 DUGI的最小量化粒度的倍数; 所述(M2*Ts ) 为 UDGI的最小量化粒度, Ml为所述 UDGI的最小量化粒度的倍数; 3. The method according to claim 2, wherein: (N2*Ts) is a minimum quantization granularity of DUGI, and N1 is a multiple of a minimum quantization granularity of the DUGI; the (M2*Ts) is a minimum of UDGI Quantifying the granularity, Ml is a multiple of the minimum quantization granularity of the UDGI;
其中, Nl N2 Ml M2为大于等于零的正整数。 Where N1 N2 Ml M2 is a positive integer greater than or equal to zero.
4、 根据权利要求 3所述的方法, 其中, 将所述 DUGI的最小量化粒度 和所述 UDGI的最小量化粒度都配置为 OFDM符号长度 TOTDM, 即将所述4. The method according to claim 3, wherein the minimum quantization granularity of the DUGI and the minimum quantization granularity of the UDGI are both configured as an OFDM symbol length T OTDM , that is,
( N2*Ts )和所述 ( M2*Ts )都配置为 T0 (N2*Ts) and the (M2*Ts) are both configured as T 0
5、 根据权利要求 4所述的方法, 其中, 当帧长度为 1^^且 1帧之内 只配置 1个 DUGI和 1个 UDGI时 以 TRemai„表示 1帧内除整数倍的 OFDM 符号之外的剩余资源在时域的长度: 1 OFDM ~ L 1 S 5. The method according to claim 4, wherein when the frame length is 1^^ and only one DUGI and one UDGI are configured within one frame, T Remai „ represents an OFDM symbol except one integer multiple of one frame. The length of the remaining resources in the time domain: 1 OFDM ~ L 1 S
其中 L」表示向下取整的运算, L为大于零的正整数; Where L" represents the rounding down operation and L is a positive integer greater than zero;
当 T1的长度配置为 rRemai„时, 则 kl=L, 同时, T2=0, 即 k2=0; When the length of T1 is configured as r Remai „, then kl=L, and at the same time, T2=0, ie k2=0;
当 T2的长度配置为 rRemai„时, 则 k2=L, 同时, T1=0, 即 kl=0; When the length of T2 is configured as r Remai „, then k2=L, and at the same time, T1=0, that is, kl=0;
当 T1+T2的长度配置为 rR .„时, 则 kl+k2=L。 When the length of T1+T2 is configured as r R . , then kl+k2=L.
6、 根据权利要求 4所述的方法, 其中, 当帧长度为!^^且丄帧之内 配置 NDUGI个 DUGI和 NUDGI个 UDGI时, 以 rRemai„表示 1帧内除整数倍的 OFDM符号之外的剩余资源在时域的长度: 6. The method according to claim 4, wherein when the frame length is ! ^^ and when N DUGI DUGI and N UDGI UDGI are configured within the frame, r Remai „ indicates the length of the remaining resources in the time domain other than the integer multiple of the OFDM symbol within one frame:
T Re = T FrameT Re = T Frame
main Frame 1 OFDM ~ L 1 S Main Frame 1 OFDM ~ L 1 S
T A OFDM T A OFDM
其中 L」表示向下取整的运算, L为大于零的正整数, NDUGI NUDGI 均为大于等于 1的正整数; Where L" represents a downward rounding operation, L is a positive integer greater than zero, and N DUGI N UDGI are positive integers greater than or equal to 1;
当 T1的长度配置为丁一 时,则 kl=L/NDUC}I,同时, T2=0,即 k2=0; When the length of T1 is configured as D, then kl=L/N DUC}I , and at the same time, T2=0, that is, k2=0;
/ ^ DUGI 当 T2的长度配置为 时,则 k2=L/ NUDGI,同时, T1=0,即 kl=0; / ^ DUGI When the length of T2 is configured as , then k2=L/ N UDGI , and at the same time, T1=0, ie kl=0;
/丄、 UDGI /丄, UDGI
当将 NDUGI *T1+ NUDGI *T2 的长度配置为 rR .„时, 则 NDUGI *kl+ NUDGI*k2=L。 When the length of N DUGI *T1+ N UDGI *T2 is configured as r R . , then N DUGI *kl+ N UDGI *k2=L.
7、一种通信系统中上下行转换间隔的配置装置,应用于采用 OFDM技 术、 时域采样间隔为 Ts秒的通信系统中, 该装置包括: A device for configuring an uplink-downlink transition interval in a communication system, which is applied to a communication system using an OFDM technology and a time domain sampling interval of Ts seconds, the device comprising:
DUGI配置模块,用于将帧中的下行到上行的转换间隔 DUGI长度设置 为 Nl* ( N2*Ts ) + T1 , 其中, Tl=kl*Ts; The DUGI configuration module is configured to set the downlink to uplink transition interval DUGI length in the frame to Nl*(N2*Ts) + T1, where Tl=kl*Ts;
UDGI配置模块,用于将帧中的上行到下行的转换间隔 UDGI长度设置 为 Ml* ( M2*Ts ) + T2, 其中, T2=k2*Ts; UDGI configuration module, used to set the uplink to downlink transition interval UDGI length in the frame Is Ml* ( M2*Ts ) + T2, where T2=k2*Ts;
参数配置模块, 用于配置参数 Nl、 N2、 kl、 Ml、 M2、 k2的值, 及通 过下行信道将上述参数配置给终端, 或为网络侧或终端侧配置上述参数的 默认值。 The parameter configuration module is configured to configure the values of the parameters N1, N2, kl, Ml, M2, and k2, and configure the foregoing parameters to the terminal through the downlink channel, or configure the default values of the foregoing parameters for the network side or the terminal side.
8、 根据权利要求 7所述的装置, 其中, 8. The apparatus according to claim 7, wherein
所述 DUGI配置模块配置所述( N2*Ts )为 DUGI的最小量化粒度, N1 为所述 DUGI的最小量化粒度的倍数; The DUGI configuration module configures (N2*Ts) to be the minimum quantization granularity of the DUGI, and N1 is a multiple of the minimum quantization granularity of the DUGI;
所述 UDGI配置模块配置所述(M2*Ts ) 为 UDGI的最小量化粒度, Ml为所述 UDGI的最小量化粒度的倍数。 The UDGI configuration module configures (M2*Ts) to be the minimum quantization granularity of the UDGI, and M1 is a multiple of the minimum quantization granularity of the UDGI.
9、 根据权利要求 8所述的装置, 其中, 9. The apparatus according to claim 8, wherein
所述 DUGI配置模块将所述 DUGI的最小量化粒度配置为 OFDM符号 长度 TOFDM, 即将所述(N2*Ts ) 配置为 TOFDM; The DUGI configuration module configures a minimum quantization granularity of the DUGI to an OFDM symbol length T OFDM , that is, the (N2*Ts ) is configured as T OFDM ;
所述 UDGI配置模块将所述 UDGI的最小量化粒度配置为 OFDM符号 长度 TOFDM, 即将所述(M2*Ts ) 配置为 TOFDM。 The UDGI configuration module configures a minimum quantization granularity of the UDGI to an OFDM symbol length T OFDM , that is, the (M2*Ts ) is configured as T OFDM .
10、 根据权利要求 9所述的装置, 其中, 当帧长度为 1^^且1帧之内 只配置 1个 DUGI和 1个 UDGI时, 以 TRemai„表示 1帧内除整数倍的 OFDM 符号之外的剩余资源在时域的长度: τ Frame 10. The apparatus according to claim 9, wherein when only one DUGI and one UDGI are configured within one frame and one frame is within a frame, the OFDM symbol except one integer in one frame is represented by T Remai „ The length of the remaining resources outside the time domain: τ Frame
Remain = τ Frame τ -' OFDM ~ L " Remain = τ Frame τ -' OFDM ~ L "
1 OFDM 1 OFDM
其中 L」表示向下取整的运算, L为大于零的正整数; 所述 DUGI配置模块将 T1的长度配置为 TRe 时, 则 kl=L, k2=0; 所述 UDGI配置模块将 T2的长度配置为 rR ;„时, 则 k2=L, kl=0; 当所述 DUGI配置模块和所述 UDGI配置模块 ^!寻 T1+T2的长度配置 为 U于, 则 kl+k2=L。 Where L" represents a downward rounding operation, L is a positive integer greater than zero; when the DUGI configuration module configures the length of T1 as T Re , then kl = L, k2 = 0; the UDGI configuration module will T2 The length is configured as r R ; „, then k2=L, kl=0; When the DUGI configuration module and the UDGI configuration module ^! The length of the search T1+T2 is configured as U, then kl+k2=L.
11、根据权利要求 9所述的装置, 其中, 当帧长度为 1^ 且1帧之内 配置 NDUCJI个 DUGI和 NU∞I个 UDGI时, 以 TRe 表示 1帧内除整数倍的 OFDM符号之外的剩余资源在时域的长度: 11. The apparatus of claim 9, wherein, when the configuration number N DUCJI DUGI and N U∞I UDGI number 1 and a ^ is the frame length, to the OFDM T Re represents an integral multiple of the other frame The length of the remaining resources outside the symbol in the time domain:
T Frame T Frame
Remain = T Frame 1 OFDM ~ L I Remain = T Frame 1 OFDM ~ LI
τ OFDM τ OFDM
其中 L」表示向下取整的运算, L为大于零的正整数, NDUGI和 NUDGI 均为大于等于 1的正整数; Where L" represents a downward rounding operation, L is a positive integer greater than zero, and N DUGI and N UDGI are positive integers greater than or equal to 1;
所述 DUGI配置模块将 T1的长度配置为丁一/ 时,则 kl=L/NDUGI, The DUGI configuration module configures the length of T1 to be D/N, and then kl=L/N DUGI .
' DUGI ' DUGI
k2=0; K2=0;
所述 UDGI配置模块将 T2的长度配置为 T^ /N 时,则 k2=L/ NU∞I, When the UDGI configuration module configures the length of T2 to T ^ / N , then k2=L/N U∞I ,
/ 1、 UDGI / 1, UDGI
kl=0; Kl=0;
当所述 DUGI 配置模块和所述 UDGI 配置模块将 NDUGI *T1+ NUDGI *T2的长度配置为 TR―时, 则 NDUGI *kl+ NUDGI*k2=L。 When the DUGI configuration module and the UDGI configuration module configure the length of N DUGI *T1+ N UDGI *T2 to T R -, then N DUGI *kl+ N UDGI *k2=L.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110244252.5A CN102281229B (en) | 2011-08-24 | 2011-08-24 | The collocation method and device of a kind of conversion interval in communication system |
CN201110244252.5 | 2011-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012155680A1 true WO2012155680A1 (en) | 2012-11-22 |
Family
ID=45106412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/072917 WO2012155680A1 (en) | 2011-08-24 | 2012-03-23 | Method and device for configuring guard interval in communication system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102281229B (en) |
WO (1) | WO2012155680A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020200219A1 (en) * | 2019-04-03 | 2020-10-08 | Mediatek Singapore Pte. Ltd. | Reserving channel by cyclic prefix extension for alignment with symbol boundary in mobile communications |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102281229B (en) * | 2011-08-24 | 2017-12-05 | 中兴通讯股份有限公司 | The collocation method and device of a kind of conversion interval in communication system |
CN102299892B (en) * | 2011-08-26 | 2017-11-03 | 中兴通讯股份有限公司 | Key parameters in communication system is set and application method and device |
EP3484056B1 (en) * | 2016-08-11 | 2024-10-09 | Huawei Technologies Co., Ltd. | Information transmission method, base station, and user equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1909533A (en) * | 2005-08-05 | 2007-02-07 | 中兴通讯股份有限公司 | Frame creating method based on crossing frequency division multiplexing in time-division duplex mode |
CN101150389A (en) * | 2006-09-20 | 2008-03-26 | 华为技术有限公司 | Time division duplex radio communication system and its signal transmission method |
CN101378305A (en) * | 2007-08-28 | 2009-03-04 | 中兴通讯股份有限公司 | Method for sending data of TDD radio communication system base on OFDM technology |
CN102281229A (en) * | 2011-08-24 | 2011-12-14 | 中兴通讯股份有限公司 | Configuration method and device for conversion interval in communication system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100590486B1 (en) * | 2004-07-29 | 2006-06-19 | 에스케이 텔레콤주식회사 | Method and System for Generating Switching Timing Signal for Separating Transmitting and Receiving Signal in Optical Repeater of Mobile Telecommunication Network Using TDD and ODFM Modulation |
US7885214B2 (en) * | 2006-10-17 | 2011-02-08 | Intel Corporation | Device, system, and method for partitioning and framing communication signals in broadband wireless access networks |
-
2011
- 2011-08-24 CN CN201110244252.5A patent/CN102281229B/en active Active
-
2012
- 2012-03-23 WO PCT/CN2012/072917 patent/WO2012155680A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1909533A (en) * | 2005-08-05 | 2007-02-07 | 中兴通讯股份有限公司 | Frame creating method based on crossing frequency division multiplexing in time-division duplex mode |
CN101150389A (en) * | 2006-09-20 | 2008-03-26 | 华为技术有限公司 | Time division duplex radio communication system and its signal transmission method |
CN101378305A (en) * | 2007-08-28 | 2009-03-04 | 中兴通讯股份有限公司 | Method for sending data of TDD radio communication system base on OFDM technology |
CN102281229A (en) * | 2011-08-24 | 2011-12-14 | 中兴通讯股份有限公司 | Configuration method and device for conversion interval in communication system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020200219A1 (en) * | 2019-04-03 | 2020-10-08 | Mediatek Singapore Pte. Ltd. | Reserving channel by cyclic prefix extension for alignment with symbol boundary in mobile communications |
US11368343B2 (en) | 2019-04-03 | 2022-06-21 | Mediatek Singapore Pte. Ltd. | Reserving channel by cyclic prefix extension for alignment with symbol boundary in mobile communications |
Also Published As
Publication number | Publication date |
---|---|
CN102281229A (en) | 2011-12-14 |
CN102281229B (en) | 2017-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10314067B2 (en) | Resource request and allocation for uplink multi-user communication | |
US20210083733A1 (en) | Aggregation methods and systems for multi-user mimo or ofdma operation | |
JP6932643B2 (en) | Systems and methods for adaptive frame structure with filtered OFDM | |
JP2023154046A (en) | Methods for flexible resource usage | |
US8369301B2 (en) | OFDM/OFDMA frame structure for communication systems | |
AU2008312350B2 (en) | OFDM/OFDMA frame structure for communication systems | |
TWI771343B (en) | Method, apparatus, and system for sending information, method and apparatus for receiving information | |
CN102299892B (en) | Key parameters in communication system is set and application method and device | |
JP2019511174A (en) | Information communication method, user equipment, and network device | |
TW201806349A (en) | Methods for flexible reference signal transmission with single carrier frequency domain multiple access (SC-FDMA) and OFDMA | |
CN104854801A (en) | Method for configuring wireless frame of user equipment, user equipment, method for configuring wireless frame of base station, and base station | |
WO2012139473A1 (en) | Method and device for wireless frame parameter configuration and signal transmission | |
WO2012139433A1 (en) | Method and device for configuring wireless parameter and for transmitting signal | |
WO2017167264A1 (en) | Information transmission method and apparatus | |
CN103281284A (en) | Method for adjusting transmission timing and transmitting continuous packets and mobile station thereof | |
WO2013159437A1 (en) | Sending method and device for synchronization signal | |
WO2022068177A1 (en) | Communication method and apparatus for resource scheduling | |
US8509124B2 (en) | Method for transceiving a signal in wireless communication system | |
CN102752859A (en) | Method for sending uplink synchronizing channel and device | |
US8400952B2 (en) | Method for transceiving a signal in wireless communication system | |
WO2010139155A1 (en) | Frame structure and configuration method, communication method thereof | |
WO2012155680A1 (en) | Method and device for configuring guard interval in communication system | |
WO2013004149A1 (en) | Data transmission method and apparatus | |
WO2011097939A1 (en) | Method and base station for transmitting channel measurement pilots | |
WO2012151946A1 (en) | Data sending method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12785396 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12785396 Country of ref document: EP Kind code of ref document: A1 |