WO2012155654A1 - 光放大器 - Google Patents

光放大器 Download PDF

Info

Publication number
WO2012155654A1
WO2012155654A1 PCT/CN2012/072685 CN2012072685W WO2012155654A1 WO 2012155654 A1 WO2012155654 A1 WO 2012155654A1 CN 2012072685 W CN2012072685 W CN 2012072685W WO 2012155654 A1 WO2012155654 A1 WO 2012155654A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical amplifier
dispersion compensation
preamplifier
optical
control unit
Prior art date
Application number
PCT/CN2012/072685
Other languages
English (en)
French (fr)
Inventor
贾继涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012155654A1 publication Critical patent/WO2012155654A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/2942Signal power control in a multiwavelength system, e.g. gain equalisation using automatic gain control [AGC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094061Shared pump, i.e. pump light of a single pump source is used to pump plural gain media in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal

Definitions

  • the present invention relates to the field of communications, and in particular to an optical amplifier.
  • BACKGROUND OF THE INVENTION The development of optical communication transmission systems is experiencing an evolution process of ultra-high speed (40 Gbit/s or higher), ultra long distance, and very large capacity.
  • DWDM Dense Wavelength Division Multiplexing
  • the transmission distance of the wireless regenerative relay is mainly limited by optical power and optical signal-to-noise ratio (Optical Signal Noise Ratios, OS for short). Deterioration of R).
  • EDFA Erbium-doped Fiber Amplifier
  • chromatic dispersion becomes the primary limiting factor limiting the transmission distance of unregulated regenerative relays.
  • DCF Dispersion Compensating Fiber
  • DCM Dispersion Compensating Module
  • the OMU Optical Multiplexer Unit
  • the OBA Optical Boosting Amplifier
  • the OPA Optical Preamplifier
  • the DCM is a dispersion compensation module
  • the ODU Optical De-multiplexing Unit
  • an optical amplifier comprising: a preamplifier configured to amplify a signal of an input optical amplifier; an intermediate access port configured to be coupled to a dispersion compensation device, and a dispersion compensation device for Dispersion compensation is performed on the signal amplified by the preamplifier; the power amplifier is coupled to the intermediate access port and is arranged to amplify the dispersion compensated signal of the dispersion compensation device.
  • the optical amplifier further includes: a first control unit, a first pump light source, a second control unit, and a second pump light source; wherein the first control unit is configured to control the first pump light source to provide the preamplifier Pumping light; the second control unit is configured to control the second pumping source to provide pumping light to the power amplifier.
  • the optical amplifier further includes: a control unit, a pumping light source; wherein the control unit is configured to control the pumping light source to provide pumping light for the preamplifier and the power amplifier.
  • the above dispersion compensation device is one of the following: a DCF line card, a DCM line card, and an FBG-DCM line card.
  • the optical amplifier further includes: an adjustable attenuator disposed between the preamplifier and the intermediate access port, configured to adjust optical power of the signal amplified by the preamplifier.
  • an adjustable attenuator disposed between the preamplifier and the intermediate access port, configured to adjust optical power of the signal amplified by the preamplifier.
  • another optical amplifier comprising: a preamplifier configured to amplify a signal of an input optical amplifier; and a dispersion compensation device configured to perform a signal amplified by the preamplifier Dispersion compensation; power amplifier, set to amplify the dispersion compensated signal through the dispersion compensation device.
  • the optical amplifier further includes: a first control unit, a first pump light source, a second control unit, and a second pump light source; wherein the first control unit is configured to control the first pump light source to provide the preamplifier Pumping light; the second control unit is configured to control the second pumping source to provide pumping light to the power amplifier.
  • the optical amplifier further includes: a control unit, a pumping light source; wherein the control unit is configured to control the pumping light source to provide pumping light for the preamplifier and the power amplifier.
  • the above dispersion compensation device is one of the following: DCF, DCM, and FBG-DCM.
  • the optical amplifier further includes: an adjustable attenuator disposed between the preamplifier and the dispersion compensation device, configured to adjust an optical power of the signal amplified by the preamplifier.
  • an adjustable attenuator disposed between the preamplifier and the dispersion compensation device, configured to adjust an optical power of the signal amplified by the preamplifier.
  • the preamplifier and the power amplifier are integrated into the optical amplifier, and the dispersion compensation device is connected between the preamplifier and the power amplifier by externally or integratedly, thereby manufacturing the optical amplifier.
  • the relationship between the preamplifier and the power amplifier and the dispersion compensation device is considered, which solves many problems that need to be considered when designing the dispersion compensation system in the related art, and the design is difficult, and the design of the simplified dispersion compensation system is achieved. , easy to manage the effects of the system.
  • FIG. 2 is a structural block diagram of an optical amplifier according to Embodiment 1 of the present invention
  • FIG. 3 is a structure of an optical amplifier according to Embodiment 2 of the present invention
  • 4 is a schematic diagram of an optical amplifier with a dispersion compensation intermediate access interface according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a dispersion compensation module line card according to an embodiment of the present invention
  • FIG. 6 is a structure according to an embodiment of the present invention. Schematic diagram of an optimized optical amplifier with a dispersion compensation intermediate access interface
  • FIG. 7 is a schematic diagram of a dispersion compensation principle based on FBG reflection according to an embodiment of the present invention
  • FIG. 8 is a FBG-DCM line card according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical amplifier in which an FBG-DCM is integrated according to an embodiment of the present invention
  • FIG. 10 is an optical transmission link using an optical amplifier with FBG-DCM according to an embodiment of the present invention
  • Embodiment 1 The embodiment of the present invention provides an optical amplifier, which can be used in the technical field of long-distance transmission of optical fiber communication equipment.
  • 2 is a block diagram showing the structure of an optical amplifier according to a first embodiment of the present invention. As shown in FIG.
  • the amplifier includes: a preamplifier 001 configured to amplify a signal input to the optical amplifier; an intermediate access port 003 coupled to The preamplifier 001 is configured as a coupled dispersion compensation device, wherein the dispersion compensation device is configured to perform dispersion compensation on the signal amplified by the preamplifier 001; the power amplifier 002 is coupled to the intermediate access port 003, and is set to the dispersion.
  • the signal of the compensation device dispersion compensation is amplified.
  • the dispersion compensation technique is introduced into the design of the optical amplifier module, and an optical amplifier with dispersion compensation function is designed.
  • the preamplifier and the power amplifier are integrated into the optical amplifier, and the preamplifier and An intermediate access port is provided between the power amplifiers, and a dispersion compensation device is connected through the intermediate access port, thereby implementing a dispersion compensation technique in the optical amplifier.
  • the optical amplifier provided by the embodiment is beneficial to the maintenance and management of the system, and reduces the size and cost of the optical amplifier.
  • the optical amplifier module also has an advantage in structure, which is for the ultra-high speed and ultra long distance in the future. Ultra-large capacity optical transmission system configuration is beneficial.
  • the optical amplifier further includes: a first control unit, a first pump source, a second control unit, and a second pump source; wherein the first control unit is configured to control the first pump The primary light source provides pumping light to the preamplifier 001; the second control unit is used to control the second pumping light source to provide pumping light to the power amplifier 002.
  • the optical amplifier further includes: a control unit, a pumping source; wherein the control unit is configured to control the pumping source to provide pumping light to the preamplifier 001 and the power amplifier 002.
  • Both of the above implementations can provide pumping light for the preamplifier 001 and the power amplifier 002, wherein the second implementation uses only one control unit and pumping source to provide pumping for the preamplifier 001 and the power amplifier 002.
  • the second implementation since the wavelength of the pump light of the amplifier can be the same, the second implementation is achievable, and the second implementation reduces the number of devices used, relative to the first implementation. Thereby reducing the cost, saving the space occupied by the amplifier, and more beneficial to practical applications.
  • the above dispersion compensation device may be one of the following: a DCF line card, a DCM line card, and a fiber Bragg grating FBG-DCM line card.
  • the DCF, DCM or FBG-DCM is formed into a line card form, and then the line card is connected to the intermediate access port 003, thereby implementing the dispersion compensation device in the optical amplifier; and, in the form of a line card, Convenient access to the dispersion compensation device.
  • this embodiment introduces FBG into the dispersion compensation technique, because the FBG dispersion compensation module (FBG-DCM) has a small insertion loss (generally, 120 km) The FBG-DCM insertion loss is about 3 to 4 dB), and the insertion loss is almost independent of the transmission span. Thus, the FBG-DCM module can be used in a smaller package.
  • the optical amplifier further comprises: an adjustable attenuator disposed between the preamplifier and the intermediate access port, configured to adjust the optical power of the signal amplified by the preamplifier.
  • the optical power of the signal entering the dispersion compensation device can be adjusted by providing an adjustable attenuator before the intermediate access port.
  • FIG. 3 is a structural block diagram of an optical amplifier according to Embodiment 2 of the present invention.
  • the amplifier includes: a preamplifier 001, which is set to input light. The signal of the amplifier is amplified; the dispersion compensation device 010 is coupled to the preamplifier 001, and is set to perform dispersion compensation on the signal amplified by the preamplifier 001; the power amplifier 002 is coupled to the dispersion compensation device 010, and is set to compensate for dispersion. The signal of the device 010 dispersion compensation is amplified.
  • the dispersion compensation technique is introduced into the design of the optical amplifier module, and an optical amplifier with a dispersion compensation function is designed.
  • the dispersion compensation device is integrated in the optical amplifier, thereby realizing introduction in the optical amplifier.
  • Dispersion compensation technology The optical amplifier provided by the embodiment is beneficial to the maintenance and management of the system, and reduces the size and cost of the optical amplifier.
  • the optical amplifier module also has an advantage in structure, which is for the ultra-high speed and ultra long distance in the future. Ultra-large capacity optical transmission system configuration is beneficial.
  • the optical amplifier further includes: a first control unit, a first pump source, a second control unit, and a second pump source; wherein the first control unit is configured to control the first pump The backlight source provides pumping light to the preamplifier 001; the second control unit is configured to control the second pumping source to provide pumping light to the power amplifier 002.
  • the optical amplifier further includes: a control unit, a pumping source; wherein the control unit is configured to control the pumping source to provide pumping light to the preamplifier 001 and the power amplifier 002.
  • Both of the above implementations can provide pumping light for the preamplifier and the power amplifier, wherein the second implementation uses only one control unit and pumping source to provide pumping light for the preamplifier and the power amplifier, due to the amplifier.
  • the wavelength of the pump light can be the same, so the second implementation is achievable, and the second implementation reduces the number of devices used, thereby reducing the cost compared to the first implementation. , saving the space occupied by the amplifier, which is more conducive to practical applications.
  • the dispersion compensation device is one of the following: DCF, DCM, FBG-DCM.
  • an existing dispersion compensation device can be integrated in an optical amplifier, and the FBG-DCM discovered by the inventors can also be integrated in an optical amplifier. Since the FBG-DCM has a small insertion loss (generally, the 120km FBG-DCM insertion loss is about 3 to 4dB), and the insertion loss is almost independent of the transmission span, the FBG-DCM module can be used in a smaller package. .
  • One of the main advantages of FBG-DCM over DCF-DCM is that the hysteresis time is short, that is, the delay caused by the optical signal entering a device is very short, and the other advantage is that no nonlinear effect occurs at the input of high optical power.
  • the optical amplifier further comprises: an adjustable attenuator disposed between the preamplifier and the dispersion compensation device, configured to adjust the optical power of the signal amplified by the preamplifier.
  • the optical power of the signal entering the dispersion compensation device can be adjusted by providing an adjustable attenuator before the dispersion compensation device.
  • this embodiment in order to compensate for the insertion loss of the DCF or DCM, the OBA and OPA must select the appropriate gain, which must have an accurate understanding of the optical amplifier model and system design to meet the system requirements, and system maintenance, equipment management is more complex, occupying a large space in the package size and structure, Increased total system cost.
  • the purpose of this embodiment is to reduce the complexity of system design and facilitate system management. In order to achieve this goal, this embodiment introduces a dispersion compensation technique into the design of an optical amplifier module, and designs a dispersion compensation function.
  • An optical amplifier module that maintains, manages, and has advantages in size, cost, and structure, thereby simplifying the long-distance configuration of optical communication transmission and reducing system cost, which will be used for future ultra-high-speed, ultra-long-distance, and ultra-large-capacity light.
  • Transmission system configuration has very important practical value.
  • the design idea of this embodiment is shown in FIG. 4, and the dispersion compensation technology is introduced into the design of the optical amplifier.
  • a flexible configuration interface is provided, and several different dispersion compensation modes can be configured.
  • the dispersion compensation function of the optical transmission system can also be realized.
  • the design of the optical amplifier shown in this embodiment consists of two major parts.
  • the first part is the optical power amplification unit, which is composed of a low noise preamplifier (PA) 001, a power amplifier (BA) 002, an intermediate access port 003, and an adjustable The attenuator 004, the photodetector 005, the pump laser 006, the optical amplifier control unit 007, and the serial interface 008 are formed.
  • the second part is the dispersion compensation line card unit.
  • the dispersion compensation line card for example, DCF-DCM line card or Fiber Bragg Grating (FBG) Dispersion Compensation Module (FBG-DCM) line card, as shown in Figure 5.
  • the FBG dispersion compensation module (FBG-DCM) has a small insertion loss (generally, the 120km FBG-DCM insertion loss is about 3 to 4dB), and the insertion loss is almost independent of the transmission span, the FBG-DCM module can be used. More volume Small package form.
  • FBG-DCM FBG dispersion compensation module
  • One of the main advantages of FBG-DCM over DCF or existing DCM is that the hysteresis time is short, that is, the delay caused by the optical signal entering a device is very short; another advantage is that no nonlinear effect occurs at the input of high optical power.
  • the structure of the amplifier can be further simplified without affecting the noise figure.
  • the simplified structure is much less passive optical devices (eg, optical isolators, pump signal synthesizers, connectors), which further reduces the noise figure.
  • the optical amplifier structure with dispersion compensation can be simplified to the structure shown in FIG. 6. Compared with the structure shown in FIG. 4, in the optical amplifier shown in FIG. 6, a single control loop replaces two separate controls. The loop further simplifies the circuit, which will reduce the cost by 30%.
  • FIG. 6 As shown in FIG.
  • the circulator of the FBG can also be integrated into the optical amplifier, which will further optimize the design structure of the improved amplifier and reduce the cost.
  • the dispersion compensation technology can be directly introduced into the design of the optical amplifier by using the design scheme of the embodiment, and an optical amplifier module with dispersion compensation function, which is convenient for system maintenance and management, and which has advantages in size, cost and structure is designed. This simplifies the long-distance configuration scheme of optical communication transmission, reduces system cost, simplifies system design complexity and facilitates system management, thereby reducing device selection requirements, effectively controlling product cost, and improving product market competitiveness. This is of great practical value for the future configuration of ultra-high speed, ultra long distance and ultra large capacity optical transmission systems.
  • the fourth embodiment is shown in FIG. 8.
  • the following describes an implementation manner of an embodiment of the present invention by taking an optical amplifier with an FBG-DCM line card as an example.
  • the FBG-DCM line card is used to replace the traditional DCF or DCM line card.
  • the basic principle of dispersion management through FBG is to use a precise chirped fiber grating to introduce different delays for different wavelengths.
  • the grating can be specially made to simulate the dispersion characteristics of the fiber or a certain span.
  • the specifications of the optical deletion can be based on the actual situation. The selection is made.
  • the length of the grating is 10 m, and the period of the grating is ldm.
  • the most significant advantage of FBG-DCM is that the insertion loss is small.
  • the insertion loss of FBG-DCM of 120km is 3 to 4dB, and the insertion loss of equivalent DCF is at least 10dB.
  • the insertion loss and transmission span of FBG-DCM are almost independent, while the insertion loss of DCF-DCM increases with the increase of fiber and transmission span.
  • the design of the optical amplifier shown in this embodiment consists of two parts.
  • the first part is the optical power amplification unit, which is composed of a low noise preamplifier (PA) 001, a power amplifier (BA) 002, an intermediate access port 003, and an adjustable attenuation.
  • the device 004, the pump laser 005, the photodetector 006, the optical amplifier control unit 007 and the serial interface 008 are composed.
  • the second part is the FBG dispersion compensation line card 009, which is connected to the light through the intermediate access connector between the two stages of amplifiers. Power amplification unit.
  • the dispersion compensation line card such as a DCF line card, a DCM line card or an FBG-DCM line card, can be conveniently accessed, as shown in FIG.
  • preamplifier 001 is a low noise, high bandwidth optical power tunable preamplifier that limits the noise power introduced by the system, allowing multiple wavelengths of light to pass and achieve the same gain.
  • the optical power of the preamplifier 001 is adjustable to compensate for the insertion loss introduced by the FBG-DCM in conjunction with the adjustable attenuator.
  • the gain-adjustable power amplifier 002 is used to provide the output optical power of the entire system, improve the incoming optical power of long-distance optical transmission, and compensate for optical line loss.
  • the adjustable attenuator 004 is designed to cooperate with the preamplifier 001.
  • the input optical power input to the FBG-DCM line card 009 is adjusted to make the input light.
  • the power meets the input optical power requirement of the dispersion compensation line card and compensates for the insertion loss of the FBG-DCM line card.
  • the FBG-DCM line card 009 is connected to the optical amplifier unit through the intermediate access port 003 of the system for compensating for chromatic dispersion in the optical transmission system, and the insertion loss is about 3 to 4 dB, and the insertion loss value is The transmission span is almost irrelevant.
  • the photodetector 005 is for detecting the input optical power, and outputs the power signal of the input optical signal to the optical amplifier control unit 007.
  • the optical amplifier control unit 007 is a control core of the entire system and may be composed of a pump power control unit, a pump current driving unit, an input optical power detecting unit, a microprocessor unit, and a shutdown current protection unit.
  • the pump power control unit detects the driving current of the pump or the output optical signal power, generates a feedback signal according to the driving current or the power of the output optical signal, and outputs a feedback signal to the pump current driving unit to adjust the driving current.
  • the pump current drive unit is integrated in the optical amplifier control unit 007 to provide a drive current to the pump 006 to drive the pump 006 to operate.
  • the input optical power detecting unit detects the power of the pumped input optical signal and transmits the power signal of the input optical signal to the microprocessor.
  • the microprocessor unit is used to control the operation, and the output control circuit automatically turns off the current protection device when the power signal receiving the input optical signal from the input optical power detector 005 exceeds the set range.
  • the shutdown current protection unit receives the power-off control signal of the microprocessor inside the control unit, the pump current drive circuit is controlled to cut off the drive current.
  • the serial interface 008 adopts the RS232 interface, which is used to set the operating parameters of the system and report the running status and alarms.
  • the network management interface 008 uses the RJ45 to provide the SMP network management interface and directly accesses the network management system to facilitate system maintenance and remote operation.
  • an optical amplifier with a dispersion compensation intermediate access interface as shown in FIG. 6 may be employed, in which a pump light 006 and a control unit 007 are used to provide pump light for the preamplifier 001 and the power amplifier 002. .
  • the dispersion compensation module can be selected according to the specific application.
  • the dispersion compensation module can be made into a matching line card form to facilitate installation and debugging.
  • FBG-DCM-based optical amplifiers have many advantages over DCF- or DCM-based optical amplifiers. Therefore, as shown in Figure 9, the FBG circulator can be integrated into the optical amplifier through design optimization, which further simplifies light. The design of the amplifier reduces the cost.
  • the optical amplifier shown in this embodiment can be applied to an actual optical transmission link.
  • FIG. 10 shows an optical transmission link configuration scheme using an optical amplifier with an FBG-DCM line card or an integrated FBG-DCM.
  • this embodiment introduces the dispersion compensation technique into the design of the optical amplifier module, and designs an optical amplifier with dispersion compensation function, so that the preamplifier and the power amplifier are considered when manufacturing the optical amplifier.
  • the relationship between the dispersion compensation devices achieves the design of a simplified dispersion compensation system, which is convenient for system management.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)

Description

光放大器 技术领域 本发明涉及通信领域, 具体而言, 涉及一种光放大器。 背景技术 光通信传输系统的发展正经历着超高速(40Gbit/s或更高)、 超长距离以及超大容 量的演进过程。 随着大容量的密集波分复用 (Dense Wavelength Division Multiplexing, 简称为 DWDM) 光通信系统在长途骨干网络中的大量而成熟的应用, 单波长速率已 经由原来的 155Mbit/s、 622 Mbit/s、 2.5 Gbit/s、 10Gbit/s提升到 40 Gbit/s。 在单波长速 率相对较低的 155Mbit/s、 622 Mbit/s 2.5 Gbit/s系统中, 无电再生中继的传输距离主 要受限于光功率和光信噪比 (Optical Signal Noise Ratios, 简称为 OS R) 的劣化。 然 而, 掺铒光纤放大器 (Erbium-doped Fiber Amplifier, 简称为 EDFA) 的出现使光传输 系统的无电中继传输距离超过 100km, 这是因为, EDFA具有高增益、 带宽大及动态 增益平坦等特性, 能够将几个高速的光通道复用起来同时传输。 而在单波长速率更高 的 lOGbit/s和 40Gbit/s系统中, 色度色散成为限制无电再生中继传输距离的首要限制 因素。 目前, 解决色度色散受限因素的主要方法是通过色散补偿光纤 (Dispersion Compensating Fiber, 简称为 DCF)或色散补偿模块 (Dispersion Compensating module, 简称为 DCM)进行色散补偿。通常采用的方法有以下两种: 一种是前置补偿, 另外一 种是后置补偿。 在前置补偿中, DCF或 DCM的接入引入了较大的插入损耗, 降低了 入纤的光功率, 进而限制了光传输跨段的距离, 因此, 该方法较少被使用。 对于后置 补偿, 常用的方法如图 1所示。 图中 OMU (Optical Multiplexer Unit) 是光合波单元, OBA (Optical Boosting Amplifier) 是光功率放大器, OPA (Optical Preamplifier) 是光 预放大器, DCM是色散补偿模块, ODU ( Optical De-multiplexing Unit)为光分波单元。 在该方法中, 为了补偿 DCF或 DCM的插入损耗, OBA和 OPA都要选定适当的增益。 因此, 对供货设备的型号和系统设计都要有一个准确的把握才能够满足系统要求。 并 且, 采用图 2所示的方式进行色散补偿, 使用的器件较多, 增加了系统的复杂性, 管 理也比较困难。 发明内容 本发明实施例提供了一种光放大器, 以至少解决相关技术中设计色散补偿系统时 需要考虑的因素很多, 设计较为困难的问题。 根据本发明实施例的一个方面, 提供了一种光放大器, 包括: 前置放大器, 设置 为对输入光放大器的信号进行放大; 中间接入端口, 设置为耦合色散补偿装置, 色散 补偿装置用于对经前置放大器放大的信号进行色散补偿; 功率放大器, 耦合至中间接 入端口, 设置为对经色散补偿装置色散补偿的信号进行放大。 优选地, 上述光放大器还包括: 第一控制单元、 第一泵浦光源、 第二控制单元、 第二泵浦光源; 其中, 第一控制单元设置为控制第一泵浦光源为前置放大器提供泵浦 光; 第二控制单元设置为控制第二泵浦光源为功率放大器提供泵浦光。 优选地, 上述光放大器还包括: 控制单元、 泵浦光源; 其中, 控制单元设置为控 制泵浦光源为前置放大器和功率放大器提供泵浦光。 优选地, 上述色散补偿装置为以下之一: DCF线卡、 DCM线卡、 和 FBG-DCM 线卡。 优选地, 上述光放大器还包括: 可调衰减器, 设置于前置放大器和中间接入端口 之间, 设置为调整经前置放大器放大的信号的光功率。 根据本发明实施例的另一方面, 提供了另一种光放大器, 包括: 前置放大器, 设 置为对输入光放大器的信号进行放大; 色散补偿装置, 设置为对经前置放大器放大的 信号进行色散补偿; 功率放大器, 设置为对经色散补偿装置色散补偿的信号进行放大。 优选地, 上述光放大器还包括: 第一控制单元、 第一泵浦光源、 第二控制单元、 第二泵浦光源; 其中, 第一控制单元设置为控制第一泵浦光源为前置放大器提供泵浦 光; 第二控制单元设置为控制第二泵浦光源为功率放大器提供泵浦光。 优选地, 上述光放大器还包括: 控制单元、 泵浦光源; 其中, 控制单元设置为控 制泵浦光源为前置放大器和功率放大器提供泵浦光。 优选地, 上述色散补偿装置为以下之一: DCF、 DCM、 和 FBG-DCM。 优选地, 上述光放大器还包括: 可调衰减器, 设置于前置放大器和色散补偿装置 之间, 设置为调整经前置放大器放大的信号的光功率。 通过本发明实施例, 采用将前置放大器和功率放大器集成到光放大器中, 并通过 外接或集成的方式将色散补偿装置接入到前置放大器和功率放大器之间的方式, 从而 在制造光放大器时即考虑了前置放大器和功率放大器与色散补偿装置之间的关系, 解 决了相关技术中设计色散补偿系统时需要考虑的因素很多, 设计较为困难的问题, 进 而达到了简化色散补偿系统的设计, 便于系统管理的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的光传输链路配置方案示意图; 图 2是根据本发明实施例一的光放大器的结构框图; 图 3是根据本发明实施例二的光放大器的结构框图; 图 4是根据本发明实施例的带色散补偿中间接入接口的光放大器结构示意图; 图 5是根据本发明实施例的色散补偿模块线卡示意图; 图 6是根据本发明实施例的结构优化后的带色散补偿中间接入接口的光放大器结 构示意图; 图 7是根据本发明实施例的基于 FBG反射的色散补偿原理示意图; 图 8是根据本发明实施例的采用 FBG-DCM线卡的光放大器结构示意图; 图 9是根据本发明实施例的将 FBG-DCM集成到的光放大器中的结构示意图; 图 10是根据本发明实施例的采用带 FBG-DCM的光放大器的光传输链路配置方案 示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例一 本发明实施例提供了一种光放大器, 该光放大器可以用于光纤通信设备长距离传 输等技术领域。 图 2是根据本发明实施例一的光放大器的结构框图, 如图 2所示, 放 大器包括: 前置放大器 001, 设置为对输入该光放大器的信号进行放大; 中间接入端口 003, 耦合至前置放大器 001, 设置为耦合色散补偿装置, 其中, 该色散补偿装置用于对经 前置放大器 001放大的信号进行色散补偿;功率放大器 002,耦合至中间接入端口 003, 设置为对经色散补偿装置色散补偿的信号进行放大。 本实施例将色散补偿技术引入到光放大器模块的设计中, 设计了一种带有色散补 偿功能的光放大器, 具体地, 将前置放大器和功率放大器集成到光放大器, 并在前置 放大器和功率放大器之间设置中间接入端口, 通过中间接入端口接入色散补偿装置, 从而实现了在光放大器中引入色散补偿技术。 采用本实施例提供的光放大器, 有利于 系统的维护和管理, 降低了光放大器的尺寸及成本, 同时, 这种光放大器模块在结构 上也占有优势, 这对未来的超高速、超长距离、超大容量光传输系统配置是有好处的。 在本实施例的一个优选实现方式中, 光放大器还包括: 第一控制单元、 第一泵浦 光源、 第二控制单元、 第二泵浦光源; 其中, 第一控制单元设置为控制第一泵浦光源 为前置放大器 001提供泵浦光;第二控制单元用于控制第二泵浦光源为功率放大器 002 提供泵浦光。 在本实施例的另一个优选实现方式中, 光放大器还包括: 控制单元、 泵浦光源; 其中,控制单元设置为控制泵浦光源为前置放大器 001和功率放大器 002提供泵浦光。 上述两种实现方式均可以实现为前置放大器 001和功率放大器 002提供泵浦光, 其中, 第二种实现方式仅采用一个控制单元和泵浦光源为前置放大器 001和功率放大 器 002提供泵浦光, 由于放大器的泵浦光的波长可以是相同的, 因此, 第二种实现方 式是可以实现的, 并且, 相对于第一种实现方式, 第二种实现方式减少了使用器件的 个数, 从而降低了成本, 节省了放大器占用的空间, 更有利于实际应用。 其中, 上述色散补偿装置可以为以下之一: DCF线卡、 DCM线卡、 和光纤布拉 格光栅 FBG-DCM线卡。本实施例通过将 DCF、 DCM或 FBG-DCM制作成线卡形式, 再将线卡连接至中间接入端口 003, 实现了在光放大器中接入色散补偿装置; 并且, 采用线卡的形式可以方便色散补偿装置的接入。另外, 本实施例将 FBG引入到色散补 偿技术中,由于 FBG色散补偿模块(FBG-DCM)具有插入损耗小(一般情况下, 120km 的 FBG-DCM插入损耗为 3到 4dB左右), 且插入损耗与传输跨度几乎无关, 这样, FBG-DCM模块可以采用体积更小的封装形式。 FBG-DCM相对 DCF-DCM的一个主 要优点是迟滞时间短, 即, 光信号进入一个器件造成的时延非常短, 另一个优点是在 高光功率输入时不会产生非线性效应。 FBG-DCM 的这些重要特性不仅使光放大器的 结构得到改进, 而且显著地降低了系统总体成本。 优选地, 光放大器还包括: 可调衰减器, 设置于前置放大器和中间接入端口之间, 设置为调整经前置放大器放大的信号的光功率。 本实施例通过在中间接入端口之前设 置可调衰减器, 可以调节进入到色散补偿装置的信号的光功率。 实施例二 本发明实施例提供了另一种光放大器, 图 3是根据本发明实施例二的光放大器的 结构框图, 如图 3所示, 放大器包括: 前置放大器 001, 设置为对输入光放大器的信 号进行放大; 色散补偿装置 010, 耦合至前置放大器 001, 设置为对经前置放大器 001 放大的信号进行色散补偿; 功率放大器 002, 耦合至色散补偿装置 010, 设置为对经色 散补偿装置 010色散补偿的信号进行放大。 本实施例将色散补偿技术引入到光放大器模块的设计中, 设计了一种带有色散补 偿功能的光放大器, 具体地, 将色散补偿装置集成在光放大器中, 从而实现了在光放 大器中引入色散补偿技术。采用本实施例提供的光放大器,有利于系统的维护和管理, 降低了光放大器的尺寸及成本, 同时, 这种光放大器模块在结构上也占有优势, 这对 未来的超高速、 超长距离、 超大容量光传输系统配置是有好处的。 在本实施例的一个优选实现方式中, 光放大器还包括: 第一控制单元、 第一泵浦 光源、 第二控制单元、 第二泵浦光源; 其中, 第一控制单元设置为控制第一泵浦光源 为前置放大器 001提供泵浦光; 第二控制单元设置为控制第二泵浦光源为功率放大器 002提供泵浦光。 在本实施例的另一个优选实现方式中, 光放大器还包括: 控制单元、 泵浦光源; 其中,控制单元设置为控制泵浦光源为前置放大器 001和功率放大器 002提供泵浦光。 上述两种实现方式均可以实现为前置放大器和功率放大器提供泵浦光, 其中, 第 二种实现方式仅采用一个控制单元和泵浦光源为前置放大器和功率放大器提供泵浦 光, 由于放大器的泵浦光的波长可以是相同的, 因此, 第二种实现方式是可以实现的, 并且, 相对于第一种实现方式, 第二种实现方式减少了使用器件的个数, 从而降低了 成本, 节省了放大器占用的空间, 更有利于实际应用。 其中, 色散补偿装置为以下之一: DCF、 DCM、 FBG-DCM。 本实施例可以将现 有的色散补偿装置 (DCF 或 DCM) 集成在光放大器中, 也可以将发明人发现的 FBG-DCM集成在光放大器中。 由于 FBG-DCM具有插入损耗小(一般情况下, 120km 的 FBG-DCM插入损耗为 3到 4dB左右), 且插入损耗与传输跨度几乎无关, 这样, FBG-DCM模块可以采用体积更小的封装形式。 FBG-DCM相对 DCF-DCM的一个主 要优点是迟滞时间短, 即, 光信号进入一个器件造成的时延非常短, 另一个优点是在 高光功率输入时不会产生非线性效应。 FBG-DCM 的这些重要特性不仅使光放大器的 结构得到改进, 而且显著地降低了系统总体成本。 优选地, 光放大器还包括: 可调衰减器, 设置于前置放大器和色散补偿装置之间, 设置为调整经前置放大器放大的信号的光功率。 本实施例通过在色散补偿装置之前设 置可调衰减器, 可以调节进入到色散补偿装置的信号的光功率。 实施例三 在传统光纤通信长距离传输配置方案中, 为了解决光功率受限和光纤色散受限, 分别通过增加光放大器和 DCM (参见图 1 ),为了补偿 DCF或 DCM的插入损耗, OBA 和 OPA都要选定适当的增益,这对光放大器的型号和系统设计都要有一个准确的把握 才能够满足系统要求, 而且系统维护、 设备管理比较复杂, 在封装尺寸及结构上占有 空间大, 增加了系统总成本。 本实施例的目的是降低系统设计的复杂度并有利于系统 管理, 为了达到这一目的, 本实施例通过将色散补偿技术引入到光放大器模块的设计 中, 设计一种带色散补偿功能, 便于系统维护、 管理, 且在尺寸、 成本及结构上占有 优势的光放大器模块, 从而简化了光通信传输长距离配置方案, 降低了系统成本, 这 对未来的超高速、 超长距离、 超大容量光传输系统配置具有非常重要的实用价值。 本实施例的设计思想如图 4所示, 将色散补偿技术引入光放大器的设计中, 除了 实现光信号的放大作用外, 还提供了灵活的配置接口, 可以配置几种不同的色散补偿 方式, 同时, 还可以实现光传输系统的色散补偿作用。 本实施例所示的光放大器的设 计由两大部分组成, 第一部分是光功率放大单元, 由低噪声前置放大器 (PA) 001、 功率放大器 (BA) 002、 中间接入端口 003、 可调衰减器 004、 光探测器 005、 泵浦激 光器 006、 光放大器控制单元 007及串行接口 008组成。 第二部分是色散补偿线卡单 元, 在两级放大器之间有中间接入连接器 (例如, 中间接入端口 003 ), 可以方便地接 入色散补偿线卡, 例如, DCF-DCM线卡或光纤布拉格光栅 (Fiber Bragg Grating, 简 称为 FBG) 色散补偿模块 (FBG-DCM) 线卡, 如图 5所示。 由于 FBG色散补偿模块 (FBG-DCM) 具有插入损耗小 (一般情况下, 120km的 FBG-DCM插入损耗为 3到 4dB左右), 且插入损耗与传输跨度几乎无关, 这样, FBG-DCM模块可以采用体积更 小的封装形式。 FBG-DCM相对 DCF或现有的 DCM的一个主要优点是迟滞时间短, 即光信号进入一个器件造成的时延非常短; 另一个优点是在高光功率输入时不会产生 非线性效应。 FBG-DCM 的这些重要特性不仅使放大器的结构得到改进, 而且显著地 降低了系统总体成本。 鉴于此, 如果把 DCF或现有的 DCM换为 FBG-DCM, 则可以 进一步简化放大器的结构, 且不会影响的噪声系数。 并且, 简化后的结构少了很多无 源光器件 (例如, 光隔离器、 泵浦信号合成器、 连接器), 这进一步降低了噪声系数。 优选地, 带色散补偿的光放大器结构可以简化成图 6所示的结构, 相对于图 4所 示的结构, 在图 6所示的光放大器中, 单控制环路取代了两个分立的控制环路, 使电 路得到进一步简化, 这将降低 30%的成本。 优选地, 如图 9所示, 还可以将 FBG的环形器集成到光放大器中, 这将进一步优 化改进放大器的设计结构, 降低成本。 采用本实施例的设计方案可以将色散补偿技术直接引入到光放大器的设计中, 设 计出一种带色散补偿功能, 便于系统维护、 管理, 且在尺寸、 成本及结构上占有优势 的光放大器模块, 从而简化了光通信传输长距离配置方案, 降低了系统成本, 简化了 系统设计的复杂度并有利于系统管理, 进而有利于降低器件选型要求, 有效控制产品 成本, 提高产品的市场竞争力, 这对未来的超高速、 超长距离、 超大容量光传输系统 配置具有非常重要的实用价值。 实施例四 如图 8所示, 下面以带有 FBG-DCM线卡的光放大器为例, 对本发明实施例的实 现方式进行说明。 在具体实施过程中, 采用 FBG-DCM线卡代替传统的 DCF或 DCM 线卡。 使用 FBG反射进行色散补偿和使用 DCF进行补偿的传统方式有本质的区别。 通过 FBG进行色散管理的基本原理是使用一个精确啁啾光纤光栅对不同的波长引入 不同的延时, 可以专门制作光栅以便模拟光纤或者某个跨度上的色散特征, 光删的规 格可以根据实际情况进行选择, 优选地, 如图 7所示, 光栅的长度为 10m, 光栅的周 期为 ldm。 FBG-DCM最显著的优势是插入损耗小, 一般情况 120km的 FBG-DCM插 入损耗在 3到 4dB, 而同等的 DCF的插入损耗则至少是 10dB。而且, FBG-DCM的插 损和传输跨度几乎无关, 而 DCF-DCM的插损则随着光纤和传输跨度的增加而增加。 本实施例所示的光放大器的设计由两部分组成, 第一部分是光功率放大单元, 由 低噪声前置放大器 (PA) 001、 功率放大器 (BA) 002、 中间接入端口 003、 可调衰减 器 004、泵浦激光器 005、光探测器 006、光放大器控制单元 007及串行接口 008组成。 第二部分是 FBG色散补偿线卡 009, 通过两级放大器之间的中间接入连接器接入到光 功率放大单元上。 通过上述设计方式, 可以方便地接入色散补偿线卡, 如 DCF线卡、 DCM线卡或 FBG-DCM线卡, 如图 5所示。 在该光放大器中, 前置放大器 001是一个低噪声、高带宽的光功率可调预放大器, 该前置放大器限制系统引入的噪声功率, 允许多波长光通过并获得相同增益。 前置放 大器 001的光功率可调是为了与后接的可调衰减器配合补偿 FBG-DCM引入的插损。 增益可调的功率放大器 002用于提供整个系统的输出光功率, 提高长距离光传输的入 纤光功率, 补偿光线路损耗。 可调衰减器 004是配合前置放大器 001而设计的, 用于 当前置放大器 001输出光功率设定值满足系统要求后,调整输入到 FBG-DCM线卡 009 的输入光功率, 使该输入光功率满足色散补偿线卡的输入光功率要求, 并补偿 FBG-DCM线卡的插损。 FBG-DCM线卡 009通过系统的中间接入端口 003接入到光 放大器单元中, 用于补偿光传输系统中的色度色散, 其接入插损大约为 3〜4dB, 且插 损值与传输跨度几乎无关。 光探测器 005用于检测输入光功率, 并将输入光信号的功 率信号输出给光放大器控制单元 007。 泵浦 006由激光器组成, 用于放大光信号。 光 放大器控制单元 007是整个系统的控制核心, 可以由泵浦功率控制单元、 泵电流驱动 单元、 输入光功率检测单元、 微处理器单元和关断电流保护单元组成。 其中, 泵浦功 率控制单元检测泵的驱动电流或输出光信号功率, 根据驱动电流或输出光信号的功率 的大小产生反馈信号, 并输出反馈信号给泵浦电流驱动单元, 以调节驱动电流的大小。 泵浦电流驱动单元集成在光放大器控制单元 007中, 为泵浦 006提供驱动电流, 驱动 泵浦 006工作。 输入光功率检测单元检测泵浦的输入光信号的功率, 并将输入光信号 的功率信号传输给微处理器。 微处理器单元用于控制运算, 当接收来自输入光功率探 测器 005的输入光信号的功率信号超出设定范围时输出控制电路自动关断电流保护装 置。 关断电流保护单元接收到控制单元内部的微处理器的断电控制信号时, 对泵电流 驱动电路进行控制, 切断驱动电流。 串行接口 008采用 RS232接口, 用于设置系统的 运行参数及上报运行状态和告警, 网管接口 008采用 RJ45提供 S MP网管接口, 直 接接入网络管理系统, 以便于系统维护和远程操作。 优选地, 可以采用如图 6所示的带色散补偿中间接入接口的光放大器, 该光放大 器中使用一个泵浦光 006和一个控制单元 007为前置放大器 001和功率放大器 002提 供泵浦光。 色散补偿模块可根据具体应用情况选择配备, 其中, 色散补偿模块可以做 成配套的线卡形式, 以方便安装调试。 另外,基于 FBG-DCM的光放大器相对基于 DCF或 DCM的光放大器有很多优点, 因此, 如图 9所示, 可以通过设计优化, 将 FBG的环形器集成到光放大器中, 这将进 一步简化光放大器的设计结构, 降低成本。 本实施例所示的光放大器可以应用到实际的光传输链路中, 图 10 示出了采用带 FBG-DCM线卡或集成 FBG-DCM的光放大器的光传输链路配置方案, 该配置方案简 洁清晰, 维护管理较为方便, 提升了光传输系统在结构和成本上的优势, 增强了产品 的市场竞争力。 综上所述, 本实施例将色散补偿技术引入到光放大器模块的设计中, 设计了一种 带有色散补偿功能的光放大器, 从而在制造光放大器时即考虑了前置放大器和功率放 大器与色散补偿装置之间的关系, 达到了简化色散补偿系统的设计, 便于系统管理的 效果。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种光放大器, 包括:
前置放大器, 设置为对输入所述光放大器的信号进行放大; 中间接入端口, 设置为耦合色散补偿装置, 所述色散补偿装置用于对经所 述前置放大器放大的信号进行色散补偿;
功率放大器, 耦合至所述中间接入端口, 设置为对经所述色散补偿装置色 散补偿的信号进行放大。
2. 根据权利要求 1所述的光放大器, 其中, 所述光放大器还包括:
第一控制单元、 第一泵浦光源、 第二控制单元、 第二泵浦光源; 其中, 所述第一控制单元设置为控制所述第一泵浦光源为所述前置放大器提供泵 浦光;
所述第二控制单元设置为控制所述第二泵浦光源为所述功率放大器提供泵 浦光。
3. 根据权利要求 1所述的光放大器, 其中, 所述光放大器还包括:
控制单元、 泵浦光源; 其中,
所述控制单元设置为控制所述泵浦光源为所述前置放大器和所述功率放大 器提供泵浦光。
4. 根据权利要求 1至 3中任一项所述的光放大器, 其中, 所述色散补偿装置为以 下之一:
色散补偿光纤 DCF线卡、 色散补偿模块 DCM线卡、 和光纤布拉格光栅 FBG-DCM线卡。
5. 根据权利要求 1至 3中任一项所述的光放大器, 其中, 所述光放大器还包括: 可调衰减器, 设置于所述前置放大器和所述中间接入端口之间, 设置为调 整经所述前置放大器放大的所述信号的光功率。
6. 一种光放大器, 包括:
前置放大器, 设置为对输入所述光放大器的信号进行放大; 色散补偿装置, 设置为对经所述前置放大器放大的信号进行色散补偿; 功率放大器, 设置为对经所述色散补偿装置色散补偿的信号进行放大。
7. 根据权利要求 6所述的光放大器, 其中, 所述光放大器还包括:
第一控制单元、 第一泵浦光源、 第二控制单元、 第二泵浦光源; 其中, 所述第一控制单元设置为控制所述第一泵浦光源为所述前置放大器提供泵 浦光;
所述第二控制单元设置为控制所述第二泵浦光源为所述功率放大器提供泵 浦光。
8. 根据权利要求 6所述的光放大器, 其中, 所述光放大器还包括:
控制单元、 泵浦光源; 其中,
所述控制单元设置为控制所述泵浦光源为所述前置放大器和所述功率放大 器提供泵浦光。
9. 根据权利要求 6至 8中任一项所述的光放大器, 其中, 所述色散补偿装置为以 下之一:
色散补偿光纤 DCF、 色散补偿模块 DCM、 和光纤布拉格光栅 FBG-DCM。
10. 根据权利要求 6至 8中任一项所述的光放大器, 其中, 所述光放大器还包括: 可调衰减器, 设置于所述前置放大器和所述色散补偿装置之间, 设置为调 整经所述前置放大器放大的所述信号的光功率。
PCT/CN2012/072685 2011-05-16 2012-03-21 光放大器 WO2012155654A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101260553A CN102789109A (zh) 2011-05-16 2011-05-16 光放大器
CN201110126055.3 2011-05-16

Publications (1)

Publication Number Publication Date
WO2012155654A1 true WO2012155654A1 (zh) 2012-11-22

Family

ID=47154550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072685 WO2012155654A1 (zh) 2011-05-16 2012-03-21 光放大器

Country Status (2)

Country Link
CN (1) CN102789109A (zh)
WO (1) WO2012155654A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329267A (zh) * 2000-06-09 2002-01-02 阿尔卡塔尔公司 波分复用系统的放大器及光信号的放大方法
CN2496195Y (zh) * 2001-08-16 2002-06-19 华为技术有限公司 一种光中继设备
US6710916B1 (en) * 2001-08-23 2004-03-23 Onetta, Inc. Grating-based dispersion compensation devices
CN101436908A (zh) * 2007-11-12 2009-05-20 王国栋 一种光纤色散补偿放大方法及其装置
CN101621175A (zh) * 2009-06-23 2010-01-06 中兴通讯股份有限公司 一种具有色散补偿功能的光纤放大器及方法
US20100271204A1 (en) * 2009-04-22 2010-10-28 Fujitsu Limited Optical amplifier module and dispersion compensation fiber loss detection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226164B2 (ja) * 2001-06-14 2013-07-03 富士通株式会社 光増幅器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329267A (zh) * 2000-06-09 2002-01-02 阿尔卡塔尔公司 波分复用系统的放大器及光信号的放大方法
CN2496195Y (zh) * 2001-08-16 2002-06-19 华为技术有限公司 一种光中继设备
US6710916B1 (en) * 2001-08-23 2004-03-23 Onetta, Inc. Grating-based dispersion compensation devices
CN101436908A (zh) * 2007-11-12 2009-05-20 王国栋 一种光纤色散补偿放大方法及其装置
US20100271204A1 (en) * 2009-04-22 2010-10-28 Fujitsu Limited Optical amplifier module and dispersion compensation fiber loss detection method
CN101621175A (zh) * 2009-06-23 2010-01-06 中兴通讯股份有限公司 一种具有色散补偿功能的光纤放大器及方法

Also Published As

Publication number Publication date
CN102789109A (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
US6137604A (en) Chromatic dispersion compensation in wavelength division multiplexed optical transmission systems
Sun et al. Optical fiber amplifiers for WDM optical networks
CA2571414C (en) Optical fiber transmission system with noise loading
Delavaux et al. Multi-stage erbium-doped fiber amplifier designs
US20050259316A1 (en) Optical communication systems including optical amplifiers and amplification methods
JPH07264166A (ja) 多重チャネル光ファイバ通信システム
Mimura et al. Batch multicore amplification with cladding-pumped multicore EDF
JP2002365678A (ja) 光通信装置並びに波長分割多重伝送システム及び方法
US6396623B1 (en) Wide-band optical amplifiers with interleaved gain stages
JP4294153B2 (ja) 波長多重光伝送システム
US6690886B1 (en) Suppression of four-wave mixing in ultra dense WDM optical communication systems through optical fibre dispersion map design
Zyskind et al. Erbium-doped fiber amplifiers for optical communications
JP2002280961A (ja) 光増幅伝送システム
US8941911B2 (en) Methods and devices for efficient optical fiber amplifiers
Qureshi et al. Bi-directional transmission of 800 gbps using 40 channels DWDM system for long haul communication
Wang et al. Real-Time 50Gb/s Upstream Transmission in TDM-PON with Class E1 Power Budget Using Ge/Si Avalanche Photodiode and Bismuth-Doped Fiber as Preamplifier
EP1162768A1 (en) System and method for amplifying a WDM signal including a Raman amplified Dispersion-compensating fibre
CN204597214U (zh) 一种基于双反馈结构的混合分立式高非线性光纤放大器
Zhu et al. High-Capacity 400Gb/s Real-Time Transmission over SCUBA110 Fibers for DCI/Metro/Long-haul Networks
WO2012155654A1 (zh) 光放大器
Garrett et al. Bidirectional ULH transmission of 160-gb/s full-duplex capacity over 5000 km in a fully bidirectional recirculating loop
Zhu et al. High capacity 400Gb/s real-time transmissions over AllWave ULL fibres by 400ZR/ZR+ pluggable modules
McCarthy et al. 43Gbit/s RZ-DQPSK transmission over 1000km of G. 652 ultra-low-loss fibre with 250km amplifier spans
Srivastava et al. 32× 10 Gb/s WDM transmission over 640 km using broad band, gain-flattened erbium-doped silica fiber amplifiers
CN104821481A (zh) 一种基于双反馈结构的混合分立式高非线性光纤放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786202

Country of ref document: EP

Kind code of ref document: A1