WO2012155600A1 - 激光阵列合光模组 - Google Patents
激光阵列合光模组 Download PDFInfo
- Publication number
- WO2012155600A1 WO2012155600A1 PCT/CN2012/071809 CN2012071809W WO2012155600A1 WO 2012155600 A1 WO2012155600 A1 WO 2012155600A1 CN 2012071809 W CN2012071809 W CN 2012071809W WO 2012155600 A1 WO2012155600 A1 WO 2012155600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- light
- light source
- source module
- reflection
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0905—Dividing and/or superposing multiple light beams
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0047—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
- G02B19/0052—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
- G02B19/0057—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4012—Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
Definitions
- the present invention relates to the field of laser technology, and in particular, to a laser array combining module. Background technique
- the optical power of a commonly used single semiconductor laser is roughly one hundred milliwatts, and the maximum power is only one to two watts. It is very difficult for a single semiconductor laser to achieve a few watts or even a dozen watts. In some applications, such as projection, stage lighting, etc., the optical power requirement of the light source needs to reach several tens of watts.
- a light source that achieves an optical power of several tens of watts can be arranged in an array of laser tubes.
- the existing solution is to simply arrange the laser diodes in two dimensions. Since the light emitted by the laser diode is an elliptical Gaussian distribution with a large divergence angle, it is necessary to use a collimating lens to collimate the light emitted by the laser diode.
- a 4 x 4 structure laser diode array of the prior art includes a laser diode 11 and a collimator lens 12. Since the illumination of the laser diode 11 has an elliptical Gaussian distribution, an elliptical spot is still formed after passing through the collimator lens 12. As shown in Fig.
- a primary object of the present invention is to provide a laser array combining module for increasing the optical energy density of a laser array.
- the laser array combining module provided by the invention comprises a first light source module, a second light source module and a single reflection module.
- the light emitted by the first light source module is transmitted through the unidirectional reflection module to form a transmitted light, and the light emitted by the second light source module is reflected by the unidirectional reflection module to form a reflected light, and the reflected light is parallel to the transmitted light and is not The light is superimposed, and the reflected light and the transmitted light mutually fill a gap between the spots of the other party.
- an area on the one-way reflection module projected by the first light source module, or the area And an area of the area opposite to the other side of the unidirectional reflection module is provided with an anti-reflection unit for transmitting light of the first light source module; and the area of the one-way reflection module projected by the second light source module A reflecting unit is provided for reflecting light of the second light source module.
- an area of the unidirectional reflection module projected by the first light source module is provided with a through hole for transmitting light of the first light source module; and the unidirectional reflection module is projected by the second light source module.
- a reflection unit is disposed in the area for reflecting light of the second light source module.
- the through hole is elliptical.
- the through holes are strips.
- the first light source module comprises a matrix array composed of a plurality of laser diodes and a collimating lens for one-to-one correspondence with each laser diode.
- the second light source module comprises a matrix array composed of a plurality of laser diodes and a collimating lens for one-to-one correspondence with each laser diode.
- the unidirectional reflection module is made of a transparent or non-transparent material, and a through hole is formed in a region projected by the first light source module on the unidirectional reflection module; A reflection unit is provided in the area projected by the module. .
- the first light source module and the second light source module are perpendicular to each other and intersect with each other, and the one-way reflection module is disposed inside the first light source module and the second light source module, and the first light source module The illumination is at an angle of 45°.
- a gap in a short-axis direction of each elliptical spot in the transmitted light is filled with the reflected light
- a gap in a short-axis direction of each of the reflected light beams is filled with the transmitted light.
- the invention adopts a new light combining structure, which is provided with two light source modules (including a first light source module and a second light source module), and a unidirectional reflection module is added, so that the light emitted by the two light source modules are respectively reflected and transmitted.
- each other fills the gap between the other spot, so that a higher light energy density of the light source can be provided, which can increase the optical density by nearly 2 times compared with the prior art, and also make the subsequent optics
- the system can be more compact and compact.
- FIG. 1 is a schematic diagram of a 4 ⁇ 4 structure laser diode array in the prior art
- FIG. 2 is a schematic diagram of a 4 ⁇ 4 elliptical spot array in the prior art
- 3 is a schematic structural view of a laser array light combining module of the present invention
- FIG. 4 is a schematic front view showing a structure of a one-way reflection module in a first embodiment of a laser array light combining module according to the present invention
- FIG. 5 is a side view showing the structure of the one-way reflection module of FIG. 4;
- FIG. 6 is a schematic side view of another embodiment of the unidirectional reflection module of FIG. 4;
- FIG. 7 is a schematic diagram of an elliptical spot array of 4 ⁇ 8 in an embodiment of the laser array illuminating module of the present invention;
- FIG. 9 is a schematic front view showing the structure of a unidirectional reflection module in a third embodiment of the laser array illuminating module of the present invention.
- a laser array light combining module includes a first light source module 10, a second light source module 20, and a one-way reflection module 30.
- the light emitted by the first light source module 10 is transmitted through the single reflection module 30 to form transmitted light, and the light emitted by the second light source module 20 is reflected by the unidirectional reflection module 30 to form reflected light.
- the reflected light and the transmitted light are parallel and do not overlap, and the reflected light and the transmitted light fill each other with a gap between the respective spots, so that the spot of the finally obtained spot array is denser and the optical energy density is higher.
- Each of the first light source module 10 and the second light source module 20 includes a rectangular array of a plurality of laser diodes 11. Since the divergence angle of the laser diode 11 is large, it needs to be collimated to be effectively applied. Therefore, the first light source module 10 and the second light source module 20 further include a collimating lens 12 corresponding to each of the laser diodes 11 for collimating the illumination of the first light source module 10 and the second light source module 20 To reduce the divergence angle of light.
- a unidirectional reflection module 30 in accordance with one embodiment of the present invention.
- One surface of the one-way reflection module 30 is provided with an anti-reflection unit in the projection area B of the first light source module 10 for The first light source module 10 emits light better through the unidirectional reflection module 30 to form transmitted light.
- a reflection unit is disposed in the projection area A of the second light source module 20 for reflecting the light emitted by the second light source module 20 to form reflected light.
- the areas A are spaced apart on one surface of the one-way reflection module 30, and the other surface corresponding to the space between the areas A is the area B.
- the structure of the unidirectional reflection module 30 in this embodiment has another variation, which is different from the first structure in that the region B is opposite to the other surface of the unidirectional reflection module 30.
- An anti-reflection unit is also provided in the corresponding area C.
- the antireflection unit may be an antireflection film, an antireflection sheet, an antireflection body or other form which can increase the transmittance of light.
- the above reflecting unit may be a reflecting film, a reflecting sheet, a reflecting body or the like which may increase the reflectance of light.
- the angle between the first light source module 10, the second light source module 20, and the unidirectional reflection module 30 may be arbitrary, but the transmitted light and the reflected light must be parallel and not coincident.
- the transmitted light forms an array of 4 X 4 ellipses as shown in Figure 2.
- the reflected light also forms an array of identical 4 x 4 ellipses, but the two do not coincide.
- the structure of the unidirectional reflection module 30 in the second embodiment of the present invention is shown, which is different from the above embodiment in that the first light source module 10 is in the projection area B on the unidirectional reflection module 30.
- a through hole 31 is provided for causing the first light source module 10 to emit light through the one-way reflection module 30 to form transmitted light.
- the shape of the through hole 31 may be elliptical, and the size of the through hole 31 is not smaller than the size of a single spot on which the first light source module 10 emits light on the one-way reflection module 30.
- the embodiment can not only save the anti-transmission unit, but also transmit the maximum illumination of the first light source module 10 through the one-way reflection module 30.
- a structure of a unidirectional reflection module 30 in a third embodiment of the present invention which is different from the above embodiment in that the through hole 31 is strip-shaped which is compatible with a plurality of spots.
- This embodiment makes the production process of the unidirectional reflection module 30 easier with respect to the above embodiment, and in particular, it is easier to provide the through-hole 31 in the unidirectional reflection module 30.
- the through-holes 31 may be other shapes such as a circle, a square, or a triangle, and may only be transmitted through the one-way reflection module 30 by allowing the first light source module 10 to emit light.
- the one-way anti-reflection The modulating module 30 is preferably made of a material having a non-transparent material, such as aluminum, copper, or the like, without loss of light energy during projection. Referring to FIG. 8 or 9, a through hole 31 is disposed in a region projected by the first light source module 10 on the unidirectional reflection module 30; a reflection is provided in a region projected by the second light source module 20 on the unidirectional reflection module 30. unit.
- the spatial position module between the first light source module 10, the second light source module 20 and the unidirectional reflection module 30 is such that the first light source module 10 and the second light source module 20 are perpendicular to each other and intersect with each other, and the unidirectional reflection module 30
- the first light source module 10 and the second light source module 20 are disposed inside the first light source module 10 and the second light source module 20, and the unidirectional reflection module 30 and the first light source module 10 are substantially illuminated.
- the unidirectional reflection module 30 and the second light source module 20 emit light at an angle of approximately 45°.
- the arrangement of the rectangular arrays of the plurality of laser diodes 11 in the first light source module 10 and the second light source module 20 is preferably such that the gap in the short-axis direction of each of the transmitted light beams is filled by the reflected light. And at the same time, the gap in the short-axis direction of each elliptical spot in the reflected light is also filled by the transmitted light.
- the invention adopts a new light combining structure provided with two light source modules (including the first light source module iO and the second light source module 20), and a unidirectional reflection module 30 is added, so that the light emitted by the two light source modules are respectively reflected and After transmission, parallel and non-coincident light is formed, which fills the gap between the spots of the other side, thereby providing a light source with higher optical energy density, which can increase the optical density by nearly 2 times compared with the prior art, and also enables subsequent
- the optical system can be more compact and compact.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Semiconductor Lasers (AREA)
Description
激光阵列合 组
技术领域
本发明涉及激光技术领域, 尤其涉及一种激光阵列合光模组。 背景技术
常用的单颗半导体激光器的光功率大致在儿百毫瓦左右, 最大的功率也 只有一至二瓦。 单颗半导体激光器想要做到几瓦甚至十几瓦非常困难。 而在 有些应用中, 比如投影、 舞台灯光等, 对光源的光功率要求需达到几十瓦。
实现光功率达到几十瓦的光源可以采用阵列排布激光管的方式。 现有方 案是简单的将激光二极管进行二维排列。 由于激光二极管发出的光是一个椭 圆高斯的分布, 发散角较大, 因此需要采用准直透镜将激光二极管发出的光 准直。 如图 1所示, 为现有技术中一个 4 x 4结构的激光二级管阵列, 其包括 激光二极管 11和准直透镜 12。 由于激光二极管 11的发光呈椭圆高斯分布, 经过准直透镜 12后依然形成一个椭圆光斑。 如图 2所示, 为图 1中激光二级 管 11阵列所发出的一个 4 X 4的椭圆光斑阵列。 结合图 1和图 2可知, 由于 椭圆的长轴的长度大于短轴, 现有的光斑阵列中, 椭圆形光斑的短轴方向之 间则会存在较大的间隙, 即光斑不能够紧密的排列在一起, 导致光能量密度 不够大。 发明内容
本发明的主要目的是提供一种激光阵列合光模组, 旨在提高激光阵列合 光的光能量密度。
本发明提供的激光阵列合光模组包括第一光源模块、 第二光源模块和单 向反射模块,
所述第一光源模块所发光经所述单向反射模块透射形成透射光, 所述第 二光源模块所发光经所迷单向反射模块反射形成反射光, 所述反射光与透射 光平行且不重合, 所述反射光与透射光相互填充对方光斑间的间隙。
优选地, 所述单向反射模块上被第一光源模块投影的区域, 或所述区域
和所述区域相对于单向反射模块的另一面的区域内设有增透单元, 用于透射 所述第一光源模块的光; 所述单向反射模块上被第二光源模块投影的区域内 设有反射单元, 用于反射所述第二光源模块的光。
优选地, 所述单向反射模块上被第一光源模块投影的区域内设有透孔, 用于透射所述第一光源模块的光; 所述单向反射模块上被第二光源模块投影 的区域内设有反射单元, 用于反射所述第二光源模块的光。
优选地, 所述透孔为椭圆形。
优选地, 所述透孔为条状。
优选地, 所述第一光源模块包括由若干激光二极管组成的矩阵阵列和用 于与每一个激光二极管一一对应的准直透镜。
优选地,, 所述第二光源模块包括由若干激光二极管组成的矩阵阵列和用 于与每一个激光二极管一一对应的准直透镜。
优选地, 所述单向反射模块为透明或非透明材料制成, 所述单向反射模 块上被第一光源模块投影的区域内设有透孔; 所述单向反射模块上被第二光 源模块投影的区域内设有反射单元。。
优选地, 所述第一光源模块与第二光源模块所发光相互垂直且相交, 所 述单向反射模块设置于所述第一光源模块与第二光源模块内侧, 并与所述第 一光源模块所发光呈 45°夹角。
优选地, 所述透射光中每一椭圆光斑短轴方向的间隙被所述反射光填充, 且所述反射光中每一椭圆光斑短轴方向的间隙被所述透射光填充。 本发明采用采用一种新的合光结构, 设置有两个光源模块(包括第一光 源模块和第二光源模块), 又增设了单向反射模块, 使两光源模块所发光分别 经反射和透射后形成平行且不重合的光, 相互填充了对方的光斑之间的间隙, 从而可以提供较高光能量密度的光源, 较之现有技术可使光密度得到接近 2 倍提高,也使得后续的光学系统能够更加简洁小巧。
附图说明
图 1为现有技术中的一个 4 X 4结构的激光二级管阵列示意图; 图 2为现有技术中的一个 4 X 4的椭圆光斑阵列示意图;
图 3为本发明激光阵列合光模组的结构示意图;
图 4为本发明激光阵列合光模组第一实施例中单向反射模块的主视结构 示意图;
图 5为图 4中单向反射模块一实施例中的侧视结构示意图;
图 6为图 4中单向反射模块另一实施例中的侧视结构示意图; 图 7为本发明激光阵列合光模组一实施例中 4 X 8的椭圆光斑阵列示意图; 图 8为本发明激光阵列合光模组第二实施例中单向反射模块的主视结构 示意图;
图 9为本发明激光阵列合光模组第三实施例中单向反射模块的主视结构 示意图。 本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步 说明。 具体实施方式
下面结合附图及具体实施例就本发明的技术方案做进一步的说明。 应当 理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
参照图 3 , 示出了本发明一实施例中的激光阵列合光模组, 包括第一光源 模块 10、 第二光源模块 20和单向反射模块 30。 第一光源模块 10所发光经单 向反射模块 30透射形成透射光, 第二光源模块 20所发光经单向反射模块 30 反射形成反射光。 上述反射光与透射光平行且不重合, 反射光与透射光相互 填充对方光斑间的间隙后, 使得最终所得到的光斑阵列的光斑更加密集, 同 时光能量密度也更高。
上述第一光源模块 10和第二光源模块 20都包括由若干个激光二极管 11 组成的矩形阵列, 由于激光二极管 11所发光的发散角较大, 需经过准直处理 才能有效应用。 因此上述第一光源模块 10和第二光源模块 20还包括与每一 个激光二极管 11——对应的准直透镜 12, 用于对第一光源模块 10和第二光 源模块 20所发光进行准直处理, 以减小光的发散角。
参照图 4, 示出了本发明一实施例中单向反射模块 30的结构。 单向反射 模块 30的一表面被第一光源模块 10的投影区域 B内设有增透单元, 用于使
第一光源模块 10所发光更好的透射过单向反射模块 30, 形成透射光。在单向 反射模块 30的另一表面上,第二光源模块 20的投影区域 A内设有反射单元, 用于反射第二光源模块 20所发光, 形成反射光。 参照图 5, 区域 A在单向反 射模块 30的一个表面上间隔设置,各区域 A之间的间隔位置对应的另一表面 为区域 B。 参照图 6, 本实施例中的单向反射模块 30的结构还有另外一种变 形,与第一种结构的区别之处在于上述区域 B相对于单向反射模块 30的另一 表面上, 相对应的区域 C内也设有增透单元。
上述增透单元可以是增透膜、 增透片、 增透体或是其他可以增加光的透 射率的形式均可。 上述反射单元可以是反射膜、 反射片、 反射体或是其他可 以增加光的反射率的形式均可。
在激光阵列合光模组工作时,上述第一光源模块 10、 第二光源模块 20和 单向反射模块 30之间的角度可以为任意, 但必须满足透射光与反射光平行且 不重合。 透射光形成一个如图 2所示的 4 X 4的椭圆光斑阵列, 反射光也形成 一个同样的 4 x 4的椭圆光斑阵列,但二者不重合。相互填充后,如图 7所示, 透射光与反射光相互填充对方光斑间的间隙后, 最终所得到一个 4 x 8的椭圆 光斑阵列, 该阵列光斑更密集, 光能量密度更高。
参照图 8, 示出了本发明第二实施例中单向反射模块 30的结构, 与上述 实施例中的不同之处在于, 第一光源模块 10在单向反射模块 30上的投影区 域 B内设置有透孔 31 ,用于使第一光源模块 10所发光穿过单向反射模块 30, 形成透射光。 透孔 31的形状可以为椭圆形, 透孔 31的大小不小于第一光源 模块 10所发光在单向反射模块 30上的单个光斑的大小。 该实施例相对于上 述实施例不仅可以省去增透单元, 还可以将第一光源模块 10所发光最大限度 的透射过单向反射模块 30。
参照图 9, 示出了本发明第三实施例中单向反射模块 30的结构, 与上述 实施例中的不同之处在于, 所述透孔 31为可兼容多个光斑的条状。 该实施例 相对于上述实施例使单向反射模块 30的生产加工更加简便, 尤其是指在单向 反射模块 30设置透孔 31的环节更加简便。
上述透孔 31还可为圆形、 方形或三角形等的其他形状, 只需满足可将第 一光源模块 10所发光做大限度的透射过单向反射模块 30即可。
上述实施例中为了能使第一光源模块 10所发光最大限度的透射过单向反
射模块 30, 而不至于在投射过程中光能量有所损失,单向反射模块 30优选采 用具有非透明材料制成, 例如铝、 铜等金属。 参照图 8或 9, 在上述单向反射 模块 30上被第一光源模块 10投影的区域内设置有透孔 31 ; 在单向反射模块 30上被第二光源模块 20投影的区域内设置有反射单元。
上述第一光源模块 10、 第二光源模块 20与单向反射模块 30之间的空间 位置模块优选为, 第一光源模块 10与第二光源模块 20所发光相互垂直且相 交, 单向反射模块 30设置于所述第一光源模块 10与第二光源模块 20内侧, 即第一光源模块 10与第二光源模块 20所发光方向的位置, 并且单向反射模 块 30与第一光源模块 10所发光大致呈 45°夹角, 显而易见地, 单向反射模块 30与第二光源模块 20所发光同时也大致呈 45°夹角。
上述第一光源模块 10和第二光源模块 20中若干激光二极管 11的矩形阵 列的排布优选为, 该排布可以使上述透射光中每一椭圆光斑短轴方向的间隙 被上述反射光所填充, 且同时反射光中每一椭圆光斑短轴方向的间隙也被透 射光所填充。
本发明采用一种新的合光结构设置有两个光源模块(包括第一光源模块 iO和第二光源模块 20 ), 又增设了单向反射模块 30, 使两光源模块所发光分 别经反射和透射后形成平行且不重合的光, 相互填充了对方的光斑之间的间 隙, 从而可以提供较高光能量密度的光源, 较之现有技术可使光密度得到接 近 2倍提高, 也使得后续的光学系统能够更加简洁小巧。 以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构变换, 或直接或间接运用 在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
Claims
1、 一种激光阵列合光模组, 其特征在于, 包括第一光源模块、 第二光源 模块和单向反射模块,
所述第一光源模块所发光经所述单向反射模块透射形成透射光, 所述第 二光源模块所发光经所述单向反射模块反射形成反射光, 所述反射光与透射 光平行且不重合, 所述反射光与透射光相互填充对方光斑间的间隙。
2、根据权利要求 1所述的激光阵列合光模组,其特征在于, 所述单向反 射模块上被第一光源模块投影的区域, 或所述区域和所述区域相对于单向反 射模块的另一面的区域内设有增透单元, 用于透射所述第一光源模块的光; 所述单向反射模块上被第二光源模块投影的区域内设有反射单元, 用于反射 所述第二光源模块的光。
3、根据权利要求 1所述的激光阵列合光模组,其特征在于, 所述单向反 射模块上被第一光源模块投影的区域内设有透孔, 用于透射所述第一光源模 块的光; 所述单向反射模块上被第二光源模块投影的区域内设有反射单元, 用于反射所述第二光源模块的光。
4、根据权利要求 3所述的激光阵列合光模组,其特征在于, 所述透孔为 椭圆形。
5、根据权利要求 3所述的激光阵列合光模组,其特征在于, 所述透孔为 条状。
6、根据权利要求 2所述的激光阵列合光模组,其特征在于, 所述第一光 源模块包括由若干激光二极管组成的矩阵阵列和用于与每一个激光二极管一 一对应的准直透镜。
7、根据权利要求 2所述的激光阵列合光模组,其特征在于, 所述第二光 源模块包括由若干激光二极管组成的矩阵阵列和用于与每一个激光二极管一 一对应的准直透镜。
8、根据权利要求 1至 7中任意一项所述的激光阵列合光模组,其特征在 于, 所述单向反射模块为透明或非透明材料制成, 所述单向反射模块上被第 一光源模块投影的区域内设有透孔; 所述单向反射模块上被第二光源模块投 影的区域内设有反射单元。
9、根据权利要求 1至 7中任意一项所述的激光阵列合光模组,其特征在 于, 所述第一光源模块与第二光源模块所发光相互垂直且相交, 所述单向反 射模块设置于所述第一光源模块与第二光源模块内侧, 并与所述第一光源模 块所发光呈 45°夹角。
10、 根据权利要求 1至 7中任意一项所述的激光阵列合光模组, 其特征 在于, 所述透射光中每一椭圆光斑短轴方向的间隙被所述反射光填充, 且所 述反射光中每一椭圆光斑短轴方向的间隙被所述透射光填充。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110126219 CN102297389A (zh) | 2011-05-16 | 2011-05-16 | 激光阵列合光模组 |
CN201110126219.2 | 2011-05-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012155600A1 true WO2012155600A1 (zh) | 2012-11-22 |
Family
ID=45357981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/071809 WO2012155600A1 (zh) | 2011-05-16 | 2012-03-01 | 激光阵列合光模组 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102297389A (zh) |
WO (1) | WO2012155600A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102297389A (zh) * | 2011-05-16 | 2011-12-28 | 深圳市光峰光电技术有限公司 | 激光阵列合光模组 |
CN102324697A (zh) * | 2011-09-22 | 2012-01-18 | 西安炬光科技有限公司 | 半导体激光器插空排列合束方法及高功率半导体激光器 |
US8998447B2 (en) * | 2012-09-26 | 2015-04-07 | Projectdesign As | Illumination devices using array of reflectors |
CN103913937B (zh) * | 2013-01-01 | 2016-04-20 | 深圳市光峰光电技术有限公司 | 发光装置及其相关投影系统 |
CN203217229U (zh) * | 2013-03-01 | 2013-09-25 | 深圳市绎立锐光科技开发有限公司 | 一种发光装置及投影系统 |
CN103676436B (zh) * | 2013-12-20 | 2016-04-06 | 海信集团有限公司 | 一种用于投影的光源整形方法及结构 |
CN103676186A (zh) * | 2013-12-25 | 2014-03-26 | 中国华录集团有限公司 | 激光二极管布局系统和方法 |
CN103747221B (zh) * | 2013-12-31 | 2016-04-06 | 苏州佳世达光电有限公司 | 激光投影设备 |
CN104298058A (zh) * | 2014-09-11 | 2015-01-21 | 海信集团有限公司 | 一种激光光源及投影显示装置 |
CN104297927A (zh) * | 2014-09-29 | 2015-01-21 | 四川长虹电器股份有限公司 | 一种激光二极管阵列光源模组 |
CN106681091B (zh) * | 2015-11-10 | 2023-08-08 | 深圳光峰科技股份有限公司 | 光学固定装置、光源装置及投影设备 |
US11548094B2 (en) * | 2017-02-15 | 2023-01-10 | General Electric Company | System and methods for fabricating a component with laser array |
CN207122801U (zh) * | 2017-04-17 | 2018-03-20 | 深圳市绎立锐光科技开发有限公司 | 一种舞台灯照明装置 |
CN114217429A (zh) * | 2022-02-21 | 2022-03-22 | 杭州有人光电技术有限公司 | 一种用于两组激光模组耦合及匀光的全反射棱镜光学系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1172743A (ja) * | 1997-08-27 | 1999-03-16 | Hamamatsu Photonics Kk | 集光装置 |
US20030151820A1 (en) * | 2001-08-10 | 2003-08-14 | Xin Gao | Laser light source and an optical system for shaping light from a laser-bar-stack |
CN1672083A (zh) * | 2002-08-07 | 2005-09-21 | 浜松光子学株式会社 | 聚光装置 |
CN1675578A (zh) * | 2002-08-30 | 2005-09-28 | 浜松光子学株式会社 | 聚光装置 |
CN101185208A (zh) * | 2005-06-15 | 2008-05-21 | 浜松光子学株式会社 | 激光装置 |
CN102297389A (zh) * | 2011-05-16 | 2011-12-28 | 深圳市光峰光电技术有限公司 | 激光阵列合光模组 |
CN102324697A (zh) * | 2011-09-22 | 2012-01-18 | 西安炬光科技有限公司 | 半导体激光器插空排列合束方法及高功率半导体激光器 |
-
2011
- 2011-05-16 CN CN 201110126219 patent/CN102297389A/zh active Pending
-
2012
- 2012-03-01 WO PCT/CN2012/071809 patent/WO2012155600A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1172743A (ja) * | 1997-08-27 | 1999-03-16 | Hamamatsu Photonics Kk | 集光装置 |
US20030151820A1 (en) * | 2001-08-10 | 2003-08-14 | Xin Gao | Laser light source and an optical system for shaping light from a laser-bar-stack |
CN1672083A (zh) * | 2002-08-07 | 2005-09-21 | 浜松光子学株式会社 | 聚光装置 |
CN1675578A (zh) * | 2002-08-30 | 2005-09-28 | 浜松光子学株式会社 | 聚光装置 |
CN101185208A (zh) * | 2005-06-15 | 2008-05-21 | 浜松光子学株式会社 | 激光装置 |
CN102297389A (zh) * | 2011-05-16 | 2011-12-28 | 深圳市光峰光电技术有限公司 | 激光阵列合光模组 |
CN102324697A (zh) * | 2011-09-22 | 2012-01-18 | 西安炬光科技有限公司 | 半导体激光器插空排列合束方法及高功率半导体激光器 |
Also Published As
Publication number | Publication date |
---|---|
CN102297389A (zh) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012155600A1 (zh) | 激光阵列合光模组 | |
US10530131B2 (en) | Light source system and laser light source | |
JP6168611B2 (ja) | 光源、光合成装置、および光源付投影装置 | |
US7688526B2 (en) | Light-emitting devices and lens therefor | |
KR101825537B1 (ko) | 발광 장치 및 프로젝션 시스템 | |
CN105158913B (zh) | 激光光源、波长转换光源、合光光源及投影系统 | |
CN103913937B (zh) | 发光装置及其相关投影系统 | |
US10048576B2 (en) | Laser light source and projection display device | |
US8042960B2 (en) | Illumination device for producing a polarized light beam | |
TWI487983B (zh) | 光學膜及使用光學膜之背光模組 | |
CN104049445A (zh) | 发光装置及投影系统 | |
TWM552112U (zh) | 光源裝置及投影系統 | |
JP3196465U (ja) | 側面照射面状発光モジュール | |
CN204088871U (zh) | 一种分层排布被动散热二极管激光光谱合成光学装置 | |
CN101900291A (zh) | 一种led路灯透镜 | |
JP2014235368A (ja) | 立体映像投影装置 | |
CN103868016A (zh) | 光学透镜以及应用该光学透镜的发光元件 | |
CN105098597B (zh) | 一种激光器的矫正系统、光源系统及投影装置 | |
CN102709804A (zh) | 集成激光光源 | |
CN111522189A (zh) | 激光光源装置及激光投影设备 | |
CN202351518U (zh) | 多波长激光器融合发射光学系统 | |
US9547116B2 (en) | Light guide plate having uniform light emission and manufacturing method thereof | |
CN102520526A (zh) | 多波长激光器融合发射光学系统 | |
CN101929641A (zh) | 背光模组及具有该背光模组的显示装置 | |
TWI436104B (zh) | Solar light simulation device with light source module and the simulation test device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12785095 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (27.03.2014) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12785095 Country of ref document: EP Kind code of ref document: A1 |