WO2012155540A1 - 地质信息的处理方法及装置 - Google Patents

地质信息的处理方法及装置 Download PDF

Info

Publication number
WO2012155540A1
WO2012155540A1 PCT/CN2012/070646 CN2012070646W WO2012155540A1 WO 2012155540 A1 WO2012155540 A1 WO 2012155540A1 CN 2012070646 W CN2012070646 W CN 2012070646W WO 2012155540 A1 WO2012155540 A1 WO 2012155540A1
Authority
WO
WIPO (PCT)
Prior art keywords
geological
image
data
images
coordinates
Prior art date
Application number
PCT/CN2012/070646
Other languages
English (en)
French (fr)
Inventor
舒彬
杨超
张凯
王友军
王勇
任志善
罗新伟
李丛云
陈凯
江春华
李国勇
周静雷
Original Assignee
北京市电力公司
北京电力经济技术研究院
北京恒华伟业科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110124680A external-priority patent/CN102324060A/zh
Priority claimed from CN201110201465.XA external-priority patent/CN102324096B/zh
Priority claimed from CN2011104125500A external-priority patent/CN103164417A/zh
Priority claimed from CN2011104125290A external-priority patent/CN103164849A/zh
Application filed by 北京市电力公司, 北京电力经济技术研究院, 北京恒华伟业科技股份有限公司 filed Critical 北京市电力公司
Priority to EP12785279.6A priority Critical patent/EP2711893B1/en
Priority to US14/117,405 priority patent/US9256981B2/en
Publication of WO2012155540A1 publication Critical patent/WO2012155540A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30184Infrastructure

Definitions

  • Geological data is an important basis for power grid planning, design, construction, operation, and transformation. Geological conditions not only affect the construction cost of the project, but also affect the safety of power grid construction and operation. With the ever-changing geological conditions and construction standards, the requirements for power construction to cope with changes in geological conditions are constantly improving. The traditional pattern-based and decentralized management of engineering geological data models increasingly affect the efficiency of power grid construction, and it is urgent to establish power facilities engineering. Geological information management systems, while geological image processing is an important part of reflecting geological conditions.
  • a primary object of the present invention is to provide a method and apparatus for processing geological information to solve the problem that geological image processing in the prior art is often difficult to obtain a wide range of ground images.
  • a method of processing geological information is provided.
  • the method for processing the geological information includes: acquiring a plurality of geological image images; determining, by the imaging method of the geological image, a relationship between image coordinates and ground coordinates of each geological image in the plurality of geological image images; The relationship between the image coordinates of each geological image and the ground coordinates in the geological image map connects the plurality of geological images together. Further, acquiring a plurality of geological image maps includes: acquiring geological image maps at different times. Further, connecting the plurality of geological images together according to the relationship between the image coordinates of each geological image in the plurality of geological images and the ground coordinates comprises: geometrically performing the plurality of geological images separately Corrective processing; and linking together multiple geological images after geometric correction processing.
  • performing geometric correction processing on the plurality of geological image images respectively includes: acquiring coordinates of the plurality of geological image images respectively; and correcting the plurality of geological image images to the same coordinate system according to the data image correction method in.
  • connecting the plurality of geological image images after the geometric correction processing comprises: separately searching for mosaic edges of the plurality of geological image images; determining optimal mosaic edges of the plurality of geological image images, wherein The best mosaic edge is the closest brightness line on the adjacent two geological image maps; and the plurality of geological image images are connected together according to the best mosaic edge of the plurality of geological image maps.
  • the method further includes: smoothing the mosaic edges of the plurality of geological image images; and performing two Degree and contrast adjustment.
  • the method for processing the geological information further includes: acquiring geological vector data in the geological information; acquiring image data in the geological information; and performing spatial matching of the geological vector data and the image data to obtain Geological imagery.
  • the method further includes: superimposing the vector data and the geological image to obtain remote sensing data.
  • the method further includes: correcting the geological image, including performing tilt correction and projection difference on the geological image.
  • correcting the geological image includes: for a flat area or a region that fails to provide image satellite orbital parameters and sensor parameters, using a geometric model of polynomial transformation to correct, wherein more than two redundant control points are used for adjustment Calculation. Further, correcting the geological image comprises: performing physical model correction on the geological image using an area of the imaged satellite orbital parameter and the sensor parameter for an area with a large terrain fluctuation or a large image side angle of view.
  • performing physical model correction on the geological image comprises: restoring an imaging model of the geological image; correcting a projection difference according to the imaging model by using a digital elevation model; and using a three-dimensional coordinate of the map or a three-dimensional coordinate pair of the field control point
  • the geological image is controlled and corrected to obtain an orthorectified geological image.
  • the method further includes: receiving a query keyword input by the user; and performing a quick search on the survey data based on the keyword by using a search engine algorithm.
  • the method further includes: S2: acquiring first image data, and selecting a feature point group of the first region on the first image; S4: correcting each feature point in the feature point group to form a second region And S6: stitching the second area to the position corresponding to the first area on the second image.
  • step S4 includes: S41: calculating a minimum mean square error of each feature point; and S43: correcting each feature point according to a minimum mean square error, and further, calculating a minimum mean square error in step S41 is: The base point coordinates of a feature point are obtained by rigid transformation to obtain the minimum mean square error of each feature point.
  • the formula for the minimum mean square error is: v min ⁇ ⁇ ( ⁇ where , , ⁇ ' is the base point coordinate of the feature point; F is the minimum mean square error; ) is a rigid transformation, that is, the distance between any two points in an image remains unchanged before and after the transformation, or
  • the calculation method of the minimum mean square error in step S41 is: obtaining the minimum mean square error of each feature point by the rotation transformation for the base point coordinates of each feature point, and the formula of the minimum mean square error is ; v min E ⁇ , where , ⁇ ' is the base point coordinate of the feature point; F is the minimum mean square error; for the rotation transformation, that is, let each point rotate around a fixed point by a fixed angle, and become another point ⁇ ',
  • the transformation thus produced is called a rotation transformation on a plane; it is a translation transformation, that is, the amount of translation between the images in the x, y direction.
  • the method of splicing the second area onto the second image in step S6 is: projecting the second area onto the position corresponding to the first area on the second image; or superimposing the second area on the second image The location of the first area.
  • the processing device for the geological information comprises: an acquiring unit, configured to acquire a plurality of geological image images; and a determining unit, configured to determine image coordinates and ground of each geological image in the plurality of geological image images by imaging manner of the geological image a relationship between the surface coordinates; and a synthesizing unit configured to connect the plurality of geological images together according to a relationship between image coordinates of each geological image in the plurality of geological images and ground coordinates.
  • the synthesizing module includes: a correcting module, configured to perform geometric correction processing on the plurality of geological image images respectively; and a synthesizing module, configured to connect the plurality of geological image images after the geometric correction processing.
  • the correction module includes: an acquisition submodule for respectively acquiring coordinates of the plurality of geological image images; and a correction submodule for correcting the plurality of geological image images to the same according to a data image correction method In the coordinate system.
  • the synthesizing module includes: a search sub-module, configured to respectively search for mosaic edges of the plurality of geological image images; and a determining sub-module, configured to determine a best mosaic edge of the plurality of geological image images, where The best mosaic edge is the closest brightness line on two adjacent geological image maps; and a synthesis sub-module for using the plurality of geological image maps according to the best mosaic side of the plurality of geological image images connected.
  • the method further includes: acquiring geological data of the power distribution of the predetermined area and engineering data of the electrical engineering design of the predetermined area; and overlapping the coordinates of the geological data with the coordinates of the engineering data to obtain multi-dimensional space-time power Engineering geological information model; and obtaining multi-dimensional space-time power engineering geological information by acquiring design parameters in multidimensional space-time power engineering geological information model.
  • acquiring the geological data of the grid distribution of the predetermined area and the engineering data of the electric engineering design of the predetermined area include: acquiring the topography, the landform, and the geological space data of the grid distribution according to the spatial position of the grid distribution.
  • acquiring the geological data of the grid distribution of the predetermined area and the engineering data of the electric engineering design of the predetermined area further includes: obtaining the time for planning, implementing, operating, and renovating the electric power engineering design respectively for the electric power engineering design.
  • the method for acquiring the geological information of the electric engineering further includes: according to the change of the geological data and the engineering data, Dynamically modify the multidimensional space-time geological information model of power engineering.
  • a plurality of geological image images are acquired; a relationship between image coordinates and ground coordinates of each geological image image in the plurality of geological image images is determined by an imaging method of the geological image; and according to the plurality of geological images
  • the relationship between the image coordinates of each geological image and the ground coordinates in the figure will be the plurality of geological images
  • the figures are connected together, which solves the problem that the geological image processing in the prior art is often difficult to obtain a large range of ground images, thereby achieving the effect of obtaining a wide range of ground images by geological image processing.
  • FIG. 1 is a schematic diagram of a processing apparatus for geological information according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a processing apparatus for geological information according to a first preferred embodiment of the present invention
  • FIG. 4 is a flow chart of a method for processing geological information according to a first embodiment of the present invention
  • FIG. 5 is a flow chart showing a process of geological image processing according to an embodiment of the present invention
  • 6 is a schematic block diagram of a geological image processing system according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a rights management model according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a geological information processing apparatus according to a second embodiment of the present invention
  • 9 is a schematic diagram of a processing apparatus for geological information according to a second preferred embodiment of the present invention
  • FIG. 10 is a schematic diagram of a processing apparatus for geological information according to a third preferred embodiment of the present invention
  • FIG. 11 is a second embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a specific splicing method of a feature point correction partition splicing method according to an embodiment of the present invention
  • FIG. 15 is a schematic structural diagram of a feature point correction partition splicing apparatus according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments.
  • 1 is a schematic view of a processing apparatus for geological information according to a first embodiment of the present invention. As shown in FIG. 1, the processing device for the geological information includes an acquisition unit 10, a determination unit 20, and a synthesis unit.
  • the obtaining unit 10 is configured to acquire a plurality of geological image maps.
  • the determining unit 20 is configured to determine a relationship between image coordinates and ground coordinates of each geological image in the plurality of geological images by an imaging manner of the geological image.
  • the synthesizing unit 30 is configured to connect the plurality of geological images according to the relationship between the image coordinates of each geological image in the geological image and the ground coordinates.
  • a plurality of geological image images are acquired by the acquiring unit 10, and the determining unit 20 determines the relationship between the image coordinates of each geological image image and the ground coordinates of the plurality of geological image images by the imaging mode of the geological image.
  • the synthesizing unit 30 connects the plurality of geological image maps according to the relationship between the image coordinates of the geological image maps in the plurality of geological image maps and the ground coordinates, thereby solving the geological image processing in the prior art is often difficult to obtain.
  • a wide range of ground image problems have resulted in the ability to obtain a wide range of ground images through geological image processing.
  • the processing apparatus of the geological information includes an obtaining unit 10, a determining unit 20, and a synthesizing unit 30, wherein the synthesizing unit 30 includes a correcting module 301 and a synthesizing module 302.
  • the correction module 301 is configured to perform geometric correction processing on the plurality of geological image images respectively.
  • Digital image correction processing The mathematical model between image coordinates and ground coordinates is determined according to the imaging mode of the geological image. The correction formula is determined based on the digital model used. According to the ground control point and the corresponding image point coordinates, the adjustment parameters are calculated and the accuracy is evaluated. At the same time, the original image is geometrically transformed and the pixel brightness value is resampled.
  • the synthesis module 302 is used to connect a plurality of geological image views after the geometric correction process.
  • the processing device for the geological information comprises an obtaining unit 10, a determining unit 20 and a synthesizing unit 30, wherein the synthesizing unit 30 comprises a correcting module 301 and a synthesizing module 302,
  • the correction module 301 includes an acquisition sub-module 3011 and a correction sub-module 3012.
  • the obtaining sub-module 3011 is configured to acquire coordinates of the plurality of geological image images respectively.
  • the correction sub-module 3012 is configured to correct a plurality of geological image images into the same coordinate system according to the data image correction method.
  • the composition module 302 includes a search sub-module 3021, a determination sub-module 3022, and a synthesis sub-module 3023.
  • the search sub-module 3021 is configured to separately search for mosaic edges of a plurality of geological image maps.
  • the determining sub-module 3022 is configured to determine the best mosaic edge of the plurality of geological image images, wherein the optimal mosaic edge is the closest brightness line on the adjacent two geological image maps.
  • the synthesis sub-module 3023 is used to connect multiple geological images together according to the best mosaic edges of multiple geological images.
  • Digital Image Mosaic Combines different image files to form a complete image containing the region of interest, which is the mosaic of the image.
  • the images participating in the mosaic can be at different times, but require a certain degree of overlap between the mosaic images.
  • the key to digital image mosaic Because of our various geological imagery, its geometric distortion is different. In order to solve the splicing of multiple data images, the essence is geometric correction. According to the data image fine correction method, all the images participating in the mosaic are corrected into a unified coordinate system. After removing the overlapping portion, multiple images are stitched together to form a larger format image. The second is how to ensure that the contrast of the image after splicing is consistent, the hue is similar, and there is no obvious seam.
  • the process of correcting the geometry is as follows: Geometric correction of the image; Search for mosaic edges.
  • FIG. 4 is a flow chart of a method of processing geological information in accordance with a first embodiment of the present invention. . As shown in FIG.
  • the method for processing the geological information includes: Step S602: acquiring a plurality of geological image maps; Step S604, determining image coordinates and ground coordinates of each geological image map in the plurality of geological image images by using an image forming manner of the geological image The relationship between the two; and step S606, connecting the plurality of geological image images according to the relationship between the image coordinates of each geological image in the plurality of geological images and the ground coordinates.
  • acquiring the plurality of geological image maps comprises: acquiring a plurality of geological image maps at different times.
  • the plurality of geological image maps are connected according to the relationship between the image coordinates of each geological image map and the ground coordinates in the plurality of geological image maps, including: performing geometric correction processing on the plurality of geological image images respectively; Multiple geological images after correction are connected together.
  • performing geometric correction processing on the plurality of geological image images respectively comprises: acquiring coordinates of the plurality of geological image images respectively; and correcting the plurality of geological image images into the same coordinate system according to the data image correction method.
  • the connecting the plurality of geological image images after the geometric correction processing comprises: separately searching for the mosaic edges of the plurality of geological image images; determining the optimal mosaic edges of the plurality of geological image images, wherein the optimal mosaic edges are phases The closest connection between the two geological image maps; and the connection of multiple geological images along the best mosaic edges of multiple geological images.
  • the method further comprises: smoothing the mosaic edges of the plurality of geological image images; and performing two-degree and contrast adjustment on the plurality of geological image images.
  • the embodiment of the present invention creatively proposes a "multidimensional space-time power engineering geological information model", and uses the "grid, geomorphology, geology, time” multidimensional information structure to comprehensively express the geological environment of the power grid construction. Integrate the topographic image of the grid and surface space with various isoforms and structural maps of the underground according to the geospatial location, and follow the key time nodes of the power facilities such as substations, overhead lines, and cable tunnels. , planning and design, construction and operation) design data are coupled to form an original multi-dimensional space-time power facility engineering geological information model, supporting power facility engineering geological information life-cycle management.
  • the "multi-dimensional space-time power engineering geological information model” is established with the spatial position as the main axis, and the "feature point correction partition splicing method" is used to scan the large-format "Beijing geological map” and other parts.
  • the corresponding scan map partition is hierarchically projected to Beijing Electric
  • the accuracy of the superposition of raster graphics and geospatial space is improved, and the distribution of the power grid is correlated with the corresponding geomorphological and geological spatial data, and the power engineering design is targeted, according to planning, initial design, construction, operation, and transformation. Time node, dynamic management of geological and electrical engineering information.
  • the project is supported by GIS technology, based on the collection, collation, analysis and synthesis of existing data, data and results. It is oriented to the needs of power grid planning and design, with the goal of digitalization and integrated management of geological information.
  • GIS technology computer network technology, modern database technology, system integration technology, establish a specialized power geological information management system.
  • the comprehensive and secondary development of the data results is the main thread of the topic throughout the whole process of this work, with the principle of "construction, application, service, and improvement".
  • System platform construction 1.1 System design principles
  • System design follows the advanced, forward-looking, professional and open technical principles. In terms of advancement, the product is developed using the most advanced and mature platform available.
  • the GIS platform adopts the ArcGIS platform of ESRI Company of the United States, and has been fully adjusted to the most mature version 9.2.
  • the database adopts ORACLE 10G, and the system design adopts CS three-layer architecture.
  • the product summarizes the successful experience of the construction of the geographic information system in the power industry, and makes sufficient design reservations to meet the general trend of the future construction of the power grid planning and design information system.
  • geological data feature points In terms of professionalism, according to the actual characteristics of geological requirements for power grid planning and design work, analyze geological data feature points, abstract related business models, provide geological data query and management, and various geological azimuth production and output applications.
  • the product In terms of openness, the product provides standard data and function integration interfaces for integration with other systems such as document management systems and production management.
  • the system adopts a three-tier architecture, including: business application layer, application system platform layer and basic platform layer.
  • Basic platform layer Contains an attribute database for storing geological information and a GIS database for storing graphical information, and a geological digitization model library constructed based on the basic data.
  • Application platform layer Contains application service components for managing data models and serving the business application layer, such as map display components, printout components, geological modeling components, and more.
  • Business application layer Contains various business function applications, such as management of various geological information, query statistics, analytical calculations, and data interfaces with other information systems.
  • Data structure security design system follows the national grid company's partition, sub-domain, hierarchical network and information security overall protection strategy, combined with the company's data security requirements, develop various data structures within the system and corresponding storage, application, sharing And other security design.
  • 1.3.2 System Access Security Design In the client/server application mode (Client/Server), the GIS system is based on the personal user name and password IN/OUT information management mode, combined with the internal security mechanism of the database to configure multi-level and multi-level information. Encrypted data security structure.
  • the system adopts the security management function combined with the organization management, adopts the username/password-based identity authentication method and the role-based access control mechanism to solve the security management problem inside the WAN.
  • the basic principles of security management are: to establish a security management mechanism based on the LDAP protocol, to establish a security management mechanism based on the LDAP protocol, and to integrate the system authority management with the overall information security management within the company.
  • the specific rights management model is shown in Figure 7.
  • Log Management Design The system automatically creates a system data management log in normal operation. The log records user login, data access, and editing operations. Checking the system data management log can help track the operation of the logged-in user.
  • the system is able to analyze the geological conditions within a given buffer radius at the location of the project.
  • the system provides round, rectangle, and polygon selection tools that you can use to drag a range on the map.
  • the information corresponding to the object on the graph of the range will be displayed, and at the same time, the buffer can be further used for statistical query.
  • Isosurface analysis According to geological conditions, related parameters, critical values and other information, the system automatically forms the geological conditions isosurfaces required for business applications to assist in the planning and design of site selection. 1.4.2 Information Retrieval and Browsing The system development and design for the actual needs of the project has realized the full sequence, multi-function and digital search and browse function of geological information.
  • the system can be based on geological feature point keyword fuzzy search, coordinate (latitude and longitude) precise positioning, buffer distance and other retrieval methods, and provides a combination of various conditions, and can be linked with dozens of engineering sequences, greatly facilitated The application of practical engineering and scientific research.
  • the system provides convenient graphic printing function, which can print out single or multiple continuous prints according to paper, scale and other conditions.
  • the system can also digitally output data from various geological thematic maps. At the time of output, the coordinate information of the data is guaranteed to be accurate, the layer is clearly divided, and the data content is correct, and the output of formats such as AutoCAD format, SHP, and pictures is supported.
  • Data collection and collation Data collection The existing engineering geological data will be collected and summarized, collated, analyzed and summarized to form a set of systematic background information that can serve the project.
  • the corresponding scan will be performed.
  • the hierarchical partitioning of the map into the Beijing Electric Power Geographic Information Space improves the superposition accuracy of the raster graphics and geospatial in the area of power engineering geological attention, and forms the basic geological map module.
  • the system realizes the superposition management of geological data and geospatial vector data by matching the geological vector data with the image data spatial location data, and can more effectively utilize the geological comprehensive information by combining the grid and geographic vector; at the same time, the remote sensing image can be more intuitively reflected Landform, Meet the pre-engineering requirements.
  • the large-format "Beijing Geological Map" and other parts of the map are scanned.
  • Basic information source data name, coordinates (latitude and longitude), construction site, hole depth, groundwater depth, etc.
  • FIG. 8 is a schematic illustration of a processing apparatus for geological information in accordance with a second embodiment of the present invention. Features in this embodiment can be combined with features in the aforementioned first embodiment.
  • the processing device of the geological information includes a first acquiring unit 110, a second obtaining unit 210, and a matching unit 310.
  • the first obtaining unit 110 is configured to acquire geological vector data in the geological information.
  • the second obtaining unit 210 is configured to acquire image data in the geological information.
  • the matching unit 310 is configured to perform spatial location matching on the geological vector data and the image data to obtain a geological image.
  • the first acquisition unit 110 acquires geological vector data in the geological information
  • the second acquisition unit 210 acquires the image data in the geological information
  • the matching unit 310 performs the geological vector data and the image data.
  • the matching of the spatial position obtains the geological image, and solves the problems of separately managing the geological image and the geological vector in the prior art, and it is difficult to visually reflect the spatial condition, thereby achieving the effect of more intuitively reflecting the spatial condition.
  • the system of the embodiment of the invention can adopt the powerful and stable AcrGIS platform as a secondary development component to comprehensively express the power engineering geological information.
  • the system realizes the superposition management of remote sensing data and vector data by matching the geological vector data with the image data. It can combine the vector to view and utilize the geological comprehensive information more effectively.
  • the remote sensing image can reflect the spatial condition more intuitively. Conducive to the management and analysis of vector data, and seamless integration and integrated management of geological vectors and images.
  • the ArcGIS platform can be developed using ESRI's GIS platform from the United States.
  • the platform is a comprehensive introduction of COM technology, distributed database concepts, multi-layer architecture, comprehensive open technologies, object-oriented technology, WEB technology, JAVA technology and other IT.
  • the mainstream technology and follow the international common standards, has a unified, rigorous, complete, scalable integrated architecture of the full range of GIS software platform, its flexible, scalable C / S and B / S combined architecture, for users multiple levels
  • the application requirements provide a more complete, more open, and more scalable solution.
  • the system provides automatic correction of the geometric model and physical model of the geological image data.
  • the geological image of the image point displacement caused by the sensor error and the terrain fluctuation is corrected.
  • the system is for flat areas or fails to provide image satellite orbit parameters and sensor parameter areas, and uses geometric models of polynomial transformation to correct. At least two or more redundant control points should be used in the actual operation for adjustment calculation, and there are several checkpoints.
  • the system uses the imaged satellite orbit parameters, sensor parameters and DEM to correct the geological image with strict physical model for areas with large terrain fluctuations or large image side views.
  • FIG. 9 is a schematic illustration of a processing apparatus for geological information in accordance with a second preferred embodiment of the present invention. As shown in FIG.
  • the processing apparatus of the geological information includes a correction unit 410 in addition to the first acquisition unit 110, the second acquisition unit 210, and the matching unit 310.
  • the first obtaining unit 110 is configured to acquire geological vector data in the geological information.
  • the second obtaining unit 210 is configured to acquire image data in the geological information.
  • the matching unit 310 is configured to perform spatial location matching on the geological vector data and the image data to obtain a geological image.
  • the correcting unit 410 is configured to correct the geological image, including performing tilt correction and projection difference correction on the geological image.
  • Figure 10 is a schematic illustration of a processing apparatus for geological information in accordance with a third preferred embodiment of the present invention.
  • the correcting unit 410 includes: a recovery module 401, configured to restore an imaging model of the geological image; a first correcting module 402, configured to correct the projection difference according to the imaging model by using the digital elevation model; and a second correction module 403, using the map
  • the three-dimensional coordinates or the three-dimensional coordinates of the field control points are used to control and correct the geological image, and the orthorectified geological image is obtained.
  • 11 is a flow chart of a method of processing geological information in accordance with an embodiment of the present invention. As shown in FIG. 11, the method for processing the geological information includes: Step S802: Acquire geological vector data in the geological information. Step S804, acquiring image data in the geological information.
  • Step S806 performing spatial location matching on the geological vector data and the image data to obtain a geological image.
  • the method further comprises: superimposing the vector data and the geological image to obtain the remote sensing data.
  • the method further comprises: correcting the geological image, including performing tilt correction and projection difference correction on the geological image.
  • the correction of the geological image comprises: for a flat area or an area where the image satellite orbit parameter and the sensor parameter are not provided, the geometric model of the polynomial transformation is used for correction, wherein two or more redundant control points are used for the adjustment calculation.
  • the correction of the geological image comprises: physical correction of the geological image by using the imaged satellite orbital parameter and the region of the sensor parameter for the region with large terrain fluctuation or large image side angle of view.
  • the physical model correction of the geological image comprises: restoring the imaging model of the geological image; correcting the projection difference according to the imaging model by using the digital elevation model; and controlling and correcting the geological image by using the three-dimensional coordinates of the map or the three-dimensional coordinates of the field control point, Get orthophoto corrected geological images.
  • the method further comprises: receiving a query keyword input by the user; and using the search engine algorithm and performing a quick search on the survey data based on the keyword.
  • the embodiment of the present invention creatively proposes a "multidimensional space-time power engineering geological information model", and uses the "grid, geomorphology, geology, time” multidimensional information structure to comprehensively express the geological environment of the power grid construction. Integrate the topographic image of the grid and surface space with various isoforms and structural maps of the underground according to the geospatial location, and follow the key time nodes of the power facilities such as substations, overhead lines, and cable tunnels. , planning and design, construction and operation) design data are coupled to form an original multi-dimensional space-time power facility engineering geological information model, supporting power facility engineering geological information life-cycle management.
  • the "multi-dimensional space-time power engineering geological information model” is established with the spatial position as the main axis, and the "feature point correction partition splicing method" is used to scan the large-format "Beijing geological map” and other parts.
  • the corresponding scan map partitions are hierarchically projected into the Beijing Electric Power Geographic Information Space to improve the superposition accuracy of the raster graphics and the geospatial, and the distribution of the power grid and the corresponding landforms, Relevant geological space data, with power engineering design as the object, according to planning, initial design, construction, operation, transformation as a time node, dynamic management of geological and power engineering information.
  • the project is supported by GIS technology, based on the collection, collation, analysis and synthesis of existing data, data and results. It is oriented to the needs of power grid planning and design, with the goal of digitalization and integrated management of geological information.
  • GIS technology computer network technology, modern database technology, system integration technology, establish a specialized power geological information management system.
  • the comprehensive and secondary development of the data results is the main thread of the topic throughout the whole process of this work, with the principle of "construction, application, service, and improvement". As shown in FIG. 13 and FIG.
  • the feature point correction partition splicing method includes: S2: acquiring first image data, and selecting a feature point group of the first region on the first image; S4: pair feature points Each feature point in the group is corrected to form a second region; and S6: the second region is spliced to a position on the second image corresponding to the first region.
  • the feature point correction partition splicing method is to scan the large-area "Beijing geological map" and other parts of the map, and select the relevant coordinates of the plurality of power engineering as the feature point group, and hierarchically project the corresponding scan map partition to North In the geographic information space of Beijing Electric Power, improve the superposition accuracy of raster graphics and geospatial, and correlate the distribution of power grid with the corresponding geomorphological and geological spatial data, with the design of power engineering as the object, according to planning, initial design, construction, operation and transformation. Dynamically manage geological and electrical engineering information for time nodes.
  • step S4 comprises: S41: calculating a minimum mean square error of each feature point; and S43: correcting each feature point according to a minimum mean square error.
  • the method for calculating the minimum mean square error in step S41 is: obtaining a minimum mean square error of each feature point by using a rigid transformation on the base point coordinates of each feature point, and the formula of the minimum mean square error is:
  • is the base point coordinate of the feature point
  • F is the minimum mean square error
  • ( ⁇ ' ) is the rigid transformation, that is, the distance between any two points in an image remains unchanged before and after the transformation.
  • the above algorithm is a cost function, and the iterative method is applied by the traditional method. The time overhead of this method is relatively large, and more registration points are needed.
  • the calculation method of the minimum mean square error in step S41 is: obtaining the minimum mean square error of each feature point by rotating transformation on the base point coordinates of each feature point, and the formula of the minimum mean square error is:
  • ⁇ ' is the base point coordinate of the feature point
  • F is the minimum mean square error
  • rotation transformation that is, each point is rotated around a fixed point by a fixed angle to become another point ⁇ ', and the resulting transformation is called Rotation transformation on the plane
  • translation transformation that is, the amount of translation between the images in the x, y direction.
  • the above algorithm is a singular value decomposition (SVD) based least squares algorithm. This algorithm requires only a small number of registration points to quickly calculate the rotation transformation matrix and simultaneously calculate the translation vector, and then minimizes this equation to obtain the minimum mean square error.
  • a feature point correction partition splicing apparatus is provided. As shown in FIG.
  • the feature point correction partition splicing apparatus of the present invention includes: an acquisition module 200, configured to acquire first image data, and select a feature point group of a first area on the first image; and a correction module 400, configured to Correcting each feature point in the feature point group to form a second area; and splicing module 600 for splicing the second area to a position corresponding to the first area on the second image.
  • the correction module 400 includes: a calculation module for calculating a minimum mean square error of each feature point; and a correction submodule for correcting each feature point according to a minimum mean square error.
  • the calculation module comprises: a rigid transformation module, configured to obtain a minimum mean square error of each feature point by rigid transformation for the base point coordinates of each feature point.
  • the calculation module comprises: a rotation transformation module, configured to acquire a minimum mean square error of each feature point by a rotation transformation on a base point coordinate of each feature point.
  • a multi-dimensional space-time power engineering geological information acquisition method includes: acquiring geological data of a power distribution in a predetermined area and engineering data of a power engineering design in a predetermined area; and performing coordinates of the geological data and coordinates of the engineering data
  • the multi-dimensional space-time power engineering geological information model is obtained by overlapping the spatial positions; and the multi-dimensional space-time power engineering geological information is obtained by acquiring the design parameters in the multi-dimensional space-time power engineering geological information model.
  • the distribution of the power grid is related to the topography, landform, and geological space data of the grid distribution, and visually describing the geomorphology and geological conditions around the power grid facility according to the spatial location division.
  • One-stop access to information on basic engineering geology, hydrogeology, seismic geology, and engineering data in and around the project site such as: regional stability conditions, formation lithology, groundwater and surface water conditions, site types, seismic liquefaction, geology Disaster type and distribution, soil resistivity, foundation bearing capacity, etc.; then, with power engineering design as the object, according to planning, initial design, construction, operation, transformation as a time node, constitute a multi-dimensional information structure, and according to the follow-up Power engineering design dynamically manages geological and power engineering information.
  • the information model is conducive to the macroscopic control decision of geological conditions in the stages of feasibility demonstration, planning and site selection; it is beneficial for geotechnical engineers to identify from a large number of sporadic and scattered geological and historical data according to the actual needs of the project. And screening, inputting representative and effective multi-source geological information, is conducive to the establishment of a comprehensive, intuitive, point-and-line database of the map, so that the geological information is more clear, rich, and concentrated, at a glance.
  • acquiring the geological data of the grid distribution of the predetermined area and the engineering data of the electric engineering design of the predetermined area include: acquiring the topography, the landform, and the geological space data of the grid distribution according to the spatial position of the grid distribution.
  • the topography, geomorphology and geological space data of the power grid include: engineering geology, hydrogeology, seismic geology, engineering data, etc., such as: regional stability conditions, stratum lithology, groundwater and surface water conditions, site types, seismic liquefaction , geological hazard types and distribution, soil resistivity, foundation bearing capacity and many other contents.
  • acquiring the geological data of the grid distribution of the predetermined area and the engineering data of the electric engineering design of the predetermined area further comprises: obtaining the time for planning, implementing, operating, and renovating the electric power engineering design respectively for the electric power engineering design.
  • the planning, implementation, operation and transformation of power engineering design include: key time nodes of power facilities such as substations, overhead lines and cable tunnels.
  • the method for acquiring the geological information of the electric engineering further includes: according to the change of the geological data and the engineering data, Dynamically modify the multidimensional space-time geological information model of power engineering.
  • the above-mentioned engineering geological, hydrogeological, seismic geological, engineering data and other information such as: regional stability conditions, formation lithology, groundwater and surface water conditions, site types, seismic liquefaction, geological hazard types and distribution, soil resistivity, foundation
  • the bearing capacity and other contents are spatially coupled with the key time nodes of substation, overhead line, cable tunnel and other power facilities to form an original multi-dimensional space-time power facility engineering geological information model, supporting the full life of the power facility engineering geological information. management.
  • the multi-dimensional space-time power engineering geological information acquisition method or apparatus of the embodiment of the present invention may include the following technical solutions: First, a multi-dimensional space-time power engineering geological information acquisition scheme.
  • the geological data of the grid distribution of the predetermined area and the engineering data of the electric engineering design of the predetermined area are acquired.
  • the coordinate feature points of the geological data and the coordinate feature points of the engineering data are superimposed on the spatial position to obtain a multi-dimensional space-time power engineering geological information model.
  • the multi-dimensional space-time power engineering geological information is obtained by locating the design parameters in the multi-dimensional space-time power engineering geological information model.
  • the geological data of the predetermined regional power grid distribution and the engineering data of the predetermined regional power engineering design are obtained, which mainly include: terrain, geomorphology and geological space data of the power grid distribution.
  • the invention firstly proposes and adopts the "feature point correction partition layer splicing method" to improve the accuracy of raster image projection to geospatial. For the first time, large-scale geological map scanning was carried out.
  • the corresponding scan map partitions were hierarchically projected into the power geographic information space, which improved the projection accuracy and satisfied the early stage of the project.
  • the requirements effectively solve the digital fusion of various paper drawings accumulated over the years, including paper geological maps of different time, different dry humidity and different scales, so that they can be accurately superimposed with geological, geographical and grid vector data.
  • integration Meet the requirements for the use of geological information at all stages of planning, design, construction, operation, and maintenance.
  • the core of the "feature point correction partition layering method” is "buffer analysis algorithm based on grid and vector combination”.
  • the popular buffer analysis algorithms at this stage mainly include “vector-based buffer analysis algorithm” and "raster-based buffer algorithm”.
  • the basic idea of the "vector-based buffer analysis algorithm" is the parallel line method. For a point target, draw a circle at that point. For the linear target, two parallel lines are generated on the two sides of the axis by the buffer distance R, and two semi-arcs are generated at both ends of the axis. Perform a two-two intersection between all the boundary segments of all buffers, and generate all possible polygons based on the result of the intersection. For a planar target, it is only a special case of a linear target. The advantages of this algorithm are: fast speed and small amount of data. Disadvantages: The amount of calculation is large, and a large number of generated polygons may be discarded at the end, which is inefficient and complicated in algorithm. There are many correction procedures and it is easy to make mistakes.
  • the basic idea of the "grid-based buffer algorithm" is the diffusion method. For a point target, draw a circle at that point. For a linear target, open an array of raster data, assign all its members to zero, and after generating the buffer according to the buffer distance, assign each raster value in the buffer to 1, and finally to the filled The buffer boundary is extracted to generate a buffer boundary. For a planar target, it is only a special case of a linear target.
  • the advantages of this algorithmic approach are: The algorithm is simple and easy to implement, and special cases such as self-intersection algorithms are easy to solve. The disadvantages are: large amount of data, low precision, large deformation of the buffer, easy to produce "hairy", etc., the quality of the graphics is not high.
  • Buffer analysis algorithm based on grid and vector the two algorithms are complemented by length, forming a more reasonable buffer analysis algorithm.
  • the basic idea of the buffer analysis algorithm is to convert the vector data of the buffer. To raster data, use the grid method to generate the raster buffer boundary, and then scan the raster boundary of the buffer separately. During the scanning process, extract the vector data of the buffer boundary on the scan line, that is, extract all the components. The necessary line segments of the last buffer polygon, and then they are intersected (multiple buffers intersect or self-intersect), so that all mathematical operations are necessary, valid, and vector-based algorithms, the results are also accurate.
  • the multi-dimensional space-time power engineering geological information acquiring device mainly comprises: a feature point acquiring module, which is used for acquiring geological data of the power distribution of the predetermined area and engineering data of the electric engineering design of the predetermined area.
  • the model superposition module is used for superimposing the coordinates of the geological data and the coordinates of the engineering data to obtain a multi-dimensional space-time geological information model of the electric power engineering.
  • the information extraction module is used to retrieve the design parameters in the multi-dimensional space-time geological information model of the power engineering, and adopts advanced search engine algorithms according to the geological feature point keywords, coordinates (latitude and longitude), buffer distance and the like.
  • the combined search of conditions can be linked with dozens of engineering sequences, and a fast retrieval database is maintained locally.
  • the retrieval data of the survey data has a higher recall rate and precision rate, so that the multidimensional space-time can be quickly retrieved.
  • Power engineering geological information is used for dynamic correction of the multi-dimensional spatial-temporal geological information model of the electric power engineering according to the change of the geological data and the engineering data.
  • FIG. 5 is a schematic diagram of a specific embodiment of a method for acquiring multi-dimensional space-time power engineering geological information according to the present invention.
  • the Beijing area is taken as an example.
  • the collected information such as the exploration report, the geological map is summarized and digitized, and then entered into the geological information database, and the planning, design, construction and operation information of the electric power engineering design are recorded into the geological information management system.
  • the above geological information base and the geological information management system are interconnected through the system platform, and information can be provided. Browsing and information retrieval services, through information retrieval, can provide more accurate data sharing for various departments/projects such as planning, design, construction and operation.
  • 6 is a system platform diagram of a method for acquiring multi-dimensional space-time power engineering geological information according to the present invention.
  • the above system platform generally adopts a three-layer architecture system, as shown in FIG.
  • the basic platform layer includes a property database for storing geological information and a GIS database for storing graphical information, and a geological digital model library constructed based on the basic data, specifically including a geological feature point business model, a function integration model, and a rights management model.
  • Application platform layer Contains application service components for managing data models and serving the business application layer, such as map display components, printout components, geological modeling components, statistical query components, layer management components, analytical computing components, Feature point management components, etc.;
  • the application platform layer also provides: interface engine, configuration engine, plug-in engine and buffer engine services.
  • Business application layer Contains various business function applications, such as management of various geological information, bottom lithology management, geological composition management, seismic activity management, spatial analysis, query statistics, design data management, printout and interface functions. It can be found that the method of the invention is beneficial to the geotechnical engineering personnel to screen and screen a large number of sporadic and scattered geological and historical data according to the actual needs of the project, and to input representative and effective multi-source geological information, which is conducive to the establishment.
  • the system is comprehensive, intuitive, and a combination of point and line data, making geological information more clear, rich in content, and concentrated in display, at a glance.
  • the multi-dimensional space-time power engineering geological information acquiring device of the present invention comprises an acquiring module, an overlapping module and a calling module.
  • the obtaining module is configured to acquire geological data of the power distribution of the predetermined area and engineering data of the electric engineering design of the predetermined area;
  • the overlapping module is configured to overlap the coordinates of the geological data and the coordinates of the engineering data to obtain a multi-dimensional electric power engineering.
  • Space-time geological information model; the acquisition module is used to retrieve the design parameters in the multi-dimensional space-time geological information model of power engineering, and obtain multi-dimensional space-time power engineering geological information.
  • the multi-dimensional space-time power engineering geological information acquiring device further comprises a modifying module, configured to dynamically modify the multi-dimensional space-time geological information model of the power engineering according to the change of the geological data and the engineering data.
  • a modifying module configured to dynamically modify the multi-dimensional space-time geological information model of the power engineering according to the change of the geological data and the engineering data.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Remote Sensing (AREA)
  • Computer Graphics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种地质信息的处理方法及装置。该地质信息的处理方法包括:获取多个地质影像图;通过地质图像的成像方式确定多个地质影像图中各个地质影像图的影像坐标和地面坐标之间的关系;以及根据多个地质影像图中各个地质影像图的影像坐标和地面坐标之间的关系将多个地质影像图连接在一起。通过本发明,能够通过地质影像处理获得大范围的地面图像。

Description

地质信息的处理方法及装置 技术领域 本发明涉及数据处理领域, 具体而言, 涉及一种地质信息的处理方法及装置。 背景技术 地质资料是电网规划、 设计、 施工、 运行、 改造的重要依据, 地质条件不仅影响 工程建设造价, 还会影响电网建设、 运行的安全。 随着地质条件及建设标准的不断变 化, 电力建设应对地质条件变化的要求不断提高, 传统的图板式、 按工程分散式管理 工程地质资料的模式越来越影响电网建设效率, 急需建立电力设施工程地质信息管理 系统, 而地质影像的处理则是反映地质条件的重要部分。 现有技术中的地质影像处理往往难以获得较大范围的地面图像, 给地质资料的获 取带来诸多的不便。 发明内容 本发明的主要目的在于提供一种地质信息的处理方法及装置, 以解决现有技术中 的地质影像处理往往难以获得较大范围的地面图像的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种地质信息的处理方法。 该地质信息的处理方法包括: 获取多个地质影像图; 通过地质图像的成像方式确定所 述多个地质影像图中各个地质影像图的影像坐标和地面坐标之间的关系; 以及根据所 述多个地质影像图中各个地质影像图的影像坐标和地面坐标之间的关系将所述多个地 质影像图连接在一起。 进一步地, 获取多个地质影像图包括: 获取多个不同时间的地质影像图。 进一步地, 根据所述多个地质影像图中各个地质影像图的影像坐标和地面坐标之 间的关系将所述多个地质影像图连接在一起包括: 对所述多个地质影像图分别进行几 何纠正处理; 以及将几何纠正处理之后的多个地质影像图连接在一起。 进一步地, 对所述多个地质影像图分别进行几何纠正处理包括: 分别获取所述多 个地质影像图的坐标; 以及按照数据图像纠正方法将所述多个地质影像图纠正到同一 的坐标系中。 进一步地, 将几何纠正处理之后的多个地质影像图连接在一起包括: 分别搜索所 述多个地质影像图的镶嵌边; 确定所述多个地质影像图的最佳镶嵌边, 其中, 所述最 佳镶嵌边为相邻两个地质影像图上亮度最接近的连线; 以及按照所述多个地质影像图 的最佳镶嵌边将所述多个地质影像图连接在一起。 进一步地, 在分别搜索所述多个地质影像图的镶嵌边之后, 所述方法还包括: 对 所述多个地质影像图的镶嵌边进行平滑处理; 以及对所述多个地质影像图进行两度和 反差调整。 进一步地, 该地质信息的处理方法还包括: 获取地质信息中的地质矢量数据; 获 取所述地质信息中的影像数据; 以及对所述地质矢量数据和所述影像数据进行空间位 置的匹配, 得到地质影像。 进一步地, 在对所述地质矢量数据和所述影像数据进行空间位置的匹配, 得到地 质影像之后, 所述方法还包括: 对所述矢量数据和所述地质影像进行叠加处理, 得到 遥感数据。 进一步地,在对所述矢量数据和所述地质影像进行叠加处理,得到遥感数据之后, 所述方法还包括: 对所述地质影像进行纠正, 包括对所述地质影像进行倾斜纠正和投 影差的纠正。 进一步地, 对所述地质影像进行纠正包括: 对于平坦地区或未能提供影像卫星轨 道参数和传感器参数的地区, 采用多项式变换的几何模型进行纠正, 其中, 采用两个 以上多余控制点进行平差计算。 进一步地, 对所述地质影像进行纠正包括: 对于地形起伏大或影像侧视角大的地 区,利用成像的卫星轨道参数和传感器参数的地区, 对所述地质影像进行物理模型纠 正。 进一步地, 对所述地质影像进行物理模型纠正包括: 恢复所述地质影像的成像模 型; 利用数字高程模型根据所述成像模型来纠正投影差; 以及利用地图三维坐标或外 业控制点三维坐标对所述地质影像进行控制纠正, 得到正射纠正地质影像。 进一步地, 所述方法还包括: 接收用户输入的查询关键词; 以及采用搜索引擎算 法并基于所述关键词对勘察数据进行快速检索。 进一步地, 上述方法还包括: S2: 采集第一图像数据, 并选择第一图像上的第一 区域的特征点群; S4: 对特征点群中的每一个特征点进行校正, 形成第二区域; 以及 S6: 将第二区域拼接到第二图像上对应第一区域的位置上。 进一步地, 步骤 S4包括: S41 : 计算每一个特征点的最小均方差; 以及 S43 : 根 据最小均方差对每一个特征点进行校正, 进一步地, 步骤 S41中最小均方差的计算方 法为: 对每一个特征点的基点坐标通过刚性变换获取每一特征点的最小均方差, 最小均 方差采用的公式为:
Figure imgf000005_0001
v min Ε π(ν 其中, , ^ '为特征点的基点坐标; F 为最小均方误差; )为刚性变换, 即一幅图像中任意两点间的距离在变换前后保持不变, 或者, 步骤 S41中最小均方差的计算方法为: 对每一个特征点的基点坐标通过旋转变换 获取每一特征点的最小均方差, 最小均方差采用的公式为
Figure imgf000005_0002
; v min E Ώίν、 其中, , ^ '为特征点的基点坐标; F 为最小均方误差; 为旋转变换, 即让每一点 Ρ绕一固定点旋转一个定角,变成另一点 Ρ',如此产生的变换称为平面上的 旋转变换; 为平移变换, 即图像之间沿 x, y方向上的平移量。 进一步地,步骤 S6中将第二区域拼接到第二图像上的方法为:将第二区域投影到 第二图像上对应第一区域的位置上; 或将第二区域叠加到第二图像上对应第一区域的 位置上。 为了实现上述目的, 根据本发明的另一方面, 提供了一种地质信息的处理装置。 该地质信息的处理装置包括: 获取单元, 用于获取多个地质影像图; 确定单元, 用于 通过地质图像的成像方式确定所述多个地质影像图中各个地质影像图的影像坐标和地 面坐标之间的关系; 以及合成单元, 用于根据所述多个地质影像图中各个地质影像图 的影像坐标和地面坐标之间的关系将所述多个地质影像图连接在一起。 进一步地, 所述合成模块包括: 纠正模块, 用于对所述多个地质影像图分别进行 几何纠正处理; 以及合成模块, 用于将几何纠正处理之后的多个地质影像图连接在一 起。 进一步地, 所述纠正模块包括: 获取子模块, 用于分别获取所述多个地质影像图 的坐标; 以及纠正子模块, 用于按照数据图像纠正方法将所述多个地质影像图纠正到 同一的坐标系中。 进一步地, 所述合成模块包括: 搜索子模块, 用于分别搜索所述多个地质影像图 的镶嵌边; 确定子模块, 用于确定所述多个地质影像图的最佳镶嵌边, 其中, 所述最 佳镶嵌边为相邻两个地质影像图上亮度最接近的连线; 以及合成子模块, 用于按照所 述多个地质影像图的最佳镶嵌边将所述多个地质影像图连接在一起。 进一步地, 上述方法还包括: 获取预定区域的电网分布的地质数据和预定区域的 电力工程设计的工程数据;将地质数据的坐标与工程数据的坐标进行空间位置的重叠, 得到多维空间-时间电力工程地质信息模型; 以及通过调取多维空间-时间电力工程地 质信息模型中的设计参数, 获取多维空间 -时间电力工程地质信息。 进一步地, 获取预定区域的电网分布的地质数据和预定区域的电力工程设计的工 程数据包括: 根据电网分布的空间位置, 分别获取电网分布的地形、 地貌、 地质空间 资料。 进一步地, 获取预定区域的电网分布的地质数据和预定区域的电力工程设计的工 程数据还包括: 以电力工程设计为对象, 分别获取电力工程设计的规划、 实施、 运行 及改造的时间。 进一步地, 在将地质数据的坐标与工程数据的坐标进行空间位置的重叠, 得到电 力工程多维空间 -时间地质信息模型之后, 电力工程地质信息获取方法还包括: 根据地 质数据与工程数据的变化, 动态修改电力工程多维空间-时间地质信息模型。 通过本发明, 采用获取多个地质影像图; 通过地质图像的成像方式确定所述多个 地质影像图中各个地质影像图的影像坐标和地面坐标之间的关系; 以及根据所述多个 地质影像图中各个地质影像图的影像坐标和地面坐标之间的关系将所述多个地质影像 图连接在一起, 解决了现有技术中的地质影像处理往往难以获得较大范围的地面图像 的问题, 进而达到了能够通过地质影像处理获得较大范围的地面图像的效果。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据本发明第一实施例的地质信息的处理装置的示意图; 图 2是根据本发明第一优选实施例的地质信息的处理装置的示意图; 图 3是根据本发明实施例的地质信息的处理装置中合成单元的示意图; 图 4是根据本发明第一实施例的地质信息的处理方法的流程图; 图 5是根据本发明实施例的地质影像的处理流程示意图; 图 6是根据本发明实施例的地质影像的处理系统的示意框图; 图 7是根据本发明实施例的权限管理模型示意图; 图 8是根据本发明第二实施例的地质信息的处理装置的示意图; 图 9是根据本发明第二优选实施例的地质信息的处理装置的示意图; 图 10是根据本发明第三优选实施例的地质信息的处理装置的示意图; 图 11是根据本发明第二实施例的地质信息的处理方法的流程图; 图 12是根据本发明实施例多维空间-时间电力工程地质信息获取方法的流程图; 图 13是本发明多维空间-时间电力工程地质信息获取方法的具体实施例的示意图; 图 14是根据本发明实施例的特征点校正分区拼接方法的具体拼接示意图; 以及 图 15是根据本发明实施例的特征点校正分区拼接装置的结构示意图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 图 1是根据本发明第一实施例的地质信息的处理装置的示意图。 如图 1所示, 该地质信息的处理装置包括获取单元 10、 确定单元 20和合成单元
30。 获取单元 10用于获取多个地质影像图。 确定单元 20 用于通过地质图像的成像方式确定多个地质影像图中各个地质影像 图的影像坐标和地面坐标之间的关系。 合成单元 30 用于根据多个地质影像图中各个地质影像图的影像坐标和地面坐标 之间的关系将多个地质影像图连接在一起。 在上述地质信息的处理装置中,通过获取单元 10获取多个地质影像图,确定单元 20 通过地质图像的成像方式确定多个地质影像图中各个地质影像图的影像坐标和地 面坐标之间的关系,以及合成单元 30根据多个地质影像图中各个地质影像图的影像坐 标和地面坐标之间的关系将多个地质影像图连接在一起, 解决了现有技术中的地质影 像处理往往难以获得较大范围的地面图像的问题, 进而达到了能够通过地质影像处理 获得较大范围的地面图像的效果。 图 2是根据本发明第一优选实施例的地质信息的处理装置的示意图。 如图 2所示, 该地质信息的处理装置包括获取单元 10、 确定单元 20和合成单元 30, 其中, 合成单元 30包括纠正模块 301和合成模块 302。 获取单元 10和确定单元 20的作用与上述实施例相同。 纠正模块 301用于对多个地质影像图分别进行几何纠正处理。 数字图像纠正处理: 根据地质图像的成像方式确定影像坐标和地面坐标之间的数 学模型。 根据所采用的数字模型确定纠正公式。 根据地面控制点和对应像点坐标进行 平差计算变换参数, 评定精度, 同时对原始影像进行几何变换计算, 像素亮度值重采 样。 合成模块 302用于将几何纠正处理之后的多个地质影像图连接在一起。 图 3是根据本发明实施例的地质信息的处理装置中合成单元的示意图。 如图 3所示, 作为该实施例的优选实施例之一, 该地质信息的处理装置包括获取 单元 10、确定单元 20和合成单元 30, 其中, 合成单元 30包括纠正模块 301和合成模 块 302, 纠正模块 301包括获取子模块 3011和纠正子模块 3012。 获取子模块 3011用于分别获取多个地质影像图的坐标。 纠正子模块 3012 用于按照数据图像纠正方法将多个地质影像图纠正到同一的坐 标系中。 作为该实施例的优选实施例之二, 合成模块 302包括搜索子模块 3021、 确定子模 块 3022和合成子模块 3023。 搜索子模块 3021用于分别搜索多个地质影像图的镶嵌边。 确定子模块 3022用于确定多个地质影像图的最佳镶嵌边,其中,最佳镶嵌边为相 邻两个地质影像图上亮度最接近的连线。 合成子模块 3023 用于按照多个地质影像图的最佳镶嵌边将多个地质影像图连接 在一起。 数字图像镶嵌: 将不同的图像文件合在一起形成一幅完整的包含感兴趣区域的图 像, 这就是图像的镶嵌。 通过镶嵌处理, 可以获得更大范围的地面图像。 参与镶嵌的 图像可以是不同时间的, 但要求镶嵌的图像之间要有一定的重叠度。 数字图像镶嵌的关键: 因为我们各种地质影像资料, 它的几何变形是不同的。 为 解决多幅数据图像的拼接, 实质就是几何纠正, 按照数据图像精纠正方法将所有参加 镶嵌的图像纠正到统一的坐标系中。 去掉重叠部分后将多幅图像拼接起来形成一幅更 大幅面的图像。 二是如何保证拼接后的图像反差一致, 色调相近, 没有明显接缝。 对 于几何纠正其过程如下: 图像的几何纠正; 搜索镶嵌边。 先取图像重叠区的 1/2为镶嵌边; 然后搜索最佳 镶嵌边, 即该边为左右图像上亮度值最接近的连线。 亮度和反差调整: 平滑边界线: 经过上述调整, 两幅图像色调和反差已趋近, 但 仍有拼缝, 必须进行边界线平滑。 图 4是根据本发明第一实施例的地质信息的处理方法的流程图。。 如图 4所示, 该地质信息的处理方法包括: 步骤 S602, 获取多个地质影像图; 步骤 S604,通过地质图像的成像方式确定多个地质影像图中各个地质影像图的影 像坐标和地面坐标之间的关系; 以及 步骤 S606,根据多个地质影像图中各个地质影像图的影像坐标和地面坐标之间的 关系将多个地质影像图连接在一起。 优选地, 获取多个地质影像图包括: 获取多个不同时间的地质影像图。 优选地, 根据多个地质影像图中各个地质影像图的影像坐标和地面坐标之间的关 系将多个地质影像图连接在一起包括: 对多个地质影像图分别进行几何纠正处理; 以 及将几何纠正处理之后的多个地质影像图连接在一起。 优选地, 对多个地质影像图分别进行几何纠正处理包括: 分别获取多个地质影像 图的坐标; 以及按照数据图像纠正方法将多个地质影像图纠正到同一的坐标系中。 优选地, 将几何纠正处理之后的多个地质影像图连接在一起包括: 分别搜索多个 地质影像图的镶嵌边; 确定多个地质影像图的最佳镶嵌边, 其中, 最佳镶嵌边为相邻 两个地质影像图上亮度最接近的连线; 以及按照多个地质影像图的最佳镶嵌边将多个 地质影像图连接在一起。 优选地, 在分别搜索多个地质影像图的镶嵌边之后, 该方法还包括: 对多个地质 影像图的镶嵌边进行平滑处理; 以及对多个地质影像图进行两度和反差调整。 为了加强电网规划设计环节的科学管理, 本发明实施例创造性地提出"多维空间- 时间电力工程地质信息模型", 使用"电网、 地貌、 地质、 时间"多维信息结构来综合表 述电网建设地质环境, 将电网及地表空间的地形影像图与地下的各类等值图及构造图 等资料按地理空间位置整合, 并按照变电站、 架空线、 电缆隧道等电力设施的各关键 时间节点 (选址选线、 规划设计、 施工运行)设计资料相耦合, 形成独创的多维空间- 时间电力设施工程地质信息模型, 支持电力设施工程地质信息全寿命管理。 以北京地质图为例, 以空间位置为主轴建立"多维空间 -时间电力工程地质信息模 型", 并采用 "特征点校正分区拼接法"将大幅面的"北京地质图"等图系分区扫描, 通过 选择相关多个电力工程已有坐标为特征点群, 将对应的扫描图分区分层投影到北京电 力地理信息空间中,提高光栅图形与地理空间的叠加精度,将电网分布与相应的地貌、 地质空间资料相关联, 以电力工程设计为对象, 按规划、 初设、 施设、 运行、 改造为 时间节点, 动态管理地质与电力工程信息。 本项目以 GIS技术为支撑, 以现有数据、 资料和成果的收集、 整理、 分析、 综合 为根本, 以电网规划设计业务需求为导向, 以地质信息的数字化、一体化管理为目标, 综合利用 GIS技术、 计算机网络技术、 现代数据库技术、 系统集成技术, 建立专业化 的电力地质信息管理系统。 资料成果的综合和二次开发为本专题主线贯穿于本次工作 的全过程, 以"边建设, 边应用, 边服务, 边完善 "为原则。
1 系统平台搭建 1.1 系统设计原则 系统设计遵循先进性、 前瞻性、 专业性、 开放性的技术原则。 先进性方面,该产品采用当前最先进、最成熟的平台开发。 GIS平台采用美国 ESRI 公司的 ArcGIS 平台, 并且已全面调整到最成熟的 9.2 版本上, 数据库采用 ORACLE 10G, 系统设计采用 CS三层架构。 前瞻性方面, 该产品在设计上总结了电力行业地理信息系统建设的成功经验, 做 好充分的设计预留, 以适应未来电网规划设计信息系统建设的大趋势。 专业性方面, 根据电网规划设计工作对地质要求的实际特点, 分析地质数据特征 点, 抽象相关业务模型, 提供地质资料查询与管理、 各种地质专题图制作和输出等应 用。 开放性方面, 该产品提供标准的数据、功能集成接口, 以便实现与图档管理系统、 生产管理等其他系统集成。
1.2 系统架构设计 如图 6所述, 从总体上看, 系统采用了三层架构体系, 包括: 业务应用层、 应用 系统平台层和基础平台层。 基础平台层: 包含存储地质信息的属性数据库和存储图形信息的 GIS数据库, 以 及依据基础数据构建的地质数字化模型库。 应用系统平台层: 包含用于管理数据模型并为业务应用层提供服务的应用服务组 件, 例如地图显示组件、 打印输出组件、 地质建模组件等。 业务应用层: 包含各类业务功能应用, 例如各种地质信息的管理、 查询统计、 分 析计算以及与其它信息系统间的数据接口。 1.3 系统安全性设计
1.3.1 数据结构安全设计 系统遵循国家电网公司的分区、 分域、 分级的网络与信息安全总体防护策略, 结 合公司的数据安全要求, 制定系统内各类数据结构以及相应的存储、 应用、 共享等安 全设计。 1.3.2 系统访问安全设计 在客户端 /服务器应用模式(Client/Server)下, GIS系统基于个人用户名、 口令的 IN/OUT 信息管理方式, 结合数据库内部安全机制, 配置多层次、 多级信息加密的数 据安全结构。
1.3.3 权限控制设计 系统采用与组织机构管理相结合的安全管理功能,采用了基于用户名 /密码的身份 认证方式和基于角色的访问控制机制来解决广域网内部的安全管理问题。 其基本的安 全管理原则是: 以责定岗、 以岗定人, 建立基于 LDAP协议下的安全管理机制, 将系 统权限管理与公司内整体信息安全管理整合。 具体权限管理模型如图 7所示。 2.3.4 日志管理设计 系统在正常运行中自动创建系统数据管理日志, 日志中记录用户登录、 对数据访 问、 编辑等操作信息, 通过检查系统数据管理日志可以有助于跟踪登录用户的操作。
1.4 系统功能设计
1.4.1 空间分析 缓冲区分析: 系统能够分析出工程所在位置处给定缓冲半径内的地质情况。 系统 提供圆形、 矩形、 多边形选择工具, 可以使用这些工具在图上拖动选定一个范围, 则 该范围的图上对象对应的信息将显示出来, 同时, 可以进一步采用缓冲区进行统计查 询。 等值面分析: 根据地质条件、 相关参数、 临界数值等信息, 系统自动形成业务应 用所需的地质条件等值面, 以辅助规划设计的选站选址工作。 1.4.2 信息检索与浏览 针对工程实际需求进行了系统开发设计, 实现了对地质信息全序列、 多功能、 数 字化的检索浏览功能。 系统可根据地质特征点关键字模糊检索、 坐标 (经纬度) 精确定位、 缓冲区距离 等检索方式, 并提供了各条件的组合检索, 同时可以与数十个工程序列进行联动查询, 极大地方便了实际工程、 科研的应用。
1.4.3 图形打印与输出 系统提供方便的图形打印功能, 可将选定范围内的图形按照纸张、 比例等条件, 进行单幅或者多幅连续打印输出。 系统同时能够将各种地质专题图中的数据进行数字化输出。 在输出时, 保证数据 的坐标信息准确、 图层划分清晰、 数据内容无误, 支持对 AutoCAD格式、 SHP、 图片 等格式的输出。
2. 资料收集与整理 2.1 资料收集 全面收集已有的工程地质资料, 并加以归纳、 整理、 分析、 总结, 形成一套能为 本项目服务的、 系统的背景资料。
2.1.1 区域基础地质资料 本项目收集的基础地质资料涵盖了基础地质、 工程地质、 地震地质、 水文地质等 各个相关领域, 主要包括以下内容:
① 《北京市区域地质志》 ② 《北京地区构造体系图》; ③ 《北京市活动构造图》;
④ 《北京市地质图》;
⑤ 《北京市水文地质图》;
⑥ 《北京平原区建设用地地质灾害评估范围图》; ⑦ 《北京市平原区古河道分布图》;
⑧ 《北京地震液化分区图》;
⑨ 《北京平原区第四系覆盖层等厚线图》;
⑩ 《北京地区设计基本地震加速度分区图》 等。 2.1.2 工程勘察资料 从上世纪 90年代初到现在, 北京城市发展正处于高峰期, 兴建了大量民用建筑、 公用建筑、 公共设施, 在此期间作了大量的岩土工程勘察、 岩土工程施工、 地质灾害 危险性评估、 环境地质评价等工作。 本次从点、 线、 面三个方面进行收集, 包括单孔 资料、 有关成果报告等, 其中主要包括电力工程、 民用建筑、 公用建筑、 城市地铁、 公路桥梁等项目勘察报告, 地质灾害危险性评估报告等, 通过全方位的资料收集, 基 本可以满足本项目资料要求。
3.2 资料整合与整理
3.2.1 区域基础地质图系整合 本项目需要克服行业及企业间数字壁垒,使用公开出版资料丰富电力工程地质信 息资料,需要使用大型图纸扫描,需要满足工程前期要求的精度要求,由于纸图的精度受 到印刷设备的精度影响, 受到档案存放方式的影响, 受到扫描现场的湿度、 温度、 扫 描设备精度的影响, 尺寸越大的图形, 精度偏差越大, 为了提高精度, 满足前期工作 的基本要求, 本项目首次创新性地采用"特征点校正分区拼接法" 将大幅面的"北京地 质图"等图系分区扫描, 通过选择相关多个电力工程已有坐标为特征点群, 将对应的扫 描图分区分层投影到北京电力地理信息空间中, 提高电力工程地质关注区域的光栅图 形与地理空间的叠加精度, 形成基础地质图系模块。 系统通过将地质矢量数据与影像 数据进行空间位置的匹配, 实现地质数据及地理空间矢量数据的叠加管理, 可以结合 电网及地理矢量更有效的利用地质综合信息; 同时, 遥感影像能更直观的反映地貌, 满足了工程前期要求。 首次将大幅面的"北京地质图"等图系分区扫描, 通过选择相关 多个电力工程已有坐标为特征点群, 将对应的扫描图分区分层投影到北京电力地理信 息空间中,
3.2.2 工程勘察资料整理 本次工作, 主要从如下 5个方面进行资料的分析、整理, 并与 GIS背景数据叠加, 形成勘察项目数据模块。
① 基本信息: 来源资料名称、 坐标 (经纬度)、 施工地点、 孔深、 地下水位埋深 等.
② 分层信息: 地层成因、 地层描述, 层底埋深, 地基承载力; ③ 抗震设计条件: 地震影响基本参数、 场地类别、 地震液化;
④ 土工试验资料;
⑤ 原位测试资料等。 图 8是根据本发明第二实施例的地质信息的处理装置的示意图。 该实施例中的特 征可以与前述第一实施例中的特征相结合。 如图 8所示, 该地质信息的处理装置包括第一获取单元 110、 第二获取单元 210 和匹配单元 310。 第一获取单元 110用于获取地质信息中的地质矢量数据。 第二获取单元 210用于获取地质信息中的影像数据。 匹配单元 310用于对地质矢量数据和影像数据进行空间位置的匹配, 得到地质影 像。 在上述的地质信息的处理装置中, 通过第一获取单元 110获取地质信息中的地质 矢量数据, 第二获取单元 210获取地质信息中的影像数据, 以及匹配单元 310对地质 矢量数据和影像数据进行空间位置的匹配, 得到地质影像, 解决了现有技术中的对地 质影像和地质矢量分别进行管理, 难以直观地反映空间状况的问题, 进而达到了更直 观地反映空间状况的效果。 本发明实施例的系统可以采用功能强大、 稳定的 AcrGIS 平台作为二次开发的组 件来进行电力工程地质信息的综合表达。 系统通过将地质矢量数据与影像数据进行空间位置的匹配, 实现遥感数据及矢量 数据的叠加管理, 可以结合矢量更有效的查看及利用地质综合信息; 同时, 遥感影像 能更直观的反映空间状况, 有利于矢量数据的管理及分析, 进而地质矢量和影像的无 缝集成和一体化管理。
ArcGIS平台可以采用美国 ESRI公司的 GIS平台研发经验, 该平台是一套全面引 入 COM技术、 分布式数据库的概念、 多层体系结构、 全面开放的技术、 面向对象技 术、 WEB技术、 JAVA技术等 IT主流技术, 并遵循国际通用标准, 具有统一、 严整、 完备、 可伸缩集成体系结构的全系列 GIS软件平台, 其灵活、 可扩展的 C/S与 B/S结 合的体系结构, 为用户多层次的应用需求提供了更加完善、 更加开放、 可扩展性更强 的解决方案。 系统提供对地质影像数据的几何模型和物理模型的自动纠正, 通过对地质影像进 行倾斜纠正和投影差的改正, 纠正了因传感器误差及地形起伏而引起的像点位移的地 质影像。 系统针对于平坦地区或未能提供影像卫星轨道参数、 传感器参数地区, 采用多项 式变换的几何模型进行纠正,实际作业中至少应有 2个以上多余控制点以便平差计算, 并有若干检查点。 系统针对于地形起伏大或影像侧视角大的地区,利用成像的卫星轨道参数、传感器 参数及 DEM,对地质影像进行严密的物理模型纠正。纠正时首先恢复影像的成像模型, 然后利用数字高程模型根据成像模型来纠正投影差, 利用现有的地图三维坐标或外业 控制点三维坐标对影像进行控制纠正, 最后得到正射纠正地质影像。 系统实现对勘察数据的快速智能搜索, 采用先进的搜索引擎算法, 基于用户输入 的查询关键词检索型的进行搜索, 在本地维护一个快速检索数据库, 使用户检索更加 智能化、 个性化, 并在此基础上力求使用户在检索勘察数据时具备更高的查全率与查 准率, 更全面的检索功能。 图 9是根据本发明第二优选实施例的地质信息的处理装置的示意图。 如图 9所示, 该地质信息的处理装置除了包括第一获取单元 110、 第二获取单元 210和匹配单元 310之外, 还包括纠正单元 410。 第一获取单元 110用于获取地质信息中的地质矢量数据。 第二获取单元 210用于获取地质信息中的影像数据。 匹配单元 310用于对地质矢量数据和影像数据进行空间位置的匹配, 得到地质影 像。 纠正单元 410用于对地质影像进行纠正, 包括对地质影像进行倾斜纠正和投影差 的纠正。 图 10是根据本发明第三优选实施例的地质信息的处理装置的示意图。 优选地, 纠正单元 410包括: 恢复模块 401, 用于恢复地质影像的成像模型; 第 一纠正模块 402, 用于利用数字高程模型根据成像模型来纠正投影差; 以及第二纠正 模块 403, 利用地图三维坐标或外业控制点三维坐标对地质影像进行控制纠正, 得到 正射纠正地质影像。 图 11是根据本发明实施例的地质信息的处理方法的流程图。 如图 11所示, 该地质信息的处理方法包括: 步骤 S802, 获取地质信息中的地质矢量数据。 步骤 S804, 获取地质信息中的影像数据。 步骤 S806, 对地质矢量数据和影像数据进行空间位置的匹配, 得到地质影像。 优选地,在对地质矢量数据和影像数据进行空间位置的匹配,得到地质影像之后, 该方法还包括: 对矢量数据和地质影像进行叠加处理, 得到遥感数据。 优选地, 在对矢量数据和所述地质影像进行叠加处理, 得到遥感数据之后, 该方 法还包括: 对地质影像进行纠正, 包括对地质影像进行倾斜纠正和投影差的纠正。 优选地, 对地质影像进行纠正包括: 对于平坦地区或未能提供影像卫星轨道参数 和传感器参数的地区, 采用多项式变换的几何模型进行纠正, 其中, 采用两个以上多 余控制点进行平差计算。 优选地, 对地质影像进行纠正包括: 对于地形起伏大或影像侧视角大的地区,利用 成像的卫星轨道参数和传感器参数的地区, 对地质影像进行物理模型纠正。 优选地, 对地质影像进行物理模型纠正包括: 恢复地质影像的成像模型; 利用数 字高程模型根据成像模型来纠正投影差; 以及利用地图三维坐标或外业控制点三维坐 标对地质影像进行控制纠正, 得到正射纠正地质影像。 优选地, 该方法还包括: 接收用户输入的查询关键词; 以及采用搜索引擎算法并 基于所述关键词对勘察数据进行快速检索。 为了加强电网规划设计环节的科学管理, 本发明实施例创造性地提出"多维空间- 时间电力工程地质信息模型", 使用"电网、 地貌、 地质、 时间"多维信息结构来综合表 述电网建设地质环境, 将电网及地表空间的地形影像图与地下的各类等值图及构造图 等资料按地理空间位置整合, 并按照变电站、 架空线、 电缆隧道等电力设施的各关键 时间节点 (选址选线、 规划设计、 施工运行)设计资料相耦合, 形成独创的多维空间- 时间电力设施工程地质信息模型, 支持电力设施工程地质信息全寿命管理。 以北京地质图为例, 以空间位置为主轴建立"多维空间 -时间电力工程地质信息模 型", 并采用 "特征点校正分区拼接法"将大幅面的"北京地质图"等图系分区扫描, 通过 选择相关多个电力工程已有坐标为特征点群, 将对应的扫描图分区分层投影到北京电 力地理信息空间中,提高光栅图形与地理空间的叠加精度,将电网分布与相应的地貌、 地质空间资料相关联, 以电力工程设计为对象, 按规划、 初设、 施设、 运行、 改造为 时间节点, 动态管理地质与电力工程信息。 本项目以 GIS技术为支撑, 以现有数据、 资料和成果的收集、 整理、 分析、 综合 为根本, 以电网规划设计业务需求为导向, 以地质信息的数字化、一体化管理为目标, 综合利用 GIS技术、 计算机网络技术、 现代数据库技术、 系统集成技术, 建立专业化 的电力地质信息管理系统。 资料成果的综合和二次开发为本专题主线贯穿于本次工作 的全过程, 以"边建设, 边应用, 边服务, 边完善 "为原则。 如图 13、 14所示, 根据本发明实施例的特征点校正分区拼接方法包括: S2: 采集 第一图像数据, 并选择第一图像上的第一区域的特征点群; S4: 对特征点群中的每一 个特征点进行校正, 形成第二区域; 以及 S6: 将第二区域拼接到第二图像上对应第一 区域的位置上。 通过本实施例的技术方案, 特征点校正分区拼接可以实现图纸误差由百米级降到 米级。 具体地, 采特征点校正分区拼接方法将大幅面的"北京地质图"等图系分区扫描, 通过选择相关多个电力工程已有坐标为特征点群, 将对应的扫描图分区分层投影到北 京电力地理信息空间中, 提高光栅图形与地理空间的叠加精度, 将电网分布与相应的 地貌、 地质空间资料相关联, 以电力工程设计为对象, 按规划、 初设、 施设、 运行、 改造为时间节点, 动态管理地质与电力工程信息。 优选地, 步骤 S4包括: S41 : 计算每一个特征点的最小均方差; 以及 S43 : 根据 最小均方差对每一个特征点进行校正。 可选地, 步骤 S41中最小均方差的计算方法为: 对每一个特征点的基点坐标通过 刚性变换获取每一特征点的最小均方差, 最小均方差采用的公式为:
Figure imgf000019_0001
111111 ? Yv、
其中, , ^ '为特征点的基点坐标; F 为最小均方误差; ' )为刚性变换, 即一幅图像中任意两点间的距离在变换前后保持不变。 上述算法为代价函数,采用传统的方法应用迭代法,这种方法的时间开销比较大, 并且需要较多的配准点。 优选地, 步骤 S41中最小均方差的计算方法为: 对每一个特征点的基点坐标通过 旋转变换获取每一特征点的最小均方差, 最小均方差采用的公式为:
Ώί^ \
其中, , ^ '为特征点的基点坐标; F 为最小均方误差; 为旋转变换, 即让每一点 Ρ绕一固定点旋转一个定角,变成另一点 Ρ',如此产生的变换称为平面上的 旋转变换; 为平移变换, 即图像之间沿 x, y方向上的平移量。 上述算法为基于奇异值分解 (SVD)的最小二乘算法。 此算法只需较少的配准点就 能快速计算出旋转变换矩阵并同时算出平移矢量, 然后对此式进行最小化, 得到最小 均方误差。 通过本实施例的技术方案, 使大型图纸扫描,能够满足工程前期要求的精度要求, 由于纸图的精度受到印刷设备的精度影响, 受到档案存放方式的影响, 受到扫描现场 的湿度、 温度、 扫描设备精度的影响, 尺寸越大的图形, 精度偏差越大, 为了提高精 度, 满足前期工作的基本要求, 通过对预定区域的特征点群进行校正后叠加到相应的 位置上。 根据本发明的另一方面, 提供了一种特征点校正分区拼接装置。 如图 15所示, 本发明的特征点校正分区拼接装置包括: 采集模块 200, 用于采集 第一图像数据, 并选择第一图像上的第一区域的特征点群; 校正模块 400, 用于对特 征点群中的每一个特征点进行校正, 形成第二区域; 以及拼接模块 600, 用于将第二 区域拼接到第二图像上对应第一区域的位置上。 优选地, 校正模块 400包括: 计算模块 , 用于计算每一个特征点的最小均方差; 以及校正子模块, 用于根据最小均方差对每一个特征点进行校正。 优选地, 计算模块包括: 刚性变换模块 , 用于对每一个特征点的基点坐标通过刚 性变换获取每一特征点的最小均方差。 优选地, 计算模块包括: 旋转变换模块, 用于对每一个特征点的基点坐标通过旋 转变换获取每一特征点的最小均方差。 优选地, 拼接模块 600包括: 投影模块, 用于将第二区域投影到第二图像上对应 第一区域的位置上; 或叠加模块, 用于将第二区域叠加到第二图像上对应第一区域的 位置上。 图 12是根据本发明实施例多维空间-时间电力工程地质信息获取方法的流程图。 参见图 12所示, 多维空间-时间电力工程地质信息获取方法, 包括: 获取预定区 域的电网分布的地质数据和预定区域的电力工程设计的工程数据; 将地质数据的坐标 与工程数据的坐标进行空间位置的重叠, 得到多维空间-时间电力工程地质信息模型; 以及通过调取多维空间-时间电力工程地质信息模型中的设计参数, 获取多维空间-时 间电力工程地质信息。 具体的, 在选定的区域内, 以空间位置为主轴, 将电网分布情 况与电网分布所在的地形、 地貌、 地质空间资料相关联, 直观地按空间位置分区描述 电网设施周围地貌与地质条件, 一站式获取工程场区及其附近的基本工程地质、 水文 地质、 地震地质、 工程资料等信息, 如: 区域稳定性条件、 地层岩性、 地下水及地表 水条件、 场地类别、 地震液化、 地质灾害类型及分布、 土壤电阻率、 地基承载力等多 项内容; 再以电力工程设计为对象, 按规划、 初设、 施设、 运行、 改造为时间节点, 构成多维信息结构, 并根据后续的电力工程设计动态管理地质与电力工程信息。 可以看出该信息模型, 有利于可行性论证、 规划选址选线等阶段进行地质条件宏 观控制决策; 有利于岩土工程技术人员按照工程实际需要, 从大量零星、 分散的地质 历史资料中甄别、 筛选, 录入具有代表性、 有效性的多源地质信息, 有利于建立图系 全面、 直观, 点线结合的数据库, 使地质信息更加层次清晰、 内容丰富、 集中显示, 一目了然。 优选地, 获取预定区域的电网分布的地质数据和预定区域的电力工程设计的工程 数据包括: 根据电网分布的空间位置, 分别获取电网分布的地形、 地貌、 地质空间资 料。 其中, 电网分布的地形、 地貌、 地质空间资料包括: 工程地质、 水文地质、 地震 地质、 工程资料等信息, 如: 区域稳定性条件、 地层岩性、 地下水及地表水条件、 场 地类别、 地震液化、 地质灾害类型及分布、 土壤电阻率、 地基承载力等多项内容。 优选地, 获取预定区域的电网分布的地质数据和预定区域的电力工程设计的工程 数据还包括: 以电力工程设计为对象, 分别获取电力工程设计的规划、 实施、 运行及 改造的时间。 其中, 电力工程设计的规划、 实施、 运行及改造的时间包括: 变电站、 架空线、 电缆隧道等电力设施的各关键时间节点。 优选地, 在将地质数据的坐标与工程数据的坐标进行空间位置的重叠, 得到电力 工程多维空间 -时间地质信息模型之后, 电力工程地质信息获取方法还包括: 根据地质 数据与工程数据的变化, 动态修改电力工程多维空间-时间地质信息模型。 即将上述工 程地质、 水文地质、 地震地质、 工程资料等信息, 如: 区域稳定性条件、 地层岩性、 地下水及地表水条件、 场地类别、 地震液化、 地质灾害类型及分布、 土壤电阻率、 地 基承载力等多项内容与变电站、 架空线、 电缆隧道等电力设施的各关键时间节点在空 间上相耦合, 形成独创的多维空间-时间电力设施工程地质信息模型, 支持电力设施工 程地质信息全寿命管理。 作为本发明的又一实施方式,本发明实施例的多维空间 -时间电力工程地质信息获 取方法或装置可以包括以下技术方案: 第一, 多维空间-时间电力工程地质信息获取方案。 首先获取预定区域的电网分布的地质数据和预定区域的电力工程设计的工程数 据。 然后将地质数据的坐标特征点与工程数据的坐标特征点进行空间位置的叠加, 得 到多维空间-时间电力工程地质信息模型。 通过调取多维空间-时间电力工程地质信息 模型中的设计参数, 获取多维空间 -时间电力工程地质信息。 其中, 根据电网分布的空间位置, 获取预定区域电网分布的地质数据和预定区域 电力工程设计的工程数据, 主要包括: 电网分布的地形、 地貌、 地质空间资料。 以电力工程设计为对象, 获取预定区域电网分布的地质数据和预定区域电力工程 设计的工程数据, 主要包括: 电力工程设计的规划、 实施、 运行及改造的时间。 最后, 在将地质数据的坐标与工程数据的坐标进行空间位置的叠加, 得到电力工 程多维空间 -时间地质信息模型之后, 根据地质数据与工程数据的变化, 对电力工程多 维空间-时间地质信息模型进行动态修正。 其中本发明首次提出并采用 "特征点校正分区分层拼接法"提高了光栅图形投影 到地理空间的精度。 首次将大幅面的地质图系扫描, 通过选择相关多个电力工程已有 坐标为特征点群, 将对应的扫描图分区分层投影到电力地理信息空间中, 提高了投影 精度,满足了工程前期要求,有效的解决了历年积累下来的各种纸质图纸的数字融合, 包括不同时间、 不同干湿度、 不同比例尺的纸质地质图合, 使其能够精准的与地质、 地理、 电网矢量数据叠加、 融合。 满足规划、 设计、 施工、 运行、 维护等各阶段对地 质信息的使用要求。 其中 "特征点校正分区分层拼接法" 的核心是 "基于栅格与矢量相结合的缓冲区 分析算法"。 现阶段比较流行的缓冲区分析算法主要有 "基于矢量的缓冲区分析算法" 和 "基于栅格的缓冲区算法"。 其中 "基于矢量的缓冲区分析算法" 的基本思想是平行线法。 对点状目标, 在该 点画圆即可。 对线状目标在轴线两侧按缓冲距 R生成两平行线, 在轴线两端生成两个 半圆弧。 在所有缓冲区的所有边界线段间进行两两求交运算, 根据求交结果生成所有 可能的多边形。 对面状目标而言只是线状目标的特例。 这种算法的优点是: 速度快, 数据量小。 缺点: 计算量大, 生成的大量多边形最后可能被舍弃, 效率低, 算法复杂。 校正过程多, 容易出错。
"基于栅格的缓冲区算法"的基本思想是扩散法。对点状目标, 在该点画圆即可。 对线状目标, 开辟一块存入栅格数据的数组, 将其所有成员赋值为零, 按照缓冲距生 成缓冲区后,将缓冲区内的每个栅格值赋为 1,最后对填充后的缓冲区边界进行提取, 生成缓冲区边界。 对面状目标而言只是线状目标的特例。 这种算法方法的优点是: 算 法简单, 容易实现, 特殊情况如自相交算法容易解决。 缺点是: 数据量大, 精度低, 缓冲区变形大, 容易产生 "毛剌"等, 图形质量不高。 "基于栅格与矢量相结合的缓冲区分析算法",对以上两种算法取长补短, 形成一 种更为合理的缓冲区分析算法, 该缓冲区分析算法的基本思想是把缓冲区的矢量数据 转换成栅格数据, 用栅格的方法生成栅格缓冲区边界, 再对缓冲区的栅格边界分别进 行扫描, 在扫描过程中, 提取扫描线上缓冲区边界的矢量数据, 也就是提取所有构成 最后缓冲区多边形的必要线段, 然后再对它们进行求交 (多个缓冲区相交或自相交) 运算, 这样所有的数学运算都是必要 的、 有效的, 并且是基于矢量的算法, 结果也较 精确。 其一般步骤是: 先进行矢量数据的重采样; 然后将矢量数据转换为栅格数据存 入数组中; 再利用栅格缓冲区分析算法生成缓冲区区域; 然后扫描栅格缓冲区边界的 矢量数据, 并进行求交运算; 最后生成最终的缓冲区边界。 第二, 多维空间-时间电力工程地质信息获取装置, 主要包括: 特征点获取模块, 用于获取预定区域的电网分布的地质数据和预定区域的电力工 程设计的工程数据。 模型叠加模块, 用于将地质数据的坐标与工程数据的坐标进行空间位置的叠加, 得到电力工程多维空间-时间地质信息模型。 信息抽取模块, 用于调取电力工程多维空间-时间地质信息模型中的设计参数, 根 据地质特征点关键字、 坐标(经纬度)、 缓冲区距离等检索方式, 采用先进的搜索引擎 算法, 提供各条件的组合检索, 可以与数十个工程序列进行联动查询, 同时在本地维 护一个快速检索数据库, 对勘察数据的检索具备更高的查全率与查准率, 从而快速调 取多维空间 -时间电力工程地质信息。 数据纠正模块, 用于根据地质数据与工程数据的变化, 对电力工程多维空间 -时间 地质信息模型的动态修正。 与现有技术相比, 上述实施例有利于岩土工程技术人员按照工程实际需要, 从大 量零星、 分散的地质历史资料中快速甄别、 筛选, 录入具有代表性、 有效性的多源地 质信息, 建立图系全面、 直观, 点线结合的数据库, 使地质信息更加层次清晰、 内容 丰富、 集中显示, 一目了然。 图 5是在本发明多维空间-时间电力工程地质信息获取方法的具体实施例示意图。 本实施例以北京地区为例, 将收集好的资料如勘探报告, 地质图系经归纳、 数字 化后录入地质信息库, 将电力工程设计的规划、 设计、 施工和运行信息录入地质信息 管理系统, 将上述地质信息库与地质信息管理系统通过系统平台互联, 可以提供信息 浏览与信息检索服务, 通过信息检索, 可以为规划、 设计、 施工及运行等各个部门 / 项目环节提供更为准确的数据信息共享。图 6是本发明多维空间-时间电力工程地质信 息获取方法的系统平台图。 其中, 上述系统平台从总体上看, 系统采用了三层架构体系, 如图 6所示, 包括: 业务应用层、 应用系统平台层和基础平台层。 基础平台层: 包含存储地质信息的属性数据库和存储图形信息的 GIS数据库, 以 及依据基础数据构建的地质数字化模型库, 具体包括地质特征点业务模型, 功能集成 模型及权限管理模型。 应用系统平台层: 包含用于管理数据模型并为业务应用层提供服务的应用服务组 件, 例如地图显示组件、 打印输出组件、 地质建模组件、 统计查询组件, 图层管理组 件、 分析计算组件、 特征点管理组件等; 应用系统平台层同时还提供: 界面引擎、 配 置引擎、 插件引擎及缓冲引擎等服务。 业务应用层: 包含各类业务功能应用, 例如各种地质信息的管理、底层岩性管理、 地质构成管理、 地震活动管理、 空间分析、 查询统计、 设计资料管理、 打印输出及接 口功能等。 可以发现, 通过本发明的方法有利于岩土工程技术人员按照工程实际需要, 从大 量零星、 分散的地质历史资料中甄别、 筛选, 录入具有代表性、 有效性的多源地质信 息, 有利于建立图系全面、 直观, 点线结合的数据库, 使地质信息更加层次清晰、 内 容丰富、 集中显示, 一目了然。 本发明的多维空间-时间电力工程地质信息获取装置包括获取模块、重叠模块以及 调取模块。 其中, 获取模块用于获取预定区域的电网分布的地质数据和预定区域的电 力工程设计的工程数据; 重叠模块用于将地质数据的坐标与工程数据的坐标进行空间 位置的重叠, 得到电力工程多维空间-时间地质信息模型; 调取模块用于调取电力工程 多维空间-时间地质信息模型中的设计参数, 获取多维空间 -时间电力工程地质信息。 优选地, 多维空间-时间电力工程地质信息获取装置还包括修改模块, 用于根据地 质数据与工程数据的变化, 动态修改电力工程多维空间-时间地质信息模型。 需要说明的是, 本发明不同实施例中的特征可以任意相互结合。 从以上的描述中, 可以看出, 本发明实现了通过地质影像处理获得较大范围的地 面图像的效果。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路模 块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种地质信息的处理方法, 其特征在于, 包括:
获取多个地质影像图;
通过地质图像的成像方式确定所述多个地质影像图中各个地质影像图的影 像坐标和地面坐标之间的关系; 以及 根据所述多个地质影像图中各个地质影像图的影像坐标和地面坐标之间的 关系将所述多个地质影像图连接在一起。
2. 根据权利要求 1所述的地质信息的处理方法, 其特征在于,
获取多个地质影像图包括: 获取多个不同时间的地质影像图, 根据所述多个地质影像图中各个地质影像图的影像坐标和地面坐标之间的 关系将所述多个地质影像图连接在一起包括: 对所述多个地质影像图分别进行 几何纠正处理; 以及将几何纠正处理之后的多个地质影像图连接在一起。
3. 根据权利要求 2所述的地质信息的处理方法, 其特征在于, 对所述多个地质影像图分别进行几何纠正处理包括: 分别获取所述多个地 质影像图的坐标; 以及按照数据图像纠正方法将所述多个地质影像图纠正到同 一的坐标系中。
将几何纠正处理之后的多个地质影像图连接在一起包括: 分别搜索所述多 个地质影像图的镶嵌边; 确定所述多个地质影像图的最佳镶嵌边, 其中, 所述 最佳镶嵌边为相邻两个地质影像图上亮度最接近的连线; 以及按照所述多个地 质影像图的最佳镶嵌边将所述多个地质影像图连接在一起。
4. 根据权利要求 3所述的地质信息的处理方法, 其特征在于, 在分别搜索所述多 个地质影像图的镶嵌边之后, 所述方法还包括: 对所述多个地质影像图的镶嵌 边进行平滑处理; 以及对所述多个地质影像图进行两度和反差调整。
5. 根据权利要求 1所述的地质信息的处理方法, 其特征在于, 所述方法还包括: 获取地质信息中的地质矢量数据;
获取所述地质信息中的影像数据; 以及
对所述地质矢量数据和所述影像数据进行空间位置的匹配,得到地质影像。
6. 根据权利要求 5所述的地质信息的处理方法, 其特征在于, 在对所述地质矢量 数据和所述影像数据进行空间位置的匹配, 得到地质影像之后, 所述方法还包 括:
对所述矢量数据和所述地质影像进行叠加处理, 得到遥感数据; 以及 对所述地质影像进行纠正, 包括对所述地质影像进行倾斜纠正和投影差的 纠正。
7. 根据权利要求 6所述的地质信息的处理方法, 其特征在于, 对所述地质影像进 行纠正包括:
对于平坦地区或未能提供影像卫星轨道参数和传感器参数的地区, 采用多 项式变换的几何模型进行纠正,其中,采用两个以上多余控制点进行平差计算; 对于地形起伏大或影像侧视角大的地区,利用成像的卫星轨道参数和传感 器参数的地区, 对所述地质影像进行物理模型纠正。
8. 根据权利要求 7所述的地质信息的处理方法, 其特征在于, 对所述地质影像进 行物理模型纠正包括: 恢复所述地质影像的成像模型; 以及
利用数字高程模型根据所述成像模型来纠正投影差; 以及
利用地图三维坐标或外业控制点三维坐标对所述地质影像进行控制纠正, 得到正射纠正地质影像。
9. 根据权利要求 1所述的地质信息的处理方法, 其特征在于, 所述方法还包括: 接收用户输入的查询关键词; 以及
采用搜索引擎算法并基于所述关键词对勘察数据进行快速检索。
10. 根据权利要求 1所述的地质信息的处理方法, 其特征在于, 所述方法还包括: 获取预定区域的电网分布的地质数据和所述预定区域的电力工程设计的工 程数据;
将所述地质数据的坐标与所述工程数据的坐标进行空间位置的重叠, 得到 多维空间-时间电力工程地质信息模型; 以及
通过调取所述多维空间-时间电力工程地质信息模型中的设计参数,获取所 述多维空间 -时间电力工程地质信息。
11. 根据权利要求 10所述的地质信息的处理方法, 其特征在于, 所述获取预定区域的电网分布的地质数据和所述预定区域的电力工程设计 的工程数据包括: 根据所述电网分布的空间位置, 分别获取所述电网分布的地 形、 地貌、 地质空间资料; 或者, 以所述电力工程设计为对象, 分别获取所述 电力工程设计的规划、 实施、 运行及改造的时间,
在将所述地质数据的坐标与所述工程数据的坐标进行空间位置的重叠, 得 到所述电力工程多维空间 -时间地质信息模型之后,所述电力工程地质信息获取 方法还包括: 根据所述地质数据与所述工程数据的变化, 动态修改所述电力工 程多维空间-时间地质信息模型。
12. 根据权利要求 1所述的地质信息的处理方法, 其特征在于, 所述方法还包括:
S2: 采集第一图像数据, 并选择所述第一图像上的第一区域的特征点群; S4: 对所述特征点群中的每一个特征点进行校正, 形成第二区域; 以及 S6: 将所述第二区域拼接到第二图像上对应所述第一区域的位置上。
13. 根据权利要求 12所述的地质信息的处理方法,其特征在于,所述步骤 S4包括:
S41 : 计算所述每一个特征点的最小均方差; 以及 S43 : 根据所述最小均方差对 所述每一个特征点进行校正,其中,所述步骤 S41中最小均方差的计算方法为: 对所述每一个特征点的基点坐标通过刚性变换获取所述每一特征点的最小 均方差, 计算所述最小均方差采用的公式为:
Figure imgf000028_0001
其中, x,., 为特征点的基点坐标; min£为最小均方误差; (χ,.)为刚性
F
变换,
或者,
对所述每一个特征点的基点坐标通过旋转变换获取所述每一特征点的最小 均方差, 计算所述最小均方差采用的公式为: mm E ^ ll - R(x! ) - Γ||2 其中, x,., 为特征点的基点坐标; min£为最小均方误差; R(x,.)为旋转
F
变换, 即让每一点 P绕一固定点旋转一个定角,变成另一点 Ρ',如此产生的变换 称为平面上的旋转变换; 71为平移变换, 即图像之间沿 x, y方向上的平移量。
14. 根据权利要求 12所述的方法, 其特征在于, 所述步骤 S6中将所述第二区域拼 接到第二图像上的方法为:
将所述第二区域投影到所述第二图像上对应所述第一区域的位置上; 或 将所述第二区域叠加到所述第二图像上对应所述第一区域的位置上。
15. 一种地质信息的处理装置, 其特征在于, 包括:
获取单元, 用于获取多个地质影像图;
确定单元, 用于通过地质图像的成像方式确定所述多个地质影像图中各个 地质影像图的影像坐标和地面坐标之间的关系; 以及
合成单元, 用于根据所述多个地质影像图中各个地质影像图的影像坐标和 地面坐标之间的关系将所述多个地质影像图连接在一起。
16. 根据权利要求 15所述的地质信息的处理装置,其特征在于,所述合成模块包括:
纠正模块, 用于对所述多个地质影像图分别进行几何纠正处理; 以及 合成模块, 用于将几何纠正处理之后的多个地质影像图连接在一起。
17. 根据权利要求 16所述的地质信息的处理装置,其特征在于,所述纠正模块包括: 获取子模块, 用于分别获取所述多个地质影像图的坐标; 以及 纠正子模块, 用于按照数据图像纠正方法将所述多个地质影像图纠正到同 一的坐标系中。
18. 根据权利要求 15所述的地质信息的处理装置,其特征在于,所述合成模块包括:
搜索子模块, 用于分别搜索所述多个地质影像图的镶嵌边;
确定子模块, 用于确定所述多个地质影像图的最佳镶嵌边, 其中, 所述最 佳镶嵌边为相邻两个地质影像图上亮度最接近的连线; 以及
合成子模块, 用于按照所述多个地质影像图的最佳镶嵌边将所述多个地质 影像图连接在一起。
PCT/CN2012/070646 2011-05-13 2012-01-20 地质信息的处理方法及装置 WO2012155540A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12785279.6A EP2711893B1 (en) 2011-05-13 2012-01-20 Method and device for processing geological information
US14/117,405 US9256981B2 (en) 2011-05-13 2012-01-20 Method and device for processing geological information

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201110124680A CN102324060A (zh) 2011-05-13 2011-05-13 多维空间-时间电力工程地质信息获取方法及装置
CN201110124680.4 2011-05-13
CN201110201465.X 2011-07-19
CN201110201465.XA CN102324096B (zh) 2011-07-19 2011-07-19 特征点校正分区拼接方法及装置
CN2011104125500A CN103164417A (zh) 2011-12-12 2011-12-12 地质信息的处理方法及装置
CN201110412550.0 2011-12-12
CN201110412529.0 2011-12-12
CN2011104125290A CN103164849A (zh) 2011-12-12 2011-12-12 地质影像的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2012155540A1 true WO2012155540A1 (zh) 2012-11-22

Family

ID=47176190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070646 WO2012155540A1 (zh) 2011-05-13 2012-01-20 地质信息的处理方法及装置

Country Status (3)

Country Link
US (1) US9256981B2 (zh)
EP (1) EP2711893B1 (zh)
WO (1) WO2012155540A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111061897A (zh) * 2020-01-15 2020-04-24 国网江西省电力有限公司电力科学研究院 一种适于电网高分辨遥感图像多尺度自动截取与分类方法
CN111080080A (zh) * 2019-11-25 2020-04-28 桂林理工大学南宁分校 一种村镇地质灾害风险预估方法及系统
CN112330765A (zh) * 2020-11-04 2021-02-05 中国科学院西北生态环境资源研究院 海冰数据处理方法、装置、服务器及可读存储介质
CN112529982A (zh) * 2020-12-17 2021-03-19 天津泰勘工程技术咨询有限公司 一种地基土层等值线图绘制方法
CN113626541A (zh) * 2021-06-30 2021-11-09 中国煤炭地质总局勘查研究总院 第四纪智能化图件编制方法及装置
CN113989446A (zh) * 2021-08-12 2022-01-28 贵州省地质调查院(贵州省地质矿产勘查开发局地质科学研究所) 提高地质三维模型地表精度的地质界线野外复核方法
CN114004945A (zh) * 2021-11-03 2022-02-01 山东翰林科技有限公司 一种基于三维地图的数字孪生电网系统及方法
CN114428990A (zh) * 2022-01-27 2022-05-03 中铁二院工程集团有限责任公司 一种基于AutoCAD自适应曲线趋势的自动填图方法
CN115147022A (zh) * 2022-09-05 2022-10-04 中国科学院地质与地球物理研究所 一种复杂山区长大线状工程的工程地质区划方法及系统

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374009A (zh) * 2014-10-22 2016-03-02 航天恒星科技有限公司 遥感影像拼接方法及装置
KR101593616B1 (ko) * 2015-04-17 2016-02-12 한국지질자원연구원 지질의 연대 및 지질 정보 해석 장치 및 그 방법
CN106777155B (zh) * 2016-12-20 2020-10-16 黄河勘测规划设计研究院有限公司 基于电子厘米纸的地质编录方法
AU2019281866A1 (en) 2018-06-06 2021-01-07 Geoquest Systems B.V. Geological feature search engine
CN109559377B (zh) * 2018-11-19 2022-11-18 成都智库二八六一信息技术有限公司 一种利用经纬度多边形切割生成三维地图模型的方法
CN109857918B (zh) * 2018-12-11 2023-08-08 国网浙江省电力有限公司杭州供电公司 用于配电网的规划系统
CN110516022A (zh) * 2019-08-20 2019-11-29 合肥英泽信息科技有限公司 一种地质环境信息数据存储系统
CN110738133B (zh) * 2019-09-23 2023-10-27 中科禾信遥感科技(苏州)有限公司 不同农业设施图像轮廓边界识别方法和装置
CN110675072A (zh) * 2019-09-27 2020-01-10 国网上海市电力公司 一种基于bim的变电站建设过程管控方法
CN110728402B (zh) * 2019-10-10 2023-11-03 辽宁工程技术大学 一种基于地质标本分析的区域矿产资源预测系统
CN111090954A (zh) * 2019-12-17 2020-05-01 国家电网有限公司 一种地质灾害隐患判识以及分析评估并治理的方法
CN114199242A (zh) * 2020-09-17 2022-03-18 中国石油化工股份有限公司 基于地图叠加的目标勘察地层出露点导航方法及系统
CN112184703B (zh) * 2020-10-27 2023-08-01 广东技术师范大学 基于时空回溯的玉米穗期无人机图像对齐方法与系统
CN112288631A (zh) * 2020-10-27 2021-01-29 四川天艺生态园林集团股份有限公司 一种含孔洞的矢量多边形区域拼接方法
CN112762948A (zh) * 2021-01-09 2021-05-07 化学工业第一勘察设计院有限公司 一种勘察路径生成方法、装置、服务器及存储介质
CN114241064B (zh) * 2022-02-24 2022-05-17 中国科学院空天信息创新研究院 一种遥感卫星内外方位元素实时几何定标方法
CN114693281B (zh) * 2022-06-01 2022-09-02 山东志诚地理信息技术有限公司 一种基于云平台的工程勘察信息管理系统
CN114937145B (zh) * 2022-07-26 2022-09-20 北京数慧时空信息技术有限公司 基于地学信息的遥感影像特征点匹配方法
CN115272129A (zh) * 2022-08-18 2022-11-01 中国人民公安大学 遥感图像处理方法、装置、设备及存储介质
CN115203594B (zh) * 2022-09-16 2022-11-29 成都国星宇航科技股份有限公司 多时相遥感数据显示方法、装置、设备和介质
CN116341201B (zh) * 2023-02-20 2023-09-19 山东齐测工程设计咨询有限公司 一种基于地质勘察工程的测绘执行监管系统
CN117935080B (zh) * 2024-03-19 2024-06-21 国网安徽省电力有限公司经济技术研究院 基于大数据的输变电工程地质分布图绘制处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048489A (ja) * 2004-08-06 2006-02-16 Univ Of Tokyo 勢力圏図作成装置及びプログラム
CN101216555A (zh) * 2007-12-27 2008-07-09 武汉大学 Rpc模型参数提取方法和几何纠正方法
CN101887595A (zh) * 2009-05-14 2010-11-17 武汉如临其境科技创意有限公司 基于四叉树索引的三维数字地球空间数据组织渲染方法
CN102004791A (zh) * 2010-12-10 2011-04-06 深圳信息职业技术学院 一种地理信息索引系统与信息检索方法
CN102323096A (zh) * 2011-05-31 2012-01-18 东南大学 基于索力监测识别受损索松弛索支座广义位移的方法
CN102324060A (zh) * 2011-05-13 2012-01-18 北京市电力公司 多维空间-时间电力工程地质信息获取方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7660441B2 (en) * 2004-07-09 2010-02-09 Southern California, University System and method for fusing geospatial data
CN101295172B (zh) * 2008-05-12 2010-11-10 福建省电力有限公司 基于地理信息系统gis的电网综合防灾减灾系统
CN101676941A (zh) * 2008-06-13 2010-03-24 阿海珐输配电公司 用于管理来自电力公司的电力系统的选定区域的高压或低压状况的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048489A (ja) * 2004-08-06 2006-02-16 Univ Of Tokyo 勢力圏図作成装置及びプログラム
CN101216555A (zh) * 2007-12-27 2008-07-09 武汉大学 Rpc模型参数提取方法和几何纠正方法
CN101887595A (zh) * 2009-05-14 2010-11-17 武汉如临其境科技创意有限公司 基于四叉树索引的三维数字地球空间数据组织渲染方法
CN102004791A (zh) * 2010-12-10 2011-04-06 深圳信息职业技术学院 一种地理信息索引系统与信息检索方法
CN102324060A (zh) * 2011-05-13 2012-01-18 北京市电力公司 多维空间-时间电力工程地质信息获取方法及装置
CN102323096A (zh) * 2011-05-31 2012-01-18 东南大学 基于索力监测识别受损索松弛索支座广义位移的方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111080080A (zh) * 2019-11-25 2020-04-28 桂林理工大学南宁分校 一种村镇地质灾害风险预估方法及系统
CN111061897A (zh) * 2020-01-15 2020-04-24 国网江西省电力有限公司电力科学研究院 一种适于电网高分辨遥感图像多尺度自动截取与分类方法
CN111061897B (zh) * 2020-01-15 2023-06-16 国网江西省电力有限公司电力科学研究院 一种适于电网高分辨遥感图像多尺度自动截取与分类方法
CN112330765A (zh) * 2020-11-04 2021-02-05 中国科学院西北生态环境资源研究院 海冰数据处理方法、装置、服务器及可读存储介质
CN112529982A (zh) * 2020-12-17 2021-03-19 天津泰勘工程技术咨询有限公司 一种地基土层等值线图绘制方法
CN112529982B (zh) * 2020-12-17 2022-08-12 天津泰勘工程技术咨询有限公司 一种地基土层等值线图绘制方法
CN113626541A (zh) * 2021-06-30 2021-11-09 中国煤炭地质总局勘查研究总院 第四纪智能化图件编制方法及装置
CN113989446A (zh) * 2021-08-12 2022-01-28 贵州省地质调查院(贵州省地质矿产勘查开发局地质科学研究所) 提高地质三维模型地表精度的地质界线野外复核方法
CN114004945A (zh) * 2021-11-03 2022-02-01 山东翰林科技有限公司 一种基于三维地图的数字孪生电网系统及方法
CN114428990A (zh) * 2022-01-27 2022-05-03 中铁二院工程集团有限责任公司 一种基于AutoCAD自适应曲线趋势的自动填图方法
CN115147022A (zh) * 2022-09-05 2022-10-04 中国科学院地质与地球物理研究所 一种复杂山区长大线状工程的工程地质区划方法及系统
CN115147022B (zh) * 2022-09-05 2022-12-02 中国科学院地质与地球物理研究所 一种复杂山区长大线状工程的工程地质区划方法及系统

Also Published As

Publication number Publication date
EP2711893A1 (en) 2014-03-26
US9256981B2 (en) 2016-02-09
US20140233809A1 (en) 2014-08-21
EP2711893B1 (en) 2020-03-18
EP2711893A4 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2012155540A1 (zh) 地质信息的处理方法及装置
EP1709396A1 (en) System,computer program and method for 3d object measurement, modeling and mapping from single imagery
CN103164420A (zh) 地质信息的处理方法及装置
CN105005580B (zh) 一种用于显示水库地形的方法及其装置
Barton 3D laser scanning and the conservation of earthen architecture: a case study at the UNESCO World Heritage Site Merv, Turkmenistan
Kang et al. An automatic mosaicking method for building facade texture mapping using a monocular close-range image sequence
CN103164849A (zh) 地质影像的处理方法及装置
Campana et al. Landscape Archaeology in Tuscany: Cultural resource management, remotely sensed techniques, GIS based data integration and interpretation
Mateus et al. Graphical data flow based in TLS and photogrammetry for consolidation studies of historical sites. The case study of Juromenha fortress in Portugal
Bitelli et al. 4-dimensional recording and visualization of urban archeological excavations
Lo The application of geospatial technology to urban morphological research
CN116109783A (zh) 一种露天矿场三维开采规划系统及方法
Willmes et al. Internet based distribution and visualization of a 3D model of the University of Cologne Campus
CN103164417A (zh) 地质信息的处理方法及装置
Guo et al. A comparative study of large karst cave point cloud registration in various scanning modes
Yuanrong et al. Facade measurement of building along the roadway based on TLS and GIS of project supervision
Koistinen 3D Documentation for archaeology during Finnish Jabal Haroun project
Korodi et al. Cartographic analysis of some old Transylvanian geological maps from the second half of the nineteenth century
De Donatis et al. Geology from real field to 3D modeling and Google Earth virtual environments: Methods and goals from the Apennines (Furlo Gorge, Italy)
Harshavardhan Spatial Analysis and 3d Mapping Historic Landscapes—Implications of Adopting an Integrated Approach in Simulation and Visualization of Landscapes
JP2004046491A (ja) コンピュータに地図情報を管理させるプログラム
CN107067467A (zh) 基于线阵观测模型的快速三维环境构建方法及其应用方法
Timinskas et al. How to prepare engineering data and graphic systems for smart country
JP2004192092A (ja) 発電プロジェクト支援システムとその支援システムに係る計画作成方法
Pavelka et al. Combining different data sources for city growth analysis and architectural heritage mapping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14117405

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012785279

Country of ref document: EP