WO2012155314A1 - 基于固体燃料热解和半焦燃烧的分级混合发电系统及方法 - Google Patents

基于固体燃料热解和半焦燃烧的分级混合发电系统及方法 Download PDF

Info

Publication number
WO2012155314A1
WO2012155314A1 PCT/CN2011/002119 CN2011002119W WO2012155314A1 WO 2012155314 A1 WO2012155314 A1 WO 2012155314A1 CN 2011002119 W CN2011002119 W CN 2011002119W WO 2012155314 A1 WO2012155314 A1 WO 2012155314A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
gas
power generation
pyrolysis
semi
Prior art date
Application number
PCT/CN2011/002119
Other languages
English (en)
French (fr)
Inventor
宋文立
李俊峰
李静海
李松庚
姚建中
林伟刚
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Priority to DE112011100506.7T priority Critical patent/DE112011100506T8/de
Priority to AU2011349905A priority patent/AU2011349905B2/en
Priority to JP2013514534A priority patent/JP5632075B2/ja
Publication of WO2012155314A1 publication Critical patent/WO2012155314A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/04Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of powdered coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/06Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of oil shale and/or or bituminous rocks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • F05D2220/722Application in combination with a steam turbine as part of an integrated gasification combined cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to the field of coal power generation technology, in particular to a hierarchical hybrid power generation system and method based on solid fuel pyrolysis and semi-coke combustion.
  • Coal-fired power generation drives steam turbines by generating high-temperature and high-pressure steam.
  • the density of water vapor will increase to the same as liquid water, which is called the critical parameter of water; the parameter higher than this is called supercritical parameter; when the temperature and pressure are higher than 600 °C, 25 ⁇ 28MPa is called ultra-supercritical.
  • the typical parameters of the subcritical unit are 16.7MPa/538°C/538°C, and the power generation efficiency is about 38%.
  • the main steam pressure of the supercritical unit is usually about 24MPa, and the main steam and reheat steam temperature is 538 ⁇ 560°.
  • the typical parameters of the supercritical unit is 24.1MPa/538 °C/538 °C, and the corresponding power generation efficiency is about 41%;
  • the main steam pressure of the ultra-supercritical unit is 25 ⁇ 31MPa, and the main steam and reheat steam temperature are At 580 to 610 ° C, the power generation efficiency of the ultra-supercritical unit is about 45%.
  • Gas turbine combined cycle power generation uses gas or liquid fuel for gas turbine power generation. Then, the discharged high temperature flue gas is recovered by waste heat boiler and converted into steam to generate electricity into the steam turbine.
  • the gas turbine combined cycle unit utilizes two cycles of Brown and Rankine, and the power generation efficiency is close to 57 ⁇ 58%.
  • the waste heat boiler of the gas turbine combined cycle power plant emits no dust, and the sulfur dioxide is extremely small, and the nitrogen oxides are 10 to 25 ppm. When the gas turbine is dual fuel (oil and natural gas), the natural gas can be peaked.
  • the gas-steam combined cycle power plant typically consumes 1/3 of the coal-fired power generation.
  • IGCC Integrated Gasification Combined Cycle
  • IGCC is an abbreviation for Integrated Gasification Combined Cycle Power Generation System. It firstly produces coal gas by coal gasification. After the gas is purified, it enters the gas turbine to generate electricity. The steam generated by the gas turbine heat exchanger device enters the steam turbine to generate electricity.
  • IGCC technology combines an efficient gas-steam combined cycle power generation system with clean coal gasification technology. It combines high power generation efficiency with excellent environmental performance. It is a promising clean coal power generation technology.
  • the net efficiency of IGCC power generation can reach 43 ⁇ 45%, and the pollutant emission is only 1/10 of the conventional coal-fired power station; the desulfurization efficiency can reach 99%, and the S0 2 emission is about 25mg/Nm 3
  • Nitrogen oxide emissions are only 15 ⁇ 20% of conventional power stations; water consumption is only 1/2 ⁇ 1/3 of conventional power stations, which is good for environmental protection.
  • the construction cost of IGCC is more expensive than that of a coal-fired power plant, and its kilowatt cost is much higher than that of a 1000 MW ultra-supercritical unit; More complex and an obstacle to development.
  • China's coal resources account for more than 80% of high volatile coal, including about 13% of lignite, 42% of bituminous coal and 33% of bituminous coal.
  • the volatiles in coal are rich in hydrocarbon structures that can be directly converted into gas, directly burning or The gasification mode causes the volatiles in the coal to be equivalent to the solid components in the coal.
  • coal pyrolysis technologies have been developed to obtain pyrolysis oil or improve fuel quality.
  • Typical representatives from abroad include TOSCOAL technology for rotary furnace pyrolysis, Lurgi-Ruhr technology for moving bed, CEOD process for fluidized bed, and ECOPRO technology for rapid pyrolysis of entrained flow beds.
  • TOSCOAL technology for rotary furnace pyrolysis
  • Lurgi-Ruhr technology for moving bed
  • CEOD process for fluidized bed
  • ECOPRO technology for rapid pyrolysis of entrained flow beds.
  • coal pyrolysis technology has basically stopped.
  • the present application proposes a hierarchical hybrid power generation system based on solid fuel pyrolysis and semi-coke combustion, which aims to achieve more efficient power generation efficiency by utilizing the advantages of coal pyrolysis, integration of IGCC and ultra-supercritical power generation. This integrated system has not been reported so far.
  • the application device has the advantages of simple device, low investment and running cost, and can be used for upgrading the existing small and medium-sized heat generating units to improve power generation efficiency and realize energy saving and emission reduction.
  • the present invention provides a hierarchical hybrid power generation system based on solid fuel pyrolysis and semi-coke combustion, characterized in that the hierarchical hybrid power generation system comprises:
  • a pyrolysis device 1 for solid fuel pyrolysis to generate gas, liquid and solid semi-coke fuel separating gas and liquid fuel through a condensing device 2, wherein the gas and liquid fuel pass through the gas fuel purification device 3 and the liquid fuel purification device, respectively 4 for gas and liquid fuel dust removal and desulfurization; solid semi-coke fuel enters boiler 5 to generate steam;
  • the hierarchical hybrid power generation system further includes a heat exchange device 6 for driving the steam turbine 8 to generate electricity by using steam generated by the hot flue gas discharged from the gas turbine 7, as shown in Fig. 1.
  • the hierarchical hybrid power generation system further includes a heat exchange device 6 for generating steam generated by the hot flue gas discharged from the gas turbine, entering the boiler 5 and mixing with the steam thereof, and then entering the steam turbine 8 to generate electricity, such as Figure 2; or entering the boiler 5 separately heated into the steam turbine 8 together with other steam to drive the steam turbine to generate electricity.
  • the present invention provides a hierarchical hybrid power generation method based on solid fuel pyrolysis and semi-coke combustion, the steps of the hierarchical hybrid power generation method are:
  • the solid fuel first enters the pyrolysis unit 1 for pyrolysis to produce gas, liquid and solid semi-coke fuel;
  • the method further includes the step 4): the steam generated by the hot flue gas discharged from the gas turbine entering the heat exchange device 6 also drives the steam turbine 8 to generate electricity.
  • the steaming produced by the boiler with a semi-coke in the step 3) The steam and the steam generated by the heat exchange device in step 4) respectively enter different steam turbines to generate electricity or enter the same steam turbine to generate electricity.
  • the steam generated by the heat exchange device in the step 4) enters the combustion semi-coke boiler and is mixed with the steam to be heated and then enters the steam turbine to generate electricity, or enters the boiler to be heated separately and enters the steam turbine and other steam. Together drive the steam turbine to generate electricity.
  • the solid fuel includes: coal, oil sands, oil shale or biomass.
  • the pyrolysis refers to pure pyrolysis, partial combustion pyrolysis, partial gasification pyrolysis or a combination thereof.
  • An advantage of the present invention is that the hierarchical hybrid power generation system based on solid fuel pyrolysis and semi-coke combustion of the present invention and the method thereof are characterized in that a solid fuel pyrolysis technique is used to pyrolyze a solid fuel to obtain a gas (pyrolysis gas) and a liquid (tar ) and solid (semi-coke) fuel.
  • This part of gas and liquid fuel is used in gas turbine power generation, which makes full use of the characteristics of gas turbine combined cycle power generation higher than ultra-supercritical power generation, while avoiding the complicated coal gasification process in IGCC power generation.
  • the solid semi-coke fuel produced by pyrolysis can still be steamed for steam turbine power generation by boiler combustion using ultra-supercritical parameters. Since the energy conversion efficiency of the pyrolysis process is as high as 95 to 97%, the hybrid power generation system can achieve higher power generation efficiency than IGCC and ultra-supercritical.
  • the efficiency of coal pyrolysis is 96%, and that 30% of the energy is present in the gas and liquid fuel, and 70% of the energy is present in the solid semi-coke. If the gas and liquid fuels use the gas turbine combined power generation system, the efficiency is 58 to 67%.
  • the semi-coke combustion adopts ultra-supercritical unit with a power generation efficiency of 45%.
  • the staged hybrid power generation efficiency of coal pyrolysis and semi-coke combustion is 47 ⁇ 50%, which is higher than 46% of IGCC and 45% of ultra-supercritical. The cost and complexity are much lower than the IGCC.
  • the liquid and gaseous fuels produced by the pyrolysis of the present invention are used in a gas turbine power generation system; the solid semi-coke produced by pyrolysis is used for steam turbine power generation by steam generated by combustion and steam generated by a gas turbine heat exchanger, thereby improving power generation efficiency.
  • the system can be used not only for large power plants, but also for existing coal.
  • the highest efficiency of the carbon power generation system it can also be used for small generator sets with medium and high voltage parameters, and the power generation efficiency of small units is increased to a greater extent, achieving energy saving and emission reduction.
  • Figure 1 is a schematic illustration of a staged hybrid power generation system based on solid fuel pyrolysis and semi-coke combustion of the present invention.
  • Embodiment 1 is a schematic view of Embodiment 1 of a hierarchical hybrid power generation system based on solid fuel pyrolysis and semi-coke combustion of the present invention.
  • Figure 3 is a schematic illustration of Example 2 of a staged hybrid power generation system based on solid fuel pyrolysis and semi-coke combustion of the present invention.
  • the device involved in the invention mainly comprises: a pyrolysis device for realizing pyrolysis of solid fuel to produce gas, liquid and solid semi-coke fuel; a condensing device for separating gas and liquid fuel; 2 for dedusting and desulfurization of gas-liquid fuel respectively a gas fuel purification device 3 and a liquid fuel purification device 4, a gas turbine 7 for generating gas or/and a liquid fuel, a heat exchange device 6 for generating steam using hot flue gas discharged from the gas turbine, and a boiler 5 for generating steam with a semi-coke A steam turbine 8 that uses steam to generate electricity.
  • a hierarchical hybrid power generation method based on solid fuel pyrolysis and semi-coke combustion has the following steps:
  • the solid fuel first enters the pyrolysis unit 1 for pyrolysis to produce gas, liquid and solid semi-coke fuel;
  • the pyrolysis gas liquid product is cooled by the condensing device 2, and separated by gas and liquid; and purified by the gas desulfurization gas purification device 3 and the liquid fuel purification device 4, respectively, and then enters the gas turbine 7 to generate electricity;
  • the semi-coke generated by pyrolysis enters the boiler 5 to generate steam and is also used for steam turbine 8 to generate electricity. among them,
  • the solid fuels described in the step 1) are coal, oil sands, oil shale, biomass, and the like.
  • the pyrolysis in the step 1) means simple pyrolysis, partial combustion pyrolysis, partial gasification pyrolysis or a different combination thereof.
  • the liquid product and the gaseous product in the step 2) are purified to all or part of the same or different gas turbines, or only the gaseous products are fed to the gas turbine.
  • the steam generated by the heat exchange device in the step 3) and the steam generated by the boiler burning in the semi-coke in the step 4) respectively enter different steam turbines to generate electricity or the same steam turbine to generate electricity, or enter the combustion semi-coke boiler to be mixed with the steam thereof. After heating, it enters the steam turbine to generate electricity, as shown in Figure 2; or it enters the boiler separately and enters the steam turbine to drive the steam turbine to generate electricity together with other steam.
  • Raw material a bituminous coal with high volatile content
  • the coal is sent to the pyrolysis device 1; the coal is pyrolyzed in the pyrolysis device 1 to precipitate volatiles, and the pyrolysis gas liquid product and the solid semi-coke are obtained; the pyrolysis gas liquid product is cooled and separated by the condensation device 2 and respectively passed through After the dust removal and desulfurization gas fuel purification device 3 and the liquid fuel purification device 4 are purified, they are sent to the gas turbine to generate electricity; the pyrolysis solid semi-coke is discharged from the bottom of the pyrolyzer, and the semi-coke enters the steam boiler 5 to generate steam, and at the same time, the gas turbine heat exchanger
  • the steam generated by the unit 6 is also incorporated into the steam water system of the steam boiler 5, and the superheated steam enters the steam turbine 8 to generate electricity. Since the steam generated by the gas turbine rear heat exchanger 6 is incorporated into the main steam system of the boiler 5, the steam can be generated with higher steam parameters, and the power generation efficiency is further improved.
  • the ultra-supercritical power generation efficiency is 45%, and the gas turbine power generation efficiency is 40%.
  • Raw material a lignite with higher volatile content
  • the coal sample is sent to the pyrolysis unit 1 and a portion of the hot ash from the circulating fluidized bed boiler 5.
  • Mixing; hot ash provides heat to pyrolyze coal in pyrolysis device 1 to precipitate volatiles, to obtain gas-liquid product and solid semi-coke;
  • pyrolysis gas-liquid product is cooled and separated by condensing device 2 and respectively passed through dust removal and desulfurization purification device
  • it is sent to the gas turbine 7 to generate electricity;
  • the hot flue gas discharged from the gas turbine enters the steam generated by the heat exchange device 6 for the steam turbine 8 to generate electricity;
  • the pyrolysis solid semi-coke is discharged from the bottom of the pyrolysis device, and the semi-coke enters the steam boiler 5 to burn
  • the generated steam enters the steam turbine 8 to generate electricity;
  • the steam generated by the gas turbine rear heat exchange device 6 also enters the steam turbine 8 to generate electricity.
  • the efficiency of coal pyrolysis is 96%, and 30% of the energy is present in the gas and liquid fuels, and 70% of the energy is present in the solid semi-coke.
  • Gas and liquid fuels use a gas turbine combined power generation system with an efficiency of 58%, and semi-coke combustion with an ultra-supercritical unit with a power generation efficiency of 45%.
  • the coal-fired and semi-coke combustion graded hybrid power generation efficiency is (45% X 0.7+58%).
  • X 0.96 47%, which is higher than 46% of IGCC and 45% of ultra-supercritical.
  • the cost and complexity are much lower than the IGCC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明涉及一种基于固体燃料热解和半焦燃烧的分级混合发电系统及方法,该系统包括:热解装置(1),用于固体燃料热解产生气体、液体和固体半焦燃料;经冷凝装置(2)分离出气体和液体燃料,其中,气体和液体燃料分别通过净化装置(3)、(4)对气、液燃料除尘脱硫;固体半焦燃料进入锅炉(5)燃烧产生蒸汽;燃气轮机(7),用于燃用气体或/和液体燃料发电;蒸汽轮机(8),用于蒸汽发电。该方法通过固体燃料热解对固体燃料进行分级,产生气、液、固体半焦燃料并分别进入燃气、蒸汽轮机发电,有效的简化了工艺,降低了成本,集成了IGCC和超超临界发电技术的优点,可显著提高发电效率,不仅可用于大型发电厂,也可用于采用中、高压参数的小型发电机组。

Description

基于固体燃料热解和半焦燃烧的分级混合发电系统及方法
技术领域
本发明涉及煤发电技术领域,特别涉及一种基于固体燃料热解和半焦燃烧的 分级混合发电系统及方法。
背景技术
燃煤发电是通过产生高温高压的水蒸汽来推动汽轮机发电的,蒸汽的温度和 压力越高, 发电的效率就越高。 在 374.15°C、 22.115MPa条件下, 水蒸汽的密度 会增大到与液态水一样,此时称为水的临界参数; 比这还高的参数叫做超临界参 数; 当温度和压力高于 600°C、 25〜28MPa时称为超超临界。
亚临界机组的典型参数为 16.7MPa/538°C/538°C, 其发电效率约为 38 % ; 超 临界机组的主蒸汽压力通常为 24MPa 左右, 主蒸汽和再热蒸汽温度为 538〜 560°C, 超临界机组的典型参数为 24.1MPa/538 °C/538 °C, 对应的发电效率约为 41 %; 超超临界机组的主蒸汽压力为 25〜31MPa, 主蒸汽和再热蒸汽温度为 580〜610°C, 超超临界机组的发电效率为 45%左右。
燃气轮机联合循环发电是将气体或液体燃料用于燃气轮机发电,然后,将排 出的高温烟气通过余热锅炉回收转换为蒸汽进入蒸汽轮机发电。燃气轮机联合循 环机组由于利用了布朗和朗肯二个循环, 发电效率接近 57〜58 %。 燃气轮机联 合循环发电厂余热锅炉排放无灰尘, 二氧化硫极少, 氮氧化物为 10〜25ppm。 当 燃机为双燃料 (油和天然气) 时, 还可以对天然气进行调峰, 燃气 -蒸汽联合循 环电厂的用水量一般为燃煤发电的 1/3。
IGCC ( Integrated Gasification Combined Cycle ) 是整体煤气化联合循环发电 系统的简称。 它是先将煤气化产生煤气, 煤气净化后进入燃气轮机发电, 燃气轮 机换热装置产生的蒸汽进入蒸汽轮机发电。 IGCC技术把高效的燃气 -蒸汽联合循 环发电系统与洁净的煤气化技术结合起来, 既有高发电效率, 又有极好的环保性 能, 是一种有发展前景的洁净煤发电技术。 在目前技术水平下, IGCC发电的净 效率可达 43〜45 %, 污染物的排放量仅为常规燃煤电站的 1/10; 脱硫效率可达 99% , S02排放在 25mg/Nm3左右; 氮氧化物排放只有常规电站的 15〜20%; 耗 水只有常规电站的 1/2〜1/3, 利于环境保护。 但是, IGCC的建设成本比采用粉 煤燃烧的电厂昂贵, 其千瓦造价要远高于 1000MW超超临界机组; 此外, 系统 比较复杂, 成为发展的障碍。
我国的煤炭资源中高挥发分煤占 80%以上,包括约 13%的褐煤、 42%的次烟 煤和 33%的烟煤,煤中挥发分富含可直接转化为燃气的碳氢结构,直接燃烧或气 化方式导致煤中挥发分被等同于煤中的固体组分。
国际国内已进行了许多煤热解技术的研发工作,旨在获得热解油或提升燃料 品质。 国外的典型代表有回转炉热解的 TOSCOAL技术、 移动床的 Lurgi-Ruhr 技术、 流化床的 CEOD工艺和气流床快速热解的 ECOPRO技术。 但在石油大规 模应用后, 煤热解技术的开发基本停止。
我国早在 50年代末由中国科学院与大连第一发电厂、 长春汽车制造厂联合 开发了燃烧与固体热载体炉集成的煤干馏半工业实验,取得了初步实验结果,后 因大庆油田的发现, 终止了进一步的试验。 80 年代初, 大连理工大学研究并开 发了 DG工艺, 煤炭科学研究总院开发了多段回转炉工艺等。近期, 由于国内对 油气资源需求的提高,多家单位开发了不同的煤热解和多联产工艺。如浙江大学、 清华大学、中科院过程工程研究所、 山西煤化学研究所等开发了不同的多联产工 艺, 希望同时实现热电煤气的多联产。
中国科学院过程工程研究所一直坚持通过拔头(即热解)来实现煤的清洁高 效利用,在此过程中, 我们认识到通过热解实现燃料分级利用是煤清洁高效利用 的一种最佳方式。超超临界发电技术将煤中含有的气体和液体成分直接在锅炉中 烧掉,未能充分利用这部分燃料更高效发电的潜力。 IGCC煤气化工艺十分复杂, 且煤气化效率为 80%左右, 限制了系统发电效率的提升空间,且其蒸汽循环系统 受燃气轮机排烟温度的限制, 无法达到高的蒸汽参数, 发电效率只能达到 43〜 45%。 为此, 本申请提出了一种基于固体燃料热解和半焦燃烧的分级混合发电系 统, 旨在通过煤的热解, 集成 IGCC和超超临界发电的优点, 实现更高效的发电 效率。 而这种集成系统至今未见报道。
发明内容
本发明的目的在于,提供一种基于固体燃料热解和半焦燃烧的分级混合发电 系统及其方法, 它是利用固体燃料热解技术将固体燃料热解得到气体(热解气)、 液体(焦油)和固体(半焦)燃料, 气体和液体燃料经冷凝、 分别除尘脱硫净化 后用于燃气轮机发电,固体半焦燃料在锅炉内燃烧产生蒸汽和燃气轮机换热装置 产生的蒸汽一起用于蒸汽轮机发电, 从而提高燃煤发电效率。 本申请装置简单, 投资和运行成本低; 并可用于对现有的中小热电机组的改造提高发电效率, 实现 节能减排。
为实现本发明的上述目的,本发明提供了一种基于固体燃料热解和半焦燃烧 的分级混合发电系统, 其特征在于, 该分级混合发电系统包括:
热解装置 1, 用于固体燃料热解产生气体、 液体和固体半焦燃料; 经冷凝装 置 2分离出气体和液体燃料,其中,气体和液体燃料分别通过气体燃料净化装置 3和液体燃料净化装置 4对气、 液燃料除尘脱硫; 固体半焦燃料进入锅炉 5燃烧 产生蒸汽;
燃气轮机 7, 用于燃用气体或 /和液体燃料发电;
蒸汽轮机 8, 用于蒸汽发电。 作为上述技术方案的一种改进, 该分级混合发电系统还包括一换热装置 6, 用于利用燃气轮机 7排出的热烟气产生的蒸汽推动蒸汽轮机 8发电,如图 1所示。 作为上述技术方案的又一种改进, 该分级混合发电系统还包括一换热装置 6, 用于利用燃气轮机排出的热烟气产生的蒸汽进入锅炉 5与其蒸汽混合加热后 进入蒸汽轮机 8发电, 如图 2所示; 或进入锅炉 5单独加热后进入蒸汽轮机 8 与其它蒸汽一起推动蒸汽轮机发电。 为实现本发明的上述另一目的,本发明提供了一种基于固体燃料热解和半焦 燃烧的分级混合发电方法, 该分级混合发电方法的步骤为:
1 ) 固体燃料首先进入热解装置 1进行热解产生气体、液体和固体半焦燃 料;
2) 热解的气液产物通过冷凝装置 2冷却,气液分离, 并分别经气体燃料 净化装置 3和液体燃料净化装置 4除尘脱硫净化后, 气体或 /和液体燃料进入燃 气轮机 7发电; 其中, 液体燃料的另一用途是不进入燃气轮机发电, 而作为产品 直接输出。
3) 热解产生的固体半焦进入锅炉 5燃烧产生蒸汽用于蒸汽轮机 8发电。 作为上述技术方案的一种改进, 还包括步骤 4): 燃气轮机排出的热烟气进 入换热装置 6产生的蒸汽也推动蒸汽轮机 8发电。 作为上述技术方案的再一种改进, 所述步骤 3) 中燃用半焦的锅炉产生的蒸 汽和步骤 4)中换热装置产生的蒸汽分别进入不同的蒸汽轮机发电或进入同一蒸 汽轮机发电。 作为上述技术方案的又一种改进, 所述步骤 4) 中换热装置产生的蒸汽进入 燃用半焦锅炉与其蒸汽混合加热后进入蒸汽轮机发电,或进入锅炉单独加热后进 入蒸汽轮机与其它蒸汽一起推动蒸汽轮机发电。 所述的固体燃料包括: 煤、 油砂、 油页岩或生物质。 所述的热解是指单纯热解、 部分燃烧热解、 部分气化热解或是它们的组合。
本发明的优点在于,本发明的基于固体燃料热解和半焦燃烧的分级混合发电 系统及其方法, 是利用固体燃料热解技术将固体燃料热解得到气体 (热解气)、 液体 (焦油) 和固体 (半焦) 燃料。 这部分气体和液体燃料用于燃气轮机发电, 它充分利用了燃气轮机联合循环发电高于超超临界发电效率的特点,同时又避免 了 IGCC发电中复杂的煤气化过程。热解产生的固体半焦燃料仍可通过采用超超 临界参数的锅炉燃烧产生蒸汽用于蒸汽轮机发电。由于热解过程的能量转化效率 较高为 95〜97 %, 所以该混合发电系统可以达到比 IGCC和超超临界更高的发 电效率。
假设煤热解的效率为 96%, 且 30%的能量存在于气体和液体燃料中、 70% 能量存在于固体半焦中,如果气体和液体燃料采用燃气轮机联合发电系统效率为 58〜67%, 半焦燃烧采用超超临界机组发电效率为 45%, 则煤热解和半焦燃烧的 分级混合发电效率为 47〜50%, 高于 IGCC的 46%和超超临界的 45 %。 而成本 和复杂性较 IGCC大大降低。
另外目前国内存在的很多中小型热电厂, 主要采用锅炉燃烧蒸汽发电系统, 效率较低, 发电效率仅约 36%。 由于燃气轮机发电效率随容量增大的变化不大, 所以可以通过热解以 96%的效率得到约 30%的油气产物和 70%的固体半焦, 半 焦进入原系统发电、 油气用于燃气-蒸汽联合循环以 56%的效率发电, 其系统效 率可达 42%。
总之,本发明通过热解产生的液体和气体燃料用于燃气轮机发电系统; 热解 产生的固体半焦通过燃烧产生的蒸汽与燃气轮机换热装置产生的蒸汽用于蒸汽 轮机发电, 从而提高发电效率。该系统不仅可用于大型发电厂, 达到目前现有煤 炭发电系统的最高效率; 也可用于采用中、 高压参数的小型发电机组, 且对小型 机组发电效率提高的幅度更大, 实现节能减排。
附图说明
图 1 是本发明的基于固体燃料热解和半焦燃烧的分级混合发电系统的示意 图。
图 2是本发明基于固体燃料热解和半焦燃烧的分级混合发电系统的实施例 1 的示意图。
图 3是本发明基于固体燃料热解和半焦燃烧的分级混合发电系统的实施例 2 的示意图。
附图标识:
1、 热解装置 2、 冷凝装置 3、 气体燃料净化装置
4、 液体燃料净化装置 5、 蒸汽锅炉 6、 换热装置
7、 燃气轮机 8、 蒸汽轮机 具体实肺式
下面结合附图及实施例对本发明作进一步描述。
本发明涉及到的装置主要有: 实现固体燃料热解产生气体、液体和固体半焦 燃料的热解装置 1、 用于分离气体和液体燃料的冷凝装置 2、 用于气液燃料分别 除尘脱硫的气体燃料净化装置 3和液体燃料净化装置 4、燃用气体或 /和液体燃料 发电的燃气轮机 7、 利用燃气轮机排出的热烟气产生蒸汽的换热装置 6、 燃用半 焦产生蒸汽的锅炉 5和利用蒸汽发电的蒸汽轮机 8等。
如图 1所示,一种基于固体燃料热解和半焦燃烧的分级混合发电方法,其步 骤如下:
1 ) 固体燃料首先进入热解装置 1进行热解产生气体、液体和固体半焦燃 料;
2) 热解气液产物通过冷凝装置 2冷却,气液分离; 并分别经除尘脱硫的 气体燃料净化装置 3和液体燃料净化装置 4净化后, 进入燃气轮机 7发电;
3) 燃气轮机排出的热烟气进入换热装置 6产生蒸汽推动蒸汽轮机 8发 电;
4) 热解产生的半焦进入锅炉 5燃烧产生蒸汽也用于蒸汽轮机 8发电。 其中,
步骤 1 ) 中所述的固体燃料是指煤、 油砂、 油页岩、 生物质等。
所述步骤 1 ) 中的热解是指单纯热解、 部分燃烧热解、 部分气化热解或是它 们的不同组合。
所述步骤 2)中液体产物和气体产物净化后全部或部分进入同一或不同燃气 轮机、 或只将气体产物送入燃气轮机。
所述步骤 3 ) 中换热装置产生的蒸汽与步骤 4) 中燃用半焦的锅炉产生的蒸 汽分别进入不同的蒸汽轮机发电或同一蒸汽轮机发电,或者是进入燃用半焦锅炉 与其蒸汽混合加热后进入蒸汽轮机发电, 如图 2所示; 或者是进入锅炉单独加热 后进入蒸汽轮机与其它蒸汽一起推动蒸汽轮机发电。 实施例 1
原料: 一种含挥发分较高的烟煤
实施方法:
首先将煤送入热解装置 1 ; 煤在热解装置 1中发生热解反应析出挥发分, 得 到热解气液产物和固体半焦;热解气液产物通过冷凝装置 2冷却分离并分别经除 尘脱硫的气体燃料净化装置 3和液体燃料净化装置 4净化后, 送入燃气轮机 Ί 发电; 热解固体半焦从热解器底部排出, 半焦进入蒸汽锅炉 5燃烧产生蒸汽, 同 时,燃气轮机换热装置 6产生的蒸汽也并入蒸汽锅炉 5的汽水系统, 过热蒸汽进 入蒸汽轮机 8发电。由于燃气轮机 Ί后换热装置 6产生的蒸汽并入锅炉 5的主蒸 汽系统, 可以用较高的蒸汽参数发电, 发电效率得到进一步提高。
设超超临界的发电效率 45%, 燃气轮机的发电效率 40%。 将余热锅炉的汽 水系统与燃用半焦锅炉的汽水系统耦合,则这部分蒸汽可以通过锅炉过热以锅炉 的高蒸汽参数发电。即当与超超临界蒸汽锅炉耦合时,其燃气轮机联合循环发电 的效率为 (40 %十 60% X 45 % ) = 67 % , 则整个系统的发电效率为 (45 % X 0.7+67% X 0.3 ) X 0.96=50% , 远高于 IGCC或超超临界发电效率。 如果超超临 界效率提高, 则系统效率也会相应提高。 实施例 2
原料: 一种含可挥发分较高的褐煤
实施方法:
如图 3所示, 将煤样送入热解装置 1, 与来自循环流化床锅炉 5的部分热灰 混合; 热灰提供热量使煤在热解装置 1中进行热解, 析出可挥发分, 得到气液产 物和固体半焦;热解气液产物通过冷凝装置 2冷却分离并分别经除尘脱硫净化装 置 3、 4后, 送入燃气轮机 7发电; 燃气轮机排出的热烟气进入换热装置 6产生 的蒸汽供蒸汽轮机 8发电; 热解固体半焦从热解装置底部排出, 半焦进入蒸汽锅 炉 5燃烧产生的蒸汽进入蒸汽轮机 8发电;燃气轮机 Ί后换热装置 6产生的蒸汽 也进入蒸汽轮机 8发电。
煤热解的效率为 96 %, 且 30 %的能量存在于气体和液体燃料中、 70 %能量 存在于固体半焦中。气体和液体燃料采用燃气轮机联合发电系统效率为 58%,半 焦燃烧采用超超临界机组发电效率为 45%,则煤热解和半焦燃烧的分级混合发电 效率为 (45 % X 0.7+58% X 0.3 ) X 0.96=47% , 高于 IGCC的 46 %和超超临界的 45 %。 而成本和复杂性较 IGCC大大降低。 最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限制。尽 管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本 发明的技术方案进行修改或者等同替换, 都不脱离本发明技术方案的精神和范 围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求
1、 一种基于固体燃料热解和半焦燃烧的分级混合发电系统, 其特征在于, 该分级混合发电系统包括:
热解装置(1 ), 用于固体燃料热解产生气体、 液体和固体半焦燃料; 经冷凝 装置 (2) 分离出气体和液体燃料, 其中, 气体和液体燃料分别通过气体燃料净 化装置 (3)和液体燃料净化装置(4)对气、 液燃料除尘脱硫; 固体半焦燃料进 入锅炉 (5) 燃烧产生蒸汽;
燃气轮机 (7), 用于燃用气体或 /和液体燃料发电;
蒸汽轮机 (8), 用于蒸汽发电。
2、 根据权利要求 1所述的基于固体燃料热解和半焦燃烧的分级混合发电系 统, 其特征在于, 该分级混合发电系统还包括一换热装置(6), 用于利用燃气轮 机 (7) 排出的热烟气产生蒸汽推动蒸汽轮机 (8) 发电。
3、 根据权利要求 1所述的基于固体燃料热解和半焦燃烧的分级混合发电系 统, 其特征在于, 该分级混合发电系统还包括一换热装置(6), 用于利用燃气轮 机排出的热烟气产生的蒸汽进入锅炉(5)与其蒸汽混合加热后进入蒸汽轮机(8) 发电、 或进入锅炉 (5)单独加热后进入蒸汽轮机(8)与其它蒸汽一起推动蒸汽 轮机发电。
4、 一种基于固体燃料热解和半焦燃烧的分级混合发电方法, 该分级混合发 电方法的步骤为:
1 ) 固体燃料首先进入热解装置 (1 ) 进行热解产生气体、 液体和固体半 焦燃料;
2) 热解的气液产物通过冷凝装置 (2) 冷却, 气液分离, 并分别经气体 燃料净化装置 (3) 和液体燃料净化装置 (4) 除尘脱硫净化后, 气体或 /和液体 燃料进入燃气轮机 (7) 发电;
3) 热解产生的固体半焦进入锅炉 (5) 燃烧产生蒸汽用于蒸汽轮机 (8) 发电。
5、 根据权利要求 4所述的基于固体燃料热解和半焦燃烧的分级混合发电方 法, 其特征在于, 还包括步骤 4): 燃气轮机排出的热烟气进入换热装置 (6)产 生蒸汽也推动蒸汽轮机 (8) 发电。
6、 根据权利要求 5所述的基于固体燃料热解和半焦燃烧的分级混合发电方 法, 其特征在于: 所述步骤 3) 中燃用半焦的锅炉产生的蒸汽和步骤 4) 中换热 装置产生的蒸汽分别进入不同的蒸汽轮机发电或进入同一蒸汽轮机发电。
7、 根据权利要求 5所述的基于固体燃料热解和半焦燃烧的分级混合发电方 法, 其特征在于: 所述步骤 4) 中换热装置产生的蒸汽进入燃用半焦锅炉与其蒸 汽混合加热后进入蒸汽轮机发电、或进入锅炉(5)单独加热后进入蒸汽轮机(8) 与其它蒸汽一起推动蒸汽轮机发电。
8、 根据权利要求 4所述的基于固体燃料热解和半焦燃烧的分级混合发电方 法, 其特征在于, 所述的固体燃料包括: 煤、 油砂、 油页岩或生物质。
9、 根据权利要求 4所述的基于固体燃料热解和半焦燃烧的分级混合发电方 法, 其特征在于, 所述的热解是指单纯热解、 部分燃烧热解、 部分气化热解或是 它们的组合。
10、根据权利要求 4所述的基于固体燃料热解和半焦燃烧的分级混合发电方 法, 其特征在于, 所述步骤 2) 中液体燃料作为产品直接输出。
PCT/CN2011/002119 2011-05-17 2011-12-16 基于固体燃料热解和半焦燃烧的分级混合发电系统及方法 WO2012155314A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112011100506.7T DE112011100506T8 (de) 2011-05-17 2011-12-16 Hierarchisch-Hybrid-Stromerzeugungssystem und Verfahren basierend auf der Pyrolyse der Festbrennstoffe und die Verbrennung der Halbkokse
AU2011349905A AU2011349905B2 (en) 2011-05-17 2011-12-16 A hybrid power generation system and method based on solid fuel pyrolisis and char combustion
JP2013514534A JP5632075B2 (ja) 2011-05-17 2011-12-16 固体燃料の熱分解と半成コークスの燃焼に基づいた分級混合発電システム及びその方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110127178.9 2011-05-17
CN201110127178 2011-05-17

Publications (1)

Publication Number Publication Date
WO2012155314A1 true WO2012155314A1 (zh) 2012-11-22

Family

ID=45008080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/002119 WO2012155314A1 (zh) 2011-05-17 2011-12-16 基于固体燃料热解和半焦燃烧的分级混合发电系统及方法

Country Status (5)

Country Link
JP (1) JP5632075B2 (zh)
CN (2) CN202165134U (zh)
AU (1) AU2011349905B2 (zh)
DE (1) DE112011100506T8 (zh)
WO (1) WO2012155314A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2740906A3 (en) * 2012-12-04 2018-01-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Rotary machine drive system
CN115386389A (zh) * 2022-09-22 2022-11-25 陕西煤业化工技术研究院有限责任公司 一种煤热解发电耦合系统和工艺

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202165134U (zh) * 2011-05-17 2012-03-14 中国科学院过程工程研究所 基于固体燃料热解和半焦燃烧的分级混合发电系统
CN102888235B (zh) * 2012-09-20 2014-04-02 中国科学院过程工程研究所 固体燃料热解与铁矿石还原耦合的装置及方法
RU2529226C2 (ru) * 2013-01-09 2014-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ энерготехнологической переработки сланца
CN104403680B (zh) * 2014-09-26 2017-07-14 中国科学院过程工程研究所 低阶煤预干燥热解分级转化的双流体循环发电系统及方法
CN105885899A (zh) * 2016-06-29 2016-08-24 北京神雾环境能源科技集团股份有限公司 一种自除尘型煤热解和裂解产气联合燃气发电系统
CN110922990A (zh) * 2018-09-19 2020-03-27 深圳龙澄高科技环保股份有限公司 超高热值垃圾分程干燥热解焚烧发电技术
CN110513696A (zh) * 2019-07-17 2019-11-29 光大环保技术研究院(南京)有限公司 一种烟气-燃料双耦合的垃圾气化发电系统
CN110847991A (zh) * 2019-11-20 2020-02-28 西安交通大学 一种太阳能驱动的褐煤多联产发电系统及运行方法
GR1009990B (el) * 2020-07-27 2021-04-26 Αλεξανδρος Χρηστου Παπαδοπουλος Συστημα προστασιας απο την κλιματικη αλλαγη με μοναδες ηλεκτροπαραγωγης αρνητικων εκπομπων διοξειδιου του ανθρακα
KR102158170B1 (ko) * 2020-08-07 2020-09-22 이윤준 유연탄의 세미코크스 제조 시스템
CN114276828A (zh) * 2021-12-29 2022-04-05 胜帮科技股份有限公司 一种油页岩热解工艺能量利用装置系统与方法
CN115506888A (zh) * 2022-10-27 2022-12-23 国网山东省电力公司电力科学研究院 火电机组耦合燃气轮机响应电网调节需求的方法与系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE891305A (fr) * 1981-01-23 1982-03-16 Cockerill Sambre Sa Procede de producton d'energie au depart de charbon et installation a cet effet
US5241825A (en) * 1989-05-26 1993-09-07 Per Collin Process for generating electric power
JP2004051745A (ja) * 2002-07-18 2004-02-19 Ngk Insulators Ltd バイオマスのガス化システム
RU2387847C1 (ru) * 2009-03-10 2010-04-27 Открытое акционерное общество "Инженерный центр энергетики Урала - УРАЛВНИПИЭНЕРГОПРОМ, Уралсельэнергопроект, УралТЭП, УралОРГРЭС, УралВТИ, Уралэнергосетьпроект, Челябэнергосетьпроект" Парогазовая установка с пиролизом угля
CN102261271A (zh) * 2011-05-17 2011-11-30 中国科学院过程工程研究所 基于固体燃料热解和半焦燃烧的分级混合发电系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4231771A1 (de) * 1992-09-23 1994-03-24 Bayer Ag Verfahren zur Verstromung von Kunststoffabfällen
US6014856A (en) * 1994-09-19 2000-01-18 Ormat Industries Ltd. Multi-fuel, combined cycle power plant
JP3676041B2 (ja) * 1997-05-28 2005-07-27 三菱重工業株式会社 コンバインド・サイクル発電方法及びその発電装置
JP3530352B2 (ja) * 1997-09-03 2004-05-24 三菱重工業株式会社 発電方法及び発電装置
RU2152526C1 (ru) * 1999-01-25 2000-07-10 Открытое акционерное общество "Энергетический научно-исследовательский институт им. Г.М. Кржижановского" Способ и энергетическая установка для получения электроэнергии из сланца
RU2211927C1 (ru) * 2001-12-27 2003-09-10 Российское акционерное общество энергетики и электрификации "Единая энергетическая система России" Способ термической переработки бурых углей с выработкой электроэнергии и установка для его осуществления
RU2340651C1 (ru) * 2007-03-22 2008-12-10 Николай Павлович Карпов Способ и установка для комплексной термической переработки твердого топлива

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE891305A (fr) * 1981-01-23 1982-03-16 Cockerill Sambre Sa Procede de producton d'energie au depart de charbon et installation a cet effet
US5241825A (en) * 1989-05-26 1993-09-07 Per Collin Process for generating electric power
JP2004051745A (ja) * 2002-07-18 2004-02-19 Ngk Insulators Ltd バイオマスのガス化システム
RU2387847C1 (ru) * 2009-03-10 2010-04-27 Открытое акционерное общество "Инженерный центр энергетики Урала - УРАЛВНИПИЭНЕРГОПРОМ, Уралсельэнергопроект, УралТЭП, УралОРГРЭС, УралВТИ, Уралэнергосетьпроект, Челябэнергосетьпроект" Парогазовая установка с пиролизом угля
CN102261271A (zh) * 2011-05-17 2011-11-30 中国科学院过程工程研究所 基于固体燃料热解和半焦燃烧的分级混合发电系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2740906A3 (en) * 2012-12-04 2018-01-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Rotary machine drive system
CN115386389A (zh) * 2022-09-22 2022-11-25 陕西煤业化工技术研究院有限责任公司 一种煤热解发电耦合系统和工艺
CN115386389B (zh) * 2022-09-22 2024-01-30 陕西煤业化工技术研究院有限责任公司 一种煤热解发电耦合系统和工艺

Also Published As

Publication number Publication date
CN202165134U (zh) 2012-03-14
DE112011100506T8 (de) 2014-01-16
DE112011100506T5 (de) 2013-04-11
AU2011349905B2 (en) 2014-10-02
JP2013534988A (ja) 2013-09-09
JP5632075B2 (ja) 2014-11-26
CN102261271A (zh) 2011-11-30
AU2011349905A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
WO2012155314A1 (zh) 基于固体燃料热解和半焦燃烧的分级混合发电系统及方法
CN103897743B (zh) 固体燃料分级气化-燃烧双床多联产系统与方法
CN103740389B (zh) 低阶煤梯级利用的多联产工艺
US5937652A (en) Process for coal or biomass fuel gasification by carbon dioxide extracted from a boiler flue gas stream
CN101440293B (zh) 油页岩流化床干馏系统
CN109555569B (zh) 超临界二氧化碳循环冷端余热回收发电系统及运行方法
CN103146432B (zh) 一种生物质热解气化与焦油催化裂解的装置与方法
CN103013576A (zh) 一种基于低变质粉煤热解气化的igcc 多联产装置及方法
CN105132021B (zh) 一种分布式多源互补的小型生物质发电系统
CN102628401B (zh) 一种煤基燃料近零排放发电系统及方法
CN204058390U (zh) 固体燃料分级气化-燃烧双床多联产系统
CN111678264A (zh) 一种塔式太阳能辅助钙基吸收剂脱硫脱碳系统
CN104403680A (zh) 低阶煤预干燥热解分级转化的双流体循环发电系统及方法
CN215292691U (zh) 一种与燃煤电站耦合的生物质气化发电系统
CN110500149B (zh) 一种煤低温干馏及发电联产系统
CN107165688A (zh) 一种利用燃气和蒸汽联合发电的设备及方法
RU2007141758A (ru) Способ комплексного использования твердых топлив в энергетических установках комбинированного цикла с совместным производством энергии и побочной товарной продукции в виде жидких и твердых топлив с улучшенными потребительскими свойствами
CN210622878U (zh) 一种煤低温干馏及发电联产系统
CN206942820U (zh) 一种利用燃气和蒸汽联合发电的设备
CN209508170U (zh) 耦合煤热解与空气气化的联合循环发电系统
CN109028123B (zh) 煤粉-生物质锅炉蒸汽耦合改造的方法
CN106190333A (zh) 基于粉煤空气分级热解气化的整体气化联合发电装置
CN102373096B (zh) 煤气化工艺与蒸汽透平发电工艺的耦合方法
CN205328934U (zh) 一种煤热解多联产系统
CN207294702U (zh) 生物质气化-循环流化床锅炉联合发电系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011349905

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1120111005067

Country of ref document: DE

Ref document number: 112011100506

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2013514534

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865731

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/03/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11865731

Country of ref document: EP

Kind code of ref document: A1