WO2012154515A1 - Polyester quaternary salt and compositions thereof - Google Patents

Polyester quaternary salt and compositions thereof Download PDF

Info

Publication number
WO2012154515A1
WO2012154515A1 PCT/US2012/036415 US2012036415W WO2012154515A1 WO 2012154515 A1 WO2012154515 A1 WO 2012154515A1 US 2012036415 W US2012036415 W US 2012036415W WO 2012154515 A1 WO2012154515 A1 WO 2012154515A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polyester
carbon atoms
tertiary amino
composition
Prior art date
Application number
PCT/US2012/036415
Other languages
French (fr)
Inventor
Dean Thetford
David J. Moreton
Hannah Greenfield
Joanne L. Jones
Original Assignee
Lubrizol Advanced Materials, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Advanced Materials, Inc. filed Critical Lubrizol Advanced Materials, Inc.
Priority to EP12721112.6A priority Critical patent/EP2704820B1/en
Priority to CN201280026218.3A priority patent/CN103562262B/en
Priority to ES12721112.6T priority patent/ES2642353T3/en
Priority to JP2014509460A priority patent/JP5615460B2/en
Priority to US14/114,934 priority patent/US20140114019A1/en
Publication of WO2012154515A1 publication Critical patent/WO2012154515A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6852Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/12Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/027Dispersing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/18Quaternary ammonium compounds

Definitions

  • the invention relates to a composition containing a particulate solid; an organic medium; and a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
  • the invention further relates to the use of the product as a dispersant.
  • the invention further relates to the use of the dispersant in media, such as inks, mill bases, plastics and paints.
  • U.S. Patent No. 5,000,792 discloses polyesteramine dispersants obtainable by reacting 2 parts of polyhydroxycarboxylic acids with 1 part of dialkylenetriamine.
  • British Patent GB 1 ,373,660 discloses polyesteramine dispersants obtainable by reaction of polyhydroxycarboxylic acids with diamines especially alkylenediamines and their salts thereof.
  • European Patent Application EP 1 896 546 discloses a composition comprising (i) a particulate solid; (ii) an organic medium; and (iii) a salt of a hydrocarbyl-substituted acylating agent.
  • composition described herein may be capable of providing at least one of improved gloss, reduced haze, improved flocculation, resistance, increased colour strength, improved flow characteristics, and increased stability.
  • the invention provides a composition comprising a particulate solid; an organic medium (typically an organic liquid); and a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
  • a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
  • the invention provides a mill base composition
  • a particulate solid comprising a particulate solid, an organic medium (typically a an organic liquid) and a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
  • an organic medium typically a an organic liquid
  • quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
  • the invention provides a paint or ink composition
  • a paint or ink composition comprising a particulate solid, an organic liquid, a binder and a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
  • the invention provides for the use of a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof as a dispersant in composition disclosed herein.
  • the polyester quaternary salt may have an acid value in the range of 0 to 20, or 0 to 15 mg KOH/g.
  • the present invention provides a composition and use as disclosed herein above.
  • the polyester quaternary salt of the invention includes quaternised polyester amine salts.
  • the additives may also be described as quaternary polyester salts.
  • the additives of the invention may be described as the reaction product of: a polyester containing a tertiary amino group; and a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen.
  • the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
  • polyester containing a tertiary amino group used in the preparation of the additives of the invention may also be described as a non-quaternised polyester containing a tertiary amino group.
  • the polyester may be the reaction product of a fatty carboxylic acid containing at least one hydroxyl group and a compound having an oxygen or nitrogen atom capable of condensing with said acid and further having a tertiary amino group.
  • Suitable fatty carboxylic acids that may be used in the preparation of the polyesters described above may be represented by the formula:
  • R 1 may be a hydrogen or a hydrocarbyl group containing from 1 to 20 carbon atoms and R may be a hydrocarbylene group containing from 1 to 20 carbon atoms. In some embodiments R 1 contains from 1 to 12, 2 to 10, 4 to 8 or even 6 carbon atoms, and R contains from 2 to 16, 6 to 14, 8 to 12, or even 10 carbon atoms.
  • the fatty carboxylic acid used in the preparation of the polyester may be 12-hydroxystearic acid, ricinoleic acid, 12-hydroxy dodecanoic acid, 5 -hydroxy dodecanoic acid, 5 -hydroxy decanoic acid, 4-hydroxy decanoic acid, 10-hydroxy undecanoic acid, or combinations thereof.
  • the compound having an oxygen or nitrogen atom capable of condensing with said acid and further having a tertiary amino group may be represented by the formula:
  • R 3 may be a hydrocarbyl group containing from 1 to 10 carbon atoms
  • R 4 may be a hydrocarbyl group containing from 1 to 10 carbon atoms
  • R 5 may be a hydrocarbylene group containing from 1 to 20 carbon atoms
  • X 1 may be O or NR 6 where R 6 may be a hydrogen or a hydrocarbyl group containing from 1 to 10 carbon atoms.
  • R contains from 1 to 6, 1 to 2, or even 1 carbon atom
  • R 4 contains from 1 to 6, 1 to 2, or even 1 carbon atom
  • R 5 contains from 2 to 12, 2 to 8 or even 3 carbon atoms
  • R 6 contains from 1 to 8, or 1 to 4 carbon atoms.
  • formula (II) becomes:
  • nitrogen or oxygen containing compounds capable condensing with the acylating agents, which also have a tertiary amino group examples include but are not limited to: 1 -aminopiperidine, l -(2-aminoethyl)piperidine, l -(3-aminopropyl)-2-pipecoline, 1 -methyl-(4-methylamino)piperidine, 4-(l -pyrrolidinyl)piperidine, 1 -(2- aminoethyl)pyrrolidine, 2 -(2 -amino ethyl) -1 -methylpyrrolidine, N,N- diethylethylenediamine, ⁇ , ⁇ -dimethylethylenediamine, N,N- dibutylethylenediamine, ⁇ , ⁇ -diethyl- 1 ,3-diaminopropane, N,N-dimethyl- 1 ,3- dia
  • the nitrogen or oxygen containing compounds may further include aminoalkyl substituted heterocyclic compounds such as l -(3- aminopropyl)imidazole and 4-(3-aminopropyl)morpholine.
  • alkanolamines including but not limited to triethanolamine, ⁇ , ⁇ -dimethylaminopropanol, N,N- diethylaminopropanol, ⁇ , ⁇ -diethylaminobutanol, triisopropanolamine, l-[2- hydroxyethyljpiperidine, 2-[2-(dimethylamine)ethoxy]-ethanol, N- ethyldiethanolamine, N-methyldiethanol amine, N-butyldiethanolamine, N,N- diethylaminoethanol, ⁇ , ⁇ -dim ethyl aminoethanol, 2-dimethylamino-2-methyl- l- propanol.
  • the resulting additive includes a
  • the nitrogen or oxygen containing compound may be triisopropanolamine, l-[2-hydroxyethyl]piperidine, 2-[2-(dimethylamino) ethoxy]- ethanol, N-ethyldiethanolamine, N-methyldiethanolamine, N-butyldiethanolamine, N ,N - diethyl amino ethano 1 , N ,N - dim ethyl amino ethano 1 , 2 - dimethyl amino -2 -methyl - 1 -propanol, or combinations thereof.
  • the compound having an oxygen or nitrogen atom capable of condensing with said acid and further having a tertiary amino group comprises N,N-diethylethylenediamine, ⁇ , ⁇ -dimethylethylenediamine, N,N- dibutylethylenediamine, N,N-diethyl-l ,3-diaminopropane, N,N- dimethylaminoethanol, ⁇ , ⁇ -diethylaminoethanol, or combinations thereof.
  • the compound having an oxygen or nitrogen atom capable of condensing with said acid and further having a tertiary amino group may be 3- dimethylaminopropylamine.
  • the quaternised polyester salt may be a quaternised polyester amide (may also be referred to as polyester aminoalkyl amide) salt.
  • the polyester containing a tertiary amino group used to prepare the quaternised polyester salt may be a polyester amide containing a tertiary amino group.
  • the amine or aminoalcohol may be reacted with a monomer and then the resulting material may be polymerized with additional monomer, resulting in the desired polyester amide which may then be quaternised.
  • the quaternised polyester salt includes a cation represented by the following formula:
  • R 1 may be a hydrogen or a hydrocarbyl group containing from 1 to 20 carbon atoms and R may be a hydrocarbylene group containing from 1 to 20 carbon atoms;
  • R may be a hydrocarbyl group containing from 1 to 10 carbon atoms;
  • R 4 may be a hydrocarbyl group containing from 1 to 10 carbon atoms;
  • R 5 may be a hydrocarbylene group containing from 1 to 20 carbon atoms;
  • R may be a hydrogen or a hydrocarbyl group containing from 1 to 10 carbon atoms;
  • n may be a number from 1 to 10;
  • R 7 may be hydrogen, a hydrocarbonyl group containing from 1 to 22 carbon atoms, or a hydrocarbyl group containing from 1 to 22 carbon atoms; and
  • X may be a group derived from the quaternising agent.
  • R 6 may be hydrogen.
  • R 1 contains from 1 to 12, 2 to 10, 4 to 8 or even 6 carbon atoms, and R contains from 2 to 16, 6 to 14, 8 to 12, or even 10 carbon atoms
  • R 3 contains from 1 to 6, 1 to 2, or even 1 carbon atom
  • R 4 contains from 1 to 6, 1 to 2, or even 1 carbon atom
  • R 5 contains from 2 to 12, 2 to 8 or even 3 carbon atoms
  • R 6 contains from 1 to 8, or 1 to 4 carbon atoms.
  • n may be from 2 to 9, or 3 to 7, and R 7 may contain from 6 to 22, or 8 to 20 carbon atoms.
  • the quaternised polyester salt may be essentially capped with a C I -22, or a C8-20, fatty acid.
  • suitable acids include oleic acid, palmitic acid, stearic acid, erucic acid, lauric acid, 2-ethylhexanoic acid, 9, 1 1 -linoleic acid, 9,12-linoleic acid, 9, 12, 15-linolenic acid, abietic acid, or combinations thereof.
  • the number average molecular weight (Mn) of the quaternised polyester salts of the invention may be from 500 to 3000, or from 600 to 2500.
  • the polyester useful in the present invention may be obtained/obtainable by heating one or more hydroxycarboxylic acids or a mixture of the hydroxycarboxylic acid and a carboxylic acid, optionally in the presence of an esterification catalyst.
  • the hydroxycarboxylic acids can have the formula HO-X- COOH wherein X may be a divalent saturated or unsaturated aliphatic radical containing at least 8 carbon atoms and in which there are at least 4 carbon atoms between the hydroxy and carboxylic acid groups, or from a mixture of such a hydroxycarboxylic acid and a carboxylic acid which is free from hydroxy groups.
  • This reaction may be carried out at a temperature in the region of 160°C to 200 °C, until the desired molecular weight has been obtained.
  • the course of the esterification may be followed by measuring the acid value of the product, with the desired polyester, in some embodiments, having an acid value in the range of 10 to 100 mg KOH/g or in the range of 18 to 50 mg KOH/g.
  • the indicated acid value range of 10 to 100 mg KOH/g is equivalent to a number average molecular weight range of 5600 to 560.
  • the water formed in the esterification reaction may be removed from the reaction medium, and this may be conveniently done by passing a stream of nitrogen over the reaction mixture or, by carrying out the reaction in the presence of a solvent, such as toluene or xylene, and distilling off the water as it is formed.
  • a solvent such as toluene or xylene
  • the polyester may be reacted with amine or aminoalcohol of formula (II) at a temperature in the range of 1 10 to 200°C until the desired polyester amide or polyester has an acid value in the range of 0 to 15 mg KOH/g.
  • the resulting polyester can then be isolated in a conventional manner; however, when the reaction is carried out in the presence of an organic solvent whose presence would not be harmful in the subsequent application, the resulting solution of the polyester may be used.
  • the radical represented by X may contain from 12 to 20 carbon atoms, optionally where there are between 8 and 14 carbon atoms between the carboxylic acid and hydroxy groups.
  • the hydroxy group may be a secondary hydroxy group.
  • hydroxycarboxylic acids include ricinoleic acid, a mixture of 9- and 10-hydroxystearic acids (obtained by sulphation of oleic acid followed by hydrolysis), and 12-hydroxystearic acid, and especially the commercially available hydrogenated castor oil fatty acid which contains in addition to 12-hydroxystearic acid minor amounts of stearic acid and palmitic acid.
  • the carboxylic acids which may be used in conjunction with the hydroxycarboxylic acids to obtain these polyesters are preferably carboxylic acids of saturated or unsaturated aliphatic compounds, particularly alkyl and alkenyl carboxylic acids containing a chain of from 8 to 20 carbon atoms.
  • carboxylic acids there may be mentioned lauric acid, palmitic acid, stearic acid and oleic acid.
  • the polyester may be derived from commercial 12- hydroxy-stearic acid having a number average molecular weight of about 1600. Polyesters such as this are described in greater detail in U.K. Patent Specification Nos. 1 ,373,660 and 1 ,342,746.
  • the quaternised salt of the present invention may be formed when the non-quaternised compounds described above are reacted with a quaternising agent.
  • the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
  • hydrocarbyl epoxide may be represented by the following formula, in combination with an acid:
  • hydrocarbyl epoxides include: ethylene oxide, propylene oxide, butylene oxide, styrene oxide and combinations thereof.
  • the quaternising agent does not contain any styrene oxide.
  • the acid used with the hydrocarbyl epoxide may be a separate component, such as acetic acid.
  • the hydrocarbyl acylating agent may be a dicarboxylic acylating agent
  • no separate acid component is needed.
  • the polyester quaternary salt may be prepared by combining reactants which are essentially free of, or even free of, a separate acid component, such as acetic acid, and rely on the acid group of the hydrocarbyl acylating agent instead.
  • a small amount of an acid component may be present, but at ⁇ 0.2 or even ⁇ 0.1 moles of acid per mole of hydrocarbyl acylating agent.
  • the quaternising agent of the invention does not contain any substituent group that contains more than 20 carbon atoms.
  • the long substituent group that allows for the resulting additive to be organic soluble and thus useful for the purposes of this invention is not provided by the quaternising agent but instead is brought to the additive by the non-quaternised compound described above.
  • polyester amide or polyester having an amine functionality is reacted with quaternising agent at a temperature in the range of 30°C to 100°C to produce a polyester quaternary salt with an acid value in the range of 0 to 15 mg KOH/g.
  • the molar ratio of the polyester amide or polyester having an amine functionality to quaternising agent to give the polyester quaternary salt may be 1 :0.1 to 2, or 1 : 1 to 1.5, or 1 : 1 to 1.3.
  • the polyester quaternary salt as described herein is a processing aid or dispersant.
  • the particulate solid present in the composition may be any inorganic or organic solid material.
  • the solid particulate may be an organic pigment, an inorganic pigment, an organic filler, an inorganic filler, a flame retardant, or mixtures thereof.
  • the solid particulate may be an inorganic pigment, an inorganic filler, a flame retardant, or mixtures thereof.
  • the particulate solid is a pigment.
  • the solid particulate may an organic pigment, an organic filler, or mixtures thereof.
  • the particulate solid is an organic pigment from any of the recognised classes of pigments described, for example, in the Third Edition of the Colour Index (1971) and subsequent revisions of, and supplements thereto, under the chapter headed "Pigments”.
  • organic pigments are those from the azo, disazo, trisazo, condensed azo, azo lakes, naphthol pigments, anthrapyrimidine, benzimidazolone, carbazole, diketopyrrolopyrrole, flavanthrone, indigoid pigments, isoindolinone, isoindoline, isoviolanthrone, metal complex pigments, oxazine, perylene, perinone, pyranthrone, pyrazoloquinazolone, quinophthalone, triarylcarbonium pigments, triphendioxazine, xanthene, thioindigo, indanthrone, isoindanthrone, anthanthrone, anthraquinone, isodibenzanthrone, triphendioxazine, quinacridone and phthalocyanine series, especially copper phthalocyanme and its nuclear halogenated derivatives
  • the organic pigments are phthalocyanines, especially copper phthalocyanines, monoazos, disazos, indanthrones, anthranthrones, quinacridones, diketopyrrolopyrroles, perylenes and carbon black.
  • Inorganic solids include: extenders and fillers such as talc, kaolin, montmorillonites including bentonites, hectorites and saponites, mica, silica, barytes and chalk, flame-retardant fillers such as alumina trihydrate, natural magnesium hydroxide; or brucite, particulate ceramic materials such as alumina, silica, zirconia, titania, silicon nitride, boron nitride, silicon carbide, boron carbide, mixed silicon-aluminium nitrides and metal titanates; particulate magnetic materials such as the magnetic oxides of transition metals, especially iron and chromium, e.g., gamma-Fe 2 03, Fe 3 0 4 , and cobalt-doped iron oxides, calcium oxide, ferrites, especially barium ferrites; and metal particles, especially metallic iron, nickel, cobalt, copper and alloys thereof.
  • extenders and fillers such as talc, kaolin,
  • Flame retardants may also include pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, hexabromocyclododecane, ammonium polyphosphate, melamine, melamine cyanurate, antimony oxide and borates; biocides or industrial microbial agents such as those mentioned in tables 2, 3, 4, 5, 6, 7, 8 and 9 of the chapter entitled "Industrial Microbial Agents" in Kirk-Othmer's Encyclopedia of Chemical Technology, Volume 13, 1981 , 3 rd Edition.
  • Examples of other inorganic pigments include metallic oxides such as titanium dioxide, rutile titanium dioxide and surface coated titanium dioxide, titanium oxides of different colours such as yellow and black, iron oxides of different colours such as yellow, red, brown and black, zinc oxide, zirconium oxides, aluminium oxide, oxymetallic compounds such as bismuth vanadate, cobalt aluminate, cobalt stannate, cobalt zincate, zinc chromate and mixed metal oxides of manganese, nickel, titanium, chromium, antimony, magnesium, cobalt, iron and aluminium, Prussian blue, vermillion, ultramarine, zinc phosphate, zinc sulphide, molybdates and chromates of calcium and zinc, metal effect pigments such as aluminium flake, copper, and copper/zinc alloy, pearlescent flake such as lead carbonate and bismuth oxychloride.
  • metallic oxides such as titanium dioxide, rutile titanium dioxide and surface coated titanium dioxide, titanium oxides of different colours such as yellow and black,
  • the organic medium present in the composition of the invention in one embodiment is a plastics material and in another embodiment an organic liquid.
  • the organic liquid may be a non-polar or a polar organic liquid.
  • polar in relation to the organic liquid, it is meant that an organic liquid is capable of forming moderate to strong bonds as described in the article entitled “A Three Dimensional Approach to Solubility” by Crowley et al. in Journal of Paint Technology, Vol. 38, 1966, at page 269.
  • Such organic liquids generally have a hydrogen bonding number of 5 or more as defined in the abovementioned article.
  • polar organic liquids are dialkyl ketones, alkyl esters of alkane carboxylic acids and alkanols, especially such liquids containing up to, and including, a total of 6 carbon atoms.
  • the polar organic liquids include dialkyl and cycloalkyl ketones, such as acetone, methyl ethyl ketone, diethyl ketone, di-isopropyl ketone, methyl isobutyl ketone, di-isobutyl ketone, methyl isoamyl ketone, methyl n-amyl ketone and cyclohexanone; alkyl esters such as methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, ethyl formate, methyl propionate, methoxy propylacetate and ethyl butyrate; glycols and glycol esters and ethers
  • solvents are alkanols, alkane carboxylic acids and esters of alkane carboxlic acids.
  • the present invention is suitable for organic liquids that are substantially non-soluble in an aqueous medium.
  • an aqueous medium such as water, glycols, glycol ethers, glycol esters and alcohols
  • small quantities of an aqueous medium may be present in the organic liquids provided the overall organic liquid is substantially non-soluble in an aqueous medium.
  • organic liquids which may be used as polar organic liquids
  • film-forming resins such as are suitable for the preparation of inks, paints and chips for use in various applications such as paints and inks.
  • resins include polyamides, such as VersamidTM and WolfamidTM, and cellulose ethers, such as ethyl cellulose and ethyl hydroxyethyl cellulose, nitrocellulose and cellulose acetate butyrate resins, including mixtures thereof.
  • paint resins include short oil alkyd/melamine-formaldehyde, polyester/melamine- formaldehyde, thermosetting acrylic/melamine-formaldehyde, long oil alkyd, medium oil alkyd, short oil alkyd, polyether polyols and multi-media resins such as acrylic and urea/aldehyde.
  • non-polar organic liquids are compounds containing aliphatic groups, aromatic groups or mixtures thereof.
  • the non-polar organic liquids include non-halogenated aromatic hydrocarbons (e.g., toluene and xylene), halogenated aromatic hydrocarbons (e.g.
  • chlorobenzene dichlorobenzene, chlorotoluene
  • non-halogenated aliphatic hydrocarbons e.g., linear and branched aliphatic hydrocarbons containing six or more carbon atoms both fully and partially saturated
  • halogenated aliphatic hydrocarbons e.g., dichloromethane, carbon tetrachloride, chloroform, trichloro ethane
  • natural non-polar organics e.g., vegetable oil, sunflower oil, rapeseed oil, linseed oil, terpenes and glycerides.
  • the organic liquid comprises at least 0.1% by weight, or 1% by weight or more of a polar organic liquid based on the total organic liquid.
  • compositions containing an organic liquid may contain other ingredients, for example, resins (where these do not already constitute the organic medium), binders, co-solvents, cross-linking agents, fluidising agents, wetting agents, anti-sedimentation agents, plasticisers, surfactants, dispersants other than the compound of the present invention, humectants, anti-foamers, anti- cratering agents, rheology modifiers, heat stabilizers, light stabilizers, UV absorbers, antioxidants, levelling agents, gloss modifiers, biocides and preservatives.
  • the compound of the present invention (the quaternised polyester salt) may be used in combination with a fluidising agent.
  • the fluidising agent may be described as a coloured acid or pigment derivative.
  • coloured acid it is meant as an organic pigment or dye containing at least one (typically one to six) acid group(s).
  • the acid groups may include sulphonic, phosphonic, or carboxylic acid groups. It is convenient to use an acid form of the organic pigment or a quaternised ammonium salt version.
  • compositions containing an organic liquid may be prepared by any of the conventional methods known for preparing dispersions.
  • the solid, the organic or aqueous medium and the dispersant may be mixed in any order, the mixture then being subjected to a mechanical treatment to reduce the particles of the solid to an appropriate size, for example, by high speed mixing, ball milling, basket milling, bead milling, gravel milling, sand grinding, attritor grinding, two roll or three roll milling, plastic milling until the dispersion is formed.
  • the solid may be treated to reduce its particle size independently or in admixture with either the organic medium or the dispersant, the other ingredient or ingredients then being added and the mixture being agitated to provide the composition.
  • the composition can also be made by grinding or milling the dry solid with the dispersant and then adding the liquid medium or mixing the solid with the dispersant in a liquid medium in a pigment flushing process.
  • composition of the present invention is particularly suited to liquid dispersions.
  • such dispersion compositions comprise:
  • component a) comprises from 0.5 to 30 parts of a pigment and such dispersions are useful as (liquid) inks, paints and millbases.
  • the organic liquid is typically volatile so that it may be readily removed from the particulate solid by a simple separation means such as evaporation.
  • the composition comprises the organic liquid.
  • the dry composition consists essentially of the dispersant of Formula (1) and the particulate solid, it typically contains at least 0.2%, at least 0.5% or at least 1.0% dispersant of a polyester quaternary salt of the invention based on weight of the particulate solid. In one embodiment, the dry composition contains not greater than 100%, not greater than 50%, not greater than 20% or not greater than 10% by weight of dispersant of a polyester quaternary salt of the invention based on the weight of the particulate solid.
  • compositions of the invention are suitable for preparing mill-bases wherein the particulate solid is milled in an organic liquid in the presence of a compound for polyester quaternary salt of the invention.
  • a mill-base comprising a particulate solid, an organic liquid and a polyester quaternary salt of the invention.
  • the mill-base contains from 20 to 70% by weight particulate solid based on the total weight of the mill-base. In one embodiment, the particulate solid is not less than 10 or not less than 20% by weight of the mill-base.
  • Such mill- bases may optionally contain a binder added either before or after milling.
  • the binder is a polymeric material capable of binding the composition on volatilisation of the organic liquid.
  • Binders are polymeric materials including natural and synthetic materials.
  • binders include poly(meth)acrylates, polystyrenics, polyesters, polyurethanes, alkyds, polysaccharides such as cellulose, and natural proteins such as casein.
  • the binder is present in the composition at more than 100% based on the amount of particulate solid, more than 200%, more than 300% or more than 400%.
  • the amount of optional binder in the mill-base can vary over wide limits but is typically not less than 10%, and often not less than 20% by weight of the continuous/liquid phase of the mill-base. In one embodiment, the amount of binder is not greater than 50% or not greater than 40% by weight of the continuous/liquid phase of the mill-base.
  • the amount of dispersant in the mill-base is dependent on the amount of particulate solid but is typically from 0.5 to 5% by weight of the mill-base.
  • Dispersions and mill-bases made from the composition of the invention are particularly suitable for use in aqueous, non-aqueous and solvent free formulations in which energy curable systems (ultra-violet, laser light, infra-red, cationic, electron beam, microwave) are employed with monomers, oligomers, etc. or a combination present in the formulation. They are particularly suitable for use in coating such as paints, varnishes, inks, other coating materials and plastics.
  • energy curable systems ultra-violet, laser light, infra-red, cationic, electron beam, microwave
  • Suitable examples include their use in low, medium and high solids paints, general industrial paints including baking, 2 component and metal coating paints such as coil and can coating, powder coating, UV-curable coating, wood varnishes; inks, such as flexographic, gravure, offset, lithographic, letterpress or relief, screen printing and printing inks for packaging printing, non impact inks such as ink jet inks, inks for ink jet printers and print varnishes such as overprint varnishes; polyol and plastisol dispersions; non-aqueous ceramic processes, especially tape-casting, gel-casting, doctor-blade, extrusion and injection moulding type processes, a further example would be in the preparation of dry ceramic powders for isostatic pressing; composites such as sheet moulding and bulk moulding compounds, resin transfer moulding, pultrusion, hand-lay-up and spray-lay-up processes, matched die moulding; construction materials like casting resins, cosmetics, personal care like nail coating, sunscreens, adhesives, to
  • Dispersant 1 12-hydroxystearic acid (6eq) is heated to 1 10°C and dimethylaminopropylamine (1 equivalent) added. The reaction is heated to 130°C and held for 4 hours. The reaction is then cooled to 100°C, and zirconium butoxide (0.57 wt %) is charged. The reaction is heated to 195°C and held for 12 hours. The resulting product, a non-quaternised polyester amine is cooled and discharged.
  • the non-quaternised polyester amine (550g, 0.283mol) (may also be referred to as polyester aminoalkyl amide), and methanol (1 17.8g, 3.68mol) are charged to a 1 -liter round bottom flange flask.
  • the flask is equipped with a reaction vessel fitted with stirrer, condenser, nitrogen line and mantle/thermocouple/temperature controller system.
  • the flask is heated to 55°C with agitation (180 rpm). After a 10 minute holding at 55°C, acetic acid (16.98g, 0.283mol) is charged to the flask.
  • Propylene oxide (29.71ml, 0.42mol) is then added subsurface via syringe pump over 3 hours 40 minutes and the reaction held for 20 hours.
  • the resultant product is then vacuum distilled, and methanol is removed under vacuum at 80°C over a period of 6 hours.
  • the resulting product is a quaternised polyester amide salt, is cooled and 543 g collected.
  • the collected material has a TAN of 6.08 mg KOH/g, a TBN of 28.25 mg KOH/g, a kinematic viscosity at 100°C of 240.7 mm /s (as measured by ASTM D445), an acetate peak by IR at 1574 cm "1 , and is 1.22% nitrogen.
  • Dispersant 2 A non-quaternised polyester amide (may also be referred to as polyester aminoalkyl amide) is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 6 moles of ricinoleic acid and 1 mole of dimethylaminopropylamine where the reaction is carried out at about 130°C and held for about 4 hours. The reaction mixture is then cooled to about 100°C and zirconium butoxide is added, in an amount so that the catalyst makes up 0.57 percent by weight of the reaction mixture. The reaction mixture is heated to about 195°C and held for about 12 hours. The resulting product is cooled and collected.
  • a quaternised polyester amide salt is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 511.7g of the non-quaternised polyester amide prepared above, 179 g of methanol, 18.1 g of acetic acid, and 28.2 ml of propylene oxide, where the reaction is carried out at about 55°C and the propylene oxide is fed in to the reaction vessel over about 17 hours. 184.5 g of diluent oil is added. 902.6 g of product is cooled and collected. The flask contents are vacuum distilled at 70°C for 2 hours until the methanol is removed.
  • TAN and TBN analysis confirms about 45% by weight quaternised polyester amide salt, with the remaining material being primarily non- quaternised polyester amide.
  • the collected material has a TAN of 9.19 mg KOH/g, a TBN of 16.77 mg KOH/g, a kinematic viscosity at 100°C of 57.31 mm /s (as measured by ASTM D445), and 0.91% nitrogen.
  • Dispersant 3 A non-quaternised polyester amide (may also be referred to as polyester aminoalkyl amide) is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 6 moles of 12-hydroxystearic acid and 1 mole of dimethylaminopropylamine where the reaction is carried out at about 130°C and held for about 4 hours. The reaction mixture is then cooled to about 100°C and zirconium butoxide is added, in an amount so that the catalyst makes up 0.57 percent by weight of the reaction mixture. The reaction mixture is heated to about 195°C and held for about 12 hours. The resulting product is cooled and collected.
  • a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 6 moles of 12-hydroxystearic acid and 1 mole of dimethylaminopropylamine where the
  • a quaternised polyester amide salt is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 511.7g of the non-quaternised polyester amide prepared above, 179 g of methanol, 18.1 g of acetic acid, and 28.2 ml of propylene oxide, where the reaction is carried out at about 55°C and the propylene oxide is fed in to the reaction vessel over about 17 hours. 184.5 g of diluent oil is added. 902.6 g of product is cooled and collected. The flask contents are vacuum distilled at 70°C for 2 hours until the methanol is removed.
  • the collected material has a TAN of 13.59 mg KOH/g, a TBN of 0 mg KOH/g, a kinematic viscosity at 100°C of 90.32 mm 2 /s (as measured by ASTM D445), and 0.81% nitrogen.
  • Dispersant 4 A non-quaternised polyester amide (may also be referred to as polyester aminoalkyl amide) is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 6 moles of 12-hydroxystearic acid and 1 mole of dimethylaminopropylamine where the reaction is carried out at about 130°C and held for about 4 hours. The reaction mixture is then cooled to about 100°C and zirconium butoxide is added, in an amount so that the catalyst makes up 0.57 percent by weight of the reaction mixture. The reaction mixture is heated to about 195°C and held for about 12 hours. The resulting product is cooled and collected.
  • a quatemised polyester amide salt is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 528.6 g of the non-quatemised polyester amide prepared above, 120 g of methanol, 16.3 g of acetic acid, and 46.3 ml of styrene oxide, where the reaction is carried out at about 55°C and the propylene oxide is fed in to the reaction vessel over about 17 hours. 186 g of diluent oil is added. The flask contents are vacuum distilled at 55°C to 100°C for 2 hours until the methanol is removed.
  • TAN, and TBN analysis confirms about 97% by weight quatemised polyester amide salt, with the remaining material being primarily non-quatemised polyester amide.
  • the collected material has a TAN of 0.51 mg KOH/g, a TBN of 20.08 mg KOH/g, a kinematic viscosity at 100°C of 245 mm 2 /s (as measured by ASTM D445), and 1.06 wt % nitrogen.
  • Dispersant 5 A non-quaternised polyester amide (may also be referred to as polyester aminoalkyl amide) is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 6 moles of 12-hydroxystearic acid and 1 mole of dimethylaminopropylamine where the reaction is carried out at about 130°C and held for about 4 hours. The reaction mixture is then cooled to about 100°C and zirconium butoxide is added, in an amount so that the catalyst makes up 0.57 percent by weight of the reaction mixture. The reaction mixture is heated to about 195°C and held for about 12 hours. The resulting product is cooled and collected.
  • a quaternised polyester amide salt is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 528.6 g of the non-quaternised polyester amide prepared above, 120 g of methanol, 16.3 g of acetic acid, and 46.3 ml of styrene oxide, where the reaction is carried out at about 55°C and the styrene oxide is fed in to the reaction vessel over about 17 hours. 186 g of diluent oil is added. The flask contents are vacuum distilled at 55°C to 100°C for 2 hours until the methanol is removed.
  • 765 g of product is cooled and collected. Of the 765 g, 468.5 g is placed in a reaction vessel with 88.6g of C20-24 alkyl sulphonic acid and the vessel is heated to 60°C and held for 2 hours. The flask contents are vacuum distilled at 60°C to 100°C for 2 hours until the acetic acid is removed.
  • TAN, FTIR and ESI-MS analysis confirms about 78% by weight quaternised polyester amide salt, with the remaining material being primarily non-quaternised polyester amide.
  • the collected material has a TAN of 5.62 mg KOH/g, a TBN of 25.87 mg KOH/g, a kinematic viscosity at 100°C of 90.9 mm 2 /s (as measured by ASTM D445), and 0.73 wt. % nitrogen.
  • Dispersant 6 A non-quaternised polyester amide (may also be referred to as polyester aminoalkyl amide) is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 6 moles of 12-hydroxystearic acid and 1 mole of dimethylaminopropylamine where the reaction is carried out at about 130°C and held for about 4 hours. The reaction mixture is then cooled to about 100°C and zirconium butoxide is added, in an amount so that the catalyst makes up 0.57 percent by weight of the reaction mixture. The reaction mixture is heated to about 195°C and held for about 12 hours. The resulting product is cooled and collected.
  • a quatemised polyester amide salt is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 600 g of the non-quaternised polyester amide prepared above, 120 g of 2-ethylhexanol, 18.5 g of acetic acid, and 32.3 ml of propylene oxide, where the reaction is carried out at about 90°C and the propylene oxide is fed in to the reaction vessel over about 3.5 hours. The reaction mixture is then held at temperature for about 3 hours.
  • TAN, FTIR and ESI-MS analysis confirms to be about 80% by weight quatemised polyester amide salt, with the remaining material being primarily non-quatemised polyester amide.
  • the collected material has a TAN of 1.26 mg KOH/g, a TBN of 23.82 mg KOH/g, a kinematic viscosity at 100°C of 28.58 mm /s (as measured by ASTM D445), an acetate peak by IR at 1574 cm "1 , and is 1.22% nitrogen.
  • Dispersant 7 A non-quatemised polyester amide (may also be referred to as polyester aminoalkyl amide) is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 1300 g of ricinoleic acid and 73.5 g of dimethylaminopropylamine where the reaction is carried out at about 130°C, the amine is added drop wise over about 8 minutes, and the reaction mixture held for about 4 hours. The reaction mixture is then cooled to about 100°C and 7.8 g of zirconium butoxide is added. The reaction mixture is heated to about 195°C and held for about 17 hours.
  • a quatemised polyester amide salt is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 600 g of the non-quaternised polyester amide prepared above, 123 g of 2-ethylhexanol, 18.9 g of acetic acid, and 33.1 ml of propylene oxide, where the reaction is carried out at about 90°C and the propylene oxide is fed in to the reaction vessel over about 3.5 hours. The reaction mixture is then held at temperature for about 3 hours.
  • TAN, FTIR and ESI-MS analysis confirms to be about 70% by weight quatemised polyester amide salt, with the remaining material being primarily non-quaternised polyester amide.
  • the collected material has a TAN of 0 mg KOH/g, a TBN of 23.14 mg KOH/g, a kinematic viscosity at 100°C of 47.0 mm /s (as measured by ASTM D445), an acetate peak by IR at 1574 cm "1 .
  • Dispersant 8 12-hydroxystearic acid (6eq) is heated to 1 10°C and dimethylaminopropylamine (1 equivalent) added. The reaction is heated to 130°C and held for 4 hours. The reaction is then cooled to 100°C, and zirconium butoxide (0.57 wt %) is charged. The reaction is heated to 195°C and held for 12 hours. The resulting product, a non-quaternised polyester amine is cooled and discharged.
  • the non-quaternised polyester amine (614.3 g) (may also be referred to as polyester aminoalkyl amide), and methanol (1 17.8g, 3.68mol) are charged to a 1 - liter round bottom flange flask.
  • the flask is equipped with a reaction vessel fitted with stirrer, condenser, nitrogen line and mantle/thermocouple/temperature controller system.
  • the flask is heated to 75°C with agitation (280 rpm). After a 10 minute holding at 75°C, acetic acid (18.9 g) and water (5.7 g) are charged to the flask.
  • Propylene oxide (33 ml) is then added subsurface via syringe pump over 3 hours and the reaction held for 4 hours.
  • the resultant product is then vacuum distilled, and methanol is removed under vacuum at 80°C over a period of 6 hours.
  • the resulting product is a quatemised polyester amide salt, is cooled and 543g collected.
  • the collected material has a TAN of 13.6 mg KOH/g, a TBN of 27.27 mg KOH/g, a kinematic viscosity at 100°C of 209.0 mm 2 /s (as measured by ASTM D445), an acetate peak by IR at 1574 cm "1 , and is 1.36% nitrogen.
  • CE1 is a comparative dispersant based on Example 2 of GB 1 373 660.
  • CE2 is a comparative dispersant based on Example 5 of US 4,224,212.
  • Dispersant Evaluation Test 1 A series of blue mill bases are prepared utilising Dispersants 1 to 8, CE1 and CE2. The mill bases are prepared by dissolving a dispersant 1 to 8 (or CE1 or CE2) (0.55 g) in a solvent mixture of 6.5 g toluene. Glass beads (3mm, 17 parts) and Monastral Blue BG (ex. Heubach, Pigment Blue 2.8 g), 0.15 g of Solsperse®5000 (a fluidising agent) are added and the mixture is shaken on a horizontal shaker for 16 hours.
  • Comparative Example is a mill base not containing dispersant and it has a milling grade of E.
  • compositions of the invention may be capable of providing at least one of improved gloss, reduced haze, improved flocculation, resistance, increased colour strength improved flow characteristics, and increased stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Polyamides (AREA)

Abstract

The invention relates to a composition containing a particulate solid; an organic medium; and a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof. The invention further relates to the use of the product as a dispersant. The invention further relates to the use of the dispersant in media, such as inks, mill bases, plastics and paints.

Description

Polyester Quaternary Salt and Compositions Thereof
FIELD OF INVENTION
[0001] The invention relates to a composition containing a particulate solid; an organic medium; and a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof. The invention further relates to the use of the product as a dispersant. The invention further relates to the use of the dispersant in media, such as inks, mill bases, plastics and paints.
BACKGROUND OF THE INVENTION
[0002] Many formulations such as inks, paints, mill bases, and plastics materials require effective dispersants for uniformly distributing a particulate solid in an organic medium. The organic medium may vary from a polar to non-polar organic medium. Dispersants containing terminal basic groups such as poly(lower alkylene)imine chains are well known and are generally prepared by reaction of the polyimine with polyester chains containing terminal acid groups, the reaction results in a mixture of amide and salt forms. However, many of these dispersants have limited performance towards viscosity and stability properties, which when incorporated into printing inks or paints, give the inks and paints with poor flow characteristics.
[0003] U.S. Patent No. 5,000,792 discloses polyesteramine dispersants obtainable by reacting 2 parts of polyhydroxycarboxylic acids with 1 part of dialkylenetriamine.
[0004] British Patent GB 1 ,373,660 discloses polyesteramine dispersants obtainable by reaction of polyhydroxycarboxylic acids with diamines especially alkylenediamines and their salts thereof.
[0005] European Patent Application EP 1 896 546 discloses a composition comprising (i) a particulate solid; (ii) an organic medium; and (iii) a salt of a hydrocarbyl-substituted acylating agent. SUMMARY OF THE INVENTION
[0006] The composition described herein may be capable of providing at least one of improved gloss, reduced haze, improved flocculation, resistance, increased colour strength, improved flow characteristics, and increased stability.
[0007] In one embodiment, the invention provides a composition comprising a particulate solid; an organic medium (typically an organic liquid); and a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
[0008] In one embodiment, the invention provides a mill base composition comprising a particulate solid, an organic medium (typically a an organic liquid) and a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
[0009] In one embodiment, the invention provides a paint or ink composition comprising a particulate solid, an organic liquid, a binder and a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
[0010] In one embodiment, the invention provides for the use of a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof as a dispersant in composition disclosed herein. [0011] The polyester quaternary salt may have an acid value in the range of 0 to 20, or 0 to 15 mg KOH/g.
DETAILED DESCRIPTION OF THE INVENTION
[0012] The present invention provides a composition and use as disclosed herein above.
The Polyester Quaternary Ammonium Salt
[0013] The polyester quaternary salt of the invention includes quaternised polyester amine salts. The additives may also be described as quaternary polyester salts. The additives of the invention may be described as the reaction product of: a polyester containing a tertiary amino group; and a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen. The quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof. The Non-Quaternised Polyester
[0014] The polyester containing a tertiary amino group used in the preparation of the additives of the invention may also be described as a non-quaternised polyester containing a tertiary amino group.
[0015] In some embodiments, the polyester may be the reaction product of a fatty carboxylic acid containing at least one hydroxyl group and a compound having an oxygen or nitrogen atom capable of condensing with said acid and further having a tertiary amino group. Suitable fatty carboxylic acids that may be used in the preparation of the polyesters described above may be represented by the formula:
Figure imgf000004_0001
(I)
where R1 may be a hydrogen or a hydrocarbyl group containing from 1 to 20 carbon atoms and R may be a hydrocarbylene group containing from 1 to 20 carbon atoms. In some embodiments R1 contains from 1 to 12, 2 to 10, 4 to 8 or even 6 carbon atoms, and R contains from 2 to 16, 6 to 14, 8 to 12, or even 10 carbon atoms.
[0016] In some embodiments, the fatty carboxylic acid used in the preparation of the polyester may be 12-hydroxystearic acid, ricinoleic acid, 12-hydroxy dodecanoic acid, 5 -hydroxy dodecanoic acid, 5 -hydroxy decanoic acid, 4-hydroxy decanoic acid, 10-hydroxy undecanoic acid, or combinations thereof.
[0017] In some embodiments, the compound having an oxygen or nitrogen atom capable of condensing with said acid and further having a tertiary amino group may be represented by the formula:
R3 H
N X1
R4 R5'
(II)
wherein R3 may be a hydrocarbyl group containing from 1 to 10 carbon atoms; R4 may be a hydrocarbyl group containing from 1 to 10 carbon atoms; R5 may be a hydrocarbylene group containing from 1 to 20 carbon atoms; and X1 may be O or NR6 where R6 may be a hydrogen or a hydrocarbyl group containing from 1 to 10 carbon atoms. In some embodiments, R contains from 1 to 6, 1 to 2, or even 1 carbon atom, R4 contains from 1 to 6, 1 to 2, or even 1 carbon atom, R5 contains from 2 to 12, 2 to 8 or even 3 carbon atoms, and R6 contains from 1 to 8, or 1 to 4 carbon atoms. In some of these embodiments, formula (II) becomes:
R6
Figure imgf000005_0001
or
R3
N NH,
R4' R5
(Il-b)
wherein the various definitions provided above still apply.
[0018] Examples of nitrogen or oxygen containing compounds capable condensing with the acylating agents, which also have a tertiary amino group, compounds that may be alkylated into such compounds, include but are not limited to: 1 -aminopiperidine, l -(2-aminoethyl)piperidine, l -(3-aminopropyl)-2-pipecoline, 1 -methyl-(4-methylamino)piperidine, 4-(l -pyrrolidinyl)piperidine, 1 -(2- aminoethyl)pyrrolidine, 2 -(2 -amino ethyl) -1 -methylpyrrolidine, N,N- diethylethylenediamine, Ν,Ν-dimethylethylenediamine, N,N- dibutylethylenediamine, Ν,Ν-diethyl- 1 ,3-diaminopropane, N,N-dimethyl- 1 ,3- diaminopropane, Ν,Ν,Ν ' -trimethylethylenedi amine, N,N-dimethyl-N ' - ethyl ethylenediamine, N,N-diethyl-N' -methyl ethylenediamine, Ν,Ν,Ν'- triethylethylenediamine, 3-dimethylaminopropylamine, 3- diethylaminopropylamine, 3-dibutylaminopropylamine, N,N ,N'-trimethy 1-1 ,3 - prop anedi amine, N,N,2,2-tetramethyl-l ,3-propanediamine, 2-amino-5- diethylaminopentane, Ν,Ν,Ν' ,Ν' -tetraethyldiethylenetriamine, 3,3 ' -diamino-N- methyldipropylamine, 3,3 '-iminobis(N,N-dimethylpropylamine), or combinations thereof. In such embodiments, the resulting additive includes a quaternary ammonium amide salt, containing an amide group and a quaternary ammonium salt.
[0019] The nitrogen or oxygen containing compounds may further include aminoalkyl substituted heterocyclic compounds such as l -(3- aminopropyl)imidazole and 4-(3-aminopropyl)morpholine.
[0020] Another type of nitrogen or oxygen containing compounds capable of condensing with the acylating agent and having a tertiary amino group, in some embodiments after further alkylation, include alkanolamines including but not limited to triethanolamine, Ν,Ν-dimethylaminopropanol, N,N- diethylaminopropanol, Ν,Ν-diethylaminobutanol, triisopropanolamine, l-[2- hydroxyethyljpiperidine, 2-[2-(dimethylamine)ethoxy]-ethanol, N- ethyldiethanolamine, N-methyldiethanol amine, N-butyldiethanolamine, N,N- diethylaminoethanol, Ν,Ν-dim ethyl aminoethanol, 2-dimethylamino-2-methyl- l- propanol. In embodiments where alkanolamines and/or similar materials are used, the resulting additive includes a quaternary ammonium ester salt, containing an ester group and a quaternary ammonium salt.
[0021] In one embodiment, the nitrogen or oxygen containing compound may be triisopropanolamine, l-[2-hydroxyethyl]piperidine, 2-[2-(dimethylamino) ethoxy]- ethanol, N-ethyldiethanolamine, N-methyldiethanolamine, N-butyldiethanolamine, N ,N - diethyl amino ethano 1 , N ,N - dim ethyl amino ethano 1 , 2 - dimethyl amino -2 -methyl - 1 -propanol, or combinations thereof.
[0022] In some embodiments, the compound having an oxygen or nitrogen atom capable of condensing with said acid and further having a tertiary amino group comprises N,N-diethylethylenediamine, Ν,Ν-dimethylethylenediamine, N,N- dibutylethylenediamine, N,N-diethyl-l ,3-diaminopropane, N,N- dimethylaminoethanol, Ν,Ν-diethylaminoethanol, or combinations thereof. In one embodiment, the compound having an oxygen or nitrogen atom capable of condensing with said acid and further having a tertiary amino group may be 3- dimethylaminopropylamine.
[0023] The quaternised polyester salt (may be a quaternised polyester amide) (may also be referred to as polyester aminoalkyl amide) salt. In such embodiments, the polyester containing a tertiary amino group used to prepare the quaternised polyester salt may be a polyester amide containing a tertiary amino group. In some of these embodiments, the amine or aminoalcohol may be reacted with a monomer and then the resulting material may be polymerized with additional monomer, resulting in the desired polyester amide which may then be quaternised.
[0024] In some embodiments, the quaternised polyester salt includes a cation represented by the following formula:
Figure imgf000007_0001
(III)
wherein R1 may be a hydrogen or a hydrocarbyl group containing from 1 to 20 carbon atoms and R may be a hydrocarbylene group containing from 1 to 20 carbon atoms; R may be a hydrocarbyl group containing from 1 to 10 carbon atoms; R4 may be a hydrocarbyl group containing from 1 to 10 carbon atoms; R5 may be a hydrocarbylene group containing from 1 to 20 carbon atoms; R may be a hydrogen or a hydrocarbyl group containing from 1 to 10 carbon atoms; n may be a number from 1 to 10; R7 may be hydrogen, a hydrocarbonyl group containing from 1 to 22 carbon atoms, or a hydrocarbyl group containing from 1 to 22 carbon atoms; and X may be a group derived from the quaternising agent. In some embodiments, R6 may be hydrogen.
[0025] As above, in some embodiments R1 contains from 1 to 12, 2 to 10, 4 to 8 or even 6 carbon atoms, and R contains from 2 to 16, 6 to 14, 8 to 12, or even 10 carbon atoms, R3 contains from 1 to 6, 1 to 2, or even 1 carbon atom, R4 contains from 1 to 6, 1 to 2, or even 1 carbon atom, R5 contains from 2 to 12, 2 to 8 or even 3 carbon atoms, and R6 contains from 1 to 8, or 1 to 4 carbon atoms. In any of these embodiments, n may be from 2 to 9, or 3 to 7, and R7 may contain from 6 to 22, or 8 to 20 carbon atoms.
[0026] In these embodiments, the quaternised polyester salt may be essentially capped with a C I -22, or a C8-20, fatty acid. Examples of suitable acids include oleic acid, palmitic acid, stearic acid, erucic acid, lauric acid, 2-ethylhexanoic acid, 9, 1 1 -linoleic acid, 9,12-linoleic acid, 9, 12, 15-linolenic acid, abietic acid, or combinations thereof.
[0027] The number average molecular weight (Mn) of the quaternised polyester salts of the invention may be from 500 to 3000, or from 600 to 2500.
[0028] The polyester useful in the present invention may be obtained/obtainable by heating one or more hydroxycarboxylic acids or a mixture of the hydroxycarboxylic acid and a carboxylic acid, optionally in the presence of an esterification catalyst. The hydroxycarboxylic acids can have the formula HO-X- COOH wherein X may be a divalent saturated or unsaturated aliphatic radical containing at least 8 carbon atoms and in which there are at least 4 carbon atoms between the hydroxy and carboxylic acid groups, or from a mixture of such a hydroxycarboxylic acid and a carboxylic acid which is free from hydroxy groups. This reaction may be carried out at a temperature in the region of 160°C to 200 °C, until the desired molecular weight has been obtained. The course of the esterification may be followed by measuring the acid value of the product, with the desired polyester, in some embodiments, having an acid value in the range of 10 to 100 mg KOH/g or in the range of 18 to 50 mg KOH/g. The indicated acid value range of 10 to 100 mg KOH/g is equivalent to a number average molecular weight range of 5600 to 560. The water formed in the esterification reaction may be removed from the reaction medium, and this may be conveniently done by passing a stream of nitrogen over the reaction mixture or, by carrying out the reaction in the presence of a solvent, such as toluene or xylene, and distilling off the water as it is formed.
[0029] The polyester may be reacted with amine or aminoalcohol of formula (II) at a temperature in the range of 1 10 to 200°C until the desired polyester amide or polyester has an acid value in the range of 0 to 15 mg KOH/g.
[0030] The resulting polyester can then be isolated in a conventional manner; however, when the reaction is carried out in the presence of an organic solvent whose presence would not be harmful in the subsequent application, the resulting solution of the polyester may be used.
[0031] In the said hydroxycarboxylic acids, the radical represented by X may contain from 12 to 20 carbon atoms, optionally where there are between 8 and 14 carbon atoms between the carboxylic acid and hydroxy groups. In some embodiments, the hydroxy group may be a secondary hydroxy group.
[0032] Specific examples of such hydroxycarboxylic acids include ricinoleic acid, a mixture of 9- and 10-hydroxystearic acids (obtained by sulphation of oleic acid followed by hydrolysis), and 12-hydroxystearic acid, and especially the commercially available hydrogenated castor oil fatty acid which contains in addition to 12-hydroxystearic acid minor amounts of stearic acid and palmitic acid.
[0033] The carboxylic acids which may be used in conjunction with the hydroxycarboxylic acids to obtain these polyesters are preferably carboxylic acids of saturated or unsaturated aliphatic compounds, particularly alkyl and alkenyl carboxylic acids containing a chain of from 8 to 20 carbon atoms. As examples of such acids, there may be mentioned lauric acid, palmitic acid, stearic acid and oleic acid.
[0034] In one embodiment, the polyester may be derived from commercial 12- hydroxy-stearic acid having a number average molecular weight of about 1600. Polyesters such as this are described in greater detail in U.K. Patent Specification Nos. 1 ,373,660 and 1 ,342,746.
The Quaternising Agent
[0035] The quaternised salt of the present invention may be formed when the non-quaternised compounds described above are reacted with a quaternising agent. The quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
[0036] The hydrocarbyl epoxide may be represented by the following formula, in combination with an acid:
Figure imgf000010_0001
from 1 to 50 carbon atoms. Examples of hydrocarbyl epoxides include: ethylene oxide, propylene oxide, butylene oxide, styrene oxide and combinations thereof. In one embodiment, the quaternising agent does not contain any styrene oxide.
[0037] In some embodiments, the acid used with the hydrocarbyl epoxide may be a separate component, such as acetic acid. In other embodiments, for example, when the hydrocarbyl acylating agent may be a dicarboxylic acylating agent, no separate acid component is needed. In such embodiments, the polyester quaternary salt may be prepared by combining reactants which are essentially free of, or even free of, a separate acid component, such as acetic acid, and rely on the acid group of the hydrocarbyl acylating agent instead. In other embodiments, a small amount of an acid component may be present, but at <0.2 or even <0.1 moles of acid per mole of hydrocarbyl acylating agent.
[0038] In some embodiments, the quaternising agent of the invention does not contain any substituent group that contains more than 20 carbon atoms. In other words, in some embodiments, the long substituent group that allows for the resulting additive to be organic soluble and thus useful for the purposes of this invention is not provided by the quaternising agent but instead is brought to the additive by the non-quaternised compound described above.
[0039] The polyester amide or polyester having an amine functionality is reacted with quaternising agent at a temperature in the range of 30°C to 100°C to produce a polyester quaternary salt with an acid value in the range of 0 to 15 mg KOH/g.
[0040] In certain embodiments, the molar ratio of the polyester amide or polyester having an amine functionality to quaternising agent to give the polyester quaternary salt may be 1 :0.1 to 2, or 1 : 1 to 1.5, or 1 : 1 to 1.3.
Industrial Application
[0041] In one embodiment, the polyester quaternary salt as described herein is a processing aid or dispersant.
[0042] The particulate solid present in the composition may be any inorganic or organic solid material.
[0043] The solid particulate may be an organic pigment, an inorganic pigment, an organic filler, an inorganic filler, a flame retardant, or mixtures thereof.
[0044] The solid particulate may be an inorganic pigment, an inorganic filler, a flame retardant, or mixtures thereof. In one embodiment, the particulate solid is a pigment.
[0045] The solid particulate may an organic pigment, an organic filler, or mixtures thereof.
[0046] In one embodiment, the particulate solid is an organic pigment from any of the recognised classes of pigments described, for example, in the Third Edition of the Colour Index (1971) and subsequent revisions of, and supplements thereto, under the chapter headed "Pigments".
[0047] Examples of organic pigments are those from the azo, disazo, trisazo, condensed azo, azo lakes, naphthol pigments, anthrapyrimidine, benzimidazolone, carbazole, diketopyrrolopyrrole, flavanthrone, indigoid pigments, isoindolinone, isoindoline, isoviolanthrone, metal complex pigments, oxazine, perylene, perinone, pyranthrone, pyrazoloquinazolone, quinophthalone, triarylcarbonium pigments, triphendioxazine, xanthene, thioindigo, indanthrone, isoindanthrone, anthanthrone, anthraquinone, isodibenzanthrone, triphendioxazine, quinacridone and phthalocyanine series, especially copper phthalocyanme and its nuclear halogenated derivatives, and also lakes of acid, basic and mordant dyes, and carbon black. Carbon black, although strictly inorganic, behaves more like an organic pigment in its dispersing properties. In one embodiment, the organic pigments are phthalocyanines, especially copper phthalocyanines, monoazos, disazos, indanthrones, anthranthrones, quinacridones, diketopyrrolopyrroles, perylenes and carbon black.
[0048] Inorganic solids include: extenders and fillers such as talc, kaolin, montmorillonites including bentonites, hectorites and saponites, mica, silica, barytes and chalk, flame-retardant fillers such as alumina trihydrate, natural magnesium hydroxide; or brucite, particulate ceramic materials such as alumina, silica, zirconia, titania, silicon nitride, boron nitride, silicon carbide, boron carbide, mixed silicon-aluminium nitrides and metal titanates; particulate magnetic materials such as the magnetic oxides of transition metals, especially iron and chromium, e.g., gamma-Fe203, Fe304, and cobalt-doped iron oxides, calcium oxide, ferrites, especially barium ferrites; and metal particles, especially metallic iron, nickel, cobalt, copper and alloys thereof. Flame retardants may also include pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, hexabromocyclododecane, ammonium polyphosphate, melamine, melamine cyanurate, antimony oxide and borates; biocides or industrial microbial agents such as those mentioned in tables 2, 3, 4, 5, 6, 7, 8 and 9 of the chapter entitled "Industrial Microbial Agents" in Kirk-Othmer's Encyclopedia of Chemical Technology, Volume 13, 1981 , 3rd Edition.
[0049] Examples of other inorganic pigments include metallic oxides such as titanium dioxide, rutile titanium dioxide and surface coated titanium dioxide, titanium oxides of different colours such as yellow and black, iron oxides of different colours such as yellow, red, brown and black, zinc oxide, zirconium oxides, aluminium oxide, oxymetallic compounds such as bismuth vanadate, cobalt aluminate, cobalt stannate, cobalt zincate, zinc chromate and mixed metal oxides of manganese, nickel, titanium, chromium, antimony, magnesium, cobalt, iron and aluminium, Prussian blue, vermillion, ultramarine, zinc phosphate, zinc sulphide, molybdates and chromates of calcium and zinc, metal effect pigments such as aluminium flake, copper, and copper/zinc alloy, pearlescent flake such as lead carbonate and bismuth oxychloride.
[0050] The organic medium present in the composition of the invention in one embodiment is a plastics material and in another embodiment an organic liquid. The organic liquid may be a non-polar or a polar organic liquid. By the term "polar" in relation to the organic liquid, it is meant that an organic liquid is capable of forming moderate to strong bonds as described in the article entitled "A Three Dimensional Approach to Solubility" by Crowley et al. in Journal of Paint Technology, Vol. 38, 1966, at page 269. Such organic liquids generally have a hydrogen bonding number of 5 or more as defined in the abovementioned article.
[0051] In one embodiment, polar organic liquids are dialkyl ketones, alkyl esters of alkane carboxylic acids and alkanols, especially such liquids containing up to, and including, a total of 6 carbon atoms. As examples of the polar organic liquids include dialkyl and cycloalkyl ketones, such as acetone, methyl ethyl ketone, diethyl ketone, di-isopropyl ketone, methyl isobutyl ketone, di-isobutyl ketone, methyl isoamyl ketone, methyl n-amyl ketone and cyclohexanone; alkyl esters such as methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, ethyl formate, methyl propionate, methoxy propylacetate and ethyl butyrate; glycols and glycol esters and ethers, such as ethylene glycol, 2-ethoxyethanol, 3-methoxypropylpropanol, 3-ethoxypropylpropanol, 2-butoxyethyl acetate, 3-methoxypropyl acetate, 3-ethoxypropyl acetate and 2-ethoxyethyl acetate; alkanols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and isobutanol (also known as 2-methylpropanol), terpineol and dialkyl and cyclic ethers such as diethyl ether and tetrahydrofuran. In one embodiment, solvents are alkanols, alkane carboxylic acids and esters of alkane carboxlic acids. In one embodiment, the present invention is suitable for organic liquids that are substantially non-soluble in an aqueous medium. Furthermore, a person skilled in the art will appreciate that small quantities of an aqueous medium (such as water, glycols, glycol ethers, glycol esters and alcohols) may be present in the organic liquids provided the overall organic liquid is substantially non-soluble in an aqueous medium.
[0052] Examples of organic liquids, which may be used as polar organic liquids, are film-forming resins such as are suitable for the preparation of inks, paints and chips for use in various applications such as paints and inks. Examples of such resins include polyamides, such as Versamid™ and Wolfamid™, and cellulose ethers, such as ethyl cellulose and ethyl hydroxyethyl cellulose, nitrocellulose and cellulose acetate butyrate resins, including mixtures thereof. Examples of paint resins include short oil alkyd/melamine-formaldehyde, polyester/melamine- formaldehyde, thermosetting acrylic/melamine-formaldehyde, long oil alkyd, medium oil alkyd, short oil alkyd, polyether polyols and multi-media resins such as acrylic and urea/aldehyde.
[0053] In one embodiment, non-polar organic liquids are compounds containing aliphatic groups, aromatic groups or mixtures thereof. The non-polar organic liquids include non-halogenated aromatic hydrocarbons (e.g., toluene and xylene), halogenated aromatic hydrocarbons (e.g. chlorobenzene, dichlorobenzene, chlorotoluene), non-halogenated aliphatic hydrocarbons (e.g., linear and branched aliphatic hydrocarbons containing six or more carbon atoms both fully and partially saturated), halogenated aliphatic hydrocarbons (e.g., dichloromethane, carbon tetrachloride, chloroform, trichloro ethane) and natural non-polar organics (e.g., vegetable oil, sunflower oil, rapeseed oil, linseed oil, terpenes and glycerides).
[0054] In one embodiment, the organic liquid comprises at least 0.1% by weight, or 1% by weight or more of a polar organic liquid based on the total organic liquid.
[0055] If desired, the compositions containing an organic liquid may contain other ingredients, for example, resins (where these do not already constitute the organic medium), binders, co-solvents, cross-linking agents, fluidising agents, wetting agents, anti-sedimentation agents, plasticisers, surfactants, dispersants other than the compound of the present invention, humectants, anti-foamers, anti- cratering agents, rheology modifiers, heat stabilizers, light stabilizers, UV absorbers, antioxidants, levelling agents, gloss modifiers, biocides and preservatives. [0056] The compound of the present invention (the quaternised polyester salt) may be used in combination with a fluidising agent. The fluidising agent may be described as a coloured acid or pigment derivative. By the term "coloured acid", it is meant as an organic pigment or dye containing at least one (typically one to six) acid group(s). The acid groups may include sulphonic, phosphonic, or carboxylic acid groups. It is convenient to use an acid form of the organic pigment or a quaternised ammonium salt version.
[0057] The compositions containing an organic liquid may be prepared by any of the conventional methods known for preparing dispersions. Thus, the solid, the organic or aqueous medium and the dispersant may be mixed in any order, the mixture then being subjected to a mechanical treatment to reduce the particles of the solid to an appropriate size, for example, by high speed mixing, ball milling, basket milling, bead milling, gravel milling, sand grinding, attritor grinding, two roll or three roll milling, plastic milling until the dispersion is formed. Alternatively, the solid may be treated to reduce its particle size independently or in admixture with either the organic medium or the dispersant, the other ingredient or ingredients then being added and the mixture being agitated to provide the composition. The composition can also be made by grinding or milling the dry solid with the dispersant and then adding the liquid medium or mixing the solid with the dispersant in a liquid medium in a pigment flushing process.
[0058] The composition of the present invention is particularly suited to liquid dispersions. In one embodiment, such dispersion compositions comprise:
(a) from 0.5 to 30 parts of a particulate solid;
(b) from 0.5 to 30 parts of a compound of Formula (1); and
(c) from 40 to 99 parts of an organic liquid and/or water; wherein all relative parts are by weight and the amounts (a) +(b) +(c) = 100.
[0059] In one embodiment, component a) comprises from 0.5 to 30 parts of a pigment and such dispersions are useful as (liquid) inks, paints and millbases.
[0060] If a composition is required comprising a particulate solid and a dispersant of a polyester quaternary salt of the invention in dry form, the organic liquid is typically volatile so that it may be readily removed from the particulate solid by a simple separation means such as evaporation. In one embodiment, the composition comprises the organic liquid.
[0061] If the dry composition consists essentially of the dispersant of Formula (1) and the particulate solid, it typically contains at least 0.2%, at least 0.5% or at least 1.0% dispersant of a polyester quaternary salt of the invention based on weight of the particulate solid. In one embodiment, the dry composition contains not greater than 100%, not greater than 50%, not greater than 20% or not greater than 10% by weight of dispersant of a polyester quaternary salt of the invention based on the weight of the particulate solid.
[0062] As disclosed hereinbefore, the compositions of the invention are suitable for preparing mill-bases wherein the particulate solid is milled in an organic liquid in the presence of a compound for polyester quaternary salt of the invention.
[0063] Thus, according to a still further aspect of the invention, there is provided a mill-base comprising a particulate solid, an organic liquid and a polyester quaternary salt of the invention.
[0064] Typically, the mill-base contains from 20 to 70% by weight particulate solid based on the total weight of the mill-base. In one embodiment, the particulate solid is not less than 10 or not less than 20% by weight of the mill-base. Such mill- bases may optionally contain a binder added either before or after milling.
[0065] The binder is a polymeric material capable of binding the composition on volatilisation of the organic liquid.
[0066] Binders are polymeric materials including natural and synthetic materials. In one embodiment, binders include poly(meth)acrylates, polystyrenics, polyesters, polyurethanes, alkyds, polysaccharides such as cellulose, and natural proteins such as casein. In one embodiment, the binder is present in the composition at more than 100% based on the amount of particulate solid, more than 200%, more than 300% or more than 400%.
[0067] The amount of optional binder in the mill-base can vary over wide limits but is typically not less than 10%, and often not less than 20% by weight of the continuous/liquid phase of the mill-base. In one embodiment, the amount of binder is not greater than 50% or not greater than 40% by weight of the continuous/liquid phase of the mill-base.
[0068] The amount of dispersant in the mill-base is dependent on the amount of particulate solid but is typically from 0.5 to 5% by weight of the mill-base.
[0069] Dispersions and mill-bases made from the composition of the invention are particularly suitable for use in aqueous, non-aqueous and solvent free formulations in which energy curable systems (ultra-violet, laser light, infra-red, cationic, electron beam, microwave) are employed with monomers, oligomers, etc. or a combination present in the formulation. They are particularly suitable for use in coating such as paints, varnishes, inks, other coating materials and plastics. Suitable examples include their use in low, medium and high solids paints, general industrial paints including baking, 2 component and metal coating paints such as coil and can coating, powder coating, UV-curable coating, wood varnishes; inks, such as flexographic, gravure, offset, lithographic, letterpress or relief, screen printing and printing inks for packaging printing, non impact inks such as ink jet inks, inks for ink jet printers and print varnishes such as overprint varnishes; polyol and plastisol dispersions; non-aqueous ceramic processes, especially tape-casting, gel-casting, doctor-blade, extrusion and injection moulding type processes, a further example would be in the preparation of dry ceramic powders for isostatic pressing; composites such as sheet moulding and bulk moulding compounds, resin transfer moulding, pultrusion, hand-lay-up and spray-lay-up processes, matched die moulding; construction materials like casting resins, cosmetics, personal care like nail coating, sunscreens, adhesives, toners, plastics materials and electronic materials such as coating formulations for colour filter systems in displays including OLED devices, liquid crystal displays and electrophoretic displays, glass coating including optical fibre coating, reflective coating or anti-reflective coating, conductive and magnetic inks and coating. They are useful in the surface modification of pigments and fillers to improve the dispersibility of dry powders used in the above applications. Further examples of coating materials are given in Bodo Muller, Ulrich Poth, Lackformulierung und Lackrezeptur, Lehrbuch fr Ausbildung und Praxis, Vincentz Verlag, Hanover (2003) and in P.G.Garrat, Strahlenhartung, Vincentz Verlag, Hanover (1996). Examples of printing ink formulations are given in E.W. Flick, Printing Ink and Overprint Varnish Formulations - Recent Developments, Noyes Publications, Park Ridge NJ, (1990) and subsequent editions.
[0070] The following examples provide illustrations of the invention. These examples are non exhaustive and are not intended to limit the scope of the invention.
EXAMPLES
[0071] Dispersant 1 : 12-hydroxystearic acid (6eq) is heated to 1 10°C and dimethylaminopropylamine (1 equivalent) added. The reaction is heated to 130°C and held for 4 hours. The reaction is then cooled to 100°C, and zirconium butoxide (0.57 wt %) is charged. The reaction is heated to 195°C and held for 12 hours. The resulting product, a non-quaternised polyester amine is cooled and discharged.
[0072] The non-quaternised polyester amine (550g, 0.283mol) (may also be referred to as polyester aminoalkyl amide), and methanol (1 17.8g, 3.68mol) are charged to a 1 -liter round bottom flange flask. The flask is equipped with a reaction vessel fitted with stirrer, condenser, nitrogen line and mantle/thermocouple/temperature controller system. The flask is heated to 55°C with agitation (180 rpm). After a 10 minute holding at 55°C, acetic acid (16.98g, 0.283mol) is charged to the flask. Propylene oxide (29.71ml, 0.42mol) is then added subsurface via syringe pump over 3 hours 40 minutes and the reaction held for 20 hours. The resultant product is then vacuum distilled, and methanol is removed under vacuum at 80°C over a period of 6 hours. The resulting product, is a quaternised polyester amide salt, is cooled and 543 g collected. The collected material has a TAN of 6.08 mg KOH/g, a TBN of 28.25 mg KOH/g, a kinematic viscosity at 100°C of 240.7 mm /s (as measured by ASTM D445), an acetate peak by IR at 1574 cm"1, and is 1.22% nitrogen.
[0073] Dispersant 2: A non-quaternised polyester amide (may also be referred to as polyester aminoalkyl amide) is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 6 moles of ricinoleic acid and 1 mole of dimethylaminopropylamine where the reaction is carried out at about 130°C and held for about 4 hours. The reaction mixture is then cooled to about 100°C and zirconium butoxide is added, in an amount so that the catalyst makes up 0.57 percent by weight of the reaction mixture. The reaction mixture is heated to about 195°C and held for about 12 hours. The resulting product is cooled and collected.
[0074] A quaternised polyester amide salt is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 511.7g of the non-quaternised polyester amide prepared above, 179 g of methanol, 18.1 g of acetic acid, and 28.2 ml of propylene oxide, where the reaction is carried out at about 55°C and the propylene oxide is fed in to the reaction vessel over about 17 hours. 184.5 g of diluent oil is added. 902.6 g of product is cooled and collected. The flask contents are vacuum distilled at 70°C for 2 hours until the methanol is removed. 181.6g of diluent oil is added. TAN and TBN analysis confirms about 45% by weight quaternised polyester amide salt, with the remaining material being primarily non- quaternised polyester amide. The collected material has a TAN of 9.19 mg KOH/g, a TBN of 16.77 mg KOH/g, a kinematic viscosity at 100°C of 57.31 mm /s (as measured by ASTM D445), and 0.91% nitrogen.
[0075] Dispersant 3 : A non-quaternised polyester amide (may also be referred to as polyester aminoalkyl amide) is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 6 moles of 12-hydroxystearic acid and 1 mole of dimethylaminopropylamine where the reaction is carried out at about 130°C and held for about 4 hours. The reaction mixture is then cooled to about 100°C and zirconium butoxide is added, in an amount so that the catalyst makes up 0.57 percent by weight of the reaction mixture. The reaction mixture is heated to about 195°C and held for about 12 hours. The resulting product is cooled and collected.
[0076] A quaternised polyester amide salt is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 511.7g of the non-quaternised polyester amide prepared above, 179 g of methanol, 18.1 g of acetic acid, and 28.2 ml of propylene oxide, where the reaction is carried out at about 55°C and the propylene oxide is fed in to the reaction vessel over about 17 hours. 184.5 g of diluent oil is added. 902.6 g of product is cooled and collected. The flask contents are vacuum distilled at 70°C for 2 hours until the methanol is removed. 181.6g of diluent oil is added. Of the 902.6 g, 645.3 g is then placed in a reaction vessel with 111.3 g of C 20-24 alkylsulphonic acid. The reaction is heated to 60°C and held for 2 hours. The flask contents are vacuum distilled at 60°C to 100°C for 2 hours until the methanol and acetic acid are removed. TAN and TBN analysis confirms about 100% by weight quatemised polyester amide salt, with the remaining material being primarily non-quaternised polyester amide. The collected material has a TAN of 13.59 mg KOH/g, a TBN of 0 mg KOH/g, a kinematic viscosity at 100°C of 90.32 mm2/s (as measured by ASTM D445), and 0.81% nitrogen.
[0077] Dispersant 4: A non-quaternised polyester amide (may also be referred to as polyester aminoalkyl amide) is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 6 moles of 12-hydroxystearic acid and 1 mole of dimethylaminopropylamine where the reaction is carried out at about 130°C and held for about 4 hours. The reaction mixture is then cooled to about 100°C and zirconium butoxide is added, in an amount so that the catalyst makes up 0.57 percent by weight of the reaction mixture. The reaction mixture is heated to about 195°C and held for about 12 hours. The resulting product is cooled and collected.
[0078] A quatemised polyester amide salt is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 528.6 g of the non-quatemised polyester amide prepared above, 120 g of methanol, 16.3 g of acetic acid, and 46.3 ml of styrene oxide, where the reaction is carried out at about 55°C and the propylene oxide is fed in to the reaction vessel over about 17 hours. 186 g of diluent oil is added. The flask contents are vacuum distilled at 55°C to 100°C for 2 hours until the methanol is removed. 765 g of product is cooled and collected. TAN, and TBN analysis confirms about 97% by weight quatemised polyester amide salt, with the remaining material being primarily non-quatemised polyester amide. The collected material has a TAN of 0.51 mg KOH/g, a TBN of 20.08 mg KOH/g, a kinematic viscosity at 100°C of 245 mm2/s (as measured by ASTM D445), and 1.06 wt % nitrogen.
[0079] Dispersant 5 : A non-quaternised polyester amide (may also be referred to as polyester aminoalkyl amide) is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 6 moles of 12-hydroxystearic acid and 1 mole of dimethylaminopropylamine where the reaction is carried out at about 130°C and held for about 4 hours. The reaction mixture is then cooled to about 100°C and zirconium butoxide is added, in an amount so that the catalyst makes up 0.57 percent by weight of the reaction mixture. The reaction mixture is heated to about 195°C and held for about 12 hours. The resulting product is cooled and collected.
[0080] A quaternised polyester amide salt is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 528.6 g of the non-quaternised polyester amide prepared above, 120 g of methanol, 16.3 g of acetic acid, and 46.3 ml of styrene oxide, where the reaction is carried out at about 55°C and the styrene oxide is fed in to the reaction vessel over about 17 hours. 186 g of diluent oil is added. The flask contents are vacuum distilled at 55°C to 100°C for 2 hours until the methanol is removed. 765 g of product is cooled and collected. Of the 765 g, 468.5 g is placed in a reaction vessel with 88.6g of C20-24 alkyl sulphonic acid and the vessel is heated to 60°C and held for 2 hours. The flask contents are vacuum distilled at 60°C to 100°C for 2 hours until the acetic acid is removed. TAN, FTIR and ESI-MS analysis confirms about 78% by weight quaternised polyester amide salt, with the remaining material being primarily non-quaternised polyester amide. The collected material has a TAN of 5.62 mg KOH/g, a TBN of 25.87 mg KOH/g, a kinematic viscosity at 100°C of 90.9 mm2/s (as measured by ASTM D445), and 0.73 wt. % nitrogen.
[0081] Dispersant 6: A non-quaternised polyester amide (may also be referred to as polyester aminoalkyl amide) is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 6 moles of 12-hydroxystearic acid and 1 mole of dimethylaminopropylamine where the reaction is carried out at about 130°C and held for about 4 hours. The reaction mixture is then cooled to about 100°C and zirconium butoxide is added, in an amount so that the catalyst makes up 0.57 percent by weight of the reaction mixture. The reaction mixture is heated to about 195°C and held for about 12 hours. The resulting product is cooled and collected.
[0082] A quatemised polyester amide salt is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 600 g of the non-quaternised polyester amide prepared above, 120 g of 2-ethylhexanol, 18.5 g of acetic acid, and 32.3 ml of propylene oxide, where the reaction is carried out at about 90°C and the propylene oxide is fed in to the reaction vessel over about 3.5 hours. The reaction mixture is then held at temperature for about 3 hours. 760 g of product is cooled and collected, which TAN, FTIR and ESI-MS analysis confirms to be about 80% by weight quatemised polyester amide salt, with the remaining material being primarily non-quatemised polyester amide. The collected material has a TAN of 1.26 mg KOH/g, a TBN of 23.82 mg KOH/g, a kinematic viscosity at 100°C of 28.58 mm /s (as measured by ASTM D445), an acetate peak by IR at 1574 cm"1, and is 1.22% nitrogen.
[0083] Dispersant 7: A non-quatemised polyester amide (may also be referred to as polyester aminoalkyl amide) is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 1300 g of ricinoleic acid and 73.5 g of dimethylaminopropylamine where the reaction is carried out at about 130°C, the amine is added drop wise over about 8 minutes, and the reaction mixture held for about 4 hours. The reaction mixture is then cooled to about 100°C and 7.8 g of zirconium butoxide is added. The reaction mixture is heated to about 195°C and held for about 17 hours. The resulting product is filtered, cooled and collected. 1301 g of product is collected which has a TAN of 0 mg KOH/g and shows by IR an ester peak at 1732 cm"1, an amide peak at 1654 cm"1, but no acid peak at 1700 cm"1.
[0084] A quatemised polyester amide salt is prepared by reacting, in a jacketed reaction vessel fitted with stirrer, condenser, feed pump attached to subline addition pipe, nitrogen line and thermocouple/temperature controller system, 600 g of the non-quaternised polyester amide prepared above, 123 g of 2-ethylhexanol, 18.9 g of acetic acid, and 33.1 ml of propylene oxide, where the reaction is carried out at about 90°C and the propylene oxide is fed in to the reaction vessel over about 3.5 hours. The reaction mixture is then held at temperature for about 3 hours. 751 g of product is cooled and collected, which TAN, FTIR and ESI-MS analysis confirms to be about 70% by weight quatemised polyester amide salt, with the remaining material being primarily non-quaternised polyester amide. The collected material has a TAN of 0 mg KOH/g, a TBN of 23.14 mg KOH/g, a kinematic viscosity at 100°C of 47.0 mm /s (as measured by ASTM D445), an acetate peak by IR at 1574 cm"1.
[0085] Dispersant 8 : 12-hydroxystearic acid (6eq) is heated to 1 10°C and dimethylaminopropylamine (1 equivalent) added. The reaction is heated to 130°C and held for 4 hours. The reaction is then cooled to 100°C, and zirconium butoxide (0.57 wt %) is charged. The reaction is heated to 195°C and held for 12 hours. The resulting product, a non-quaternised polyester amine is cooled and discharged.
[0086] The non-quaternised polyester amine (614.3 g) (may also be referred to as polyester aminoalkyl amide), and methanol (1 17.8g, 3.68mol) are charged to a 1 - liter round bottom flange flask. The flask is equipped with a reaction vessel fitted with stirrer, condenser, nitrogen line and mantle/thermocouple/temperature controller system. The flask is heated to 75°C with agitation (280 rpm). After a 10 minute holding at 75°C, acetic acid (18.9 g) and water (5.7 g) are charged to the flask. Propylene oxide (33 ml) is then added subsurface via syringe pump over 3 hours and the reaction held for 4 hours. The resultant product is then vacuum distilled, and methanol is removed under vacuum at 80°C over a period of 6 hours. The resulting product, is a quatemised polyester amide salt, is cooled and 543g collected. The collected material has a TAN of 13.6 mg KOH/g, a TBN of 27.27 mg KOH/g, a kinematic viscosity at 100°C of 209.0 mm2/s (as measured by ASTM D445), an acetate peak by IR at 1574 cm"1, and is 1.36% nitrogen.
[0087] CE1 is a comparative dispersant based on Example 2 of GB 1 373 660.
[0088] CE2 is a comparative dispersant based on Example 5 of US 4,224,212. [0089] Dispersant Evaluation Test 1 : A series of blue mill bases are prepared utilising Dispersants 1 to 8, CE1 and CE2. The mill bases are prepared by dissolving a dispersant 1 to 8 (or CE1 or CE2) (0.55 g) in a solvent mixture of 6.5 g toluene. Glass beads (3mm, 17 parts) and Monastral Blue BG (ex. Heubach, Pigment Blue 2.8 g), 0.15 g of Solsperse®5000 (a fluidising agent) are added and the mixture is shaken on a horizontal shaker for 16 hours. The resulting dispersions were then assessed for fluidity using an arbitrary scale of A to E (good to bad). The milling grades obtained for Dispersant 1 to 7 are shown below. Comparative Example is a mill base not containing dispersant and it has a milling grade of E.
Figure imgf000024_0001
[0090] Overall, the data obtained from the tests indicates that the compositions of the invention may be capable of providing at least one of improved gloss, reduced haze, improved flocculation, resistance, increased colour strength improved flow characteristics, and increased stability.
[0091] Each of the documents referred to above is incorporated herein by reference. Except in the Examples, or where otherwise explicitly indicated, all numerical quantities in this description specifying amounts of materials, reaction conditions, molecular weights, number of carbon atoms, and the like, are to be understood as modified by the word "about." Unless otherwise indicated, each chemical or composition referred to herein should be interpreted as being a commercial grade material which may contain the isomers, by-products, derivatives, and other such materials which are normally understood to be present in the commercial grade. However, the amount of each chemical component is presented exclusive of any solvent or diluent oil, which may be customarily present in the commercial material, unless otherwise indicated. It is to be understood that the upper and lower amount, range, and ratio limits set forth herein may be independently combined. Similarly, the ranges and amounts for each element of the invention may be used together with ranges or amounts for any of the other elements.
[0092] While the invention has been explained in relation to its preferred embodiments, it is to be understood that various modifications thereof will become apparent to those skilled in the art upon reading the specification. Therefore, it is to be understood that the invention disclosed herein is intended to cover such modifications as fall within the scope of the appended claims.

Claims

What is claimed is:
1. A composition comprising a particulate solid; an organic medium; and a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
2. The composition of claim 1 wherein the polyester comprises the reaction product of a fatty carboxylic acid containing at least one hydroxyl group and a compound having an oxygen or nitrogen atom capable of condensing with said acid and further having a tertiary amino group.
3. The composition of claim 2 wherein the fatty carboxylic acid is represented by the formula:
Figure imgf000026_0001
where R1 is a hydrogen or a hydrocarbyl group containing from 1 to 20 carbon atoms and R is a hydro carbylene group containing from 1 to 20 carbon atoms; and wherein the compound having an oxygen or nitrogen atom capable of condensing with said acid and further having a tertiary amino group is represented by the formula:
Figure imgf000026_0002
where R3 is a hydrocarbyl group containing from 1 to 10 carbon atoms; R4 is a hydrocarbyl group containing from 1 to 10 carbon atoms; R5 is a hydrocarbyl ene group containing from 1 to 20 carbon atoms; and X1 is O or NR6 where R6 is a hydrogen or a hydrocarbyl group containing from 1 to 10 carbon atoms.
4. The composition of any preceding claim, wherein the quaternised polyester salt comprises a quaternised polyester amide salt, wherein the polyester containing a tertiary amino group used to prepare said quaternised polyester salt comprises a polyester amide containing a tertiary amino group.
5. The composition of any preceding claim, wherein the quaternised polyester salt comprises a cation represented by the following formula:
Figure imgf000027_0001
where R1 is a hydrogen or a hydrocarbyl group containing from 1 to 20 carbon
2 3 atoms and R is a hydrocarbylene group containing from 1 to 20 carbon atoms; R is a hydrocarbyl group containing from 1 to 10 carbon atoms; R4 is a hydrocarbyl group containing from 1 to 10 carbon atoms; R5 is a hydrocarbylene group containing from 1 to 20 carbon atoms; R6 is a hydrogen or a hydrocarbyl group containing from 1 to 10 carbon atoms; n is a number from 1 to 10; R7 is hydrogen, a hydrocarbonyl group containing from 1 to 22 carbon atoms, or a hydrocarbyl group containing from 1 to 22 carbon atoms; and X is a group derived from the quaternising agent.
6. The composition of claim 2 wherein the compound having an oxygen or nitrogen atom capable of condensing with said acid and further having a tertiary amino group comprises Ν,Ν-diethylethylenediamine, N,N- dimethylethylenediamine, Ν,Ν-dibutylethylenediamine, N,N-dimethyl-l ,3- diaminopropane, N,N-diethyl-l ,3-diaminopropane, N,N-dimethylaminoethanol, Ν,Ν-diethylaminoethanol, or combinations thereof.
7. The composition of claim 2 wherein the fatty carboxylic acid containing at least one hydroxyl group comprises: 12-hydroxystearic acid; ricinoleic acid; 12- hydroxy dodecanoic acid; 5 -hydroxy dodecanoic acid; 5 -hydroxy decanoic acid; 4- hydroxy decanoic acid; 10-hydroxy undecanoic acid; or combinations thereof.
8. The composition of any preceding claim, wherein the quaternising agent comprises ethylene oxide, propylene oxide, butylene oxide, styrene oxide, or combinations thereof wherein the quaternising agent is used in combination with an acid.
9. A paint or ink composition comprising a particulate solid, an organic liquid, a binder and a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
10. A mill base composition comprising a particulate solid, an organic liquid and a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is a hydrocarbyl epoxide in combination with an acid, or mixtures thereof.
1 1. The composition of any preceding claim, wherein the organic medium is an organic liquid or a plastics material.
12. The composition of any preceding claim, wherein the organic medium comprises at least 0.1% by weight of a polar organic liquid based on the total organic medium.
13. The composition of any preceding claim, wherein the particulate solid is a pigment or filler.
14. The use of a quaternised polyester salt which comprises a product obtained/obtainable by reaction of (i) a polyester containing a tertiary amino group; and (ii) a quaternising agent suitable for converting the tertiary amino group to a quaternary nitrogen, wherein the quaternising agent is selected from the group consisting of dialkyl sulfates, benzyl halides, hydrocarbyl substituted carbonates; hydrocarbyl epoxides in combination with an acid or mixtures thereof, as a dispersant in compositions of any preceding claim 9 to 13.
PCT/US2012/036415 2011-05-06 2012-05-04 Polyester quaternary salt and compositions thereof WO2012154515A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12721112.6A EP2704820B1 (en) 2011-05-06 2012-05-04 Polyester quaternary salt and compositions thereof
CN201280026218.3A CN103562262B (en) 2011-05-06 2012-05-04 Polyester quaternary salt and its composition
ES12721112.6T ES2642353T3 (en) 2011-05-06 2012-05-04 Quaternary polyester salt and compositions thereof
JP2014509460A JP5615460B2 (en) 2011-05-06 2012-05-04 Polyester quaternary salt and composition thereof
US14/114,934 US20140114019A1 (en) 2011-05-06 2012-05-04 Polyester Quaternary Salt and Compositions Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161483280P 2011-05-06 2011-05-06
US61/483,280 2011-05-06

Publications (1)

Publication Number Publication Date
WO2012154515A1 true WO2012154515A1 (en) 2012-11-15

Family

ID=46085225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/036415 WO2012154515A1 (en) 2011-05-06 2012-05-04 Polyester quaternary salt and compositions thereof

Country Status (6)

Country Link
US (1) US20140114019A1 (en)
EP (1) EP2704820B1 (en)
JP (1) JP5615460B2 (en)
CN (1) CN103562262B (en)
ES (1) ES2642353T3 (en)
WO (1) WO2012154515A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018140739A1 (en) * 2017-01-26 2018-08-02 Lubrizol Advanced Materials, Inc. Polymeric dispersants containing one or two quaternary amine anchoring groups with improved chemical and thermal stability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220220324A1 (en) * 2019-04-18 2022-07-14 Basf Se Amine dispersants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1342746A (en) 1970-12-22 1974-01-03
GB1373660A (en) 1971-12-30 1974-11-13 Ici Ltd Dispersing agents
US4224212A (en) 1977-07-15 1980-09-23 Imperial Chemical Industries Limited Dispersing agents, dispersions containing these agents and paints and inks made from the dispersions
US5000792A (en) 1988-06-09 1991-03-19 501 Sakata Inkusu Kabushikikaisha Pigment dispersing agent and offset printing ink composition employing the same
EP1896546A2 (en) 2005-06-16 2008-03-12 Lubrizol Limited Dispersants and compositions thereof
WO2010033323A1 (en) * 2008-09-18 2010-03-25 Lubrizol Advanced Materials, Inc. Acid endcapped caprolactone or valerolactone dispersing agents

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9326374D0 (en) * 1993-12-23 1994-02-23 Zeneca Ltd Process
BRPI0711265A2 (en) * 2006-05-03 2011-08-30 Shell Int Research lube oil composition, deposit reduction method in an internal combustion engine, and use of a lube oil composition
US20080113890A1 (en) * 2006-11-09 2008-05-15 The Lubrizol Corporation Quaternary Ammonium Salt of a Polyalkene-Substituted Amine Compound
TWI432472B (en) * 2006-12-04 2014-04-01 Lubrizol Advanced Mat Inc Polyurethane dispersants, non-aqueous composition and non-aqueous millbase, paint or ink including the same
US9315610B2 (en) * 2008-05-30 2016-04-19 Lubrizol Advanced Materials, Inc. Dispersants from linear polyurethanes
ES2558227T3 (en) * 2008-06-19 2016-02-02 Dsm Ip Assets B.V. Shampoo preparations
FR2969655B1 (en) * 2010-12-22 2014-01-10 Rhodia Operations FUEL ADDITIVE COMPOSITION BASED ON AN IRON PARTICLE DISPERSION AND A POLYESTER QUATERNARY AMMONIUM SALT DETERGENT

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1342746A (en) 1970-12-22 1974-01-03
GB1373660A (en) 1971-12-30 1974-11-13 Ici Ltd Dispersing agents
US4224212A (en) 1977-07-15 1980-09-23 Imperial Chemical Industries Limited Dispersing agents, dispersions containing these agents and paints and inks made from the dispersions
US5000792A (en) 1988-06-09 1991-03-19 501 Sakata Inkusu Kabushikikaisha Pigment dispersing agent and offset printing ink composition employing the same
EP1896546A2 (en) 2005-06-16 2008-03-12 Lubrizol Limited Dispersants and compositions thereof
WO2010033323A1 (en) * 2008-09-18 2010-03-25 Lubrizol Advanced Materials, Inc. Acid endcapped caprolactone or valerolactone dispersing agents

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Colour Index", 1971
"Kirk-Othmer's Encyclopedia of Chemical Technology", vol. 13, 1981, article "Industrial Microbial Agents"
BODO MULLER; ULRICH POTH: "Lehrbuch fr Ausbildung und Praxis", 2003, VINCENTZ VERLAG, article "Lackformulierung und Lackrezeptur"
CROWLEY ET AL.: "A Three Dimensional Approach to Solubility", JOURNAL OF PAINT TECHNOLOGY, vol. 38, 1966, pages 269
E.W.FLICK: "Printing Ink and Overprint Varnish Formulations - Recent Developments", 1990, NOYES PUBLICATIONS
P.G.GARRAT: "Strahlenhartung", 1996, VINCENTZ VERLAG

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018140739A1 (en) * 2017-01-26 2018-08-02 Lubrizol Advanced Materials, Inc. Polymeric dispersants containing one or two quaternary amine anchoring groups with improved chemical and thermal stability
US11578211B2 (en) 2017-01-26 2023-02-14 Lubrizol Advanced Materials, Inc. Polymeric dispersants containing one or two quaternary amine anchoring groups with improved chemical and thermal stability

Also Published As

Publication number Publication date
CN103562262B (en) 2015-08-19
ES2642353T3 (en) 2017-11-16
CN103562262A (en) 2014-02-05
JP2014513187A (en) 2014-05-29
US20140114019A1 (en) 2014-04-24
EP2704820B1 (en) 2017-07-12
EP2704820A1 (en) 2014-03-12
JP5615460B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
US10100152B2 (en) Aromatic dispersant composition
US10113031B2 (en) Aromatic dispersant composition
US10010838B2 (en) Dispersing resins
US11326105B2 (en) Multi-amine polyester dispersant made via an anhydride intermediate
EP2571945B1 (en) Dispersant composition
EP1957189A2 (en) Novel dispersant and compositions thereof
KR20210046692A (en) Aromatic amide dispersant
EP1833915B1 (en) Compositions
US11578211B2 (en) Polymeric dispersants containing one or two quaternary amine anchoring groups with improved chemical and thermal stability
JP2024050950A (en) Multiamine polyester dispersants and methods of making
CA3133418A1 (en) Multi-amine polyester dispersant made via an anhydride intermediate
US20040116568A1 (en) Paint compositions
EP2704820B1 (en) Polyester quaternary salt and compositions thereof
KR20210049112A (en) Aromatic amide dispersant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12721112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012721112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012721112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14114934

Country of ref document: US