WO2012154078A1 - Antimicrobially active pharmaceutical composition for parenteral use, and method for producing said composition - Google Patents

Antimicrobially active pharmaceutical composition for parenteral use, and method for producing said composition Download PDF

Info

Publication number
WO2012154078A1
WO2012154078A1 PCT/RU2011/000781 RU2011000781W WO2012154078A1 WO 2012154078 A1 WO2012154078 A1 WO 2012154078A1 RU 2011000781 W RU2011000781 W RU 2011000781W WO 2012154078 A1 WO2012154078 A1 WO 2012154078A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibiotic
glycopeptide
pharmaceutical composition
silicon dioxide
highly dispersed
Prior art date
Application number
PCT/RU2011/000781
Other languages
French (fr)
Russian (ru)
Inventor
Виктор Львович ЛИМОНОВ
Константин Валентинович ГАЙДУЛЬ
Александр Валерьевич ДУШКИН
Original Assignee
Limonov Viktor Lvovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Limonov Viktor Lvovich filed Critical Limonov Viktor Lvovich
Publication of WO2012154078A1 publication Critical patent/WO2012154078A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Definitions

  • the invention relates to antimicrobial pharmaceutical preparations and technologies for their preparation and can be used in medicine for the treatment of infectious and inflammatory diseases, as well as in the pharmaceutical industry for the production of medicines.
  • S1O2 silicon dioxide
  • S1O2 silicon dioxide
  • macrophages which are concentrated in the foci of deerias observed in the lungs, liver, kidneys, spleen, lymph nodes, heart, skin, bladder and other mammalian organs (i.e., significantly increase the concentration of antibiotics in infected areas), as well as significantly increase the antimicrobial activity of these cells of the immune system (in in particular, by stimulating the production of nitric oxide), thereby significantly enhancing the therapeutic effect of antimicrobials in the treatment of infectious and inflammatory diseases [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
  • the invention solves the problem of creating a pharmaceutical composition of antimicrobial action for injection based on the use of antibiotic glycopeptides and nanoparticles of silicon dioxide, which has increased therapeutic efficacy (compared to conventional glycopeptides, which are considered as a prototype in this invention) in the treatment of infectious and inflammatory diseases caused by gram-positive microorganisms.
  • composition of antimicrobial action for injection contains an antibiotic glycopeptide and highly dispersed nanostructured silicon dioxide in a weight ratio of (10-70): 1.
  • the problem is also solved by the fact that the proposed method of obtaining a pharmaceutical composition of antimicrobial and actions for parenteral use, comprising mixing an antibiotic-glycopeptide with other components, according to which the antibiotic-glycopeptide in the form of lyophilized the powder is mixed with highly dispersed nanostructured silicon dioxide powder in a weight ratio of (10-70): 1, and the resulting mixture is subjected to mechanical treatment by impact-abrasion.
  • the therapeutic efficacy of the proposed pharmaceutical composition is improved if the resulting mixture is machined by impact-abrasion such that the proportion of highly dispersed nanostructured silicon dioxide having a size of -25 ⁇ m is at least 35%.
  • antibiotic glycopeptides vancomycin and teicoplanin — were used, provided by the Russian pharmaceutical manufacturer LLC ABOLmed.
  • the highly dispersed nanostructured silicon dioxide (hereinafter: BHS1O2) was AEROSIL 200 (INN - colloidal silicon dioxide) used in pharmacy, manufactured by Evonik Degussa Corporation) (Germany), consisting of round-shaped silicon dioxide nanoparticles (average diameter 7 -40 nm), combined into irregularly shaped microparticles having sizes ⁇ 100 ⁇ m.
  • composition composition is based on the phenomenon of reversible sorption of antibiotic-glycopeptide molecules by nano- and micro-sized particles of BHS1O2, as well as a decrease in the size of BHSi02 microparticles upon mechanical activation of its mixtures with the antibiotic-glycopeptide substance by intense impact-abrasion mechanical effects.
  • the inventive method for producing the above pharmaceutical composition by mechanically activating a powdered mixture of antibiotic glycopeptide and BHS1O2 by intensive impact abrasion can increase the proportion of finely dispersed (.2 5 ⁇ m) particles of BHS1O2 on which antibiotic glycopeptide molecules are adsorbed and which are macrophaged [25].
  • a mixture of the above substances in a weight ratio of antibiotic-glycopeptide: BHS1O2 equal to (10-70): 1 is subjected to mechanical activation by impact-abrasion until the weight fraction of the finely divided fraction is increased to no less than 35%.
  • Injected solutions for parenteral administration (by diluting it with any known by the method adopted for glycopeptide antibiotics), consisting of fine particles of BHSiCte with antibiotic glycopeptide molecules reversibly sorbed on their surface.
  • the introduction into the proposed composition of highly dispersed nanostructured silicon dioxide in the ratios antibiotic glycopeptide: BHS1O2 from 10: 1 to 70: 1 by weight, respectively, is determined by a combination of two factors: 1) with an increase in the content of BHS1O2 more than 10% by weight of the composition in laboratory animals when it is intravenous administration, intoxication phenomena are observed; 2) with a decrease in the content of BHS1O2 below 1.4% by weight of the composition, its therapeutic effectiveness (in particular, in the treatment of bacterial sepsis in mice) does not actually differ from the baseline effectiveness of the initial antibiotic glycopeptide.
  • compositions a mechanochemical approach was used, which consists in processing a mixture of solid components by intense mechanical stresses - pressure and shear deformations, which are realized mainly in various types of mills that carry out impact-abrasive effects on substances.
  • the method used to obtain mixtures allows one to significantly avoid the chemical decomposition of the antibiotic glycopeptide, to achieve complete homogeneity of the powder components in comparison with the preparation of mixtures by simple mixing of the components, or by evaporation of their solutions and, as a result, determines the high pharmacological activity of the pharmaceutical composition.
  • the method of granulometry of the suspension of the resulting composition As a quantitative criterion for the minimum required dose of mechanical stress, it is convenient to use the method of granulometry of the suspension of the resulting composition. In this case, it is necessary that the mass fraction of particles with a size of not more than 5 ⁇ m is at least 35%.
  • the mechanical processing of powdered mixtures is carried out in rotary, vibration or planetary mills. As grinding media can be used balls, rods, etc.
  • Pharmacological tests of the obtained composition in laboratory animals (mice) showed that the claimed composition prepared by the claimed method has significantly increased therapeutic efficacy in the treatment of bacterial sepsis caused by Staphylococcus aureus, compared with the usual antibiotic glycopeptide.
  • Example 1 Obtaining a solid composition of the antibiotic-glycopeptide / BH8U 2 .
  • a mixture of antibiotic-glycopeptide and BHSi0 2 in weight ratios of 10: 1, 30: 1 and 50: 1 by weight is processed for 1, 2 and 4 hours in a rotary ball mill.
  • the particle size distribution of aqueous suspensions of the obtained composition variants (Micro-Sizer 201 laser granulometer was used), as well as HPLC analysis of the content of antibiotics in them (in% of the initial substance) and the degree of antibiotic sorption (in%) by BHSi0 2j particles are given in Table. one.
  • Composition Size and% Degree of sorption Antibiotic content of antibiotic particles of BHSi0 2 * particles of BHSi0 2 (%)
  • Vancomycin VN8Yu 2 (10: 1), 19.8 36.7 41, 6 97 mechanical activation 1 hour
  • Vancomycin BHSiO 2 (50: l), 19, 1 38, 1 53.3 95 mechanical activation 4 hours
  • the selected conditions for obtaining the proposed composition can be increased to the required value (at least 35% of the total weight) of the fraction of the finely dispersed fraction of BHSi0 2 (particle size -2 5 ⁇ m), while avoiding chemical decomposition of antibiotic glycopeptides.
  • Example 2 Determination of therapeutic efficacy of antibiotic glycopeptides and pharmaceutical compositions in the treatment of sepsis.
  • Vancomycin, teicoplanin and mechanically activated for 2 hours compositions consisting of a mixture of vancomycin or teicoplanin: BH8 2 in weight ratios of 30: 1 and 50: 1, respectively, were studied.
  • Microorganisms Staphylococcus aureus (ATCC N ° 25923 F-49).
  • mice CBA x C 57 Black / 6 CBFi in accordance with the "Rules for the Use of Experimental Animals" (Appendix to the order of the USSR Ministry of Health dated 12.08. 1977, Jfg 755).
  • mice A suspension of the daily culture of Staphylococcus aureus at a dose of 10 10 CFU / mouse was injected intravenously in mice in a volume of 0.5 ml.
  • the control group of mice was injected phys. solution (0.9% sodium chloride solution) in a volume of 0.5 ml.
  • mice were injected intravenously daily for 3 days with vancomycin and teicoplanin and three variants of the pharmaceutical composition (vancomycin or teicoplanin / VSHUg) at a dose of 50 mg / kg, diluted in 0.25 ml of phys. solution
  • the control group of mice according to the same scheme was introduced physical. solution in a volume of 0.25 ml.
  • the proposed pharmaceutical composition (antibiotic-glycopeptide / BHSiCh ) has significantly increased therapeutic efficacy (more than 1, 3 times), compared with conventional vancomycin and teicoplanin, in the treatment of sepsis in experimental animals caused by Staphylococcus aureus.
  • Antimicrobial Agents - 2000. - Vol.13. - P.155-168.
  • mice Hultgren O., Kopf M., Tarkowski A. Outcome of Staphylococcus aureus-triggered sepsis and arthritis in IL-4-deficient mice depends on the genetic background of the host // European Journal of Immunology / - 1999. - Vol.29. - P.2400-2405.

Abstract

The invention relates to pharmacology, medicine and to the pharmaceutical industry, in particular to a method for producing original composite antimicrobial preparations for parenteral use, said preparations having increased therapeutic effectiveness in the treatment of severe forms of infectious inflammatory diseases. The proposed pharmaceutical composition comprises an antibiotic - glycopeptide and highly dispersed nano-structured silicon dioxide as the active substance. The claimed method for the production of the pharmaceutical composition consists in mixing the antibiotic - glycopeptide with the highly dispersed nano-structured silicon dioxide, characterized in that the mixture of the above-mentioned substances in ratios of 10:1 to 70:1 by weight, respectively, is subjected to mechanical processing by means of impact-abrading actions to increase the finely dispersed fraction weight portion. The mixture produced is used for preparing injection solutions.

Description

ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ АНТИМИКРОБНОГО ДЕЙСТВИЯ ДЛЯ ПАРЕНТЕРАЛЬНОГО ПРИМЕНЕНИЯ,  PHARMACEUTICAL COMPOSITION OF ANTIMICROBIAL ACTION FOR Parenteral use,
СПОСОБ ЕЁ ПОЛУЧЕНИЯ  METHOD FOR ITS PRODUCTION
Изобретение относится к антимикробным фармацевтическим препаратам и технологиям их приготовления и может использоваться в медицине для лечения инфекционно-воспалительных заболеваний, а также в фармацевтической промышленности для производства лекарственных средств. The invention relates to antimicrobial pharmaceutical preparations and technologies for their preparation and can be used in medicine for the treatment of infectious and inflammatory diseases, as well as in the pharmaceutical industry for the production of medicines.
В настоящее время для обеспечения успешной терапии многих инфекционно- воспалительных заболеваний (эндокардит, сепсис, инфекции костей и суставов, инфекции нижних отделов дыхательных путей, инфекции кожи и мягких тканей и др.), вызываемых грамположительными микроорганизмами - Staphylococcus aureus и Staphylococcus epidermidis (включая метициллин-устойчивые штаммы), Streptococcus viridians, Streptococcus pyogenes и Streptococcus pneumoniae (включая пенициллин-устойчивые штаммы), Enterococcus faecalis и др., в практической медицине широко применяются антибиотики-гликопептиды, имеющие международные непатентованные наименования - ванкомицин, тейкопланин и др.  Currently, to ensure the successful treatment of many infectious and inflammatory diseases (endocarditis, sepsis, infections of the bones and joints, infections of the lower respiratory tract, infections of the skin and soft tissues, etc.) caused by gram-positive microorganisms - Staphylococcus aureus and Staphylococcus epidermidis (including methicillin -resistant strains), Streptococcus viridians, Streptococcus pyogenes and Streptococcus pneumoniae (including penicillin-resistant strains), Enterococcus faecalis and others, in international medicine antibiotics-glycopeptides that have international non-pathogens are widely used ntovannye here - vancomycin, teicoplanin and others.
[1, 2]. [12].
Однако, необходимо отметить, что в ряде случаев, когда инфекционный процесс вызывается в разной степени резистентными к антибиотикам- гликопептидам микроорганизмами, проводимая монотерапия данными препаратами зачастую не является эффективной, что вынуждает специалистов заменять их другими препаратами (как правило, дорогостоящими) или использовать их в высоких дозах в сочетании с антибиотиками из других групп, тем самым существенно увеличивая риск развития нежелательных побочных эффектов [3, 4, 5]. В связи с этим, разработка новых подходов с целью существенного повышения антимикробной активности и клинической эффективности антибиотиков- гликопептидов является актуальной задачей современной экспериментальной фармакологии и практической медицины.  However, it should be noted that in some cases when the infectious process is caused by microorganisms resistant to antibiotic-glycopeptides to different degrees, monotherapy with these drugs is often not effective, which forces specialists to replace them with other drugs (usually expensive) or use them in high doses in combination with antibiotics from other groups, thereby significantly increasing the risk of unwanted side effects [3, 4, 5]. In this regard, the development of new approaches to significantly increase the antimicrobial activity and clinical efficacy of glycopeptide antibiotics is an urgent task of modern experimental pharmacology and practical medicine.
В последние годы обнаружено, что использование разнообразных наночастиц в качестве носителей для доставки различных антибиотиков непосредственно во внутрь микроорганизмов и в клетки иммунной системы (макрофаги), с целью повышения концентрации этих препаратов в зоне инфекционного воспаления, и, соответственно, усиления их антимикробных свойств, а также для стимуляции антибактериальной активности макрофагов и их дополнительного рекрутирования в инфицированные ткани, является перспективным направлением развития оригинальных технологий и методов антибиотикотерапии [6, 7, 8, 9, 10, 1 1, 12, 13]. In recent years, it was found that the use of a variety of nanoparticles as carriers for the delivery of various antibiotics directly into the microorganisms and into the cells of the immune system (macrophages), in order to increase the concentration of these drugs in the area of infectious inflammation, and, accordingly, enhance their antimicrobial properties, and also for stimulation the antibacterial activity of macrophages and their additional recruitment into infected tissues is a promising direction in the development of original technologies and methods of antibiotic therapy [6, 7, 8, 9, 10, 1 1, 12, 13].
Сущность изобретения заключается в том, что с целью усиления терапевтической эффективности антибиотиков-гликопептидов предлагается использовать наночастицы S1O2 (диоксида кремния), которые, отличаясь фармакологически выгодными свойствами биосовместимости, биораспределения, биодеградации и малотоксичности (независимо от степени выраженности пористости структуры), способны при парентеральном введении служить в качестве носителя антибиотиков для внутриклеточной доставки в макрофаги, которые концентрированно расположены в очагах воспаления, наблюдаемых в легких, печени, почках, селезёнке, лимфоузлах, сердце, коже, мочевом пузыре и других органах млекопитающих (т.е. значительно увеличивать концентрацию антибиотиков в инфицированных зонах), а также существенно повышать противомикробную активность этих клеток иммунной системы (в частности, посредством стимуляции выработки оксида азота), тем самым достоверно усиливать терапевтический эффект антимикробных препаратов при лечении инфекционно-воспалительных заболеваний [ 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].  The essence of the invention lies in the fact that in order to enhance the therapeutic efficacy of antibiotic glycopeptides, it is proposed to use S1O2 (silicon dioxide) nanoparticles, which, differing in pharmacologically beneficial properties of biocompatibility, biodistribution, biodegradation and low toxicity (regardless of the severity of structure porosity), are capable of parenteral administration serve as a carrier of antibiotics for intracellular delivery to macrophages, which are concentrated in the foci of deerias observed in the lungs, liver, kidneys, spleen, lymph nodes, heart, skin, bladder and other mammalian organs (i.e., significantly increase the concentration of antibiotics in infected areas), as well as significantly increase the antimicrobial activity of these cells of the immune system (in in particular, by stimulating the production of nitric oxide), thereby significantly enhancing the therapeutic effect of antimicrobials in the treatment of infectious and inflammatory diseases [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
Изобретение решает задачу создания фармацевтической композиции антимикробного действия для инъекций на основе использования антибиотиков- гликопептидов и наночастиц диоксида кремния, обладающей повышенной терапевтической эффективностью (по сравнению с обычными гликопептидами, которые рассматривается в данном изобретении в качестве прототипа) при лечении инфекционно-воспалительных заболеваний, вызываемых грамположительными микроорганизмами .  The invention solves the problem of creating a pharmaceutical composition of antimicrobial action for injection based on the use of antibiotic glycopeptides and nanoparticles of silicon dioxide, which has increased therapeutic efficacy (compared to conventional glycopeptides, which are considered as a prototype in this invention) in the treatment of infectious and inflammatory diseases caused by gram-positive microorganisms.
Поставленная задача решается тем, что предлагается фармацевтическая композиция антимикробного действия для инъекций, которая содержит антибиотик- гликопептид и высокодисперсный наноструктурированный диоксид кремния в весовом соотношении, равном (10-70) : 1.  The problem is solved in that a pharmaceutical composition of antimicrobial action for injection is proposed that contains an antibiotic glycopeptide and highly dispersed nanostructured silicon dioxide in a weight ratio of (10-70): 1.
Поставленная задача решается также тем, что предлагается способ получения фармацевтической композиции антимикробного и действия для парентерального применения, включающий смешивание антибиотика-гликопептида с другими компонентами, по которому антибиотик-гликопептид в форме лиофилизированного порошка смешивают с порошковым высокодисперсным наноструктурирован- ным диоксидом кремния в весовом соотношении, равном (10-70) : 1, и полученную смесь подвергают механической обработке путем ударно-истирающих воздействий. The problem is also solved by the fact that the proposed method of obtaining a pharmaceutical composition of antimicrobial and actions for parenteral use, comprising mixing an antibiotic-glycopeptide with other components, according to which the antibiotic-glycopeptide in the form of lyophilized the powder is mixed with highly dispersed nanostructured silicon dioxide powder in a weight ratio of (10-70): 1, and the resulting mixture is subjected to mechanical treatment by impact-abrasion.
Терапевтическая эффективность предлагаемой фармацевтической композиции повышается, если полученную смесь подвергают механической обработке путем ударно-истирающих воздействий таким образом, чтобы доля частиц высокодисперсного наноструктурированного диоксида кремния, имеющих размер -25 мкм, составляла не менее 35%.  The therapeutic efficacy of the proposed pharmaceutical composition is improved if the resulting mixture is machined by impact-abrasion such that the proportion of highly dispersed nanostructured silicon dioxide having a size of -25 μm is at least 35%.
Для приготовления фармацевтической композиции использовались антибиотики-гликопептиды - ванкомицин и тейкопланин, предоставленные российским фармпроизводителем ООО «АБОЛмед». В качестве высокодисперсного наноструктурированного диоксида кремния (далее по тексту: BHS1O2) использовался применяемый в фармации АЭРОСИЛ 200 (МНН - кремния диоксид коллоидный), производимый фирмой «Evonik Degussa Corporation)) (Германия), состоящий из наночастиц диоксида кремния округлой формы (средний диаметр 7-40 нм), объединённых в микрочастицы неправильной формы, имеющие размеры < 100 мкм.  For the preparation of the pharmaceutical composition, antibiotic glycopeptides — vancomycin and teicoplanin — were used, provided by the Russian pharmaceutical manufacturer LLC ABOLmed. The highly dispersed nanostructured silicon dioxide (hereinafter: BHS1O2) was AEROSIL 200 (INN - colloidal silicon dioxide) used in pharmacy, manufactured by Evonik Degussa Corporation) (Germany), consisting of round-shaped silicon dioxide nanoparticles (average diameter 7 -40 nm), combined into irregularly shaped microparticles having sizes <100 μm.
В основу выбора состава композиции положено явление обратимой сорбции молекул антибиотика-гликопептида нано- и микроразмерными частицами BHS1O2, а также уменьшение размеров микрочастиц BHSi02 при механической активации его смесей с субстанцией антибиотика-гликопептида интенсивными ударно- истирающими механическими воздействиями.  The composition composition is based on the phenomenon of reversible sorption of antibiotic-glycopeptide molecules by nano- and micro-sized particles of BHS1O2, as well as a decrease in the size of BHSi02 microparticles upon mechanical activation of its mixtures with the antibiotic-glycopeptide substance by intense impact-abrasion mechanical effects.
Заявляемый способ получения вышеуказанной фармацевтической композиции путем механической активации порошкообразной смеси антибиотика- гликопептида и BHS1O2 интенсивными ударно-истирающими воздействиями позволяет по сравнению с известными способами повысить долю мелкодисперсных (.2 5 мкм) частиц BHS1O2, на которых адсорбируются молекулы антибиотика- гликопептида и которые фагоцитируются макрофагами [25].  The inventive method for producing the above pharmaceutical composition by mechanically activating a powdered mixture of antibiotic glycopeptide and BHS1O2 by intensive impact abrasion can increase the proportion of finely dispersed (.2 5 μm) particles of BHS1O2 on which antibiotic glycopeptide molecules are adsorbed and which are macrophaged [25].
Для этого смесь вышеуказанных веществ в весовом соотношении антибиотик- гликопептид : BHS1O2, равном (10-70) : 1, подвергают механической активации путем ударно-истирающих воздействий до увеличения весовой доли мелкодисперсной фракции, не менее, чем до 35%.  For this, a mixture of the above substances in a weight ratio of antibiotic-glycopeptide: BHS1O2 equal to (10-70): 1 is subjected to mechanical activation by impact-abrasion until the weight fraction of the finely divided fraction is increased to no less than 35%.
Из полученной порошкообразной композиции готовят инъекционные растворы для парентерального введения (разведением её любым известным способом, принятым для антибиотиков- гликопептидов), состоящие из мелкодисперсных частиц BHSiCte с обратимо сорбированными на их поверхности молекулами антибиотика-гликопептида. Injected solutions for parenteral administration (by diluting it with any known by the method adopted for glycopeptide antibiotics), consisting of fine particles of BHSiCte with antibiotic glycopeptide molecules reversibly sorbed on their surface.
Введение в предлагаемую композицию высокодисперсного наноструктурированного диоксида кремния в соотношениях антибиотик- гликопептид : BHS1O2 от 10:1 до 70: 1 по весу, соответственно, определяется сочетанием двух факторов: 1) при увеличении содержания BHS1O2 более 10% от веса композиции у лабораторных животных при её внутривенном введении наблюдаются явления интоксикации; 2) при уменьшении содержания BHS1O2 ниже 1,4% от веса композиции, её терапевтическая эффективность (в частности, при лечении бактериального сепсиса у мышей) фактически не отличается от базовой эффективности исходного антибиотика-гликопептида.  The introduction into the proposed composition of highly dispersed nanostructured silicon dioxide in the ratios antibiotic glycopeptide: BHS1O2 from 10: 1 to 70: 1 by weight, respectively, is determined by a combination of two factors: 1) with an increase in the content of BHS1O2 more than 10% by weight of the composition in laboratory animals when it is intravenous administration, intoxication phenomena are observed; 2) with a decrease in the content of BHS1O2 below 1.4% by weight of the composition, its therapeutic effectiveness (in particular, in the treatment of bacterial sepsis in mice) does not actually differ from the baseline effectiveness of the initial antibiotic glycopeptide.
Для получения композиций использован механохимический подход, заключающийся в обработке смеси твердых компонентов интенсивными механическими воздействиями - давлением и сдвиговыми деформациями, реализуемыми преимущественно в различного типа мельницах, осуществляющих ударно-истирающие воздействия на вещества. Смесь твердой субстанции антибиотика-гликопептида и высокодисперсного наноструктурированного диоксида кремния, взятых преимущественно в соотношениях от 10:1 до 70: 1 по весу, подвергают механической активации в шаровых мельницах. Использованный способ получения смесей позволяет в значительной мере избежать химического разложения антибиотика-гликопептида, достичь полной гомогенности порошкообразных компонентов по сравнению с получением смесей простым смешением компонентов, или выпариванием их растворов и, как следствие, обуславливает высокую фармакологическую активность фармацевтической композиции.  To obtain the compositions, a mechanochemical approach was used, which consists in processing a mixture of solid components by intense mechanical stresses - pressure and shear deformations, which are realized mainly in various types of mills that carry out impact-abrasive effects on substances. A mixture of a solid substance of an antibiotic-glycopeptide and highly dispersed nanostructured silicon dioxide, taken predominantly in ratios from 10: 1 to 70: 1 by weight, is subjected to mechanical activation in ball mills. The method used to obtain mixtures allows one to significantly avoid the chemical decomposition of the antibiotic glycopeptide, to achieve complete homogeneity of the powder components in comparison with the preparation of mixtures by simple mixing of the components, or by evaporation of their solutions and, as a result, determines the high pharmacological activity of the pharmaceutical composition.
В качестве количественного критерия минимально необходимой дозы механического воздействия удобно использовать метод гранулометрии суспензии получаемой композиции. При этом необходимо, чтобы массовая доля частиц размером не более 5 мкм составила не менее 35%. Механическую обработку порошкообразных смесей осуществляют в ротационных, вибрационных или планетарных мельницах. В качестве мелющих тел могут использоваться шары, стержни и др. Фармакологические испытания полученной композиции на лабораторных животных (мышах) показали, что заявляемая композиция, приготовленная заявляемым способом, обладает значительно повышенной терапевтической эффективностью при лечении бактериального сепсиса, вызванного Staphylococcus aureus, по сравнению с обычным антибиотиком- гликопептидом. As a quantitative criterion for the minimum required dose of mechanical stress, it is convenient to use the method of granulometry of the suspension of the resulting composition. In this case, it is necessary that the mass fraction of particles with a size of not more than 5 μm is at least 35%. The mechanical processing of powdered mixtures is carried out in rotary, vibration or planetary mills. As grinding media can be used balls, rods, etc. Pharmacological tests of the obtained composition in laboratory animals (mice) showed that the claimed composition prepared by the claimed method has significantly increased therapeutic efficacy in the treatment of bacterial sepsis caused by Staphylococcus aureus, compared with the usual antibiotic glycopeptide.
Таким образом, использование заявляемой фармацевтической композиции и способ её получения обеспечивает следующие преимущества:  Thus, the use of the claimed pharmaceutical composition and method for its preparation provides the following advantages:
1) клинически значимое повышение эффективности и качества антимикробной терапии тяжёлых форм инфекционно-воспалительных заболеваний, снижение смертности;  1) a clinically significant increase in the effectiveness and quality of antimicrobial therapy of severe forms of infectious and inflammatory diseases, a decrease in mortality;
2) экологическая безопасность, безотходность и малозатратность технологии фармацевтического производства. Предлагаемое изобретение иллюстрируется следующими примерами.  2) environmental safety, waste-free and low-cost pharmaceutical production technology. The invention is illustrated by the following examples.
Пример 1. Получение твердой композиции антибиотик-гликопептид/ВН8Ю2. Смесь антибиотика-гликопептида и BHSi02 в весовых соотношениях 10: 1, 30:1 и 50:1 по весу обрабатывается в течение 1, 2 и 4 часов в шаровой ротационной мельнице. Данные гранулометрического состава водных суспензий полученных вариантов композиции (использовался лазерный гранулометр Micro-Sizer 201), а также ВЭЖХ анализа содержания в них антибиотиков (в % от исходной субстанции) и степени сорбции антибиотиков (в %) частицами BHSi02j приведены в табл. 1. Example 1. Obtaining a solid composition of the antibiotic-glycopeptide / BH8U 2 . A mixture of antibiotic-glycopeptide and BHSi0 2 in weight ratios of 10: 1, 30: 1 and 50: 1 by weight is processed for 1, 2 and 4 hours in a rotary ball mill. The particle size distribution of aqueous suspensions of the obtained composition variants (Micro-Sizer 201 laser granulometer was used), as well as HPLC analysis of the content of antibiotics in them (in% of the initial substance) and the degree of antibiotic sorption (in%) by BHSi0 2j particles are given in Table. one.
Таблица 1. Гранулометрический состав водных суспензий, степень сорбции и содержание антибиотиков в различных вариантах композиции  Table 1. The particle size distribution of aqueous suspensions, the degree of sorption and the content of antibiotics in various variants of the composition
Состав композиции Размер и % Степень сорбции Содержание содержания антибиотиков антибиотиков частиц BHSi02* частицами BHSi02 (%)Composition Composition Size and% Degree of sorption Antibiotic content of antibiotic particles of BHSi0 2 * particles of BHSi0 2 (%)
% < 3 % < 5 (%) % <3% <5 (%)
мкм мкм  μm μm
Исходный BHSi02 0,4 6, 1 - -Original BHSi0 2 0.4 6, 1 - -
Ванкомицин:ВН8Ю2 (10: 1 ), 19,8 36,7 41 ,6 97 мехактивация 1 час Vancomycin: VN8Yu 2 (10: 1), 19.8 36.7 41, 6 97 mechanical activation 1 hour
BaHK0MHUHH:BHSiO2 (30: 1 ), 21 ,5 39,4 55,7 98 мехактивация 2 часа BaHK0MHUHH: BHSiO 2 (30: 1), 21, 5 39.4 55.7 98 mechanical activation 2 hours
Ванкомицин: BHSiO2 (50: l ), 19, 1 38, 1 53,3 95 мехактивация 4 часа Тейкопланин: BHSi02 (30: 1), 22,3 37,9 54,5 97 мехактивация 2 часа Vancomycin: BHSiO 2 (50: l), 19, 1 38, 1 53.3 95 mechanical activation 4 hours Teicoplanin: BHSi0 2 (30: 1), 22.3 37.9 54.5 97 mechanical activation 2 hours
*- высокодисперсный наноструктурированный диоксид кремния  * - highly dispersed nanostructured silicon dioxide
Как видно из табл. 1, выбранные условия получения предлагаемой композиции позволяют увеличить до необходимой величины (не менее 35% от общего веса) долю мелкодисперсной фракции BHSi02 (размер частиц -2 5 мкм) и при этом избежать химического разложения антибиотиков-гликопептидов. As can be seen from the table. 1, the selected conditions for obtaining the proposed composition can be increased to the required value (at least 35% of the total weight) of the fraction of the finely dispersed fraction of BHSi0 2 (particle size -2 5 μm), while avoiding chemical decomposition of antibiotic glycopeptides.
Пример 2. Определение терапевтической эффективности антибиотиков- гликопептидов и фармацевтической композиции при лечении сепсиса. Example 2. Determination of therapeutic efficacy of antibiotic glycopeptides and pharmaceutical compositions in the treatment of sepsis.
Исследованы ванкомицин, тейкопланин и мехактивированные в течение 2-х часов композиции, состоящие из смеси ванкомицин или тейкопланин:ВН8 2 в весовых соотношениях 30:1 и 50: 1, соответственно. Vancomycin, teicoplanin and mechanically activated for 2 hours compositions consisting of a mixture of vancomycin or teicoplanin: BH8 2 in weight ratios of 30: 1 and 50: 1, respectively, were studied.
Для определения терапевтической эффективности антибиотиков- гликопептидов и фармацевтических композиций с BHSi02 использовали модифицированную экспериментальную модель сепсиса и метод статистической обработки полученных результатов ( χ2) [26, 27, 28]. To determine the therapeutic efficacy of glycopeptide antibiotics and pharmaceutical compositions with BHSi0 2, we used a modified experimental model of sepsis and a method of statistical processing of the obtained results (χ 2 ) [26, 27, 28].
Микроорганизмы: Staphylococcus aureus (АТСС N° 25923 F-49).  Microorganisms: Staphylococcus aureus (ATCC N ° 25923 F-49).
Животные: эксперименты проводили на гибридных мышах-самцах (СВА х C57Black/6)CBFi в соответствии с «Правилами работ с использованием экспериментальных животных» (Приложение к приказу Министерства здравоохранения СССР от 12.08. 1977 г., Jfg 755). Animals: experiments were performed on hybrid male mice (CBA x C 57 Black / 6 ) CBFi in accordance with the "Rules for the Use of Experimental Animals" (Appendix to the order of the USSR Ministry of Health dated 12.08. 1977, Jfg 755).
Экспериментальная модель сепсиса и схема лечения  Experimental sepsis model and treatment regimen
Мышам внутривенно в объеме 0,5 мл вводилась взвесь суточной культуры Staphylococcus aureus в дозе 1010 КОЕ/мышь. Контрольной группе мышей вводился физ. р-р (0,9% раствор натрия хлорида) в объёме 0,5 мл. Через сутки после инфицирования, мышам внутривенно ежедневно однократно в течение 3-х дней вводился ванкомицин и тейкопланин и три варианта фармацевтической композиции (ванкомицин или тейкопланин/ВШЮг) в дозе 50 мг/кг, разведённой в 0,25 мл физ. р-ра. Контрольной группе мышей по этой же схеме вводился физ. р-р в объёме 0,25 мл. A suspension of the daily culture of Staphylococcus aureus at a dose of 10 10 CFU / mouse was injected intravenously in mice in a volume of 0.5 ml. The control group of mice was injected phys. solution (0.9% sodium chloride solution) in a volume of 0.5 ml. A day after infection, mice were injected intravenously daily for 3 days with vancomycin and teicoplanin and three variants of the pharmaceutical composition (vancomycin or teicoplanin / VSHUg) at a dose of 50 mg / kg, diluted in 0.25 ml of phys. solution The control group of mice according to the same scheme was introduced physical. solution in a volume of 0.25 ml.
Эффективность антибактериальной терапии оценивали по количеству выживших мышей на 7-е сутки после инфицирования. Полученные данные, представленные в табл. 2, отражают результаты четырёх независимых экспериментов, выполненных для каждой исследуемой группы. The effectiveness of antibiotic therapy was evaluated by the number of surviving mice on the 7th day after infection. The data obtained are presented in table. 2, reflect the results of four independent experiments performed for each study group.
Таблица 2.Table 2.
Терапевтическая эффективность антимикробной терапии бактериального сепсиса Therapeutic efficacy of antimicrobial therapy of bacterial sepsis
Figure imgf000008_0001
Figure imgf000008_0001
*- в % и в абсолютных значениях (число выживших/число инфицированных животных).  * - in% and in absolute terms (number of survivors / number of infected animals).
** - по сравнению с ванкомицином.  ** - in comparison with vancomycin.
*** - по сравнению с тейкопланином.  *** - in comparison with teicoplanin.
Как видно из табл. 2, предлагаемая фармацевтическая композиция (антибиотик-гликопептид/BHSiCh) обладает достоверно повышенной терапевтической эффективностью (более чем в 1 ,3 раза), по сравнению с обычным ванкомицином и тейкопланином, при лечении сепсиса у экспериментальных животных, вызванного Staphylococcus aureus. As can be seen from the table. 2, the proposed pharmaceutical composition (antibiotic-glycopeptide / BHSiCh ) has significantly increased therapeutic efficacy (more than 1, 3 times), compared with conventional vancomycin and teicoplanin, in the treatment of sepsis in experimental animals caused by Staphylococcus aureus.
Таким образом, исходя из полученных данных, можно сделать вывод о том, что предлагаемая фармацевтическая композиция антимикробного действия для парентерального применения (антибиотик-гликопептид/ВН8Ю2) обладает достоверно повышенным терапевтическим эффектом при лечении тяжёлых инфекционно-воспалительньгх заболеваний, по сравнению с обычным ванкомицином или тейкопланином (прототипами изобретения). Литература Thus, based on the data obtained, we can conclude that the proposed pharmaceutical composition of antimicrobial activity for parenteral use (antibiotic-glycopeptide / VN8YU 2) has significantly enhanced therapeutic effect in the treatment of severe infectious vospalitelngh diseases, as compared with a conventional vancomycin or teicoplanin (prototypes of the invention). Literature
1. Rybak M., Lomaestro В., Rotschafer J.C. et al. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious1. Rybak M., Lomaestro B., Rotschafer J.C. et al. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious
Diseases Pharmacists//American Journal of Health-System Pharmacy. - 2009. - Vol.66. - P.82-98. Diseases Pharmacists // American Journal of Health-System Pharmacy. - 2009 .-- Vol.66. - P.82-98.
2. Leekha S., Terrell C.L. and Edson R.S. General principles of antimicrobial therapy// Mayo Clinic Proceedings. - 2011. - Vol.86. - P.156-167.  2. Leekha S., Terrell C. L. and Edson R.S. General principles of antimicrobial therapy // Mayo Clinic Proceedings. - 2011 .-- Vol.86. - P.156-167.
3. Chang S., Sievert D.M., Hageman J.C. et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene// The New England Journal of Medicine. - 2003. - Vol.348. - P.1342-1347. 3. Chang S., Sievert D.M., Hageman J.C. et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene // The New England Journal of Medicine. - 2003. - Vol. 348. - P.1342-1347.
4. Le J., Bookstaver P.B., Rudisill C.N. et al. Treatment of meningitis caused by vancomycin-resistant Enterococcus faecium: high-dose and combination daptomycin therapy//The Annals of Pharmacotherapy. - 2010. - Vol.44. - P.2001-2006.  4. Le J., Bookstaver P.B., Rudisill C.N. et al. Treatment of meningitis caused by vancomycin-resistant Enterococcus faecium: high-dose and combination daptomycin therapy // The Annals of Pharmacotherapy. - 2010 .-- Vol.44. - P.2001-2006.
5. Cepeda J., Hayman S., Whitehouse N. et al. Teicoplanin resistance in methicillin- resistant Staphylococcus aureus in an intensive care unit// Journal of Antimicrobial Chemotherapy. - 2003. - Vol.52. - P.533-534.  5. Cepeda J., Hayman S., Whitehouse N. et al. Teicoplanin resistance in methicillin-resistant Staphylococcus aureus in an intensive care unit // Journal of Antimicrobial Chemotherapy. - 2003. - Vol. 52. - P.533-534.
6. Abeylath S.C., Turos E. Drug delivery approaches to overcome bacterial resistance to β-lactam antibiotics // Expert Opinion on Drug Delivery. - 2008. - Vol.5. - P.931 -949. 6. Abeylath S.C., Turos E. Drug delivery approaches to overcome bacterial resistance to β-lactam antibiotics // Expert Opinion on Drug Delivery. - 2008 .-- Vol.5. - P.931 -949.
7. Bastus N.G., Sanchez-Tillo E., Pujals S. et al. Peptides conjugated to gold nanopar- ticles induce macrophage activation // Molecular Immunology. - 2009. - Vol.46. - P.743-748. 7. Bastus N.G., Sanchez-Tillo E., Pujals S. et al. Peptides conjugated to gold nanoparticles induce macrophage activation // Molecular Immunology. - 2009. - Vol. 46. - P.743-748.
8. Pinto-Alphandary H., Andremont A., Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications // International Journal of 8. Pinto-Alphandary H., Andremont A., Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications // International Journal of
Antimicrobial Agents. - 2000. - Vol.13. - P.155-168. Antimicrobial Agents. - 2000. - Vol.13. - P.155-168.
9. Ulbrich W., Lamprech A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases // Journal Royal Society Interface. - 2010. - Vol.7, Suppl. 1. - P.S55-S66.  9. Ulbrich W., Lamprech A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases // Journal Royal Society Interface. - 2010 .-- Vol. 7, Suppl. 1.- P.S55-S66.
10. Rosemary M.J., MacLaren I., Pradeep T. Investigation of antibacterial properties of ciprofloxacin@Si02. // Langmuir. - 2006. - Vol.22. - P.10125-10129. 10. Rosemary M.J., MacLaren I., Pradeep T. Investigation of antibacterial properties of ciprofloxacin @ Si02. // Langmuir. - 2006. - Vol.22. - P.10125-10129.
1 1. Rai A., Prabhune A., Perry C.C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings // Journal of Materials Chemistry. - 2010. - Vol.20. - P.6789-6798. Zolnik B.S., Gonzalez-Fernandez A., Sadrieh N., Dobrovolskaia V. Minireview: Nanoparticles and the immune system // Endocrinology. - 2010. - Vol.151. - P.458-465. 1 1. Rai A., Prabhune A., Perry CC Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings // Journal of Materials Chemistry. - 2010 .-- Vol.20. - P.6789-6798. Zolnik BS, Gonzalez-Fernandez A., Sadrieh N., Dobrovolskaia V. Minireview: Nanoparticles and the immune system // Endocrinology. - 2010 .-- Vol. 151. - P. 458-465.
Pinto-Alphandary H., Balland O., Laurent M. et al. Intracellular visualization of ampicillin-loaded nanoparticles in peritoneal macrophages infected in vitro with Salmonella typhimuri m II Pharmaceutical Research. - 1994. - Vol.11. - P.38-46. Park J-H., Gu L., Maltzahn G. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications // Nature Materials. - 2009. - Vol.8. - P.331-336. Pernis B. Silica and the immune system // Acta Biomed. - 2005. - Vol.76, Suppl. 2.- P.38-44. Pinto-Alphandary H., Balland O., Laurent M. et al. Intracellular visualization of ampicillin-loaded nanoparticles in peritoneal macrophages infected in vitro with Salmonella typhimuri m II Pharmaceutical Research. - 1994 .-- Vol. 11. - P.38-46. Park J-H., Gu L., Maltzahn G. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications // Nature Materials. - 2009. - Vol.8. - P.331-336. Pernis B. Silica and the immune system // Acta Biomed. - 2005 .-- Vol. 76, Suppl. 2.- P.38-44.
Tasciotti E., Liu X., Bhavane R. Et et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications // Nature Nanotechnology. -Tasciotti E., Liu X., Bhavane R. Et et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications // Nature Nanotechnology. -
2008. - Vol.3. - P.151-157. 2008. - Vol. 3. - P.151-157.
Seleem M.N., Munusamy P., Ranjan A et al. Silica-antibiotic hybrid nanoparticles for targeting intracellular pathogens // Antimicrob. Agents Chemother. - 2009. - Vol.53. - P.4270-4274. Seleem M.N., Munusamy P., Ranjan A et al. Silica-antibiotic hybrid nanoparticles for targeting intracellular pathogens // Antimicrob. Agents Chemother. - 2009. - Vol. 53. - P. 4270-4274.
Chuiko A., Pentyuk A., Shtat'ko E., Chuiko N. Medical aspects of application of highly disperse amorphous silica // Surface Chemistry in Biomedical and Environmental Science. Edited by J.P.Blitz and V. Gun'ko.II. Mathematics, Physics and Chemistry. - 2006. - Vol.228. - P.191-204. Chuiko A., Pentyuk A., Shtat'ko E., Chuiko N. Medical aspects of application of highly disperse amorphous silica // Surface Chemistry in Biomedical and Environmental Science. Edited by J.P. Blitz and V. Gun'ko.II. Mathematics, Physics and Chemistry. - 2006 .-- Vol.228. - P.191-204.
Waters K. M., Masiello L.M., Zangar R.C. et al. Macrophage responses to silica nanoparticles are highly conserved across particle sizes // Toxicological Sciences. -Waters K. M., Masiello L.M., Zangar R.C. et al. Macrophage responses to silica nanoparticles are highly conserved across particle sizes // Toxicological Sciences. -
2009. - Vol.107. - P. 553-569. 2009. - Vol. 107. - P. 553-569.
Lucarelli M., Gatti A.M., Savarino G. et al. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles // European Cytokine Network. - 2004. - Vol.15. - P.339-346. Lucarelli M., Gatti A.M., Savarino G. et al. Innate defense functions of macrophages can be biased by nano-sized ceramic and metallic particles // European Cytokine Network. - 2004 .-- Vol.15. - P.339-346.
Hetrick E.M., Shin J.H., Stasko N.A. et al. Bactericidal efficacy of nitric oxide- releasing silica nanoparticles// ACS Nano. - 2008. - Vol.2. - P.235-246. Hetrick E.M., Shin J.H., Stasko N.A. et al. Bactericidal efficacy of nitric oxide releasing silica nanoparticles // ACS Nano. - 2008 .-- Vol.2. - P.235-246.
Nathan C.F., Hibbs J.B. Role of nitric oxide synthesis in macrophage antimicrobial activity// Current Opinion in Immunology. - 1991. - Vol.3. - P.65-70. Nathan C.F., Hibbs J.B. Role of nitric oxide synthesis in macrophage antimicrobial activity // Current Opinion in Immunology. - 1991 .-- Vol. 3. - P.65-70.
McMullin B.B., Chittock D.R., Roscoe D.L. et al. The antimicrobial effect of nitric oxide on the bacteria that cause nosocomial pneumonia in mechanically ventilated patients in the intensive care unit// Respiratory Care. - 2005. - Vol.50. - P.1451-1456. DeGroote M.A., Fang F.C. Antimicrobial properties of nitric oxide// Nitric oxide and infection. - 2002. - Part C. - P.231-261. McMullin BB, Chittock DR, Roscoe DL et al. The antimicrobial effect of nitric oxide on the bacteria that cause nosocomial pneumonia in mechanically ventilated patients in the intensive care unit // Respiratory Care. - 2005. - Vol.50. - P.1451-1456. DeGroote MA, Fang FC Antimicrobial properties of nitric oxide // Nitric oxide and infection. - 2002. - Part C. - P.231-261.
Hamilton R.F., Thakur S.A., Mayfair J.K., Holian A. MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice // The Journal of Biological Chemistry. - 2006. - Vol.281. - P. 34218-34226. Hamilton R.F., Thakur S.A., Mayfair J.K., Holian A. MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL / 6 mice // The Journal of Biological Chemistry. - 2006. - Vol. 281. - P. 34218-34226.
Tarkowski A., Collins L.V., Gjertsson I. et al. Model systems: Modeling human staphylococcal arthritis and sepsis in the mouse// Trends in Microbiology. - 2001. - Vol.9. - P.321-326. Tarkowski A., Collins L.V., Gjertsson I. et al. Model systems: Modeling human staphylococcal arthritis and sepsis in the mouse // Trends in Microbiology. - 2001. - Vol. 9. - P.321-326.
Hultgren O., Kopf M., Tarkowski A. Outcome of Staphylococcus aureus-triggered sepsis and arthritis in IL-4-deficient mice depends on the genetic background of the host// European Journal of Immunology/ - 1999. - Vol.29. - P.2400-2405. Hultgren O., Kopf M., Tarkowski A. Outcome of Staphylococcus aureus-triggered sepsis and arthritis in IL-4-deficient mice depends on the genetic background of the host // European Journal of Immunology / - 1999. - Vol.29. - P.2400-2405.
Schaumann R., Blatz R., Beer J. et al. Effect of moxifloxacin versus imipenem/cilastatin treatment on the mortality of mice infected intravenously with different strains of Bacteroides fragilis and Escherichia coli II Journal of Antimicrobial Chemotherapy. - 2004. - Vol.53. - P.318-324. Schaumann R., Blatz R., Beer J. et al. Effect of moxifloxacin versus imipenem / cilastatin treatment on the mortality of mice infected intravenously with different strains of Bacteroides fragilis and Escherichia coli II Journal of Antimicrobial Chemotherapy. - 2004 .-- Vol. 53. - P.318-324.

Claims

Формула изобретения Claim
1. Фармацевтическая композиция антимикробного действия для парентерального применения, содержащая в качестве терапевтического вещества антибиотик-гликопептид, отличающаяся тем, что она выполнена в форме порошка для приготовления инъекционных растворов и содержит высокодисперсный наноструктурированный диоксид кремния в весовом соотношении антибиотик- гликопептид : высокодисперсный наноструктурированный диоксид кремния, равном (10-70) : 1.  1. A pharmaceutical composition of antimicrobial action for parenteral use, containing an antibiotic-glycopeptide as a therapeutic substance, characterized in that it is in the form of a powder for the preparation of injection solutions and contains highly dispersed nanostructured silicon dioxide in a weight ratio of antibiotic-glycopeptide: highly dispersed nanostructured silicon dioxide, equal to (10-70): 1.
2. Способ получения фармацевтической композиции антимикробного действия для парентерального применения, включающий смешение антибиотика- гликопептида с другими компонентами, отличающийся тем, что антибиотик- гликопептид в форме порошка смешивают с порошкообразным высокодисперсным наноструктурированным диоксидом кремния в весовом соотношении антибиотик- гликопептид: высокодисперсный наноструктурированный диоксид кремния, равном (10-70) : 1, и полученную смесь подвергают механической обработке путём ударно- истирающих воздействий.  2. A method of obtaining a pharmaceutical composition of antimicrobial action for parenteral use, comprising mixing an antibiotic glycopeptide with other components, characterized in that the antibiotic-glycopeptide in powder form is mixed with powdered highly dispersed nanostructured silicon dioxide in a weight ratio of antibiotic-glycopeptide: highly dispersed silica, highly dispersed nanostructured equal to (10-70): 1, and the resulting mixture is subjected to mechanical treatment by impact-abrasion.
PCT/RU2011/000781 2011-05-11 2011-10-05 Antimicrobially active pharmaceutical composition for parenteral use, and method for producing said composition WO2012154078A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EA201100736 2011-05-11
EA201100736A EA021847B1 (en) 2011-05-11 2011-05-11 Pharmaceutical composition with antimicrobial activity for parenteral use, process for preparing same

Publications (1)

Publication Number Publication Date
WO2012154078A1 true WO2012154078A1 (en) 2012-11-15

Family

ID=45540663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2011/000781 WO2012154078A1 (en) 2011-05-11 2011-10-05 Antimicrobially active pharmaceutical composition for parenteral use, and method for producing said composition

Country Status (2)

Country Link
EA (1) EA021847B1 (en)
WO (1) WO2012154078A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070275068A1 (en) * 2004-09-09 2007-11-29 Johan Martens Controlled Release Delivery System for Bio-Active Agents
EP1313451B1 (en) * 2000-08-31 2009-03-11 Jagotec AG Milled particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA013864B1 (en) * 2008-08-29 2010-08-30 Лимонова, Анастасия Викторовна Method of enhancement antimicrobal activity of cephalosporin antibiotics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313451B1 (en) * 2000-08-31 2009-03-11 Jagotec AG Milled particles
US20070275068A1 (en) * 2004-09-09 2007-11-29 Johan Martens Controlled Release Delivery System for Bio-Active Agents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HETRICK, EVAN M.: "Antimicrobial and wound healing properties of nitric oxide-releasing xerogels and silica nanoparticles.", THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, 2008, pages 241 *

Also Published As

Publication number Publication date
EA021847B1 (en) 2015-09-30
EA201100736A1 (en) 2012-01-30

Similar Documents

Publication Publication Date Title
Sharma et al. Dynamic mucus penetrating microspheres for efficient pulmonary delivery and enhanced efficacy of host defence peptide (HDP) in experimental tuberculosis
Vairo et al. In vitro and in vivo antimicrobial activity of sodium colistimethate and amikacin-loaded nanostructured lipid carriers (NLC)
WO2012154076A1 (en) Antibacterially active pharmaceutical composition for parenteral use, and method for producing said composition
EP2596783B1 (en) Pharmaceutical composition for the preparation of infusion solutions of antimicrobial preparations, its production process
EP2950804B1 (en) Antibiotic preparation and use thereof
WO2012154078A1 (en) Antimicrobially active pharmaceutical composition for parenteral use, and method for producing said composition
AU2011304261C1 (en) Antimicrobial and anti-inflammatory action pharmaceutical composition for parenteral administration, process of producing the same
Adlakha et al. Inhalation delivery of host defense peptides (HDP) using nano-formulation strategies: a pragmatic approach for therapy of pulmonary ailments
WO2012154077A1 (en) Pharmaceutical composition for the treatment of tuberculosis and other infections, and method for producing said composition
US20130164337A1 (en) Antimicrobial action pharmaceutical composition for parenteral administration and its production process
AU2011302724C1 (en) Pharmaceutical composition with antimicrobial activity for parenteral administration and process for preparing same
WO2012154075A1 (en) Antibacterially active pharmaceutical composition for external use, and method for the production of said composition
NZ601748B (en) Pharmaceutical composition for the preparation of infusion solutions of antimicrobial preparations, its&#39; production process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864960

Country of ref document: EP

Kind code of ref document: A1