WO2012153800A1 - High frequency switch module and wireless communication device - Google Patents

High frequency switch module and wireless communication device Download PDF

Info

Publication number
WO2012153800A1
WO2012153800A1 PCT/JP2012/061965 JP2012061965W WO2012153800A1 WO 2012153800 A1 WO2012153800 A1 WO 2012153800A1 JP 2012061965 W JP2012061965 W JP 2012061965W WO 2012153800 A1 WO2012153800 A1 WO 2012153800A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
transmission
phase
band
Prior art date
Application number
PCT/JP2012/061965
Other languages
French (fr)
Japanese (ja)
Inventor
上嶋孝紀
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013514050A priority Critical patent/JP5672375B2/en
Publication of WO2012153800A1 publication Critical patent/WO2012153800A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the present invention relates to a high-frequency switch module and a wireless communication apparatus that transmit and receive a communication signal of a number greater than the number of antennas connected using a switch IC.
  • the high-frequency switch module described in Patent Document 1 includes three antennas, and a switch IC is provided for each antenna.
  • Each switch IC includes a common terminal that is connected to an individual antenna and a plurality of individual terminals that are switched and connected to the common terminal.
  • a transmission signal input circuit and a reception signal output circuit are connected to each individual terminal.
  • a notch filter or a band-pass filter with sharp attenuation characteristics is used to output the received signal of the second received signal so that harmonics of the first transmitted signal received by the second antenna are not output from the received signal output circuit of the second received signal. It must be added to the circuit, and the high-frequency switch module becomes large.
  • the harmonics of the first transmission signal are used.
  • the pass characteristic of the reception signal output circuit for the second reception signal may be deteriorated due to the setting of the attenuation pole for suppressing the wave.
  • an object of the present invention is to provide the second transmission signal with higher harmonics of the first transmission signal even if the frequency band of the first transmission signal transmitted and received by different antennas is close to the frequency band of the second reception signal.
  • An object of the present invention is to realize a high-frequency switch module capable of suppressing the reception signal from entering the reception signal output circuit.
  • the high-frequency switch module of the present invention includes a switch IC, a first transmission signal input port, and a phase circuit.
  • the switch IC includes an antenna side terminal for connection to a first antenna that transmits and receives radio waves, and a plurality of transmission / reception circuit side terminals that are selectively connected to the antenna side terminal.
  • the first transmission signal input port is connected to a specific transmission / reception circuit side terminal of the switch IC and inputs a transmission signal of the first communication signal.
  • the phase circuit is connected between the first transmission signal input port and the specific transmission / reception circuit side terminal, and when viewed from the specific transmission / reception circuit side terminal to the first transmission signal input port side, the harmonics of the transmission signal of the first communication signal. The phase is rotated so that the wave phase is substantially short-circuited.
  • the electrical length between the transmitting / receiving circuit-side terminal and the antenna-side terminal in the switch IC is greater than the wavelength of the second harmonic of the transmission signal of the first communication signal (hereinafter referred to as the first transmission signal). Is also very short, and when the first transmission signal input port side is viewed from a specific transmission / reception circuit side terminal of the switch IC, the harmonic phase of the first transmission signal is substantially short-circuited, so that the antenna side of the switch IC The phase of the harmonics of the first transmission signal viewed from the terminal on the switch IC side is substantially short-circuited.
  • a high-frequency switch module can be realized by using a phase circuit that can be realized by one or several circuit elements without using a circuit having many components such as a bandpass filter or a notch filter having a steep attenuation characteristic. Can be suppressed.
  • the high frequency switch module of the present invention preferably has the following configuration.
  • a signal processing circuit that performs predetermined signal processing on the transmission signal of the first communication signal is provided between the phase circuit and the first transmission signal input port.
  • the phase circuit and the signal processing circuit rotate the phase so that the phase of the harmonics of the transmission signal of the first communication signal is substantially short-circuited when viewed from the specific transmission / reception circuit side terminal to the first transmission signal input port side.
  • a signal processing circuit for example, a filter circuit such as a filter or a duplexer, or an amplifier, or the like, includes a specific transmission / reception circuit side terminal and a first transmission signal.
  • the harmonics of the transmission signal of the first communication signal as seen from the specific transmission / reception circuit side terminal to the first transmission signal input port side also using the phase rotation of this signal processing Is substantially short-circuited.
  • the amount of phase rotation in a phase circuit can be reduced and a phase circuit can be reduced in size.
  • the signal processing circuit can be configured by a filter circuit that performs frequency filter processing on the transmission signal of the first communication signal.
  • a filter circuit that performs frequency filter processing on the transmission signal of the first communication signal.
  • an example of a signal processing circuit is shown, and the amount of phase rotation in the phase circuit can be reduced by using a filter circuit having a large reflection coefficient outside the passband.
  • the phase circuit is preferably an inductor connected between a signal line connecting the first transmission signal input port and the first individual terminal and the ground.
  • the phase circuit can be configured with only one inductor, the high-frequency switch module can be made small while realizing the above-described phase rotation.
  • the phase circuit can also be configured to include an LC parallel resonant circuit connected in series to a signal line connecting the first transmission signal input port and a specific transmission / reception circuit side terminal. . Even with this configuration, effects similar to those of the above-described configuration can be obtained in terms of characteristics.
  • the inductor constituting the phase circuit has a helical shape or a spiral shape.
  • the effect of shortening the phase is generated by the helical shape or the spiral shape, so that the inductor can be reduced in size.
  • the phase circuit and the high-frequency switch module can be reduced in size.
  • a radio communication device according to any one of the above-described high frequency switch module and a second radio wave for receiving a radio wave of a second communication signal having a frequency close to a harmonic frequency of the first communication signal.
  • a second reception signal output port that is connected to the antenna and outputs a reception signal of the second communication signal.
  • the harmonic of the first transmission signal is the second reception signal. Sneaking into the received signal output circuit can be suppressed. Thereby, it is possible to realize a high-frequency module having good pass characteristics and attenuation characteristics for any communication signal to be handled without deteriorating the characteristics of the reception signal output circuit.
  • the high frequency module 5 which comprises the radio
  • 1 is a circuit diagram of a wireless communication device 1 including a high-frequency module 5 according to a first embodiment. It is explanatory drawing of the effect
  • FIG. 1 is an external view of a high-frequency switch module 5 constituting the wireless communication apparatus 1 according to the present embodiment.
  • FIG. 2 is a circuit configuration diagram of the wireless communication device 1 including the high-frequency switch module 5 according to the present embodiment.
  • the high-frequency switch module 5 constituting the wireless communication device 1 includes a laminated body 101, a switch element for the switch IC 10, a duplexer element for the SAW duplexer 40A, a duplexer element for the SAW duplexer 40B, an inductor element for the inductor AL2, an inductor element for the inductor L3, and insulation.
  • a functional resin 102 is provided.
  • the laminated body 101 has a structure in which a plurality of insulator layers are laminated, and circuit elements and wiring patterns other than the mounting elements of the high-frequency switch module circuit shown in FIG. 2 are used as inner layer electrode patterns, front surface electrode patterns, and rear surface electrode patterns. It is realized by.
  • a switch element for the switch IC 10 On the surface of the laminate 101, a switch element for the switch IC 10, a duplexer element for the SAW duplexer 40A, a duplexer element for the SAW duplexer 40B, an inductor element for the inductor AL2, and an inductor element for the inductor L3 are mounted on predetermined land electrodes.
  • the elements for GPS SAW filters 92 and 94 and the element for LNA 93 are mounted on the surface of a laminated body different from the laminated body 101, although not shown, and together with the laminated body 101, the mother of the wireless communication device 1 It is mounted on a substrate.
  • the high-frequency switch module circuit shown in FIG. 2 is realized by the stacked body 101 and each mounted element.
  • An insulating resin 102 is disposed on the surface of the laminated body 101 so as to cover each mounting element.
  • the high frequency switch module 5 includes a switch IC 10, an antenna side circuit 20, a first transmission circuit 30A, a second transmission circuit 30B, SAW duplexers 40A and 40B, and a phase circuit element 50.
  • the high-frequency switch module 5 includes a plurality of matching elements in addition to these circuit elements.
  • the switch IC 10 is formed of a semiconductor switch such as an FET.
  • the switch IC 10 includes a single common terminal P IC (ANT0), nine individual terminals P IC (RF1) -P IC (RF9), and a drive signal input terminal P IC (Vd), four controls A signal input terminal P IC (Vc) and a ground connection terminal (not shown) are provided.
  • the switch IC 10 operates with a drive voltage input from the drive signal input terminal P IC (Vd), and is common according to a combination of a plurality of drive signals input to the four control signal input terminals P IC (Vc).
  • the terminal P IC (ANT0) is switched and connected to any one of the individual terminals P IC (RF1) -P IC (RF9).
  • the common terminal P IC (ANT0) corresponding to the antenna side terminal of the present invention is connected to the first antenna port P M (ANT1) via the antenna side circuit 20.
  • the first antenna port P M (ANT1) is connected to the first antenna ANT1.
  • the antenna-side circuit 20 includes an inductor AL1 connected between the common terminal P IC (ANT0) and the first antenna port P M (ANT1), and the first antenna port P M (ANT1) side of the inductor AL1 is grounded.
  • a capacitor AC to be connected and an inductor AL2 for connecting the common terminal P IC (ANT0) side of the inductor AL1 to the ground are provided.
  • the antenna-side circuit 20 functions as a matching circuit between the first antenna ANT and the switch IC 10 and also functions as an ESD protection circuit for the switch IC 10.
  • the individual terminal P IC (RF1) is connected to the individual input / output port P M (TxL) via the first transmission circuit 30A.
  • the first transmission circuit 30A includes inductors GLt1 and GLt2 connected in series between the individual terminal P IC (RF1) and the individual input / output port P M (TxL).
  • the capacitor GCc1 is connected in parallel to the inductor GLt1, the capacitor GCu1 connects the individual terminal P IC (RF1) side of the inductor GLt1 to the ground, and the capacitor GCu2 connects the connection point of the inductors GLt1 and GLt2 to the ground.
  • the capacitor GCc2 is connected in parallel to the inductor GLt2, and the capacitor GCu3 connects the individual input / output port P M (TxL) side of the inductor GLt2 to the ground.
  • the first transmission circuit 30A uses the fundamental frequency band of the transmission signal of the GSM850 communication signal and the transmission signal of the GSM850 communication signal input from the individual input / output port P M (TxL) as a pass band. It functions as a low-pass filter circuit whose attenuation band is a frequency band above the wave.
  • the individual terminal P IC (RF2) is connected to the individual input / output port P M (TxH) via the second transmission circuit 30B.
  • the second transmission circuit 30B includes inductors DLt1 and DLt2 connected in series between the individual terminal P IC (RF2) and the individual input / output port P M (TxH).
  • the capacitor DCu2 connects the connection point of the inductors DLt1 and DLt2 to the ground.
  • the capacitor DCc2 is connected in parallel to the inductor DLt2, and the capacitor DCu3 connects the individual input / output port P M (TxH) side of the inductor DLt2 to the ground.
  • the second transmission circuit 30B uses the fundamental frequency band of the transmission signal of the GSM1800 communication signal and the transmission signal of the GSM1900 communication signal input from the individual input / output port P M (TxH) as the passband, and is the second harmonic. It functions as a low-pass filter circuit whose attenuation band is a frequency band above the wave.
  • the individual terminal P IC (RF3) is connected to the individual input / output port P M (RxL1) via the SAW filter 41A of the SAW duplexer 40A.
  • the individual terminal P IC (RF4) is connected to the individual input / output port P M (RxL2) via the SAW filter 42A of the SAW duplexer 40A.
  • the SAW filters 41A and 42A constituting the SAW duplexer 40A have an unbalance / balance conversion function.
  • the SAW filter 41A is a filter whose pass band is the frequency band of the received signal of the GSM850 communication signal and whose attenuation band is the other band.
  • the SAW filter 42A is a filter whose pass band is the frequency band of the received signal of the GSM900 communication signal and whose attenuation band is the other band.
  • a transmission line connecting the individual terminal P IC (RF4) and the SAW filter 42A of the SAW duplexer 40A is connected to the ground by a matching inductor L3.
  • the individual terminal P IC (RF5) is connected to the individual input / output port P M (RxH1) via the SAW filter 41B of the SAW duplexer 40B.
  • the individual terminal P IC (RF6) is connected to the individual input / output port P M (RxH2) via the SAW filter 42B of the SAW duplexer 40B.
  • the SAW filters 41B and 42B constituting the SAW duplexer 40B have an unbalance-balance conversion function.
  • the SAW filter 41B is a filter whose pass band is the frequency band of the received signal of the GSM1800 communication signal and whose attenuation band is the other band.
  • the SAW filter 42B is a filter having a frequency band of a received signal of the GSM1900 communication signal as a pass band and another band as an attenuation band.
  • a transmission line that connects the individual terminal P IC (RF5) and the SAW filter 41B of the SAW duplexer 40B is connected to the ground by a matching inductor L5.
  • the transmission line that connects the individual terminal P IC (RF6) and the SAW filter 42B of the SAW duplexer 40B is connected to the ground by a matching inductor L4.
  • the individual terminal P IC (RF7) is connected to an individual input / output port P M (U1) for inputting / outputting a W-CDMA (Band 1) communication signal.
  • the individual terminal P IC (RF8) is connected to an individual input / output port P M (U2) that inputs and outputs a W-CDMA (Band 5) communication signal.
  • the individual terminal P IC (RF9) corresponding to a specific transmission / reception circuit side terminal of the present invention is an individual input / output port P M (LTE) for inputting / outputting a W-CDMA (Band 13) communication signal as an LTE (Long Term Evolution) communication signal. )It is connected to the.
  • the frequency band of the transmission signal of the W-CDMA (Band 13) communication signal is a 770 MHz band (777 MHz-787 MHz).
  • This W-CDMA (Band 13) communication signal corresponds to the first communication signal of the present invention.
  • a transmission line connecting the individual terminal P IC (RF9) and the individual input / output port P M (LTE) is connected to the ground by an inductor.
  • the phase circuit 50 is realized by a configuration in which an inductor is connected between the transmission line and the ground.
  • the inductor that constitutes the phase circuit 50 is substantially short-circuited in impedance to the second harmonic of the W-CDMA (Band 13) communication signal when the individual input / output port P M (LTE) side is viewed from the individual terminal P IC (RF9). So that the phase is rotated.
  • a strip line having a length of approximately ⁇ / 4 with respect to the wavelength ⁇ of the fundamental frequency signal of the W-CDMA (Band 13) communication signal is used as the inductor.
  • the second antenna port P M (ANT2) of the GPS receiving module 6 constituting the wireless communication device 1 is connected to the second antenna ANT2 and to the low-pass filter 91.
  • the low pass filter 91 is connected to the SAW filter 92, and the SAW filter 92 is connected to the input terminal of the LNA 93.
  • the output terminal of the LNA 93 is connected to the SAW filter 94, and the SAW filter 94 is connected to the individual input / output port P M (GPS).
  • the low-pass filter 91 and the SAW filters 92 and 94 are filters that include the frequency (1575.72 MHz) of the GPS signal in the pass band. With such a configuration, the GPS signal received at the second antenna port P M (ANT2) is output from the individual input / output port P M (GPS). This GPS signal corresponds to the second communication signal of the present invention.
  • the second harmonic of the W-CDMA (Band 13) communication signal is transmitted from the first antenna ANT1 through the second antenna ANT2 to the individual input / output port P M ( GPS). Thereby, the reception sensitivity with respect to a GPS signal will fall.
  • a power amplifier for amplifying a transmission signal is often connected to the individual input / output port P M (LTE), but the power amplifier generates harmonics of a signal that is an integral multiple of the fundamental frequency. It can be reduced by the phase circuit 50 that the harmonics from the power amplifier are input to the switch IC, and the occurrence of distortion of the switch IC can also be suppressed.
  • FIG. 3 is an explanatory diagram of an operation concept of the high-frequency module 5 of the present embodiment.
  • the switch IC 10 has a plurality of FETs 91 to 9m (m is a positive number of 2 or more) between the common terminal P IC (ANT0) and the individual terminal P IC (RF9). It has a structure in which FET91 to FET9m are continuously connected.
  • the common terminal P IC (ANT0) and the individual terminal P IC (RF9) are brought into conduction by applying an ON control drive voltage signal to the FETs 91 to 9m.
  • the configuration of the switch IC 10 may be another circuit configuration as long as the circuit can realize the same function.
  • the phase circuit by configuring the phase circuit only with an inductor connected between the transmission line and the ground, no circuit element is connected on the transmission line, and W-CDMA (Band 13) communication is performed. It is possible to prevent the insertion loss of the signal with respect to the fundamental frequency signal from deteriorating. Therefore, a high-frequency switch module with better characteristics can be realized.
  • FIG. 4 is a circuit diagram of the wireless communication device 1A including the high-frequency module 5A according to the second embodiment.
  • the high frequency switch module 5A of this embodiment is different from the high frequency switch module 5 shown in the first embodiment in the configuration of the GPS receiving module 6, the configuration of the switch IC 10A on the first antenna ANT1 side, and the GSM communication of the switch IC 10A.
  • the configuration on the signal transmission circuit side is the same. Therefore, only different parts will be described.
  • the individual terminal P IC (RF3) is connected to the individual input / output port P M (RxL2) via the SAW filter 42A.
  • the SAW filter 42A is a filter whose pass band is the frequency band of the received signal of the GSM900 communication signal and whose attenuation band is the other band.
  • a transmission line connecting the individual terminal P IC (RF4) and the SAW filter 42A of the SAW duplexer 40A is connected to the ground by a matching inductor L5A.
  • the individual terminal P IC (RF4) is connected to the individual input / output port P M (RxH1) via the SAW filter 41B of the SAW duplexer 40B.
  • the individual terminal P IC (RF5) is connected to the individual input / output port P M (RxH2) via the SAW filter 42B of the SAW duplexer 40B.
  • the SAW filters 41B and 42B constituting the SAW duplexer 40B have an unbalance-balance conversion function.
  • the SAW filter 41B is a filter whose pass band is the frequency band of the received signal of the GSM1800 communication signal and whose attenuation band is the other band.
  • the SAW filter 42B is a filter having a frequency band of a received signal of the GSM1900 communication signal as a pass band and another band as an attenuation band.
  • a transmission line connecting the individual terminal P IC (RF4) and the SAW filter 41B of the SAW duplexer 40B is connected to the ground by a matching inductor L7A.
  • the transmission line that connects the individual terminal P IC (RF5) and the SAW filter 42B of the SAW duplexer 40B is connected to the ground by a matching inductor L6A.
  • the individual terminal P IC (RF6) is connected to the common terminal of the SAW duplexer 40C.
  • the SAW duplexer 40C includes a SAW filter 41C and a SAW filter 42C.
  • a capacitor C2A is connected between the individual terminal P IC (RF6) and the common terminal of the SAW duplexer 40C, and the common terminal side of the capacitor C2A is connected to the ground via the inductor L3A.
  • These capacitors C2A and inductor L3A constitute a matching circuit.
  • the SAW filter 42C is a filter having a frequency band of a transmission signal of a W-CDMA (Band 1) communication signal as a pass band and another frequency band as an attenuation band.
  • the SAW filter 42C is connected to the individual input / output port P M (TxU1).
  • the SAW filter 41C is a filter whose pass band is the frequency band of the received signal of the W-CDMA (Band 1) communication signal and whose attenuation band is the other frequency band.
  • the SAW filter 41C is connected to a balanced individual input / output port P M (RxU1).
  • the individual terminal P IC (RF7) is connected to the common terminal of the SAW duplexer 40D.
  • the SAW duplexer 40D includes a SAW filter 41D and a SAW filter 42D.
  • a transmission line connecting the individual terminal P IC (RF7) and the common terminal of the SAW duplexer 40D is connected to the ground via the inductor L8A.
  • This inductor L8A constitutes a matching circuit.
  • the SAW filter 42D is a filter whose pass band is the frequency band of the transmission signal of the W-CDMA (Band 5) communication signal and whose attenuation band is the other frequency band.
  • the SAW filter 42D is connected to the individual input / output port P M (TxU2).
  • the SAW filter 41D is a filter whose pass band is the frequency band of the received signal of the W-CDMA (Band 5) communication signal and whose attenuation band is the other frequency band.
  • the SAW filter 41D is connected to a balanced individual input / output port P M (RxU2).
  • the individual terminal P IC (RF8) is connected to the common terminal of the SAW duplexer 40E.
  • the SAW duplexer 40E includes a SAW filter 41E and a SAW filter 42E.
  • An inductor that constitutes the phase circuit 50A is connected between the individual terminal P IC (RF8) and the common terminal of the SAW duplexer 40E.
  • the common terminal side of the inductor constituting the phase circuit 50A is connected to the ground via the inductor constituting the matching circuit 60A.
  • the SAW filter 42E is a filter whose pass band is the frequency band of the transmission signal of the W-CDMA (Band 13) communication signal, which is LTE, and whose attenuation band is the other frequency band.
  • the SAW filter 42E is connected to the individual input / output port P M (TxLTE).
  • the SAW filter 41E is a filter whose pass band is the frequency band of the received signal of the W-CDMA (Band 13) communication signal and whose attenuation band is the other frequency band.
  • the SAW filter 41E is connected to a balanced individual input / output port P M (RxLTE).
  • the SAW duplexer 40E and the SAW filter 42E correspond to the signal processing circuit of the present invention.
  • the SAW filter 42E of the SAW duplexer 40E has a large reflection coefficient with respect to the second harmonic of the W-CDMA (Band 13) communication signal outside the pass band, and has a phase rotation effect. Therefore, when the inductor constituting the phase circuit 50A is viewed from the individual input / output port P M (TxLTE) side from the individual terminal P IC (RF8) in consideration of the phase rotation amount of the SAW filter 42E of the SAW duplexer 40E.
  • the phase of the W-CDMA (Band 13) communication signal is set to rotate so that the impedance to the second harmonic of the communication signal is substantially short-circuited.
  • W-CDMA (Band 13) when the individual input / output port P M (TxLTE) side is viewed from the individual terminal P IC (RF8) by the inductor constituting the phase circuit 50A and the SAW filter 42E of the SAW duplexer 40E.
  • the second harmonic of the W-CDMA (Band 13) communication signal is rotated in phase so that the impedance of the communication signal to the second harmonic is substantially short-circuited.
  • part of the phase rotation of the W-CDMA (Band 13) communication signal with respect to the second harmonic can be covered by the SAW filter 42E of the SAW duplexer 40E, so that the inductor constituting the phase circuit 50A Even if the amount of phase rotation due to is small, the above-described effects can be realized. That is, the inductance of the inductor constituting the phase circuit 50A can be reduced, and the shape of the inductor can be reduced. Thereby, the high frequency switch module 5A can be configured more compactly.
  • the inductor constituting the phase circuit 50A is formed by the inner layer electrode extending over a plurality of layers of the multilayer body 101, and is formed in a helical shape or a spiral shape, thereby obtaining a wavelength shortening effect and forming the inductor more compactly. Can do. Thereby, the high frequency switch module 5A can be further reduced in size.
  • the case where the frequency of the second harmonic of the W-CDMA (Band 13) communication signal and the GPS signal are close to each other is shown, but the harmonic of the transmission signal of the first communication signal transmitted from the first antenna is shown. If the wave (not only the second harmonic but also the third harmonic, etc.) is close to the frequency of the received signal of the second communication signal received by the second antenna close to the first antenna.
  • the above-described configuration can be applied without using a combination of the second harmonic of the W-CDMA (Band 13) communication signal and the GPS signal.
  • the SAW duplexer 40E and the SAW filter 42E are used as the signal processing circuit.
  • any circuit element connected to a transmission signal input circuit such as a power amplifier and having a phase rotation effect may be used.
  • Other elements may be used.
  • FIG. 5 is a partially enlarged view of a circuit diagram of a high-frequency switch module having another configuration.
  • the phase circuit may be configured by a parallel circuit using an inductor L9B and a capacitor C3B.
  • the values of the inductor L9B and the capacitor C3B are adjusted to function as a phase circuit, and the frequency of the second harmonic of the transmission signal input from the individual input / output terminal P M (LTE) is determined by the inductor L9B and the capacitor C3B.
  • the resonance frequency of the parallel circuit consisting of Thereby, the second harmonic input from the individual input / output terminal P M (LTE) can be attenuated, and a decrease in reception sensitivity of another communication system (for example, the above-described GPS reception module 6) can be prevented.
  • SYMBOLS 1,1A Radio

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

This device prevents harmonics of a first transmission signal from affecting a received signal output circuit of a second received signal even when the frequency band of harmonics of the first transmitted signal and the frequency band of the second received signal are adjacent, said signals being transmitted and received with different antennae. A common terminal PIC (ANT0) of a switch IC (10) is connected to a first antenna ANT (1). An individual terminal PIC (RF9) of the switch IC (10) is connected to an individual I/O port PM (LTE) which inputs and outputs a W-CDMA (Band13) communication signal. A second antenna ANT (2) is connected to a GPS signal receiving system circuit. The transmission line which connects the individual terminal PIC (RF9) of the switch IC (10) and the individual I/O port PM (LTE) is connected to ground via an inductor, and by means of this configuration, a phase circuit (50) can be realized which rotates the phase of the second harmonic of the W-CDMA (Band13) communication signal.

Description

高周波スイッチモジュール及び無線通信装置High frequency switch module and wireless communication device
 この発明は、スイッチICを用いて接続されるアンテナ個数以上の種類の通信信号を送受信する高周波スイッチモジュール及び無線通信装置に関する。 The present invention relates to a high-frequency switch module and a wireless communication apparatus that transmit and receive a communication signal of a number greater than the number of antennas connected using a switch IC.
 従来、それぞれに異なる周波数帯域を利用した複数の通信信号(送信信号および受信信号)を送受信する高周波スイッチモジュールが各種考案されている。例えば、特許文献1に記載の高周波スイッチモジュールは、三個のアンテナを備え、アンテナ毎にスイッチICが備えられている。各スイッチICは、個別のアンテナに接続する共通端子と、当該共通端子に切り替え接続される複数の個別端子を備える。各個別端子には、送信信号入力回路や受信信号出力回路が接続されている。この構成において、各スイッチICに対して切り替え制御を行うことで、送信信号入力回路から入力された所望の送信信号のアンテナへの出力や、アンテナで受信した所望の受信信号の受信信号出力回路への出力を行っている。 Conventionally, various high-frequency switch modules that transmit and receive a plurality of communication signals (transmission signals and reception signals) using different frequency bands have been devised. For example, the high-frequency switch module described in Patent Document 1 includes three antennas, and a switch IC is provided for each antenna. Each switch IC includes a common terminal that is connected to an individual antenna and a plurality of individual terminals that are switched and connected to the common terminal. A transmission signal input circuit and a reception signal output circuit are connected to each individual terminal. In this configuration, by performing switching control for each switch IC, the output of the desired transmission signal input from the transmission signal input circuit to the antenna and the reception signal output circuit of the desired reception signal received by the antenna The output is done.
特開2009-27319号公報JP 2009-27319 A
 しかしながら、上述のような構成において、第1のアンテナから送信する第1送信信号の高調波の周波数帯域と、第2のアンテナで受信する第2受信信号の周波数帯域とが近接していると、第2のアンテナで受信した第1送信信号の高調波が第2受信信号の受信信号出力回路から出力されないように、ノッチフィルタや減衰特性の鋭いバンドパスフィルタを、第2受信信号の受信信号出力回路に追加しなければならず、高周波スイッチモジュールが大型化してしまう。 However, in the configuration as described above, when the frequency band of the harmonics of the first transmission signal transmitted from the first antenna and the frequency band of the second reception signal received by the second antenna are close to each other, A notch filter or a band-pass filter with sharp attenuation characteristics is used to output the received signal of the second received signal so that harmonics of the first transmitted signal received by the second antenna are not output from the received signal output circuit of the second received signal. It must be added to the circuit, and the high-frequency switch module becomes large.
 また、第1送信信号の高調波の周波数帯域と第2受信信号の周波数帯域が極近接する場合には、ノッチフィルタや減衰特性の鋭いバンドパスフィルタを用いたとしても、第1送信信号の高調波を抑圧するための減衰極の設定等により、第2受信信号用の受信信号出力回路の通過特性を劣化させてしまうことがある。 Further, when the frequency band of the harmonics of the first transmission signal and the frequency band of the second reception signal are in close proximity, even if a notch filter or a bandpass filter with sharp attenuation characteristics is used, the harmonics of the first transmission signal are used. The pass characteristic of the reception signal output circuit for the second reception signal may be deteriorated due to the setting of the attenuation pole for suppressing the wave.
 したがって、本発明の目的は、異なるアンテナでそれぞれ送受信する第1送信信号の高調波の周波数帯域と第2受信信号の周波数帯域とが近接していても、第1送信信号の高調波が第2受信信号の受信信号出力回路へ回り込むことを抑制できる高周波スイッチモジュールを実現することにある。 Therefore, an object of the present invention is to provide the second transmission signal with higher harmonics of the first transmission signal even if the frequency band of the first transmission signal transmitted and received by different antennas is close to the frequency band of the second reception signal. An object of the present invention is to realize a high-frequency switch module capable of suppressing the reception signal from entering the reception signal output circuit.
 この発明の高周波スイッチモジュールは、スイッチICと、第1送信信号入力ポートと、位相回路とを備える。スイッチICは、電波を送受波する第1アンテナに接続するためのアンテナ側端子、および該アンテナ側端子に対して選択的に接続される複数の送受信回路側端子を備える。第1送信信号入力ポートは、スイッチICの特定の送受信回路側端子に接続し、第1通信信号の送信信号を入力する。位相回路は、第1送信信号入力ポートと特定の送受信回路側端子との間に接続され、特定の送受信回路側端子から第1送信信号入力ポート側を見て第1通信信号の送信信号の高調波の位相が略短絡となるように位相回転させる。 The high-frequency switch module of the present invention includes a switch IC, a first transmission signal input port, and a phase circuit. The switch IC includes an antenna side terminal for connection to a first antenna that transmits and receives radio waves, and a plurality of transmission / reception circuit side terminals that are selectively connected to the antenna side terminal. The first transmission signal input port is connected to a specific transmission / reception circuit side terminal of the switch IC and inputs a transmission signal of the first communication signal. The phase circuit is connected between the first transmission signal input port and the specific transmission / reception circuit side terminal, and when viewed from the specific transmission / reception circuit side terminal to the first transmission signal input port side, the harmonics of the transmission signal of the first communication signal. The phase is rotated so that the wave phase is substantially short-circuited.
 この構成では、スイッチICにおける導通された送受信回路側端子とアンテナ側端子との電気長は、第1通信信号の送信信号(以下、第1送信信号と称する。)の2次高調波の波長よりも極短いことを利用し、スイッチICの特定の送受信回路側端子から第1送信信号入力ポート側を見て第1送信信号の高調波の位相を略短絡とすることで、スイッチICのアンテナ側端子からスイッチIC側を見た第1送信信号の高調波の位相は略短絡となる。したがって、ハイパワーの第1送信信号が入力されてスイッチICが歪むことによりスイッチIC内で生じる第1送信信号の高調波は、スイッチICのアンテナ側端子で全反射して、第1アンテナへ供給されない。これにより、第1送信信号の高調波が、例えば、その高調波と同等の周波数帯域を通信帯域とする別のシステムの回路へアンテナを介して出力されることがない。この際、急峻な減衰特性のバンドパスフィルタやノッチフィルタのような構成要素が多い回路を用いずとも、1個や数個程度の回路素子で実現可能な位相回路を用いることで、高周波スイッチモジュールが大きくなることを抑制できる。 In this configuration, the electrical length between the transmitting / receiving circuit-side terminal and the antenna-side terminal in the switch IC is greater than the wavelength of the second harmonic of the transmission signal of the first communication signal (hereinafter referred to as the first transmission signal). Is also very short, and when the first transmission signal input port side is viewed from a specific transmission / reception circuit side terminal of the switch IC, the harmonic phase of the first transmission signal is substantially short-circuited, so that the antenna side of the switch IC The phase of the harmonics of the first transmission signal viewed from the terminal on the switch IC side is substantially short-circuited. Therefore, the harmonics of the first transmission signal generated in the switch IC due to the distortion of the switch IC due to the input of the first high-power transmission signal is totally reflected at the antenna side terminal of the switch IC and supplied to the first antenna. Not. As a result, the harmonics of the first transmission signal are not output via an antenna to, for example, a circuit of another system that uses a frequency band equivalent to the harmonics as a communication band. At this time, a high-frequency switch module can be realized by using a phase circuit that can be realized by one or several circuit elements without using a circuit having many components such as a bandpass filter or a notch filter having a steep attenuation characteristic. Can be suppressed.
 また、この発明の高周波スイッチモジュールでは、次の構成であることが好ましい。位相回路と第1送信信号入力ポートとの間に第1通信信号の送信信号に対して所定の信号処理を行う信号処理回路を備える。位相回路と信号処理回路とで、特定の送受信回路側端子から第1送信信号入力ポート側を見て第1通信信号の送信信号の高調波の位相が略短絡となるように位相回転させる。 Further, the high frequency switch module of the present invention preferably has the following configuration. A signal processing circuit that performs predetermined signal processing on the transmission signal of the first communication signal is provided between the phase circuit and the first transmission signal input port. The phase circuit and the signal processing circuit rotate the phase so that the phase of the harmonics of the transmission signal of the first communication signal is substantially short-circuited when viewed from the specific transmission / reception circuit side terminal to the first transmission signal input port side.
 この構成では、信号処理回路、例えばフィルタやデュプレクサ等のフィルタ回路やアンプ等、第1送信信号の高調波の位相を回転可能な要素を含む回路が、特定の送受信回路側端子と第1送信信号入力ポートとの間に接続される場合に、この信号処理の位相回転も利用して、特定の送受信回路側端子から第1送信信号入力ポート側を見た第1通信信号の送信信号の高調波の位相を略短絡とする。これにより、位相回路での位相回転量を軽減でき、位相回路を小型化できる。 In this configuration, a signal processing circuit, for example, a filter circuit such as a filter or a duplexer, or an amplifier, or the like, includes a specific transmission / reception circuit side terminal and a first transmission signal. When connected to the input port, the harmonics of the transmission signal of the first communication signal as seen from the specific transmission / reception circuit side terminal to the first transmission signal input port side also using the phase rotation of this signal processing Is substantially short-circuited. Thereby, the amount of phase rotation in a phase circuit can be reduced and a phase circuit can be reduced in size.
 また、この発明の高周波スイッチモジュールでは、第1通信信号の送信信号を周波数フィルタ処理するフィルタ回路で信号処理回路を構成できる。この構成では、信号処理回路の一例を示し、通過帯域外での反射係数が大きなフィルタ回路を用いることで、位相回路での位相回転量を小さくすることができる。 In the high-frequency switch module of the present invention, the signal processing circuit can be configured by a filter circuit that performs frequency filter processing on the transmission signal of the first communication signal. In this configuration, an example of a signal processing circuit is shown, and the amount of phase rotation in the phase circuit can be reduced by using a filter circuit having a large reflection coefficient outside the passband.
 また、この発明の高周波スイッチモジュールでは、位相回路は、第1送信信号入力ポートと第1個別端子とを接続する信号ラインとグランドとの間に接続されたインダクタであることが好ましい。 In the high frequency switch module of the present invention, the phase circuit is preferably an inductor connected between a signal line connecting the first transmission signal input port and the first individual terminal and the ground.
 この構成では、位相回路がインダクタ一つだけで構成できるため、上述の位相回転を実現しながら高周波スイッチモジュールを小さくすることができる。 In this configuration, since the phase circuit can be configured with only one inductor, the high-frequency switch module can be made small while realizing the above-described phase rotation.
 また、この発明の高周波スイッチモジュールでは、位相回路は、第1送信信号入力ポートと特定の送受信回路側端子とを接続する信号ラインに直列接続されたLC並列共振回路を含んで構成することもできる。この構成であっても、特性上、上述の構成と同様の効果が得られる。 In the high-frequency switch module of the present invention, the phase circuit can also be configured to include an LC parallel resonant circuit connected in series to a signal line connecting the first transmission signal input port and a specific transmission / reception circuit side terminal. . Even with this configuration, effects similar to those of the above-described configuration can be obtained in terms of characteristics.
 また、この発明の高周波スイッチモジュールでは、位相回路を構成するインダクタはヘリカル形状もしくはスパイラル形状からなることが好ましい。 In the high-frequency switch module of the present invention, it is preferable that the inductor constituting the phase circuit has a helical shape or a spiral shape.
 この構成では、ヘリカル形状もしくはスパイラル形状により位相短縮効果が生じるので、インダクタを小型化できる。ひいては位相回路および高周波スイッチモジュールを小型化できる。 In this configuration, the effect of shortening the phase is generated by the helical shape or the spiral shape, so that the inductor can be reduced in size. As a result, the phase circuit and the high-frequency switch module can be reduced in size.
 また、この発明の無線通信装置は、上述のいずれかに記載の高周波スイッチモジュールと、第1通信信号の高調波周波数に近接する周波数からなる第2通信信号の電波を受波するための第2アンテナに接続し、第2通信信号の受信信号を出力する第2受信信号出力ポートと、を備えている。 According to another aspect of the present invention, there is provided a radio communication device according to any one of the above-described high frequency switch module and a second radio wave for receiving a radio wave of a second communication signal having a frequency close to a harmonic frequency of the first communication signal. A second reception signal output port that is connected to the antenna and outputs a reception signal of the second communication signal.
 この構成では、上述の高周波スイッチモジュールを用いることで、第1通信信号の高調波周波数と第2通信信号(受信信号)の周波数が近接していても、それぞれの通信信号を送受信するアンテナを近接して配置できる。これにより、それぞれの通信信号に対する回路間のアイソレーションが高い無線通信端末を小型に実現できる。 In this configuration, by using the above-described high-frequency switch module, even if the harmonic frequency of the first communication signal and the frequency of the second communication signal (reception signal) are close to each other, the antennas that transmit and receive each communication signal are close to each other. Can be arranged. Thereby, a wireless communication terminal having high isolation between circuits for each communication signal can be realized in a small size.
 この発明によれば、異なるアンテナでそれぞれ送受信する第1送信信号の高調波の周波数帯域と第2受信信号の周波数帯域とが近接していても、第1送信信号の高調波が第2受信信号の受信信号出力回路へ回り込むことを抑制できる。これにより、受信信号出力回路の特性を劣化させることなく、取り扱ういずれの通信信号に対しても通過特性や減衰特性が良好な高周波モジュールを実現できる。 According to this invention, even if the frequency band of the first transmission signal transmitted and received by different antennas is close to the frequency band of the second reception signal, the harmonic of the first transmission signal is the second reception signal. Sneaking into the received signal output circuit can be suppressed. Thereby, it is possible to realize a high-frequency module having good pass characteristics and attenuation characteristics for any communication signal to be handled without deteriorating the characteristics of the reception signal output circuit.
第1の実施形態に係る無線通信装置1を構成する高周波モジュール5の外観斜視図である。It is an external appearance perspective view of the high frequency module 5 which comprises the radio | wireless communication apparatus 1 which concerns on 1st Embodiment. 第1の実施形態に係る高周波モジュール5を含む無線通信装置1の回路図である。1 is a circuit diagram of a wireless communication device 1 including a high-frequency module 5 according to a first embodiment. 第1の実施形態に係る高周波モジュール5の作用概念の説明図である。It is explanatory drawing of the effect | action concept of the high frequency module 5 which concerns on 1st Embodiment. 第2の実施形態に係る高周波モジュール5Aを含む無線通信装置1Aの回路図である。It is a circuit diagram of 1 A of radio | wireless communication apparatuses containing the high frequency module 5A which concerns on 2nd Embodiment. その他の構成からなる高周波スイッチモジュールの回路図を部分拡大した図である。It is the figure which expanded the circuit diagram of the high frequency switch module which consists of another structure partially.
 本発明の実施形態に係る無線通信装置および高周波スイッチモジュールについて、図を参照して説明する。図1は本実施形態に係る無線通信装置1を構成する高周波スイッチモジュール5の外観図である。図2は本実施形態に係る高周波スイッチモジュール5を含む無線通信装置1の回路構成図である。 A wireless communication device and a high frequency switch module according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external view of a high-frequency switch module 5 constituting the wireless communication apparatus 1 according to the present embodiment. FIG. 2 is a circuit configuration diagram of the wireless communication device 1 including the high-frequency switch module 5 according to the present embodiment.
 無線通信装置1を構成する高周波スイッチモジュール5は、積層体101、スイッチIC10用スイッチ素子、SAWデュプレクサ40A用デュプレクサ素子、SAWデュプレクサ40B用デュプレクサ素子、インダクタAL2用インダクタ素子、インダクタL3用インダクタ素子、絶縁性樹脂102を備える。 The high-frequency switch module 5 constituting the wireless communication device 1 includes a laminated body 101, a switch element for the switch IC 10, a duplexer element for the SAW duplexer 40A, a duplexer element for the SAW duplexer 40B, an inductor element for the inductor AL2, an inductor element for the inductor L3, and insulation. A functional resin 102 is provided.
 積層体101は、複数の絶縁体層が積層された構造からなり、図2に示す高周波スイッチモジュール回路の実装素子を除く回路素子および配線パターンを、内層電極パターン、表面電極パターン、および裏面電極パターンによって実現している。 The laminated body 101 has a structure in which a plurality of insulator layers are laminated, and circuit elements and wiring patterns other than the mounting elements of the high-frequency switch module circuit shown in FIG. 2 are used as inner layer electrode patterns, front surface electrode patterns, and rear surface electrode patterns. It is realized by.
 積層体101の表面には、スイッチIC10用スイッチ素子、SAWデュプレクサ40A用デュプレクサ素子、SAWデュプレクサ40B用デュプレクサ素子、インダクタAL2用インダクタ素子、インダクタL3用インダクタ素子が所定のランド電極に実装されている。なお、GPS用SAWフィルタ92,94用素子やLNA93用素子については、図示していないが積層体101とは別の積層体の表面に実装されており、積層体101とともに無線通信機器1のマザー基板等に実装されている。 On the surface of the laminate 101, a switch element for the switch IC 10, a duplexer element for the SAW duplexer 40A, a duplexer element for the SAW duplexer 40B, an inductor element for the inductor AL2, and an inductor element for the inductor L3 are mounted on predetermined land electrodes. Note that the elements for GPS SAW filters 92 and 94 and the element for LNA 93 are mounted on the surface of a laminated body different from the laminated body 101, although not shown, and together with the laminated body 101, the mother of the wireless communication device 1 It is mounted on a substrate.
 これらの積層体101、および実装された各素子により図2に示す高周波スイッチモジュール回路が実現される。積層体101の表面には、各実装素子を覆うように、絶縁性樹脂102が配設されている。 The high-frequency switch module circuit shown in FIG. 2 is realized by the stacked body 101 and each mounted element. An insulating resin 102 is disposed on the surface of the laminated body 101 so as to cover each mounting element.
 次に、本実施形態の無線通信装置1および高周波スイッチモジュール5の回路構成を説明する。 Next, circuit configurations of the wireless communication device 1 and the high-frequency switch module 5 of the present embodiment will be described.
 高周波スイッチモジュール5は、スイッチIC10、アンテナ側回路20、第1送信回路30A、第2送信回路30B、SAWデュプレクサ40A,40B、位相回路素子50を備える。また、高周波スイッチモジュール5は、これらの回路素子の他に複数の整合用素子を備える。 The high frequency switch module 5 includes a switch IC 10, an antenna side circuit 20, a first transmission circuit 30A, a second transmission circuit 30B, SAW duplexers 40A and 40B, and a phase circuit element 50. The high-frequency switch module 5 includes a plurality of matching elements in addition to these circuit elements.
 スイッチIC10はFET等の半導体スイッチで形成されている。スイッチIC10は、単一の共通端子PIC(ANT0)と、9個の個別端子PIC(RF1)-PIC(RF9)を備えるとともに、駆動信号入力端子PIC(Vd)、4個の制御信号入力端子PIC(Vc)、および図示しないグランド接続端子を備える。 The switch IC 10 is formed of a semiconductor switch such as an FET. The switch IC 10 includes a single common terminal P IC (ANT0), nine individual terminals P IC (RF1) -P IC (RF9), and a drive signal input terminal P IC (Vd), four controls A signal input terminal P IC (Vc) and a ground connection terminal (not shown) are provided.
 スイッチIC10は、駆動信号入力端子PIC(Vd)から入力される駆動電圧で作動し、4個の制御信号入力端子PIC(Vc)に入力される複数の駆動信号の組合せに応じて、共通端子PIC(ANT0)を、個別端子PIC(RF1)-PIC(RF9)のいずれか一つに切り替えて接続する。 The switch IC 10 operates with a drive voltage input from the drive signal input terminal P IC (Vd), and is common according to a combination of a plurality of drive signals input to the four control signal input terminals P IC (Vc). The terminal P IC (ANT0) is switched and connected to any one of the individual terminals P IC (RF1) -P IC (RF9).
 本発明のアンテナ側端子に相当する共通端子PIC(ANT0)は、アンテナ側回路20を介して、第1アンテナポートP(ANT1)に接続されている。第1アンテナポートP(ANT1)は第1アンテナANT1に接続されている。アンテナ側回路20は、共通端子PIC(ANT0)と第1アンテナポートP(ANT1)との間に接続されたインダクタAL1と、インダクタAL1の第1アンテナポートP(ANT1)側をグランドに接続するキャパシタACと、インダクタAL1の共通端子PIC(ANT0)側をグランドに接続するインダクタAL2とを備える。アンテナ側回路20は、第1アンテナANTとスイッチIC10との間の整合回路として機能するとともに、スイッチIC10に対するESD保護回路としても機能する。 The common terminal P IC (ANT0) corresponding to the antenna side terminal of the present invention is connected to the first antenna port P M (ANT1) via the antenna side circuit 20. The first antenna port P M (ANT1) is connected to the first antenna ANT1. The antenna-side circuit 20 includes an inductor AL1 connected between the common terminal P IC (ANT0) and the first antenna port P M (ANT1), and the first antenna port P M (ANT1) side of the inductor AL1 is grounded. A capacitor AC to be connected and an inductor AL2 for connecting the common terminal P IC (ANT0) side of the inductor AL1 to the ground are provided. The antenna-side circuit 20 functions as a matching circuit between the first antenna ANT and the switch IC 10 and also functions as an ESD protection circuit for the switch IC 10.
 個別端子PIC(RF1)は、第1送信回路30Aを介して、個別入出力ポートP(TxL)に接続されている。第1送信回路30Aは、個別端子PIC(RF1)と個別入出力ポートP(TxL)との間に直列接続されたインダクタGLt1,GLt2を備える。キャパシタGCc1はインダクタGLt1に並列接続され、キャパシタGCu1はインダクタGLt1の個別端子PIC(RF1)側をグランドへ接続し、キャパシタGCu2はインダクタGLt1、GLt2の接続点をグランドへ接続する。キャパシタGCc2はインダクタGLt2に並列接続され、キャパシタGCu3はインダクタGLt2の個別入出力ポートP(TxL)側をグランドへ接続する。 The individual terminal P IC (RF1) is connected to the individual input / output port P M (TxL) via the first transmission circuit 30A. The first transmission circuit 30A includes inductors GLt1 and GLt2 connected in series between the individual terminal P IC (RF1) and the individual input / output port P M (TxL). The capacitor GCc1 is connected in parallel to the inductor GLt1, the capacitor GCu1 connects the individual terminal P IC (RF1) side of the inductor GLt1 to the ground, and the capacitor GCu2 connects the connection point of the inductors GLt1 and GLt2 to the ground. The capacitor GCc2 is connected in parallel to the inductor GLt2, and the capacitor GCu3 connects the individual input / output port P M (TxL) side of the inductor GLt2 to the ground.
 この構成により、第1送信回路30Aは、個別入出力ポートP(TxL)から入力されるGSM850通信信号の送信信号とGSM850通信信号の送信信号との基本周波数帯域を通過帯域とし、2次高調波以上の周波数帯域を減衰域とするローパスフィルタ回路として機能する。 With this configuration, the first transmission circuit 30A uses the fundamental frequency band of the transmission signal of the GSM850 communication signal and the transmission signal of the GSM850 communication signal input from the individual input / output port P M (TxL) as a pass band. It functions as a low-pass filter circuit whose attenuation band is a frequency band above the wave.
 個別端子PIC(RF2)は、第2送信回路30Bを介して、個別入出力ポートP(TxH)に接続されている。第2送信回路30Bは、個別端子PIC(RF2)と個別入出力ポートP(TxH)との間に直列接続されたインダクタDLt1,DLt2を備える。キャパシタDCu2はインダクタDLt1、DLt2の接続点をグランドへ接続する。キャパシタDCc2はインダクタDLt2に並列接続され、キャパシタDCu3はインダクタDLt2の個別入出力ポートP(TxH)側をグランドへ接続する。 The individual terminal P IC (RF2) is connected to the individual input / output port P M (TxH) via the second transmission circuit 30B. The second transmission circuit 30B includes inductors DLt1 and DLt2 connected in series between the individual terminal P IC (RF2) and the individual input / output port P M (TxH). The capacitor DCu2 connects the connection point of the inductors DLt1 and DLt2 to the ground. The capacitor DCc2 is connected in parallel to the inductor DLt2, and the capacitor DCu3 connects the individual input / output port P M (TxH) side of the inductor DLt2 to the ground.
 この構成により、第2送信回路30Bは、個別入出力ポートP(TxH)から入力されるGSM1800通信信号の送信信号とGSM1900通信信号の送信信号との基本周波数帯域を通過帯域とし、2次高調波以上の周波数帯域を減衰域とするローパスフィルタ回路として機能する。 With this configuration, the second transmission circuit 30B uses the fundamental frequency band of the transmission signal of the GSM1800 communication signal and the transmission signal of the GSM1900 communication signal input from the individual input / output port P M (TxH) as the passband, and is the second harmonic. It functions as a low-pass filter circuit whose attenuation band is a frequency band above the wave.
 個別端子PIC(RF3)は、SAWデュプレクサ40AのSAWフィルタ41Aを介して、個別入出力ポートP(RxL1)に接続されている。個別端子PIC(RF4)は、SAWデュプレクサ40AのSAWフィルタ42Aを介して、個別入出力ポートP(RxL2)に接続されている。SAWデュプレクサ40Aを構成するSAWフィルタ41A,42Aは不平衡平衡変換機能を有する。SAWフィルタ41Aは、GSM850通信信号の受信信号の周波数帯域を通過帯域とし他の帯域を減衰域とするフィルタである。SAWフィルタ42Aは、GSM900通信信号の受信信号の周波数帯域を通過帯域とし他の帯域を減衰域とするフィルタである。個別端子PIC(RF4)とSAWデュプレクサ40AのSAWフィルタ42Aとを接続する伝送ラインは、整合用のインダクタL3によってグランドに接続されている。 The individual terminal P IC (RF3) is connected to the individual input / output port P M (RxL1) via the SAW filter 41A of the SAW duplexer 40A. The individual terminal P IC (RF4) is connected to the individual input / output port P M (RxL2) via the SAW filter 42A of the SAW duplexer 40A. The SAW filters 41A and 42A constituting the SAW duplexer 40A have an unbalance / balance conversion function. The SAW filter 41A is a filter whose pass band is the frequency band of the received signal of the GSM850 communication signal and whose attenuation band is the other band. The SAW filter 42A is a filter whose pass band is the frequency band of the received signal of the GSM900 communication signal and whose attenuation band is the other band. A transmission line connecting the individual terminal P IC (RF4) and the SAW filter 42A of the SAW duplexer 40A is connected to the ground by a matching inductor L3.
 個別端子PIC(RF5)は、SAWデュプレクサ40BのSAWフィルタ41Bを介して、個別入出力ポートP(RxH1)に接続されている。個別端子PIC(RF6)は、SAWデュプレクサ40BのSAWフィルタ42Bを介して、個別入出力ポートP(RxH2)に接続されている。SAWデュプレクサ40Bを構成するSAWフィルタ41B,42Bは不平衡平衡変換機能を有する。SAWフィルタ41Bは、GSM1800通信信号の受信信号の周波数帯域を通過帯域とし他の帯域を減衰域とするフィルタである。SAWフィルタ42Bは、GSM1900通信信号の受信信号の周波数帯域を通過帯域とし他の帯域を減衰域とするフィルタである。個別端子PIC(RF5)とSAWデュプレクサ40BのSAWフィルタ41Bとを接続する伝送ラインは、整合用のインダクタL5によってグランドに接続されている。個別端子PIC(RF6)とSAWデュプレクサ40BのSAWフィルタ42Bとを接続する伝送ラインは、整合用のインダクタL4によってグランドに接続されている。 The individual terminal P IC (RF5) is connected to the individual input / output port P M (RxH1) via the SAW filter 41B of the SAW duplexer 40B. The individual terminal P IC (RF6) is connected to the individual input / output port P M (RxH2) via the SAW filter 42B of the SAW duplexer 40B. The SAW filters 41B and 42B constituting the SAW duplexer 40B have an unbalance-balance conversion function. The SAW filter 41B is a filter whose pass band is the frequency band of the received signal of the GSM1800 communication signal and whose attenuation band is the other band. The SAW filter 42B is a filter having a frequency band of a received signal of the GSM1900 communication signal as a pass band and another band as an attenuation band. A transmission line that connects the individual terminal P IC (RF5) and the SAW filter 41B of the SAW duplexer 40B is connected to the ground by a matching inductor L5. The transmission line that connects the individual terminal P IC (RF6) and the SAW filter 42B of the SAW duplexer 40B is connected to the ground by a matching inductor L4.
 個別端子PIC(RF7)は、W-CDMA(Band1)通信信号を入出力する個別入出力ポートP(U1)に接続されている。個別端子PIC(RF8)は、W-CDMA(Band5)通信信号を入出力する個別入出力ポートP(U2)に接続されている。 The individual terminal P IC (RF7) is connected to an individual input / output port P M (U1) for inputting / outputting a W-CDMA (Band 1) communication signal. The individual terminal P IC (RF8) is connected to an individual input / output port P M (U2) that inputs and outputs a W-CDMA (Band 5) communication signal.
 本発明の特定の送受信回路側端子に相当する個別端子PIC(RF9)は、LTE(Long Term Evolution)通信信号としてW-CDMA(Band13)通信信号を入出力する個別入出力ポートP(LTE)に接続されている。W-CDMA(Band13)通信信号の送信信号の周波数帯域は、770MHz帯(777MHz-787MHz)である。このW-CDMA(Band13)通信信号が本発明の第1通信信号に相当する。 The individual terminal P IC (RF9) corresponding to a specific transmission / reception circuit side terminal of the present invention is an individual input / output port P M (LTE) for inputting / outputting a W-CDMA (Band 13) communication signal as an LTE (Long Term Evolution) communication signal. )It is connected to the. The frequency band of the transmission signal of the W-CDMA (Band 13) communication signal is a 770 MHz band (777 MHz-787 MHz). This W-CDMA (Band 13) communication signal corresponds to the first communication signal of the present invention.
 個別端子PIC(RF9)と個別入出力ポートP(LTE)とを接続する伝送ラインは、インダクタによってグランドへ接続されている。この伝送ラインとグランドとの間にインダクタが接続された構成により位相回路50が実現される。位相回路50を構成するインダクタは、個別端子PIC(RF9)から個別入出力ポートP(LTE)側を見た場合のW-CDMA(Band13)通信信号の2次高調波に対するインピーダンスが略短絡となるように、位相を回転させるように設定されている。具体的には、インダクタとして、W-CDMA(Band13)通信信号の基本周波数信号の波長λに対して、略λ/4の長さからなるストリップラインを用いる。 A transmission line connecting the individual terminal P IC (RF9) and the individual input / output port P M (LTE) is connected to the ground by an inductor. The phase circuit 50 is realized by a configuration in which an inductor is connected between the transmission line and the ground. The inductor that constitutes the phase circuit 50 is substantially short-circuited in impedance to the second harmonic of the W-CDMA (Band 13) communication signal when the individual input / output port P M (LTE) side is viewed from the individual terminal P IC (RF9). So that the phase is rotated. Specifically, a strip line having a length of approximately λ / 4 with respect to the wavelength λ of the fundamental frequency signal of the W-CDMA (Band 13) communication signal is used as the inductor.
 無線通信装置1を構成するGPS受信モジュール6の第2アンテナポートP(ANT2)は、第2アンテナANT2に接続されるとともに、ローパスフィルタ91に接続されている。ローパスフィルタ91はSAWフィルタ92に接続されており、SAWフィルタ92は、LNA93の入力端子に接続されている。LNA93の出力端子はSAWフィルタ94に接続されており、SAWフィルタ94は個別入出力ポートP(GPS)に接続されている。ローパスフィルタ91、SAWフィルタ92,94は、GPS信号の周波数(1575.42MHz)を通過帯域内に含むフィルタである。このような構成により、第2アンテナポートP(ANT2)で受信したGPS信号は、個別入出力ポートP(GPS)から出力される。このGPS信号が本発明の第2通信信号に相当する。 The second antenna port P M (ANT2) of the GPS receiving module 6 constituting the wireless communication device 1 is connected to the second antenna ANT2 and to the low-pass filter 91. The low pass filter 91 is connected to the SAW filter 92, and the SAW filter 92 is connected to the input terminal of the LNA 93. The output terminal of the LNA 93 is connected to the SAW filter 94, and the SAW filter 94 is connected to the individual input / output port P M (GPS). The low-pass filter 91 and the SAW filters 92 and 94 are filters that include the frequency (1575.72 MHz) of the GPS signal in the pass band. With such a configuration, the GPS signal received at the second antenna port P M (ANT2) is output from the individual input / output port P M (GPS). This GPS signal corresponds to the second communication signal of the present invention.
 このような構成において、位相回路50が備えられていなければ、W-CDMA(Band13)通信信号の2次高調波が第1アンテナANT1から第2アンテナANT2を介して、個別入出力ポートP(GPS)から出力されてしまう。これにより、GPS信号に対する受信感度が低下してしまう。 In such a configuration, if the phase circuit 50 is not provided, the second harmonic of the W-CDMA (Band 13) communication signal is transmitted from the first antenna ANT1 through the second antenna ANT2 to the individual input / output port P M ( GPS). Thereby, the reception sensitivity with respect to a GPS signal will fall.
 しかしながら、本実施形態の構成を用いることで、このようなW-CDMA(Band13)通信信号の2次高調波の漏洩を防ぐことができる。 However, by using the configuration of this embodiment, it is possible to prevent such leakage of the second harmonic of the W-CDMA (Band 13) communication signal.
 なお、個別入出力ポートP(LTE)には、送信信号を増幅するためのパワーアンプが接続されることが多いが、パワーアンプでは基本周波数の整数倍の信号の高調波が発生する。そのパワーアンプからの高調波がスイッチICに入力されることを位相回路50で低減することができ、スイッチICの歪みの発生を抑制することもできる。 A power amplifier for amplifying a transmission signal is often connected to the individual input / output port P M (LTE), but the power amplifier generates harmonics of a signal that is an integral multiple of the fundamental frequency. It can be reduced by the phase circuit 50 that the harmonics from the power amplifier are input to the switch IC, and the occurrence of distortion of the switch IC can also be suppressed.
 図3は本実施形態の高周波モジュール5の作用概念の説明図である。図3に示すように、スイッチIC10は、共通端子PIC(ANT0)と個別端子PIC(RF9)との間に、複数のFET91~FET9m(mは2以上の正数)を有し、これらFET91~FET9mが連続的に接続された構造を有する。そして、これらFET91~FET9mに対してオン制御駆動電圧信号を印加することで、共通端子PIC(ANT0)と個別端子PIC(RF9)とが導通する。なお、スイッチIC10の構成は、同様の機能を実現できる回路であれば、他の回路構成であってもよい。 FIG. 3 is an explanatory diagram of an operation concept of the high-frequency module 5 of the present embodiment. As shown in FIG. 3, the switch IC 10 has a plurality of FETs 91 to 9m (m is a positive number of 2 or more) between the common terminal P IC (ANT0) and the individual terminal P IC (RF9). It has a structure in which FET91 to FET9m are continuously connected. The common terminal P IC (ANT0) and the individual terminal P IC (RF9) are brought into conduction by applying an ON control drive voltage signal to the FETs 91 to 9m. The configuration of the switch IC 10 may be another circuit configuration as long as the circuit can realize the same function.
 このように半導体製造プロセスを用いたFETを連続的に接続した構造であるため、共通端子PIC(ANT0)と個別端子PIC(RF9)とが導通していると、共通端子PIC(ANT0)と個別端子PIC(RF9)と間の電気長は、W-CDMA(Band13)通信信号の2次高調波の波長に対して、位相回転を殆どしない程度に極短くなる。したがって、上述のように個別端子PIC(RF9)から個別入出力ポートP(LTE)側を見た場合のW-CDMA(Band13)通信信号の2次高調波に対するインピーダンスが略短絡となれば、共通端子PIC(ANT0)からスイッチIC10内部を見たインピーダンスも略短絡になる。 Because this way a structure which is continuously connected to FET using a semiconductor manufacturing process, when are conductive common terminal P IC and (ANT0) and the individual terminals P IC (RF9) is common terminal P IC (ANT0 ) And the individual terminal P IC (RF9) are extremely short with respect to the wavelength of the second harmonic of the W-CDMA (Band 13) communication signal to such an extent that little phase rotation occurs. Therefore, if the impedance to the second harmonic of the W-CDMA (Band 13) communication signal when the individual input / output port P M (LTE) side is viewed from the individual terminal P IC (RF9) as described above is substantially short-circuited. The impedance of the inside of the switch IC 10 viewed from the common terminal P IC (ANT0) is also substantially short-circuited.
 このため、スイッチIC10にハイパワーのW-CDMA(Band13)通信信号の送信信号が入力され、スイッチIC10で歪み高調波による2次高調波が発生しても、共通端子PIC(ANT0)で全反射し、第1アンテナANT1には伝送されない。これにより、W-CDMA(Band13)通信信号の2次高調波がGPS受信モジュール6側に漏洩することなく、GPS受信感度の低下を防止できる。 For this reason, even if a high-power W-CDMA (Band 13) communication signal transmission signal is input to the switch IC 10 and second harmonics due to distortion harmonics are generated in the switch IC 10, all of them are generated at the common terminal P IC (ANT 0). Reflected and not transmitted to the first antenna ANT1. As a result, the second harmonic of the W-CDMA (Band 13) communication signal does not leak to the GPS receiving module 6 side, and a decrease in GPS reception sensitivity can be prevented.
 この際、第1アンテナANT1と第2アンテナANT2とが近接していても、W-CDMA(Band13)通信信号の2次高調波がGPS受信モジュール6側に漏洩することを防止できるので、各通信信号に対するアンテナ間が狭くてもアイソレーションが確保でき、無線通信装置1を小型化することができる。 At this time, even if the first antenna ANT1 and the second antenna ANT2 are close to each other, it is possible to prevent the second harmonic of the W-CDMA (Band 13) communication signal from leaking to the GPS receiving module 6 side. Isolation can be ensured even if the distance between the antennas for the signal is narrow, and the wireless communication device 1 can be reduced in size.
 また、本実施形態のように、位相回路を、伝送ラインとグランドとの間に接続されたインダクタのみで構成することで、伝送ライン上に回路素子が接続されず、W-CDMA(Band13)通信信号の基本周波数信号に対する挿入損失が劣化することを防止できる。したがって、より優れた特性の高周波スイッチモジュールを実現できる。 Further, as in the present embodiment, by configuring the phase circuit only with an inductor connected between the transmission line and the ground, no circuit element is connected on the transmission line, and W-CDMA (Band 13) communication is performed. It is possible to prevent the insertion loss of the signal with respect to the fundamental frequency signal from deteriorating. Therefore, a high-frequency switch module with better characteristics can be realized.
 次に、第2の実施形態に係る無線通信装置および高周波スイッチモジュールについて、図を参照して説明する。図4は第2の実施形態に係る高周波モジュール5Aを含む無線通信装置1Aの回路図である。 Next, a wireless communication device and a high frequency switch module according to the second embodiment will be described with reference to the drawings. FIG. 4 is a circuit diagram of the wireless communication device 1A including the high-frequency module 5A according to the second embodiment.
 本実施形態の高周波スイッチモジュール5Aは、第1の実施形態に示した高周波スイッチモジュール5に対して、GPS受信モジュール6の構成、スイッチIC10Aの第1アンテナANT1側の構成、スイッチIC10AのGSM系通信信号の送信回路側の構成は同じである。したがって、異なる箇所のみを説明する。 The high frequency switch module 5A of this embodiment is different from the high frequency switch module 5 shown in the first embodiment in the configuration of the GPS receiving module 6, the configuration of the switch IC 10A on the first antenna ANT1 side, and the GSM communication of the switch IC 10A. The configuration on the signal transmission circuit side is the same. Therefore, only different parts will be described.
 個別端子PIC(RF3)は、SAWフィルタ42Aを介して、個別入出力ポートP(RxL2)に接続されている。SAWフィルタ42Aは、GSM900通信信号の受信信号の周波数帯域を通過帯域とし他の帯域を減衰域とするフィルタである。個別端子PIC(RF4)とSAWデュプレクサ40AのSAWフィルタ42Aとを接続する伝送ラインは、整合用のインダクタL5Aによってグランドに接続されている。 The individual terminal P IC (RF3) is connected to the individual input / output port P M (RxL2) via the SAW filter 42A. The SAW filter 42A is a filter whose pass band is the frequency band of the received signal of the GSM900 communication signal and whose attenuation band is the other band. A transmission line connecting the individual terminal P IC (RF4) and the SAW filter 42A of the SAW duplexer 40A is connected to the ground by a matching inductor L5A.
 個別端子PIC(RF4)は、SAWデュプレクサ40BのSAWフィルタ41Bを介して、個別入出力ポートP(RxH1)に接続されている。個別端子PIC(RF5)は、SAWデュプレクサ40BのSAWフィルタ42Bを介して、個別入出力ポートP(RxH2)に接続されている。SAWデュプレクサ40Bを構成するSAWフィルタ41B,42Bは不平衡平衡変換機能を有する。SAWフィルタ41Bは、GSM1800通信信号の受信信号の周波数帯域を通過帯域とし他の帯域を減衰域とするフィルタである。SAWフィルタ42Bは、GSM1900通信信号の受信信号の周波数帯域を通過帯域とし他の帯域を減衰域とするフィルタである。個別端子PIC(RF4)とSAWデュプレクサ40BのSAWフィルタ41Bとを接続する伝送ラインは、整合用のインダクタL7Aによってグランドに接続されている。個別端子PIC(RF5)とSAWデュプレクサ40BのSAWフィルタ42Bとを接続する伝送ラインは、整合用のインダクタL6Aによってグランドに接続されている。 The individual terminal P IC (RF4) is connected to the individual input / output port P M (RxH1) via the SAW filter 41B of the SAW duplexer 40B. The individual terminal P IC (RF5) is connected to the individual input / output port P M (RxH2) via the SAW filter 42B of the SAW duplexer 40B. The SAW filters 41B and 42B constituting the SAW duplexer 40B have an unbalance-balance conversion function. The SAW filter 41B is a filter whose pass band is the frequency band of the received signal of the GSM1800 communication signal and whose attenuation band is the other band. The SAW filter 42B is a filter having a frequency band of a received signal of the GSM1900 communication signal as a pass band and another band as an attenuation band. A transmission line connecting the individual terminal P IC (RF4) and the SAW filter 41B of the SAW duplexer 40B is connected to the ground by a matching inductor L7A. The transmission line that connects the individual terminal P IC (RF5) and the SAW filter 42B of the SAW duplexer 40B is connected to the ground by a matching inductor L6A.
 個別端子PIC(RF6)は、SAWデュプレクサ40Cの共通端子に接続されている。SAWデュプレクサ40Cは、SAWフィルタ41CとSAWフィルタ42Cとからなる。個別端子PIC(RF6)とSAWデュプレクサ40Cの共通端子との間には、キャパシタC2Aが接続されており、キャパシタC2Aの共通端子側がインダクタL3Aを介してグランドへ接続されている。これらキャパシタC2AとインダクタL3Aとにより整合回路が構成される。SAWフィルタ42Cは、W-CDMA(Band1)通信信号の送信信号の周波数帯域を通過帯域とし、他の周波数帯域を減衰域とするフィルタである。SAWフィルタ42Cは、個別入出力ポートP(TxU1)に接続されている。SAWフィルタ41Cは、W-CDMA(Band1)通信信号の受信信号の周波数帯域を通過帯域とし、他の周波数帯域を減衰域とするフィルタである。SAWフィルタ41Cは、平衡型の個別入出力ポートP(RxU1)に接続されている。 The individual terminal P IC (RF6) is connected to the common terminal of the SAW duplexer 40C. The SAW duplexer 40C includes a SAW filter 41C and a SAW filter 42C. A capacitor C2A is connected between the individual terminal P IC (RF6) and the common terminal of the SAW duplexer 40C, and the common terminal side of the capacitor C2A is connected to the ground via the inductor L3A. These capacitors C2A and inductor L3A constitute a matching circuit. The SAW filter 42C is a filter having a frequency band of a transmission signal of a W-CDMA (Band 1) communication signal as a pass band and another frequency band as an attenuation band. The SAW filter 42C is connected to the individual input / output port P M (TxU1). The SAW filter 41C is a filter whose pass band is the frequency band of the received signal of the W-CDMA (Band 1) communication signal and whose attenuation band is the other frequency band. The SAW filter 41C is connected to a balanced individual input / output port P M (RxU1).
 個別端子PIC(RF7)は、SAWデュプレクサ40Dの共通端子に接続されている。SAWデュプレクサ40Dは、SAWフィルタ41DとSAWフィルタ42Dとからなる。個別端子PIC(RF7)とSAWデュプレクサ40Dの共通端子とを接続する伝送ラインは、インダクタL8Aを介してグランドへ接続されている。このインダクタL8Aにより整合回路が構成される。SAWフィルタ42Dは、W-CDMA(Band5)通信信号の送信信号の周波数帯域を通過帯域とし、他の周波数帯域を減衰域とするフィルタである。SAWフィルタ42Dは、個別入出力ポートP(TxU2)に接続されている。SAWフィルタ41Dは、W-CDMA(Band5)通信信号の受信信号の周波数帯域を通過帯域とし、他の周波数帯域を減衰域とするフィルタである。SAWフィルタ41Dは、平衡型の個別入出力ポートP(RxU2)に接続されている。 The individual terminal P IC (RF7) is connected to the common terminal of the SAW duplexer 40D. The SAW duplexer 40D includes a SAW filter 41D and a SAW filter 42D. A transmission line connecting the individual terminal P IC (RF7) and the common terminal of the SAW duplexer 40D is connected to the ground via the inductor L8A. This inductor L8A constitutes a matching circuit. The SAW filter 42D is a filter whose pass band is the frequency band of the transmission signal of the W-CDMA (Band 5) communication signal and whose attenuation band is the other frequency band. The SAW filter 42D is connected to the individual input / output port P M (TxU2). The SAW filter 41D is a filter whose pass band is the frequency band of the received signal of the W-CDMA (Band 5) communication signal and whose attenuation band is the other frequency band. The SAW filter 41D is connected to a balanced individual input / output port P M (RxU2).
 個別端子PIC(RF8)は、SAWデュプレクサ40Eの共通端子に接続されている。SAWデュプレクサ40Eは、SAWフィルタ41EとSAWフィルタ42Eとからなる。個別端子PIC(RF8)とSAWデュプレクサ40Eの共通端子との間には、位相回路50Aを構成するインダクタが接続されている。位相回路50Aを構成するインダクタの共通端子側は、整合回路60Aを構成するインダクタを介してグランドへ接続されている。SAWフィルタ42Eは、LTEであるW-CDMA(Band13)通信信号の送信信号の周波数帯域を通過帯域とし、他の周波数帯域を減衰域とするフィルタである。SAWフィルタ42Eは、個別入出力ポートP(TxLTE)に接続されている。SAWフィルタ41Eは、W-CDMA(Band13)通信信号の受信信号の周波数帯域を通過帯域とし、他の周波数帯域を減衰域とするフィルタである。SAWフィルタ41Eは、平衡型の個別入出力ポートP(RxLTE)に接続されている。このSAWデュプレクサ40EおよびSAWフィルタ42Eが本発明の信号処理回路に相当する。 The individual terminal P IC (RF8) is connected to the common terminal of the SAW duplexer 40E. The SAW duplexer 40E includes a SAW filter 41E and a SAW filter 42E. An inductor that constitutes the phase circuit 50A is connected between the individual terminal P IC (RF8) and the common terminal of the SAW duplexer 40E. The common terminal side of the inductor constituting the phase circuit 50A is connected to the ground via the inductor constituting the matching circuit 60A. The SAW filter 42E is a filter whose pass band is the frequency band of the transmission signal of the W-CDMA (Band 13) communication signal, which is LTE, and whose attenuation band is the other frequency band. The SAW filter 42E is connected to the individual input / output port P M (TxLTE). The SAW filter 41E is a filter whose pass band is the frequency band of the received signal of the W-CDMA (Band 13) communication signal and whose attenuation band is the other frequency band. The SAW filter 41E is connected to a balanced individual input / output port P M (RxLTE). The SAW duplexer 40E and the SAW filter 42E correspond to the signal processing circuit of the present invention.
 このような構成において、SAWデュプレクサ40EのSAWフィルタ42Eは通過帯域外であるW-CDMA(Band13)通信信号の2次高調波に対する反射係数が大きく、位相回転効果を備える。したがって、位相回路50Aを構成するインダクタは、SAWデュプレクサ40EのSAWフィルタ42Eの位相回転量を加味した上で、個別端子PIC(RF8)から個別入出力ポートP(TxLTE)側を見た場合のW-CDMA(Band13)通信信号の2次高調波に対するインピーダンスが略短絡となるように、位相を回転させるように設定されている。言い換えれば、位相回路50Aを構成するインダクタとSAWデュプレクサ40EのSAWフィルタ42Eとで、個別端子PIC(RF8)から個別入出力ポートP(TxLTE)側を見た場合のW-CDMA(Band13)通信信号の2次高調波に対するインピーダンスが略短絡となるように、W-CDMA(Band13)通信信号の2次高調波を位相回転させる。 In such a configuration, the SAW filter 42E of the SAW duplexer 40E has a large reflection coefficient with respect to the second harmonic of the W-CDMA (Band 13) communication signal outside the pass band, and has a phase rotation effect. Therefore, when the inductor constituting the phase circuit 50A is viewed from the individual input / output port P M (TxLTE) side from the individual terminal P IC (RF8) in consideration of the phase rotation amount of the SAW filter 42E of the SAW duplexer 40E. The phase of the W-CDMA (Band 13) communication signal is set to rotate so that the impedance to the second harmonic of the communication signal is substantially short-circuited. In other words, W-CDMA (Band 13) when the individual input / output port P M (TxLTE) side is viewed from the individual terminal P IC (RF8) by the inductor constituting the phase circuit 50A and the SAW filter 42E of the SAW duplexer 40E. The second harmonic of the W-CDMA (Band 13) communication signal is rotated in phase so that the impedance of the communication signal to the second harmonic is substantially short-circuited.
 このような構成とすれば、W-CDMA(Band13)通信信号の2次高調波に対する位相回転の一部を、SAWデュプレクサ40EのSAWフィルタ42Eで賄うことができるので、位相回路50Aを構成するインダクタによる位相回転量が小さくても、上述の作用効果を実現することができる。すなわち、位相回路50Aを構成するインダクタのインダクタンスを小さくでき、インダクタの形状を小さくできる。これにより、高周波スイッチモジュール5Aを、より小型に構成することができる。 With such a configuration, part of the phase rotation of the W-CDMA (Band 13) communication signal with respect to the second harmonic can be covered by the SAW filter 42E of the SAW duplexer 40E, so that the inductor constituting the phase circuit 50A Even if the amount of phase rotation due to is small, the above-described effects can be realized. That is, the inductance of the inductor constituting the phase circuit 50A can be reduced, and the shape of the inductor can be reduced. Thereby, the high frequency switch module 5A can be configured more compactly.
 さらに、位相回路50Aを構成するインダクタを、積層体101の複数層に亘る内層電極で形成し、ヘリカル形状もしくはスパイラル形状にすることで、波長短縮効果が得られ、インダクタをより小型に形成することができる。これにより、高周波スイッチモジュール5Aを、さらに小型に構成することができる。 Further, the inductor constituting the phase circuit 50A is formed by the inner layer electrode extending over a plurality of layers of the multilayer body 101, and is formed in a helical shape or a spiral shape, thereby obtaining a wavelength shortening effect and forming the inductor more compactly. Can do. Thereby, the high frequency switch module 5A can be further reduced in size.
 なお、上述の説明では、W-CDMA(Band13)通信信号の2次高調波とGPS信号との周波数が近接する場合を示したが、第1アンテナから送信する第1通信信号の送信信号の高調波(2次高調波のみに限らず3次高調波等であってもよい)が、第1アンテナに近接する第2アンテナで受信する第2通信信号の受信信号の周波数に近接する関係であれば、W-CDMA(Band13)通信信号の2次高調波とGPS信号の組合せでなくとも、上述の構成を適用することができる。 In the above description, the case where the frequency of the second harmonic of the W-CDMA (Band 13) communication signal and the GPS signal are close to each other is shown, but the harmonic of the transmission signal of the first communication signal transmitted from the first antenna is shown. If the wave (not only the second harmonic but also the third harmonic, etc.) is close to the frequency of the received signal of the second communication signal received by the second antenna close to the first antenna For example, the above-described configuration can be applied without using a combination of the second harmonic of the W-CDMA (Band 13) communication signal and the GPS signal.
 また、上述の第2の実施形態では、信号処理回路として、SAWデュプレクサ40EおよびSAWフィルタ42Eを用いたが、パワーアンプ等の送信信号入力回路に接続され、位相回転効果を有する回路素子であれば、他の素子を利用してもよい。 In the second embodiment described above, the SAW duplexer 40E and the SAW filter 42E are used as the signal processing circuit. However, any circuit element connected to a transmission signal input circuit such as a power amplifier and having a phase rotation effect may be used. Other elements may be used.
 さらに、図5に示す構成を用いることができる。図5は、その他の構成からなる高周波スイッチモジュールの回路図を部分拡大した図である。図5に示すように、位相回路を、インダクタL9BとキャパシタC3Bとを用いた並列回路で構成しても構わない。 Furthermore, the configuration shown in FIG. 5 can be used. FIG. 5 is a partially enlarged view of a circuit diagram of a high-frequency switch module having another configuration. As shown in FIG. 5, the phase circuit may be configured by a parallel circuit using an inductor L9B and a capacitor C3B.
 この場合、インダクタL9BとキャパシタC3Bの値を調整して位相回路として機能させるとともに、個別入出力端子P(LTE)から入力される送信信号の2次高調波の周波数が、インダクタL9BとキャパシタC3Bからなる並列回路の共振周波数になるように設定する。これにより、個別入出力端子P(LTE)から入力される2次高調波を減衰させることができ、別の通信システム(例えば、上述のGPS受信モジュール6)の受信感度の低下を防止できる。 In this case, the values of the inductor L9B and the capacitor C3B are adjusted to function as a phase circuit, and the frequency of the second harmonic of the transmission signal input from the individual input / output terminal P M (LTE) is determined by the inductor L9B and the capacitor C3B. The resonance frequency of the parallel circuit consisting of Thereby, the second harmonic input from the individual input / output terminal P M (LTE) can be attenuated, and a decrease in reception sensitivity of another communication system (for example, the above-described GPS reception module 6) can be prevented.
1,1A:無線通信装置、5,5A:高周波スイッチモジュール、6:GPS受信モジュール、10,10A:スイッチIC、20:アンテナ側回路、30A:第1送信回路、30B:第2送信回路、40A,40B,40C,40D,40E:SAWデュプレクサ、41A,42A,41B,42B,41C,42C,41D,42D,41E,42E:SAWフィルタ、50,50A:位相回路、60A:整合回路、91:ローパスフィルタ、92,94:SAWフィルタ、93:LNA、101:積層体、102:絶縁性樹脂 DESCRIPTION OF SYMBOLS 1,1A: Radio | wireless communication apparatus, 5, 5A: High frequency switch module, 6: GPS receiving module, 10, 10A: Switch IC, 20: Antenna side circuit, 30A: 1st transmission circuit, 30B: 2nd transmission circuit, 40A , 40B, 40C, 40D, 40E: SAW duplexer, 41A, 42A, 41B, 42B, 41C, 42C, 41D, 42D, 41E, 42E: SAW filter, 50, 50A: phase circuit, 60A: matching circuit, 91: low pass Filter, 92, 94: SAW filter, 93: LNA, 101: Laminated body, 102: Insulating resin

Claims (7)

  1.  電波を送受波する第1アンテナに接続するためのアンテナ側端子、および該アンテナ側端子に対して択一的に接続される複数の送受信回路側端子を備えるスイッチICと、
     該スイッチICの特定の送受信回路側端子に接続し、第1通信信号の送信信号を入力する第1送信信号入力ポートと、
     前記第1送信信号入力ポートと前記特定の送受信回路側端子との間に接続され、前記特定の送受信回路側端子から前記第1送信信号入力ポート側を見て前記第1通信信号の送信信号の高調波のインピーダンスが略短絡となるように位相回転させる位相回路と、を備えた高周波スイッチモジュール。
    A switch IC comprising an antenna side terminal for connection to a first antenna for transmitting and receiving radio waves, and a plurality of transmission / reception circuit side terminals connected alternatively to the antenna side terminal;
    A first transmission signal input port which is connected to a specific transmission / reception circuit side terminal of the switch IC and inputs a transmission signal of the first communication signal;
    The transmission signal of the first communication signal is connected between the first transmission signal input port and the specific transmission / reception circuit side terminal and viewed from the specific transmission / reception circuit side terminal to the first transmission signal input port side. And a phase circuit that rotates the phase so that the impedance of the harmonics is substantially short-circuited.
  2.  前記位相回路と前記第1送信信号入力ポートとの間に、前記第1通信信号の送信信号に対して所定の信号処理を行う信号処理回路を備え、
     前記位相回路と前記信号処理回路とで、前記特定の送受信回路側端子から前記第1送信信号入力ポート側を見て前記第1通信信号の送信信号の高調波の位相が略短絡となるように位相回転させる、請求項1に記載の高周波スイッチモジュール。
    A signal processing circuit for performing predetermined signal processing on the transmission signal of the first communication signal between the phase circuit and the first transmission signal input port;
    In the phase circuit and the signal processing circuit, the phase of the harmonic of the transmission signal of the first communication signal is substantially short-circuited when the first transmission signal input port side is viewed from the specific transmission / reception circuit side terminal. The high frequency switch module according to claim 1, wherein the phase rotation is performed.
  3.  前記信号処理回路は前記第1通信信号の送信信号を周波数フィルタ処理するフィルタ回路である請求項2に記載の高周波スイッチモジュール。 The high-frequency switch module according to claim 2, wherein the signal processing circuit is a filter circuit that performs frequency filter processing on a transmission signal of the first communication signal.
  4.  前記位相回路は、前記第1送信信号入力ポートと前記特定の送受信回路側端子とを接続する信号ラインとグランドとの間に接続されたインダクタのみから構成されている、請求項1乃至請求項3のいずれか一項に記載の高周波スイッチモジュール。 The phase circuit includes only an inductor connected between a signal line connecting the first transmission signal input port and the specific transmission / reception circuit side terminal and a ground. The high frequency switch module according to any one of the above.
  5.  前記位相回路は、前記第1送信信号入力ポートと前記特定の送受信回路側端子とを接続する信号ラインに直列接続されたLC並列共振回路を含んで構成されている、請求項1乃至請求項3のいずれか一項に記載の高周波スイッチモジュール。 The phase circuit includes an LC parallel resonance circuit connected in series to a signal line connecting the first transmission signal input port and the specific transmission / reception circuit side terminal. The high frequency switch module according to any one of the above.
  6.  前記位相回路は、ヘリカル形状もしくはスパイラル形状からなるインダクタを備える、請求項1乃至請求項5のいずれか一項に記載の高周波スイッチモジュール。 The high-frequency switch module according to any one of claims 1 to 5, wherein the phase circuit includes an inductor having a helical shape or a spiral shape.
  7.  請求項1乃至請求項6のいずれかに記載の高周波スイッチモジュールと、
     前記第1通信信号の高調波周波数に近接する周波数からなる第2通信信号の電波を受波するための第2アンテナに接続し、前記第2通信信号の受信信号を出力する第2受信信号出力ポートと、を備えた無線通信装置。
    The high-frequency switch module according to any one of claims 1 to 6,
    A second received signal output that is connected to a second antenna for receiving a radio wave of a second communication signal having a frequency close to the harmonic frequency of the first communication signal and outputs a received signal of the second communication signal And a wireless communication device.
PCT/JP2012/061965 2011-05-12 2012-05-10 High frequency switch module and wireless communication device WO2012153800A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013514050A JP5672375B2 (en) 2011-05-12 2012-05-10 High frequency switch module and wireless communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-106991 2011-05-12
JP2011106991 2011-05-12

Publications (1)

Publication Number Publication Date
WO2012153800A1 true WO2012153800A1 (en) 2012-11-15

Family

ID=47139275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061965 WO2012153800A1 (en) 2011-05-12 2012-05-10 High frequency switch module and wireless communication device

Country Status (2)

Country Link
JP (1) JP5672375B2 (en)
WO (1) WO2012153800A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097768A1 (en) * 2012-12-18 2014-06-26 株式会社村田製作所 Switch module and wireless communication apparatus
JP2016184962A (en) * 2012-12-26 2016-10-20 株式会社村田製作所 Switch module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086026A (en) * 1999-09-14 2001-03-30 Sony Corp Antenna switching circuit and communications equipment using the same
JP2003008385A (en) * 2001-06-18 2003-01-10 Murata Mfg Co Ltd Composite lc filter circuit and composite lc filter component
WO2006057173A1 (en) * 2004-11-25 2006-06-01 Murata Manufacturing Co., Ltd. High frequency switch module
JP2008085775A (en) * 2006-09-28 2008-04-10 Matsushita Electric Ind Co Ltd High frequency circuit and semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4301401B2 (en) * 2002-11-08 2009-07-22 Tdk株式会社 Front-end module and communication terminal
JP2006121427A (en) * 2004-10-21 2006-05-11 Sony Corp Communication system
JP2009267678A (en) * 2008-04-24 2009-11-12 Panasonic Corp Communication device and communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086026A (en) * 1999-09-14 2001-03-30 Sony Corp Antenna switching circuit and communications equipment using the same
JP2003008385A (en) * 2001-06-18 2003-01-10 Murata Mfg Co Ltd Composite lc filter circuit and composite lc filter component
WO2006057173A1 (en) * 2004-11-25 2006-06-01 Murata Manufacturing Co., Ltd. High frequency switch module
JP2008085775A (en) * 2006-09-28 2008-04-10 Matsushita Electric Ind Co Ltd High frequency circuit and semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097768A1 (en) * 2012-12-18 2014-06-26 株式会社村田製作所 Switch module and wireless communication apparatus
KR20150076241A (en) * 2012-12-18 2015-07-06 가부시키가이샤 무라타 세이사쿠쇼 Switch module and wireless communication apparatus
JP5935902B2 (en) * 2012-12-18 2016-06-15 株式会社村田製作所 Switch module and wireless communication device
KR101690100B1 (en) * 2012-12-18 2016-12-27 가부시키가이샤 무라타 세이사쿠쇼 Switch module and wireless communication apparatus
US9553630B2 (en) 2012-12-18 2017-01-24 Murata Manufacturing Co., Ltd. Switching module and wireless communication equipment
JP2016184962A (en) * 2012-12-26 2016-10-20 株式会社村田製作所 Switch module

Also Published As

Publication number Publication date
JPWO2012153800A1 (en) 2014-07-31
JP5672375B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
US8995310B2 (en) Communication module
US9912370B2 (en) High-frequency module and communication device
US9667215B2 (en) High-frequency switch module
US9252832B2 (en) High-frequency circuit and communication device
US7398059B2 (en) High frequency composite component
JP5237138B2 (en) Filters, duplexers, communication modules
US7561005B2 (en) High frequency front-end module and duplexer
JP6074167B2 (en) Filter module and duplexer module
KR101526235B1 (en) High-frequency switch module
US8805299B2 (en) High-frequency module
CN107735955B (en) High-frequency front-end circuit
JP4221205B2 (en) Diplexer and high-frequency switch using the same
US9941859B2 (en) Ladder-type filter, duplexer, and module
JP2002118486A (en) High-frequency composite switch module
EP2487802B1 (en) High-frequency module
JP5672375B2 (en) High frequency switch module and wireless communication device
WO2010087305A1 (en) Duplexer module
WO2009157283A1 (en) High frequency module
JP5503764B2 (en) Filters, duplexers, communication modules
KR20110037471A (en) Quadplexer for dual-band handset
KR20080102518A (en) Triplexer
WO2012102285A1 (en) Transmission module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12781835

Country of ref document: EP

Kind code of ref document: A1