WO2012153739A1 - Probe and measuring device provided with same - Google Patents

Probe and measuring device provided with same Download PDF

Info

Publication number
WO2012153739A1
WO2012153739A1 PCT/JP2012/061772 JP2012061772W WO2012153739A1 WO 2012153739 A1 WO2012153739 A1 WO 2012153739A1 JP 2012061772 W JP2012061772 W JP 2012061772W WO 2012153739 A1 WO2012153739 A1 WO 2012153739A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrator
magnet
chip
measured
holder
Prior art date
Application number
PCT/JP2012/061772
Other languages
French (fr)
Japanese (ja)
Inventor
博次 荻
雅彦 平尾
侑仁 坂本
Original Assignee
インサイト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インサイト株式会社 filed Critical インサイト株式会社
Priority to JP2013514018A priority Critical patent/JPWO2012153739A1/en
Publication of WO2012153739A1 publication Critical patent/WO2012153739A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/0681Imaging by acoustic microscopy, e.g. scanning acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H13/00Measuring resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/405Investigating hardness or rebound hardness by determining the vibration frequency of a sensing element in contact with the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Definitions

  • the present invention relates to a probe and a measuring apparatus including the probe.
  • Patent Document 1 an elastic constant measuring apparatus for measuring an elastic constant of a sample by fixing a vibrator to a top plate with a spring is known.
  • the ball bearing is fixed to the end of the vibrator opposite to the top plate side.
  • a solenoid coil is wound around the case that houses the vibrator, and an electric field for vibrating the vibrator is applied to the vibrator by the solenoid coil.
  • the conventional elastic constant measuring device has a problem that it is difficult to ensure stable vibration of the vibrator because the vibrator is fixed to the top plate by a spring.
  • the conventional elastic constant measuring apparatus is configured to apply a bias force to the sample by gravity when the vibrator contacts the sample, the bias force is applied to the sample from a direction different from the direction of gravity. In some cases, it is difficult to accurately measure the elastic constant.
  • the present invention has been made to solve such problems, and its purpose is to ensure stable vibration of the vibrator and to measure the elastic constant by applying a bias force to the sample from any direction. Is to provide a simple probe.
  • Another object of the present invention is to provide a measuring apparatus provided with a probe capable of ensuring stable vibration of a vibrator and measuring an elastic constant by applying a bias force to a sample from an arbitrary direction. .
  • the probe includes a vibrator, a chip, a holder, first and second magnets, and first to third antennas.
  • the vibrator has a rod-like shape and is made of a piezoelectric body.
  • the chip is bonded to one end of the vibrator on the measured object side and has a hardness higher than that of the measured object.
  • the holder contacts the vibrator with a minimum contact area in the circumferential direction of the vibrator, and holds a part of the vibrator corresponding to a vibration node of the vibrator.
  • the first magnet is disposed on the other end side of the vibrator and is bonded to a support member that supports the holder.
  • the second magnet is disposed at a desired distance from the first magnet in the length direction of the vibrator, and has the same polarity as the first magnet.
  • the first antenna is connected to the ground potential.
  • the second antenna applies an excitation voltage for exciting the vibration of the vibrator to the vibrator in cooperation with the first antenna.
  • the third antenna receives an electric field generated in the vibrator due to the excitation voltage being applied to the vibrator as a voltage in cooperation with the first antenna.
  • the first to third antennas are arranged in the vicinity of a part of the vibrator, and the chip has an arc shape protruding in the direction from the vibrator toward the object to be measured.
  • the measuring device includes a probe, a voltage source, and a detector.
  • a probe consists of the probe of Claim 1.
  • the voltage source outputs an excitation voltage to the second antenna.
  • the detector detects the resonance frequency of the vibrator based on the received voltage received by the third antenna, and calculates the Young's modulus of the device under test based on the detected resonance frequency.
  • the measuring apparatus includes a probe, a voltage source, and a detector.
  • a probe consists of the probe of Claim 1.
  • the voltage source outputs an excitation voltage to the second antenna.
  • the detector detects a half width of a peak having a resonance frequency of the vibrator based on the received voltage received by the third antenna, or the vibrator attenuates based on the received voltage received by the third antenna. Detect the damping constant when
  • the measuring apparatus includes a probe, a voltage source, and a determiner.
  • a probe consists of the probe of Claim 1.
  • the voltage source outputs a voltage having a frequency obtained by multiplying the resonance frequency of the vibrator by n (n is an integer of 2 or more) or a frequency obtained by multiplying the resonance frequency of the vibrator by 1 / n as an excitation voltage to the second antenna.
  • the determiner determines whether the resonance frequency of the vibrator is detected based on the reception voltage received by the third antenna.
  • the vibrator is held by the holder with a minimum contact area at a position corresponding to the vibration node of the vibrator.
  • the vibrator applies a bias force to the object to be measured by the repulsive force generated by the first and second magnets having the same polarity.
  • the vibrator vibrates freely, and the bias force applied to the object to be measured is constant even if the object to be measured is arranged at an arbitrary angle with respect to the vertical direction.
  • FIG. 2 is a plan view of a vibrator, a holding member, and an antenna viewed from the magnet side shown in FIG. 1.
  • FIG. 2 is an enlarged view of a vibrator and a chip shown in FIG.
  • FIG. 2 is a perspective view of a vibrator, a chip, a holding member, a support member, a magnet, and a resin member shown in FIG. 1.
  • FIG. 6 is a second process diagram illustrating a manufacturing method for manufacturing the probe illustrated in FIG. 1.
  • FIG. 6 is a third process diagram illustrating a manufacturing method for manufacturing the probe illustrated in FIG. 1.
  • FIG. 8 is a fourth process diagram illustrating a manufacturing method for manufacturing the probe illustrated in FIG. 1. It is a conceptual diagram for demonstrating operation
  • FIG. 1 is a cross-sectional view showing a configuration of a probe according to an embodiment of the present invention.
  • a probe 10 according to an embodiment of the present invention includes a vibrator 1, a chip 2, a holding member 3, antennas 4 to 6, a support member 7, magnets 8 and 13, and a resin.
  • a member 9, cases 11 and 14, and a top plate 12 are provided.
  • the vibrator 1 has a quadrangular prism shape, and is made of, for example, a single crystal of langasite (La 3 Ga 5 SiO 14 ) or quartz. That is, the vibrator 1 is made of a piezoelectric body.
  • the vibrator 1 is held by the holding member 3, one end of which protrudes to the outside through the opening 111 of the case 11, and the other end side is disposed in the space 7 ⁇ / b> A in the support member 7. In this case, one end of the vibrator 1 protrudes outward from the bottom surface 11A of the case 11 by about 5 mm, for example.
  • the vibrator 1 has a size of 2.0 mm ⁇ 2.0 mm ⁇ 20.0 mm. Furthermore, when the vibrator 1 is made of Langasite, the [100] direction of the Langasite is the longitudinal direction of the vibrator 1.
  • the chip 2 is made of, for example, tungsten carbide, and is bonded to one end of the vibrator 1 with an adhesive.
  • the chip 2 is harder than the object to be measured.
  • the holding member 3 has a substantially circular planar shape, and holds a substantially central portion of the vibrator 1 in the length direction of the vibrator 1 by a method described later.
  • the substantially central portion of the vibrator 1 is a position where a node of a fundamental mode of vibration exists. Accordingly, the holding member 3 holds a part of the vibrator 1 corresponding to the vibration node of the vibrator 1.
  • the antenna 4 has one end wound around the holding member 3 and pulled out through the resin member 9 and the cases 11 and 14, and the other end connected to the ground potential.
  • the antenna 5 has one end disposed on one side of the antenna 4 in the length direction of the vibrator 1 and wound around the holding member 3. The antenna 5 is pulled out through the resin member 9 and the cases 11 and 14.
  • the one end side of the antenna 6 is disposed on the other side of the antenna 4 in the length direction of the vibrator 1 and is wound around the holding member 3.
  • the antenna 6 is pulled out through the resin member 9 and the cases 11 and 14.
  • each of the antennas 4 to 6 has a diameter of 1 mm, for example, and is wound around the holding member 3 only once.
  • the support member 7 has a hollow cylindrical shape, and is fixed to the magnet 8 and supports the holding member 3.
  • the magnet 8 is bonded to the support member 7.
  • the resin member 9 is made of acrylic, for example, and is disposed between the holding member 3, the supporting member 7 and the magnet 8 and the case 11, and covers the holding member 3, the antennas 4 to 6, the supporting member 7 and the magnet 8.
  • a space 15 is formed between the magnet 8 and the resin member 9 and the top plate 12, and the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, the support member 7, the magnet 8 and the resin
  • the member 9 can move integrally in the length direction of the vibrator 1. In this case, portions of the antennas 4 to 6 arranged in the space 15 are actually formed in a spiral shape, and the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, and the support member. 7, the magnet 8 and the resin member 9 are configured to be movable in the length direction of the vibrator 1.
  • a space 16 is formed below the holding member 3 between the vibrator 1 and the resin member 9, and the space 16 communicates with the opening 111 of the case 11.
  • the case 11 is made of a hollow cylindrical Teflon (registered trademark) and has an opening 111.
  • the case 11 is fixed to the top plate 12 on the side opposite to the opening 111.
  • the top plate 12 is made of acrylic, for example, and is fixed in the case 14.
  • the magnet 13 has the same polarity as the magnet 8.
  • the magnet 13 is fixed in the case 14 in contact with the top plate 12.
  • the case 14 is made of acrylic, for example, and covers a part of the case 11, the top plate 12 and the magnet 13.
  • FIG. 2 is a plan view of the vibrator 1, the holding member 3, and the antennas 4 to 6 viewed from the magnet 8 side shown in FIG.
  • the holding member 3 includes an O-ring 31 and a fixture 32.
  • the O-ring 31 is made of nitrile rubber, for example.
  • Nitrile rubber is a copolymer of acrylonitrile and 1,3-butadiene.
  • the vibrator 1 has a substantially square cross-sectional shape.
  • the O-ring 31 is arranged around the vibrator 1 so as to contact the four vertices of the square of the vibrator 1. As described above, the O-ring 31 contacts the vibrator 1 with a minimum contact area in the circumferential direction of the cross-sectional shape of the vibrator 1 when the vibrator 1 is cut in a direction orthogonal to the length direction of the vibrator 1. .
  • the vibrator 1 and the O-ring 31 may be in point contact at four vertices or may be in surface contact at four corners. The point contact or surface contact depends on the hardness of the O-ring 31. The harder the O-ring 31, the easier the vibrator 1 and the O-ring 31 are in point contact. The softer the transducer 1 and the O-ring 31 are in surface contact.
  • the fixture 32 has a donut-like planar shape and is made of, for example, acrylic resin.
  • the fixture 32 is arranged around the O-ring 31.
  • the antennas 4 to 6 are wound only once around the fixture 32.
  • FIG. 3 is an enlarged view of the vibrator 1 and the chip 2 shown in FIG.
  • chip 2 has a thin spherical piece cross-sectional shape.
  • the chip 2 has, for example, a diameter of 1 to 2 mm and a thickness of about 0.3 mm.
  • FIG. 4 is a perspective view of the vibrator 1, chip 2, holding member 3, support member 7, magnet 8 and resin member 9 shown in FIG. In FIG. 4, the antennas 4 to 6 are omitted.
  • the vibrator 1 is held by a holding member 3, and the holding member 3 is connected to a magnet 8 by a support member 7.
  • the resin member 9 is formed in a substantially cylindrical shape so as not to contact the vibrator 1 but to contact the holding member 3, the support member 7 and the magnet 8 and cover the holding member 3, the support member 7 and the magnet 8.
  • the resin member 9 has a bottom surface 9 ⁇ / b> A on the chip 2 side, and a space 16 between the resin member 9 and the vibrator 1.
  • the holding member 3, the support member 7, the magnet 8 and the resin member 9 constitute an integrated object
  • the vibrator 1 has an O-ring 31 (not shown in FIG. 4) in the integrated holding member 3. Is held only by.
  • the vibrator 1, the chip 2, the holding member 3, the support member 7, the magnet 8, and the resin member 9 can be moved integrally in the length direction of the vibrator 1.
  • FIGS. 5 to 8 are first to fourth process diagrams showing a manufacturing method for manufacturing the probe 10 shown in FIG. 1, respectively.
  • a langasite having a quadrangular prism shape is cut out from a lump of single crystal of langasite to produce the vibrator 1 (step (a)).
  • the langasite is cut out so that the length direction is the direction of [100].
  • the O-ring 31 is attached to the substantially central portion of the vibrator 1 (step (b)), and the fixture 32 having a donut shape is attached around the O-ring 31 (step (c)).
  • a chip 2 having a thin sphere piece (thickness of about 0.3 mm) is manufactured, and the manufactured chip 2 is bonded to one end of the vibrator 1 with an adhesive. Further, the other end side of the vibrator 1 is put into a support member 7 having a hollow cylindrical shape, and the holding member 3 (O-ring 31 and fixture 32) is bonded to the support member 7 with an adhesive. Further, the magnet 8 is bonded to the support member 7 with an adhesive (step (d)). In this way, the magnet 8 is bonded to the support member 7 that supports the O-ring 31.
  • the antennas 4 to 6 are wound only once around the fixture 32 (step (e)).
  • step (e) vibrator 1, chip 2, holding member 3, parts of antennas 4-6, support member 7 and magnet 8 are placed in container 20 (step (f )), A resin made of acrylic is filled into the container 20. Then, the filled resin is dried. As a result, the resin member 9 formed into a cylindrical shape in contact with the holding member 3, a part of the antennas 4 to 6, the support member 7 and the magnet 8 is produced (step (g)).
  • step (h) Thereafter, the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, the support member 7, the magnet 8 and the resin member 9 are mounted in the case 11 (step (h)).
  • step (h) a hole is made in case 11, and antennas 4-6 are taken out of case 11 through antennas 4-6 in the opened hole (step (i)).
  • the top plate 12 is bonded to the case 11 with an adhesive (step (j)).
  • the case 14 is produced by injection molding (step (k)).
  • the case 14 has recesses 141 and 142.
  • the recess 141 has a substantially square planar shape
  • the recess 142 has a substantially circular planar shape.
  • step (k) magnet 13 is mounted in recess 141 of case 14 (step (l)).
  • the antennas 4 to 6 are passed through the holes, a part of the case 11 and the top plate 12 are placed in the recess 142, and a part of the case 11 and the top plate 12 are placed in the case 14 Attach to. Thereby, the probe 10 is completed (step (m)).
  • FIG. 9 is a conceptual diagram for explaining the operation of the probe 10 shown in FIG. With reference to (a) of FIG. 9, since the magnet 13 has the same polarity as the magnet 8, a repulsive force acts between the magnets 8 and 13. Since the probe 10 is not in contact with the device under test 30, the resin member 9 is pushed toward the opening 111 of the case 11 by the repulsive force RF that the magnet 8 receives from the magnet 13, and the bottom surface 9 ⁇ / b> A of the resin member 9. Is in contact with the case 11. Further, one end of the vibrator 1 and the chip 2 are out of the case 11.
  • the object to be measured 30 is pushed with the total force Fall of the gravity G and the repulsive force RF applied to the probe 10.
  • the repulsive force RF is sufficiently larger than the gravity G, the influence of gravity hardly affects the force Fall. Due to the force Fall, the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, the support member 7, the magnet 8, and the resin member 9 generate a force Frev of the same magnitude as the force Fall from the object to be measured 30 as a repulsive force RF. Receive in the opposite direction.
  • the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, the support member 7, the magnet 8, and the resin member 9 move by ⁇ in the direction opposite to the repulsive force RF (see FIG. 9B).
  • This moved distance ⁇ corresponds to the amount by which the vibrator 1 and the chip 2 are pushed.
  • FIG. 9 shows the case where the device under test 30 is arranged in a horizontal plane and the probe 10 is brought into contact with the upper surface 30A of the device under test 30.
  • the probe 10 is measured by the repulsive force RF until the bottom surface 11A of the case 11 contacts the device under test 30. It is pushed in the direction of 30. Since the gravity G is sufficiently smaller than the repulsive force RF, the chip 2 can be pushed into the device under test 30 with the same force in this case as well.
  • the magnet 13 is disposed at a position away from the magnet 8 by a desired distance at which the repulsive force RF acting on the magnet 8 is the same.
  • the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, the support member 7, the magnet 8, and the resin member 9 move by ⁇ in the direction opposite to the repulsive force RF.
  • the vibrator 1 since the vibrator 1 is held by the O-ring 31, even if the probe 10 is pressed against the device under test 30, the vibrator 1 is not attached to the device under test 30.
  • the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, the support member 7, the magnet 8, and the resin member 9 move by ⁇ in the direction opposite to the repulsive force RF without moving in the in-plane direction. Therefore, even if the device under test 30 is arranged so as to form an arbitrary angle with the vertical direction, the pushing amount can be kept constant.
  • the resonator 1 is made of langasite, which has a trigonal crystal structure and has six independent elastic constants C 11 , C 12 , C 13 , C 14 , C 33. , C 44 , two piezoelectric constants e 11 , e 14 , and two dielectric constants ⁇ 11 , ⁇ 33 .
  • Table 1 shows the elastic constants C 11 , C 12 , C 13 , C 14 , C 33 , C 44 , piezoelectric constants e 11 , e 14 , dielectric constants ⁇ 11 , ⁇ 33, and density ⁇ of Langasite.
  • the units of the elastic constants C 11 , C 12 , C 13 , C 14 , C 33 , C 44 are [GPa]
  • the units of the piezoelectric constants e 11 , e 14 are [C / m 2 ]
  • the units of dielectric constants ⁇ 11 and ⁇ 33 are [10 ⁇ 22 F / m 2 ]
  • the unit of density ⁇ is [kg / m 2 ].
  • 10 and 11 are first and second conceptual diagrams for modeling the vibration of the vibrator 1, respectively.
  • the vibrator 1 has an elongated structure that can be sufficiently assumed to be longitudinal vibration.
  • the longitudinal direction of the vibrator 1 is the Z-axis
  • the length of the vibrator 1 is L
  • the Young's modulus in the Z-axis direction is E
  • the vibrator 1 The cross-sectional area is A
  • the density of the vibrator 1 is ⁇
  • the motion equation of vibration of the vibrator 1 is expressed by the following formula.
  • is the angular frequency of the vibrator 1
  • k is the wave number of vibration
  • C 1 and C 2 are constants.
  • the angular frequency and the wave number are expressed by the following equations using the frequency f and the speed of sound v.
  • Equation (3) ⁇ is the density of the vibrator 1, and E is the Young's elastic modulus of the vibrator 1.
  • the spring constant K represents the contact rigidity between the chip 2 and the device under test 30.
  • the contact stiffness K is expressed by the following equation according to Hertz's contact theory (see Non-Patent Documents 1 and 2).
  • Equation (6) F is the bias force, R is the radius of the tip 2, and E * is the effective Young's modulus.
  • the effective Young's modulus E * is expressed by the following equation.
  • E spe is the Young's modulus of the device under test 30
  • E tip is the Young's modulus of the chip 2
  • ⁇ spe is the Poisson's ratio of the device under test 30
  • ⁇ tip is It is the Poisson's ratio of chip 2.
  • the left side of the equation (5) includes the resonance frequency from the equation (3)
  • the right side of the equation (5) includes the Young's modulus E spe of the device under test 30 from the equations (6) and (7). Therefore, by measuring the resonance frequency f of the vibrator 1, the Young's modulus E spe of the device under test 30 can be obtained.
  • the resonance frequency f fosc by the method described later, the Young's modulus E spe of the device under test 30 can be calculated.
  • FIG. 12 is a block diagram of an elastic constant measuring apparatus according to an embodiment of the present invention.
  • elastic constant measuring apparatus 100 according to the embodiment of the present invention includes a probe 10, a voltage source 40, and a detector 50.
  • the probe 10 is as described above.
  • the voltage source 40 is connected to the other end of the antenna 5 of the probe 10.
  • the voltage source 40 is composed of, for example, a synthesizer (NF circuit design block, WF1974). Then, the voltage source 40 transmits a burst wave (about 10 ms) of the voltage Vv having a frequency component f (about 0.1 MHz) to vibrate the vibrator 1 to the antenna 5 and outputs a trigger signal to the detector 50.
  • the voltage Vv is, for example, a voltage whose difference between the maximum value and the minimum value is 50V.
  • the detector 50 is connected to the other end of the antenna 6 and includes, for example, a digitizer (National Instruments, NIUSB-5133).
  • the detector 50 receives a trigger signal from the voltage source 40.
  • the detector 50 receives from the antenna 6 a received signal of the polarization electric field generated when the vibrator 1 vibrates after a certain time (for example, 10 ⁇ s) from the rising edge of the trigger signal. Thereafter, the detector 50 performs a Fourier transform on the received signal, and obtains an amplitude A corresponding to the vibration frequency f.
  • the detector 50 obtains the resonance frequency fosc of the vibrator 1 based on the relationship between the vibration frequency f and the amplitude A when the vibration frequency f is changed, and calculates the resonance frequency fosc and the equations (3) and (5).
  • the Young's modulus E spe of the device under test 30 is calculated using (7).
  • the record length of the detector 50 is 2500 (Sampling), and the sample rate is 2.0 ⁇ 10 5 (Sampling / s).
  • the detector 50 creates digital data of trigonometric functions (cos (2 ⁇ f ⁇ t), sin (2 ⁇ f ⁇ t)) in accordance with the waveform of the received signal received from the antenna 6 and the frequency f, and the created data Perform a Fourier transform by accumulating trigonometric functions. More specifically, the detector 50 performs a Fourier transform by the following method.
  • the detector 50 integrates the trigonometric function according to the following equation.
  • the detector 50 integrates the trigonometric function according to the following equation to obtain I 1 and I 2 .
  • FIG. 13 is a timing chart of burst waves and trigger signals.
  • each of burst waves BW1 and BW2 has, for example, the number of 1000 cycles and a length of 10 ms.
  • the interval d between the burst wave BW1 and the burst wave BW2 is, for example, 10 ms.
  • the trigger signal TRG becomes L (logic low) level at timing t1 when the burst wave BW1 rises, and becomes H (logic high) level at timing t2 when the burst wave BW1 falls, and at the rise of the burst wave BW2. It becomes L level at a certain timing t3 and becomes H level at a timing t4 which is the falling edge of the burst wave BW2.
  • the detector 50 receives a reception signal from the antenna 6 from timing t2 to timing t3. Accordingly, the detector 50 starts to receive the received signal from the antenna 6 at a timing t2 that is a certain time after the timing t1 at which the burst wave BW1 is applied to the vibrator 1.
  • FIG. 14 is a flowchart for explaining a method of measuring Young's modulus.
  • a method for measuring the Young's modulus will be described on the assumption that the probe 10 is pressed against the device under test 30 and the tip 2 is in contact with the device under test 30.
  • the frequency measurement range, the frequency changing interval, the number of burst wave marks, and the burst wave interval are set in voltage source 40 (step S1). .
  • the voltage source 40 determines a frequency component to vibrate the vibrator 1 within the frequency measurement range, and a burst composed of the voltage Vv having the determined frequency component and the number of marks set in step S1. A wave is generated, and the generated burst wave is transmitted to the antenna 5 at the burst wave interval set in step S1. At the same time, the voltage source 40 outputs the trigger signal TRG to the detector 50 (step S2).
  • the antenna 5 cooperates with the antenna 4 to apply the voltage Vv to the vibrator 1, and an oscillating electric field is generated in the vibrator 1.
  • a piezoelectric phenomenon occurs in the vibrator 1 by the generated oscillating electric field, and the vibrator 1 vibrates (step S3).
  • the antenna 6 cooperates with the antenna 4 to detect the polarization electric field generated along with the vibration of the vibrator 1 as a voltage (step S4).
  • the detector 50 receives a received signal from the antenna 6 between timing t2 and timing t3 shown in FIG.
  • the detector 50 performs a Fourier transform on the received signal by the method described above to obtain an amplitude A with respect to the vibration frequency f (step S6).
  • the voltage source 40 determines whether or not the frequency f has been changed all within the measurement range (step S7).
  • step S7 When it is determined in step S7 that the frequency f has not been changed in all of the measurement range, the voltage source 40 changes the frequency f within the measurement range (step S8). In this case, the voltage source 40 changes the frequency f by adding the frequency change interval set in step S1 to the original frequency.
  • step S2 the series of operations returns to step S2, and step S2 to step S8 described above are repeatedly executed until it is determined in step S7 that the frequency f has been changed in all of the measurement range.
  • step S7 When it is determined in step S7 that the frequency f has been changed in all of the measurement range, the detector 50 plots the relationship between the frequency f and the amplitude A, and sets the frequency at which the amplitude A is maximum to the resonance frequency fosc. (Step S9).
  • the detector 50 calculates the Young's modulus E spe of the device under test 30 using the detected resonance frequency fosc and equations (3), (5) to (7) (step S10). This completes the measurement of Young's modulus.
  • FIG. 15 is a diagram showing the relationship between amplitude and frequency. 15A and 15B, the vertical axis represents amplitude, and the horizontal axis represents frequency.
  • a curve k1 shows the relationship between amplitude and frequency when the O-ring is attached to the transducer 1 of the probe 10 according to the embodiment of the present invention
  • a curve k2 shows the elastic constant measurement disclosed in Patent Document 1. The relationship between amplitude and frequency when an O-ring is attached to the vibrator of the apparatus is shown.
  • the curve k3 shows the relationship between the amplitude and the frequency when the O-ring is not attached to the transducer 1 of the probe 10 according to the embodiment of the present invention
  • the curve k4 shows the elastic constant measurement disclosed in Patent Document 1. The relationship between the amplitude and the frequency when the O-ring is not attached to the vibrator of the apparatus is shown.
  • the vibration of the transducer 1 of the probe 10 has a peak at one frequency whether the O-ring is attached to the transducer 1 or not (see curves k1 and k3).
  • the vibration of the vibrator disclosed in Patent Document 1 has peaks at a plurality of frequencies (see curves k2 and k4).
  • the vibration of the vibrator disclosed in Patent Document 1 has peaks at a plurality of frequencies centering on 0.111 (MHz) (see curve k2).
  • Table 2 shows the input voltage, integration interval length, and burst wave length when measuring the resonant frequency.
  • Table 3 shows the resonance frequency and the Q value.
  • the input voltage is 10 V (difference between the maximum value and the minimum value), the integration interval length is 12.5 ms, and the burst wave length is 10 ms.
  • the input voltage is 200 V (difference between the maximum value and the minimum value), the integration interval length is 0.4 ms, and the burst wave length is 0.2 ms. is there.
  • the integration interval length and the burst wave length are significantly longer than in the prior art, and the input voltage is significantly reduced.
  • the Q value is 1855 when the O-ring is not attached to the vibrator 1, and is 1587 when the O-ring is attached.
  • the Q value is 496.5 when the O-ring is not attached to the vibrator, and 283.3 when the O-ring is attached.
  • the length of the burst wave is as short as 0.2 ms, a sufficient resonance state cannot be created, and the signal intensity does not increase even when a large voltage ( ⁇ 200 V) is used. .
  • the vibrator 1 since the vibrator 1 is likely to vibrate, the length of the burst wave can be increased to 10 ms. Therefore, a high Q value can be obtained even at a low voltage (10 V).
  • the Young's modulus was calculated from the resonance frequency fosc obtained using the probe 10, and it was 113.51 GPa.
  • FIG. 16 is a diagram showing the relationship between the measured Young's modulus and the reported Young's modulus.
  • the radius of the chip 2 is 2 mm, and the bias force F is 0.455N.
  • the X-axis direction of the crystal coincides with the longitudinal direction, and the size is 2 mm ⁇ 2 mm ⁇ 20 mm.
  • the measured values are in good agreement with the reported values. Moreover, the straight line shown in FIG. 16 represents that the measured value has a one-to-one correspondence with the reported value.
  • the Young's modulus of the object to be measured 30 can be accurately obtained simply by touching the object to be measured 30 without using any fitting parameters.
  • the detector 50 detects the resonance frequency of the vibrator 1 and calculates the Young's modulus of the DUT 30 based on the detected resonance frequency.
  • the detector 50 is not limited to this, and the peak half-value width FWHM having the resonance frequency of the vibrator 1 may be detected. In this case, the detector 50 detects the half width FWHM of the peak indicated by the curves k1 and k3 in FIG.
  • the detector 50 may detect an attenuation constant ⁇ when the vibrator 1 is attenuated.
  • FIG. 17 is a diagram illustrating the attenuation characteristics of the vibrator 1.
  • the detector 50 receives a reception signal from the antenna 6 from timing t2 to timing t3 shown in FIG. Since the burst wave is not applied to the vibrator 1 from the timing t2 to the timing t3, the vibration of the vibrator 1 is attenuated as a vibration curve DCY shown in FIG.
  • the detector 50 detects the vibration curve DCY, and detects the envelope EVL of the detected vibration curve DCY.
  • the envelope EVL is usually expressed by e ⁇ t ( ⁇ : attenuation constant, t: time).
  • the detector 50 fits the detected envelope EVL with e ⁇ t to detect the attenuation constant ⁇ .
  • FIG. 18 is a cross-sectional view showing a specific example of the device under test 30.
  • the device under test 30 includes a main body portion 301 and a coating layer 302.
  • the coating layer 302 is disposed on the main body 301 so as to cover the surface 301 ⁇ / b> A of the main body 301. Then, peeling portions 303 and 304 are formed between the main body portion 301 and the coating layer 302.
  • the tip 2 of the probe 10 is brought into contact with the surface 302A of the coating layer 302 of the object to be measured 30 to detect the attenuation constant ⁇ h of the vibrator 1.
  • the attenuation constant of the vibrator 1 when the peeling portions 303 and 304 are not formed is ⁇ 0
  • the attenuation constant ⁇ h is larger than the attenuation constant ⁇ 0 . The reason is as follows.
  • the vibration of the vibrator 1 propagates to the coating layer 302 and the coating layer 302 also vibrates. Since 304 absorbs the vibration of the coating layer 302, the vibration of the coating layer 302 is easily attenuated. As a result, the vibration of the vibrator 1 is also easily attenuated, and the damping constant ⁇ h of the vibrator 1 when the peeling portions 303 and 304 are formed on the object to be measured 30 has the peeling portions 303 and 304 formed. This is because it becomes larger than the attenuation constant ⁇ 0 in the case of not being present.
  • the detector 50 measuring the attenuation constant ⁇ of the vibrator 1 by the method described above. In this case, if the detected attenuation constant ⁇ is larger than the attenuation constant ⁇ 0 , the detector 50 detects that the peeling portions 303 and 304 are formed, and the detected attenuation constant ⁇ is substantially equal to the attenuation constant ⁇ 0 . If they are equal, it is detected that the peeling portions 303 and 304 are not formed.
  • the peak half-value width FWHM h having the resonance frequency when the peeling portions 303 and 304 are formed is larger than the peak half-value width FWHM 0 having the resonance frequency when the peeling portions 303 and 304 are not formed. growing.
  • the reason is the same as the reason why the attenuation constant ⁇ h of the vibrator 1 when the peeling portions 303 and 304 are formed is larger than the attenuation constant ⁇ 0 when the peeling portions 303 and 304 are not formed. is there.
  • the detector 50 forms the peeling portions 303 and 304 if the detected half width FWHM is larger than the half width FWHM 0. If the detected half-value width FWHM is substantially equal to the half-value width FWHM 0 , it is detected that the peeling portions 303 and 304 are not formed.
  • the presence or absence of a defect in the device under test 30 can be detected by detecting the half-width FWHM of the peak having the resonance frequency or the attenuation constant ⁇ of the vibrator 1.
  • the detector 50 detects the attenuation constant ⁇ of a plurality of types of objects to be measured 30, the object to be measured 30 that matches the purpose can be selected by comparing the magnitudes of the attenuation constants ⁇ .
  • the device under test 30 having a larger attenuation constant ⁇ may be selected. Further, when selecting a material to be used for the resonant device of the mobile phone, it is only necessary to select the device under test 30 having a smaller attenuation constant ⁇ .
  • the device under test 30 breaks, there is a timing at which the damping constant ⁇ suddenly increases immediately before the break, so the change over time of the damping constant ⁇ of the device under test 30 is measured, and the damping constant ⁇ suddenly increases. If it becomes larger, it may be determined that the device under test 30 may be broken, and the device under test 30 may be replaced. For example, in an airplane, the load is most applied to the boundary between the wing and the main body, and the base of the wing is most likely to break. Therefore, the time-dependent change of the attenuation constant ⁇ at the base of the wing is measured using the probe 10 to attenuate If the constant ⁇ increases rapidly, it is determined that the blade is broken, and the blade is replaced.
  • the probe 10 can be used not only for measuring the Young's modulus of the object to be measured 30, but also for detecting defects of the object to be measured 30, material selection, non-destructive inspection, and the like.
  • FIG. 19 is a flowchart for explaining an operation when a defect is detected using a half width of a peak having a resonance frequency.
  • the detector 50 holds in advance a peak half-value width FWHM 0 having a resonance frequency when no defect (peeling portion 303, 304) is formed on the DUT 30.
  • An operation for detecting a defect will be described as a premise.
  • the flowchart shown in FIG. 19 is the same as the flowchart shown in FIG. 14 except that step S10 of the flowchart shown in FIG. 14 is replaced with steps S11 to S14.
  • step S9 the detector 50 detects the half-value width FWHM of the peak having the resonance frequency fosc (step S11).
  • the detector 50 determines whether or not the half width FWHM is larger than the half width FWHM 0 (step S12).
  • Step S12 when it is determined that the half-value width FWHM is larger than the half-value width FWHM 0 , the detector 50 detects that a defect is formed in the object to be measured 30 (Step S13).
  • step S12 when it is determined in step S12 that the half-value width FWHM is not larger than the half-value width FWHM 0 (that is, when the half-value width FWHM is determined to be substantially equal to the half-value width FWHM 0 ), the detector 50 It is detected that no defect is formed on the device under test 30 (step S14).
  • step S13 or step S14 the operation for detecting a defect ends.
  • FIG. 20 is a flowchart for explaining an operation when a defect is detected using an attenuation constant.
  • the detector 50 detects the defect on the assumption that the attenuation constant ⁇ 0 when the defect (the peeling portions 303 and 304) is not formed on the DUT 30 is held in advance. The operation will be described.
  • the flowchart shown in FIG. 20 is the same as the flowchart shown in FIG. 14 except that steps S6 to S10 in the flowchart shown in FIG. 14 are replaced with steps S15 to S19.
  • the detector 50 fits the detected envelope EVL with e ⁇ t to detect the attenuation constant ⁇ (step S16).
  • the detector 50 determines the attenuation constant alpha is whether greater than the attenuation constant alpha 0 (step S17).
  • step S17 when the attenuation constant alpha is determined to be greater than the attenuation constant alpha 0, the detector 50 detects that the defect is formed on the measured object 30 (Step S18).
  • step S17 when the attenuation constant alpha is not greater than the attenuation constant alpha 0 (i.e., when the attenuation constant alpha is determined to substantially equal to the attenuation constant alpha 0), the detector 50 may be It is detected that no defect is formed on the measurement object 30 (step S19).
  • step S18 or step S19 the operation for detecting a defect ends.
  • the voltage source 40 may transmit the burst wave BWh having a frequency half the resonance frequency to the antenna 5 as an excitation voltage.
  • the burst wave BWh is composed of, for example, a sin wave having a frequency of 50 kHz.
  • FIG. 21 is a conceptual diagram showing the burst wave BWh and the displacement of the defect when a defect is formed in the device under test 30.
  • FIG. 22 is a diagram showing the relationship between amplitude and frequency.
  • the voltage source 40 transmits a burst wave BWh composed of a sin wave to the antenna 5.
  • the component SS1 of the burst wave BWh is a component that moves the vibrator 1 to the measured object 30 side
  • the component SS2 is a component that moves the vibrator 1 to the opposite side of the measured object 30 side.
  • the vibrator 1 When the vibration of the vibrator 1 is excited by the burst wave BWh while the tip 2 of the probe 10 is in contact with the object to be measured 30, the vibrator 1 does not resonate but is forced to vibrate. Propagated to the object 30.
  • the detector 50 detects the resonance frequency fosc based on the reception voltage received by the antenna 6 (see FIG. 22).
  • the vibrator 1 does not resonate with the double wave.
  • the resonance frequency fosc is not detected.
  • the detector 50 detects the resonance frequency fosc when the vibration of the vibrator 1 is excited by the burst wave BWh having a half frequency of the resonance frequency fosc, the peeling portions 303 and 304 are attached to the object to be measured 30. If the formation is detected and the resonance frequency fosc is not detected, it is detected that the peeling portions 303 and 304 are not formed on the measurement object 30.
  • the frequency of the burst wave BWh is not limited to half the resonance frequency, and may be 1/3 times the resonance frequency, 1/4 times the resonance frequency, or the like.
  • the frequency may be 1 / n (n is an integer of 2 or more) times the resonance frequency.
  • the detector 50 detects the resonance frequency fosc, the detector 50 detects that the peeling portions 303 and 304 are formed on the object to be measured 30, and if not, detects the resonance frequency fosc. It is detected that the peeling portions 303 and 304 are not formed.
  • the frequency of the burst wave BWh may be a frequency that is twice the resonance frequency, a frequency that is three times the resonance frequency, or the like, and may generally be a frequency that is n times the resonance frequency.
  • the vibrator 1 resonates with a 1 / n harmonic by the mechanism described above. Accordingly, even when the vibration of the vibrator 1 is excited by the burst wave BWh having a frequency n times the resonance frequency, the detector 50 detects the resonance frequency fosc and causes the separation parts 303 and 304 to be measured on the object 30 to be measured. If the resonance frequency fosc is not detected, it is detected that the peeling portions 303 and 304 are not formed on the object to be measured 30.
  • the voltage source 40 when detecting whether or not a defect is formed in the device under test 30 by the harmonic wave, is a burst wave having a frequency n times the resonance frequency, or If a burst wave having a frequency 1 / n times the resonance frequency is transmitted as an excitation voltage to the antenna 5, and the detector 50 detects the resonance frequency fosc, peeling parts 303 and 304 are formed on the object to be measured 30. If the resonance frequency fosc is not detected, it is detected that the peeling portions 303 and 304 are not formed on the object to be measured 30.
  • FIG. 23 is a flowchart for explaining an operation of detecting a defect using a harmonic wave.
  • detector 50 detects resonance frequency fosc according to steps S1 to S9 shown in FIG. 14 (step S21).
  • the voltage source 40 transmits a burst wave BWh having a frequency n times the resonance frequency fosc of the vibrator 1 or a frequency 1 / n times the resonance frequency fosc of the vibrator 1 to the antenna 5, and a trigger signal is transmitted. Output to the detector 50 (step S22).
  • the detector 50 receives the received signal from the antenna 6 (step S23), Fourier-transforms the received received signal, and obtains an amplitude corresponding to the vibration frequency (step S24).
  • the detector 50 plots the relationship between the frequency f and the amplitude A (step S25).
  • the detector 50 determines whether or not there is a peak at the position of the resonance frequency (step S26).
  • step S26 When it is determined in step S26 that there is a peak at the position of the resonance frequency, the detector 50 detects that a defect is formed in the device under test 30 (step S27).
  • step S26 when it is determined in step S26 that there is no peak at the position of the resonance frequency, the detector 50 detects that no defect is formed in the device under test 30 (step S28).
  • FIG. 24 is a cross-sectional view of another vibrator according to the embodiment of the present invention.
  • the probe 10 according to the embodiment of the present invention may include a vibrator 21 instead of the vibrator 1 and a holding member 3 ⁇ / b> A instead of the holding member 3.
  • the vibrator 21 is made of langasite or crystal having a circular cross-sectional shape.
  • the vibrator 21 has a diameter of 3 mm, for example, and has the same length as the vibrator 1.
  • the holding member 3 ⁇ / b> A includes a holding tool 33 and a fixing tool 34.
  • the holder 33 includes holders 331 to 333, and each of the holders 331 to 333 includes, for example, nitrile rubber.
  • the holders 331 to 333 hold the vibrator 21 from a direction that forms an angle of 120 degrees with each other at a substantially central portion in the length direction of the vibrator 21. In this case, each of the holders 331 to 333 holds the vibrator 21 in point contact with the vibrator 21.
  • the fixture 34 is made of the same material as the fixture 32 and has a donut shape.
  • the fixing tool 34 is arranged around the holding tool 33 and bonded to the holding tool 33.
  • the resin member 9 contacts the outer periphery of the fixture 34.
  • the probe 10 may include a vibrator 22 instead of the vibrator 1 and a holding member 3B instead of the holding member 3.
  • the vibrator 22 is made of langasite or quartz having a regular triangular cross-sectional shape.
  • the length of one side of the equilateral triangle is, for example, 3 mm, and the vibrator 22 has the same length as the vibrator 1.
  • the holding member 3B includes an O-ring 35 and a fixture 36.
  • the O-ring 35 is made of, for example, nitrile rubber, and is in contact with the three apexes of the triangle of the vibrator 22 at approximately the center in the length direction of the vibrator 22 to hold the vibrator 22.
  • the fixture 36 is made of the same material as the fixture 32 and has a donut shape. The fixture 36 is disposed around the O-ring 35 and bonded to the O-ring 35.
  • the resin member 9 contacts the outer periphery of the fixture 36.
  • the vibrator 21 is held by the holder 33 in contact with the holder 33 with the minimum contact area
  • the vibrator 22 is held by the O-ring 35 in contact with the O-ring 35 with the minimum contact area.
  • the vibrator 21 or the vibrator 22 is held by three points, and thus vibrates more freely than the vibrator 1.
  • the Q value when the vibrator 21 or the vibrator 22 resonates is improved, and the Young's modulus of the device under test 30 can be measured more accurately.
  • the probe 10 is manufactured according to steps (a) to (m) shown in FIGS.
  • step (c) the holder 33 is attached to the vibrator 21 and the fixture 34 is attached to the holder 33, or the O-ring 35 is attached to the vibrator 22 and the fixture 36 is an O-ring. 35.
  • step (d) the support member 7 is attached to the fixture 34 or the fixture 36.
  • step (e) the antennas 4 to 6 are wound only once around the fixture 34 or the fixture 36.
  • the probe 10 includes the vibrator 21 or the vibrator 22, it is detected whether or not a defect is formed in the object to be measured 30 by detecting the half width FWHM of the peak having the resonance frequency or the attenuation constant ⁇ . May be.
  • the vibrator 21 (or the vibrator 22) is caused by the burst wave BWh having a frequency n times the resonance frequency or 1 / n times the resonance frequency. Whether or not a defect is formed in the object to be measured 30 may be detected based on whether or not the vibration frequency is excited and the resonance frequency fosc is detected.
  • the vibrators 21 and 22 are more likely to vibrate than the vibrator 1. It is possible to accurately determine whether or not the measurement object 30 is formed.
  • FIG. 25 is a cross-sectional view showing another method for mounting the antennas 4 to 6.
  • antennas 4 to 6 may be mounted between O-ring 31 and fixture 32.
  • the distance between the vibrator 1 and the antennas 4 to 6 is shortened, and the vibrator 1 receives a stronger voltage Vv from the antenna 5 than when the antennas 4 to 6 are mounted on the outer periphery of the fixture 32. It becomes easier to vibrate.
  • the antenna 6 receives the polarization electric field generated as the vibrator 1 vibrates as a stronger voltage. Accordingly, the Young's modulus of the device under test 30 can be measured more accurately. Further, it can be determined more accurately whether or not a defect is formed in the DUT 30.
  • the antennas 4 to 6 may be mounted between the holder 33 and the fixture 34.
  • the antennas 4 to 6 are The O-ring 35 and the fixture 36 may be mounted.
  • the Young's modulus of the object 30 can be measured more accurately. Further, it can be determined more accurately whether or not a defect is formed in the DUT 30.
  • FIG. 26 is a cross-sectional view showing a method for holding the vibrator 1.
  • the O-ring 31 when measuring the Young's modulus of the DUT 30 using the fundamental mode of vibration of the vibrator 1, the O-ring 31 is the length of the vibrator 1 having the length L. In the direction, the vibrator 1 is attached to the vibrator 1 at a position L / 2 from one end of the vibrator 1 (a position corresponding to a node portion in the fundamental mode of vibration of the vibrator 1). That is, the O-ring 31 is attached to a substantially central portion of the vibrator 1 in the length direction of the vibrator 1.
  • each of the O-rings 31A and 31B is made of nitrile rubber.
  • the O-ring 31A is located at a position L / 4 from the one end of the vibrator 1 in the length direction of the vibrator 1 having the length L (a position corresponding to a node in the secondary mode of vibration of the vibrator 1).
  • the O-ring 31B corresponds to a position of L / 4 from the other end of the vibrator 1 in the length direction of the vibrator 1 (corresponding to a node portion in the secondary mode of vibration of the vibrator 1). Is mounted on the vibrator 1 at a position where
  • the vibrator 21 or the vibrator 22 is located at a position substantially L / 4 from the center or the end in the length direction of the vibrator 21 or the vibrator 22. Retained.
  • the Young's modulus of the DUT 30 is measured using either the fundamental mode or the secondary mode of the vibration of the vibrators 1, 21, 22.
  • whether or not a defect is formed in the object to be measured 30 by the above-described method using either the fundamental mode or the secondary mode of the vibration of the vibrators 1, 2, and 22. Is detected.
  • FIG. 27 is a cross-sectional view showing another holding method of the vibrator 1.
  • the notch 101 has an arcuate cross-sectional shape.
  • the O-ring 31 When the vibrator 1 is held by the O-ring 31, the O-ring 31 is attached to the vibrator 1 so that the O-ring 31 is fitted into the notch 101 (see FIG. 27B).
  • notches are formed at the four corners of the vibrator 1 at a position L / 4 from one end of the vibrator 1 and a position L / 4 from the other end of the vibrator 1.
  • 101 is provided, and the O-rings 31A and 31B are attached to the vibrator 1 so that the O-rings 31A and 31B are fitted in the notch 101.
  • the vibrator 22 is supported by an O-ring.
  • FIG. 28 is a diagram showing the relationship between the measurement depth and the radius of the chip.
  • the vertical axis represents the measurement depth
  • the horizontal axis represents the radius of the chip.
  • the measurement depth is the depth of the measured object 30 to which the vibration is propagated when the chip 2 is brought into contact with the measured object 30 and the vibration of the vibrator 1 is excited by the burst waves BW1 and BW2 (or the burst wave BWh). It is.
  • the radius of the tip is the radius of the original sphere when a spherical tungsten carbide is polished to produce an arc-shaped tip.
  • the measurement depth of the object to be measured 30 is The radius of the chip is determined so as to be equal to or less than the thickness, and the chip 2 having the determined radius is manufactured and bonded to the end face of the vibrator 1.
  • the relationship between the measurement depth and the chip radius shown in FIG. 28 is illustrative only, and the measurement depth of the material other than acrylic resin and copper increases as the chip radius increases. Accordingly, if the relationship between the measurement depth and the tip radius is calculated in advance for various types of objects to be measured 30, an appropriate tip radius can be determined according to each object to be measured 30.
  • the radius of the tip is set in the range of 0.5 mm to 10 mm, and the tip radius appropriate for the object to be measured 30 is determined from the range of 0.5 mm to 10 mm. 2 is produced.
  • FIG. 29 is a cross-sectional view showing an example in which a plurality of chips are mounted on a vibrator.
  • each of chips 2A and 2B is made of the same material as chip 2 described above.
  • the radius of the chip 2A is larger than the radius of the chip 2B.
  • the chip 2A is bonded to the end face of one end of the vibrator 1, and the chip 2B is bonded to the end face of the other end of the vibrator 1.
  • the chip 2B can contact the object to be measured 30.
  • the vibrator 1 is held again by the holding member 3, and the Young's modulus of the device under test 30 is measured by bringing the chip 2 ⁇ / b> B into contact with the device under test 30.
  • the Young's modulus and the like of two objects to be measured 30 having different thicknesses can be measured using the same vibrator 1. Further, the distribution of Young's modulus in the depth direction of one object to be measured 30 can be measured using the same vibrator 1.
  • FIG. 30 is a cross-sectional view showing the configuration of another probe according to the embodiment of the present invention.
  • the probe according to the embodiment of the present invention may be a probe 10A shown in FIG.
  • probe 10 ⁇ / b> A is obtained by adding needle 17 to probe 10 shown in FIG. 1, and is otherwise the same as probe 10.
  • the needle 17 is fixed to the bottom surface 11A of the case 11. Three or more needles 17 are provided in the bottom surface 11 ⁇ / b> A of the case 11. This is because if at least three needles 17 are provided, the probe 10 ⁇ / b> A can be stably disposed on the object to be measured 30.
  • the diameter of the needle 17 is set to a diameter at which the needle 17 enters the device under test 30 when the probe 10A is placed on the device under test 30.
  • the length of the needle 17 is set to such a length that the bottom surface 11A of the case 11 of the probe 10A can contact the device under test 30 when the surface of the device under test 30 is a flat surface. Further, the length of the needle 17 is set to a length at which the tip of the needle 17 enters the device under test 30 when the device under test 30 has a spherical shape.
  • the tip 2 can stably come into contact with the object to be measured 30, and the Young's modulus of the object to be measured 30 can be accurately measured.
  • FIG. 31 is a conceptual diagram showing an application example of the probe 10 shown in FIG. Referring to FIG. 31, the mouse 60 of the personal computer incorporates a position measuring device 70. The probe 10 is mounted in the mouse 60.
  • the position measuring device 70 measures the position of the mouse 60 based on the principle of the laser mouse, and outputs the measured position to a CPU (Central Processing Unit) of the personal computer.
  • a CPU Central Processing Unit
  • the antenna 5 of the probe 10 is connected to a voltage source 40, and the antenna 6 is connected to a CPU of a personal computer.
  • the mouse 60 is arranged on the device under test 30 and moved to each position of the device under test 30. Then, the position measuring instrument 70 measures the position of the mouse 60 and outputs the measured position to the CPU of the personal computer. Further, the vibrator 1 of the probe 10 vibrates by the voltage Vv applied from the voltage source 40 via the antenna 5, and the antenna 6 receives as a voltage the polarization electric field generated when the vibrator 1 vibrates. The received voltage (reception signal) is output to the CPU of the personal computer.
  • the CPU of the personal computer calculates the Young's modulus of the device under test 30 by the method described above based on the received signal received from the antenna 6, and the mouse 60 receiving the calculated Young's modulus from the position measuring device 70. It is stored in the memory in association with the position.
  • the CPU of the personal computer stores the Young's modulus at each position of the DUT 30 in the memory in association with each position of the mouse 60.
  • the Young's modulus distribution of the device under test 30 can be measured.
  • the defect of the object to be measured 30 may be measured by the various methods described above, or the non-destructive inspection of the object to be measured 30 may be performed by the method described above. Good.
  • the vibrators 1, 2, 22 are held by the O-rings 31, 35 or the holder 33 with a minimum contact area at positions corresponding to the vibration nodes of the vibrators 1, 2, 22. Further, the vibrators 1, 2, and 22 apply a bias force to the object to be measured 30 by the repulsive force RF generated by the magnets 8 and 13 having the same polarity. As a result, the vibrators 1, 2, 22 freely vibrate, and even if the device under test 30 is arranged at an arbitrary angle with respect to the vertical direction, the bias applied to the device under test 30. The force becomes constant.
  • each of the O-rings 31 and 35 constitutes a “holding tool”.
  • magnet 8 constitutes a “first magnet”
  • magnet 13 constitutes a “second magnet”.
  • the antenna 4 constitutes a “first antenna”
  • the antenna 5 constitutes a “second antenna”
  • the antenna 6 constitutes a “third antenna”.
  • the detector 50 that determines whether or not the resonance frequency of the vibrator 1 is detected based on the received voltage received from the antenna 6 constitutes a “determination device”.
  • This invention is applied to a probe and a measuring apparatus equipped with the probe.

Abstract

An oscillator (1) contacts a retaining member (3) with a minimum area of contact, and is retained by the retaining member (3). A chip (2) is bonded to one end of the oscillator (1). The retaining member (3) is supported by a support member (7), and a magnet (8) is bonded to the support member (7). Antennas (4-6) are wound around the external periphery of the retaining member (3). A resin member (9) covers the retaining member (3), the antennas (4-6), the support member (7), and the magnet (8). The retaining member (3), the antennas (4-6), the support member (7), the magnet (8), and the support member (9) are arranged so that one end of the oscillator (1) protrudes outward from an opening (111) in a case (11) and can move integrally in the length direction of the oscillator (1). A top panel (12) is bonded to the case (11). A magnet (13) having the same polarity as the magnet (3) is provided adjacent to the top panel (12) in a case interior (14).

Description

プローブおよびそれを備えた測定装置Probe and measuring apparatus having the probe
 この発明は、プローブおよびそれを備えた測定装置に関するものである。 The present invention relates to a probe and a measuring apparatus including the probe.
 従来、振動子をバネによって天板に固定して試料の弾性定数を測定する弾性定数測定装置が知られている(特許文献1)。 Conventionally, an elastic constant measuring apparatus for measuring an elastic constant of a sample by fixing a vibrator to a top plate with a spring is known (Patent Document 1).
 この弾性定数測定装置においては、ボールベアリングが振動子の天板側と反対側の端部に固定されている。また、振動子を収納するケースの周囲には、ソレノイドコイルが巻かれており、ソレノイドコイルによって、振動子を振動させるための電場を振動子に印加する構造になっている。
特開2005-201816号公報 Stephen R. Swanson, International Journal of Solids and Structures, 41, 1945(2004). J. R. Willis, J. Mech, Phys. Solids, 14, 163(1966).
In this elastic constant measuring apparatus, the ball bearing is fixed to the end of the vibrator opposite to the top plate side. In addition, a solenoid coil is wound around the case that houses the vibrator, and an electric field for vibrating the vibrator is applied to the vibrator by the solenoid coil.
JP 2005-201816 A Stephen R. Swanson, International Journal of Solids and Structures, 41, 1945 (2004). J. R. Willis, J. Mech, Phys. Solids, 14, 163 (1966).
 しかし、従来の弾性定数測定装置においては、振動子がバネによって天板に固定されているために、振動子の安定した振動を確保することが困難であるという問題がある。 However, the conventional elastic constant measuring device has a problem that it is difficult to ensure stable vibration of the vibrator because the vibrator is fixed to the top plate by a spring.
 また、従来の弾性定数測定装置においては、振動子が試料に接触するときのバイアス力を重力によって試料に印加する構成になっているので、重力の方向と異なる方向からバイアス力を試料に印加する場合には、弾性定数を正確に測定することが困難であるという問題がある。 In addition, since the conventional elastic constant measuring apparatus is configured to apply a bias force to the sample by gravity when the vibrator contacts the sample, the bias force is applied to the sample from a direction different from the direction of gravity. In some cases, it is difficult to accurately measure the elastic constant.
 そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、振動子の安定した振動を確保し、バイアス力を任意の方向から試料に印加して弾性定数を測定可能なプローブを提供することである。 Therefore, the present invention has been made to solve such problems, and its purpose is to ensure stable vibration of the vibrator and to measure the elastic constant by applying a bias force to the sample from any direction. Is to provide a simple probe.
 また、この発明の別の目的は、振動子の安定した振動を確保し、バイアス力を任意の方向から試料に印加して弾性定数を測定可能なプローブを備えた測定装置を提供することである。 Another object of the present invention is to provide a measuring apparatus provided with a probe capable of ensuring stable vibration of a vibrator and measuring an elastic constant by applying a bias force to a sample from an arbitrary direction. .
 この発明の実施の形態によれば、プローブは、振動子と、チップと、保持具と、第1および第2の磁石と、第1から第3のアンテナとを備える。振動子は、棒状形状を有し、圧電体からなる。チップは、被測定物側における振動子の一方端に接着され、被測定物よりも硬度が大きい。保持具は、振動子の周方向において最小の接触面積で振動子と接触し、振動子の振動の節部に相当する振動子の一部分を保持する。第1の磁石は、振動子の他方端側に配置され、保持具を支持する支持部材に接着される。第2の磁石は、振動子の長さ方向において第1の磁石と所望の距離を隔てて配置され、第1の磁石と同じ極性を有する。第1のアンテナは、接地電位に接続される。第2のアンテナは、振動子の振動を励起するための励起電圧を第1のアンテナと協働して振動子に印加する。第3のアンテナは、励起電圧が振動子に印加されたことに起因して振動子に発生した電場を第1のアンテナと協働して電圧として受信する。そして、第1から第3のアンテナは、振動子の一部分の近傍に配置されており、チップは、振動子から被測定物へ向かう方向に突出した円弧状の形状を有する。 According to the embodiment of the present invention, the probe includes a vibrator, a chip, a holder, first and second magnets, and first to third antennas. The vibrator has a rod-like shape and is made of a piezoelectric body. The chip is bonded to one end of the vibrator on the measured object side and has a hardness higher than that of the measured object. The holder contacts the vibrator with a minimum contact area in the circumferential direction of the vibrator, and holds a part of the vibrator corresponding to a vibration node of the vibrator. The first magnet is disposed on the other end side of the vibrator and is bonded to a support member that supports the holder. The second magnet is disposed at a desired distance from the first magnet in the length direction of the vibrator, and has the same polarity as the first magnet. The first antenna is connected to the ground potential. The second antenna applies an excitation voltage for exciting the vibration of the vibrator to the vibrator in cooperation with the first antenna. The third antenna receives an electric field generated in the vibrator due to the excitation voltage being applied to the vibrator as a voltage in cooperation with the first antenna. The first to third antennas are arranged in the vicinity of a part of the vibrator, and the chip has an arc shape protruding in the direction from the vibrator toward the object to be measured.
 また、この発明の実施の形態による測定装置は、プローブと、電圧源と、検出器とを備える。プローブは、請求項1に記載のプローブからなる。電圧源は、励起電圧を第2のアンテナへ出力する。検出器は、第3のアンテナによって受信された受信電圧に基づいて振動子の共振周波数を検出し、その検出した共振周波数に基づいて被測定物のヤング率を算出する。 The measuring device according to the embodiment of the present invention includes a probe, a voltage source, and a detector. A probe consists of the probe of Claim 1. The voltage source outputs an excitation voltage to the second antenna. The detector detects the resonance frequency of the vibrator based on the received voltage received by the third antenna, and calculates the Young's modulus of the device under test based on the detected resonance frequency.
 更に、この発明の実施の形態による測定装置は、プローブと、電圧源と、検出器とを備える。プローブは、請求項1に記載のプローブからなる。電圧源は、励起電圧を第2のアンテナへ出力する。検出器は、第3のアンテナによって受信された受信電圧に基づいて振動子の共振周波数を有するピークの半値幅を検出し、または第3のアンテナによって受信された受信電圧に基づいて振動子が減衰するときの減衰定数を検出する。 Furthermore, the measuring apparatus according to the embodiment of the present invention includes a probe, a voltage source, and a detector. A probe consists of the probe of Claim 1. The voltage source outputs an excitation voltage to the second antenna. The detector detects a half width of a peak having a resonance frequency of the vibrator based on the received voltage received by the third antenna, or the vibrator attenuates based on the received voltage received by the third antenna. Detect the damping constant when
 更に、この発明の実施の形態による測定装置は、プローブと、電圧源と、判定器とを備える。プローブは、請求項1に記載のプローブからなる。電圧源は、振動子の共振周波数をn(nは2以上の整数)倍した周波数、または振動子の共振周波数を1/n倍した周波数を有する電圧を励起電圧として第2のアンテナへ出力する。判定器は、第3のアンテナによって受信された受信電圧に基づいて振動子の共振周波数が検出されたか否かを判定する。 Furthermore, the measuring apparatus according to the embodiment of the present invention includes a probe, a voltage source, and a determiner. A probe consists of the probe of Claim 1. The voltage source outputs a voltage having a frequency obtained by multiplying the resonance frequency of the vibrator by n (n is an integer of 2 or more) or a frequency obtained by multiplying the resonance frequency of the vibrator by 1 / n as an excitation voltage to the second antenna. . The determiner determines whether the resonance frequency of the vibrator is detected based on the reception voltage received by the third antenna.
 この発明の実施の形態によるプローブにおいては、振動子は、振動子の振動の節部に相当する位置において最小の接触面積で保持具によって保持される。また、振動子は、同じ極性を有する第1および第2の磁石が発生する斥力によって被測定物にバイアス力を印加する。その結果、振動子は、自由に振動するとともに、被測定物が鉛直方向に対して任意の角度を成すように配置されていても、被測定物に印加されるバイアス力は、一定になる。 In the probe according to the embodiment of the present invention, the vibrator is held by the holder with a minimum contact area at a position corresponding to the vibration node of the vibrator. The vibrator applies a bias force to the object to be measured by the repulsive force generated by the first and second magnets having the same polarity. As a result, the vibrator vibrates freely, and the bias force applied to the object to be measured is constant even if the object to be measured is arranged at an arbitrary angle with respect to the vertical direction.
 従って、振動子の安定した振動を確保できるとともに、バイアス力を任意の方向から被測定物に印加して弾性定数を測定できる。 Therefore, stable vibration of the vibrator can be secured, and the elastic constant can be measured by applying a bias force to the object to be measured from an arbitrary direction.
この発明の実施の形態によるプローブの構成を示す断面図である。It is sectional drawing which shows the structure of the probe by embodiment of this invention. 図1に示す磁石側から見た振動子、保持部材およびアンテナの平面図である。FIG. 2 is a plan view of a vibrator, a holding member, and an antenna viewed from the magnet side shown in FIG. 1. 図1に示す振動子およびチップの拡大図である。FIG. 2 is an enlarged view of a vibrator and a chip shown in FIG. 図1に示す振動子、チップ、保持部材、支持部材、磁石および樹脂部材の斜視図である。FIG. 2 is a perspective view of a vibrator, a chip, a holding member, a support member, a magnet, and a resin member shown in FIG. 1. 図1に示すプローブを製造する製造方法を示す第1の工程図である。It is a 1st process drawing which shows the manufacturing method which manufactures the probe shown in FIG. 図1に示すプローブを製造する製造方法を示す第2の工程図である。FIG. 6 is a second process diagram illustrating a manufacturing method for manufacturing the probe illustrated in FIG. 1. 図1に示すプローブを製造する製造方法を示す第3の工程図である。FIG. 6 is a third process diagram illustrating a manufacturing method for manufacturing the probe illustrated in FIG. 1. 図1に示すプローブを製造する製造方法を示す第4の工程図である。FIG. 8 is a fourth process diagram illustrating a manufacturing method for manufacturing the probe illustrated in FIG. 1. 図1に示すプローブの動作を説明するための概念図である。It is a conceptual diagram for demonstrating operation | movement of the probe shown in FIG. 振動子の振動をモデル化するための第1の概念図である。It is a 1st conceptual diagram for modeling the vibration of a vibrator. 振動子の振動をモデル化するための第2の概念図である。It is a 2nd conceptual diagram for modeling the vibration of a vibrator. この発明の実施の形態による弾性定数測定装置の構成図である。It is a block diagram of the elastic constant measuring apparatus by embodiment of this invention. バースト波およびトリガー信号のタイミングチャートである。It is a timing chart of a burst wave and a trigger signal. ヤング率の測定方法を説明するためのフローチャートである。It is a flowchart for demonstrating the measuring method of a Young's modulus. 振幅と周波数との関係を示す図である。It is a figure which shows the relationship between an amplitude and a frequency. 測定されたヤング率と、報告されているヤング率との関係を示す図である。It is a figure which shows the relationship between the measured Young's modulus and the reported Young's modulus. 振動子の減衰特性を示す図である。It is a figure which shows the attenuation | damping characteristic of a vibrator | oscillator. 被測定物の具体例を示す断面図である。It is sectional drawing which shows the specific example of a to-be-measured object. 共振周波数を有するピークの半値幅を用いて欠陥を検出するときの動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement when a defect is detected using the half value width of the peak which has a resonant frequency. 減衰定数を用いて欠陥を検出するときの動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement when a defect is detected using an attenuation constant. 被測定物に欠陥が形成されている場合のバースト波および欠陥の変位を示す概念図である。It is a conceptual diagram which shows the displacement of the burst wave and defect when the defect is formed in the to-be-measured object. 振幅と周波数との関係を示す図である。It is a figure which shows the relationship between an amplitude and a frequency. 倍波を用いて欠陥を検出する動作を説明するためのフローチャートである。It is a flowchart for demonstrating the operation | movement which detects a defect using a harmonic. この発明の実施の形態における他の振動子の断面図である。It is sectional drawing of the other vibrator | oscillator in embodiment of this invention. アンテナの他の装着方法を示す断面図である。It is sectional drawing which shows the other mounting method of an antenna. 振動子の保持方法を示す断面図である。It is sectional drawing which shows the holding method of a vibrator | oscillator. 振動子の別の保持方法を示す断面図である。It is sectional drawing which shows another holding | maintenance method of a vibrator | oscillator. 測定深さとチップの半径との関係を示す図である。It is a figure which shows the relationship between a measurement depth and the radius of a chip | tip. 複数のチップを振動子に装着した例を示す断面図である。It is sectional drawing which shows the example which mounted | wore the vibrator | oscillator with the several chip | tip. この発明の実施の形態による別のプローブの構成を示す断面図である。It is sectional drawing which shows the structure of another probe by embodiment of this invention. 図1に示すプローブの応用例を示す概念図である。It is a conceptual diagram which shows the application example of the probe shown in FIG.
 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図1は、この発明の実施の形態によるプローブの構成を示す断面図である。図1を参照して、この発明の実施の形態によるプローブ10は、振動子1と、チップ2と、保持部材3と、アンテナ4~6と、支持部材7と、磁石8,13と、樹脂部材9と、ケース11,14と、天板12とを備える。 FIG. 1 is a cross-sectional view showing a configuration of a probe according to an embodiment of the present invention. Referring to FIG. 1, a probe 10 according to an embodiment of the present invention includes a vibrator 1, a chip 2, a holding member 3, antennas 4 to 6, a support member 7, magnets 8 and 13, and a resin. A member 9, cases 11 and 14, and a top plate 12 are provided.
 振動子1は、四角柱の形状を有し、例えば、ランガサイト(LaGaSiO14)の単結晶、または水晶からなる。即ち、振動子1は、圧電体からなる。そして、振動子1は、保持部材3によって保持され、その一方端がケース11の開口部111を介して外部へ突出し、その他方端側が支持部材7内の空間7Aに配置されている。この場合、振動子1の一方端は、例えば、ケース11の底面11Aから5mm程度、外部へ突出している。 The vibrator 1 has a quadrangular prism shape, and is made of, for example, a single crystal of langasite (La 3 Ga 5 SiO 14 ) or quartz. That is, the vibrator 1 is made of a piezoelectric body. The vibrator 1 is held by the holding member 3, one end of which protrudes to the outside through the opening 111 of the case 11, and the other end side is disposed in the space 7 </ b> A in the support member 7. In this case, one end of the vibrator 1 protrudes outward from the bottom surface 11A of the case 11 by about 5 mm, for example.
 また、振動子1は、2.0mm×2.0mm×20.0mmのサイズを有する。更に、振動子1がランガサイトからなる場合、ランガサイトの[100]の方向が振動子1の長手方向になる。 The vibrator 1 has a size of 2.0 mm × 2.0 mm × 20.0 mm. Furthermore, when the vibrator 1 is made of Langasite, the [100] direction of the Langasite is the longitudinal direction of the vibrator 1.
 チップ2は、例えば、タングステンカーバイトからなり、振動子1の一方端に接着剤によって接着される。そして、チップ2は、被測定物よりも硬度が大きい。 The chip 2 is made of, for example, tungsten carbide, and is bonded to one end of the vibrator 1 with an adhesive. The chip 2 is harder than the object to be measured.
 保持部材3は、略円形の平面形状を有し、後述する方法によって、振動子1の長さ方向において振動子1の略中央部を保持する。この振動子1の略中央部は、振動の基本モードの節が存在する位置である。従って、保持部材3は、振動子1の振動の節部に相当する振動子1の一部分を保持する。 The holding member 3 has a substantially circular planar shape, and holds a substantially central portion of the vibrator 1 in the length direction of the vibrator 1 by a method described later. The substantially central portion of the vibrator 1 is a position where a node of a fundamental mode of vibration exists. Accordingly, the holding member 3 holds a part of the vibrator 1 corresponding to the vibration node of the vibrator 1.
 アンテナ4は、一方端側が保持部材3の周囲に巻回されるとともに、樹脂部材9およびケース11,14を介して外部へ引き出され、他方端が接地電位に接続される。 The antenna 4 has one end wound around the holding member 3 and pulled out through the resin member 9 and the cases 11 and 14, and the other end connected to the ground potential.
 アンテナ5は、一方端側が振動子1の長さ方向におけるアンテナ4の一方側に配置されるとともに保持部材3の周囲に巻回される。そして、アンテナ5は、樹脂部材9およびケース11,14を介して外部へ引き出される。 The antenna 5 has one end disposed on one side of the antenna 4 in the length direction of the vibrator 1 and wound around the holding member 3. The antenna 5 is pulled out through the resin member 9 and the cases 11 and 14.
 アンテナ6は、一方端側が振動子1の長さ方向におけるアンテナ4の他方側に配置されるとともに保持部材3の周囲に巻回される。そして、アンテナ6は、樹脂部材9およびケース11,14を介して外部へ引き出される。 The one end side of the antenna 6 is disposed on the other side of the antenna 4 in the length direction of the vibrator 1 and is wound around the holding member 3. The antenna 6 is pulled out through the resin member 9 and the cases 11 and 14.
 なお、アンテナ4~6の各々は、例えば、1mmの直径を有し、1回だけ保持部材3の周囲に巻回される。 Note that each of the antennas 4 to 6 has a diameter of 1 mm, for example, and is wound around the holding member 3 only once.
 支持部材7は、中空の円柱形状を有し、磁石8に固定されるとともに保持部材3を支持する。磁石8は、支持部材7に接着される。 The support member 7 has a hollow cylindrical shape, and is fixed to the magnet 8 and supports the holding member 3. The magnet 8 is bonded to the support member 7.
 樹脂部材9は、例えば、アクリルからなり、保持部材3、支持部材7および磁石8とケース11との間に配置され、保持部材3、アンテナ4~6、支持部材7および磁石8を覆う。そして、磁石8および樹脂部材9と天板12との間には、空間15が形成されており、振動子1、チップ2、保持部材3、アンテナ4~6、支持部材7、磁石8および樹脂部材9は、振動子1の長さ方向に一体的に移動可能である。この場合、アンテナ4~6のうち、空間15内に配置された部分は、実際には、螺旋状に形成されており、振動子1、チップ2、保持部材3、アンテナ4~6、支持部材7、磁石8および樹脂部材9が振動子1の長さ方向に移動可能な構造になっている。 The resin member 9 is made of acrylic, for example, and is disposed between the holding member 3, the supporting member 7 and the magnet 8 and the case 11, and covers the holding member 3, the antennas 4 to 6, the supporting member 7 and the magnet 8. A space 15 is formed between the magnet 8 and the resin member 9 and the top plate 12, and the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, the support member 7, the magnet 8 and the resin The member 9 can move integrally in the length direction of the vibrator 1. In this case, portions of the antennas 4 to 6 arranged in the space 15 are actually formed in a spiral shape, and the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, and the support member. 7, the magnet 8 and the resin member 9 are configured to be movable in the length direction of the vibrator 1.
 また、保持部材3の下側において、振動子1と樹脂部材9との間には、空間16が形成されており、空間16は、ケース11の開口部111に連通している。 Moreover, a space 16 is formed below the holding member 3 between the vibrator 1 and the resin member 9, and the space 16 communicates with the opening 111 of the case 11.
 ケース11は、中空の円柱形状のテフロン(登録商標)からなり、開口部111を有する。そして、ケース11は、開口部111と反対側が天板12に固定される。 The case 11 is made of a hollow cylindrical Teflon (registered trademark) and has an opening 111. The case 11 is fixed to the top plate 12 on the side opposite to the opening 111.
 天板12は、例えば、アクリルからなり、ケース14内に固定される。磁石13は、磁石8と同じ極性を有する。そして、磁石13は、天板12に接してケース14内に固定される。 The top plate 12 is made of acrylic, for example, and is fixed in the case 14. The magnet 13 has the same polarity as the magnet 8. The magnet 13 is fixed in the case 14 in contact with the top plate 12.
 ケース14は、例えば、アクリルからなり、ケース11の一部、天板12および磁石13を覆う。 The case 14 is made of acrylic, for example, and covers a part of the case 11, the top plate 12 and the magnet 13.
 図2は、図1に示す磁石8側から見た振動子1、保持部材3およびアンテナ4~6の平面図である。 FIG. 2 is a plan view of the vibrator 1, the holding member 3, and the antennas 4 to 6 viewed from the magnet 8 side shown in FIG.
 図2を参照して、保持部材3は、Oリング31と、固定具32とからなる。Oリング31は、例えば、ニトリルゴムからなる。ニトリルゴムは、アクリロニトリルと、1,3-ブタジエンとの共重合体である。 Referring to FIG. 2, the holding member 3 includes an O-ring 31 and a fixture 32. The O-ring 31 is made of nitrile rubber, for example. Nitrile rubber is a copolymer of acrylonitrile and 1,3-butadiene.
 振動子1は、略正方形の断面形状を有する。そして、Oリング31は、振動子1の正方形の4個の頂点に接するように振動子1の周囲に配置される。このように、Oリング31は、振動子1の長さ方向に直交する方向に振動子1を切断したときの振動子1の断面形状の周方向において最小の接触面積で振動子1に接触する。この場合、振動子1とOリング31とは、4個の頂点で点接触する場合もあれば、4隅で面接触する場合もある。そして、点接触するか面接触するかは、Oリング31の硬さに依存し、Oリング31が硬くなればなるほど、振動子1とOリング31とは、点接触し易く、Oリング31が柔らかくなればなるほど、振動子1とOリング31とは、面接触し易い。 The vibrator 1 has a substantially square cross-sectional shape. The O-ring 31 is arranged around the vibrator 1 so as to contact the four vertices of the square of the vibrator 1. As described above, the O-ring 31 contacts the vibrator 1 with a minimum contact area in the circumferential direction of the cross-sectional shape of the vibrator 1 when the vibrator 1 is cut in a direction orthogonal to the length direction of the vibrator 1. . In this case, the vibrator 1 and the O-ring 31 may be in point contact at four vertices or may be in surface contact at four corners. The point contact or surface contact depends on the hardness of the O-ring 31. The harder the O-ring 31, the easier the vibrator 1 and the O-ring 31 are in point contact. The softer the transducer 1 and the O-ring 31 are in surface contact.
 固定具32は、ドーナツ状の平面形状を有し、例えば、アクリル樹脂からなる。そして、固定具32は、Oリング31の周囲に配置される。 The fixture 32 has a donut-like planar shape and is made of, for example, acrylic resin. The fixture 32 is arranged around the O-ring 31.
 アンテナ4~6は、固定具32の周囲に1回だけ巻回されている。 The antennas 4 to 6 are wound only once around the fixture 32.
 図3は、図1に示す振動子1およびチップ2の拡大図である。図3を参照して、チップ2は、薄い球片の断面形状を有する。そして、チップ2は、例えば、1~2mmの直径および約0.3mmの厚さを有する。 FIG. 3 is an enlarged view of the vibrator 1 and the chip 2 shown in FIG. Referring to FIG. 3, chip 2 has a thin spherical piece cross-sectional shape. The chip 2 has, for example, a diameter of 1 to 2 mm and a thickness of about 0.3 mm.
 図4は、図1に示す振動子1、チップ2、保持部材3、支持部材7、磁石8および樹脂部材9の斜視図である。なお、図4においては、アンテナ4~6が省略されている。 4 is a perspective view of the vibrator 1, chip 2, holding member 3, support member 7, magnet 8 and resin member 9 shown in FIG. In FIG. 4, the antennas 4 to 6 are omitted.
 図4を参照して、振動子1は、保持部材3によって保持されており、保持部材3は、支持部材7によって磁石8と連結されている。樹脂部材9は、振動子1に接せず、保持部材3、支持部材7および磁石8に接して保持部材3、支持部材7および磁石8を覆うように略円柱形状に成形されている。そして、樹脂部材9は、チップ2側に底面9Aを有し、振動子1との間に空間16を有する。その結果、保持部材3、支持部材7、磁石8および樹脂部材9は、一体物を構成し、振動子1は、その一体物の保持部材3中のOリング31(図4では図示せず)のみによって保持されている。 4, the vibrator 1 is held by a holding member 3, and the holding member 3 is connected to a magnet 8 by a support member 7. The resin member 9 is formed in a substantially cylindrical shape so as not to contact the vibrator 1 but to contact the holding member 3, the support member 7 and the magnet 8 and cover the holding member 3, the support member 7 and the magnet 8. The resin member 9 has a bottom surface 9 </ b> A on the chip 2 side, and a space 16 between the resin member 9 and the vibrator 1. As a result, the holding member 3, the support member 7, the magnet 8 and the resin member 9 constitute an integrated object, and the vibrator 1 has an O-ring 31 (not shown in FIG. 4) in the integrated holding member 3. Is held only by.
 従って、振動子1、チップ2、保持部材3、支持部材7、磁石8および樹脂部材9は、振動子1の長さ方向に一体的に移動可能である。 Therefore, the vibrator 1, the chip 2, the holding member 3, the support member 7, the magnet 8, and the resin member 9 can be moved integrally in the length direction of the vibrator 1.
 図5から図8は、それぞれ、図1に示すプローブ10を製造する製造方法を示す第1から第4の工程図である。 FIGS. 5 to 8 are first to fourth process diagrams showing a manufacturing method for manufacturing the probe 10 shown in FIG. 1, respectively.
 図5を参照して、プローブ10の製造が開始されると、ランガサイトの単結晶の塊から四角柱の形状を有するランガサイトを切り出し、振動子1を作製する(工程(a))。この場合、長さ方向が[100]の方向になるようにランガサイトを切り出す。 Referring to FIG. 5, when the manufacture of the probe 10 is started, a langasite having a quadrangular prism shape is cut out from a lump of single crystal of langasite to produce the vibrator 1 (step (a)). In this case, the langasite is cut out so that the length direction is the direction of [100].
 そして、Oリング31を振動子1の略中央部に装着し(工程(b))、ドーナツ形状を有する固定具32をOリング31の周囲に装着する(工程(c))。 Then, the O-ring 31 is attached to the substantially central portion of the vibrator 1 (step (b)), and the fixture 32 having a donut shape is attached around the O-ring 31 (step (c)).
 その後、薄い球片(厚さ約0.3mm)のチップ2を作製し、その作製したチップ2を振動子1の一方端に接着剤によって接着する。また、振動子1の他方端側を中空の円柱形状からなる支持部材7の中へ入れ、保持部材3(Oリング31および固定具32)を接着剤によって支持部材7に接着する。更に、磁石8を接着剤によって支持部材7に接着する(工程(d))。このように、磁石8は、Oリング31を支持する支持部材7に接着される。 Thereafter, a chip 2 having a thin sphere piece (thickness of about 0.3 mm) is manufactured, and the manufactured chip 2 is bonded to one end of the vibrator 1 with an adhesive. Further, the other end side of the vibrator 1 is put into a support member 7 having a hollow cylindrical shape, and the holding member 3 (O-ring 31 and fixture 32) is bonded to the support member 7 with an adhesive. Further, the magnet 8 is bonded to the support member 7 with an adhesive (step (d)). In this way, the magnet 8 is bonded to the support member 7 that supports the O-ring 31.
 引き続いて、アンテナ4~6を固定具32の周囲に1回だけ巻回する(工程(e))。 Subsequently, the antennas 4 to 6 are wound only once around the fixture 32 (step (e)).
 図6を参照して、工程(e)の後、振動子1、チップ2、保持部材3、アンテナ4~6の一部、支持部材7および磁石8を容器20の中に入れ(工程(f))、アクリルからなる樹脂を容器20内に充填する。そして、充填した樹脂を乾燥する。これによって、保持部材3、アンテナ4~6の一部、支持部材7および磁石8に接して円柱形状に成形された樹脂部材9が作製される(工程(g))。 Referring to FIG. 6, after step (e), vibrator 1, chip 2, holding member 3, parts of antennas 4-6, support member 7 and magnet 8 are placed in container 20 (step (f )), A resin made of acrylic is filled into the container 20. Then, the filled resin is dried. As a result, the resin member 9 formed into a cylindrical shape in contact with the holding member 3, a part of the antennas 4 to 6, the support member 7 and the magnet 8 is produced (step (g)).
 その後、振動子1、チップ2、保持部材3、アンテナ4~6、支持部材7、磁石8および樹脂部材9をケース11内に装着する(工程(h))。 Thereafter, the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, the support member 7, the magnet 8 and the resin member 9 are mounted in the case 11 (step (h)).
 図7を参照して、工程(h)の後、ケース11に穴を開け、その開けた穴にアンテナ4~6を通してアンテナ4~6をケース11外へ取り出す(工程(i))。 Referring to FIG. 7, after step (h), a hole is made in case 11, and antennas 4-6 are taken out of case 11 through antennas 4-6 in the opened hole (step (i)).
 そして、天板12を接着剤によってケース11に接着する(工程(j))。その後、射出形成によってケース14を作製する(工程(k))。ケース14は、凹部141,142を有する。凹部141は、略正方形の平面形状を有し、凹部142は、略円形の平面形状を有する。 Then, the top plate 12 is bonded to the case 11 with an adhesive (step (j)). Thereafter, the case 14 is produced by injection molding (step (k)). The case 14 has recesses 141 and 142. The recess 141 has a substantially square planar shape, and the recess 142 has a substantially circular planar shape.
 図8を参照して、工程(k)の後、磁石13をケース14の凹部141内に装着する(工程(l))。 Referring to FIG. 8, after step (k), magnet 13 is mounted in recess 141 of case 14 (step (l)).
 そして、ケース14に穴を開け、その開けた穴にアンテナ4~6を通すとともに、ケース11の一部および天板12を凹部142内に入れ、ケース11の一部および天板12をケース14に装着する。これによって、プローブ10が完成する(工程(m))。 Then, a hole is made in the case 14, the antennas 4 to 6 are passed through the holes, a part of the case 11 and the top plate 12 are placed in the recess 142, and a part of the case 11 and the top plate 12 are placed in the case 14 Attach to. Thereby, the probe 10 is completed (step (m)).
 図9は、図1に示すプローブ10の動作を説明するための概念図である。図9の(a)を参照して、磁石13は、磁石8と同じ極性を有するため、磁石8,13間には、斥力が作用する。そして、プローブ10は、被測定物30に接触していないので、樹脂部材9は、磁石8が磁石13から受ける斥力RFによってケース11の開口部111の方向へ押され、樹脂部材9の底面9Aは、ケース11に接触している。また、振動子1の一方端およびチップ2は、ケース11の外部へ出ている。 FIG. 9 is a conceptual diagram for explaining the operation of the probe 10 shown in FIG. With reference to (a) of FIG. 9, since the magnet 13 has the same polarity as the magnet 8, a repulsive force acts between the magnets 8 and 13. Since the probe 10 is not in contact with the device under test 30, the resin member 9 is pushed toward the opening 111 of the case 11 by the repulsive force RF that the magnet 8 receives from the magnet 13, and the bottom surface 9 </ b> A of the resin member 9. Is in contact with the case 11. Further, one end of the vibrator 1 and the chip 2 are out of the case 11.
 一方、プローブ10を被測定物30の上面30Aに接触させた場合、プローブ10に印加される重力Gと斥力RFとの合計の力Fallで被測定物30を押すことになる。但し、斥力RFは、重力Gよりも十分に大きいため、重力の影響は、殆ど、力Fallに関与しない。力Fallにより、振動子1、チップ2、保持部材3、アンテナ4~6、支持部材7、磁石8および樹脂部材9は、被測定物30から力Fallと同じ大きさの力Frevを斥力RFと反対方向へ受ける。その結果、振動子1、チップ2、保持部材3、アンテナ4~6、支持部材7、磁石8および樹脂部材9は、斥力RFと反対方向へδだけ移動する(図9の(b)参照)。この移動した距離δは、振動子1およびチップ2を押し込む押し込み量に相当する。 On the other hand, when the probe 10 is brought into contact with the upper surface 30A of the object to be measured 30, the object to be measured 30 is pushed with the total force Fall of the gravity G and the repulsive force RF applied to the probe 10. However, since the repulsive force RF is sufficiently larger than the gravity G, the influence of gravity hardly affects the force Fall. Due to the force Fall, the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, the support member 7, the magnet 8, and the resin member 9 generate a force Frev of the same magnitude as the force Fall from the object to be measured 30 as a repulsive force RF. Receive in the opposite direction. As a result, the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, the support member 7, the magnet 8, and the resin member 9 move by δ in the direction opposite to the repulsive force RF (see FIG. 9B). . This moved distance δ corresponds to the amount by which the vibrator 1 and the chip 2 are pushed.
 図9においては、被測定物30が水平面内に配置されており、プローブ10を被測定物30の上面30Aに接触させた場合について示した。しかし、被測定物30が鉛直方向に対して任意の角度を有するように配置された場合においても、プローブ10は、ケース11の底面11Aが被測定物30に接触するまで斥力RFにより被測定物30の方向へ押される。重力Gは、斥力RFよりも十分に小さいため、この場合も、同じ力でチップ2を被測定物30へ押し込むことができる。このように、磁石13は、磁石8に作用する斥力RFが同じになる所望の距離だけ磁石8から離れた位置に配置されている。その結果、振動子1、チップ2、保持部材3、アンテナ4~6、支持部材7、磁石8および樹脂部材9は、斥力RFと反対方向へδだけ移動する。 FIG. 9 shows the case where the device under test 30 is arranged in a horizontal plane and the probe 10 is brought into contact with the upper surface 30A of the device under test 30. However, even in the case where the device under test 30 is arranged so as to have an arbitrary angle with respect to the vertical direction, the probe 10 is measured by the repulsive force RF until the bottom surface 11A of the case 11 contacts the device under test 30. It is pushed in the direction of 30. Since the gravity G is sufficiently smaller than the repulsive force RF, the chip 2 can be pushed into the device under test 30 with the same force in this case as well. Thus, the magnet 13 is disposed at a position away from the magnet 8 by a desired distance at which the repulsive force RF acting on the magnet 8 is the same. As a result, the vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, the support member 7, the magnet 8, and the resin member 9 move by δ in the direction opposite to the repulsive force RF.
 このように、この発明の実施の形態においては、振動子1がOリング31によって保持されているため、プローブ10が被測定物30に押し付けられても、振動子1は、被測定物30の面内方向へ移動することはなく、振動子1、チップ2、保持部材3、アンテナ4~6、支持部材7、磁石8および樹脂部材9は、斥力RFと反対方向へδだけ移動する。従って、被測定物30が鉛直方向と任意の角度を成すように配置されていても、押し込み量を一定に保持できる。 As described above, in the embodiment of the present invention, since the vibrator 1 is held by the O-ring 31, even if the probe 10 is pressed against the device under test 30, the vibrator 1 is not attached to the device under test 30. The vibrator 1, the chip 2, the holding member 3, the antennas 4 to 6, the support member 7, the magnet 8, and the resin member 9 move by δ in the direction opposite to the repulsive force RF without moving in the in-plane direction. Therefore, even if the device under test 30 is arranged so as to form an arbitrary angle with the vertical direction, the pushing amount can be kept constant.
 プローブ10を用いて被測定物30のヤング率を測定する方法について説明する。 A method for measuring the Young's modulus of the DUT 30 using the probe 10 will be described.
 振動子1は、上述したように、ランガサイトからなり、ランガサイトは、三方晶系の結晶構造を有し、独立な6個の弾性定数C11,C12,C13,C14,C33,C44、2つの圧電定数e11,e14、および2つの誘電率ε11,ε33を有する。 As described above, the resonator 1 is made of langasite, which has a trigonal crystal structure and has six independent elastic constants C 11 , C 12 , C 13 , C 14 , C 33. , C 44 , two piezoelectric constants e 11 , e 14 , and two dielectric constants ε 11 , ε 33 .
 ランガサイトの弾性定数C11,C12,C13,C14,C33,C44、圧電定数e11,e14、誘電率ε11,ε33および密度ρを表1に示す。 Table 1 shows the elastic constants C 11 , C 12 , C 13 , C 14 , C 33 , C 44 , piezoelectric constants e 11 , e 14 , dielectric constants ε 11 , ε 33, and density ρ of Langasite.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1において、弾性定数C11,C12,C13,C14,C33,C44の単位は、[GPa]であり、圧電定数e11,e14の単位は、[C/m]であり、誘電率ε11,ε33の単位は、[10-22F/m]であり、密度ρの単位は、[kg/m]である。 In Table 1, the units of the elastic constants C 11 , C 12 , C 13 , C 14 , C 33 , C 44 are [GPa], and the units of the piezoelectric constants e 11 , e 14 are [C / m 2 ], the units of dielectric constants ε 11 and ε 33 are [10 −22 F / m 2 ], and the unit of density ρ is [kg / m 2 ].
 図10および図11は、それぞれ、振動子1の振動をモデル化するための第1および第2の概念図である。 10 and 11 are first and second conceptual diagrams for modeling the vibration of the vibrator 1, respectively.
 振動の減衰がないものと仮定し、振動子1は、縦振動と十分に仮定できる程の細長い構造からなると仮定する。  Suppose that there is no vibration attenuation, and that the vibrator 1 has an elongated structure that can be sufficiently assumed to be longitudinal vibration.
 空間軸として、図10の(a)に示すように、振動子1の長手方向をZ軸とし、振動子1の長さをLとし、Z軸方向のヤング率をEとし、振動子1の断面積をAとし、振動子1の密度をρとし、位置Z=ZにおけるZ方向の変異をu=u(z,t)とする。この場合、振動子1の振動の運動方程式は、次式によって表される。 As the spatial axis, as shown in FIG. 10A, the longitudinal direction of the vibrator 1 is the Z-axis, the length of the vibrator 1 is L, the Young's modulus in the Z-axis direction is E, and the vibrator 1 The cross-sectional area is A, the density of the vibrator 1 is ρ, and the variation in the Z direction at the position Z = Z is u z = u (z, t). In this case, the motion equation of vibration of the vibrator 1 is expressed by the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 そして、式(1)の一般解は、次式によって表される。 And the general solution of equation (1) is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、式(2)において、ωは、振動子1の角振動数であり、kは、振動の波数であり、CおよびCは、定数である。 In equation (2), ω is the angular frequency of the vibrator 1, k is the wave number of vibration, and C 1 and C 2 are constants.
 角振動数と波数とは、振動数fと音速vとを用いて次式によって表される。 The angular frequency and the wave number are expressed by the following equations using the frequency f and the speed of sound v.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(3)において、ρは、振動子1の密度であり、Eは、振動子1のヤングの弾性率である。 In Equation (3), ρ is the density of the vibrator 1, and E is the Young's elastic modulus of the vibrator 1.
 次に、図10の(b)に示すように、振動子1が被測定物30に接触した状態を考える。ここで、バネ定数Kは、チップ2と被測定物30との間の接触剛性を表す。この場合、境界条件は、Z=0でσ(0)=0であり、一方、Z=Lでは、バネの復元力を考慮して、図11に示すように、振動子1の内部に発生する圧縮応力σとバネの弾性力とがつり合う。これによって、Z=Lでは、Aσ+Ku=0が成立する。これらの条件から次式が導かれる。 Next, let us consider a state in which the vibrator 1 is in contact with the device under test 30 as shown in FIG. Here, the spring constant K represents the contact rigidity between the chip 2 and the device under test 30. In this case, the boundary conditions are Z = 0 and σ (0) = 0. On the other hand, when Z = L, the restoring force of the spring is taken into consideration, as shown in FIG. The compressive stress σ and the elastic force of the spring balance. Thereby, when Z = L, Aσ + Ku z = 0 holds. From these conditions, the following equation is derived.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 以上を代入して計算すると、次式が得られる。  Substituting the above, the following formula is obtained.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、式(5)において、Koscは、振動子1の縦方向の静荷重におけるバネ定数に相当する。従って、式(5)の右辺は、振動子1の剛性と接触剛性との比を表し、プローブ10の感度を上昇させるためには、右辺の値を大きく、即ち、Kosc=EA/Lを小さくすればよい。そのために、振動子1の長手方向のヤング率Eが小さくなるように結晶方位を決定する。 In Equation (5), K osc corresponds to the spring constant of the vibrator 1 in the static load in the vertical direction. Therefore, the right side of equation (5) represents the ratio of the stiffness of the vibrator 1 to the contact stiffness, and in order to increase the sensitivity of the probe 10, the value on the right side is increased, that is, K osc = EA / L. Just make it smaller. Therefore, the crystal orientation is determined so that the Young's modulus E in the longitudinal direction of the vibrator 1 becomes small.
 ここで、接触剛性Kは、Hertzの接触理論(非特許文献1,2参照)により、次式によって表される。 Here, the contact stiffness K is expressed by the following equation according to Hertz's contact theory (see Non-Patent Documents 1 and 2).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(6)において、Fは、バイアス力であり、Rは、チップ2の半径であり、Eは、有効ヤング率である。 In Equation (6), F is the bias force, R is the radius of the tip 2, and E * is the effective Young's modulus.
 また、有効ヤング率Eは、次式によって表される。 The effective Young's modulus E * is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(7)において、Espeは、被測定物30のヤング率であり、Etipは、チップ2のヤング率であり、νspeは、被測定物30のポアソン比であり、νtipは、チップ2のポアソン比である。 In equation (7), E spe is the Young's modulus of the device under test 30, E tip is the Young's modulus of the chip 2, ν spe is the Poisson's ratio of the device under test 30, and ν tip is It is the Poisson's ratio of chip 2.
 従って、式(5)の左辺は、式(3)より共振周波数を含み、式(5)の右辺は、式(6),(7)より被測定物30のヤング率Espeを含む。よって、振動子1の共振周波数fを測定することによって、被測定物30のヤング率Espeを求めることができる。 Therefore, the left side of the equation (5) includes the resonance frequency from the equation (3), and the right side of the equation (5) includes the Young's modulus E spe of the device under test 30 from the equations (6) and (7). Therefore, by measuring the resonance frequency f of the vibrator 1, the Young's modulus E spe of the device under test 30 can be obtained.
 即ち、バイアス力F、チップ2の半径、振動子1の長さL、波数k、被測定物30のポアソン比νspe、およびチップ2のポアソン比νtipは、既知であるので、共振周波数f=foscを後述する方法によって求めることによって、被測定物30のヤング率Espeを算出できる。 That is, since the bias force F, the radius of the chip 2, the length L of the vibrator 1, the wave number k, the Poisson ratio ν spe of the device under test 30 and the Poisson ratio ν tip of the chip 2 are known, the resonance frequency f By calculating = fosc by the method described later, the Young's modulus E spe of the device under test 30 can be calculated.
 図12は、この発明の実施の形態による弾性定数測定装置の構成図である。図12を参照して、この発明の実施の形態による弾性定数測定装置100は、プローブ10と、電圧源40と、検出器50とを備える。 FIG. 12 is a block diagram of an elastic constant measuring apparatus according to an embodiment of the present invention. Referring to FIG. 12, elastic constant measuring apparatus 100 according to the embodiment of the present invention includes a probe 10, a voltage source 40, and a detector 50.
 プローブ10については、上述したとおりである。電圧源40は、プローブ10のアンテナ5の他方端に接続される。また、電圧源40は、例えば、シンセサイザー(NF回路設計ブロック、WF1974)からなる。そして、電圧源40は、振動子1を振動させたい周波数成分f(約0.1MHz)を有する電圧Vvのバースト波(約10ms)をアンテナ5に送信するとともに、トリガー信号を検出器50へ出力する。この場合、電圧Vvは、例えば、最大値と最小値との差が50Vである電圧からなる。 The probe 10 is as described above. The voltage source 40 is connected to the other end of the antenna 5 of the probe 10. The voltage source 40 is composed of, for example, a synthesizer (NF circuit design block, WF1974). Then, the voltage source 40 transmits a burst wave (about 10 ms) of the voltage Vv having a frequency component f (about 0.1 MHz) to vibrate the vibrator 1 to the antenna 5 and outputs a trigger signal to the detector 50. To do. In this case, the voltage Vv is, for example, a voltage whose difference between the maximum value and the minimum value is 50V.
 検出器50は、アンテナ6の他方端に接続され、例えば、デジタイザー(National Instruments, NIUSB-5133)からなる。また、検出器50は、電圧源40からトリガー信号を受ける。そして、検出器50は、トリガー信号の立ち上がりから一定後(例えば、10μs)に、振動子1が振動したことに伴って発生した分極電場の受信信号をアンテナ6から受ける。その後、検出器50は、その受けた受信信号をフーリエ変換し、振動周波数fに対応する振幅Aを求める。 The detector 50 is connected to the other end of the antenna 6 and includes, for example, a digitizer (National Instruments, NIUSB-5133). The detector 50 receives a trigger signal from the voltage source 40. The detector 50 receives from the antenna 6 a received signal of the polarization electric field generated when the vibrator 1 vibrates after a certain time (for example, 10 μs) from the rising edge of the trigger signal. Thereafter, the detector 50 performs a Fourier transform on the received signal, and obtains an amplitude A corresponding to the vibration frequency f.
 検出器50は、振動周波数fが変えられたときの振動周波数fと振幅Aとの関係に基づいて、振動子1の共振周波数foscを求め、共振周波数fosc、および式(3),(5)~(7)を用いて被測定物30のヤング率Espeを算出する。 The detector 50 obtains the resonance frequency fosc of the vibrator 1 based on the relationship between the vibration frequency f and the amplitude A when the vibration frequency f is changed, and calculates the resonance frequency fosc and the equations (3) and (5). The Young's modulus E spe of the device under test 30 is calculated using (7).
 フーリエ変換の詳細は、次のとおりである。検出器50のレコード長を2500(Sampling)とし、サンプルレートを2.0×10(Sampling/s)とする。そして、検出器50は、アンテナ6から受けた受信信号の波形と周波数fとに合わせて三角関数(cos(2πf・t),sin(2πf・t))のデジタルデータを作成し、その作成した三角関数を積算してフーリエ変換を行う。より具体的には、検出器50は、次の方法によってフーリエ変換を行う。 Details of the Fourier transform are as follows. The record length of the detector 50 is 2500 (Sampling), and the sample rate is 2.0 × 10 5 (Sampling / s). The detector 50 creates digital data of trigonometric functions (cos (2πf · t), sin (2πf · t)) in accordance with the waveform of the received signal received from the antenna 6 and the frequency f, and the created data Perform a Fourier transform by accumulating trigonometric functions. More specifically, the detector 50 performs a Fourier transform by the following method.
 受信信号の波形をf(t)とすると、検出器50は、次式によって三角関数を積分する。 Suppose that the waveform of the received signal is f (t), the detector 50 integrates the trigonometric function according to the following equation.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 実際には、積算の区間は、有限区間であり、受信信号は、デジタル信号であるので、検出器50は、次式によって三角関数を積分してIとIとを取得する。 Actually, since the integration interval is a finite interval and the received signal is a digital signal, the detector 50 integrates the trigonometric function according to the following equation to obtain I 1 and I 2 .
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 そして、検出器50は、次式によって振幅Aを求める。 And the detector 50 calculates | requires the amplitude A by following Formula.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 図13は、バースト波およびトリガー信号のタイミングチャートである。図13を参照して、バースト波BW1,BW2の各々は、例えば、1000サイクル数および10msの長さを有する。また、バースト波BW1,BW2の各々は、最大値と最小値との差が50Vであり、振動子1を振動させたい周波数f(=0.1MHz)を有する。更に、バースト波BW1とバースト波BW2との間隔dは、例えば、10msである。 FIG. 13 is a timing chart of burst waves and trigger signals. Referring to FIG. 13, each of burst waves BW1 and BW2 has, for example, the number of 1000 cycles and a length of 10 ms. Each of the burst waves BW1 and BW2 has a difference between the maximum value and the minimum value of 50V, and has a frequency f (= 0.1 MHz) at which the vibrator 1 is desired to vibrate. Furthermore, the interval d between the burst wave BW1 and the burst wave BW2 is, for example, 10 ms.
 トリガー信号TRGは、バースト波BW1の立上りであるタイミングt1でL(論理ロー)レベルになり、バースト波BW1の立下りであるタイミングt2でH(論理ハイ)レベルになり、バースト波BW2の立上りであるタイミングt3でLレベルになり、バースト波BW2の立下りであるタイミングt4でHレベルになる。そして、検出器50は、タイミングt2からタイミングt3までの間にアンテナ6から受信信号を受ける。従って、検出器50は、バースト波BW1が振動子1に印加されたタイミングt1から一定後のタイミングt2で受信信号をアンテナ6から受け始める。 The trigger signal TRG becomes L (logic low) level at timing t1 when the burst wave BW1 rises, and becomes H (logic high) level at timing t2 when the burst wave BW1 falls, and at the rise of the burst wave BW2. It becomes L level at a certain timing t3 and becomes H level at a timing t4 which is the falling edge of the burst wave BW2. The detector 50 receives a reception signal from the antenna 6 from timing t2 to timing t3. Accordingly, the detector 50 starts to receive the received signal from the antenna 6 at a timing t2 that is a certain time after the timing t1 at which the burst wave BW1 is applied to the vibrator 1.
 図14は、ヤング率の測定方法を説明するためのフローチャートである。なお、以下においては、プローブ10が被測定物30に押し付けられ、チップ2が被測定物30に接触していることを前提としてヤング率の測定方法を説明する。 FIG. 14 is a flowchart for explaining a method of measuring Young's modulus. In the following, a method for measuring the Young's modulus will be described on the assumption that the probe 10 is pressed against the device under test 30 and the tip 2 is in contact with the device under test 30.
 図14を参照して、ヤング率の測定が開始されると、周波数の測定範囲、周波数を変える間隔、バースト波のマーク数、およびバースト波の間隔が電圧源40に設定される(ステップS1)。 Referring to FIG. 14, when measurement of Young's modulus is started, the frequency measurement range, the frequency changing interval, the number of burst wave marks, and the burst wave interval are set in voltage source 40 (step S1). .
 そして、電圧源40は、周波数の測定範囲内において、振動子1を振動させたい周波数成分を決定し、その決定した周波数成分と、ステップS1において設定されたマーク数とを有する電圧Vvからなるバースト波を生成し、その生成したバースト波を、ステップS1において設定されたバースト波の間隔でアンテナ5へ送信する。また、電圧源40は、同時に、トリガー信号TRGを検出器50へ出力する(ステップS2)。 Then, the voltage source 40 determines a frequency component to vibrate the vibrator 1 within the frequency measurement range, and a burst composed of the voltage Vv having the determined frequency component and the number of marks set in step S1. A wave is generated, and the generated burst wave is transmitted to the antenna 5 at the burst wave interval set in step S1. At the same time, the voltage source 40 outputs the trigger signal TRG to the detector 50 (step S2).
 そうすると、アンテナ5は、アンテナ4と協働して電圧Vvを振動子1に印加し、振動電場が振動子1に発生する。その結果、その発生した振動電場によって圧電現象が振動子1に起こり、振動子1が振動する(ステップS3)。 Then, the antenna 5 cooperates with the antenna 4 to apply the voltage Vv to the vibrator 1, and an oscillating electric field is generated in the vibrator 1. As a result, a piezoelectric phenomenon occurs in the vibrator 1 by the generated oscillating electric field, and the vibrator 1 vibrates (step S3).
 アンテナ6は、アンテナ4と協働して、振動子1の振動に伴って発生した分極電場を電圧として検出する(ステップS4)。 The antenna 6 cooperates with the antenna 4 to detect the polarization electric field generated along with the vibration of the vibrator 1 as a voltage (step S4).
 そして、検出器50は、アンテナ6から受信信号(=電圧)を受ける(ステップS5)。この場合、検出器50は、図13に示すタイミングt2からタイミングt3までの間で受信信号をアンテナ6から受ける。 And the detector 50 receives a received signal (= voltage) from the antenna 6 (step S5). In this case, the detector 50 receives a received signal from the antenna 6 between timing t2 and timing t3 shown in FIG.
 その後、検出器50は、上述した方法によって、受信信号をフーリエ変換し、振動周波数fに対する振幅Aを求める(ステップS6)。 Thereafter, the detector 50 performs a Fourier transform on the received signal by the method described above to obtain an amplitude A with respect to the vibration frequency f (step S6).
 そうすると、電圧源40は、測定範囲内の全てで周波数fを変えたか否かを判定する(ステップS7)。 Then, the voltage source 40 determines whether or not the frequency f has been changed all within the measurement range (step S7).
 ステップS7において、測定範囲内の全てで周波数fを変えていないと判定されたとき、電圧源40は、測定範囲内で周波数fを変更する(ステップS8)。この場合、電圧源40は、ステップS1において設定された、周波数を変える間隔を元の周波数に加算することによって周波数fを変更する。 When it is determined in step S7 that the frequency f has not been changed in all of the measurement range, the voltage source 40 changes the frequency f within the measurement range (step S8). In this case, the voltage source 40 changes the frequency f by adding the frequency change interval set in step S1 to the original frequency.
 その後、一連の動作は、ステップS2へ戻り、ステップS7において、測定範囲内の全てで周波数fを変えたと判定されるまで、上述したステップS2~ステップS8が繰り返し実行される。 Thereafter, the series of operations returns to step S2, and step S2 to step S8 described above are repeatedly executed until it is determined in step S7 that the frequency f has been changed in all of the measurement range.
 そして、ステップS7において、測定範囲内の全てで周波数fを変えたと判定されると、検出器50は、周波数fと振幅Aとの関係をプロットし、振幅Aが最大である周波数を共振周波数foscとして検出する(ステップS9)。 When it is determined in step S7 that the frequency f has been changed in all of the measurement range, the detector 50 plots the relationship between the frequency f and the amplitude A, and sets the frequency at which the amplitude A is maximum to the resonance frequency fosc. (Step S9).
 その後、検出器50は、その検出した共振周波数foscおよび式(3),(5)~(7)を用いて被測定物30のヤング率Espeを算出する(ステップS10)。これによって、ヤング率の測定が終了する。 Thereafter, the detector 50 calculates the Young's modulus E spe of the device under test 30 using the detected resonance frequency fosc and equations (3), (5) to (7) (step S10). This completes the measurement of Young's modulus.
 図15は、振幅と周波数との関係を示す図である。図15の(a),(b)において、縦軸は、振幅を表し、横軸は、周波数を表す。 FIG. 15 is a diagram showing the relationship between amplitude and frequency. 15A and 15B, the vertical axis represents amplitude, and the horizontal axis represents frequency.
 また、曲線k1は、この発明の実施の形態によるプローブ10の振動子1にOリングを装着した場合における振幅と周波数との関係を示し、曲線k2は、特許文献1に開示された弾性定数測定装置の振動子にOリングを装着した場合における振幅と周波数との関係を示す。 A curve k1 shows the relationship between amplitude and frequency when the O-ring is attached to the transducer 1 of the probe 10 according to the embodiment of the present invention, and a curve k2 shows the elastic constant measurement disclosed in Patent Document 1. The relationship between amplitude and frequency when an O-ring is attached to the vibrator of the apparatus is shown.
 更に、曲線k3は、この発明の実施の形態によるプローブ10の振動子1にOリングを装着しない場合における振幅と周波数との関係を示し、曲線k4は、特許文献1に開示された弾性定数測定装置の振動子にOリングを装着しない場合における振幅と周波数との関係を示す。 Furthermore, the curve k3 shows the relationship between the amplitude and the frequency when the O-ring is not attached to the transducer 1 of the probe 10 according to the embodiment of the present invention, and the curve k4 shows the elastic constant measurement disclosed in Patent Document 1. The relationship between the amplitude and the frequency when the O-ring is not attached to the vibrator of the apparatus is shown.
 図15を参照して、振動子1にOリングを装着した場合も、装着しない場合も、プローブ10の振動子1の振動は、1つの周波数においてピークを有する(曲線k1,k3参照)。これに対し、特許文献1に開示された振動子の振動は、複数の周波数においてピークを有する(曲線k2,k4参照)。特に、Oリングを装着した場合、特許文献1に開示された振動子の振動は、0.111(MHz)を中心として複数の周波数においてピークを有する(曲線k2参照)。 Referring to FIG. 15, the vibration of the transducer 1 of the probe 10 has a peak at one frequency whether the O-ring is attached to the transducer 1 or not (see curves k1 and k3). On the other hand, the vibration of the vibrator disclosed in Patent Document 1 has peaks at a plurality of frequencies (see curves k2 and k4). In particular, when an O-ring is attached, the vibration of the vibrator disclosed in Patent Document 1 has peaks at a plurality of frequencies centering on 0.111 (MHz) (see curve k2).
 共振周波数の測定時における入力電圧、積分区間長およびバースト波の長さを表2に示す。また、共振周波数およびQ値を表3に示す。 Table 2 shows the input voltage, integration interval length, and burst wave length when measuring the resonant frequency. Table 3 shows the resonance frequency and the Q value.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 本発明においては、入力電圧は、10V(最大値と最小値との差)であり、積分区間長が12.5msであり、バースト波の長さが10msである。一方、従来例(特許文献1)においては、入力電圧は、200V(最大値と最小値との差)であり、積分区間長が0.4msであり、バースト波の長さが0.2msである。 In the present invention, the input voltage is 10 V (difference between the maximum value and the minimum value), the integration interval length is 12.5 ms, and the burst wave length is 10 ms. On the other hand, in the conventional example (Patent Document 1), the input voltage is 200 V (difference between the maximum value and the minimum value), the integration interval length is 0.4 ms, and the burst wave length is 0.2 ms. is there.
 このように、本発明では、積分区間長およびバースト波の長さを従来よりも大幅に長くし、入力電圧を大幅に小さくしている。 Thus, in the present invention, the integration interval length and the burst wave length are significantly longer than in the prior art, and the input voltage is significantly reduced.
 また、表3に示すように、本発明において、Q値は、振動子1にOリングを装着しない場合、1855であり、Oリングを装着した場合、1587である。一方、従来例(特許文献1)において、Q値は、振動子にOリングを装着しない場合、496.5であり、Oリングを装着した場合、283.3である。 Further, as shown in Table 3, in the present invention, the Q value is 1855 when the O-ring is not attached to the vibrator 1, and is 1587 when the O-ring is attached. On the other hand, in the conventional example (Patent Document 1), the Q value is 496.5 when the O-ring is not attached to the vibrator, and 283.3 when the O-ring is attached.
 このように、従来例においては、バースト波の長さが0.2msと短いため、十分に共振状態を作ることができず、大きな電圧(~200V)を使用しても信号強度は、大きくならない。 Thus, in the conventional example, since the length of the burst wave is as short as 0.2 ms, a sufficient resonance state cannot be created, and the signal intensity does not increase even when a large voltage (˜200 V) is used. .
 一方、本発明においては、振動子1が振動し易いので、バースト波の長さを10msと長くすることができるため、低い電圧(10V)でも、高いQ値を得ることができた。 On the other hand, in the present invention, since the vibrator 1 is likely to vibrate, the length of the burst wave can be increased to 10 ms. Therefore, a high Q value can be obtained even at a low voltage (10 V).
 ランガサイトからなる振動子の振動を単純な棒の一次元縦振動であると想定して、プローブ10を用いて得られた共振周波数foscからヤング率を算出すると、113.51GPaであった。 Assuming that the vibration of the vibrator composed of Langasite is a simple one-dimensional longitudinal vibration of a rod, the Young's modulus was calculated from the resonance frequency fosc obtained using the probe 10, and it was 113.51 GPa.
 ランガサイトの弾性定数から求めた[100]方向のヤング率は、114.03GPaであり、実測値(=113.51GPa)との差は、0.4%程度であり、十分に小さい。従って、上述したヤング率を求める方法は、ヤング率の測定に好適である。 The Young's modulus in the [100] direction obtained from the elastic constant of Langasite is 114.03 GPa, and the difference from the measured value (= 113.51 GPa) is about 0.4%, which is sufficiently small. Therefore, the above-described method for obtaining the Young's modulus is suitable for measuring the Young's modulus.
 図16は、測定されたヤング率と、報告されているヤング率との関係を示す図である。 FIG. 16 is a diagram showing the relationship between the measured Young's modulus and the reported Young's modulus.
 図16において、縦軸は、上述した方法によって測定されたヤング率(=測定値)を表し、横軸は、報告されているヤング率(=報告値)を表す。また、チップ2の半径は、2mmであり、バイアス力Fは、0.455Nである。更に、振動子1を構成するランガサイトは、結晶のX軸方向が長手方向に一致し、サイズは、2mm×2mm×20mmである。 In FIG. 16, the vertical axis represents the Young's modulus (= measured value) measured by the method described above, and the horizontal axis represents the reported Young's modulus (= reported value). Further, the radius of the chip 2 is 2 mm, and the bias force F is 0.455N. Furthermore, in the langasite constituting the vibrator 1, the X-axis direction of the crystal coincides with the longitudinal direction, and the size is 2 mm × 2 mm × 20 mm.
 図16を参照して、測定値は、報告値と良い一致を示す。また、図16に示す直線は、測定値が報告値と1対1に対応することを表す。 Referring to FIG. 16, the measured values are in good agreement with the reported values. Moreover, the straight line shown in FIG. 16 represents that the measured value has a one-to-one correspondence with the reported value.
 このように、この発明の実施の形態によるプローブ10を用いることによって、被測定物30のヤング率をフィッティングパラメータを一切用いずに被測定物30に触れるだけで正確に求めることができる。 As described above, by using the probe 10 according to the embodiment of the present invention, the Young's modulus of the object to be measured 30 can be accurately obtained simply by touching the object to be measured 30 without using any fitting parameters.
 上記においては、検出器50は、振動子1の共振周波数を検出し、その検出した共振周波数に基づいて被測定物30のヤング率を算出すると説明したが、この発明の実施の形態においては、これに限らず、検出器50は、振動子1の共振周波数を有するピークの半値幅FWHMを検出してもよい。この場合、検出器50は、図15の曲線k1,k3によって示されるピークの半値幅FWHMを検出する。 In the above description, it has been described that the detector 50 detects the resonance frequency of the vibrator 1 and calculates the Young's modulus of the DUT 30 based on the detected resonance frequency. In the embodiment of the present invention, The detector 50 is not limited to this, and the peak half-value width FWHM having the resonance frequency of the vibrator 1 may be detected. In this case, the detector 50 detects the half width FWHM of the peak indicated by the curves k1 and k3 in FIG.
 また、検出器50は、振動子1が減衰するときの減衰定数αを検出してもよい。図17は、振動子1の減衰特性を示す図である。検出器50は、図13に示すタイミングt2からタイミングt3までの間にアンテナ6から受信信号を受ける。タイミングt2からタイミングt3までの間、バースト波が振動子1に印加されていないため、振動子1の振動は、図17に示す振動曲線DCYのように減衰する。 The detector 50 may detect an attenuation constant α when the vibrator 1 is attenuated. FIG. 17 is a diagram illustrating the attenuation characteristics of the vibrator 1. The detector 50 receives a reception signal from the antenna 6 from timing t2 to timing t3 shown in FIG. Since the burst wave is not applied to the vibrator 1 from the timing t2 to the timing t3, the vibration of the vibrator 1 is attenuated as a vibration curve DCY shown in FIG.
 そこで、検出器50は、振動曲線DCYを検出し、その検出した振動曲線DCYの包絡線EVLを検出する。包絡線EVLは、通常、e-αt(α:減衰定数、t:時間)に表される。 Therefore, the detector 50 detects the vibration curve DCY, and detects the envelope EVL of the detected vibration curve DCY. The envelope EVL is usually expressed by e −αt (α: attenuation constant, t: time).
 従って、検出器50は、包絡線EVLを検出すると、その検出した包絡線EVLをe-αtによってフィッティングし、減衰定数αを検出する。 Therefore, when detecting the envelope EVL, the detector 50 fits the detected envelope EVL with e −αt to detect the attenuation constant α.
 図18は、被測定物30の具体例を示す断面図である。図18を参照して、被測定物30は、本体部301と、コーティング層302とを含む。コーティング層302は、本体部301の表面301Aを覆うように本体部301上に配置されている。そして、剥離部303,304が本体部301とコーティング層302との間に形成されている。 FIG. 18 is a cross-sectional view showing a specific example of the device under test 30. Referring to FIG. 18, the device under test 30 includes a main body portion 301 and a coating layer 302. The coating layer 302 is disposed on the main body 301 so as to cover the surface 301 </ b> A of the main body 301. Then, peeling portions 303 and 304 are formed between the main body portion 301 and the coating layer 302.
 このような被測定物30のコーティング層302の表面302Aにプローブ10のチップ2を接触させて振動子1の減衰定数αを検出する。ここで、剥離部303,304が形成されていないときの振動子1の減衰定数をαとすると、減衰定数αは、減衰定数αよりも大きくなる。その理由は、次のとおりである。 The tip 2 of the probe 10 is brought into contact with the surface 302A of the coating layer 302 of the object to be measured 30 to detect the attenuation constant α h of the vibrator 1. Here, if the attenuation constant of the vibrator 1 when the peeling portions 303 and 304 are not formed is α 0 , the attenuation constant α h is larger than the attenuation constant α 0 . The reason is as follows.
 プローブ10のチップ2をコーティング層302の表面302Aに接触させて振動子1を振動させた場合、振動子1の振動がコーティング層302に伝搬し、コーティング層302も振動するが、剥離部303,304は、コーティング層302の振動を吸収するので、コーティング層302の振動が減衰し易くなる。その結果、振動子1の振動も減衰し易くなり、被測定物30に剥離部303,304が形成されている場合の振動子1の減衰定数αは、剥離部303,304が形成されていない場合の減衰定数αよりも大きくなるからである。 When the tip 2 of the probe 10 is brought into contact with the surface 302A of the coating layer 302 and the vibrator 1 is vibrated, the vibration of the vibrator 1 propagates to the coating layer 302 and the coating layer 302 also vibrates. Since 304 absorbs the vibration of the coating layer 302, the vibration of the coating layer 302 is easily attenuated. As a result, the vibration of the vibrator 1 is also easily attenuated, and the damping constant α h of the vibrator 1 when the peeling portions 303 and 304 are formed on the object to be measured 30 has the peeling portions 303 and 304 formed. This is because it becomes larger than the attenuation constant α 0 in the case of not being present.
 従って、検出器50が上述した方法によって振動子1の減衰定数αを測定することによって、被測定物30に剥離部303,304(=欠陥)が形成されているか否かを検出できる。この場合、検出器50は、検出した減衰定数αが減衰定数αよりも大きければ、剥離部303,304が形成されていることを検出し、検出した減衰定数αが減衰定数αに略等しければ、剥離部303,304が形成されていないことを検出する。 Therefore, it is possible to detect whether or not the peeling portions 303 and 304 (= defects) are formed on the measurement object 30 by the detector 50 measuring the attenuation constant α of the vibrator 1 by the method described above. In this case, if the detected attenuation constant α is larger than the attenuation constant α 0 , the detector 50 detects that the peeling portions 303 and 304 are formed, and the detected attenuation constant α is substantially equal to the attenuation constant α 0 . If they are equal, it is detected that the peeling portions 303 and 304 are not formed.
 また、剥離部303,304が形成されている場合の共振周波数を有するピークの半値幅FWHMは、剥離部303,304が形成されていない場合の共振周波数を有するピークの半値幅FWHMよりも大きくなる。その理由は、剥離部303,304が形成されている場合の振動子1の減衰定数αが、剥離部303,304が形成されていない場合の減衰定数αよりも大きくなる理由と同じである。 Further, the peak half-value width FWHM h having the resonance frequency when the peeling portions 303 and 304 are formed is larger than the peak half-value width FWHM 0 having the resonance frequency when the peeling portions 303 and 304 are not formed. growing. The reason is the same as the reason why the attenuation constant α h of the vibrator 1 when the peeling portions 303 and 304 are formed is larger than the attenuation constant α 0 when the peeling portions 303 and 304 are not formed. is there.
 従って、検出器50が共振周波数を有するピークの半値幅FWHMを検出することによっても、被測定物30に剥離部303,304(=欠陥)が形成されているか否かを検出できる。この場合、剥離部303,304が形成されていない場合の半値幅をFWHMとすると、検出器50は、検出した半値幅FWHMが半値幅FWHMよりも大きければ、剥離部303,304が形成されていることを検出し、検出した半値幅FWHMが半値幅FWHMに略等しければ、剥離部303,304が形成されていないことを検出する。 Therefore, whether or not the peeling portions 303 and 304 (= defects) are formed on the object to be measured 30 can also be detected by detecting the peak half width FWHM having the resonance frequency by the detector 50. In this case, if the half width when the peeling portions 303 and 304 are not formed is FWHM 0 , the detector 50 forms the peeling portions 303 and 304 if the detected half width FWHM is larger than the half width FWHM 0. If the detected half-value width FWHM is substantially equal to the half-value width FWHM 0 , it is detected that the peeling portions 303 and 304 are not formed.
 このように、共振周波数を有するピークの半値幅FWHM、または振動子1の減衰定数αを検出することによって、被測定物30における欠陥の有無を検出できる。 Thus, the presence or absence of a defect in the device under test 30 can be detected by detecting the half-width FWHM of the peak having the resonance frequency or the attenuation constant α of the vibrator 1.
 検出器50が複数種類の被測定物30の減衰定数αを検出する場合、減衰定数αの大小を比較することによって目的に適合する被測定物30を選択することができる。 When the detector 50 detects the attenuation constant α of a plurality of types of objects to be measured 30, the object to be measured 30 that matches the purpose can be selected by comparing the magnitudes of the attenuation constants α.
 例えば、防振または防音を目的とする場合、減衰定数αがより大きい被測定物30を選択すればよい。また、携帯電話機の共振デバイスに用いる材料を選択する場合、減衰定数αがより小さい被測定物30を選択すればよい。 For example, when the purpose is to prevent vibration or sound, the device under test 30 having a larger attenuation constant α may be selected. Further, when selecting a material to be used for the resonant device of the mobile phone, it is only necessary to select the device under test 30 having a smaller attenuation constant α.
 また、被測定物30が破断する場合、その破断の直前に減衰定数αが急激に大きくなるタイミングがあるので、被測定物30の減衰定数αの経時変化を測定し、減衰定数αが急激に大きくなれば、被測定物30が破断する虞があると判定し、その被測定物30を交換するようにしてもよい。例えば、飛行機では、翼と本体との境界に最も荷重が印加され、翼の付け根が最も破断し易いので、翼の付け根の部分における減衰定数αの経時変化をプローブ10を用いて測定し、減衰定数αが急激に大きくなれば、翼が破断すると判定し、翼を交換する。 In addition, when the device under test 30 breaks, there is a timing at which the damping constant α suddenly increases immediately before the break, so the change over time of the damping constant α of the device under test 30 is measured, and the damping constant α suddenly increases. If it becomes larger, it may be determined that the device under test 30 may be broken, and the device under test 30 may be replaced. For example, in an airplane, the load is most applied to the boundary between the wing and the main body, and the base of the wing is most likely to break. Therefore, the time-dependent change of the attenuation constant α at the base of the wing is measured using the probe 10 to attenuate If the constant α increases rapidly, it is determined that the blade is broken, and the blade is replaced.
 このように、プローブ10は、被測定物30のヤング率の計測のみならず、被測定物30の欠陥の検出、材料選択および非破壊検査等に使用可能である。 As described above, the probe 10 can be used not only for measuring the Young's modulus of the object to be measured 30, but also for detecting defects of the object to be measured 30, material selection, non-destructive inspection, and the like.
 図19は、共振周波数を有するピークの半値幅を用いて欠陥を検出するときの動作を説明するためのフローチャートである。なお、図19においては、検出器50は、欠陥(剥離部303,304)が被測定物30に形成されていないときの共振周波数を有するピークの半値幅FWHMを予め保持していることを前提として欠陥を検出する動作を説明する。 FIG. 19 is a flowchart for explaining an operation when a defect is detected using a half width of a peak having a resonance frequency. In FIG. 19, the detector 50 holds in advance a peak half-value width FWHM 0 having a resonance frequency when no defect (peeling portion 303, 304) is formed on the DUT 30. An operation for detecting a defect will be described as a premise.
 図19に示すフローチャートは、図14に示すフローチャートのステップS10をステップS11~ステップS14に代えたものであり、その他は、図14に示すフローチャートと同じである。 The flowchart shown in FIG. 19 is the same as the flowchart shown in FIG. 14 except that step S10 of the flowchart shown in FIG. 14 is replaced with steps S11 to S14.
 図19を参照して、欠陥を検出する動作が開始されると、上述したステップS1~ステップS9が順次実行される。そして、ステップS9の後、検出器50は、共振周波数foscを有するピークの半値幅FWHMを検出する(ステップS11)。 Referring to FIG. 19, when the operation for detecting a defect is started, the above-described steps S1 to S9 are sequentially executed. After step S9, the detector 50 detects the half-value width FWHM of the peak having the resonance frequency fosc (step S11).
 その後、検出器50は、半値幅FWHMが半値幅FWHMよりも大きいか否かを判定する(ステップS12)。 Thereafter, the detector 50 determines whether or not the half width FWHM is larger than the half width FWHM 0 (step S12).
 ステップS12において、半値幅FWHMが半値幅FWHMよりも大きいと判定されたとき、検出器50は、被測定物30に欠陥が形成されていることを検出する(ステップS13)。 In Step S12, when it is determined that the half-value width FWHM is larger than the half-value width FWHM 0 , the detector 50 detects that a defect is formed in the object to be measured 30 (Step S13).
 一方、ステップS12において、半値幅FWHMが半値幅FWHMよりも大きくないと判定されたたとき(即ち、半値幅FWHMが半値幅FWHMに略等しいと判定されたとき)、検出器50は、被測定物30に欠陥が形成されていないことを検出する(ステップS14)。 On the other hand, when it is determined in step S12 that the half-value width FWHM is not larger than the half-value width FWHM 0 (that is, when the half-value width FWHM is determined to be substantially equal to the half-value width FWHM 0 ), the detector 50 It is detected that no defect is formed on the device under test 30 (step S14).
 そして、ステップS13またはステップS14の後、欠陥を検出する動作が終了する。 Then, after step S13 or step S14, the operation for detecting a defect ends.
 図20は、減衰定数を用いて欠陥を検出するときの動作を説明するためのフローチャートである。なお、図20においては、検出器50は、欠陥(剥離部303,304)が被測定物30に形成されていないときの減衰定数αを予め保持していることを前提として欠陥を検出する動作を説明する。 FIG. 20 is a flowchart for explaining an operation when a defect is detected using an attenuation constant. In FIG. 20, the detector 50 detects the defect on the assumption that the attenuation constant α 0 when the defect (the peeling portions 303 and 304) is not formed on the DUT 30 is held in advance. The operation will be described.
 図20に示すフローチャートは、図14に示すフローチャートのステップS6~ステップS10をステップS15~ステップS19に代えたものであり、その他は、図14に示すフローチャートと同じである。 The flowchart shown in FIG. 20 is the same as the flowchart shown in FIG. 14 except that steps S6 to S10 in the flowchart shown in FIG. 14 are replaced with steps S15 to S19.
 図20を参照して、欠陥を検出する動作が開始されると、上述したステップS1~ステップS5が順次実行される。そして、ステップS5の後、検出器50は、アンテナ6から受けた受信信号(=減衰曲線DCY)の包絡線EVLを検出する(ステップS15)。 Referring to FIG. 20, when an operation for detecting a defect is started, the above-described steps S1 to S5 are sequentially executed. After step S5, the detector 50 detects the envelope EVL of the received signal (= attenuation curve DCY) received from the antenna 6 (step S15).
 その後、検出器50は、その検出した包絡線EVLをe-αtによってフィッティングし、減衰定数αを検出する(ステップS16)。 Thereafter, the detector 50 fits the detected envelope EVL with e −αt to detect the attenuation constant α (step S16).
 そして、検出器50は、減衰定数αが減衰定数αよりも大きいか否かを判定する(ステップS17)。 Then, the detector 50 determines the attenuation constant alpha is whether greater than the attenuation constant alpha 0 (step S17).
 ステップS17において、減衰定数αが減衰定数αよりも大きいと判定されたとき、検出器50は、被測定物30に欠陥が形成されていることを検出する(ステップS18)。 In step S17, when the attenuation constant alpha is determined to be greater than the attenuation constant alpha 0, the detector 50 detects that the defect is formed on the measured object 30 (Step S18).
 一方、ステップS17において、減衰定数αが減衰定数αよりも大きくないと判定されたとき(即ち、減衰定数αが減衰定数αに略等しいと判定されたとき)、検出器50は、被測定物30に欠陥が形成されていないことを検出する(ステップS19)。 On the other hand, in step S17, when the attenuation constant alpha is not greater than the attenuation constant alpha 0 (i.e., when the attenuation constant alpha is determined to substantially equal to the attenuation constant alpha 0), the detector 50 may be It is detected that no defect is formed on the measurement object 30 (step S19).
 そして、ステップS18またはステップS19の後、欠陥を検出する動作が終了する。 Then, after step S18 or step S19, the operation for detecting a defect ends.
 この発明の実施の形態においては、電圧源40は、共振周波数の半分の周波数を有するバースト波BWhを励起電圧としてアンテナ5に送信してもよい。この場合、バースト波BWhは、例えば、50kHzの周波数を有するsin波からなる。 In the embodiment of the present invention, the voltage source 40 may transmit the burst wave BWh having a frequency half the resonance frequency to the antenna 5 as an excitation voltage. In this case, the burst wave BWh is composed of, for example, a sin wave having a frequency of 50 kHz.
 図21は、被測定物30に欠陥が形成されている場合のバースト波BWhおよび欠陥の変位を示す概念図である。また、図22は、振幅と周波数との関係を示す図である。 FIG. 21 is a conceptual diagram showing the burst wave BWh and the displacement of the defect when a defect is formed in the device under test 30. FIG. 22 is a diagram showing the relationship between amplitude and frequency.
 図21を参照して、電圧源40は、sin波からなるバースト波BWhをアンテナ5に送信する。この場合、バースト波BWhの成分SS1は、振動子1を被測定物30側へ移動させる成分であり、成分SS2は、振動子1を被測定物30側と反対側へ移動させる成分である。 Referring to FIG. 21, the voltage source 40 transmits a burst wave BWh composed of a sin wave to the antenna 5. In this case, the component SS1 of the burst wave BWh is a component that moves the vibrator 1 to the measured object 30 side, and the component SS2 is a component that moves the vibrator 1 to the opposite side of the measured object 30 side.
 プローブ10のチップ2を被測定物30に接触させた状態でバースト波BWhによって振動子1の振動を励起した場合、振動子1は、共振しないが、強制振動するので、その強制振動が被測定物30に伝搬される。そして、被測定物30の剥離部303,304は、成分SS1がアンテナ5に送信される周期では、変位せず、成分SS2がアンテナ5に送信される周期で変位する。従って、剥離部303,304は、周期的に変位し、チップ2と被測定物30との接触部から倍波(=共振周波数を有する波)が発生する。そうすると、その発生した倍波が振動子1に伝搬され、振動子1は、倍波で共振する。 When the vibration of the vibrator 1 is excited by the burst wave BWh while the tip 2 of the probe 10 is in contact with the object to be measured 30, the vibrator 1 does not resonate but is forced to vibrate. Propagated to the object 30. The peeling portions 303 and 304 of the DUT 30 are not displaced in the period in which the component SS1 is transmitted to the antenna 5, but are displaced in the period in which the component SS2 is transmitted to the antenna 5. Accordingly, the peeling portions 303 and 304 are periodically displaced, and a harmonic wave (= wave having a resonance frequency) is generated from the contact portion between the chip 2 and the DUT 30. Then, the generated harmonic wave is propagated to the vibrator 1, and the vibrator 1 resonates with the harmonic wave.
 その結果、検出器50は、アンテナ6によって受信された受信電圧に基づいて共振周波数foscを検出する(図22参照)。 As a result, the detector 50 detects the resonance frequency fosc based on the reception voltage received by the antenna 6 (see FIG. 22).
 剥離部303,304が被測定物30に形成されていない場合に、バースト波BWhによって振動子1の振動を励起しても、振動子1は、倍波で共振しないので、検出器50は、共振周波数foscを検出しない。 If the peeling portions 303 and 304 are not formed on the DUT 30, even if the vibration of the vibrator 1 is excited by the burst wave BWh, the vibrator 1 does not resonate with the double wave. The resonance frequency fosc is not detected.
 従って、検出器50は、共振周波数foscの半分の周波数を有するバースト波BWhによって振動子1の振動を励起した場合に、共振周波数foscを検出すれば、被測定物30に剥離部303,304が形成されていることを検出し、共振周波数foscを検出しなければ、被測定物30に剥離部303,304が形成されていないことを検出する。 Therefore, when the detector 50 detects the resonance frequency fosc when the vibration of the vibrator 1 is excited by the burst wave BWh having a half frequency of the resonance frequency fosc, the peeling portions 303 and 304 are attached to the object to be measured 30. If the formation is detected and the resonance frequency fosc is not detected, it is detected that the peeling portions 303 and 304 are not formed on the measurement object 30.
 なお、バースト波BWhの周波数は、共振周波数の半分の周波数に限らず、共振周波数の1/3倍の周波数、および共振周波数の1/4倍の周波数等であってもよく、一般的には、共振周波数の1/n(nは2以上の整数)倍の周波数であってもよい。この場合も、検出器50は、共振周波数foscを検出すれば、被測定物30に剥離部303,304が形成されていることを検出し、共振周波数foscを検出しなければ、被測定物30に剥離部303,304が形成されていないことを検出する。 Note that the frequency of the burst wave BWh is not limited to half the resonance frequency, and may be 1/3 times the resonance frequency, 1/4 times the resonance frequency, or the like. The frequency may be 1 / n (n is an integer of 2 or more) times the resonance frequency. Also in this case, if the detector 50 detects the resonance frequency fosc, the detector 50 detects that the peeling portions 303 and 304 are formed on the object to be measured 30, and if not, detects the resonance frequency fosc. It is detected that the peeling portions 303 and 304 are not formed.
 また、バースト波BWhの周波数は、共振周波数の2倍の周波数、および共振周波数の3倍の周波数等であってもよく、一般的には、共振周波数のn倍の周波数であってもよい。この場合、振動子1は、上述した機構によって、1/n倍波で共振する。従って、検出器50は、振動子1の振動が共振周波数のn倍の周波数を有するバースト波BWhによって励起された場合も、共振周波数foscを検出すれば、被測定物30に剥離部303,304が形成されていることを検出し、共振周波数foscを検出しなければ、被測定物30に剥離部303,304が形成されていないことを検出する。 Further, the frequency of the burst wave BWh may be a frequency that is twice the resonance frequency, a frequency that is three times the resonance frequency, or the like, and may generally be a frequency that is n times the resonance frequency. In this case, the vibrator 1 resonates with a 1 / n harmonic by the mechanism described above. Accordingly, even when the vibration of the vibrator 1 is excited by the burst wave BWh having a frequency n times the resonance frequency, the detector 50 detects the resonance frequency fosc and causes the separation parts 303 and 304 to be measured on the object 30 to be measured. If the resonance frequency fosc is not detected, it is detected that the peeling portions 303 and 304 are not formed on the object to be measured 30.
 従って、この発明の実施の形態においては、倍波によって被測定物30に欠陥が形成されているか否かを検出する場合、電圧源40は、共振周波数のn倍の周波数を有するバースト波、または共振周波数の1/n倍の周波数を有するバースト波を励起電圧としてアンテナ5に送信し、検出器50は、共振周波数foscを検出すれば、被測定物30に剥離部303,304が形成されていることを検出し、共振周波数foscを検出しなければ、被測定物30に剥離部303,304が形成されていないことを検出する。 Therefore, in the embodiment of the present invention, when detecting whether or not a defect is formed in the device under test 30 by the harmonic wave, the voltage source 40 is a burst wave having a frequency n times the resonance frequency, or If a burst wave having a frequency 1 / n times the resonance frequency is transmitted as an excitation voltage to the antenna 5, and the detector 50 detects the resonance frequency fosc, peeling parts 303 and 304 are formed on the object to be measured 30. If the resonance frequency fosc is not detected, it is detected that the peeling portions 303 and 304 are not formed on the object to be measured 30.
 図23は、倍波を用いて欠陥を検出する動作を説明するためのフローチャートである。図23を参照して、欠陥を検出する動作が開始されると、検出器50は、図14に示すステップS1~ステップS9に従って共振周波数foscを検出する(ステップS21)。 FIG. 23 is a flowchart for explaining an operation of detecting a defect using a harmonic wave. Referring to FIG. 23, when the operation for detecting a defect is started, detector 50 detects resonance frequency fosc according to steps S1 to S9 shown in FIG. 14 (step S21).
 そして、電圧源40は、振動子1の共振周波数foscのn倍の周波数、または振動子1の共振周波数foscの1/n倍の周波数を有するバースト波BWhをアンテナ5に送信し、トリガー信号を検出器50へ出力する(ステップS22)。 The voltage source 40 transmits a burst wave BWh having a frequency n times the resonance frequency fosc of the vibrator 1 or a frequency 1 / n times the resonance frequency fosc of the vibrator 1 to the antenna 5, and a trigger signal is transmitted. Output to the detector 50 (step S22).
 その後、検出器50は、アンテナ6から受信信号を受け(ステップS23)、その受けた受信信号をフーリエ変換し、振動周波数に対応する振幅を求める(ステップS24)。 Thereafter, the detector 50 receives the received signal from the antenna 6 (step S23), Fourier-transforms the received received signal, and obtains an amplitude corresponding to the vibration frequency (step S24).
 引き続いて、検出器50は、周波数fと振幅Aとの関係をプロットする(ステップS25)。 Subsequently, the detector 50 plots the relationship between the frequency f and the amplitude A (step S25).
 そして、検出器50は、共振周波数の位置にピークが有るか否かを判定する(ステップS26)。 Then, the detector 50 determines whether or not there is a peak at the position of the resonance frequency (step S26).
 ステップS26において、共振周波数の位置にピークが有ると判定されたとき、検出器50は、被測定物30に欠陥が形成されていることを検出する(ステップS27)。 When it is determined in step S26 that there is a peak at the position of the resonance frequency, the detector 50 detects that a defect is formed in the device under test 30 (step S27).
 一方、ステップS26において、共振周波数の位置にピークが無いと判定されたとき、検出器50は、被測定物30に欠陥が形成されていないことを検出する(ステップS28)。 On the other hand, when it is determined in step S26 that there is no peak at the position of the resonance frequency, the detector 50 detects that no defect is formed in the device under test 30 (step S28).
 そして、ステップS27またはステップS28の後、欠陥を検出する動作が終了する。 And the operation | movement which detects a defect is complete | finished after step S27 or step S28.
 図24は、この発明の実施の形態における他の振動子の断面図である。図24の(a)を参照して、この発明の実施の形態によるプローブ10は、振動子1に代えて振動子21を備え、保持部材3に代えて保持部材3Aを備えていてもよい。 FIG. 24 is a cross-sectional view of another vibrator according to the embodiment of the present invention. Referring to FIG. 24A, the probe 10 according to the embodiment of the present invention may include a vibrator 21 instead of the vibrator 1 and a holding member 3 </ b> A instead of the holding member 3.
 振動子21は、円形の断面形状を有するランガサイトまたは水晶からなる。そして、振動子21は、例えば、3mmの直径を有し、振動子1と同じ長さを有する。また、振動子21は、ランガサイトからなる場合、結晶のX軸方向(=[100]の方向)が長手方向に一致する。 The vibrator 21 is made of langasite or crystal having a circular cross-sectional shape. The vibrator 21 has a diameter of 3 mm, for example, and has the same length as the vibrator 1. When the vibrator 21 is made of langasite, the X-axis direction (= [100] direction) of the crystal coincides with the longitudinal direction.
 保持部材3Aは、保持具33と、固定具34とからなる。保持具33は、保持具331~333からなり、保持具331~333の各々は、例えば、ニトリルゴムからなる。そして、保持具331~333は、振動子21の長さ方向の略中央部において、相互に120度の角度を成す方向から振動子21を保持する。この場合、保持具331~333の各々は、振動子21と点接触して振動子21を保持する。固定具34は、固定具32と同じ材料からなり、ドーナツ形状を有する。そして、固定具34は、保持具33の周囲に配置され、保持具33に接着される。 The holding member 3 </ b> A includes a holding tool 33 and a fixing tool 34. The holder 33 includes holders 331 to 333, and each of the holders 331 to 333 includes, for example, nitrile rubber. The holders 331 to 333 hold the vibrator 21 from a direction that forms an angle of 120 degrees with each other at a substantially central portion in the length direction of the vibrator 21. In this case, each of the holders 331 to 333 holds the vibrator 21 in point contact with the vibrator 21. The fixture 34 is made of the same material as the fixture 32 and has a donut shape. The fixing tool 34 is arranged around the holding tool 33 and bonded to the holding tool 33.
 なお、プローブ10が振動子21を備える場合、樹脂部材9は、固定具34の外周に接する。 When the probe 10 includes the vibrator 21, the resin member 9 contacts the outer periphery of the fixture 34.
 図24の(b)を参照して、この発明の実施の形態によるプローブ10は、振動子1に代えて振動子22を備え、保持部材3に代えて保持部材3Bを備えていてもよい。 Referring to FIG. 24 (b), the probe 10 according to the embodiment of the present invention may include a vibrator 22 instead of the vibrator 1 and a holding member 3B instead of the holding member 3.
 振動子22は、正三角形の断面形状を有するランガサイトまたは水晶からなる。そして、正三角形の一辺の長さは、例えば、3mmであり、振動子22は、振動子1と同じ長さを有する。また、振動子22は、ランガサイトからなる場合、結晶のX軸方向(=[100]の方向)が長手方向に一致する。 The vibrator 22 is made of langasite or quartz having a regular triangular cross-sectional shape. The length of one side of the equilateral triangle is, for example, 3 mm, and the vibrator 22 has the same length as the vibrator 1. When the vibrator 22 is made of langasite, the X-axis direction (= [100] direction) of the crystal coincides with the longitudinal direction.
 保持部材3Bは、Oリング35と、固定具36とからなる。Oリング35は、例えば、ニトリルゴムからなり、振動子22の長さ方向の略中央部において、振動子22の三角形の3個の頂点に接し、振動子22を保持する。固定具36は、固定具32と同じ材料からなり、ドーナツ形状を有する。そして、固定具36は、Oリング35の周囲に配置され、Oリング35に接着される。 The holding member 3B includes an O-ring 35 and a fixture 36. The O-ring 35 is made of, for example, nitrile rubber, and is in contact with the three apexes of the triangle of the vibrator 22 at approximately the center in the length direction of the vibrator 22 to hold the vibrator 22. The fixture 36 is made of the same material as the fixture 32 and has a donut shape. The fixture 36 is disposed around the O-ring 35 and bonded to the O-ring 35.
 なお、プローブ10が振動子22を備える場合、樹脂部材9は、固定具36の外周に接する。 When the probe 10 includes the vibrator 22, the resin member 9 contacts the outer periphery of the fixture 36.
 このように、振動子21は、最小の接触面積で保持具33に接して保持具33によって保持され、振動子22は、最小の接触面積でOリング35に接してOリング35によって保持される。 In this way, the vibrator 21 is held by the holder 33 in contact with the holder 33 with the minimum contact area, and the vibrator 22 is held by the O-ring 35 in contact with the O-ring 35 with the minimum contact area. .
 プローブ10が振動子21または振動子22を備える場合、振動子21または振動子22は、3点によって保持されるので、振動子1よりも自由に振動する。その結果、振動子21または振動子22が共振するときのQ値が向上し、被測定物30のヤング率を更に正確に測定できる。 When the probe 10 includes the vibrator 21 or the vibrator 22, the vibrator 21 or the vibrator 22 is held by three points, and thus vibrates more freely than the vibrator 1. As a result, the Q value when the vibrator 21 or the vibrator 22 resonates is improved, and the Young's modulus of the device under test 30 can be measured more accurately.
 プローブ10が振動子21または振動子22を備える場合も、プローブ10は、図5から図8に示す工程(a)~工程(m)に従って製造される。そして、工程(c)において、保持具33が振動子21に装着されるとともに固定具34が保持具33に装着され、またはOリング35が振動子22に装着されるとともに固定具36がOリング35に装着される。また、工程(d)において、支持部材7が固定具34または固定具36に装着される。更に、工程(e)において、アンテナ4~6が固定具34または固定具36の周囲に1回だけ巻回される。 Even when the probe 10 includes the vibrator 21 or the vibrator 22, the probe 10 is manufactured according to steps (a) to (m) shown in FIGS. In step (c), the holder 33 is attached to the vibrator 21 and the fixture 34 is attached to the holder 33, or the O-ring 35 is attached to the vibrator 22 and the fixture 36 is an O-ring. 35. In step (d), the support member 7 is attached to the fixture 34 or the fixture 36. Further, in the step (e), the antennas 4 to 6 are wound only once around the fixture 34 or the fixture 36.
 なお、プローブ10が振動子21または振動子22を備える場合も、共振周波数を有するピークの半値幅FWHMまたは減衰定数αを検出することによって被測定物30に欠陥が形成されているか否かを検出してもよい。 Even when the probe 10 includes the vibrator 21 or the vibrator 22, it is detected whether or not a defect is formed in the object to be measured 30 by detecting the half width FWHM of the peak having the resonance frequency or the attenuation constant α. May be.
 また、プローブ10が振動子21または振動子22を備える場合も、共振周波数のn倍の周波数または共振周波数の1/n倍の周波数を有するバースト波BWhによって振動子21(または振動子22)の振動を励起し、共振周波数foscを検出するか否かによって被測定物30に欠陥が形成されているか否かを検出してもよい。 In addition, when the probe 10 includes the vibrator 21 or the vibrator 22, the vibrator 21 (or the vibrator 22) is caused by the burst wave BWh having a frequency n times the resonance frequency or 1 / n times the resonance frequency. Whether or not a defect is formed in the object to be measured 30 may be detected based on whether or not the vibration frequency is excited and the resonance frequency fosc is detected.
 振動子21,22を用いて上述した方法によって欠陥が被測定物30に形成されているか否かを判定した場合、振動子21,22は、振動子1よりも振動し易いので、欠陥が被測定物30に形成されているか否かを正確に判定できる。 When it is determined whether or not a defect is formed on the object to be measured 30 by the above-described method using the vibrators 21 and 22, the vibrators 21 and 22 are more likely to vibrate than the vibrator 1. It is possible to accurately determine whether or not the measurement object 30 is formed.
 図25は、アンテナ4~6の他の装着方法を示す断面図である。図25を参照して、アンテナ4~6は、Oリング31と固定具32との間に装着されてもよい。その結果、振動子1とアンテナ4~6との距離が短くなり、振動子1は、アンテナ4~6が固定具32の外周に装着される場合よりも、より強い電圧Vvをアンテナ5から受け、より振動し易くなる。また、アンテナ6は、振動子1が振動したことに伴って発生した分極電場を、より強い電圧として受信する。従って、被測定物30のヤング率を更に正確に測定できる。また、欠陥が被測定物30に形成されているか否かを更に正確に判定できる。 FIG. 25 is a cross-sectional view showing another method for mounting the antennas 4 to 6. Referring to FIG. 25, antennas 4 to 6 may be mounted between O-ring 31 and fixture 32. As a result, the distance between the vibrator 1 and the antennas 4 to 6 is shortened, and the vibrator 1 receives a stronger voltage Vv from the antenna 5 than when the antennas 4 to 6 are mounted on the outer periphery of the fixture 32. It becomes easier to vibrate. Further, the antenna 6 receives the polarization electric field generated as the vibrator 1 vibrates as a stronger voltage. Accordingly, the Young's modulus of the device under test 30 can be measured more accurately. Further, it can be determined more accurately whether or not a defect is formed in the DUT 30.
 なお、プローブ10が振動子21を備える場合、アンテナ4~6は、保持具33と固定具34との間に装着されてもよく、プローブ10が振動子22を備える場合、アンテナ4~6は、Oリング35と固定具36との間に装着されてもよい。その結果、振動子21または振動子22のより自由な振動を確保できるとともに、振動子21または振動子22が振動したことに伴って発生した分極電場を、より強い電圧として受信できるので、被測定物30のヤング率を更に正確に測定できる。また、欠陥が被測定物30に形成されているか否かを更に正確に判定できる。 When the probe 10 includes the vibrator 21, the antennas 4 to 6 may be mounted between the holder 33 and the fixture 34. When the probe 10 includes the vibrator 22, the antennas 4 to 6 are The O-ring 35 and the fixture 36 may be mounted. As a result, more free vibration of the vibrator 21 or the vibrator 22 can be secured, and the polarization electric field generated when the vibrator 21 or the vibrator 22 vibrates can be received as a stronger voltage. The Young's modulus of the object 30 can be measured more accurately. Further, it can be determined more accurately whether or not a defect is formed in the DUT 30.
 図26は、振動子1の保持方法を示す断面図である。図26の(a)を参照して、振動子1の振動の基本モードを用いて被測定物30のヤング率を測定する場合、Oリング31は、長さLを有する振動子1の長さ方向において、振動子1の一方端からL/2の位置(振動子1の振動の基本モードにおける節部に相当する位置)で振動子1に装着される。即ち、Oリング31は、振動子1の長さ方向において振動子1の略中央部に装着される。 FIG. 26 is a cross-sectional view showing a method for holding the vibrator 1. 26A, when measuring the Young's modulus of the DUT 30 using the fundamental mode of vibration of the vibrator 1, the O-ring 31 is the length of the vibrator 1 having the length L. In the direction, the vibrator 1 is attached to the vibrator 1 at a position L / 2 from one end of the vibrator 1 (a position corresponding to a node portion in the fundamental mode of vibration of the vibrator 1). That is, the O-ring 31 is attached to a substantially central portion of the vibrator 1 in the length direction of the vibrator 1.
 図26の(b)を参照して、振動子1の振動の二次モードを用いて被測定物30のヤング率を測定する場合、2つのOリング31A,31Bが振動子1に装着される。Oリング31A,31Bの各々は、二トリルゴムからなる。そして、Oリング31Aは、長さLを有する振動子1の長さ方向において、振動子1の一方端からL/4の位置(振動子1の振動の二次モードにおける節部に相当する位置)で振動子1に装着され、Oリング31Bは、振動子1の長さ方向において、振動子1の他方端からL/4の位置(振動子1の振動の二次モードにおける節部に相当する位置)で振動子1に装着される。 Referring to FIG. 26B, when measuring the Young's modulus of the DUT 30 using the secondary mode of vibration of the vibrator 1, two O-rings 31 </ b> A and 31 </ b> B are attached to the vibrator 1. . Each of the O- rings 31A and 31B is made of nitrile rubber. The O-ring 31A is located at a position L / 4 from the one end of the vibrator 1 in the length direction of the vibrator 1 having the length L (a position corresponding to a node in the secondary mode of vibration of the vibrator 1). ) And the O-ring 31B corresponds to a position of L / 4 from the other end of the vibrator 1 in the length direction of the vibrator 1 (corresponding to a node portion in the secondary mode of vibration of the vibrator 1). Is mounted on the vibrator 1 at a position where
 なお、振動子21または振動子22が用いられる場合も、振動子21または振動子22は、振動子21または振動子22の長さ方向において、略中央部、または端からL/4の位置で保持される。 Even when the vibrator 21 or the vibrator 22 is used, the vibrator 21 or the vibrator 22 is located at a position substantially L / 4 from the center or the end in the length direction of the vibrator 21 or the vibrator 22. Retained.
 このように、この発明の実施の形態においては、振動子1,21,22の振動の基本モードおよび二次モードのいずれかを用いて被測定物30のヤング率が測定される。また、この発明の実施の形態においては、振動子1,21,22の振動の基本モードおよび二次モードのいずれかを用いて、上述した方法によって被測定物30に欠陥が形成されているか否かが検出される。 As described above, in the embodiment of the present invention, the Young's modulus of the DUT 30 is measured using either the fundamental mode or the secondary mode of the vibration of the vibrators 1, 21, 22. In the embodiment of the present invention, whether or not a defect is formed in the object to be measured 30 by the above-described method using either the fundamental mode or the secondary mode of the vibration of the vibrators 1, 2, and 22. Is detected.
 図27は、振動子1の別の保持方法を示す断面図である。図27の(a)を参照して、振動子1の一方端からL/2の位置において、振動子1の長さ方向に直交する平面形状(=正方形)の四隅に切欠部101を形成する。切欠部101は、円弧状の断面形状を有する。 FIG. 27 is a cross-sectional view showing another holding method of the vibrator 1. Referring to FIG. 27A, notches 101 are formed at four corners of a planar shape (= square) orthogonal to the length direction of the vibrator 1 at a position L / 2 from one end of the vibrator 1. . The notch 101 has an arcuate cross-sectional shape.
 そして、振動子1をOリング31によって保持する場合、Oリング31が切欠部101に嵌合するようにOリング31を振動子1に装着する(図27の(b)参照)。 When the vibrator 1 is held by the O-ring 31, the O-ring 31 is attached to the vibrator 1 so that the O-ring 31 is fitted into the notch 101 (see FIG. 27B).
 振動子1をOリング31A,31Bによって支持する場合も、振動子1の一方端からL/4の位置、および振動子1の他方端からL/4の位置において振動子1の四隅に切欠部101を設け、Oリング31A,31Bが切欠部101に嵌合するようにOリング31A,31Bを振動子1に装着する。振動子22をOリングによって支持する場合も同様である。 When the vibrator 1 is supported by the O- rings 31A and 31B, notches are formed at the four corners of the vibrator 1 at a position L / 4 from one end of the vibrator 1 and a position L / 4 from the other end of the vibrator 1. 101 is provided, and the O- rings 31A and 31B are attached to the vibrator 1 so that the O- rings 31A and 31B are fitted in the notch 101. The same applies when the vibrator 22 is supported by an O-ring.
 これによって、プローブ10を用いて被測定物30のヤング率を測定するとき、またはプローブ10を用いて欠陥を検出するときの振動子1,22の長さ方向への移動を正確に抑止できる。 Thereby, when the Young's modulus of the object to be measured 30 is measured using the probe 10, or when the defect is detected using the probe 10, the movement of the vibrators 1 and 22 in the length direction can be accurately suppressed.
 図28は、測定深さとチップの半径との関係を示す図である。図28において、縦軸は、測定深さを表し、横軸は、チップの半径を表す。測定深さは、チップ2を被測定物30に接触させてバースト波BW1,BW2(またはバースト波BWh)によって振動子1の振動を励起した場合に振動が伝搬される被測定物30の深さである。また、チップの半径は、球形のタングステンカーバイトを研磨して円弧状のチップを作製するときの元の球の半径である。 FIG. 28 is a diagram showing the relationship between the measurement depth and the radius of the chip. In FIG. 28, the vertical axis represents the measurement depth, and the horizontal axis represents the radius of the chip. The measurement depth is the depth of the measured object 30 to which the vibration is propagated when the chip 2 is brought into contact with the measured object 30 and the vibration of the vibrator 1 is excited by the burst waves BW1 and BW2 (or the burst wave BWh). It is. The radius of the tip is the radius of the original sphere when a spherical tungsten carbide is polished to produce an arc-shaped tip.
 また、曲線k5は、被測定物30(=アクリル樹脂)に印加するバイアス力が0.5Nであるときの測定深さとチップの半径との関係を示し、曲線k6は、被測定物30(=銅)に印加するバイアス力が0.5Nであるときの測定深さとチップの半径との関係を示す。なお、曲線k5,k6によって示される測定深さとチップの半径との関係は、計算されたものである。 A curve k5 shows the relationship between the measurement depth and the tip radius when the bias force applied to the device under test 30 (= acrylic resin) is 0.5 N, and the curve k6 shows the device under test 30 (= The relationship between the measurement depth and the tip radius when the bias force applied to (copper) is 0.5 N is shown. Note that the relationship between the measurement depth indicated by the curves k5 and k6 and the radius of the tip is calculated.
 図28を参照して、被測定物30に印加されるバイアス力が一定である場合、測定深さは、チップの半径が大きくなるとともに深くなる(曲線k5,k6参照)。 Referring to FIG. 28, when the bias force applied to device under test 30 is constant, the measurement depth becomes deeper as the radius of the tip increases (see curves k5 and k6).
 従って、プローブ10のチップ2を接触させる被測定物30の表面と反対側に被測定物30と異なる材質の物体が被測定物30に接触している場合、測定深さが被測定物30の厚み以下になるようにチップの半径を決定し、その決定した半径を有するチップ2を作製して振動子1の端面に接着する。 Therefore, when an object of a material different from the object to be measured 30 is in contact with the object to be measured 30 on the side opposite to the surface of the object to be measured 30 with which the tip 2 of the probe 10 is brought into contact, the measurement depth of the object to be measured 30 is The radius of the chip is determined so as to be equal to or less than the thickness, and the chip 2 having the determined radius is manufactured and bonded to the end face of the vibrator 1.
 これによって、被測定物30に接触した物体の影響を排除して被測定物30自体のヤング率を計測できる。また、被測定物30に接触した物体の影響を排除して被測定物30自体の欠陥を検出できる。更に、被測定物30に接触した物体の影響を排除して被測定物30自体の振動の減衰を検出できる。 Thereby, it is possible to measure the Young's modulus of the object to be measured 30 by eliminating the influence of the object in contact with the object to be measured 30. Further, it is possible to detect the defect of the object to be measured 30 by eliminating the influence of the object in contact with the object to be measured 30. Further, it is possible to detect the attenuation of vibration of the object to be measured 30 itself by eliminating the influence of the object in contact with the object to be measured 30.
 図28に示す測定深さとチップの半径との関係は、例示であっても、アクリル樹脂および銅以外の材料についても、同様に、測定深さは、チップの半径が大きくなるに従って深くなる。従って、各種の被測定物30について、測定深さとチップの半径との関係を予め計算しておけば、各被測定物30に応じて適切なチップの半径を決定できる。 The relationship between the measurement depth and the chip radius shown in FIG. 28 is illustrative only, and the measurement depth of the material other than acrylic resin and copper increases as the chip radius increases. Accordingly, if the relationship between the measurement depth and the tip radius is calculated in advance for various types of objects to be measured 30, an appropriate tip radius can be determined according to each object to be measured 30.
 そして、この発明の実施の形態においては、チップの半径は、0.5mm~10mmの範囲に設定され、0.5mm~10mmの範囲から被測定物30に適切なチップの半径を決定してチップ2を作製する。 In the embodiment of the present invention, the radius of the tip is set in the range of 0.5 mm to 10 mm, and the tip radius appropriate for the object to be measured 30 is determined from the range of 0.5 mm to 10 mm. 2 is produced.
 図29は、複数のチップを振動子に装着した例を示す断面図である。図29を参照して、チップ2A,2Bの各々は、上述したチップ2と同じ材料からなる。そして、チップ2Aの半径は、チップ2Bの半径よりも大きい。チップ2Aは、振動子1の一方端の端面に接着され、チップ2Bは、振動子1の他方端の端面に接着される。 FIG. 29 is a cross-sectional view showing an example in which a plurality of chips are mounted on a vibrator. Referring to FIG. 29, each of chips 2A and 2B is made of the same material as chip 2 described above. The radius of the chip 2A is larger than the radius of the chip 2B. The chip 2A is bonded to the end face of one end of the vibrator 1, and the chip 2B is bonded to the end face of the other end of the vibrator 1.
 チップ2A,2Bが接着された振動子1を用いる場合、チップ2Aを被測定物30に接触させて被測定物30のヤング率等を測定した後、チップ2Bが被測定物30に接触可能なように振動子1を保持部材3に保持し直し、チップ2Bを被測定物30に接触させて被測定物30のヤング率等を測定する。 When using the vibrator 1 to which the chips 2A and 2B are bonded, after the chip 2A is brought into contact with the object to be measured 30 and the Young's modulus of the object to be measured 30 is measured, the chip 2B can contact the object to be measured 30. In this manner, the vibrator 1 is held again by the holding member 3, and the Young's modulus of the device under test 30 is measured by bringing the chip 2 </ b> B into contact with the device under test 30.
 これによって、同じ振動子1を用いて厚みが異なる2つの被測定物30のヤング率等を測定できる。また、同じ振動子1を用いて1つの被測定物30の深さ方向におけるヤング率の分布を測定できる。 Thereby, the Young's modulus and the like of two objects to be measured 30 having different thicknesses can be measured using the same vibrator 1. Further, the distribution of Young's modulus in the depth direction of one object to be measured 30 can be measured using the same vibrator 1.
 図30は、この発明の実施の形態による別のプローブの構成を示す断面図である。この発明の実施の形態によるプローブは、図30に示すプローブ10Aであってもよい。 FIG. 30 is a cross-sectional view showing the configuration of another probe according to the embodiment of the present invention. The probe according to the embodiment of the present invention may be a probe 10A shown in FIG.
 図30を参照して、プローブ10Aは、図1に示すプローブ10に針17を追加したものであり、その他は、プローブ10と同じである。 Referring to FIG. 30, probe 10 </ b> A is obtained by adding needle 17 to probe 10 shown in FIG. 1, and is otherwise the same as probe 10.
 針17は、ケース11の底面11Aに固定される。針17は、ケース11の底面11A内において3個以上設けられる。少なくとも3個の針17が設けられていれば、プローブ10Aを被測定物30上に安定して配置できるからである。 The needle 17 is fixed to the bottom surface 11A of the case 11. Three or more needles 17 are provided in the bottom surface 11 </ b> A of the case 11. This is because if at least three needles 17 are provided, the probe 10 </ b> A can be stably disposed on the object to be measured 30.
 針17の直径は、プローブ10Aを被測定物30上に配置した場合に、針17が被測定物30中に進入する直径に設定される。 The diameter of the needle 17 is set to a diameter at which the needle 17 enters the device under test 30 when the probe 10A is placed on the device under test 30.
 針17の長さは、被測定物30の表面が平面である場合、プローブ10Aのケース11の底面11Aが被測定物30に接触可能な長さに設定される。また、針17の長さは、被測定物30が球形状である場合、針17の先端が被測定物30中に進入する長さに設定される。 The length of the needle 17 is set to such a length that the bottom surface 11A of the case 11 of the probe 10A can contact the device under test 30 when the surface of the device under test 30 is a flat surface. Further, the length of the needle 17 is set to a length at which the tip of the needle 17 enters the device under test 30 when the device under test 30 has a spherical shape.
 このように、プローブ10Aを用いれば、チップ2が安定して被測定物30に接触し、被測定物30のヤング率等を正確に計測できる。 As described above, when the probe 10A is used, the tip 2 can stably come into contact with the object to be measured 30, and the Young's modulus of the object to be measured 30 can be accurately measured.
 なお、プローブ10Aについてのその他の説明は、プローブ10についての説明と同じである。 Note that the other description of the probe 10A is the same as the description of the probe 10.
 図31は、図1に示すプローブ10の応用例を示す概念図である。図31を参照して、パーソナルコンピュータのマウス60は、位置計測器70を内蔵する。そして、プローブ10は、マウス60内に装着される。 FIG. 31 is a conceptual diagram showing an application example of the probe 10 shown in FIG. Referring to FIG. 31, the mouse 60 of the personal computer incorporates a position measuring device 70. The probe 10 is mounted in the mouse 60.
 位置計測器70は、レーザマウスの原理によってマウス60の位置を計測し、その計測した位置をパーソナルコンピュータのCPU(Central Processing Unit)へ出力する。 The position measuring device 70 measures the position of the mouse 60 based on the principle of the laser mouse, and outputs the measured position to a CPU (Central Processing Unit) of the personal computer.
 プローブ10のアンテナ5は、電圧源40に接続されており、アンテナ6は、パーソナルコンピュータのCPUに接続されている。 The antenna 5 of the probe 10 is connected to a voltage source 40, and the antenna 6 is connected to a CPU of a personal computer.
 マウス60は、被測定物30上に配置され、被測定物30の各位置へ移動される。そして、位置計測器70は、マウス60の位置を計測し、その計測した位置をパーソナルコンピュータのCPUへ出力する。また、プローブ10の振動子1は、電圧源40からアンテナ5を介して印加された電圧Vvによって振動し、アンテナ6は、振動子1が振動することに伴って発生した分極電場を電圧として受信し、その受信した電圧(受信信号)をパーソナルコンピュータのCPUへ出力する。 The mouse 60 is arranged on the device under test 30 and moved to each position of the device under test 30. Then, the position measuring instrument 70 measures the position of the mouse 60 and outputs the measured position to the CPU of the personal computer. Further, the vibrator 1 of the probe 10 vibrates by the voltage Vv applied from the voltage source 40 via the antenna 5, and the antenna 6 receives as a voltage the polarization electric field generated when the vibrator 1 vibrates. The received voltage (reception signal) is output to the CPU of the personal computer.
 そうすると、パーソナルコンピュータのCPUは、アンテナ6から受けた受信信号に基づいて、上述した方法によって被測定物30のヤング率を算出し、その算出したヤング率を位置計測器70から受けたマウス60の位置に対応付けてメモリに記憶する。パーソナルコンピュータのCPUは、被測定物30の各位置におけるヤング率をマウス60の各位置に対応付けてメモリに記憶する。 Then, the CPU of the personal computer calculates the Young's modulus of the device under test 30 by the method described above based on the received signal received from the antenna 6, and the mouse 60 receiving the calculated Young's modulus from the position measuring device 70. It is stored in the memory in association with the position. The CPU of the personal computer stores the Young's modulus at each position of the DUT 30 in the memory in association with each position of the mouse 60.
 従って、被測定物30のヤング率の分布を測定できる。 Therefore, the Young's modulus distribution of the device under test 30 can be measured.
 なお、プローブ10がマウス60内に配置される場合も、上述した各種の方法によって被測定物30の欠陥を測定してもよく、上述した方法によって被測定物30の非破壊検査を行なってもよい。 Even when the probe 10 is placed in the mouse 60, the defect of the object to be measured 30 may be measured by the various methods described above, or the non-destructive inspection of the object to be measured 30 may be performed by the method described above. Good.
 上述したように、振動子1,21,22は、振動子1,21,22の振動の節部に相当する位置において最小の接触面積でOリング31,35または保持具33によって保持される。また、振動子1,21,22は、同じ極性を有する磁石8,13が発生する斥力RFによって被測定物30にバイアス力を印加する。その結果、振動子1,21,22は、自由に振動するとともに、被測定物30が鉛直方向に対して任意の角度を成すように配置されていても、被測定物30に印加されるバイアス力は、一定になる。 As described above, the vibrators 1, 2, 22 are held by the O- rings 31, 35 or the holder 33 with a minimum contact area at positions corresponding to the vibration nodes of the vibrators 1, 2, 22. Further, the vibrators 1, 2, and 22 apply a bias force to the object to be measured 30 by the repulsive force RF generated by the magnets 8 and 13 having the same polarity. As a result, the vibrators 1, 2, 22 freely vibrate, and even if the device under test 30 is arranged at an arbitrary angle with respect to the vertical direction, the bias applied to the device under test 30. The force becomes constant.
 従って、振動子1,21,22の安定した振動を確保できるとともに、バイアス力を任意の方向から被測定物30に印加して弾性定数を測定できる。 Therefore, stable vibrations of the vibrators 1, 2, 22 can be secured, and the elastic constant can be measured by applying a bias force to the device under test 30 from an arbitrary direction.
 なお、この発明の実施の形態においては、Oリング31,35の各々は、「保持具」を構成する。また、この発明の実施の形態においては、磁石8は、「第1の磁石」を構成し、磁石13は、「第2の磁石」を構成する。更に、アンテナ4は、「第1のアンテナ」を構成し、アンテナ5は、「第2のアンテナ」を構成し、アンテナ6は、「第3のアンテナ」を構成する。更に、アンテナ6から受けた受信電圧に基づいて振動子1の共振周波数が検出されたか否かを判定する検出器50は、「判定器」を構成する。 In the embodiment of the present invention, each of the O- rings 31 and 35 constitutes a “holding tool”. In the embodiment of the present invention, magnet 8 constitutes a “first magnet”, and magnet 13 constitutes a “second magnet”. Further, the antenna 4 constitutes a “first antenna”, the antenna 5 constitutes a “second antenna”, and the antenna 6 constitutes a “third antenna”. Furthermore, the detector 50 that determines whether or not the resonance frequency of the vibrator 1 is detected based on the received voltage received from the antenna 6 constitutes a “determination device”.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.
 この発明は、プローブおよびそれを備えた測定装置に適用される。 This invention is applied to a probe and a measuring apparatus equipped with the probe.

Claims (11)

  1.  棒状形状を有し、圧電体からなる振動子と、
     被測定物側における前記振動子の一方端に接着され、前記被測定物よりも硬度が大きいチップと、
     前記振動子の周方向において最小の接触面積で前記振動子と接触し、前記振動子の振動の節部に相当する前記振動子の一部分を保持する保持具と、
     前記振動子の他方端側に配置され、前記保持具を支持する支持部材に接着された第1の磁石と、
     前記振動子の長さ方向において前記第1の磁石と所望の距離を隔てて配置され、前記第1の磁石と同じ極性を有する第2の磁石と、
     接地電位に接続された第1のアンテナと、
     前記振動子の振動を励起するための励起電圧を前記第1のアンテナと協働して前記振動子に印加する第2のアンテナと、
     前記励起電圧が振動子に印加されたことに起因して前記振動子に発生した電場を前記第1のアンテナと協働して電圧として受信する第3のアンテナとを備え、
     前記第1から第3のアンテナは、前記振動子の一部分の近傍に配置されており、
     前記チップは、前記振動子から前記被測定物へ向かう方向に突出した円弧状の形状を有する、プローブ。
    A vibrator having a rod-like shape and made of a piezoelectric body;
    A chip bonded to one end of the vibrator on the measured object side and having a hardness higher than that of the measured object;
    A holder that contacts the vibrator with a minimum contact area in the circumferential direction of the vibrator and holds a part of the vibrator corresponding to a vibration node of the vibrator;
    A first magnet disposed on the other end side of the vibrator and bonded to a support member that supports the holder;
    A second magnet disposed at a desired distance from the first magnet in the longitudinal direction of the vibrator, and having the same polarity as the first magnet;
    A first antenna connected to ground potential;
    A second antenna for applying an excitation voltage for exciting vibration of the vibrator to the vibrator in cooperation with the first antenna;
    A third antenna that receives the electric field generated in the vibrator due to the excitation voltage being applied to the vibrator as a voltage in cooperation with the first antenna;
    The first to third antennas are arranged in the vicinity of a part of the vibrator,
    The probe has a circular arc shape protruding in a direction from the vibrator toward the object to be measured.
  2.  前記振動子、前記チップ、前記第1の磁石および前記保持具を収容するケースと、
     前記振動子、前記第1の磁石および前記保持具と前記ケースとの間に充填され、前記振動子、前記チップ、前記第1の磁石および前記保持具とともに前記振動子の長さ方向に移動可能である樹脂部材とを更に備え、
     前記振動子の一方端および前記チップは、前記チップが前記被測定物に接触していないとき、前記ケースの開口部から外部へ突出しており、
     前記振動子、前記チップ、前記第1の磁石、前記保持具および前記樹脂部材は、前記ケースの端部が前記被測定物に接触することに伴って、前記第1の磁石から前記第2の磁石の方向へ移動する、請求項1に記載のプローブ。
    A case for housing the vibrator, the chip, the first magnet, and the holder;
    Filled between the vibrator, the first magnet and the holder and the case, and can be moved in the length direction of the vibrator together with the vibrator, the chip, the first magnet and the holder. And further comprising a resin member,
    The one end of the vibrator and the chip protrude outward from the opening of the case when the chip is not in contact with the object to be measured.
    The vibrator, the chip, the first magnet, the holder, and the resin member are moved from the first magnet to the second as the end of the case comes into contact with the object to be measured. The probe according to claim 1, which moves in the direction of the magnet.
  3.  前記保持具は、リング状の二トリルゴムからなる、請求項1に記載のプローブ。 The probe according to claim 1, wherein the holder is made of a ring-shaped nitrile rubber.
  4.  前記チップは、タングステンカーバイトからなる、請求項3に記載のプローブ。 The probe according to claim 3, wherein the tip is made of tungsten carbide.
  5.  前記振動子、前記チップ、前記第1の磁石および前記保持具を収容するケースと、
     前記振動子、前記第1の磁石および前記保持具と前記ケースとの間に充填され、前記振動子、前記チップ、前記第1の磁石および前記保持具とともに前記振動子の長さ方向に移動可能である樹脂部材とを更に備え、
     前記振動子の一方端および前記チップは、前記チップが前記被測定物に接触していないとき、前記ケースの開口部から外部へ突出しており、
     前記振動子、前記チップ、前記第1の磁石、前記保持具および前記樹脂部材は、前記ケースの端部が前記被測定物に接触することに伴って、前記第1の磁石から前記第2の磁石の方向へ移動する、請求項4に記載のプローブ。
    A case for housing the vibrator, the chip, the first magnet, and the holder;
    Filled between the vibrator, the first magnet and the holder and the case, and can be moved in the length direction of the vibrator together with the vibrator, the chip, the first magnet and the holder. And further comprising a resin member,
    The one end of the vibrator and the chip protrude outward from the opening of the case when the chip is not in contact with the object to be measured.
    The vibrator, the chip, the first magnet, the holder, and the resin member are moved from the first magnet to the second as the end of the case comes into contact with the object to be measured. The probe according to claim 4, which moves in the direction of the magnet.
  6.  前記振動子、前記チップ、前記第1の磁石および前記保持具を収容するケースと、
     前記振動子、前記第1の磁石および前記保持具と前記ケースとの間に充填され、前記振動子、前記チップ、前記第1の磁石および前記保持具とともに前記振動子の長さ方向に移動可能である樹脂部材とを更に備え、
     前記振動子の一方端および前記チップは、前記チップが前記被測定物に接触していないとき、前記ケースの開口部から外部へ突出しており、
     前記振動子、前記チップ、前記第1の磁石、前記保持具および前記樹脂部材は、前記ケースの端部が前記被測定物に接触することに伴って、前記第1の磁石から前記第2の磁石の方向へ移動する、請求項3に記載のプローブ。
    A case for housing the vibrator, the chip, the first magnet, and the holder;
    Filled between the vibrator, the first magnet and the holder and the case, and can be moved in the length direction of the vibrator together with the vibrator, the chip, the first magnet and the holder. And further comprising a resin member,
    The one end of the vibrator and the chip protrude outward from the opening of the case when the chip is not in contact with the object to be measured.
    The vibrator, the chip, the first magnet, the holder, and the resin member are moved from the first magnet to the second as the end of the case comes into contact with the object to be measured. The probe according to claim 3, which moves in the direction of the magnet.
  7.  前記チップは、タングステンカーバイトからなる、請求項1に記載のプローブ。 The probe according to claim 1, wherein the tip is made of tungsten carbide.
  8.  前記振動子、前記チップ、前記第1の磁石および前記保持具を収容するケースと、
     前記振動子、前記第1の磁石および前記保持具と前記ケースとの間に充填され、前記振動子、前記チップ、前記第1の磁石および前記保持具とともに前記振動子の長さ方向に移動可能である樹脂部材とを更に備え、
     前記振動子の一方端および前記チップは、前記チップが前記被測定物に接触していないとき、前記ケースの開口部から外部へ突出しており、
     前記振動子、前記チップ、前記第1の磁石、前記保持具および前記樹脂部材は、前記ケースの端部が前記被測定物に接触することに伴って、前記第1の磁石から前記第2の磁石の方向へ移動する、請求項7に記載のプローブ。
    A case for housing the vibrator, the chip, the first magnet, and the holder;
    Filled between the vibrator, the first magnet and the holder and the case, and can be moved in the length direction of the vibrator together with the vibrator, the chip, the first magnet and the holder. And further comprising a resin member,
    The one end of the vibrator and the chip protrude outward from the opening of the case when the chip is not in contact with the object to be measured.
    The vibrator, the chip, the first magnet, the holder, and the resin member are moved from the first magnet to the second as the end of the case comes into contact with the object to be measured. The probe according to claim 7, which moves in the direction of the magnet.
  9.  請求項1に記載のプローブと、
     前記励起電圧を前記第2のアンテナへ出力する電圧源と、
     前記第3のアンテナによって受信された受信電圧に基づいて前記振動子の共振周波数を検出し、その検出した共振周波数に基づいて前記被測定物のヤング率を算出する検出器とを備える測定装置。
    A probe according to claim 1;
    A voltage source for outputting the excitation voltage to the second antenna;
    And a detector that detects a resonance frequency of the vibrator based on the received voltage received by the third antenna and calculates a Young's modulus of the device to be measured based on the detected resonance frequency.
  10.  請求項1に記載のプローブと、
     前記励起電圧を前記第2のアンテナへ出力する電圧源と、
     前記第3のアンテナによって受信された受信電圧に基づいて前記振動子の共振周波数を有するピークの半値幅を検出し、または前記第3のアンテナによって受信された受信電圧に基づいて前記振動子が減衰するときの減衰定数を検出する検出器とを備える測定装置。
    A probe according to claim 1;
    A voltage source for outputting the excitation voltage to the second antenna;
    A half-width of a peak having a resonance frequency of the vibrator is detected based on a received voltage received by the third antenna, or the vibrator is attenuated based on a received voltage received by the third antenna. And a detector for detecting an attenuation constant when performing the measurement.
  11.  請求項1に記載のプローブと、
     前記振動子の共振周波数をn(nは2以上の整数)倍した周波数、または前記振動子の共振周波数を1/n倍した周波数を有する電圧を前記励起電圧として前記第2のアンテナへ出力する電圧源と、
     前記第3のアンテナによって受信された受信電圧に基づいて前記振動子の共振周波数が検出されたか否かを判定する判定器とを備える測定装置。
    A probe according to claim 1;
    A voltage having a frequency obtained by multiplying the resonance frequency of the vibrator by n (n is an integer of 2 or more) or a frequency obtained by multiplying the resonance frequency of the vibrator by 1 / n is output as the excitation voltage to the second antenna. A voltage source;
    And a determination device that determines whether or not a resonance frequency of the vibrator is detected based on a reception voltage received by the third antenna.
PCT/JP2012/061772 2011-05-10 2012-05-08 Probe and measuring device provided with same WO2012153739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013514018A JPWO2012153739A1 (en) 2011-05-10 2012-05-08 Probe and measuring apparatus having the probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-105292 2011-05-10
JP2011105292 2011-05-10

Publications (1)

Publication Number Publication Date
WO2012153739A1 true WO2012153739A1 (en) 2012-11-15

Family

ID=47139218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061772 WO2012153739A1 (en) 2011-05-10 2012-05-08 Probe and measuring device provided with same

Country Status (2)

Country Link
JP (1) JPWO2012153739A1 (en)
WO (1) WO2012153739A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207237A (en) * 2015-06-25 2019-12-05 マクセル株式会社 Hardness tester

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133691A (en) * 1995-11-10 1997-05-20 Seiko Instr Inc Cantilever with force displacement sensor
JPH09257760A (en) * 1996-03-21 1997-10-03 Ebara Corp Apparatus for estimating fatigue life by resonation of electromagnetic wave and sound wave
JP2004085548A (en) * 2002-07-04 2004-03-18 Wave Cyber:Kk Instrument for measuring mechanical characteristics on surface of viscoelastic body
JP2005037210A (en) * 2003-07-18 2005-02-10 Kyodo Yushi Co Ltd Method and apparatus for measuring coefficient of oscillation energy loss
JP2005201816A (en) * 2004-01-16 2005-07-28 Osaka Industrial Promotion Organization Elastic constant measuring instrument and method for measuring elastic constant of sample
JP2008216216A (en) * 2007-03-08 2008-09-18 Matsushita Electric Ind Co Ltd Probe card
WO2008126248A1 (en) * 2007-03-30 2008-10-23 Pioneer Corporation Driver unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133691A (en) * 1995-11-10 1997-05-20 Seiko Instr Inc Cantilever with force displacement sensor
JPH09257760A (en) * 1996-03-21 1997-10-03 Ebara Corp Apparatus for estimating fatigue life by resonation of electromagnetic wave and sound wave
JP2004085548A (en) * 2002-07-04 2004-03-18 Wave Cyber:Kk Instrument for measuring mechanical characteristics on surface of viscoelastic body
JP2005037210A (en) * 2003-07-18 2005-02-10 Kyodo Yushi Co Ltd Method and apparatus for measuring coefficient of oscillation energy loss
JP2005201816A (en) * 2004-01-16 2005-07-28 Osaka Industrial Promotion Organization Elastic constant measuring instrument and method for measuring elastic constant of sample
JP2008216216A (en) * 2007-03-08 2008-09-18 Matsushita Electric Ind Co Ltd Probe card
WO2008126248A1 (en) * 2007-03-30 2008-10-23 Pioneer Corporation Driver unit

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIROYUKI WAKI ET AL.: "Quantitative Evaluation of Young's Modulus of Thermally Growth Oxidation in Thermal Barrier Coating System by Resonance Ultrasound Microscopy", THE SOCIETY OF MATERIALS SCIENCE, vol. 57TH, 23 May 2008 (2008-05-23), JAPAN GAKUJUTSU KOENKAI KOEN RONBUNSHU, pages 341 - 342 *
TAKASHI INOUE ET AL.: "Development of resonance ultrasound microscopy and quantitative visualization of local stiffness of solids", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS NENJI TAIKAI KOEN RONBUNSHU, vol. 2007, no. 1, 7 September 2007 (2007-09-07), pages 521 - 522 *
YUTO SAKAMOTO ET AL.: "Ballpen-gata Kyoshin Young-ritsukei no Kaihatsu", JOURNAL OF JSNDI, vol. 61, no. 4, 1 April 2012 (2012-04-01), pages 173 - 174 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207237A (en) * 2015-06-25 2019-12-05 マクセル株式会社 Hardness tester

Also Published As

Publication number Publication date
JPWO2012153739A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
Migliori et al. Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens
US3323352A (en) Control circuit for resonant sensing device
Tufillaro Nonlinear and chaotic string vibrations
Spiel et al. Normal modes of a Si (100) double-paddle oscillator
CN108844555A (en) Method and system for determining unbalanced mass of gyro harmonic oscillator with cylindrical shell
CN110940353B (en) Piezoelectric excitation device of bare quartz vibrator and quality factor testing device and method
Pan et al. Observation and analysis of the quality factor variation behavior in a monolithic fused silica cylindrical resonator
CN109374729A (en) A kind of acoustics micro-mass sensor and detection method
US8836440B2 (en) Electromechanical oscillators, parametric oscillators, and torsional resonators based on piezoresistive nanowires
JPS61240140A (en) Method of detecting solid hardness
WO2012153739A1 (en) Probe and measuring device provided with same
JPH06221806A (en) Touch signal probe
JPH03500213A (en) Acoustic scanning microscope that inspects objects in the near field of a resonant acoustic oscillator
US20150089693A1 (en) Multi-resonant detection system for atomic force microscopy
Tian et al. Vibration analysis of an elastic-sphere oscillator contacting semi-infinite viscoelastic solids in resonant ultrasound microscopy
Feng et al. A three million Q factor tuning fork resonator based on a vibration isolation structure
Irfan et al. Dynamic multimodal response of bender element transmitter
JP5425914B2 (en) Quantitative evaluation method of atomic vacancy concentration existing in silicon wafer and method for manufacturing silicon wafer
Kudo Vibration characteristics of trident-type tuning-fork resonator in the second flexural mode for application to tactile sensors
US2550528A (en) Supersonic inspection
CN108802195B (en) Test device and method for measuring transverse wave velocity of core sample
JP2007071553A (en) Measuring method of thin film, measuring instrument of thin film and contact sensor used therein
Tian et al. Vibration analysis on electromagnetic-resonance-ultrasound microscopy (ERUM) for determining localized elastic constants of solids
De Paula et al. High sensitivity niobium parametric transducer for the Mario Schenberg gravitational wave detector
Zhao et al. A new impedance based sensitivity model of piezoelectric resonant cantilever sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782168

Country of ref document: EP

Kind code of ref document: A1