JP2004085548A - Instrument for measuring mechanical characteristics on surface of viscoelastic body - Google Patents

Instrument for measuring mechanical characteristics on surface of viscoelastic body Download PDF

Info

Publication number
JP2004085548A
JP2004085548A JP2003180260A JP2003180260A JP2004085548A JP 2004085548 A JP2004085548 A JP 2004085548A JP 2003180260 A JP2003180260 A JP 2003180260A JP 2003180260 A JP2003180260 A JP 2003180260A JP 2004085548 A JP2004085548 A JP 2004085548A
Authority
JP
Japan
Prior art keywords
viscoelastic body
measuring
force
contact
contact indenter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003180260A
Other languages
Japanese (ja)
Other versions
JP4154720B2 (en
Inventor
Takashi Haku
白 傑
Moriharu Ri
李 衛東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAVE CYBER KK
Original Assignee
WAVE CYBER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAVE CYBER KK filed Critical WAVE CYBER KK
Priority to JP2003180260A priority Critical patent/JP4154720B2/en
Publication of JP2004085548A publication Critical patent/JP2004085548A/en
Application granted granted Critical
Publication of JP4154720B2 publication Critical patent/JP4154720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure the elasticity and hardness of a viscoelastic body simultaneously by one operation for various kinds of viscoelastic body. <P>SOLUTION: In the instrument for measuring mechanical characteristics, a measuring head 14 having a press contactor 13 coming into contact with the surface S of a viscoelastic body is provided with an electromagnetic coil 15 and a permanent magnet 16 generating the pushing force of the press contactor 13. In the measuring head 14, a position sensor 12 for detecting the position of the press contactor 13 in real time is disposed, an electromagnetic force generated by the electromagnetic coil 15 and the permanent magnet 16 deforms the surface S of the viscoelastic body through the perss contactor 13, and the position of a position ID mark 11 of the press contactor 13 is detected by the position sensor 12 thus measuring deformation process of the surface S of the viscoelastic body. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、皮膚、スポンジ、ゴム製品、繊維製品など粘弾性体表面の力学特性を測定することのできる粘弾性体力学特性測定装置に関するものである。
【0002】
【従来の技術】
粘弾性体表面の粘弾性と硬さを測定することが産業上には欠かせないことである。皮膚整形および美容においては、治療の成果または化粧品の効果をチェックできるようにするため、皮膚の粘性と弾性及び硬さの測定を行うことがしばしば必要である。
【0003】
皮膚の粘弾性と硬さについては、エアポンプを使って空気圧で押圧を発生し、皮膚表面に変形を与える皮膚の変形度測定装置(特開平2−134131号公報)が知られている。この装置では、皮膚表面の変形が光の走行路を遮断することにより変化する受光量を読み取るようになっている。その受光量の変化を電気的に読み取って皮膚表面の弾性を測定する。しかしながら、このような装置では、エアポンプを使って皮膚表面を吸引或いは押圧するので、瞬間的に皮膚表面に押圧を与える或いは押圧を解除することができない。よって、粘弾性体表面の変形過程及び回復過程を正確に測定することが不可能である。また、測定ヘッドと被検体の間には充分に気密状態を保つ必要があるので、取り扱いにくい。
【0004】
さらに、人間の皮膚の粘弾性を測定する装置としては、(特開平08−029312号公報)に記載のような形の装置も知られている。圧電振動子あるいは圧電振動子の先端に設けた接触子を皮膚に接触させ、その接触の前後の振動周波数を周波数検出素子によって検出し、それらの周波数の差から皮膚の粘弾性を求める。しかし、振動子の固有振動周波数が変化する原理を利用したもので、被検体の硬さを求める(特開平5−322731号公報に参考)ことが主な目的であるため、振動子の被検体に接触前後の振動周波数差だけで粘弾性体の弾性データーを求めることが困難なところがある。
【0005】
【発明が解決しようとする課題】
本発明は従来技術のこのような問題点に鑑みてなされたものであり、その課題は幅広い種類の粘弾性体表面の粘弾性および硬さを1回の操作で同時に測定できる装置。
【0006】
【課題を解決するための手段】
上記の目的を達成するための本発明は、次のように構成される。すなわち、測定装置には、接触圧子と、前記測定ヘッドに初期張力をかけておくバネと、前記接触圧子を押し出すための電磁力発生部と、前記接触圧子の位置をリアルタイムで測定する位置センサーとを備え、前記接触圧子の電磁力の発生及び除去タイミングをマイクロプロセッサにより制御し、前記位置センサーにより前記接触圧子の位置を読み取りにより、粘弾性体表面の変形過程及び回復過程を測定し、前記粘弾性体表面の粘性と弾性及び硬さを測定することを特徴とするものである。
【0007】
この場合に、接触圧子を押し出すための電磁力発生部には電磁コイルと永久磁石を使用するほうがよい。また、電流の流れる前記電磁コイルと前記永久磁石により発生した電磁力を利用し、自在に移動し得る前記接触圧子を介して、被検体表面に変形を与えることを特徴とするものである。
【0008】
また、被検体表面が押圧される過程及び押圧を解除した後の元に回復する過程では前記接触圧子が被検体と接触しているので、前記接触圧子の位置を検出により被検体表面の変化過程を査定することができる。
【0009】
本発明において、簡単な構成で、1回の測定で簡単に自動的に粘弾性体表面の粘性と弾性及び硬さの状態などを同時に測定することができる。
【0010】
【発明の実施の形態】
本発明の粘弾性体表面の力学特性測定装置で用いる粘性、弾性、硬さの測定原理と実施例について説明する。
【0011】
まず、測定原理について説明する。硬さというのは物体の硬軟の程度で、これを定量的に示すことが困難で、通常一定荷重のもとで接触圧子を押し込み、荷重をくぼみの面積で割った値で硬さを設定することが多い。粘性というのは力を加えたり、力を解除したりすると直ちにもとの形に戻らず、しばらく時間を掛けて、元に戻る性質である。弾性ということは外力によって変形を受けた物体がその変形を元に戻そうとする力を生ずる性質である。
【0012】
粘弾性体が外力を受けたとき、変形の増大が時間的に遅れを示す、このような粘弾性体に対して、図1に示すように、フォークト・モデルはその挙動を表わす簡単な模型である。この関係は弾性率Gの理想弾性体01、及び粘性率ηの液体02中を動くダッシュポット03を並列に結合した模型で表わされる。このような粘弾性体の変形を遅れ弾性といい、外力を除去すれば弾性余効を示して結局は元の状態に戻る。このような緩和現象は下記の式で表れる。
F=Gγ+η(dγ/dt)・・・(1)
Fが応力、Gが粘弾性体の弾性率、ηが粘弾性体の粘性率、γがひずみ量、tが時間である。さらにη/Gが緩和時間である。
【0013】
また、本発明の測定流れを説明する。測定ヘッドを粘弾性体表面に当て、接触圧子の押圧を短時間でゼロから所定の目標値まで上げていく。それから、押圧を所与の休止時間の後に突然ゼロまで下げる。接触圧子の押圧を除去した後の被検体の表面回復過程が下記の式の関係を満足する。即ち:
m(dγ/dt)=Gγ+η(dγ/dt)・・・(2)
上記式中のmは粘弾性体表面に接触している接触圧子の質量である。この被検体表面のひずみ量γと時間tの関係を測定すれば、式(2)の数値解析により粘弾性体の弾性率G及び粘性率ηを算出することができる。さらに、押圧の目標値を被検体表面のくぼみの表面積で割った値が硬さ数である。
【0014】
また、本発明の第一実施例を説明する。図2は上記に基づいて構成した本発明の粘弾性体の力学特性測定装置の第一実施例の主要部の断面図であり、カバー17の中には、一定の圧力で被検体表面Sに押し付けるため、ばね19で初期張力をかけた測定ヘッド14を備え、測定ヘッド14を被検体表面Sに測定スタートスイッチ18が掛るまで押し付け、電磁コイル15が測定ヘッド14に固定され、電磁コイル15と永久磁石16により発生した電磁力で接触圧子13を被検体S側へ押圧し、接触圧子13に付けてある位置識別マーク11の位置が位置センサー12により検出される。この過程で、接触圧子13が被検体表面Sと接触しているので、接触圧子13の位置を測定するにより、被検体表面Sの凹み過程と最終的な凹み量を測定することができる。また、接触圧子13に掛けた電磁力を除去して、被検体表面Sが元の状態に戻る過程も位置センサー12により測定される。図示しないマイクロプロセッサが電磁コイル15に流れる電流を制御し、位置センサー12の出力データーを取り込んで被検体Sの粘性と弾性及び硬さを算出する。
【0015】
本発明の第二実施例を説明する。図4は第二実施例の主要部の断面図である。電磁力発生部では、第一実施例の永久磁石16の代わりに軟磁性体で構成したピストン20と軟磁性体で構成したリング状磁気増強体21と剛体棒22が配置され、磁気増強体21が電磁コイル15と一体となり、電磁コイル15とピストン20と磁気増強体21とにより発生した電磁力が剛体棒22を介して接触圧子13に伝わる。測定操作と接触圧子13の位置検出は第一実施例と同じである。
【0016】
本発明の第三実施例を説明する。図5は第三実施例の主要部及び被検体に押し付けた測定場合の断面図である。血管等パイプ状被検体の内面の力学特性を測定するには、第一実施例又は第二実施例の接触圧子13の先端に力伝達軸24が配置される。力伝達軸24と連結軸23a、23bとホルダ28に設けた固定軸25と剛体棒29a、29bと剛体触角26a、26bとによりパンタグラフと同様の力方向変換機構が構成される。第一実施例又は第二実施例の接触圧子13の押し出し力が前記力方向変換機構により、剛体触角26a、26bの相互に反対方向であって、押し出し力に対して、剛体触角26a、26b先端の垂直な方向の力に変換される。操作方法は測定装置をパイプ状被検体の中に入れて、剛体触角26a、26b先端のみ被検体に接触することである。検出方法は第一実施例又は第二実施例と同じ、接触圧子13の運動過程を測定により、パイプ状被検体の内面27の力学特性を解析する。
【0017】
以上、本発明の粘弾性体の力学特性測定装置の原理と実施例に基づいて説明してきたが、本発明はこれらの実施例に限定されず様々の変形が可能である。例えば、第一実施例では、永久磁石16は小型電磁コイルを用いても良い。また測定ヘッド14を被検体表面Sに測定スタートスイッチ18が掛るまで押し付けるの代わりに接触圧子13のみ被検体と接触し、接触圧子13の測定ヘッド14の中に凹む具合を測定して、マイクロプロセッサの制御により測定開始することも良い。さらに、第二実施例では、磁気増強のため設けた軟磁性体で構成した磁気増強体21がなくでも測定装置も構成できる。但し、この場合は、押し力の発生具合は多少悪くなる。
【0018】
【発明の効果】
本発明の粘弾性体表面の力学特性測定装置によると、簡単な構成で、1回の測定で簡単に自動的に粘弾性体の粘性と弾性及び硬さの測定を同時におこなうことができる。さらに、電磁力を利用したので、超小型測定プローブを作ることのできる点が本発明のもう一つ特徴である。
【図面の簡単な説明】
【図1】本発明において粘弾性体表面の力学特性測定装置の測定原理を説明するための図である。
【図2】本発明の第一実施例において粘弾性体表面の力学特性測定装置を説明するための測定プローブの構成を示す図である。
【図3】本発明の測定プローブを被検体に押し付けた場合の断面図である。
【図4】本発明の第二実施例について粘弾性体表面の力学特性測定装置を説明するための測定プローブの構成を示す図である。
【図5】本発明の第三実施例についてパイプ状粘弾性体内面の力学特性測定装置を説明するための測定プローブの構成とパイプ状被検体を測定する場合の断面図である。
【符号の説明】
01・・・理想弾性体
02・・・液体
03・・・ダッシュポット
11・・・位置識別マーク
12・・・位置センサー
13・・・接触圧子
14・・・測定ヘッド
15・・・電磁コイル
16・・・永久磁石
17・・・カバー
18・・・スタートスイッチ
19・・・バネ
20・・・ピストン
21・・・磁気増強体
22・・・剛体棒
23a,23b・・・連結軸
24・・・力伝達軸
25・・・固定軸
26a,26b・・・剛体触角
27・・・パイプ状被検体
28・・・ホルダ
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a viscoelastic body mechanical property measuring device capable of measuring mechanical properties of a viscoelastic body surface such as skin, sponge, rubber product, and fiber product.
[0002]
[Prior art]
It is indispensable in industry to measure the viscoelasticity and hardness of the viscoelastic body surface. In skin shaping and cosmetics, it is often necessary to measure the viscosity, elasticity and hardness of the skin so that the outcome of the treatment or the effect of the cosmetic can be checked.
[0003]
Regarding the viscoelasticity and hardness of the skin, there is known a skin deformation measuring device (Japanese Patent Application Laid-Open No. 2-134131) in which a pressure is generated by air pressure using an air pump to deform the skin surface. In this device, the amount of received light that changes when the skin surface deforms by blocking the light travel path is read. The change in the amount of received light is read electrically to measure the elasticity of the skin surface. However, in such a device, since the skin surface is sucked or pressed using the air pump, it is not possible to instantaneously apply or release the pressure to the skin surface. Therefore, it is impossible to accurately measure the deformation process and the recovery process of the viscoelastic body surface. In addition, since it is necessary to maintain a sufficiently airtight state between the measurement head and the subject, it is difficult to handle.
[0004]
Further, as an apparatus for measuring the viscoelasticity of human skin, an apparatus having a shape as described in (JP-A-08-029312) is also known. The piezoelectric vibrator or a contact provided at the tip of the piezoelectric vibrator is brought into contact with the skin, the vibration frequencies before and after the contact are detected by a frequency detecting element, and the viscoelasticity of the skin is determined from the difference between these frequencies. However, since the principle of changing the natural vibration frequency of the vibrator is used and its main purpose is to determine the hardness of the subject (see Japanese Patent Application Laid-Open No. 5-322273), the In some cases, it is difficult to obtain the elasticity data of the viscoelastic body only by the vibration frequency difference before and after the contact.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of such problems of the prior art, and an object thereof is an apparatus capable of simultaneously measuring the viscoelasticity and hardness of a wide variety of viscoelastic bodies in one operation.
[0006]
[Means for Solving the Problems]
The present invention for achieving the above object is configured as follows. That is, the measuring device includes a contact indenter, a spring for applying an initial tension to the measuring head, an electromagnetic force generator for pushing the contact indenter, and a position sensor for measuring the position of the contact indenter in real time. The microprocessor controls the generation and removal timing of the electromagnetic force of the contact indenter, reads the position of the contact indenter by the position sensor, measures the deformation process and the recovery process of the viscoelastic body surface, It is characterized by measuring the viscosity, elasticity and hardness of the elastic body surface.
[0007]
In this case, it is better to use an electromagnetic coil and a permanent magnet for the electromagnetic force generating section for pushing out the contact indenter. In addition, the present invention is characterized in that the surface of the subject is deformed through the contact indenter that can move freely by utilizing the electromagnetic force generated by the electromagnetic coil through which the current flows and the permanent magnet.
[0008]
Further, in the process of pressing the surface of the subject and the process of recovering the original state after releasing the pressing, the contact indenter is in contact with the subject, and thus the position of the contact indenter is detected to change the surface of the subject. Can be assessed.
[0009]
In the present invention, the viscosity, elasticity, hardness, and the like of the surface of the viscoelastic body can be simultaneously and simply measured with one simple measurement with a simple configuration.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The measurement principle and examples of viscosity, elasticity, and hardness used in the viscoelastic body surface mechanical characteristic measuring apparatus of the present invention will be described.
[0011]
First, the principle of measurement will be described. Hardness is the degree of hardness of an object, and it is difficult to indicate this quantitatively.In general, a contact indenter is pushed in under a constant load, and the hardness is set by dividing the load by the area of the depression. Often. Viscosity is the property of not returning to its original shape immediately after applying or releasing force, but returning to its original form over a period of time. Elasticity is a property in which an object deformed by an external force generates a force to restore the deformation.
[0012]
When the viscoelastic body is subjected to an external force, the increase in deformation is delayed in time. For such a viscoelastic body, as shown in FIG. 1, the Voigt model is a simple model representing the behavior. is there. This relationship is represented by a model in which an ideal elastic body 01 having an elastic modulus G and a dashpot 03 moving in a liquid 02 having a viscosity η are connected in parallel. Such deformation of the viscoelastic body is called delayed elasticity, and when an external force is removed, an elastic aftereffect is exhibited and eventually returns to the original state. Such a relaxation phenomenon is expressed by the following equation.
F = Gγ + η (dγ / dt) (1)
F is the stress, G is the elastic modulus of the viscoelastic body, η is the viscosity of the viscoelastic body, γ is the amount of strain, and t is time. Further, η / G is the relaxation time.
[0013]
Further, the measurement flow of the present invention will be described. The measuring head is brought into contact with the surface of the viscoelastic body, and the pressure of the contact indenter is increased from zero to a predetermined target value in a short time. The pressure is then suddenly reduced to zero after a given dwell time. The process of recovering the surface of the subject after removing the pressing of the contact indenter satisfies the relationship of the following equation. That is:
m (d 2 γ / dt 2 ) = Gγ + η (dγ / dt) (2)
M in the above equation is the mass of the contact indenter in contact with the viscoelastic body surface. If the relationship between the strain amount γ of the surface of the subject and the time t is measured, the elastic modulus G and the viscosity η of the viscoelastic body can be calculated by numerical analysis of Expression (2). Furthermore, the value obtained by dividing the target value of the pressing by the surface area of the depression on the surface of the subject is the hardness number.
[0014]
Further, a first embodiment of the present invention will be described. FIG. 2 is a sectional view of a main part of the first embodiment of the viscoelastic body mechanical characteristic measuring apparatus of the present invention configured based on the above. In order to press the measurement head 14, the measurement head 14 is provided with an initial tension by a spring 19, and the measurement head 14 is pressed against the subject surface S until the measurement start switch 18 is applied. The contact indenter 13 is pressed toward the subject S by the electromagnetic force generated by the permanent magnet 16, and the position of the position identification mark 11 attached to the contact indenter 13 is detected by the position sensor 12. In this process, since the contact indenter 13 is in contact with the surface S of the subject, by measuring the position of the contact indenter 13, the process of recessing the surface S of the subject and the final recess amount can be measured. The process of removing the electromagnetic force applied to the contact indenter 13 and returning the subject surface S to the original state is also measured by the position sensor 12. A microprocessor (not shown) controls the current flowing through the electromagnetic coil 15 and takes in the output data of the position sensor 12 to calculate the viscosity, elasticity and hardness of the subject S.
[0015]
A second embodiment of the present invention will be described. FIG. 4 is a sectional view of a main part of the second embodiment. In the electromagnetic force generating unit, instead of the permanent magnet 16 of the first embodiment, a piston 20 made of a soft magnetic material, a ring-shaped magnetic augment 21 made of a soft magnetic material, and a rigid rod 22 are arranged. Are integrated with the electromagnetic coil 15, and the electromagnetic force generated by the electromagnetic coil 15, the piston 20, and the magnetic enhancer 21 is transmitted to the contact indenter 13 via the rigid rod 22. The measurement operation and the position detection of the contact indenter 13 are the same as those in the first embodiment.
[0016]
A third embodiment of the present invention will be described. FIG. 5 is a cross-sectional view of a main part of the third embodiment and a case of measurement pressed against a subject. In order to measure the mechanical characteristics of the inner surface of a pipe-shaped subject such as a blood vessel, a force transmission shaft 24 is disposed at the tip of the contact indenter 13 of the first embodiment or the second embodiment. The force transmitting shaft 24, the connecting shafts 23a and 23b, the fixed shaft 25 provided on the holder 28, the rigid rods 29a and 29b, and the rigid antennas 26a and 26b constitute a force direction converting mechanism similar to a pantograph. The pushing force of the contact indenter 13 of the first embodiment or the second embodiment is in the opposite directions of the rigid antennas 26a, 26b by the force direction conversion mechanism, and the pushing force is changed to the tip of the rigid antennas 26a, 26b. Is converted to a vertical force. The operation method is to put the measuring device into a pipe-shaped subject, and contact only the tips of the rigid antennas 26a and 26b with the subject. The detection method is the same as that of the first embodiment or the second embodiment. The mechanical characteristics of the inner surface 27 of the pipe-shaped subject are analyzed by measuring the movement process of the contact indenter 13.
[0017]
As described above, the description has been given based on the principle and the embodiment of the viscoelastic body mechanical characteristic measuring apparatus of the present invention. However, the present invention is not limited to these embodiments, and various modifications are possible. For example, in the first embodiment, the permanent magnet 16 may use a small electromagnetic coil. Instead of pressing the measurement head 14 against the surface S of the subject until the measurement start switch 18 is engaged, only the contact indenter 13 comes into contact with the subject, and the degree of depression of the contact indenter 13 into the measurement head 14 is measured. It is also possible to start the measurement by the control of. Furthermore, in the second embodiment, a measuring device can be configured without the magnetic enhancer 21 composed of a soft magnetic material provided for magnetic enhancement. However, in this case, the degree of generation of the pressing force is slightly deteriorated.
[0018]
【The invention's effect】
According to the viscoelastic body surface dynamic characteristic measuring apparatus of the present invention, the viscosity, elasticity, and hardness of the viscoelastic body can be automatically and simultaneously measured with one simple measurement with a simple configuration. Further, another feature of the present invention is that an ultra-small measuring probe can be manufactured by using an electromagnetic force.
[Brief description of the drawings]
FIG. 1 is a view for explaining a measurement principle of a device for measuring mechanical properties of a viscoelastic body surface according to the present invention.
FIG. 2 is a diagram showing a configuration of a measurement probe for describing a device for measuring mechanical properties of a viscoelastic body surface in the first embodiment of the present invention.
FIG. 3 is a cross-sectional view when a measurement probe of the present invention is pressed against a subject.
FIG. 4 is a diagram showing a configuration of a measurement probe for describing a device for measuring mechanical properties of a viscoelastic body surface according to a second embodiment of the present invention.
FIG. 5 is a cross-sectional view of a configuration of a measurement probe for explaining a mechanical characteristic measuring device for a pipe-shaped viscoelastic body surface according to a third embodiment of the present invention and a case of measuring a pipe-shaped subject.
[Explanation of symbols]
01 ... Ideal elastic body 02 ... Liquid 03 ... Dash pot 11 ... Position identification mark 12 ... Position sensor 13 ... Contact indenter 14 ... Measurement head 15 ... Electromagnetic coil 16 ... permanent magnet 17 ... cover 18 ... start switch 19 ... spring 20 ... piston 21 ... magnetic enhancer 22 ... rigid rods 23a and 23b ... connecting shaft 24 ... -Force transmission shaft 25-Fixed shafts 26a, 26b-Rigid antenna 27-Pipe-shaped subject 28-Holder

Claims (5)

粘弾性体の力学特性を測定する装置であって、粘弾性体表面Sに接触する接触圧子13を有する測定ヘッド14には、前記接触圧子の押し出し力を発生する電磁コイル15と永久磁石16を備えたものにおいて、前記測定ヘッドでは、前記接触圧子の位置をリアルタイムで検出できる位置センサー12が配置され、前記電磁コイルと前記永久磁石により発生した電磁力が前記接触圧子を介して前記粘弾性体表面に変形を与え、前記位置センサーで前記接触圧子の位置識別マーク11の位置を検出することにより前記粘弾性体表面の変形過程及び電磁力を除去した後の粘弾性体表面Sの元に回復過程を測定することを特徴とする粘弾性体表面の力学特性測定装置。A measuring head 14 having a contact indenter 13 that is in contact with a viscoelastic body surface S is an apparatus for measuring the mechanical characteristics of a viscoelastic body, and is provided with an electromagnetic coil 15 and a permanent magnet 16 for generating a pushing force of the contact indenter. In the measuring head, a position sensor 12 capable of detecting the position of the contact indenter in real time is disposed in the measuring head, and an electromagnetic force generated by the electromagnetic coil and the permanent magnet is applied to the viscoelastic body through the contact indenter. The surface is deformed, and the position sensor detects the position of the position identification mark 11 of the contact indenter, thereby recovering the viscoelastic body surface S after removing the deformation process and the electromagnetic force of the viscoelastic body surface. An apparatus for measuring mechanical properties of a surface of a viscoelastic body, characterized by measuring a process. 前記永久磁石の動きが前記電磁コイルに流れる電流の大きさ及び方向によって制御されることを特徴とする請求項第1項に記載される測定装置。The measuring device according to claim 1, wherein the movement of the permanent magnet is controlled by the magnitude and direction of a current flowing through the electromagnetic coil. 自在に移動し得る前記接触圧子が前記永久磁石に押され、被検体に変形を与えることを特徴とする請求項第1項に記載される測定装置。The measuring device according to claim 1, wherein the movable contact indenter is pressed by the permanent magnet to deform the subject. 請求項1の粘弾性体の力学特性を測定する装置では、前記永久磁石の代わりに軟磁性体で構成されたピストン20と前記電磁コイルと一体になった軟磁性体で構成した磁気増強体21を備えたものにおいて、前記電磁コイルと前記磁気増強体と前記ピストンとにより発生した電磁力が剛体棒22を介して、前記接触圧子に伝わることを特徴とする粘弾性体表面の力学特性測定装置。In the apparatus for measuring mechanical properties of a viscoelastic body according to claim 1, a piston 20 made of a soft magnetic material instead of the permanent magnet and a magnetic enhancer 21 made of a soft magnetic material integrated with the electromagnetic coil. Wherein the electromagnetic force generated by the electromagnetic coil, the magnetic enhancer, and the piston is transmitted to the contact indenter via a rigid rod 22, and a mechanical characteristic measuring device for a viscoelastic body surface is provided. . パイプ状粘弾性体の内面の力学特性測定装置であって、請求項1又は請求項4の粘弾性体の力学特性を測定する装置では、前記接触圧子の先端に力伝達軸24が配置される。前記力伝達軸と連結軸23a,23bと固定軸25と剛体棒29a,29bと剛体触角26a,26bとにより力方向変換機構が構成され、前記接触圧子の押出し力が前記力方向変換機構により、前記剛体触角26aと26bが相互に反対方向であって、前記接触圧子の押し出し力に対して、前記剛体触角先端の垂直な方向の力に変換されることを特徴とする粘弾性体表面の力学特性測定装置。In the apparatus for measuring the mechanical properties of a viscoelastic body according to claim 1 or 4, a force transmission shaft 24 is disposed at the tip of the contact indenter. . The force transmitting shaft, the connecting shafts 23a and 23b, the fixed shaft 25, the rigid rods 29a and 29b, and the rigid antennas 26a and 26b constitute a force direction changing mechanism. The pushing force of the contact indenter is changed by the force direction changing mechanism. The rigidity of the surface of the viscoelastic body is characterized in that the rigid antennas 26a and 26b are in opposite directions to each other, and the pushing force of the contact indenter is converted into a force in a direction perpendicular to the tip of the rigid antenna. Characteristic measuring device.
JP2003180260A 2002-07-04 2003-06-24 Measuring device for mechanical properties of viscoelastic surface Expired - Fee Related JP4154720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003180260A JP4154720B2 (en) 2002-07-04 2003-06-24 Measuring device for mechanical properties of viscoelastic surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002196583 2002-07-04
JP2003180260A JP4154720B2 (en) 2002-07-04 2003-06-24 Measuring device for mechanical properties of viscoelastic surface

Publications (2)

Publication Number Publication Date
JP2004085548A true JP2004085548A (en) 2004-03-18
JP4154720B2 JP4154720B2 (en) 2008-09-24

Family

ID=32072010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003180260A Expired - Fee Related JP4154720B2 (en) 2002-07-04 2003-06-24 Measuring device for mechanical properties of viscoelastic surface

Country Status (1)

Country Link
JP (1) JP4154720B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250557A (en) * 2005-03-08 2006-09-21 Citizen Watch Co Ltd Hardness tester
JP2009052912A (en) * 2007-08-23 2009-03-12 Univ Nihon Hardness and softness testing method, testing apparatus and, measuring instrument
JP2009240374A (en) * 2008-03-28 2009-10-22 Osaka Univ Dermal characteristic measuring device and dermal characteristic measuring program
US7663362B2 (en) 2006-08-09 2010-02-16 Sony Corporation Device and method for detecting deformation of the viscoelastic magnet
KR100947276B1 (en) 2008-05-09 2010-03-11 국방과학연구소 Apparatus for testing stress relaxation
JP2010523974A (en) * 2007-04-03 2010-07-15 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Improved methods and equipment for material testing
US8105270B2 (en) 2002-09-06 2012-01-31 Massachusetts Institute Of Technology Measuring properties of an anatomical body
WO2012153739A1 (en) * 2011-05-10 2012-11-15 インサイト株式会社 Probe and measuring device provided with same
US8758271B2 (en) 2009-09-01 2014-06-24 Massachusetts Institute Of Technology Nonlinear system identification techniques and devices for discovering dynamic and static tissue properties
US9265461B2 (en) 2009-09-01 2016-02-23 Massachusetts Institute Of Technology Identification techniques and device for testing the efficacy of beauty care products and cosmetics
US9308326B2 (en) 2005-02-11 2016-04-12 Massachusetts Institute Of Technology Controlled needle-free transport
US9333060B2 (en) 2009-12-15 2016-05-10 Massachusetts Institute Of Technology Plaque removal and differentiation of tooth and gum
CN106726419A (en) * 2017-01-25 2017-05-31 浙江大学 A kind of reaction type shock wave treatment instrument control system
CN111771115A (en) * 2018-03-07 2020-10-13 弗朗西斯科·提姆珀尼 Snap fastener device for non-destructive characterization of materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6829065B2 (en) * 2016-12-19 2021-02-10 マクセル株式会社 Hardness meter and hardness measurement method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105270B2 (en) 2002-09-06 2012-01-31 Massachusetts Institute Of Technology Measuring properties of an anatomical body
US9308326B2 (en) 2005-02-11 2016-04-12 Massachusetts Institute Of Technology Controlled needle-free transport
US10326347B2 (en) 2005-02-11 2019-06-18 Massachusetts Institute Of Technology Controlled needle-free transport
JP2006250557A (en) * 2005-03-08 2006-09-21 Citizen Watch Co Ltd Hardness tester
US7663362B2 (en) 2006-08-09 2010-02-16 Sony Corporation Device and method for detecting deformation of the viscoelastic magnet
US8536863B2 (en) 2006-08-09 2013-09-17 Sony Corporation Detecting device having viscoelastic magnet
JP2010523974A (en) * 2007-04-03 2010-07-15 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Improved methods and equipment for material testing
JP2009052912A (en) * 2007-08-23 2009-03-12 Univ Nihon Hardness and softness testing method, testing apparatus and, measuring instrument
JP2009240374A (en) * 2008-03-28 2009-10-22 Osaka Univ Dermal characteristic measuring device and dermal characteristic measuring program
KR100947276B1 (en) 2008-05-09 2010-03-11 국방과학연구소 Apparatus for testing stress relaxation
US9265461B2 (en) 2009-09-01 2016-02-23 Massachusetts Institute Of Technology Identification techniques and device for testing the efficacy of beauty care products and cosmetics
US8758271B2 (en) 2009-09-01 2014-06-24 Massachusetts Institute Of Technology Nonlinear system identification techniques and devices for discovering dynamic and static tissue properties
US9517030B2 (en) 2009-09-01 2016-12-13 Massachusetts Institute Of Technology Nonlinear system identification techniques and devices for discovering dynamic and static tissue properties
US10463276B2 (en) 2009-09-01 2019-11-05 Massachusetts Institute Of Technology Nonlinear system identification techniques and devices for discovering dynamic and static tissue properties
US9333060B2 (en) 2009-12-15 2016-05-10 Massachusetts Institute Of Technology Plaque removal and differentiation of tooth and gum
WO2012153739A1 (en) * 2011-05-10 2012-11-15 インサイト株式会社 Probe and measuring device provided with same
CN106726419A (en) * 2017-01-25 2017-05-31 浙江大学 A kind of reaction type shock wave treatment instrument control system
CN111771115A (en) * 2018-03-07 2020-10-13 弗朗西斯科·提姆珀尼 Snap fastener device for non-destructive characterization of materials

Also Published As

Publication number Publication date
JP4154720B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4154720B2 (en) Measuring device for mechanical properties of viscoelastic surface
JP4189840B2 (en) Apparatus and program for estimating viscoelasticity of soft tissue using ultrasound
CN100571610C (en) Pressure measurement method, pressure gauge and tonometer
JP5505684B2 (en) Tonometry device
Menciassi et al. Force feedback-based microinstrument for measuring tissue properties and pulse in microsurgery
Brunetto et al. A resonant vibrating tactile probe for biomedical applications based on IPMC
EP0897287B1 (en) A method and a device for recording mechanical oscillations in soft biological tissues
US3308653A (en) Vibration tonometer
AU2017305286B2 (en) Ultrasonic device and device for generating mechanical vibration
CN105640593B (en) It is a kind of for measuring the elasticity measuring device of viscoelastic medium
Fu et al. A forefinger-like tactile sensor for elasticity sensing based on piezoelectric cantilevers
JP2007024606A (en) Measuring method and instrument for viscoelastic characteristics
JP2012526970A (en) A method to characterize the feel of the surface
JP2004077346A (en) Tactile sensor, surface form measurement system using the same, and surface form measurement method
JP6971130B2 (en) Tactile measuring device
JP3138898U (en) Measuring device for viscoelastic properties
JP6954667B2 (en) Method for measuring skin viscoelastic properties and device for measuring skin viscoelastic properties
JP7051112B2 (en) Method for measuring viscoelastic properties of skin and equipment using this
KR102082657B1 (en) Apparatus for Stiffness Measurement
JP3595849B1 (en) Fatigue test equipment for micro / nano materials
JP2019203886A (en) Tactile sense evaluation method and tactile sense measuring device
Kern et al. Studies of the mechanical impedance of the index finger in multiple dimensions
CN112839570A (en) Skin evaluation method and skin evaluation device
JP2005127717A (en) Tactual sense meter
JP2013088129A (en) Method and apparatus for measuring viscoelastic properties of ultrasonic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4154720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150718

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees