WO2012152214A1 - Transmission parameter indication/transmission parameter determination method and device - Google Patents

Transmission parameter indication/transmission parameter determination method and device Download PDF

Info

Publication number
WO2012152214A1
WO2012152214A1 PCT/CN2012/075188 CN2012075188W WO2012152214A1 WO 2012152214 A1 WO2012152214 A1 WO 2012152214A1 CN 2012075188 W CN2012075188 W CN 2012075188W WO 2012152214 A1 WO2012152214 A1 WO 2012152214A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
port
transmission
length
parameter
Prior art date
Application number
PCT/CN2012/075188
Other languages
French (fr)
Chinese (zh)
Inventor
孙云锋
李儒岳
郭森宝
陈艺戬
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110118555.2A external-priority patent/CN102781098B/en
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012152214A1 publication Critical patent/WO2012152214A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0665Feed forward of transmit weights to the receiver

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for determining a transmission parameter indication/transmission parameter.
  • a base station side for example, an evolved Node B or an eNB
  • spatial multiplexing may be adopted to increase the data transmission rate, that is, the same time-frequency resource is used at the transmitting end.
  • Different data is transmitted at different antenna positions, and the receiving end (for example, user equipment UE) also receives data using a plurality of antennas.
  • resources of all antennas are allocated to the same user. The user occupies the physical resources allocated by the base station side in a single transmission interval.
  • This type of transmission is called single-user multiple-input and multiple-out (Single User Multiple- Input Multiple-Output (SU-MIMO); in the case of multiple users, space resources of different antennas are allocated to different users, and one user and at least one other user share physical resources allocated by the base station side in one transmission interval.
  • the sharing mode may be a space division multiple access mode or a space division multiplexing mode.
  • the transmission mode is called Multiple User Multiple-Input Multiple-Output (MU-MIMO), where the base station side allocates Physical resources refer to time-frequency resources. If the transmission system is to support both SU-MIMO and MU-MIMO, the eNB needs to provide the UE with data in these two modes.
  • the UE When the UE is in the SU-MIMO mode or the MU-MIMO mode, it is necessary to know the rank (Rank) used by the eNB to transmit MIMO data for the UE.
  • Rank the rank used by the eNB to transmit MIMO data for the UE.
  • SU-MIMO mode all antenna resources are allocated to the same user, and the number of layers used to transmit MIMO data is equal to the rank used by the eNB to transmit MIMO data.
  • MU-MIMO mode the number of layers used for one user transmission is small. The total number of layers of MIMO data transmitted by the eNB, if the SU-MIMO mode and the MU-MIMO handover are to be performed, the eNB needs to notify the UE of different control data in different transmission modes.
  • the following three types of downlink physical control channels are defined in the Release 8 standard of the Long-Term Evolution (LTE): Physical Control Format Indicator Channel (PCFICH), physical The Hybrid Automatic Retransmission Request Indicator Channel (PHICH) and the Physical Downlink Control Channel (PDCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH physical The Hybrid Automatic Retransmission Request Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • the PDCCH is used to carry downlink control information (Downlink Control Information, DCI for short), and includes: uplink and downlink scheduling information, and uplink power control information.
  • the DCI format (DCI format) is divided into the following types: DCI format 0, DCI format 1, DCI format 1A, DCI format 1B, DCI format 1C, DCI format 1D, DCI format 2, DCI format 2A, DCI format 3 and P DCI format 3 A, etc.; support defined in version 8 MU-MIMO transmission mode using 5 downlink control information DCI format ID, and the DCI format ID field in the downlink power (Downlink power offset field, expressed as a. WCT _. Ffset) for indicating to the MU-MIMO mode One user's power is halved (ie, -lOloglO(2)), because MU-MIMO transmission mode 5 only supports MU-MIMO transmission for two users.
  • MU-MIMO transmission mode 5 can support SU.
  • - Dynamic switching of MIMO mode and MU-MIMO mode but this DCI format supports only one stream transmission for one UE regardless of SU-MIMO mode or MU-MIMO mode, although LTE Release 8 supports up to two in transmission mode 4.
  • Streaming single-user transmission but since the switching between transmission modes can only be semi-static, dynamic switching of single-user multi-stream transmission and multi-user transmission cannot be achieved in LTE Release 8.
  • a dual-stream beamforming (Beamforming) transmission mode is introduced, and downlink control information is added to DCI format 2B to support this transmission mode, in DCI format 2B.
  • Beamforming beamforming
  • SCID Scrambling Identity
  • e B can allocate the two scrambling code sequences to different users and multiplex multiple resources in the same resource. user.
  • DI New Data Indication
  • Transabled Transabled
  • the beam transmission of the layer transmission is added, and the downlink control information is added to the DCI format 2C to support the transmission mode.
  • the SCID, the number of layers, and the antenna port are designed and coded by joint coding, and The SCID bit used in mode 8 to indicate the scrambling code sequence identity is used.
  • the (DI) bit is also used to indicate the antenna port for single layer transmission.
  • each port is orthogonalized by an Orthogonal Cover Code (OCC).
  • OCC Orthogonal Cover Code
  • Table 1 Different orthogonal frequency division multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • corresponds to the physical time-frequency resource for the physical downlink shared channel (Physical Downlink Share Channel, PDSCH) transmission. index. Table 1
  • transmission mode 9 can support up to 8 layers of data transmission in SU-MIMO mode, it does not enhance MU-MIMO compared to mode 8, that is, it can only support two users at most and only 1 per user.
  • Demodulation pilots in the case of layer transmission are orthogonal.
  • the demodulation reference signal on which the transmission mode 9 depends is generated according to the cell identity, and in mode 8 and mode 9, the demodulation pilot pattern positions between different nodes are the same, at the cell edge.
  • the pilots between users with different nodes occupying the same resource cannot be orthogonal, which is not conducive to the elimination of interference.
  • the macro cell and the low power node (LPN) have serious interference.
  • LTE Release 11 it is proposed to reduce interference between a macro cell and a low power node by using centralized scheduling in a heterogeneous network in such a manner that the macro cell and the low power node adopt the same cell identity.
  • DCI format 2C corresponding to mode 9 Based on the DCI format 2C corresponding to mode 9, only two layers of orthogonal transmission can be realized between two nodes, that is, each node can only transmit by one layer, and the orthogonality of the demodulation pilot can be realized. Limiting the gain brought by cell splitting, an effective solution has not been proposed for this problem.
  • the present invention provides a transmission parameter indication/transmission parameter determination method and apparatus to solve at least one of the above problems.
  • a transmission parameter indication method including: jointly coding a transmission parameter to generate parameter indication signaling, where the transmission parameter includes: a number of layers to be transmitted, a scrambling code sequence identity, an antenna port, and a guide.
  • the frequency overhead is sent to the user equipment by using the downlink control information.
  • Performing joint coding on the transmission parameters to generate the parameter indication signaling includes: determining a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted according to the transmission parameter, and generating parameter indication signaling according to the mapping manner.
  • the method further includes: indicating, according to the size of the allocated port number, a orthogonal mask despreading length, when the allocated maximum port number is greater than the first threshold, the user equipment adopts the first The orthogonal mask of the length, when the allocated maximum port number is less than or equal to the first threshold, the user equipment adopts an orthogonal mask of the first length or the second length, wherein the first length is greater than the second length.
  • Coding the transmission parameters to generate the parameter indication signaling includes: when only one transport block is enabled, the new data indication bit corresponding to the non-enabled transport block is used for joint coding.
  • a transmission parameter indication apparatus including: a joint coding module, configured to jointly encode a transmission parameter to generate parameter indication signaling, where the transmission parameter includes: a number of layers to be transmitted, and a scrambling code The sequence identity, the antenna port, and the pilot overhead; the signaling sending module is configured to send the parameter indication signaling to the user equipment by using downlink control information.
  • the joint coding module includes: a signaling design unit, configured to determine a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted according to the transmission parameter, and generate parameter indication signaling according to the mapping manner.
  • the device further includes: a mask indication module, configured to indicate an orthogonal mask despreading length according to the size of the allocated port number, and when the allocated maximum port number is greater than the first threshold, the user equipment adopts a first length orthogonal mask The user equipment adopts an orthogonal mask of a first length or a second length, wherein the first length is greater than the second length, when the allocated maximum port number is less than or equal to the first threshold.
  • the joint coding module further includes: a bit reuse unit configured to use the new data indication bit corresponding to the non-enabled transport block for joint coding when only one transport block is enabled.
  • a method for determining a transmission parameter including: receiving, by a user equipment, a parameter indication signaling sent by a transmission parameter indication device by using downlink control information; and determining, by the user equipment, a transmission parameter configuration according to the parameter indication signaling
  • the parameter indication signaling is generated by the transmission parameter indication device by jointly coding the transmission parameter, where the transmission parameter includes: a number of layers to be transmitted, a scrambling code sequence identity, an antenna port, and a pilot overhead.
  • Performing joint coding on the transmission parameters to generate the parameter indication signaling includes: determining a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted according to the transmission parameter, and generating parameter indication signaling according to the mapping manner.
  • the method further includes: determining an orthogonal mask despreading length according to the size of the allocated port number, and adopting the first length when the allocated maximum port number is greater than the first threshold.
  • the orthogonal mask when the allocated maximum port number is less than or equal to the first threshold, adopts an orthogonal mask of the first length or the second length, wherein the first length is greater than the second length. Coding the transmission parameters to generate the parameter indication signaling includes: when only one transport block is enabled, the new data indication bit corresponding to the non-enabled transport block is used for joint coding.
  • a transmission parameter determining apparatus including: a signaling receiving module, configured to receive parameter indication signaling sent by a transmission parameter indication device by using downlink control information; and a parameter determining module configured to be according to the foregoing
  • the parameter indication signaling determines the transmission parameter configuration, where the parameter indication signaling is generated by the transmission parameter indication device by jointly coding the transmission parameter, where the transmission parameter includes: the number of layers to be transmitted, the identity of the scrambling code sequence, the antenna port, Pilot overhead.
  • the transmission parameter indication device determines a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted according to the transmission parameter, and generates parameter indication signaling according to the mapping manner.
  • the device further includes: a mask determining module, configured to determine an orthogonal mask despreading length according to the size of the allocated port number, and when the allocated maximum port number is greater than the first threshold, adopting a first length orthogonal mask, When the allocated maximum port number is less than or equal to the first threshold, an orthogonal mask of the first length or the second length is adopted, wherein the first length is greater than the second length.
  • the transmission parameter indicating means uses the new data indication bit corresponding to the non-enabled transport block for joint coding.
  • the present invention solves the problem that the transmission parameter of the transmission layer, the scrambling code sequence identity, the antenna port, the pilot overhead, and the like are jointly encoded to generate parameter indication signaling, and the downlink control information is sent to the user equipment.
  • the technology in SU-MIMO mode, only two layers of orthogonal transmission can be realized between two nodes, thereby achieving more demodulation pilot orthogonality between multiple users supporting the same cell. The effect of the transmission in case.
  • FIG. 1 is a flowchart of a transmission parameter indication method according to an embodiment of the present invention
  • Is a demodulation pilot pattern of OCC 4 in a normal cyclic prefix in LTE Rel-10 according to an example of the present invention
  • FIG. 1 is a flowchart of a transmission parameter indication method according to an embodiment of the present invention
  • FIG. 1 is a flowchart of a transmission parameter indication method according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of a transmission parameter indication apparatus according to an embodiment of the present invention
  • FIG. 5 is a preferred embodiment according to the present invention.
  • FIG. 6 is a flowchart of a transmission parameter determining method according to an embodiment of the present invention
  • FIG. 7 is a structural block diagram of a transmission parameter determining apparatus according to an embodiment of the present invention
  • a transmission parameter indication method includes: Step S102: Jointly coding a transmission parameter to generate parameter indication signaling, where the transmission parameter includes: a number of layers to be transmitted, a scrambling code sequence identity, and an antenna. Port and pilot overhead; Step S104: Send the parameter indication signaling to the user equipment by using downlink control information.
  • the parameter indication method when indicating the transmission parameter of the user equipment, jointly encodes the parameters of the number of layers, the scrambling code sequence identity, the antenna port, and the pilot overhead to generate parameter indication signaling, and then sends the parameter to the user through the downlink control information. device.
  • step S102 may further include a process of determining a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted according to the foregoing transmission parameter, and generating parameter indication signaling according to the mapping manner.
  • the mapping of the layer to the antenna port based on the specific reference signal transmission of the user equipment can be determined, for example, When the number of layers is V, if its corresponding port is ⁇ p ⁇ p ⁇ J, the layer ( 0 i vl) corresponds to the port Pi . Then, the parameter indication signaling can be designed according to the corresponding manner, and finally the parameter indication signaling is generated.
  • the mapping mode of the layer to the antenna port based on the specific reference signal transmission of the user equipment can be determined, and the basis for constructing the parameter indication signaling is provided.
  • the method further includes the following steps: indicating an orthogonal mask despreading length according to the size of the allocated port number, and when the allocated maximum port number is greater than the first threshold, the user equipment adopts orthogonality of the first length.
  • the mask when the allocated maximum port number is less than or equal to the first threshold, the user equipment adopts an orthogonal mask of the first length or the second length, where the first length is greater than the second length.
  • the orthogonal mask despreading length can be implicitly indicated by the assigned maximum port number.
  • a threshold (first threshold) can be set.
  • a longer OCC (first length) is used.
  • Orthogonal mask when the assigned maximum port number is less than or equal to the threshold, a shorter OCC (second length orthogonal mask) is used, since the OCC has The backward compatible feature, therefore, it is also possible to use a longer OCC when the assigned maximum port number is less than or equal to the threshold. It should be noted that since the OCC supports a range, when the allocated maximum port number continues to increase, it is necessary to set a second threshold, a third threshold, and the like to select a longer occ.
  • step S102 may further include the following processing: When only one transport block is enabled, the new data indication bit corresponding to the non-enabled transport block is used for joint coding.
  • the new data indication bit corresponding to the non-enabled transport block is idle, so this bit can be reused for joint coding, thereby improving bit utilization and being easier to implement.
  • Example 1 and Example 2 are based on the pattern shown in Figure 2
  • Example 3 and Example 4 are based on the pattern shown in Figure 3.
  • FIG. 2 and FIG. 3 are mapping diagrams of a Demodulation Reference Signal (DMRS, also referred to as a Ue-specific Reference Signal) in a physical resource block (PRB).
  • DMRS Demodulation Reference Signal
  • PRB physical resource block
  • Each of the small squares represents a resource element (Resource Element, referred to as RE).
  • RE resource element
  • the overhead of the demodulation reference symbols involved in the following embodiments corresponds to FIG. 2 or FIG. 3, where the 12RE overhead in Embodiments 1 and 2 corresponds to the pattern of FIG. 2(a).
  • the 24RE overhead corresponds to the 2(b) pattern; the 12RE overhead in the embodiments 3 and 4 corresponds to the pattern of FIG. 3(a), and the 24RE overhead corresponds to the 3(b) pattern.
  • Example 1 In this example, the following information is jointly encoded: the number of layers transmitted, the scrambling code sequence identity, the antenna port, and the demodulation reference signal overhead.
  • the generated parameter indication signaling structure is as shown in Table 2, and the parameter indication signaling Bits 1, 2, 3, and 4 are included to indicate each piece of information. When only one transport block is enabled, the new data indication (NDI) bit corresponding to the non-enabled (Transabled) transport block can be reused for joint encoding.
  • Table 2 Table 2
  • orthogonal transmission of 4 layers can be realized at the maximum.
  • orthogonality can be achieved by allocating different demodulation pilot packets, and when different nodes adopt the same cell identity, orthogonalization of different layers can be realized through more flexible configuration.
  • the corresponding layer-to-antenna port corresponding mode (pre-coding mode of the antenna port based on the UE-specific reference signal) is:
  • the port ⁇ 7 8 11 13 ⁇ corresponds to the DMRS position of the first group in Figure 2(b); the port ⁇ 9, 10, 12, 14 ⁇ corresponds to the second group in Figure 2 (b) DMRS location.
  • the number of corresponding layers in Fig. 2(a) is less than equal to 2, the DMRS position of the port ⁇ 7, 8 ⁇ .
  • Example 2 In this embodiment, the following information is jointly coded: the number of layers transmitted, the scrambling code sequence identity, the antenna port, and the demodulation reference signal overhead, and the generated parameter indication signaling structure is as shown in Table 3, and the parameter indication letter Let bits 1, 2, 3, and 4 be used to indicate each piece of information. When only one transport block is enabled, the new data indication (NDI) bit corresponding to the non-enabled (Transabled) transport block can be reused for joint encoding.
  • NDI new data indication
  • orthogonal transmission of 8 layers can be realized at the maximum.
  • orthogonality can be achieved by assigning different demodulation pilot packets, and when different nodes adopt the same cell identity, different layers can be implemented through more flexible configuration.
  • the corresponding layer-to-antenna port corresponding mode (pre-coding mode of the antenna port based on the UE-specific reference signal) is:
  • the antenna port based on the UE-specific reference signal transmits layer 2, if the port indicated by the control signaling is port 7, the layer-to-port precoding relationship is if the port indicated by the control signaling is port 9, 10, layer The precoding relationship to the port is
  • the antenna port based on the UE-specific reference signal transmits Layer 3, if the port indicated by the control signaling is port ⁇ 7, 8, 9 ⁇ , the layer-to-end, if the port indicated by the control signaling is
  • Port ⁇ 7,8,11 ⁇ , layer-to-port precoding relationship is, and based on length 4 OCC
  • the code performs spreading/de-spreading; if the port indicated by the control signaling is port ⁇ 9, 10, 12 ⁇ , the layer-to-port precoding relationship is , and the spreading/de-spreading is performed based on the OCC code of length 4,
  • the port indicated by the signaling is port, 8, 11, 13 ⁇ , and the layer-to-port precoding relationship is
  • the port ⁇ 7 8 11 13 ⁇ corresponds to the DMRS position of the first group in Figure 2(b); the port ⁇ 9, 10, 12, 14 ⁇ corresponds to the second group in Figure 2 (b) DMRS location.
  • Embodiment 3 In this example, the following information is jointly coded: the number of layers transmitted, the scrambling code sequence identity, the antenna port, and the demodulation reference signal overhead, and the generated parameter indication signaling structure is as shown in Table 4, the parameter indication letter Let bits 1, 2, and 3 be used to indicate each piece of information.
  • the new data indication (NDI) bit corresponding to the non-enabled (Transabled) transport block can be reused for joint encoding.
  • the DMRS adopts a pattern of 12 REs, and when the number of layers is >4, a pattern of 24 REs is used.
  • the length of the orthogonal mask (0CC) is fixed to 4.
  • the above-mentioned transmission parameter signaling manner is illustrated in FIG. 3, the first group of DMRS corresponding ports are ⁇ 7 8 11 13 ⁇ , and the second group of ports is ⁇ 9 10 12 14 ⁇ as an example. In practical applications, The two groups of ports can also be the first group port ⁇ 7 8 9 10 ⁇ , and the second group port ⁇ 11 12 13 14 ⁇ .
  • the pattern shown in FIG. 3(a) is a subset of the pattern shown in FIG. 3(b), which is a DMRS pattern when only the first group of ports is used.
  • the ports are respectively ⁇ P ⁇ . ⁇ J , then the layer-to-port correspondence is, layer k, 0 ⁇ A ⁇ f - l corresponds to the port.
  • state 2 supports Layer 3 transmission, and port is ⁇ 7, 8, 11 ⁇ , indicating ⁇ .
  • Example 4 In this embodiment, one or more of the following information is jointly encoded: the number of layers transmitted, the scrambling code sequence identity, the antenna port, and the demodulation reference signal overhead, and the generated parameter indication signaling structure is as shown in the table. As shown in Figure 5, the parameter indication signaling contains bits 1, 2, 3 and 4 for indicating each information. When only one transport block is enabled, the new data indication (NDI) bit corresponding to the non-enabled (Transabled) transport block can be reused for joint coding.
  • NDI new data indication
  • the length of the orthogonal mask (OCC) is fixed to 4 based on the notification manner of the above-mentioned parameter indication signaling.
  • the first group of DMRS corresponding ports is ⁇ 7811 13 ⁇
  • the second group of ports is ⁇ 9101214 ⁇ as an example.
  • the two groups of ports are also It can be the first group port ⁇ 78910 ⁇ , the second group port ⁇ 11121314 ⁇ , when the grouping method described in the latter is adopted, only the table is modified according to the grouping manner 7-7; 8-8; 11—— 9; 13—— 10; 9—— 11; 10—12; 12—13; 14—14.
  • FIG. 3(a) is a subset of the pattern shown in Fig. 3(b), which is the DMRS pattern when only the first group of ports is used.
  • the K-layer is allocated the port is ⁇ P ⁇ . ⁇ J, then the layer-to-port correspondence is, layer k, 0 ⁇ A ⁇ f-l corresponds to the port.
  • a maximum of 4 user multiplexing (in this case, 1 or 2 layers per user) is orthogonally multiplexed; and when there is a user layer greater than 2, only 2 users are allowed to be multiplexed, and each user does not exceed 4 Floor.
  • the number of ports used by the two groups should be the same as possible.
  • the optimization is not performed for all retransmissions, but when considering the case where the single-codeword stream user and the dual-codeword stream user are multiplexed, only the single-codeword stream can be double-layered. Further optimization of the situation, the optimized parameters are only the signaling structure shown in Table 6, and the layer-to-port mapping manner consistent with the above is adopted. Table 6
  • the transmission parameter indication apparatus includes: a joint coding module 42 configured to jointly encode the transmission parameters to generate parameter indication signaling, where the transmission parameters include: the number of layers to be transmitted, and the scrambling code The sequence identity, the antenna port, and the pilot overhead; the signaling module 44 is coupled to the joint coding module 42 and configured to send the parameter indication signaling to the user equipment by using downlink control information.
  • the joint coding module 42 when the user equipment transmits the parameter, jointly encodes the parameters of the transmitted layer number, the scrambling code sequence identity, the antenna port, and the pilot overhead to generate parameter indication signaling, and then performs downlink control. The information is sent to the user device.
  • the joint coding module 42 may further include: a signaling design unit 422 configured to determine a layer to antenna port mapping manner based on the user equipment specific reference signal transmission according to the foregoing transmission parameter, and The parameter indication signaling is generated according to the mapping manner.
  • the mapping of the layer to the antenna port based on the specific reference signal transmission of the user equipment can be determined, for example, When the number of layers is V, if its corresponding port is ⁇ p ⁇ p ⁇ + .p ⁇ , the layer ( 0 i vl) corresponds to port Pi . Then, the parameter indication signaling can be designed according to the corresponding manner, and finally the parameter indication signaling is generated.
  • the transmission parameter indication apparatus may further include: a mask indication module 46 connected to the joint coding module 42 and configured to indicate a positive according to the size of the allocated maximum port number.
  • the user equipment adopts the first length of the first length.
  • the maximum port number is less than or equal to the first threshold, the user equipment adopts the first length.
  • an orthogonal mask of a second length wherein the first length is greater than the second length.
  • the orthogonal mask despreading length can be implicitly indicated by the assigned maximum port number.
  • the joint coding module 42 may further include: a bit reuse unit 424 connected to the parameter list unit 422, configured to correspond to the non-enabled transport block when only one transport block is enabled.
  • FIG. 6 is a flowchart of a transmission parameter determining method according to an embodiment of the present invention. As shown in FIG.
  • the transmission parameter determining method includes: Step S602: The user equipment receives the parameter indication signaling sent by the transmission parameter indication device by using the downlink control information; Step S604, the user equipment indicates the signaling according to the parameter And determining a transmission parameter configuration, where the parameter indication signaling is generated by the transmission parameter indication device by jointly coding the transmission parameter, where the transmission parameter includes: a number of layers to be transmitted, a scrambling code sequence identity, an antenna port, and a pilot overhead.
  • jointly coding the transmission parameter to generate the parameter indication signaling may further include: determining, according to the foregoing transmission parameter, a layer to antenna port mapping manner based on the user equipment specific reference signal transmission, and according to the The mapping mode generates parameter indication signaling.
  • the method further includes the following steps: determining an orthogonal mask despreading length according to the size of the allocated port number, and adopting a first length orthogonal mask when the allocated maximum port number is greater than the first threshold. And when the allocated maximum port number is less than or equal to the first threshold, adopting an orthogonal mask of the first length or the second length, wherein the first length is greater than the second length.
  • step S604 jointly coding the transmission parameter to generate the parameter indication signaling may further include the following processing: when only one transport block is enabled, the new data indication bit corresponding to the non-enabled transport block is used for Co-coding.
  • FIG. 7 is a structural block diagram of a transmission parameter determining apparatus according to an embodiment of the present invention. As shown in FIG.
  • the transmission parameter determining apparatus includes: a signaling receiving module 72, configured to receive parameter indication signaling sent by the transmission parameter indication means by using downlink control information; and a parameter determining module 74, connected to the letter
  • the receiving module 72 is configured to determine a transmission parameter configuration according to the parameter indication signaling, where the parameter indication signaling is generated by the transmission parameter indication device by jointly coding the transmission parameter, where the transmission parameter includes: , scrambling sequence identity, antenna port, pilot overhead.
  • the user parameter device also needs to set a corresponding parameter determination module to receive the parameter indication signaling sent by the parameter indication device, and finally determine the transmission parameter configuration according to the indication therein.
  • the foregoing transmission parameter indication device may determine a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted according to the foregoing transmission parameter, and generate parameter indication signaling according to the mapping manner.
  • the indication signaling o ⁇ j ⁇ vl
  • the transmission parameter determining apparatus may further include: a mask determining module 76 connected to the parameter determining module 74, configured to determine the positive according to the size of the allocated maximum port number. And the first length or the second length is used when the maximum port number to be allocated is less than or equal to the first threshold. An orthogonal mask, wherein the first length is greater than the second length.
  • the above-mentioned transmission parameter indicating means may use the new data indication bit corresponding to the non-enabled transport block for joint coding.
  • the technical solution provided by the present invention can further enhance the MU-MIMO transmission mode, and perform more flexible layer allocation in multi-user transmission, and simultaneously support between different nodes, especially in Orthogonal transmission of DMRS between different nodes in a heterogeneous network, and also facilitates interference suppression between different nodes.
  • the whole solution can achieve the following technical effects:
  • the existing MU-MIMO technology is enhanced to support more demodulation pilot orthogonal transmission between multiple users in the same cell; Support for demodulation pilot between different nodes Orthogonal transmission can achieve more accurate interference estimation. Supports more flexible pilot orthogonal transmission between different nodes under heterogeneous networks, and obtains larger cell splitting gain.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed are a transmission parameter indication/transmission parameter determination method and device. The transmission parameter indication method includes: performing combined coding on transmission parameters to generate a parameter indication signaling, wherein the transmission parameters include: the number of the layer being transmitted, descrambling sequence identity, antenna port, and pilot overhead; and sending the parameter indication signaling to user equipment by way of downlink control information. By way of the technical solution provided by the present invention, the problem in the prior art that the orthogonal transmission of only 2 layers can be realized between two nodes in the SU-MIMO mode maximally is solved, thus achieving the effect of supporting the transmission in the same cell in case of realizing orthogonality in more demodulation pilots among a plurality of users.

Description

传输参数指示 /传输参数确定方法、 装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种传输参数指示 /传输参数确定方法、 装 置。 背景技术 在无线通信技术中, 基站侧 (例如演进的节点 B即 eNB)使用多根天线发送数据 时, 可以采取空间复用的方式来提高数据传输速率, 即在发送端使用相同的时频资源 在不同的天线位置发射不同的数据, 接收端(例如用户设备 UE)也使用多根天线接收 数据。 在单用户的情况下将所有天线的资源都分配给同一用户, 此用户在一个传输间 隔内独自占有基站侧分配的物理资源, 这种传输方式称为单用户多入多出 (Single User Multiple-Input Multiple-Output,简称为 SU-MIMO); 在多用户的情况下, 将不同天线的 空间资源分配给不同用户, 一个用户和至少一个其它用户在一个传输间隔内共享基站 侧分配的物理资源, 共享方式可以是空分多址方式或者空分复用方式, 这种传输方式 称为多用户多入多出 (Multiple User Multiple-Input Multiple-Output,简称为 MU-MIMO), 其中基站侧分配的物理资源是指时频资源。 传输系统如果要同时支持 SU-MIMO 和 MU-MIMO, eNB则需要向 UE提供这两种模式下的数据。 UE在 SU-MIMO模式或 MU-MIMO模式时, 均需获知 eNB对于该 UE传输 MIMO数据所用的秩 (Rank)。 在 SU-MIMO模式下, 所有天线的资源都分配给同一用户, 传输 MIMO数据所用的层数 就等于 eNB传输 MIMO数据所用的秩; 在 MU-MIMO模式下, 对应一个用户传输所 用的层数少于 eNB 传输 MIMO 数据的总层数, 如果要进行 SU-MIMO 模式与 MU-MIMO的切换, eNB需要在不同传输模式下通知 UE不同的控制数据。 长期演进 (Long-Term Evolution, 简称为 LTE) 的版本 8 (Release 8)标准中定义 了如下三种下行物理控制信道: 物理下行控制格式指示信道 (Physical Control Format Indicator Channel,简称为 PCFICH)、物理混合自动重传请求指示信道(Physical Hybrid Automatic Retransmission Request Indicator Channel, 简称为 PHICH) 和物理下行控制 信道(Physical Downlink Control Channel, 简称为 PDCCH)。其中 PDCCH用于承载下 行控制信息 (Downlink Control Information, 简称为 DCI), 包括: 上、 下行调度信息, 以及上行功率控制信息。 DCI的格式(DCI format)分为以下几种: DCI format 0、 DCI format 1、 DCI format 1A、 DCI format 1B、 DCI format 1C、 DCI format 1D、 DCI format 2、 DCI format 2A、 DCI format 3禾 P DCI format 3 A等; 其中版本 8 中定义的支持 MU-MIMO的传输模式 5利用了 DCI format ID的下行控制信息, 而 DCI format ID中 的下行功率域 (Downlink power offset field, 表示为 。WCT_。ffset ) 用于指示在 MU-MIMO 模式中对于一个用户的功率减半 (即 -lOloglO ( 2 ) ) 的信息, 因为 MU-MIMO传输模 式 5只支持两个用户的 MU-MIMO传输, 通过此下行功率域, MU-MIMO传输模式 5 可以支持 SU-MIMO模式和 MU-MIMO模式的动态切换, 但是无论在 SU-MIMO模式 或 MU-MIMO模式此 DCI format对一个 UE只支持一个流的传输,虽然 LTE Release 8 在传输模式 4中支持最多两个流的单用户传输, 但是因为传输模式之间的切换只能是 半静态的, 所以在 LTE版本 8中不能做到单用户多流传输和多用户传输的动态切换。 在 LTE的版本 9 ( Release 9 ) 中, 为了增强下行多天线传输, 引入了双流波束形 成(Beamforming ) 的传输模式, 而下行控制信息增加了 DCI format 2B 以支持这种传 输模式,在 DCI format 2B中有一个扰码序列身份( Scrambling Identity ,简称为 SCID ) 的标识比特以支持两个不同的扰码序列, e B可以将这两个扰码序列分配给不同用户, 在同一资源复用多个用户。 另外, 当只有一个传输块使能的时候, 非使能 (Disabled) 的传输块对应的新数据指示(New Data Indication, 简称为 DI) 比特亦用来指示单层 传输时的天线端口。 在 LTE的版本 10 ( Release 10 ) 中, 为了进一步增强下行多天线传输, 引入了传 输模式 9, 传输模式 9在兼容 LTE版本 9中双流 beamforming (模式 8)的基础上, 进一 步增强到最大支持 8个层传输的波束赋形, 而下行控制信息增加了 DCI format 2C 以 支持这种传输模式, 在 DCI format 2C中, 将 SCID、 层数目、 以及天线端口通过联合 编码的方式设计控制信令, 并重用了模式 8中用于指示扰码序列身份的 SCID比特。 同样, 当只有一个传输块使能的时候, 非使能(Disabled)的传输块对应的新数据指示The present invention relates to the field of communications, and in particular to a method and apparatus for determining a transmission parameter indication/transmission parameter. In a wireless communication technology, when a base station side (for example, an evolved Node B or an eNB) transmits data using multiple antennas, spatial multiplexing may be adopted to increase the data transmission rate, that is, the same time-frequency resource is used at the transmitting end. Different data is transmitted at different antenna positions, and the receiving end (for example, user equipment UE) also receives data using a plurality of antennas. In the case of a single user, resources of all antennas are allocated to the same user. The user occupies the physical resources allocated by the base station side in a single transmission interval. This type of transmission is called single-user multiple-input and multiple-out (Single User Multiple- Input Multiple-Output (SU-MIMO); in the case of multiple users, space resources of different antennas are allocated to different users, and one user and at least one other user share physical resources allocated by the base station side in one transmission interval. The sharing mode may be a space division multiple access mode or a space division multiplexing mode. The transmission mode is called Multiple User Multiple-Input Multiple-Output (MU-MIMO), where the base station side allocates Physical resources refer to time-frequency resources. If the transmission system is to support both SU-MIMO and MU-MIMO, the eNB needs to provide the UE with data in these two modes. When the UE is in the SU-MIMO mode or the MU-MIMO mode, it is necessary to know the rank (Rank) used by the eNB to transmit MIMO data for the UE. In SU-MIMO mode, all antenna resources are allocated to the same user, and the number of layers used to transmit MIMO data is equal to the rank used by the eNB to transmit MIMO data. In MU-MIMO mode, the number of layers used for one user transmission is small. The total number of layers of MIMO data transmitted by the eNB, if the SU-MIMO mode and the MU-MIMO handover are to be performed, the eNB needs to notify the UE of different control data in different transmission modes. The following three types of downlink physical control channels are defined in the Release 8 standard of the Long-Term Evolution (LTE): Physical Control Format Indicator Channel (PCFICH), physical The Hybrid Automatic Retransmission Request Indicator Channel (PHICH) and the Physical Downlink Control Channel (PDCCH). The PDCCH is used to carry downlink control information (Downlink Control Information, DCI for short), and includes: uplink and downlink scheduling information, and uplink power control information. The DCI format (DCI format) is divided into the following types: DCI format 0, DCI format 1, DCI format 1A, DCI format 1B, DCI format 1C, DCI format 1D, DCI format 2, DCI format 2A, DCI format 3 and P DCI format 3 A, etc.; support defined in version 8 MU-MIMO transmission mode using 5 downlink control information DCI format ID, and the DCI format ID field in the downlink power (Downlink power offset field, expressed as a. WCT _. Ffset) for indicating to the MU-MIMO mode One user's power is halved (ie, -lOloglO(2)), because MU-MIMO transmission mode 5 only supports MU-MIMO transmission for two users. Through this downlink power domain, MU-MIMO transmission mode 5 can support SU. - Dynamic switching of MIMO mode and MU-MIMO mode, but this DCI format supports only one stream transmission for one UE regardless of SU-MIMO mode or MU-MIMO mode, although LTE Release 8 supports up to two in transmission mode 4. Streaming single-user transmission, but since the switching between transmission modes can only be semi-static, dynamic switching of single-user multi-stream transmission and multi-user transmission cannot be achieved in LTE Release 8. In Release 9 of LTE, in order to enhance downlink multi-antenna transmission, a dual-stream beamforming (Beamforming) transmission mode is introduced, and downlink control information is added to DCI format 2B to support this transmission mode, in DCI format 2B. There is an identification bit of Scrambling Identity (SCID) to support two different scrambling code sequences, and e B can allocate the two scrambling code sequences to different users and multiplex multiple resources in the same resource. user. In addition, when only one transport block is enabled, the New Data Indication (DI) bit corresponding to the non-enabled (Transabled) transport block is also used to indicate the antenna port when transmitting in a single layer. In Release 10 of LTE, in order to further enhance downlink multi-antenna transmission, transmission mode 9 is introduced, and transmission mode 9 is further enhanced to a maximum of 8 in support of dual-stream beamforming (mode 8) in LTE version 9. The beam transmission of the layer transmission is added, and the downlink control information is added to the DCI format 2C to support the transmission mode. In the DCI format 2C, the SCID, the number of layers, and the antenna port are designed and coded by joint coding, and The SCID bit used in mode 8 to indicate the scrambling code sequence identity is used. Similarly, when only one transport block is enabled, the new data indication corresponding to the non-enabled (Transabled) transport block
( DI) 比特亦用来指示单层传输时的天线端口。 版本 10中, 各个端口之间通过正交 掩码 (Orthogonal Cover Code, 简称为 OCC ) 实现正交, 不同端口 (端口 7~14 ) 的 OCC 码的分配可以统一如表 1 所示, 其中承载解调参考信号的不同正交频分复用The (DI) bit is also used to indicate the antenna port for single layer transmission. In version 10, each port is orthogonalized by an Orthogonal Cover Code (OCC). The allocation of OCC codes on different ports (ports 7 to 14) can be unified as shown in Table 1. Different orthogonal frequency division multiplexing
( Orthogonal Frequency Division Multiplexing, 简称为 OFDM)符号 /'上使用的方式按 ^八 (Orthogonal Frequency Division Multiplexing, abbreviated as OFDM) symbol / 'On the way to use ^ eight
照公式 , 其中, ' = 0, l, 2, 分力 I」对
Figure imgf000004_0001
According to the formula, where ' = 0, l, 2, component I
Figure imgf000004_0001
应附图 2中每个物理时频资源块自低到高解调导频的相对位置, ^对应于用于物理 下行共享信道 (Physical Downlink Share Channel, 简称为 PDSCH)传输的物理时频资 源快索引。 表 1 The relative position of the demodulation pilot from low to high for each physical time-frequency resource block in FIG. 2, ^ corresponds to the physical time-frequency resource for the physical downlink shared channel (Physical Downlink Share Channel, PDSCH) transmission. index. Table 1
Figure imgf000005_0001
Figure imgf000005_0001
虽然传输模式 9在 SU-MIMO模式下最大可以支持 8个层的数据传输, 但相对于 模式 8, 并没有对 MU-MIMO进行增强, 即最大只能支持两个用户且每个用户只能 1 层传输情况下的解调导频正交。 同时由于传输模式 9所依赖的解调参考信号是根据小 区身份 (cell identity)产生的, 且在模式 8、 模式 9下, 不同节点之间的解调导频图样位 置相同, 在小区边缘时, 不同节点占用相同资源的用户之间导频无法实现正交, 因此 不利于干扰的消除。 尤其异构网中, 宏小区与低功率节点 (Low power Node, 简称为 LPN)存在较为严重的干扰。 在 LTE版本 11中, 提出了在异构网中, 使宏小区和低功 率节点采用相同小区身份的方式, 通过集中调度来降低宏小区和低功率节点之间的干 扰。基于模式 9对应的 DCI format 2C,两个节点之间最大只能实现 2个层的正交传输, 即每个节点只能以 1个层传输时, 才能实现解调导频的正交, 大大限制了小区分裂所 带来的增益, 针对这一问题, 目前尚未提出有效的解决方案。 发明内容 本发明提供了一种传输参数指示 /传输参数确定方法、 装置, 以至少解决上述问题 之一。 根据本发明的一个方面, 提供了一种传输参数指示方法, 包括: 对传输参数进行 联合编码生成参数指示信令, 其中, 传输参数包括: 传输的层数、 扰码序列身份、 天 线端口、 导频开销; 将上述参数指示信令通过下行控制信息发送给用户设备。 对传输参数进行联合编码生成参数指示信令包括: 根据传输参数确定在基于用户 设备特定参考信号传输时的层到天线端口的映射方式, 并根据该映射方式生成参数指 示信令。 根据传输参数确定在基于用户设备特定参考信号传输时的层到天线端口的映射方 式包括: 根据下面公式确定层到天线端口的映射方式: 当只有一个层传输时,
Figure imgf000006_0001
其中, 为层 0 的调制符号, 为对应层预编码后对应的端 口 的数据, {0,4,5,7,8,9,10:}, = 0,l,...,M^b— l,M^b= l , Λ 为当前层 上待传输的调制符号数目; 当层数目大于 1时, 层到端口的映射为 _y )() = x()(), 其 中, 为层 j的调制符号, 为对应层预编码后对应的端口 .的数据, 对 应的端口由指示信令指示, o^j^v-\, V为层数目, = 0,l,...,M b- 1,^^ =^ , M^b为当前层上待传输的调制符号数目。 在对传输参数进行联合编码生成参数指示信令之后, 还包括: 根据分配的端口号 的大小指示正交掩码解扩长度, 当分配的最大端口号大于第一阈值时, 用户设备采用 第一长度的正交掩码, 当分配的最大端口号小于等于第一阈值时, 用户设备采用第一 长度或第二长度的正交掩码, 其中, 第一长度大于第二长度。 对传输参数进行联合编码生成参数指示信令包括:当只有一个传输块使能的时候, 将非使能的传输块对应的新数据指示比特用于进行联合编码。 根据本发明的另一个方面, 提供了一种传输参数指示装置, 包括: 联合编码模块, 设置为对传输参数进行联合编码生成参数指示信令, 其中, 传输参数包括: 传输的层 数、 扰码序列身份、 天线端口、 导频开销; 信令发送模块, 设置为将上述参数指示信 令通过下行控制信息发送给用户设备。 联合编码模块包括: 信令设计单元, 设置为根据传输参数确定在基于用户设备特 定参考信号传输时的层到天线端口的映射方式,并根据该映射方式生成参数指示信令。 信令设计单元确定在基于用户设备特定参考信号传输时的层到天线端口的映射方 式的方法包括: 根据下面公式确定层到天线端口的映射方式: 当只有一个层传输时,
Figure imgf000006_0002
其中, 为层 0 的调制符号, 为对应层预编码后对应的端 口 的数据, {0,4,5,7,8,9,10:}, = 0,l,...,M^b— l,M^b= l , Λ 为当前层 上待传输的调制符号数目; 当层数目大于 1时, 层到端口的映射为 _y )() = x()(), 其 中, 为层 j的调制符号, 为对应层预编码后对应的端口 .的数据, 对 应的端口由指示信令指示, o^j^v-\, V为层数目, = 0,l,...,M b- 1,^^ =^ , MX L为当前层上待传输的调制符号数目。 上述装置还包括: 掩码指示模块, 设置为根据分配的端口号的大小指示正交掩码 解扩长度, 当分配的最大端口号大于第一阈值时,用户设备采用第一长度的正交掩码, 当分配的最大端口号小于等于第一阈值时, 用户设备采用第一长度或第二长度的正交 掩码, 其中, 第一长度大于第二长度。 联合编码模块, 还包括: 比特重用单元, 设置为在只有一个传输块使能的时候, 将非使能的传输块对应的新数据指示比特用于进行联合编码。 根据本发明的又一个方面, 提供了一种传输参数确定方法, 包括: 用户设备接收 传输参数指示装置通过下行控制信息发送的参数指示信令; 用户设备根据上述参数指 示信令, 确定传输参数配置, 其中, 上述参数指示信令由传输参数指示装置通过对传 输参数进行联合编码生成, 其中, 传输参数包括: 传输的层数、 扰码序列身份、 天线 端口、 导频开销。 对传输参数进行联合编码生成参数指示信令包括: 根据传输参数确定在基于用户 设备特定参考信号传输时的层到天线端口的映射方式, 并根据该映射方式生成参数指 示信令。 根据传输参数确定在基于用户设备特定参考信号传输时的层到天线端口的映射方 式的方法包括: 根据下面公式确定层到天线端口的映射方式: 当只有一个层传输时,
Figure imgf000007_0001
其中, 为层 0 的调制符号, 为对应层预编码后对应的端 口 的数据, {0,4,5,7,8,9,10:}, = 0,l,...,M^b— l,M^b= l , Λ 为当前层 上待传输的调制符号数目; 当层数目大于 1时, 层到端口的映射为 _y )() = x()(), 其 中, 为层 j的调制符号, 为对应层预编码后对应的端口 的数据, 对 应的端口由指示信令指示, o^j^v-\ , V为层数目, = 0,l,...,M b- 1,^^ =^ ,
Although transmission mode 9 can support up to 8 layers of data transmission in SU-MIMO mode, it does not enhance MU-MIMO compared to mode 8, that is, it can only support two users at most and only 1 per user. Demodulation pilots in the case of layer transmission are orthogonal. At the same time, since the demodulation reference signal on which the transmission mode 9 depends is generated according to the cell identity, and in mode 8 and mode 9, the demodulation pilot pattern positions between different nodes are the same, at the cell edge. The pilots between users with different nodes occupying the same resource cannot be orthogonal, which is not conducive to the elimination of interference. In a heterogeneous network, the macro cell and the low power node (LPN) have serious interference. In LTE Release 11, it is proposed to reduce interference between a macro cell and a low power node by using centralized scheduling in a heterogeneous network in such a manner that the macro cell and the low power node adopt the same cell identity. Based on the DCI format 2C corresponding to mode 9, only two layers of orthogonal transmission can be realized between two nodes, that is, each node can only transmit by one layer, and the orthogonality of the demodulation pilot can be realized. Limiting the gain brought by cell splitting, an effective solution has not been proposed for this problem. SUMMARY OF THE INVENTION The present invention provides a transmission parameter indication/transmission parameter determination method and apparatus to solve at least one of the above problems. According to an aspect of the present invention, a transmission parameter indication method is provided, including: jointly coding a transmission parameter to generate parameter indication signaling, where the transmission parameter includes: a number of layers to be transmitted, a scrambling code sequence identity, an antenna port, and a guide. The frequency overhead is sent to the user equipment by using the downlink control information. Performing joint coding on the transmission parameters to generate the parameter indication signaling includes: determining a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted according to the transmission parameter, and generating parameter indication signaling according to the mapping manner. Determining the layer-to-antenna port mapping manner based on the transmission parameter of the user equipment-specific reference signal includes: determining the layer-to-antenna port mapping manner according to the following formula: When only one layer is transmitted,
Figure imgf000006_0001
Where is the modulation symbol of layer 0, which is the data of the corresponding port pre-coded by the corresponding layer, {0, 4, 5, 7, 8, 9, 10:}, = 0, l, ..., M^ b — l, M^ b = l , Λ is the number of modulation symbols to be transmitted on the current layer; when the number of layers is greater than 1, the layer-to-port mapping is _y ) () = x () (), where is the layer The modulation symbol of j is the data corresponding to the corresponding port of the corresponding layer, and the corresponding port is indicated by the indication signaling, o^j^v-\, V is the number of layers, = 0, l, ..., M b - 1, ^^ =^ , M^ b is the number of modulation symbols to be transmitted on the current layer. After performing the joint coding of the transmission parameter to generate the parameter indication signaling, the method further includes: indicating, according to the size of the allocated port number, a orthogonal mask despreading length, when the allocated maximum port number is greater than the first threshold, the user equipment adopts the first The orthogonal mask of the length, when the allocated maximum port number is less than or equal to the first threshold, the user equipment adopts an orthogonal mask of the first length or the second length, wherein the first length is greater than the second length. Coding the transmission parameters to generate the parameter indication signaling includes: when only one transport block is enabled, the new data indication bit corresponding to the non-enabled transport block is used for joint coding. According to another aspect of the present invention, a transmission parameter indication apparatus is provided, including: a joint coding module, configured to jointly encode a transmission parameter to generate parameter indication signaling, where the transmission parameter includes: a number of layers to be transmitted, and a scrambling code The sequence identity, the antenna port, and the pilot overhead; the signaling sending module is configured to send the parameter indication signaling to the user equipment by using downlink control information. The joint coding module includes: a signaling design unit, configured to determine a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted according to the transmission parameter, and generate parameter indication signaling according to the mapping manner. The signaling design unit determines a method of mapping a layer to an antenna port based on a user equipment specific reference signal transmission, including: determining a layer to antenna port mapping manner according to the following formula: when only one layer is transmitted,
Figure imgf000006_0002
Where is the modulation symbol of layer 0, which is the data of the corresponding port pre-coded by the corresponding layer, {0, 4, 5, 7, 8, 9, 10:}, = 0, l, ..., M^ b — l, M^ b = l , Λ is the number of modulation symbols to be transmitted on the current layer; when the number of layers is greater than 1, the layer-to-port mapping is _y ) () = x () (), where is the layer The modulation symbol of j is the data corresponding to the corresponding port of the corresponding layer, and the corresponding port is indicated by the indication signaling, o^j^v-\, V is the number of layers, = 0, l, ..., M b - 1,^^ =^ , M X L is the number of modulation symbols to be transmitted on the current layer. The device further includes: a mask indication module, configured to indicate an orthogonal mask despreading length according to the size of the allocated port number, and when the allocated maximum port number is greater than the first threshold, the user equipment adopts a first length orthogonal mask The user equipment adopts an orthogonal mask of a first length or a second length, wherein the first length is greater than the second length, when the allocated maximum port number is less than or equal to the first threshold. The joint coding module further includes: a bit reuse unit configured to use the new data indication bit corresponding to the non-enabled transport block for joint coding when only one transport block is enabled. According to still another aspect of the present invention, a method for determining a transmission parameter is provided, including: receiving, by a user equipment, a parameter indication signaling sent by a transmission parameter indication device by using downlink control information; and determining, by the user equipment, a transmission parameter configuration according to the parameter indication signaling The parameter indication signaling is generated by the transmission parameter indication device by jointly coding the transmission parameter, where the transmission parameter includes: a number of layers to be transmitted, a scrambling code sequence identity, an antenna port, and a pilot overhead. Performing joint coding on the transmission parameters to generate the parameter indication signaling includes: determining a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted according to the transmission parameter, and generating parameter indication signaling according to the mapping manner. A method for determining a layer-to-antenna port mapping manner based on a user equipment-specific reference signal transmission according to a transmission parameter includes: determining a layer-to-antenna port mapping manner according to the following formula: when only one layer is transmitted,
Figure imgf000007_0001
Where is the modulation symbol of layer 0, which is the data of the corresponding port pre-coded by the corresponding layer, {0, 4, 5, 7, 8, 9, 10:}, = 0, l, ..., M^ b — l, M^ b = l , Λ is the number of modulation symbols to be transmitted on the current layer; when the number of layers is greater than 1, the layer-to-port mapping is _y ) () = x () (), where is the layer The modulation symbol of j is the data of the corresponding port pre-coded by the corresponding layer, and the corresponding port is indicated by the indication signaling, o^j^v-\, V is the number of layers, = 0, l, ..., M b - 1,^^ =^ ,
M^b为当前层上待传输的调制符号数目。 用户设备根据参数指示信令, 确定传输参数配置之后, 还包括: 根据分配的端口 号的大小确定正交掩码解扩长度, 当分配的最大端口号大于第一阈值时, 采用第一长 度的正交掩码, 当分配的最大端口号小于等于第一阈值时, 采用第一长度或第二长度 的正交掩码, 其中, 第一长度大于第二长度。 对传输参数进行联合编码生成参数指示信令包括:当只有一个传输块使能的时候, 将非使能的传输块对应的新数据指示比特用于进行联合编码。 根据本发明的再一个方面, 提供了一种传输参数确定装置, 包括: 信令接收模块, 设置为接收传输参数指示装置通过下行控制信息发送的参数指示信令;参数确定模块, 设置为根据上述参数指示信令, 确定传输参数配置, 其中, 上述参数指示信令由传输 参数指示装置通过对传输参数进行联合编码生成, 其中, 传输参数包括: 传输的层数、 扰码序列身份、 天线端口、 导频开销。 传输参数指示装置根据传输参数确定在基于用户设备特定参考信号传输时的层到 天线端口的映射方式, 并根据该映射方式生成参数指示信令。 传输参数指示装置确定在基于用户设备特定参考信号传输时的层到天线端口的映 射方式的方法包括: 根据下面公式确定层到天线端口的映射方式: 当只有一个层传输 时, WW=JC(q)(/;), 其中, /)为层 0 的调制符号, 为对应层预编码后对应 的端口 的数据, {0,4,5,7,8,9,10:}, = 0,l,...,M^b— l,M^b = l , Λ 为当 前层上待传输的调制符号数目;当层数目大于 1时,层到端口的映射为 _y )() = x()(), 其中, 为层 j的调制符号, 为对应层预编码后对应的端口 的数据, 对 应的端口由指示信令指示, o^j^v-\ , V为层数目, = 0,l,...,M b- 1,^^ =^ , M^b为当前层上待传输的调制符号数目。 上述装置还包括: 掩码确定模块, 设置为根据分配的端口号的大小确定正交掩码 解扩长度, 当分配的最大端口号大于第一阈值时, 采用第一长度的正交掩码, 当分配 的最大端口号小于等于第一阈值时, 采用第一长度或第二长度的正交掩码, 其中, 第 一长度大于第二长度。 当只有一个传输块使能的时候, 传输参数指示装置将非使能的传输块对应的新数 据指示比特用于进行联合编码。 通过本发明, 采用对传输的层数、 扰码序列身份、 天线端口、 导频开销等传输参 数进行联合编码生成参数指示信令, 并通过下行控制信息发送给用户设备的方案, 解 决了现有技术中在 SU-MIMO模式下两个节点之间最大只能实现 2个层的正交传输的 问题, 进而达到了支持同一小区下多个用户之间实现在更多的解调导频正交情况下进 行传输的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例的传输参数指示方法的流程图; 图 2是根据本发明实例的 LTE版本 10中正常循环前缀时 OCC=2的解调导频图样; 图 3是根据本发明实例的 LTE版本 10中正常循环前缀时 OCC=4的解调导频图样; 图 4是根据本发明实施例的传输参数指示装置的结构框图; 图 5是根据本发明优选实施例的传输参数指示装置的结构框图; 图 6是根据本发明实施例的传输参数确定方法的流程图; 图 7是根据本发明实施例的传输参数确定装置的结构框图; 图 8是根据本发明优选实施例的传输参数确定装置的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 1是根据本发明实施例的传输参数指示方法的流程图。 如图 1所示, 根据本发 明实施例的传输参数指示方法包括: 步骤 S102, 对传输参数进行联合编码生成参数指示信令, 其中, 传输参数包括: 传输的层数、 扰码序列身份、 天线端口、 导频开销; 步骤 S104, 将上述参数指示信令通过下行控制信息发送给用户设备。 上述参数指示方法, 在指示用户设备传输参数时, 会把传输的层数、 扰码序列身 份、 天线端口、 导频开销等参数进行联合编码生成参数指示信令, 然后通过下行控制 信息发送给用户设备。由于上述方法将导频开销作为了传输参数参与到了联合编码中, 因此可以更加灵活的选择导频开销, 从而在多用户之间支持更多层的解调导频正交传 输。 优选地,步骤 S102可以进一步包括以下处理:根据上述传输参数确定在基于用户 设备特定参考信号传输时的层到天线端口的映射方式, 并根据该映射方式生成参数指 示信令。 在对传输的层数、 扰码序列身份、 天线端口、 导频开销等传输参数进行联合编码 后, 即可确定出在基于用户设备特定参考信号传输时的层到天线端口的映射方式, 例 如, 当层数目为 V时, 如果其对应的端口为 {p^p^^^J , 则层 (0 i v-l)对应于端 口 Pi。 然后就可以根据这个对应方式对参数指示信令进行设计, 并最终生成参数指示 信令。 优选地, 根据传输参数确定在基于用户设备特定参考信号传输时的层到天线端口 的映射方式可以包括: 根据下面公式确定层到天线端口的映射方式: 当只有一个层传输时, /;> = JC(q)(/;), 其中, 为层 0的调制符号, 为 对 应 层 预 编 码 后 对 应 的 端 口 的 数 据 , {0,4,5,7,8,9,10} , i = 0,l,...,M^b -1 ,Ms^ =M^h, M 为当前层上待传输的调制符号数目; 当层数目大于 1 时, 层到端口的映射为^ W = x()W, 其中, 为层 j的调 制符号, 为对应层预编码后对应的端口 .的数据, 对应的端口由指示信令指 示, o^j^v-l, V为层数目, = 0,1,...,Μ _1,Μ =Λ , 为当前层上待 传输的调制符号数目。 通过上述公式, 即可确定出在基于用户设备特定参考信号传输时的层到天线端口 的映射方式, 为构造参数指示信令提供依据。 优选地,步骤 S102之后还可以进一步包括以下处理:根据分配的端口号的大小指 示正交掩码解扩长度, 当分配的最大端口号大于第一阈值时, 用户设备采用第一长度 的正交掩码, 当分配的最大端口号小于等于第一阈值时, 用户设备采用第一长度或第 二长度的正交掩码, 其中, 第一长度大于第二长度。 正交掩码解扩长度可以通过分配的最大端口号隐式地指示。 由于分配的最大端口 号越大所需的 OCC长度就越长, 因此可以设定一个阈值 (第一阈值), 当分配的最大 端口号大于该阈值时, 就使用较长的 OCC (第一长度的正交掩码), 当分配的最大端 口号小于等于该阈值时, 就使用较短的 OCC (第二长度的正交掩码), 由于 OCC具有 向下兼容的特性, 因此, 在分配的最大端口号小于等于该阈值时, 使用较长的 OCC 也是可以的。需要说明的是, 由于 OCC支持的是一个范围, 所以在分配的最大端口号 继续增大时, 就需要设置第二阈值、第三阈值等等, 以选用更长的 occ。下文实例中, 以第一长度正交掩码长度为 4, 第二长度正交掩码长度为 2进行说明。 优选地, 步骤 S102还可以进一步包括以下处理: 当只有一个传输块使能的时候, 将非使能的传输块对应的新数据指示比特用于进行联合编码。 在上述方法中, 由于在进行联合编码时加入了导频开销这一参数, 因此需要新增 加的比特。 当只有一个传输块使能的时候, 非使能的传输块对应的新数据指示比特是 闲置的, 因此可以将这一比特重用于进行联合编码, 从而提高比特的利用率, 也更易 于实现。 下面结合具体实例及图 2、 图 3对上述优选实施例进行详细说明。 在下面的实例 中, 实例 1和实例 2基于图 2所示的图样, 实例 3和实例 4基于图 3所示的图样。 图 2、 3中所示的为一个物理资源块 (Physical Resource Block, 简称为 PRB)内的解调参考 信号 (Demodulation Reference Signal, 简称为 DMRS, 也称为 Ue-specific Reference Signal) 的映射图样, 其中每个小方格代表一个资源单元 (Resource Element, 简称为 RE)。 需要说明的是, 下面实施例中涉及的解调参考符号的开销是与图 2或图 3所对应 的, 其中实施例 1、 2中的 12RE开销时, 对应于图 2(a)的图样, 24RE开销时, 对应 于 2(b)图样; 实施例 3、 4中的 12RE开销时, 对应于图 3(a)的图样, 24RE开销时, 对 应于 3(b)图样。 实例 1 : 该实例中, 对以下信息进行联合编码: 传输的层数、 扰码序列身份、 天线端口和 解调参考信号开销, 生成的参数指示信令结构如表 2所示, 参数指示信令包含比特 1、 2、 3和 4用于指示各信息。 当只有一个传输块使能的时候, 非使能 (Disabled) 的传 输块对应的新数据指示 (NDI) 比特可以重用于进行联合编码。 表 2 M^ b is the number of modulation symbols to be transmitted on the current layer. After the user equipment determines the transmission parameter configuration according to the parameter indication signaling, the method further includes: determining an orthogonal mask despreading length according to the size of the allocated port number, and adopting the first length when the allocated maximum port number is greater than the first threshold. The orthogonal mask, when the allocated maximum port number is less than or equal to the first threshold, adopts an orthogonal mask of the first length or the second length, wherein the first length is greater than the second length. Coding the transmission parameters to generate the parameter indication signaling includes: when only one transport block is enabled, the new data indication bit corresponding to the non-enabled transport block is used for joint coding. According to still another aspect of the present invention, a transmission parameter determining apparatus is provided, including: a signaling receiving module, configured to receive parameter indication signaling sent by a transmission parameter indication device by using downlink control information; and a parameter determining module configured to be according to the foregoing The parameter indication signaling determines the transmission parameter configuration, where the parameter indication signaling is generated by the transmission parameter indication device by jointly coding the transmission parameter, where the transmission parameter includes: the number of layers to be transmitted, the identity of the scrambling code sequence, the antenna port, Pilot overhead. The transmission parameter indication device determines a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted according to the transmission parameter, and generates parameter indication signaling according to the mapping manner. The method for determining, by the transmission parameter indicating means, the layer-to-antenna port mapping manner when transmitting based on the user equipment-specific reference signal comprises: determining the layer-to-antenna port mapping manner according to the following formula: When only one layer is transmitted, WW=JC (q) ) (/;), where /) is the modulation symbol of layer 0, which is the data of the corresponding port after precoding the corresponding layer, {0,4,5,7,8,9,10:}, = 0,l ,...,M^ b — l,M^ b = l , Λ is the number of modulation symbols to be transmitted on the current layer; when the number of layers is greater than 1, the layer-to-port mapping is _y ) () = x ( ) (), where j is the layer of the modulation symbols, corresponding to the data port corresponding to layer after precoding is indicated by the corresponding port indicator signaling, o ^ j ^ v- \, V is the number of layers, = 0, l,...,M b - 1,^^ =^ , M^ b is the number of modulation symbols to be transmitted on the current layer. The device further includes: a mask determining module, configured to determine an orthogonal mask despreading length according to the size of the allocated port number, and when the allocated maximum port number is greater than the first threshold, adopting a first length orthogonal mask, When the allocated maximum port number is less than or equal to the first threshold, an orthogonal mask of the first length or the second length is adopted, wherein the first length is greater than the second length. When only one transport block is enabled, the transmission parameter indicating means uses the new data indication bit corresponding to the non-enabled transport block for joint coding. The present invention solves the problem that the transmission parameter of the transmission layer, the scrambling code sequence identity, the antenna port, the pilot overhead, and the like are jointly encoded to generate parameter indication signaling, and the downlink control information is sent to the user equipment. In the technology, in SU-MIMO mode, only two layers of orthogonal transmission can be realized between two nodes, thereby achieving more demodulation pilot orthogonality between multiple users supporting the same cell. The effect of the transmission in case. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the drawings: FIG. 1 is a flowchart of a transmission parameter indication method according to an embodiment of the present invention; FIG. 2 is a demodulation pilot pattern of OCC=2 in a normal cyclic prefix in LTE Release 10 according to an example of the present invention; Is a demodulation pilot pattern of OCC=4 in a normal cyclic prefix in LTE Rel-10 according to an example of the present invention; FIG. 4 is a structural block diagram of a transmission parameter indication apparatus according to an embodiment of the present invention; FIG. 5 is a preferred embodiment according to the present invention. FIG. 6 is a flowchart of a transmission parameter determining method according to an embodiment of the present invention; FIG. 7 is a structural block diagram of a transmission parameter determining apparatus according to an embodiment of the present invention; A structural block diagram of the transmission parameter determining apparatus of the embodiment. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. 1 is a flow chart of a transmission parameter indication method according to an embodiment of the present invention. As shown in FIG. 1 , a transmission parameter indication method according to an embodiment of the present invention includes: Step S102: Jointly coding a transmission parameter to generate parameter indication signaling, where the transmission parameter includes: a number of layers to be transmitted, a scrambling code sequence identity, and an antenna. Port and pilot overhead; Step S104: Send the parameter indication signaling to the user equipment by using downlink control information. The parameter indication method, when indicating the transmission parameter of the user equipment, jointly encodes the parameters of the number of layers, the scrambling code sequence identity, the antenna port, and the pilot overhead to generate parameter indication signaling, and then sends the parameter to the user through the downlink control information. device. Since the above method participates in the joint coding as the transmission parameter as the transmission parameter, the pilot overhead can be selected more flexibly, so that more layers of demodulation pilot orthogonal transmission are supported between multiple users. Preferably, step S102 may further include a process of determining a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted according to the foregoing transmission parameter, and generating parameter indication signaling according to the mapping manner. After jointly coding the transmission parameters such as the number of layers to be transmitted, the scrambling code sequence identity, the antenna port, and the pilot overhead, the mapping of the layer to the antenna port based on the specific reference signal transmission of the user equipment can be determined, for example, When the number of layers is V, if its corresponding port is {p^p^^^J, the layer ( 0 i vl) corresponds to the port Pi . Then, the parameter indication signaling can be designed according to the corresponding manner, and finally the parameter indication signaling is generated. Preferably, determining a mapping manner of the layer to the antenna port when transmitting based on the user equipment specific reference signal according to the transmission parameter may include: determining a layer to antenna port mapping manner according to the following formula: when only one layer is transmitted, /; JC (q) (/;), where is the modulation symbol of layer 0, which is the data of the corresponding port after precoding the corresponding layer, {0,4,5,7,8,9,10}, i = 0, l,...,M^ b -1 ,M s ^ =M^ h , M is the number of modulation symbols to be transmitted on the current layer; when the number of layers is greater than 1, the layer-to-port mapping is ^ W = x ( ) W is, wherein the modulation symbols of layer j, corresponding to the data port corresponding to precoded layer, the corresponding signaling port indicated by the pointer, o ^ j ^ vl, V is the number of layers, = 0, ..., Μ _1, Μ = Λ , is the number of modulation symbols to be transmitted on the current layer. Through the above formula, the mapping mode of the layer to the antenna port based on the specific reference signal transmission of the user equipment can be determined, and the basis for constructing the parameter indication signaling is provided. Preferably, after step S102, the method further includes the following steps: indicating an orthogonal mask despreading length according to the size of the allocated port number, and when the allocated maximum port number is greater than the first threshold, the user equipment adopts orthogonality of the first length. The mask, when the allocated maximum port number is less than or equal to the first threshold, the user equipment adopts an orthogonal mask of the first length or the second length, where the first length is greater than the second length. The orthogonal mask despreading length can be implicitly indicated by the assigned maximum port number. Since the larger the assigned maximum port number, the longer the OCC length required, a threshold (first threshold) can be set. When the assigned maximum port number is greater than the threshold, a longer OCC (first length) is used. Orthogonal mask), when the assigned maximum port number is less than or equal to the threshold, a shorter OCC (second length orthogonal mask) is used, since the OCC has The backward compatible feature, therefore, it is also possible to use a longer OCC when the assigned maximum port number is less than or equal to the threshold. It should be noted that since the OCC supports a range, when the allocated maximum port number continues to increase, it is necessary to set a second threshold, a third threshold, and the like to select a longer occ. In the following examples, the length of the first length orthogonal mask is 4, and the length of the second length orthogonal mask is 2. Preferably, step S102 may further include the following processing: When only one transport block is enabled, the new data indication bit corresponding to the non-enabled transport block is used for joint coding. In the above method, since the pilot overhead parameter is added when performing joint coding, a newly added bit is required. When only one transport block is enabled, the new data indication bit corresponding to the non-enabled transport block is idle, so this bit can be reused for joint coding, thereby improving bit utilization and being easier to implement. The above preferred embodiments will be described in detail below with reference to specific examples and FIGS. 2 and 3. In the following examples, Example 1 and Example 2 are based on the pattern shown in Figure 2, and Example 3 and Example 4 are based on the pattern shown in Figure 3. FIG. 2 and FIG. 3 are mapping diagrams of a Demodulation Reference Signal (DMRS, also referred to as a Ue-specific Reference Signal) in a physical resource block (PRB). Each of the small squares represents a resource element (Resource Element, referred to as RE). It should be noted that the overhead of the demodulation reference symbols involved in the following embodiments corresponds to FIG. 2 or FIG. 3, where the 12RE overhead in Embodiments 1 and 2 corresponds to the pattern of FIG. 2(a). The 24RE overhead corresponds to the 2(b) pattern; the 12RE overhead in the embodiments 3 and 4 corresponds to the pattern of FIG. 3(a), and the 24RE overhead corresponds to the 3(b) pattern. Example 1: In this example, the following information is jointly encoded: the number of layers transmitted, the scrambling code sequence identity, the antenna port, and the demodulation reference signal overhead. The generated parameter indication signaling structure is as shown in Table 2, and the parameter indication signaling Bits 1, 2, 3, and 4 are included to indicate each piece of information. When only one transport block is enabled, the new data indication (NDI) bit corresponding to the non-enabled (Transabled) transport block can be reused for joint encoding. Table 2
Figure imgf000011_0001
Figure imgf000012_0001
Figure imgf000011_0001
Figure imgf000012_0001
通过该参数指示信令, 可以最大实现 4个层的正交传输。 而且在不同小区身份的 情况下, 可以通过分配不同的解调导频分组, 来实现正交, 而在不同节点采用相同小 区身份时, 则可以通过更灵活的配置, 实现不同层的正交。 基于上述的参数指示信令通知方式, 进一步的, 正交掩码 (OCC)的长度可以通过 分配的端口号隐式通知, 当分配的端口号中包含端口 11及大于 11的端口时, 则使用 长度为 4的 OCC码, 否贝 1J使用 OCC=2或 OCC=4的 OCC码。 同时, 对应的层到天线端口的对应方式 (基于 UE特定的 (UE-specific) 参考信 号的天线端口的预编码方式) 为: 在基于单天线端口传输时, 在兼容 LTE版本 8、 版本 9、 版本 10的情况下, 预编 码可以进一步定义为 WW = JC(<))(/;), 其中; ^{0,4,5, 7, 8,9,10}为用于物理信道数据传 输的单天线端口的端口号。 在基于 UE特定的参考信号的天 传输 2层时, 如果控制信令指示的端口为 端口 7、 8, 层到端口的预编码关系为 ; 如果控制信令指示的端口为端With this parameter indicating signaling, orthogonal transmission of 4 layers can be realized at the maximum. Moreover, in the case of different cell identities, orthogonality can be achieved by allocating different demodulation pilot packets, and when different nodes adopt the same cell identity, orthogonalization of different layers can be realized through more flexible configuration. Based on the foregoing parameter indication signaling manner, further, the length of the orthogonal mask (OCC) can be implicitly notified by the assigned port number, and when the allocated port number includes the port 11 and the port greater than 11, the An OCC code of length 4, No. 1J uses an OCC code of OCC=2 or OCC=4. At the same time, the corresponding layer-to-antenna port corresponding mode (pre-coding mode of the antenna port based on the UE-specific reference signal) is: In the case of single-antenna port transmission, in the case of LTE compatible version 8, version 9, version 10, precoding can be further defined as WW = JC (<)) (/;), where; ^{0,4,5 , 7, 8, 9, 10} are the port numbers of the single antenna ports used for physical channel data transmission. When the layer 2 is transmitted based on the UE-specific reference signal, if the port indicated by the control signaling is port 7, the layer-to-port precoding relationship is; if the port indicated by the control signaling is the end
Figure imgf000013_0002
Figure imgf000013_0002
口 9、 10, 层到端口的预编码关系为Port 9, 10, layer-to-port precoding relationship is
Figure imgf000013_0001
在基于 UE特定的参考信号的天线端口传输多于 2层时, 层到端口的预编码关系 为
Figure imgf000013_0003
上述公式中索引 = 0,1,... _1, M ^ =M^h , 表示当前层上待传输的 调制符号数目。 (v)(/)表示层 V的调制符号, ^(/)表示对应层预编码后对应的端口 p的
Figure imgf000013_0001
When the antenna port based on the UE-specific reference signal transmits more than 2 layers, the layer-to-port precoding relationship is
Figure imgf000013_0003
In the above formula, index = 0,1,... _1, M ^ =M^ h , indicating the number of modulation symbols to be transmitted on the current layer. (v) (/) indicates the modulation symbol of layer V, and ^(/) indicates the corresponding port p of the corresponding layer after precoding.
在该实施例中, 端口 {7 8 11 13}对应于图 2(b)中第一组的 DMRS 位置; 端口 {9,10,12,14}对应于图 2 (b) 中的第二组 DMRS位置。 其中图 2(a)对应层数目小于等 于 2时, 端口 {7,8}的 DMRS位置。 实例 2: 本实施例中, 对以下信息进行联合编码: 传输的层数、 扰码序列身份、 天线端口 和解调参考信号开销, 生成的参数指示信令结构如表 3所示, 参数指示信令包含比特 1、 2、 3和 4用于指示各信息。 当只有一个传输块使能的时候, 非使能 (Disabled) 的 传输块对应的新数据指示 (NDI) 比特可以重用于进行联合编码。 In this embodiment, the port {7 8 11 13} corresponds to the DMRS position of the first group in Figure 2(b); the port {9, 10, 12, 14} corresponds to the second group in Figure 2 (b) DMRS location. Wherein the number of corresponding layers in Fig. 2(a) is less than equal to 2, the DMRS position of the port {7, 8}. Example 2: In this embodiment, the following information is jointly coded: the number of layers transmitted, the scrambling code sequence identity, the antenna port, and the demodulation reference signal overhead, and the generated parameter indication signaling structure is as shown in Table 3, and the parameter indication letter Let bits 1, 2, 3, and 4 be used to indicate each piece of information. When only one transport block is enabled, the new data indication (NDI) bit corresponding to the non-enabled (Transabled) transport block can be reused for joint encoding.
表 3 table 3
1个码子 2个码子:  1 code 2 yards:
码子 0 吏能, 码子 0 使能,  Code 0 吏, code 0 enable,
码子 吏能 码子 1使能  Code 吏 energy code 1 enable
信令比 信令比  Signaling ratio
信令  Signaling
特 1-3 特 1-3
Figure imgf000014_0001
Special 1-3 special 1-3
Figure imgf000014_0001
通过该参数指示信令, 可以最大实现 8个层的正交传输。 而且在不同节点具有不 同的小区身份的情况下, 可以通过分配不同的解调导频分组, 来实现正交, 而在不同 节点采用相同小区身份时, 则可以通过更灵活的配置, 实现不同层的正交。 基于上述的参数指示信令通知方式, 进一步的, 正交掩码 (OCC)的长度可以通过 分配的端口号隐式通知, 当分配的端口号中包含端口 11及大于 11的端口时, 则使用 长度为 4的 OCC码, 否贝 1J使用 OCC=2或 OCC=4的 OCC码。 同时, 对应的层到天线端口的对应方式 (基于 UE特定的 (UE-specific) 参考信 号的天线端口的预编码方式) 为: 在基于单天线端口传输时, 在兼容 LTE版本 8、 版本 9、 版本 10的情况下, 预编 码可以进一步定义为 WW = JC(<))(/;), 其中; ^{0,4,5, 7, 8,9,10}为用于物理信道数据传 输的单天线端口的端口号。 在基于 UE特定的参考信号的天线端口传输 2层时, 如果控制信令指示的端口为 端口 7、 8, 层到端口的预编码关系为 如果控制信令指示的端口为 端口 9、 10, 层到端口的预编码关系为With this parameter indicating signaling, orthogonal transmission of 8 layers can be realized at the maximum. Moreover, in the case that different nodes have different cell identities, orthogonality can be achieved by assigning different demodulation pilot packets, and when different nodes adopt the same cell identity, different layers can be implemented through more flexible configuration. Orthogonal. Based on the foregoing parameter indication signaling manner, further, the length of the orthogonal mask (OCC) can be implicitly notified by the assigned port number, and when the allocated port number includes the port 11 and the port greater than 11, the An OCC code of length 4, No. 1J uses an OCC code of OCC=2 or OCC=4. At the same time, the corresponding layer-to-antenna port corresponding mode (pre-coding mode of the antenna port based on the UE-specific reference signal) is: In the case of single-antenna port transmission, in the case of LTE compatible version 8, version 9, version 10, precoding can be further defined as WW = JC (<)) (/;), where; ^{0,4,5 , 7, 8, 9, 10} are the port numbers of the single antenna ports used for physical channel data transmission. When the antenna port based on the UE-specific reference signal transmits layer 2, if the port indicated by the control signaling is port 7, the layer-to-port precoding relationship is if the port indicated by the control signaling is port 9, 10, layer The precoding relationship to the port is
Figure imgf000015_0002
在基于 UE特定的参考信号的天线端口传输 3层时 如果控制信令指示的端口为 端口 {7,8,9}, 层到端 , 如果控制信令指示的端口为
Figure imgf000015_0002
If the antenna port based on the UE-specific reference signal transmits Layer 3, if the port indicated by the control signaling is port {7, 8, 9}, the layer-to-end, if the port indicated by the control signaling is
端口 {7,8,11}, 层到端口的预编码关系为 , 并基于长度为 4 的 OCC
Figure imgf000015_0001
Port {7,8,11}, layer-to-port precoding relationship is, and based on length 4 OCC
Figure imgf000015_0001
码进行扩频 /解扩; 如果控制信令指示的端口为端口 {9,10,12}, 层到端口的预编码关系 为 , 并基于长度为 4的 OCC码进行扩频 /解扩,The code performs spreading/de-spreading; if the port indicated by the control signaling is port {9, 10, 12}, the layer-to-port precoding relationship is , and the spreading/de-spreading is performed based on the OCC code of length 4,
Figure imgf000015_0003
在基于 UE特定的参考信号的天线端口传输 4层时, 如果控制信令指示的端口为 端口 {7,8,9,10}, 层到端口的预编码关系为 , 其中 v = 4 ; 如果控
Figure imgf000015_0004
制信令指示的端口为端口 ,8,11,13}, 层到端口的预编码关系为
Figure imgf000015_0005
Figure imgf000015_0003
When the antenna port based on the UE-specific reference signal transmits 4 layers, if the port indicated by the control signaling is the port {7, 8, 9, 10}, the layer-to-port precoding relationship is, where v = 4;
Figure imgf000015_0004
The port indicated by the signaling is port, 8, 11, 13}, and the layer-to-port precoding relationship is
Figure imgf000015_0005
并基于长度为 4 的 OCC 码进行扩频 /解扩; 如果控制信令指示的端口为端口 And performing spreading/de-spreading based on the OCC code of length 4; if the port indicated by the control signaling is a port
{9,10,12,14}, 层到端口的预编码关系为 , 并基于长度为 4的 OCC
Figure imgf000015_0006
{9,10,12,14}, layer-to-port precoding relationship is, and based on length 4 OCC
Figure imgf000015_0006
码进行扩频 /解扩 在基于 UE特定的参考信号的天线端口传输多于 4层时, 层到端口的预编码关系 为
Figure imgf000016_0002
上述公式中索引 = 0,
Figure imgf000016_0001
, Λ 表示当前层上待传输的 调制符号数目。 (v)(/)表示层 V的调制符号, y^(/)表示对应层预编码后对应的端口 p 的数据。 在该实施例中, 端口 {7 8 11 13}对应于图 2(b)中第一组的 DMRS 位置; 端口 {9,10,12,14}对应于图 2 (b) 中的第二组 DMRS位置。 其中图 2(a)对应层数目小于等 于 2时, 端口 {7,8}的 DMRS位置。 实施例 3 : 本实例中, 对以下信息进行联合编码: 传输的层数、 扰码序列身份、 天线端口和 解调参考信号开销, 生成的参数指示信令结构如表 4所示, 参数指示信令包含比特 1、 2和 3用于指示各信息。 当只有一个传输块使能的时候, 非使能(Disabled) 的传输块 对应的新数据指示 (NDI) 比特可以重用于进行联合编码。
Code spreading/de-spreading When the antenna port based on the UE-specific reference signal transmits more than 4 layers, the layer-to-port precoding relationship is
Figure imgf000016_0002
In the above formula, index = 0,
Figure imgf000016_0001
, Λ indicates the number of modulation symbols to be transmitted on the current layer. (v) (/) indicates the modulation symbol of layer V, and y^(/) indicates the data of port p corresponding to the corresponding layer precoding. In this embodiment, the port {7 8 11 13} corresponds to the DMRS position of the first group in Figure 2(b); the port {9, 10, 12, 14} corresponds to the second group in Figure 2 (b) DMRS location. Wherein the number of layers corresponding to Figure 2(a) is less than or equal to 2, the DMRS position of the port {7, 8}. Embodiment 3: In this example, the following information is jointly coded: the number of layers transmitted, the scrambling code sequence identity, the antenna port, and the demodulation reference signal overhead, and the generated parameter indication signaling structure is as shown in Table 4, the parameter indication letter Let bits 1, 2, and 3 be used to indicate each piece of information. When only one transport block is enabled, the new data indication (NDI) bit corresponding to the non-enabled (Transabled) transport block can be reused for joint encoding.
表 4 Table 4
Figure imgf000016_0003
Figure imgf000016_0003
表中, 当层数目<=4时, DMRS采用 12个 RE的图样, 当层数目>4时, 使用 24 个 RE的图样。 基于上述参数指示信令通知方式, 进一步的, 正交掩码 (0CC)的长度固定为 4。 上述的传输参数信令通知方式,是以图 3中,第一组 DMRS对应端口为 {7 8 11 13 } , 第二组端口为 {9 10 12 14}为例进行示意的, 实际应用中, 两组端口也可以分别为第一 组端口 {7 8 9 10}, 第二组端口 { 11 12 13 14}, 当采用后者所述的分组方式时, 只需将 表中按照分组方式对应修改 7—— 7; 8—— 8; 11—— 9; 13—— 10; 9—— 11; 10— 12; 12— 13; 14— 14。 其中, 图 3(a)所示的图样为图 3(b)所示图样的一 个子集, 为只有第一组端口使用时的 DMRS图样。 设 K层时分配的端口分别为 ^ P^. ^J , 则层到端口的对应关系为, 层 k, 0≤A≤f - l对应于端口 。 例如, 双码字使能时, 状态 2支持的为 3层传输, 端口为 {7,8, 11 } , 则表示 ρ。=7, =8, ^=11; 此时层 0,对应端口 7, 层 1对应端口 8, 层 2 对应端口 11。 实例 4: 本实施例中, 对以下信息中的一个或多个信息进行联合编码: 传输的层数、 扰码 序列身份、 天线端口和解调参考信号开销, 生成的参数指示信令结构如表 5所示, 参 数指示信令包含比特 1、 2、 3和 4用于指示各信息。 当只有一个传输块使能的时候, 非使能(Disabled)的传输块对应的新数据指示(NDI)比特可以重用于进行联合编码。 表 5 In the table, when the number of layers is <=4, the DMRS adopts a pattern of 12 REs, and when the number of layers is >4, a pattern of 24 REs is used. Based on the above parameter indication signaling manner, further, the length of the orthogonal mask (0CC) is fixed to 4. The above-mentioned transmission parameter signaling manner is illustrated in FIG. 3, the first group of DMRS corresponding ports are {7 8 11 13 }, and the second group of ports is {9 10 12 14} as an example. In practical applications, The two groups of ports can also be the first group port {7 8 9 10}, and the second group port { 11 12 13 14}. When the grouping method described in the latter is adopted, only the table is modified according to the grouping manner. 7——7; 8——8; 11——9; 13——10; 9——11; 10—12; 12—13; 14-14. The pattern shown in FIG. 3(a) is a subset of the pattern shown in FIG. 3(b), which is a DMRS pattern when only the first group of ports is used. When the K layer is allocated, the ports are respectively ^ P^. ^J , then the layer-to-port correspondence is, layer k, 0 ≤ A ≤ f - l corresponds to the port. For example, when dual codewords are enabled, state 2 supports Layer 3 transmission, and port is {7, 8, 11 }, indicating ρ. =7, =8, ^=11; At this time, layer 0 corresponds to port 7, layer 1 corresponds to port 8, and layer 2 corresponds to port 11. Example 4: In this embodiment, one or more of the following information is jointly encoded: the number of layers transmitted, the scrambling code sequence identity, the antenna port, and the demodulation reference signal overhead, and the generated parameter indication signaling structure is as shown in the table. As shown in Figure 5, the parameter indication signaling contains bits 1, 2, 3 and 4 for indicating each information. When only one transport block is enabled, the new data indication (NDI) bit corresponding to the non-enabled (Transabled) transport block can be reused for joint coding. table 5
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000017_0001
Figure imgf000018_0001
基于上述参数指示信令的通知方式, 进一步的, 正交掩码 (OCC)的长度固定为 4。 在上述的传输参数信令通知方式, 是以图 3中, 第一组 DMRS对应端口为 {7811 13}, 第二组端口为 {9101214}为例进行示意的, 实际应用中, 两组端口也可以分别 为第一组端口 {78910}, 第二组端口 {11121314}, 当采用后者所述的分组方式时, 只需将表中按照分组方式对应修改 7—— 7; 8—— 8; 11—— 9; 13—— 10; 9—— 11; 10— 12; 12— 13; 14— 14。 其中图 3(a)所示的图样为图 3(b)所示图样的一个 子集, 为只有第一组端口使用时的 DMRS图样。 设 K层时分配的端口分别为 ^P^. ^J , 则层到端口的对应关系为, 层 k, 0≤A≤f-l对应于端口 。在该方式下最大支持总共 4个用户复用(此时每用户 1或 2层) 正交复用; 且当存在用户层大于 2时, 最大只允许 2个用户复用, 每用户不超 过 4层。 端口分配过程中应尽可能量保证两组使用的端口数相同。 在上面表中的配置方式下, 对于所有重传的情况都没有进行优化, 但当考虑单码 字流用户和双码字流用户进行复用的情况, 可以仅仅对单码字流双层的情况进一步的 优化, 优化后的参数只是信令结构如表 6所示, 同时采用与上述一致的层到端口的映 射方式。 表 6  Further, the length of the orthogonal mask (OCC) is fixed to 4 based on the notification manner of the above-mentioned parameter indication signaling. In the foregoing transmission parameter signaling manner, in FIG. 3, the first group of DMRS corresponding ports is {7811 13}, and the second group of ports is {9101214} as an example. In practical applications, the two groups of ports are also It can be the first group port {78910}, the second group port {11121314}, when the grouping method described in the latter is adopted, only the table is modified according to the grouping manner 7-7; 8-8; 11—— 9; 13—— 10; 9—— 11; 10—12; 12—13; 14—14. The pattern shown in Fig. 3(a) is a subset of the pattern shown in Fig. 3(b), which is the DMRS pattern when only the first group of ports is used. When the K-layer is allocated the port is ^P^. ^J, then the layer-to-port correspondence is, layer k, 0 ≤ A ≤ f-l corresponds to the port. In this mode, a maximum of 4 user multiplexing (in this case, 1 or 2 layers per user) is orthogonally multiplexed; and when there is a user layer greater than 2, only 2 users are allowed to be multiplexed, and each user does not exceed 4 Floor. During the port allocation process, the number of ports used by the two groups should be the same as possible. In the configuration mode in the above table, the optimization is not performed for all retransmissions, but when considering the case where the single-codeword stream user and the dual-codeword stream user are multiplexed, only the single-codeword stream can be double-layered. Further optimization of the situation, the optimized parameters are only the signaling structure shown in Table 6, and the layer-to-port mapping manner consistent with the above is adopted. Table 6
One Codeword: Two Codewords:  One Codeword: Two Codewords:
Codeword 0 enabled, Codeword 0 enabled,  Codeword 0 enabled, Codeword 0 enabled,
Codeword 1 disabled Codeword 1 enabled  Codeword 1 disabled Codeword 1 enabled
0 1层, 端口 {7}(12RE) 0 2层, 端口 {7,8} (12RE) 0 1 layer, port {7}(12RE) 0 2 layers, port {7,8} (12RE)
1 1层, 端口 {8}(12RE) 1 2层, 端口 {11, 13} (12RE)1 1 layer, port {8} (12RE) 1 2 layers, port {11, 13} (12RE)
2 1层, 端口 {11} (12RE) 2 2层, 端口 {7,8} (24RE)2 1 layer, port {11} (12RE) 2 2 layers, port {7,8} (24RE)
3 1层, 端口 {13}(12RE) 3 2层, 端口 {11,13} (24RE)3 1 layer, port {13}(12RE) 3 2 layers, port {11,13} (24RE)
4 1层, 端口 {7}(24RE) 4 2层, 端口 {9,10} (24RE)4 1 layer, port {7} (24RE) 4 2 layers, port {9,10} (24RE)
5 1层, 端口 {8}(24RE) 5 2层, 端口 {12,14} (24RE)5 1 layer, port {8} (24RE) 5 2 layers, port {12,14} (24RE)
6 1层, 端口 {11}(24RE) 6 3层,端口 {7811} (12RE)
Figure imgf000019_0001
6 1 layer, port {11} (24RE) 6 3 layers, port {7811} (12RE)
Figure imgf000019_0001
需要说明的是, 上述实例中的各种对应关系 (例如表格中联合编码后索引与具体 属性对应关系、 天线端口与层数的对应关系、 层的索引与导频图案的对应关系) 并不 限定于该唯一的对应关系, 即, 它们的顺序可以任意互换组合, 只要一一对应即可。 具体而言, 一个联合编码后的索引对应唯一的具体属性, 一个具体属性对应唯一的联 合编码后的索引。 上述实例只是列举其对应的一种可能。 图 4是根据本发明实施例的传输参数指示装置的结构框图。 如图 4所示, 根据本 发明实施例的传输参数指示装置包括: 联合编码模块 42, 设置为对传输参数进行联合编码生成参数指示信令, 其中, 传 输参数包括: 传输的层数、 扰码序列身份、 天线端口、 导频开销; 信令发送模块 44,连接至联合编码模块 42, 设置为将上述参数指示信令通过下行 控制信息发送给用户设备。 在上述装置中, 联合编码模块 42在指示用户设备传输参数时, 会把传输的层数、 扰码序列身份、 天线端口、 导频开销等参数进行联合编码生成参数指示信令, 然后通 过下行控制信息发送给用户设备。由于联合编码模块 42将导频开销作为了传输参数参 与到了联合编码中, 因此可以更加灵活的选择导频开销, 从而在多用户之间支持更多 层的解调导频正交传输。 优选地, 如图 5所示, 联合编码模块 42还可以进一步包括: 信令设计单元 422, 设置为根据上述传输参数确定在基于用户设备特定参考信号 传输时的层到天线端口的映射方式, 并根据该映射方式生成参数指示信令。 在对传输的层数、 扰码序列身份、 天线端口、 导频开销等传输参数进行联合编码 后, 即可确定出在基于用户设备特定参考信号传输时的层到天线端口的映射方式, 例 如, 当层数目为 V时, 如果其对应的端口为 {p^p^ + .p^},则层 (0 i v-l)对应于端 口 Pi。 然后就可以根据这个对应方式对参数指示信令进行设计, 并最终生成参数指示 信令。 优选地, 信令设计单元 422确定在基于用户设备特定参考信号传输时的层到天线 端口的映射方式可以包括: 根据下面公式确定层到天线端口的映射方式: 当只有一个层传输时, /;> = JC(q)(/;), 其中, 为层 0的调制符号, 为 对 应 层 预 编 码 后 对 应 的 端 口 的 数 据 , {0,4,5,7,8,9,10} , i = 0,l,...,M^b -1 ,Ms^ =M^h, M 为当前层上待传输的调制符号数目; 当层数目大于 1 时, 层到端口的映射为^ W = x()W, 其中, 为层 j的调 制符号, 为对应层预编码后对应的端口 .的数据, 对应的端口由指示信令指 示, o^j^v-l, V为层数目, = 0,1,...,Μ _1,Μ =Λ , 为当前层上待 传输的调制符号数目。 通过上述公式, 即可确定出在基于用户设备特定参考信号传输时的层到天线端口 的映射方式, 为构造参数指示信令提供依据。 优选地, 如图 5所示, 根据本发明优选实施例的传输参数指示装置还可以进一步 包括: 掩码指示模块 46,连接至联合编码模块 42, 设置为根据分配的最大端口号的大小 指示正交掩码解扩长度, 当分配的最大端口号大于第一阈值时, 用户设备采用第一长 度的正交掩码, 当分配的最大端口号小于等于第一阈值时, 用户设备采用第一长度或 第二长度的正交掩码, 其中, 第一长度大于第二长度。 正交掩码解扩长度可以通过分配的最大端口号隐式地指示。 由于分配的最大端口 号越大所需的 OCC长度就越长, 因此可以设定一个阈值 (第一阈值), 当分配的最大 端口号大于该阈值时, 就使用较长的 OCC (第一长度的正交掩码), 当分配的最大端 口号小于等于该阈值时, 就使用较短的 OCC (第二长度的正交掩码), 由于 OCC具有 向下兼容的特性, 因此, 在分配的最大端口号小于等于该阈值时, 使用较长的 OCC 也是可以的。 优选地, 如图 5所示, 联合编码模块 42可以进一步包括: 比特重用单元 424,连接至参数列表单元 422, 设置为在只有一个传输块使能的时 候, 将非使能的传输块对应的新数据指示比特用于进行联合编码。 由于联合编码模块 42在进行联合编码时加入了导频开销这一参数,因此需要增加 新的比特来做为载体。 当只有一个传输块使能的时候, 非使能的传输块对应的新数据 指示比特是闲置的, 因此可以将这一比特重用于进行联合编码, 从而提高比特的利用 率, 也更便于实现。 图 6是根据本发明实施例的传输参数确定方法的流程图。 如图 6所示, 根据本发 明实施例的传输参数确定方法包括: 步骤 S602,用户设备接收传输参数指示装置通过下行控制信息发送的参数指示信 令; 步骤 S604, 用户设备根据上述参数指示信令, 确定传输参数配置, 其中, 上述参 数指示信令由传输参数指示装置通过对传输参数进行联合编码生成, 其中, 传输参数 包括: 传输的层数、 扰码序列身份、 天线端口、 导频开销。 优选地,步骤 S604中,对传输参数进行联合编码生成参数指示信令可以进一步包 括以下处理: 根据上述传输参数确定在基于用户设备特定参考信号传输时的层到天线 端口的映射方式, 并根据该映射方式生成参数指示信令。 优选地, 根据传输参数确定在基于用户设备特定参考信号传输时的层到天线端口 的映射方式可以包括: 根据下面公式确定层到天线端口的映射方式: 当只有一个层传输时, /;> = JC(q)(/;), 其中, 为层 0的调制符号, 为 对 应 层 预 编 码 后 对 应 的 端 口 的 数 据 , {0,4,5,7,8,9,10} , i = 0,l,...,M^b -1 ,Ms^ =M^h, M 为当前层上待传输的调制符号数目; 当层数目大于 1 时, 层到端口的映射为^ W = x(;)W, 其中, 为层 j的调 制符号, 为对应层预编码后对应的端口 Pj的数据, P].对应的端口由指示信令指 示, o^j^v-l, V为层数目, = 0,1,...,Μ _1,Μ =Λ , 为当前层上待 传输的调制符号数目。 优选地,步骤 S604之后还可以进一步包括以下处理:根据分配的端口号的大小确 定正交掩码解扩长度, 当分配的最大端口号大于第一阈值时, 采用第一长度的正交掩 码, 当分配的最大端口号小于等于第一阈值时,采用第一长度或第二长度的正交掩码, 其中, 第一长度大于第二长度。 优选地,步骤 S604中,对传输参数进行联合编码生成参数指示信令还可以进一步 包括以下处理: 当只有一个传输块使能的时候, 将非使能的传输块对应的新数据指示 比特用于进行联合编码。 图 7是根据本发明实施例的传输参数确定装置的结构框图。 如图 7所示, 根据本 发明实施例的传输参数确定装置包括: 信令接收模块 72, 设置为接收传输参数指示装置通过下行控制信息发送的参数指 示信令; 参数确定模块 74, 连接至信令接收模块 72, 设置为根据上述参数指示信令, 确定 传输参数配置, 其中, 上述参数指示信令由传输参数指示装置通过对传输参数进行联 合编码生成, 其中, 传输参数包括: 传输的层数、 扰码序列身份、 天线端口、 导频开 销。 对应于上述参数指示装置, 在用户设备上也需要设置相应的参数确定模块以接收 上述参数指示装置发送的参数指示信令, 并根据其中的指示最终确定传输参数配置。 优选地, 上述传输参数指示装置可以根据上述传输参数确定在基于用户设备特定 参考信号传输时的层到天线端口的映射方式, 并根据该映射方式生成参数指示信令。 优选地, 上述传输参数指示装置确定在基于用户设备特定参考信号传输时的层到 天线端口的映射方式可以包括: 根据下面公式确定层到天线端口的映射方式: 当只有一个层传输时, /;> = JC(q)(/;), 其中, 为层 0的调制符号, 为 对 应 层 预 编 码 后 对 应 的 端 口 的 数 据 , {0,4,5,7,8,9,10} , i = 0,l,...,M^b -1 ,Ms^ =M^h, M 为当前层上待传输的调制符号数目; 当层数目大于 1 时, 层到端口的映射为^ W = x()W, 其中, 为层 j的调 制符号, 为对应层预编码后对应的端口 .的数据, 对应的端口由指示信令指 示, o^j^v-l, V为层数目, = 0,1,...,Μ _1,Μ =Λ , 为当前层上待 传输的调制符号数目。 优选地, 如图 8所示, 根据本发明优选实施例的传输参数确定装置还可以进一步 包括: 掩码确定模块 76, 连接至参数确定模块 74, 设置为根据分配的最大端口号的大 小确定正交掩码解扩长度, 当分配的最大端口号大于第一阈值时, 采用第一长度的正 交掩码, 当分配的最大端口号小于等于第一阈值时, 采用第一长度或第二长度的正交 掩码, 其中, 第一长度大于第二长度。 优选地, 当只有一个传输块使能的时候, 上述传输参数指示装置可以将非使能的 传输块对应的新数据指示比特用于进行联合编码。 从以上的描述中, 可以看出, 本发明提供的技术方案可以进一步对 MU-MIMO传 输模式增强, 在多用户传输时, 更灵活的进行层的分配, 同时支持不同节点之间, 尤 其是在异构网中不同节点间 DMRS的正交传输,而且也有利于不同节点之间的干扰抑 制。 整个方案可以实现以下技术效果: 对现有 MU-MIMO技术进行了增强, 支持同一 小区下多个用户之间实现更多的解调导频正交传输; 支持不同节点之间解调导频的正 交传输, 可以实现更准确的干扰估计; 支持异构网下, 不同节点之间更灵活的导频正 交传输, 获得更大的小区分裂增益。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 It should be noted that the various correspondences in the foregoing examples (for example, the correspondence between the index after the joint coding in the table and the specific attribute, the correspondence between the antenna port and the number of layers, and the correspondence between the index of the layer and the pilot pattern) are not limited. In this unique correspondence, that is, their order can be interchangeably combined as long as one-to-one correspondence is required. Specifically, a joint encoded index corresponds to a unique specific attribute, and a specific attribute corresponds to a unique joint encoded index. The above examples are just a list of their corresponding possibilities. 4 is a block diagram showing the structure of a transmission parameter indicating apparatus according to an embodiment of the present invention. As shown in FIG. 4, the transmission parameter indication apparatus according to the embodiment of the present invention includes: a joint coding module 42 configured to jointly encode the transmission parameters to generate parameter indication signaling, where the transmission parameters include: the number of layers to be transmitted, and the scrambling code The sequence identity, the antenna port, and the pilot overhead; the signaling module 44 is coupled to the joint coding module 42 and configured to send the parameter indication signaling to the user equipment by using downlink control information. In the foregoing apparatus, when the user equipment transmits the parameter, the joint coding module 42 jointly encodes the parameters of the transmitted layer number, the scrambling code sequence identity, the antenna port, and the pilot overhead to generate parameter indication signaling, and then performs downlink control. The information is sent to the user device. Since the joint coding module 42 participates in the joint coding as the transmission parameter as the transmission parameter, the pilot overhead can be selected more flexibly, thereby supporting more layers of demodulation pilot orthogonal transmission between multiple users. Preferably, as shown in FIG. 5, the joint coding module 42 may further include: a signaling design unit 422 configured to determine a layer to antenna port mapping manner based on the user equipment specific reference signal transmission according to the foregoing transmission parameter, and The parameter indication signaling is generated according to the mapping manner. After jointly coding the transmission parameters such as the number of layers to be transmitted, the scrambling code sequence identity, the antenna port, and the pilot overhead, the mapping of the layer to the antenna port based on the specific reference signal transmission of the user equipment can be determined, for example, When the number of layers is V, if its corresponding port is {p^p^ + .p^}, the layer ( 0 i vl) corresponds to port Pi . Then, the parameter indication signaling can be designed according to the corresponding manner, and finally the parameter indication signaling is generated. Preferably, the signaling design unit 422 determines that the layer-to-antenna port mapping manner when transmitting based on the user equipment-specific reference signal may include: determining a layer-to-antenna port mapping manner according to the following formula: when only one layer is transmitted, /; > = JC (q) (/;), where is the modulation symbol of layer 0, which is the data of the corresponding port after precoding the corresponding layer, {0,4,5,7,8,9,10}, i = 0,l,...,M^ b -1 ,M s ^ =M^ h , M is the number of modulation symbols to be transmitted on the current layer; when the number of layers is greater than 1, the layer-to-port mapping is ^ W = x () W, where is the modulation symbol of layer j, which is the data corresponding to the corresponding port pre-coded by the corresponding layer, the corresponding port is indicated by the indication signaling, o^j^vl, V is the number of layers, = 0, 1,...,Μ _1,Μ =Λ , is the number of modulation symbols to be transmitted on the current layer. Through the above formula, the mapping mode of the layer to the antenna port based on the specific reference signal transmission of the user equipment can be determined, and the basis for constructing the parameter indication signaling is provided. Preferably, as shown in FIG. 5, the transmission parameter indication apparatus according to the preferred embodiment of the present invention may further include: a mask indication module 46 connected to the joint coding module 42 and configured to indicate a positive according to the size of the allocated maximum port number. The user equipment adopts the first length of the first length. When the maximum port number is less than or equal to the first threshold, the user equipment adopts the first length. Or an orthogonal mask of a second length, wherein the first length is greater than the second length. The orthogonal mask despreading length can be implicitly indicated by the assigned maximum port number. Since the larger the assigned maximum port number, the longer the OCC length required, a threshold (first threshold) can be set. When the assigned maximum port number is greater than the threshold, a longer OCC (first length) is used. Orthogonal mask), when the assigned maximum port number is less than or equal to the threshold, a shorter OCC (orthogonal mask of the second length) is used, since the OCC has backward compatibility characteristics, therefore, in the allocation When the maximum port number is less than or equal to this threshold, it is also possible to use a longer OCC. Preferably, as shown in FIG. 5, the joint coding module 42 may further include: a bit reuse unit 424 connected to the parameter list unit 422, configured to correspond to the non-enabled transport block when only one transport block is enabled. The new data indicator bits are used for joint coding. Since the joint coding module 42 adds the pilot overhead parameter when performing joint coding, it is necessary to add new bits as a carrier. When only one transport block is enabled, the new data indication bit corresponding to the non-enabled transport block is idle, so this bit can be reused for joint coding, thereby improving bit utilization and being easier to implement. FIG. 6 is a flowchart of a transmission parameter determining method according to an embodiment of the present invention. As shown in FIG. 6, the transmission parameter determining method according to the embodiment of the present invention includes: Step S602: The user equipment receives the parameter indication signaling sent by the transmission parameter indication device by using the downlink control information; Step S604, the user equipment indicates the signaling according to the parameter And determining a transmission parameter configuration, where the parameter indication signaling is generated by the transmission parameter indication device by jointly coding the transmission parameter, where the transmission parameter includes: a number of layers to be transmitted, a scrambling code sequence identity, an antenna port, and a pilot overhead. Preferably, in step S604, jointly coding the transmission parameter to generate the parameter indication signaling may further include: determining, according to the foregoing transmission parameter, a layer to antenna port mapping manner based on the user equipment specific reference signal transmission, and according to the The mapping mode generates parameter indication signaling. Preferably, determining a mapping manner of the layer to antenna port when transmitting based on the user equipment specific reference signal according to the transmission parameter may include: determining a layer to antenna port mapping manner according to the following formula: When only one layer is transmitted, /;> = JC (q) (/;), where is the modulation symbol of layer 0, which is the data of the corresponding port after precoding the corresponding layer, {0, 4, 5, 7, 8,9,10} , i = 0,l,...,M^ b -1 ,M s ^ =M^ h , M is the number of modulation symbols to be transmitted on the current layer; when the number of layers is greater than 1, The layer-to-port mapping is ^ W = x (;) W, where is the modulation symbol of layer j, which is the data of the corresponding port Pj corresponding to the layer pre-coded, P] . The corresponding port is indicated by indication signaling, o ^j^vl, V is the number of layers, = 0,1,...,Μ _1,Μ =Λ , which is the number of modulation symbols to be transmitted on the current layer. Preferably, after step S604, the method further includes the following steps: determining an orthogonal mask despreading length according to the size of the allocated port number, and adopting a first length orthogonal mask when the allocated maximum port number is greater than the first threshold. And when the allocated maximum port number is less than or equal to the first threshold, adopting an orthogonal mask of the first length or the second length, wherein the first length is greater than the second length. Preferably, in step S604, jointly coding the transmission parameter to generate the parameter indication signaling may further include the following processing: when only one transport block is enabled, the new data indication bit corresponding to the non-enabled transport block is used for Co-coding. FIG. 7 is a structural block diagram of a transmission parameter determining apparatus according to an embodiment of the present invention. As shown in FIG. 7, the transmission parameter determining apparatus according to the embodiment of the present invention includes: a signaling receiving module 72, configured to receive parameter indication signaling sent by the transmission parameter indication means by using downlink control information; and a parameter determining module 74, connected to the letter The receiving module 72 is configured to determine a transmission parameter configuration according to the parameter indication signaling, where the parameter indication signaling is generated by the transmission parameter indication device by jointly coding the transmission parameter, where the transmission parameter includes: , scrambling sequence identity, antenna port, pilot overhead. Corresponding to the parameter indication device, the user parameter device also needs to set a corresponding parameter determination module to receive the parameter indication signaling sent by the parameter indication device, and finally determine the transmission parameter configuration according to the indication therein. Preferably, the foregoing transmission parameter indication device may determine a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted according to the foregoing transmission parameter, and generate parameter indication signaling according to the mapping manner. Preferably, the foregoing transmission parameter indication means determines that the layer to antenna port mapping manner when the user equipment specific reference signal is transmitted may include: Determine the mapping mode of the layer to the antenna port according to the following formula: When there is only one layer transmission, /;> = JC (q) (/;), where is the modulation symbol of layer 0, which is the corresponding port after precoding the corresponding layer. The data, {0,4,5,7,8,9,10}, i = 0,l,...,M^ b -1 ,M s ^ =M^ h , M is the current layer to be transmitted The number of modulation symbols; when the number of layers is greater than 1, the layer-to-port mapping is ^ W = x () W, where is the modulation symbol of layer j, which is the corresponding port of the corresponding layer pre-coded data, corresponding The port is indicated by the indication signaling, o^j^vl, V is the number of layers, = 0,1,...,Μ _1,Μ =Λ , which is the number of modulation symbols to be transmitted on the current layer. Preferably, as shown in FIG. 8, the transmission parameter determining apparatus according to the preferred embodiment of the present invention may further include: a mask determining module 76 connected to the parameter determining module 74, configured to determine the positive according to the size of the allocated maximum port number. And the first length or the second length is used when the maximum port number to be allocated is less than or equal to the first threshold. An orthogonal mask, wherein the first length is greater than the second length. Preferably, when only one transport block is enabled, the above-mentioned transmission parameter indicating means may use the new data indication bit corresponding to the non-enabled transport block for joint coding. From the above description, it can be seen that the technical solution provided by the present invention can further enhance the MU-MIMO transmission mode, and perform more flexible layer allocation in multi-user transmission, and simultaneously support between different nodes, especially in Orthogonal transmission of DMRS between different nodes in a heterogeneous network, and also facilitates interference suppression between different nodes. The whole solution can achieve the following technical effects: The existing MU-MIMO technology is enhanced to support more demodulation pilot orthogonal transmission between multiple users in the same cell; Support for demodulation pilot between different nodes Orthogonal transmission can achieve more accurate interference estimation. Supports more flexible pilot orthogonal transmission between different nodes under heterogeneous networks, and obtains larger cell splitting gain. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. The steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种传输参数指示方法, 包括: 1. A method for indicating a transmission parameter, comprising:
对传输参数进行联合编码生成参数指示信令, 其中, 所述传输参数包括: 传输的层数、 扰码序列身份、 天线端口、 导频开销;  Coding the transmission parameters to generate parameter indication signaling, where the transmission parameters include: a number of layers to be transmitted, a scrambling code sequence identity, an antenna port, and a pilot overhead;
将所述参数指示信令通过下行控制信息发送给用户设备。  And sending the parameter indication signaling to the user equipment by using downlink control information.
2. 根据权利要求 1所述的方法, 其中, 对传输参数进行联合编码生成参数指示信 令包括: 2. The method according to claim 1, wherein the jointly encoding the transmission parameter to generate the parameter indication signal comprises:
根据所述传输参数确定在基于用户设备特定参考信号传输时的层到天线端 口的映射方式, 并根据所述映射方式生成所述参数指示信令。  And determining, according to the transmission parameter, a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted, and generating the parameter indication signaling according to the mapping manner.
3. 根据权利要求 2所述的方法, 其中, 根据所述传输参数确定在基于用户设备特 定参考信号传输时的层到天线端口的映射方式包括: The method according to claim 2, wherein determining a layer to antenna port mapping manner based on the user equipment specific reference signal transmission according to the transmission parameter comprises:
根据下面公式确定层到天线端口的映射方式: 当只有一个层传输时, /;> = JC(q)(/;), 其中, (Q)W为层 0的调制符号, 为对应层预编码后对应的端口 的数据, {0,4,5,7,8,9,10}, i = 0,l,...,M b _1 ,M b =M^h, 为当前层上待传输的调制符号数目; 当层数目大于 1时, 层到端口的映射为^ W = x(;)W, 其中, 为层 j的调制符号, 为对应层预编码后对应的端口 .的数据, 对应的端口 由指示信令指示, 1, V为层数目, = 0,1,...,Μ _1 ,Μ =Λ , M^b为当前层上待传输的调制符号数目。 Determine the layer-to-antenna port mapping method according to the following formula: When there is only one layer transmission, /;> = JC (q) (/;), where (Q) W is the modulation symbol of layer 0, precoding the corresponding layer The data of the corresponding port, {0,4,5,7,8,9,10}, i = 0,l,...,M b _1 ,M b =M^ h , is the current layer to be transmitted The number of modulation symbols; when the number of layers is greater than 1, the layer-to-port mapping is ^ W = x (;) W, where is the modulation symbol of layer j, which is the corresponding port of the corresponding layer pre-coded, corresponding to The port is indicated by the indication signaling, 1, V is the number of layers, = 0, 1, ..., Μ _1 , Μ = Λ , M ^ b is the number of modulation symbols to be transmitted on the current layer.
4. 根据权利要求 3所述的方法, 其中, 在对传输参数进行联合编码生成参数指示 信令之后, 还包括: The method according to claim 3, after the joint coding of the transmission parameters to generate the parameter indication signaling, the method further includes:
根据分配的端口号的大小指示正交掩码解扩长度, 当分配的最大端口号大 于第一阈值时, 用户设备采用第一长度的正交掩码, 当分配的最大端口号小于 等于第一阈值时, 用户设备采用第一长度或第二长度的正交掩码, 其中, 所述 第一长度大于所述第二长度。 The orthogonal mask despreading length is indicated according to the size of the allocated port number. When the allocated maximum port number is greater than the first threshold, the user equipment adopts a first length orthogonal mask, when the allocated maximum port number is less than or equal to the first At the threshold, the user equipment adopts an orthogonal mask of a first length or a second length, wherein the first length is greater than the second length.
5. 根据权利要求 1至 4任一项所述的方法, 其中, 对传输参数进行联合编码生成 参数指示信令包括: The method according to any one of claims 1 to 4, wherein jointly coding the transmission parameters to generate parameter indication signaling comprises:
当只有一个传输块使能的时候, 将非使能的传输块对应的新数据指示比特 用于进行联合编码。  When only one transport block is enabled, the new data indicator bit corresponding to the non-enabled transport block is used for joint coding.
6. 一种传输参数指示装置, 包括: 6. A transmission parameter indicating device, comprising:
联合编码模块,设置为对传输参数进行联合编码生成参数指示信令,其中, 所述传输参数包括: 传输的层数、 扰码序列身份、 天线端口、 导频开销;  The joint coding module is configured to perform joint coding on the transmission parameters to generate parameter indication signaling, where the transmission parameters include: a number of layers to be transmitted, a scrambling code sequence identity, an antenna port, and a pilot overhead;
信令发送模块, 设置为将所述参数指示信令通过下行控制信息发送给用户 设备。  The signaling sending module is configured to send the parameter indication signaling to the user equipment by using downlink control information.
7. 根据权利要求 6所述的装置, 其中, 所述联合编码模块包括: The device according to claim 6, wherein the joint coding module comprises:
信令设计单元, 设置为根据所述传输参数确定在基于用户设备特定参考信 号传输时的层到天线端口的映射方式, 并根据所述映射方式生成所述参数指示 信令。  The signaling design unit is configured to determine a mapping manner of the layer-to-antenna port when the user equipment-specific reference signal is transmitted according to the transmission parameter, and generate the parameter indication signaling according to the mapping manner.
8. 根据权利要求 7所述的装置, 其中, 所述信令设计单元确定在基于用户设备特 定参考信号传输时的层到天线端口的映射方式的方法包括: 8. The apparatus according to claim 7, wherein the signaling design unit determines a method of mapping a layer to an antenna port based on a specific reference signal transmission of a user equipment, including:
根据下面公式确定层到天线端口的映射方式: 当只有一个层传输时, /;> = JC(q)(/;), 其中, (Q)W为层 0的调制符号, 为对应层预编码后对应的端口 的数据, {0,4,5,7,8,9,10}, i = 0,l,...,M^b -1 ,Ms^ =M^h, M 为当前层上待传输的调制符号数目; 当层数目大于 1时, 层到端口的映射为^ W = x(;)W, 其中, 为层 j的调制符号, 为对应层预编码后对应的端口 .的数据, 对应的端口 由指示信令指示, 1, V为层数目, = 0,1,...,Μ _1 ,Μ =Λ , M^b为当前层上待传输的调制符号数目。 Determine the layer-to-antenna port mapping method according to the following formula: When there is only one layer transmission, /;> = JC (q) (/;), where (Q) W is the modulation symbol of layer 0, precoding the corresponding layer The data of the corresponding port, {0,4,5,7,8,9,10}, i = 0,l,...,M^ b -1 ,M s ^ =M^ h , M is the current The number of modulation symbols to be transmitted on the layer; when the number of layers is greater than 1, the layer-to-port mapping is ^ W = x (;) W, where is the modulation symbol of layer j, which is the corresponding port after precoding the corresponding layer. The data, the corresponding port is indicated by the indication signaling, 1, V is the number of layers, = 0, 1, ..., Μ _1 , Μ = Λ , M ^ b is the number of modulation symbols to be transmitted on the current layer.
9. 根据权利要求 8所述的装置, 其中, 还包括: 掩码指示模块, 设置为根据分配的端口号的大小指示正交掩码解扩长度, 当分配的最大端口号大于第一阈值时, 用户设备采用第一长度的正交掩码, 当 分配的最大端口号小于等于第一阈值时, 用户设备采用第一长度或第二长度的 正交掩码, 其中, 所述第一长度大于所述第二长度。 9. The apparatus according to claim 8, further comprising: a mask indication module, configured to indicate an orthogonal mask despreading length according to a size of the allocated port number, when the allocated maximum port number is greater than the first threshold The user equipment adopts an orthogonal mask of a first length. When the allocated maximum port number is less than or equal to the first threshold, the user equipment adopts an orthogonal mask of a first length or a second length, where the first length is greater than The second length.
10. 根据权利要求 6至 9任一项所述的装置, 其中, 所述联合编码模块, 还包括: 比特重用单元, 设置为在只有一个传输块使能的时候, 将非使能的传输块 对应的新数据指示比特用于进行联合编码。 The device according to any one of claims 6 to 9, wherein the joint coding module further comprises: a bit reuse unit, configured to: when only one transport block is enabled, the non-enabled transport block The corresponding new data indicator bit is used for joint coding.
11. 一种传输参数确定方法, 包括: 11. A method for determining transmission parameters, comprising:
用户设备接收传输参数指示装置通过下行控制信息发送的参数指示信令; 所述用户设备根据所述参数指示信令, 确定传输参数配置, 其中, 所述参数指示信令由所述传输参数指示装置通过对传输参数进行联合编码 生成, 其中, 所述传输参数包括: 传输的层数、 扰码序列身份、 天线端口、 导 频开销。  The user equipment receives the parameter indication signaling sent by the transmission parameter indication device by using the downlink control information; the user equipment determines the transmission parameter configuration according to the parameter indication signaling, where the parameter indication signaling is used by the transmission parameter indication device The transmission parameters are jointly encoded and generated, where the transmission parameters include: a number of layers to be transmitted, a scrambling code sequence identity, an antenna port, and a pilot overhead.
12. 根据权利要求 11所述的方法,其中,对传输参数进行联合编码生成所述参数指 示信令包括: 12. The method of claim 11 wherein jointly encoding the transmission parameters to generate the parameter indication signaling comprises:
根据所述传输参数确定在基于用户设备特定参考信号传输时的层到天线端 口的映射方式, 并根据所述映射方式生成所述参数指示信令。  And determining, according to the transmission parameter, a layer-to-antenna port mapping manner when the user equipment-specific reference signal is transmitted, and generating the parameter indication signaling according to the mapping manner.
13. 根据权利要求 12所述的方法,其中,根据所述传输参数确定在基于用户设备特 定参考信号传输时的层到天线端口的映射方式的方法包括: 13. The method according to claim 12, wherein the method for determining a layer to antenna port mapping manner based on the user equipment specific reference signal transmission according to the transmission parameter comprises:
根据下面公式确定层到天线端口的映射方式: 当只有一个层传输时, /;> = JC(q)(/;), 其中, (Q)W为层 0的调制符号, 为对应层预编码后对应的端口 的数据, {0,4,5,7,8,9,10}, i = 0,l,...,M^b -1 ,Ms^ =M^h, M 为当前层上待传输的调制符号数目; 当层数目大于 1时, 层到端口的映射为^ W = x(;)W, 其中, 为层 j的调制符号, 为对应层预编码后对应的端口 .的数据, 对应的端口 由指示信令指示, 1, V为层数目, = 0,1,...,Μ _1 ,Μ =Λ , M^b为当前层上待传输的调制符号数目。 Determine the layer-to-antenna port mapping method according to the following formula: When there is only one layer transmission, /;> = JC (q) (/;), where (Q) W is the modulation symbol of layer 0, precoding the corresponding layer The data of the corresponding port, {0,4,5,7,8,9,10}, i = 0,l,...,M^ b -1 ,M s ^ =M^ h , M is the current The number of modulation symbols to be transmitted on the layer; when the number of layers is greater than 1, the layer-to-port mapping is ^ W = x (;) W, where is the modulation symbol of layer j, which is the corresponding port after precoding the corresponding layer. The data, the corresponding port is indicated by the indication signaling, 1, V is the number of layers, = 0, 1, ..., Μ _1 , Μ = Λ , M ^ b is the number of modulation symbols to be transmitted on the current layer.
14. 根据权利要求 13所述的方法, 其中, 所述用户设备根据所述参数指示信令, 确 定传输参数配置之后, 还包括: The method according to claim 13, wherein, after the user equipment determines the transmission parameter configuration according to the parameter indication signaling, the method further includes:
根据分配的端口号的大小确定正交掩码解扩长度, 当分配的最大端口号大 于第一阈值时, 采用第一长度的正交掩码, 当分配的最大端口号小于等于第一 阈值时, 采用第一长度或第二长度的正交掩码, 其中, 所述第一长度大于所述 第二长度。 The orthogonal mask despreading length is determined according to the size of the allocated port number. When the allocated maximum port number is greater than the first threshold, the first length orthogonal mask is adopted, and when the allocated maximum port number is less than or equal to the first At the threshold, an orthogonal mask of the first length or the second length is employed, wherein the first length is greater than the second length.
15. 根据权利要求 11至 14任一项所述的方法, 其中, 对传输参数进行联合编码生 成所述参数指示信令包括: The method according to any one of claims 11 to 14, wherein jointly coding the transmission parameters to generate the parameter indication signaling comprises:
当只有一个传输块使能的时候, 将非使能的传输块对应的新数据指示比特 用于进行联合编码。  When only one transport block is enabled, the new data indicator bit corresponding to the non-enabled transport block is used for joint coding.
16. 一种传输参数确定装置, 位于用户设备上, 包括: A transmission parameter determining device, located on the user equipment, comprising:
信令接收模块, 设置为接收传输参数指示装置通过下行控制信息发送的参 数指示信令;  The signaling receiving module is configured to receive the parameter indication signaling sent by the transmission parameter indication device by using the downlink control information;
参数确定模块, 设置为根据所述参数指示信令, 确定传输参数配置, 其中, 所述参数指示信令由所述传输参数指示装置通过对传输参数进行联合编码 生成, 其中, 所述传输参数包括: 传输的层数、 扰码序列身份、 天线端口、 导 频开销。  a parameter determining module, configured to determine a transmission parameter configuration according to the parameter indication signaling, where the parameter indication signaling is generated by the transmission parameter indication device by jointly coding the transmission parameter, where the transmission parameter includes : Number of layers transmitted, scrambling sequence identity, antenna port, pilot overhead.
17. 根据权利要求 16所述的装置,其中,所述传输参数指示装置根据所述传输参数 确定在基于用户设备特定参考信号传输时的层到天线端口的映射方式, 并根据 所述映射方式生成所述参数指示信令。 17. The apparatus according to claim 16, wherein the transmission parameter indicating means determines a mapping manner of a layer to an antenna port when transmitting based on a user equipment specific reference signal according to the transmission parameter, and generates according to the mapping manner. The parameter indicates signaling.
18. 根据权利要求 17所述的装置,其中,所述传输参数指示装置确定在基于用户设 备特定参考信号传输时的层到天线端口的映射方式的方法包括: 18. The apparatus of claim 17, wherein the method by which the transmission parameter indicating means determines a layer to antenna port mapping based on user equipment specific reference signal transmission comprises:
根据下面公式确定层到天线端口的映射方式: 当只有一个层传输时, /;> = JC(q)(/;), 其中, (Q)W为层 0的调制符号, 为对应层预编码后对应的端口 的数据, {0,4,5,7,8,9,10}, i = 0,l,...,M^b -1 ,Ms^ =M^h, M 为当前层上待传输的调制符号数目; 当层数目大于 1时, 层到端口的映射为^ W = x(;)W, 其中, 为层 j的调制符号, 为对应层预编码后对应的端口 .的数据, 对应的端口 由指示信令指示, 1, V为层数目, = 0,1,...,Μ _1 ,Μ =Λ , M^b为当前层上待传输的调制符号数目。 Determine the layer-to-antenna port mapping method according to the following formula: When there is only one layer transmission, /;> = JC (q) (/;), where (Q) W is the modulation symbol of layer 0, precoding the corresponding layer The data of the corresponding port, {0,4,5,7,8,9,10}, i = 0,l,...,M^ b -1 ,M s ^ =M^ h , M is the current The number of modulation symbols to be transmitted on the layer; when the number of layers is greater than 1, the layer-to-port mapping is ^ W = x (;) W, where is the modulation symbol of layer j, which is the corresponding port after precoding the corresponding layer. The data, the corresponding port is indicated by the indication signaling, 1, V is the number of layers, = 0, 1, ..., Μ _1 , Μ = Λ , M ^ b is the number of modulation symbols to be transmitted on the current layer.
19. 根据权利要求 18所述的装置, 其中, 所述传输参数确定装置还包括: 掩码确定模块, 设置为根据分配的端口号的大小确定正交掩码解扩长度, 当分配的最大端口号大于第一阈值时, 采用第一长度的正交掩码, 当分配的最 大端口号小于等于第一阈值时, 采用第一长度或第二长度的正交掩码, 其中, 所述第一长度大于所述第二长度。 根据权利要求 16至 18任一项所述的装置, 其中, 当只有一个传输块使能的时 候, 所述传输参数指示装置将非使能的传输块对应的新数据指示比特用于进行 联合编码。 The device according to claim 18, wherein the transmission parameter determining device further comprises: The mask determining module is configured to determine an orthogonal mask despreading length according to the size of the allocated port number, and when the allocated maximum port number is greater than the first threshold, adopt a first length orthogonal mask, when the allocated maximum port When the number is less than or equal to the first threshold, an orthogonal mask of the first length or the second length is used, wherein the first length is greater than the second length. The apparatus according to any one of claims 16 to 18, wherein, when only one transport block is enabled, the transmission parameter indicating means uses a new data indication bit corresponding to the non-enabled transport block for joint coding .
PCT/CN2012/075188 2011-05-09 2012-05-08 Transmission parameter indication/transmission parameter determination method and device WO2012152214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110118555.2A CN102781098B (en) 2011-05-09 Parameter indicating means, device and parameter determination method, device
CN201110118555.2 2011-05-09

Publications (1)

Publication Number Publication Date
WO2012152214A1 true WO2012152214A1 (en) 2012-11-15

Family

ID=47125809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075188 WO2012152214A1 (en) 2011-05-09 2012-05-08 Transmission parameter indication/transmission parameter determination method and device

Country Status (1)

Country Link
WO (1) WO2012152214A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465718A (en) * 2009-01-21 2009-06-24 中兴通讯股份有限公司 Method and apparatus for mapping codeword current to layer in multi-input multi-output system
CN101523756A (en) * 2006-10-02 2009-09-02 皇家飞利浦电子股份有限公司 Efficient CQI signaling in MIMO systems with variable numbers of beams
CN101834629A (en) * 2010-04-06 2010-09-15 中兴通讯股份有限公司 Method and system for indicating transmission parameters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101523756A (en) * 2006-10-02 2009-09-02 皇家飞利浦电子股份有限公司 Efficient CQI signaling in MIMO systems with variable numbers of beams
CN101465718A (en) * 2009-01-21 2009-06-24 中兴通讯股份有限公司 Method and apparatus for mapping codeword current to layer in multi-input multi-output system
CN101834629A (en) * 2010-04-06 2010-09-15 中兴通讯股份有限公司 Method and system for indicating transmission parameters

Also Published As

Publication number Publication date
CN102781098A (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US12010691B2 (en) Method and apparatus for transmitting/receiving channels in mobile communication system supporting massive MIMO
EP3584975B1 (en) Methods for indicating and receiving dmrs, transmitting end, and receiving end
US9516655B2 (en) Method and system for enabling resource block bundling in LTE-A systems
KR101770174B1 (en) Method and system of multi-layer beamforming
US10027391B2 (en) Transmit diversity on a control channel without additional reference signals
JP5513675B2 (en) Method and system for indicating transmission parameters
WO2012155502A1 (en) Method and apparatus for indicating downlink control information
CN107645329B (en) Data transmission method and device
WO2013063891A1 (en) Resource configuration method and system for uplink demodulation reference signal
WO2011137620A1 (en) Indication method and system for uplink demodulation reference signals
JP6293144B2 (en) Control information processing method and apparatus
WO2012152004A1 (en) Dmrs and signaling sending method and device thereo
KR20110031928A (en) Method for allocating phich and generating reference signal in system using single-user mimo based on multiple codewords when transmitting uplink
WO2011085702A1 (en) Resource configuration methods for dedicated demodulation reference signal and relevant apparatuses
WO2012155506A1 (en) Method and base station for interacting the information of uplink demodulation reference signal among cells
WO2013000253A1 (en) Information exchanging method in coordinated multipoint transmission and reception system and coordinated multipoint transmission and reception system
WO2014048249A1 (en) Device and method for processing downlink control information
WO2013139262A1 (en) Method and device for notifying and receiving initialized configuration parameter of downlink demodulation reference signal
US20130215845A1 (en) Method and device for generating reference signal in cellular mobile communication system
WO2014015726A1 (en) Pilot signal sending method and apparatus
WO2012152214A1 (en) Transmission parameter indication/transmission parameter determination method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782745

Country of ref document: EP

Kind code of ref document: A1