WO2012152206A1 - 信道测量的方法及装置 - Google Patents

信道测量的方法及装置 Download PDF

Info

Publication number
WO2012152206A1
WO2012152206A1 PCT/CN2012/075104 CN2012075104W WO2012152206A1 WO 2012152206 A1 WO2012152206 A1 WO 2012152206A1 CN 2012075104 W CN2012075104 W CN 2012075104W WO 2012152206 A1 WO2012152206 A1 WO 2012152206A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
information
frequency bands
signal information
csi
Prior art date
Application number
PCT/CN2012/075104
Other languages
English (en)
French (fr)
Inventor
郑娟
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12782417.5A priority Critical patent/EP2698935B1/en
Publication of WO2012152206A1 publication Critical patent/WO2012152206A1/zh
Priority to US14/069,826 priority patent/US9191845B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se

Definitions

  • a network side device including: a configuration unit, configured to configure reference signal information corresponding to each frequency band according to a measurement requirement for each of N frequency bands having the same carrier frequency And the reference signal density included in the reference signal information of the at least two of the N frequency bands after the configuration is different, where N is a positive integer greater than or equal to 2, and the reference signal information refers to generating a reference signal Information required, the reference signal density refers to a distribution density of the reference signal or the reference signal in the time domain or a distribution density in the frequency domain; a notification unit, configured to notify the user equipment of the configuration unit The configured reference signal information is such that the user equipment performs channel measurement according to the reference signal information.
  • a CRS pattern (CRS pattern) that can simultaneously perform channel measurement and interference estimation is distributed in time in a period of 1 ms, and satisfies the requirement of channel frequency-related characteristics in frequency.
  • the time distribution can be used for a long time period ( For example, 5ms, 10ms, 20ms, 40ms, 80ms), the frequency channel related characteristics are also met in frequency.
  • Each frequency band may be composed of one subcarrier or multiple subcarriers, or one or more physical resource blocks PRB (Physical resource block), or one or more resource block groups RBG (Resource Block Group).
  • Each frequency band may also be the backward compatible carrier portion described above, or the non-backward compatible carrier portion (e.g., carrier segment or carrier extension portion).
  • Multiple subcarriers (or PRB/RBG) may be contiguous or non-contiguous.
  • the eNB may not configure the reference signal on part of the frequency band. Further, the eNB may also notify the UE of the frequency band not configured with the reference signal by using RRC broadcast signaling or RRC dedicated signaling or physical layer signaling, or the eNB may configure the reference signal density included in the reference signal information to be infinite. , indicating that no reference signal is configured on some frequency bands.
  • the respective reference signal information is respectively configured for different frequency bands in the same carrier, so that the reference signal density included in the reference signal information of the at least two frequency bands is different, so that different measurement requirements according to different frequency bands can be targeted.
  • the reference signal information is designed to reduce the overhead of the reference signal while ensuring the accuracy of the reference signal measurement.
  • the eNB configures CSI-RS information corresponding to N frequency bands in the same carrier.
  • the eNB includes, according to measurement requirements, a channel state that is experienced by each UE in different frequency bands, such as the speed of channel change, and different requirements of the UE based on CSI-RS measurement, for example, one or more frequency bands adopt CSI-RS for channel quality measurement.
  • the other multiple or one frequency band uses CSI-RS to measure channel quality and interference level, and each UE is configured with CSI-RS information corresponding to different frequency bands in the same carrier.
  • the configuration parameters in the CSI-RS-Config may be used to indicate CSI-RS information corresponding to the N frequency bands.
  • the CSI-RS-Config may include different types of CSI-RS periodic parameters, where the parameter indicates at least a CSI-RS period corresponding to the M1 frequency bands, and may further include M2 different location index information, where the parameter At least the position index information occupied by the CSI-RS corresponding to the M2 frequency bands is indicated; and the M3 different CSI-RS transmit power control information may be further included, and the CSI-RS corresponding to the M3 frequency bands may be directly or indirectly obtained by using the parameter.
  • the channel quality indication report parameter CQI-ReportConfig contains the precoding indication (PMI) / rank indication (RI), the parameter Pmi-RI-Report, the PMI/RI needs to be explained.
  • the effective frequency range of the reported parameters Specifically, the PMI/RI reporting parameter can only be applied to the frequency band portion where the CRS and the CSI-RS exist at the same time; or the explicit information field can be used to indicate the PMI/RI reporting parameter.
  • the effective frequency domain range is the effective frequency domain range.
  • the UE performs channel measurement according to CSI-RS information of different frequency bands.
  • the one or more frequency bands correspond to the same configuration of the CRS frequency domain density, and may also adopt a configuration of 6 subcarriers by default; the CRS transmission power in the N-M9 frequency bands may be used to correspond to one or more of the M9 frequency bands.
  • the configuration with the same transmit power may also be the same as the configuration of the prior art by default; the port information of the CRS on the N-M10 frequency bands may be configured in the same configuration as the port information corresponding to the CRS of one or more of the M10 frequency bands. It can also be the same as the configuration of the prior art by default.
  • the correspondence between the frequency bands configured by the same parameter is known to the eNB and the UE, and may be notified to the UE by the eNB in an explicit manner, or may be implicit, and is not limited herein.
  • the UE receives the signaling of the CRS information sent by the eNB, and can identify the CRS configurations corresponding to the different frequency bands, and then use the information to generate the CRS and use the generated CRS to measure the channel state information of different frequency bands.
  • a non-limiting example of the network side device 600 of FIG. 6 is the base station (or eNB) in FIG. 1 to FIG. 5 described above, which is capable of performing various operations related to the network side in the method shown in FIG. 1 to FIG. Detailed description is omitted.
  • each frequency band is composed of one or more subcarriers, or is composed of one or more physical resource blocks PRB, or is composed of one or more resource block groups RBG.
  • the notification unit 620 is further configured to notify the user equipment of a correspondence between the reference signal information and each of the N frequency bands, so that the user equipment learns the N according to a correspondence relationship. Corresponding reference signal information for each frequency band in the frequency band.
  • the receiving unit 710 is further configured to receive a correspondence between the reference signal information notified by the network side device and each of the N frequency bands, and obtain, according to the correspondence, reference signal information corresponding to each of the N frequency bands. .
  • the reference signal can be a CSI-RS, CRS or multicast service reference signal.
  • the reference signal information corresponding to each frequency band received by the receiving unit 710 may further include: CSI-RS location index information, CSI-RS transmit power control information, CSI-RS port information, and CSI- RS silent mode information.
  • the corresponding reference signal information of each frequency band received by the receiving unit 710 may further include: CRS port information and CRS transmission power information.
  • the measuring unit 720 may obtain the missing information according to the corresponding reference signal information of the other frequency bands, where the reference signal information corresponding to the other frequency bands includes the missing information, and according to all the information obtained after the missing information Channel measurement is performed with reference signal information.
  • the receiving unit 710 can receive the reference signal information that is notified by the network side device by a single signaling, where the single signaling carries the reference signal information corresponding to the N frequency bands.
  • the receiving unit 710 may receive the reference signal information that is notified by the network side device by using N signaling, where each of the N signalings respectively carries a reference corresponding to each of the N frequency bands. Signal information.

Description

信道测量的方法及装置 本申请要求于 2011 年 5 月 9 日提交中国专利局、 申请号为 201110118188.6、 发明名称为 "信道测量的方法及装置" 的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及无线通信领域, 并且更具体地, 涉及信道测量的方 法及装置。 发明背景
在无线通信系统中, 由于用户设备 ( User equipment , UE ) 的移动性 以及无线信号的多径传播等因素,导致基站与 UE之间的信道状态随着时间 和频率的变化而变化。 为了能够提高系统的传输效率, 期望基站能够有效 地利用基站和 UE之间的信道状态信息, 将每个 UE调度在该 UE最好的信 道状态对应的时间频率资源上。基于此,就需要基站获知每个 UE的信道状 态信息。
在无线通信系统中,例如 LTE ( Long term evolution,长期演进 ) /LTE-A ( LTE- Advanced, 先进的长期演进) 系统中, 基站一般通过 UE上报的信 道状态信息获知基站和 UE之间的信道状态。 具体地, UE可以通过测量基 站发送的下行参考信号, 计算得到基站与该 UE之间的信道质量和干扰水 平, 进而获得基站和 UE 之间的下行信道状态信息(Channel State Information , CSI)。 这里的下行参考信号主要包括小区特定参考信号 ( Cell- specific reference signal, CRS ) 和信道状态信息参考信号 ( Channel-State Information reference signal, CSI-RS )。 匕夕卜, 基占也可以通 过测量 UE 发送的上行参考信号, 例如上行探测信号 SRS(Sounding Reference Signal, SRS), 获知基站和 UE之间的上行信道质量; 对于具有信 道互易特性的系统, 例如 TDD系统, 基站可以通过此上行信道质量获得基 站和 UE之间的下行信道质量。
在无线通信系统中, 对于信道状态信息测量而言, 参考信号的设计主 要考虑两个因素: 一是能够满足测量精度, 即要保证测量得到的信道状态 信息与基站和 UE之间实际的信道条件基本相同,这样可以 站较为准确 地对 UE进行速率匹配,即对该用户的数据调度能够采用较为合适的调制编 码方式( Modulation Coding Scheme, MCS )并将该用户调度在较为合适的时 间频率资源上; 二是要考虑参考信号的开销尽可能地小, 以避免对数据资 源造成过多的浪费。
对于同一个 UE而言, 在同一载波内的不同频带上使用的参考信号可 能用于不同的测量目的。 例如, 分别用于信道质量测量和干扰水平测量, 这两种测量所需要的参考信号特性可能是不同的。但目前基站对于 UE配置 的各个频带的参考信号特性并未考虑不同频带的不同测量目的, 这样就不 能够完全兼顾上述两点因素, 从而使得部分频带上信道质量测量或干扰水 平测量精度不够, 或者使得部分频带上参考信号开销增大。
发明内容
本发明实施例提供一种配置参考信号的方法和网络侧设备, 能够减少 参考信号开销。
一方面, 提供了一种信道测量的方法, 包括: 对于具有相同载波频率 的 N个频带中的每个频带, 分别根据测量需求配置与所述每个频带相应的 参考信号信息, 使得配置后的所述 N个频带中至少两个频带的参考信号信 息中所包含的参考信号密度不同, 其中, N为大于或等于 2的正整数, 所 述参考信号信息指生成参考信号所需的信息, 所述参考信号密度指所述参 考信号或者所述参考信号的图样在时域上的分布密度或者在频域上的分布 密度; 向用户设备通知所述参考信号信息, 以使得所述用户设备根据所述 参考信号信息进行信道测量。
另一方面, 提供了一种信道测量的方法, 包括: 接收网络侧设备通知 的 N个频带中的每个频带相应的参考信号信息, 其中, 所述 N个频带具有 相同载波频率, 所述参考信号信息为所述网络侧设备根据测量需求为每个 频带分别配置的, 且配置后的所述 N个频带中至少两个频带的参考信号信 息中所包含的参考信号密度不同, 其中, N为大于或等于 2的正整数, 所 述参考信号信息指生成参考信号所需的信息, 所述参考信号密度指所述参 考信号或者所述参考信号的图样在时域上的分布密度或者在频域上的分布 密度; 根据所述参考信号信息进行信道测量。
另一方面, 提供了一种网络侧设备, 包括: 配置单元, 用于对于具有 相同载波频率的 N个频带中的每个频带, 分别根据测量需求配置与所述每 个频带相应的参考信号信息, 使得配置后的所述 N个频带中至少两个频带 的参考信号信息中所包含的参考信号密度不同, 其中, N 为大于或等于 2 的正整数, 所述参考信号信息指生成参考信号所需的信息, 所述参考信号 密度指所述参考信号或者所述参考信号的图样在时域上的分布密度或者在 频域上的分布密度; 通知单元, 用于向用户设备通知所述配置单元配置的 参考信号信息, 以使得所述用户设备根据所述参考信号信息进行信道测量。
另一方面, 提供了一种用户设备, 包括: 接收单元, 用于接收网络侧 设备通知的 N个频带中的每个频带相应的参考信号信息, 其中, 所述 N个 频带具有相同载波频率, 所述参考信号信息为所述网络侧设备根据测量需 求为每个频带分别配置的, 且配置后的所述 N个频带中至少两个频带的参 考信号信息中所包含的参考信号密度不同, 其中, N为大于或等于 2的正 整数, 所述参考信号信息指生成参考信号所需的信息, 所述参考信号密度 指所述参考信号或者所述参考信号的图样在时域上的分布密度或者在频域 上的分布密度; 测量单元, 用于根据所述接收单元接收的参考信号信息进 行信道测量。
本发明实施例对于同一载波内的不同频带分别配置各自的参考信号信 息, 使得至少两个频带的参考信号信息中所包含的参考信号密度不同, 从 而能够根据不同频带的不同测量需求, 针对性地设计参考信号信息, 在保 证参考信号测量精度的情况下, 减少了参考信号的开销。 附图简要说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明实施例的信道测量的方法的流程图。
图 2是根据本发明另一实施例的信道测量的方法的流程图。
图 3是根据本发明实施例的信道测量的过程的示意流程图。
图 4是根据本发明另一实施例的信道测量的过程的示意流程图。
图 5是根据本发明另一实施例的信道测量的过程的示意流程图。
图 6是根据本发明一个实施例的网络侧设备的示意框图。
图 7是根据本发明另一实施例的用户设备的示意框图。 实施本发明的方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有 作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范 围。 本发明的技术方案, 可以应用于各种通信系统, 例如: GSM, 码分多 址( CDMA, Code Division Multiple Access )系统,宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ), 通用分组无线业务 ( GPRS , General Packet Radio Service ) , 长期演进( LTE , Long Term Evolution ), LTE技术的后续演进( LTE-A, LTE-Advanced )等。为方便说明, 本发明的技术方案是以 LTE/LTE-A无线通信系统为例进行阐述的, 但是本 发明不限于此, 本发明的技术方案同样适用于其他无线通信系统。
本发明涉及的用户设备可以经无线接入网(例如, RAN, Radio Access Network ) 与一个或多个核心网进行通信, 具体的可以是 UE ( User Equipment, 用户设备)、 中继节点等设备。
图 1是根据本发明实施例的信道测量的方法的流程图。 图 1的方法可 以由网络侧设备(例如基站、 基站控制器、 无线网络控制器、 移动管理实 体、 接入网关、 或多小区 /多播协作实体)执行。
101 , 对于具有相同载波频率的 N个频带中的每个频带, 分别根据测 量需求配置与所述每个频带相应的参考信号信息, 使得配置后的所述 N个 频带中至少两个频带的参考信号信息中所包含的参考信号密度不同, 其中, N为大于或等于 2的正整数, 所述参考信号信息指生成参考信号所需的信 息, 所述参考信号密度指所述参考信号或者所述参考信号的图样 (reference signal pattern)在时域上的分布密度或者在频域上的分布密度。
102, 向用户设备通知所述参考信号信息, 以使得所述用户设备根据所 述参考信号信息进行信道测量。
本发明实施例对于同一载波内的不同频带分别配置各自的参考信号信 息, 使得至少两个频带的参考信号信息中所包含的参考信号密度不同, 从 而能够根据不同频带的不同测量需求, 针对性地设计参考信号信息, 在保 证利用参考信号进行信道测量, 测量精度满足的情况下, 减少了参考信号 的开销。 图 2是根据本发明另一实施例的信道测量的方法的流程图。 图 2的方 法主要由用户设备执行, 并且与图 1的方法相对应。
201 , 接收网络侧设备通知的 N个频带中的每个频带相应的参考信号 信息, 其中, 所述 N个频带具有相同载波频率, 所述参考信号信息为所述 网络侧设备根据测量需求为每个频带分别配置的, 且配置后的所述 N个频 带中至少两个频带的参考信号信息中所包含的参考信号密度不同,
其中, N为大于或等于 2的正整数, 所述参考信号信息指生成参考信 号所需的信息, 所述参考信号密度指所述参考信号或者所述参考信号的图 样在时域上的分布密度或者在频域上的分布密度;
202, 根据所述参考信号信息进行信道测量。
本发明实施例对于同一载波内的不同频带分别配置各自的参考信号信 息, 使得至少两个频带的参考信号信息中所包含的参考信号密度不同, 从 而能够根据不同频带的不同测量需求, 针对性地设计参考信号信息, 在保 证利用参考信号进行信道测量, 测量精度满足的情况下, 减少了参考信号 的开销。
在 LTE/LTE-A场景下,对于同时可以进行信道测量和干扰估计的 CRS 图样(CRS pattern ), 以 lms为周期在时间上进行分布, 在频率上满足信道 频率相关特性的需求。 对于主要用于信道质量测量的 CSI-RS, 由于服务信 号经历信道相对比较稳定以及基站可以采用诸如静默技术(Muting ) 来保 证 CSI-RS的测量精度,时间分布上可以采用较长的时间周期(如 5ms, 10ms, 20ms, 40ms, 80ms ), 在频率上同样满足信道频率相关特性的需求。
对于同一个 UE而言, 在同一个载波的不同频带上, 基站对该 UE配 置的用于信道质量和 /或干扰水平测量的参考信号密度如果是相同的, 则不 能最佳地利用参考信号。 例如, 在某些场景下, 需要基站根据 UE在不同频 带上的不同测量目的, 配置合适的参考信号密度, 以实现在满足信道质量 和干扰水平测量精度的要求下, 尽可能地减少参考信号开销。 其中一个典型场景是, 应用载波分割( Carrier segment )或者载波扩展 ( Carrier extension ) 的系统。 对于这样的系统, 频带资源可以分成两部分, 一部分是后向兼容载波部分, 一部分是非后向兼容载波部分(如 carrier segment或 carrier extension部分)。 其中非后向兼容部分不承载控制信道例 如同步信道、 广播信道、 系统信息块( System Information Block, SIB ) it 道、 寻呼信道、 下行物理层控制信道, 从而可以提供更多的数据资源, 提 升系统的频谱效率。此时在后向兼容部分,由于分布密度高的参考信号 CRS 的存在, 主要用于信道质量测量的 CSI-RS可以配置较长的时间周期。 此时 如果 UE在非后向兼容部分利用 CSI-RS进行信道质量和干扰水平测量并且 采用与后向兼容部分分布密度相同的 CSI-RS, 则会导致非后向兼容部分的 测量精度无法满足; 另一方面, 如果 UE在非后向兼容部分利用 CRS进行 信道质量和干扰水平测量并且采用与后向兼容部分分布密度相同的 CRS, 则又会导致非后向兼容部分的参考信号开销增大进而影响非后向兼容部分 的数据效率。
本发明实施例的方法能够根据 UE在同一载波内不同频带经历的不同 信道状态和 /或基于参考信号测量的不同目的和 /或对不同频带参考信号开 销需求的考虑, 分别进行参考信号配置, 以满足不同频带的信道状态测量 精度和实现不同频带数据资源利用率的最大化。
图 3是根据本发明实施例的信道测量过程的示意流程图。 图 3中为了 方便描述,使用 UE代表用户设备,但是本发明实施例不限于该术语所代表 的特定系统, 可以将本发明实施例类似地应用于任何系统, 这些应用均落 入本发明实施例的范围内。
另夕卜,图 3的实施例中使用基站 eNB作为配置参考信号的网络侧设备, 本发明实施例不限于此。 在其他系统中可以通过其他网络侧设备配置参考 信号, 例如无线网络控制器 RNC ( Radio Network Controller )。 这些变化均 落入本发明实施例的范围。 301 , eNB对于具有相同载波频率的 N个频带中的每个频带, 分别根 据测量需求配置与所述每个频带相应的参考信号信息, 使得配置后的 N个 频带中至少两个频带的参考信号信息中所包含的参考信号密度不同。 其中, N为大于或等于 的正整数。
所述测量需求可以包括测量精度的需求, 即保证测量得到的信道状态 信息和实际的信道状态信息基本相同, 还可以包括对用于测量的参考信号 开销的考虑, 即保证用于测量的参考信号的开销尽可能地小, 还可以包括 不同的测量目的需求, 即根据参考信号是用作信道质量测量还是用作干扰 水平测量, 来配置不同的参考信号信息, 其中所述参考信号信息中包含参 考信号密度。 例如对于主要用于信道质量测量的参考信号, 配置的参考信 号密度可以比较稀疏, 相反地, 对于主要用于干扰水平测量的参考信号, 配置的参考信号密度可以比较绸密。
每个频带可以由一个子载波或多个子载波组成, 或者由一个或多个物 理资源块 PRB ( Physical resource block )组成, 或者由一个或多个资源块组 RBG ( Resource block group )组成。每个频带也可以是上述后向兼容载波部 分, 或者是上述非后向兼容载波部分 (如 carrier segment或 carrier extension 部分)。 多个子载波(或者 PRB/RBG )可以是连续的, 也可以是非连续的。
eNB为每个 UE分别配置同一载波内不同频带的参考信号信息, 每个 频带对应一个参考信号信息。 所述参考信号信息, 是指生成参考信号所需 要的信息。 该参考信号信息包括参考信号密度, 其中至少有两个频带的参 考信号信息中所包含的参考信号密度不同。 所述参考信号可以是进行信道 质量测量和 /或干扰水平测量的参考信号, 例如 CSI-RS、 CRS或多播业务参 考信号, 或者其他可以进行信道质量测量和 /或干扰水平测量的参考信号。 所述参考信号密度可以是所述参考信号或者所述参考信号的图样在时域上 的分布密度或者在频域上的分布密度, 也可以是这些分布密度的组合。
其中, 所述在时域上的分布密度可以是在同一个频带上在时间上相邻 的两个参考信号图样或相邻的两个参考信号之间的时间间隔, 该时间间隔 可以是一个或多个子帧, 也可以是一个或多个无线帧; 所述在时域上的分 布密度还可以是在同一个频带上参考信号或者参考信号图样在时域上的分 布周期; 所述参考信号图样是指具有相同参考信号分布的一个资源单位, 所述资源单位可以是一个 PRB。
其中, 所述在频域上的分布密度可以是在同一个频带上在频率上相邻 的两个参考信号或者两个参考信号图样之间的频率间隔, 该频率间隔可以 是一个或多个子载波, 也可以是一个或多个 PRB , 也可以是一个或多个 其中, eNB配置不同频带上的参考信号在时域上的分布密度, 可以直 接定义同一频带上在时间上相邻的两个参考信号或两个参考信号图样之间 的时间间隔, 也可以通过配置不同的参考信号周期或者参考信号图样周期 来实现, 还可以通过配置特定的下行子帧模式来实现, 其中, 所述特定的 下行子帧模式和参考信号密度模式——对应。例如在 FDD UL (频分双工上 行链路, Frequency Division Duplexing Uplink )频段, 某些上行子帧可以 用作下行子帧, 此时参考信号只出现在所述下行子帧上, 即与 FDD UL频 段的下行子帧模式保持一致; 另一方面, eNB 配置不同频带上的参考信号 在频域上的分布密度, 可以直接定义同一频带上在频率上相邻的两个参考 信号或者两个参考信号图样之间的频率间隔。
需要说明的是, 本发明实施例的 eNB配置不同频带上的参考信号密度 还可以有其他方式, 不仅限于此。
除了参考信号密度之外, 所述参考信号信息还可以包括参考信号发射 功率控制信息、 生成参考信号所基于的带宽、 参考信号端口信息、 参考信 号位置索引信息、 参考信号静默(Muting )模式信息。
302, eNB将同一载波内不同频带对应的参考信号信息通知给 UE。 eNB可通过携带所述 N个频带相应的参考信号信息的单个信令, 向用 户设备通知所述参考信号信息; 或者, eNB可通过 N个信令向用户设备通 知所述参考信号信息, 其中所述 N个信令中的每个信令分别携带所述 N个 频带中每个频带相应的参考信号信息。
例如, eNB可以通过 RRC (无线资源控制, Radio Resource Control ) 广播信令、 RRC专有信令或物理层信令通知所述参考信号信息。例如, eNB 可以通过用户设备特定( UE-Specific )的信令或者小区特定( Cell-Specific ) 信令或者物理层信令将不同频带的参考信号密度配置通知给 UE。 当采用 cell-specific信令时, 可以通过广播信令 ( MIB )通知, 也可以通过系统信 息块( System Information Block, SIB )信令通知。 这里的参考信号密度可 以是该参考信号或参考信号图样在时域上的分布周期, 也可以是该参考信 号或参考信号图样在频域上频率间隔, 也可以是二者的组合。
可选地, 作为一个实施例, 所述参考信号信息中还包括生成所述参考 信号所基于的带宽, 以使得所述用户设备根据所述带宽生成所述参考信号。 其中, 所述带宽为所述参考信号信息相应的频带的带宽, 或者所述 N个频 带中的任一频带的带宽, 或者所述 N个频带中的最大带宽, 或者所述 N个 频带中 K个频带的总带宽, 其中 K为小于或等于 N的正整数。
303, eNB还可以向 UE通知所述参考信号信息与所述 N个频带中每个 频带的对应关系, 以使得所述用户设备根据对应关系获知所述 N个频带中 每个频带相应的参考信号信息。 303是可选的过程。 不同的参考信号信息和 不同频带之间的对应关系可以是隐式的, 此时无需通知对应关系的过程 303。 例如当不同频带对应的参考信号信息承载在同一个信令时, 可以通过 所述参考信号信息在所述信令中出现的先后顺序, 确定所述参考信号信息 作用的频带区域。
另外, 虽然图 3中将 303显示为在 302之后, 但是这不对本发明实施 例的范围构成限制。 303可被包含在 302中, 即所述对应关系可以包含在承 载参考信号信息配置的信令中一起通知给 UE。在采用其他信令承载所述对 应关系的情况下, 303可以在 302之后执行, 也可以在 302之前执行, 或者 与 302并行地执行。
此外, eNB还可以在部分频带上不配置参考信号。 进一步的, eNB还 可以将没有配置参考信号的频带通过 RRC广播信令或 RRC专有信令或物 理层信令通知给 UE, 或者 eNB还可以通过将参考信号信息中包含的参考 信号密度配置无穷大, 表示部分频带上没有配置参考参考信号。
304, UE接收到参考信号信息之后,根据参考信号信息进行信道测量。 所述信道测量是指用户设备根据 N个频带中的每个频带相应的参考信 号信息, 生成参考信号, 再利用参考信号对网络测设备和用户设备之间的 信道状态进行测量, 所述信道状态包括信道质量和 /或干扰水平。
UE从 eNB发送的信令中, 获取参考信号信息, 其中所述参考信号信 息中包括参考信号密度。
UE还可以从 eNB发送的信令中, 获取不同的参考信号信息配置和频 带之间的对应关系,或者 UE也可以隐式地获取不同的参考信号信息配置对 应的频带关系, 从而确定同一载波的不同频带对应的参考信号信息配置, 然后利用此信息对不同频带的信道状态信息进行测量。
在 302中通知的参考信号信息中还包括生成参考信号所基于的带宽的 情况下, UE根据所述带宽生成参考信号, 并利用所述参考信号进行信道测 量。 其中, 所述带宽为所述参考信号信息相应的频带的带宽, 或者所述 N 个频带中的任一频带的带宽, 或者所述 N个频带中的最大带宽, 或者所述 N个频带中 K个频带的总带宽, 其中 K为小于或等于 N的正整数。
本发明实施例对于同一载波内的不同频带分别配置各自的参考信号信 息, 使得至少两个频带的参考信号信息中所包含的参考信号密度不同, 从 而能够根据不同频带的不同测量需求, 针对性地设计参考信号信息, 在保 证参考信号测量精度的情况下, 减少了参考信号的开销。
下面结合具体例子更详细地描述本发明实施例。 图 4是根据本发明另 一实施例的信道测量的过程的示意流程图。 图 4的实施例中, 采用的参考 信号是 CSI-RS。
在本实施例中, eNB根据测量需求, 例如可以根据 UE在同一载波内 不同频带经历的不同信道状态和基于 CSI-RS 测量的不同目的, 分别进行 CSI-RS配置, 以满足不同频带的信道状态测量精度和实现不同频带数据资 源利用的最大化。
401 , eNB配置同一载波内 N个频带对应的 CSI-RS信息。
eNB根据测量需求, 包括根据每个 UE在不同频带经历的信道状态例 如信道变化的快慢, 以及 UE基于 CSI-RS测量的不同需求, 例如其中一个 频带或多个频带采用 CSI-RS进行信道质量测量, 另外的多个或一个频带采 用 CSI-RS进行信道质量和干扰水平测量, 为每个 UE配置同一载波内不同 频带对应的 CSI-RS信息。
该 CSI-RS信息具体可以包括 CSI-RS的参考信号密度。另外 N个频带 中至少一个频带相应的 CSI-RS信息中还包括: CSI-RS位置索引信息(例 如符号 /频率位置)、 CSI-RS的发射功率控制信息、 CSI-RS的端口信息(例 如天线端口数)、 CSI-RS 的 muting (静默)模式信息。 换句话说, 每个频 带相应的参考信号信息均可包括以上各种信息。 或者, N 个频带中至少一 个频带相应的参考信号信息中缺失至少以上信息之一, 而其他频带相应的 参考信号信息中包括缺失的信息。
其中, 所述 CSI-RS的分布密度可以是 CSI-RS的周期(一种参考信号 密度)和 /或 CSI-RS的频域密度(另一种参考信号密度)。 对于同一频带而 言, CSI-RS信息可以对于每个 UE不同, 也可以对于每个 UE相同。 对于 同一个 UE而言, 在不同频带上, 至少两个频带上的 CSI-RS配置周期和 / 或 CSI-RS的频域密度是不同的。 具体的 CSI-RS信息配置可以采用以下两 种方式来实现:
方式 1 , 可以在已有的 CSI-RS配置参数 CSI-RS-Config中进行扩展, 使 CSI-RS-Config中的配置参数可以指示 N个频带对应的 CSI-RS信息。 具 体地, 在 CSI-RS-Config中, 可以包含 Ml种不同的 CSI-RS周期参数, 该 参数至少指示 Ml个频带对应的 CSI-RS周期; 还可以包含 M2种不同的位 置索引信息, 该参数至少指示 M2个频带对应的 CSI-RS所占的位置索引信 息; 还可以包含 M3种不同的 CSI-RS发射功率控制信息, 利用该参数, 可 以直接或间接得到至少 M3个频带对应的 CSI-RS的发射功率; 还可以包括 M4种不同的 CSI-RS对应的端口信息, 该参数至少指示 M4个频带对应的 CSI-RS分布的端口;还可以包括 M5种不同的 CSI-RS对应的 muting模式, 该参数至少指示 M5 个频带对应的具有零发射功率的 CSI-RS 模式, 即 CSI-RS静默模式;还可以包括 M6种不同的 CSI-RS的频域密度,该参数至 少指示 M6个频带对应的 CSI-RS频域分布密度。 其中 Ml和 M6中至少有 一个是不大于 N并且不小于 2的正整数, M2/M3/M4/M5为不大于 N的正 整数。
其中, 当 M1/M2/M3/M4/M5/M6不等于 N时, 即对应 N-M1 , N-M2, N-M3, N-M4, N-M5, N-M6个频带的 CSI-RS配置参数可能缺失一些信息 字段, 此时可以令 N-M1个频带上 CSI-RS周期参数采用与 Ml个频带中的 一个或多个频带对应的 CSI-RS周期相同的配置, 可以令 N-M2个频带上的 CSI-RS位置索引信息采用与 M2个频带中一个或多个频带对应的 CSI-RS 位置索引信息相同的配置, 可以令 N-M3个频带上的 CSI-RS发射功率信息 采用与 M3个频带中的一个或多个频带对应的 CSI-RS发射功率信息相同的 配置, 可以令 N-M4个频带上对应的 CSI-RS分布端口采用与 M4个频带中 的一个或多个频带对应的 CSI-RS分布端口相同的配置, 可以令 N-M5个频 带上对应的 CSI-RS静默模式采用与 M5个频带中的一个或多个频带对应的 CSI-RS静默模式相同的配置, 可以令 N-M6个频带上对应的 CSI-RS频域 密度采用与 M6个频带中的一个或多个频带对应的 CSI-RS频域密度相同。 此时, 采用相同参数配置的频带之间的对应关系为 eNB和 UE共知, 可以 采用显示的方式由 eNB通知给 UE, 也可以采用隐式的方式, 在此不作限 定。
方式 2 , 还可以直接引入 N个信令用来指示 N个频带的 CSI-RS信息, 该 CSI-RS信息中可以包括: CSI-RS 的周期、 CSI-RS 的位置索引信息、 CSI-RS的发射功率控制信息、 CSI-RS的端口信息、 CSI-RS的 muting模式, CSI-RS的频域密度。 这些参数含义如上所述。
其中如果 N个频带中其中 M个频带(所述 M为小于 N的正整数) 的 CSI-RS配置参数较之其他 N-M个频带的 CSI-RS配置参数缺失一些信息字 段, 例如 CSI-RS分布端口或者 CSI-RS对应的 muting模式等, 则默认在 M 个频带上缺少的这些信息字段, 采用与其他 N-M个频带中的一个或多个频 带相同的配置。 同方式 1 , 此时, 采用相同参数配置的频带之间的对应关系 为 eNB和 UE共知, 可以采用显示的方式由 eNB通知给 UE , 也可以采用 隐式的方式, 在此不作限定。
在本实施例中,特别地,当 N=2时,如果第一频带或第二频带的 CSI-RS 配置参数较之第二频带或第一频带的 CSI-RS配置参数缺少一些信息字段, 例如 CSI-RS分布端口或者 CSI-RS对应的 muting模式等, 则默认在第一频 带或第二频带缺少的这些信息字段上, 采用与第二频带或第一频带相同的 配置。
可选地, 作为通知频带与参考信号信息的对应关系的一个例子, 无论 是采用方式 1还是方式 2 , eNB均可以在 CSI-RS信息中包含该 CSI-RS信 息对应的有效频带区域(一种对应关系的指示方式)或者通过其他信令通 知该 CSI-RS信息对应的有效频带区域(另一种对应关系的指示方式), 所 述 CSI-RS信息对应的有效频带区域用来指示当前 CSI-RS信息作用的有效 频带。 该指示信息可以采用显式的方式, 具体地, 可以在 CSI-RS配置参数 中增加信息字段, 用来指示该 CSI-RS配置对于不同频带的有效性, 也可以 通过其他信令指示该 CSI-RS配置对于不同频带的有效性。 此外, 该指示信 息也可以采用隐式的方式, 具体地, 针对方式 1 , 可以使得第一个 CSI-RS 配置参数用于配置第一个频带的 CSI-RS信息, 第二个 CSI-RS配置参数用 于配置第二个频带的 CSI-RS信息, ... ...第 N个 CSI-RS配置参数用于配置 第 N个频带的 CSI-RS信息。
该 CSI-RS信息还可以包括生成 CSI-RS所基于的带宽, 以使得用户设 备根据所述带宽生成 CSI-RS; 其中, 所述带宽为所述参考信号信息相应的 频带的带宽, 或者所述 N个频带中的任一频带的带宽, 或者所述 N个频带 中的最大带宽, 或者所述 N个频带中 K个频带的总带宽, 其中 K为小于或 等于 N的正整数。例如,分布在第一个频带的 CSI-RS可以按照第一个频带 的带宽生成, 依此类推。 此 CSI-RS 生成序列基于的带宽信息可以由 eNB 通知给 UE, 也可以采用其他方式使得 eNB和 UE共知此信息, 在此不做限 定。
此外, 对于同一个 UE而言, eNB还可以在 N个频带中的 J个频带上 不配置 CSI-RS, 其中 J为小于 N的正整数。 此时, eNB可以通过将 J个频 带上的 CSI-RS周期配置为无穷大, 或者将 J个频带上的 CSI-RS频域密度 配置为无穷大, 或者 eNB直接通过信令通知 UE, 或者通过其他方式使 UE 获知在所述 J个频带上没有 CSI-RS配置。
此外, 如果在信道质量指示报告参数 CQI-ReportConfig中, 包含预编 码指示( Precoding Matrix Index, PMI ) /秩指示( Rank Index, RI )上 4艮参数 pmi-RI-Report, 还需要说明 PMI/RI上报参数的有效频域范围。 具体地, 可 以通过隐式指示, 即 PMI/RI上报参数只作用在同时存在 CRS和 CSI-RS的 频带部分; 或者也可以通过显式指示, 即增加信息字段, 用来指示 PMI/RI 上报参数的有效频域范围。
402: eNB将同一载波内不同频带的 CSI-RS信息通知给 UE。
通知 CSI-RS信息的方式可参照 302所述。 例如, eNB可以通过用户 设备特定( UE-Specific ) 的信令或者小区特定(Cell-Specific )信令或者物 理层信令将不同频带的 CSI-RS模式发送给 UE,当采用 cell-specific信令时, 可以通过广播信令( MIB )通知,也可以通过系统信息块( System Information Block, SIB )信令通知。
403: UE根据不同频带的 CSI-RS信息, 进行信道测量。
UE接收 eNB发送的承载 CSI-RS信息的信令,可以识别出不同频带分 别对应的 CSI-RS 信息, 然后利用此信息生成 CSI-RS 并利用所生成的 CSI-RS对不同频带的信道状态信息进行测量。
N个频带中至少一个频带相应的 CSI-RS信息中可能缺失至少以下信 息之一: CSI-RS位置索引信息、 CSI-RS发射功率控制信息、 CSI-RS端口 信息和 CSI-RS静默模式信息。此时,根据所述 N个频带中其他频带相应的 CSI-RS信息获得所述缺失的信息, 其中, 所述其他频带相应的 CSI-RS信 息中包括所述缺失的信息, 并根据获得所述缺失的信息后的全部参考信号 信息进行信道测量。
本发明实施例对于同一载波内的不同频带分别配置各自的参考信号信 息, 使得至少两个频带的参考信号信息中所包含的参考信号密度不同, 从 而能够根据不同频带的不同测量需求, 针对性地设计参考信号信息, 在保 证参考信号测量精度的情况下, 减少了参考信号的开销。
图 5是根据本发明另一实施例的信道测量的过程的示意流程图。 图 5 的实施例中, 采用的参考信号是 CRS。
在本实施例中, eNB根据测量需求, 例如可以根据 UE在同一载波内 不同频带对 CRS开销不同的需求, 分别进行 CRS配置, 以满足不同频带信 道状态测量精度和数据资源最大化。
501 , eNB配置同一载波内 N个频带对应的 CRS信息。
eNB根据测量需求, 包括根据不同频带对 CRS开销的需求(例如当 N=2时, 第一频带允许每 1ms内都可以存在 CRS而第二频带从数据资源最 大化角度考虑, 不允许每 1ms内都存在 CRS ) 为每个 UE配置同一载波内 不同频带的 CRS信息。
该 CRS信息具体可以包括 CRS的参考信号密度, 另外 N个频带中至 少一个频带相应的 CRS信息中还可以包括如下信息中的一个或多个: CRS 的发射功率, CRS的端口信息(例如占用的天线端口数)。 换句话说, 每个 频带相应的参考信号信息均可包括以上各种信息。 或者, N 个频带中至少 一个频带相应的参考信号信息中缺失至少以上信息之一, 而其他频带相应 的参考信号信息中包括缺失的信息。
其中所述 CRS的参考信号密度可以是 CRS图样(CRS pattern )在时 域上的分布周期(一种参考信号密度)和 /或 CRS的频域密度(另一种参考 信号密度)。 在同一频带内, 某一配置参数既可以对于每个 UE不同, 也可 以对于每个 UE相同。 对于同一个 UE而言, 在不同频带上, 至少两个频带 上的 CRS图样配置周期和 /或 CRS的频域密度是不同的, 其他配置参数可 以相同, 也可以不同。 具体的配置模式可以采用以下方式来实现:
增加信息字段,分别用来指示 M7种不同的 CRS图样周期和 /或 M8种 不同的 CRS频域密度。
可选地, 增加信息字段, 表示 M9种不同的 CRS发射功率, 至少用来 指示 M9个不同频带的 CRS发射功率。
可选地, 增加信息字段, 表示 M10种不同的 CRS端口信息, 至少用 来指示 M10个不同频带的 CRS端口信息。
其中, M7/M8为不大于 N的正整数, M9/M10为不大于 N且不小于零 的整数。
其中, 当 M7=M8=1时, 上述 CRS配置参数中至少 CRS图样的分布 周期和 /或 CRS频域密度可以根据需要进行设置, 例如 CRS图样周期不为 lms和 /或 CRS频域密度不为 6个子载波。 当 M9=M10=0, 不需要增加信息 字段表示不同频带的 CRS发射功率和 CRS端口信息, 此时可以默认 N个 频带的 CRS发射功率和 CRS端口信息都采用现有配置。 其 中 , 当 M7/M8/M9/M10 不 等 于 N 时 , 即 对 应 N-M7/N-M8/N-M9/N-M 10个频带的 CRS配置缺少一些信息字段,此时可以 令 N-M7个频带上 CRS图样周期采用与 M7个频带中的一个或多个频带对 应 CRS图样周期相同的配置, 也可以默认采用 lms的配置; 可以令 N-M8 个频带上 CRS频域密度采用与 M8个频带中的一个或多个频带对应 CRS频 域密度相同的配置, 也可以默认采用 6个子载波的配置; 可以令 N-M9个 频带上 CRS发射功率采用与 M9个频带中的一个或多个频带对应 CRS发射 功率相同的配置, 也可以默认与现有技术的配置相同; 可以令 N-M10个频 带上 CRS的端口信息采用与 M10个频带中的一个或多个频带对应 CRS的 端口信息相同的配置, 也可以默认与现有技术的配置相同。 此时, 采用相 同参数配置的频带之间的对应关系为 eNB和 UE共知, 可以采用显式的方 式由 eNB通知给 UE, 也可以采用隐式的方式, 在此不作限定。
此外, 作为通知频带与参考信号信息的对应关系的一个例子, 对于上 述实现方式, eNB还可以配置 CRS信息对应的有效频带区域(一种对应关 系指示方式 ), 所述 CRS信息对应的有效频带区域用来指示当前 CRS信息 作用的有效频带。 该指示信息可以采用显式的方式, 也可以采用隐式的方 式, 具体方式可参照图 4的 401中的描述, 在此不再赘述。
CRS信息还可以包括生成 CRS所基于的带宽,以使得用户设备根据所 述带宽生成 CRS; 其中, 所述带宽为所述参考信号信息相应的频带的带宽, 或者所述 N个频带中的任一频带的带宽,或者所述 N个频带中的最大带宽, 或者所述 N个频带中 K个频带的总带宽,其中 K为小于或等于 N的正整数。 例如, 分布在第一个频带的 CRS可以按照第一个频带的带宽生成, 依此类 推。 此 CRS生成序列基于的带宽信息可以由 eNB通知给 UE, 也可以采用 其他方式使得 eNB和 UE共知此信息, 在此不做限定。
此外, 对于同一个 UE而言, eNB还可以在 N个频带中的 J个频带上 不配置 CRS, 其中 J为小于 N的正整数。 此时, eNB可以通过将 J个频带 上的 CRS图样周期配置为无穷大和 /或 CRS频域密度无穷大或者 eNB直接 通过信令通知 UE或者通过其他方式, 使 UE获知在所述 J个频带上没有 CRS配置。
此外, 不等于 1ms的 CRS图样周期或不等于 6个子载波的 CRS频域 密度还可以应用在不同载波的频带上。
在本实施例中, 特别地, 当 N=2时, 第一频带的 CRS配置参数可以 沿用现有配置, 第二频带的 CRS配置参数可以通过上述方式实现。 其中第 二频带的 CRS配置参数中的 CRS图样周期和 /或 CRS频域密度和第一频带 的 CRS配置不同, 即满足下述条件之一: CRS图样周期不为 lms, CRS频 域密度不为 6个子载波。 此外, 如果第二频带的 CRS配置参数较之第一频 带的 CRS配置参数缺失一些信息字段, 例如 CRS分布端口信息或者 CRS 对应的发射功率信息等, 则默认在第二频带缺失的这些信息字段上, 采用 与第一频带相同的配置。
502: eNB将同一载波内 N个频带的 CRS信息通知给 UE。
通知 CRS信息的方式可参照 302所述。 例如, eNB可以通过用户设备 特定(UE-Specific ) 的信令或者小区特定( Cell- Specific )信令或者物理层 信令将不同频带的 CRS信息发送给 UE, 当采用 cell-specific信令时, 可以 通过广播信令 ( MIB )通知, 也可以通过系统信息块(System Information Block, SIB )信令通知。
503: UE根据不同频带的 CRS信息, 进行信道测量。
UE接收 eNB发送的承载 CRS信息的信令, 可以识别出不同频带分别 对应的的 CRS配置, 然后利用此信息生成 CRS并利用所生成的 CRS对不 同频带的信道状态信息进行测量。
N个频带中至少一个频带相应的 CRS信息中可能缺失至少以下信息之 一: CRS端口信息和 CRS发射功率信息。 此时, 根据所述 N个频带中其他 频带相应的 CRS信息获得所述缺失的信息,其中,所述其他频带相应的 CRS 信息中包括所述缺失的信息, 并根据获得所述缺失的信息后的全部参考信 号信息进行信道测量。
本发明实施例的方法能够根据 UE在同一载波内不同频带经历的不同 信道状态和 /或基于参考信号测量的不同目的和 /或对不同频带参考信号开 销需求的考虑, 分别进行参考信号配置, 以满足不同频带的信道状态测量 精度和实现不同频带数据资源利用率的最大化。
图 6是根据本发明一个实施例的网络侧设备的示意框图。 图 6的网络 侧设备 600 可以是例如基站、 基站控制器、 无线网络控制器、 移动管理实 体、 接入网关、 多小区 /多播协作实体, 包括配置单元 610和通知单元 620。
配置单元 610对于具有相同载波频率的 N个频带中的每个频带, 分别 根据测量需求配置与所述每个频带相应的参考信号信息, 使得配置后的所 述 N 个频带中至少两个频带的参考信号信息中所包含的参考信号密度不 同, 其中, N为大于或等于 2的正整数, 所述参考信号信息指生成参考信 号所需的信息, 所述参考信号密度指所述参考信号或者所述参考信号的图 样在时域上的分布密度或者在频域上的分布密度。 通知单元 620向用户设 备通知所述配置单元 610配置的参考信号信息, 以使得所述用户设备根据 所述参考信号信息进行信道测量。
本发明实施例对于同一载波内的不同频带分别配置各自的参考信号信 息, 使得至少两个频带的参考信号信息中所包含的参考信号密度不同, 从 而能够根据不同频带的不同测量需求, 针对性地设计参考信号信息, 在保 证参考信号测量精度的情况下, 减少了参考信号的开销。
图 6的网络侧设备 600的一个非限制性的例子是上述图 1-图 5中的基 站(或 eNB ), 能够执行图 1-图 5所示的方法中涉及网络侧的各个操作, 因 此适当省略详细描述。
例如, 配置单元 610配置的参考信号信息中还包括生成参考信号所基 于的带宽, 以使得用户设备根据所述带宽生成所述参考信号; 其中, 所述 带宽为所述参考信号信息相应的频带的带宽, 或者所述 N个频带中的任一 频带的带宽, 或者所述 N个频带中的最大带宽, 或者所述 N个频带中 K个 频带的总带宽, 其中 K为小于或等于 N的正整数。
例如, N个频带中, 每个频带由一个或多个子载波组成, 或者由一个 或多个物理资源块 PRB组成, 或者由一个或多个资源块组 RBG组成。
可选地, 通知单元 620还可以用于向所述用户设备通知所述参考信号 信息与所述 N个频带中每个频带的对应关系, 以使得所述用户设备根据对 应关系获知所述 N个频带中每个频带相应的参考信号信息。
参考信号可以是 CSI-RS、 CRS 或多播业务参考信号。 在参考信号为 CSI-RS时, 配置模块 610配置的 N个频带中至少一个频带相应的参考信号 信息中还包括: CSI-RS位置索引信息、 CSI-RS发射功率控制信息、 CSI-RS 端口信息和 CSI-RS静默模式信息。
可选地, 作为一个实施例, 在参考信号为 CRS时, 配置模块 610配置 的 N个频带中至少一个频带相应的参考信号信息中还包括以下 CRS参考信 号信息: CRS端口信息和 CRS发射功率信息。
例如, 通知单元 620通过单个信令或 N个信令(例如无线资源控制广 播信令、 RRC专有信令或物理层信令)通知参考信号信息或者上述对应关 系。 通知的方式可以是显式或隐式的。
图 7是根据本发明一个实施例的用户设备的示意框图。 图 7的用户设 备 700包括接收单元 710和测量单元 720。
接收单元 710接收网络侧设备通知的 N个频带中的每个频带相应的参 考信号信息, 其中, 所述 N个频带具有相同载波频率, 所述参考信号信息 为所述网络侧设备根据测量需求为每个频带分别配置的,且配置后的所述 N 个频带中至少两个频带的参考信号信息中所包含的参考信号密度不同, 其 中, N为大于或等于 2的正整数, 所述参考信号信息指生成参考信号所需 的信息, 所述参考信号密度指所述参考信号或者所述参考信号的图样在时 域上的分布密度或者在频域上的分布密度;
测量单元 720根据所述接收单元 710接收的参考信号信息进行信道测 量。
本发明实施例对于同一载波内的不同频带分别配置各自的参考信号信 息, 使得至少两个频带的参考信号信息中所包含的参考信号密度不同, 从 而能够根据不同频带的不同测量需求, 针对性地设计参考信号信息, 在保 证参考信号测量精度的情况下, 减少了参考信号的开销。
图 7的用户设备 700的一个非限制性的例子是上述图 1-图 5中的用户 设备 UE, 能够执行图 1-图 5所示的方法中涉及用户设备的各个操作, 因此 适当省略详细描述。
例如, 接收单元 710还用于接收网络侧设备通知的参考信号信息与 N 个频带中每个频带的对应关系, 并根据所述对应关系获知所述 N个频带中 每个频带相应的参考信号信息。
在接收单元 710接收的参考信号信息中还包括生成参考信号所基于的 带宽时, 测量单元 720根据所述带宽生成所述参考信号, 并利用所述参考 信号进行信道测量, 其中, 所述带宽为所述参考信号信息相应的频带的带 宽, 或者所述 N个频带中的任一频带的带宽, 或者所述 N个频带中的最大 带宽, 或者所述 N个频带中 K个频带的总带宽, 其中 K为小于或等于 N 的正整数。
参考信号可以是 CSI-RS、 CRS或多播业务参考信号。 在采用 CSI-RS 的情况下, 接收单元 710接收的每个频带相应的参考信号信息中可以还包 括: CSI-RS位置索引信息、 CSI-RS发射功率控制信息、 CSI-RS端口信息 和 CSI-RS静默模式信息。 在采用 CRS的情况下, 接收单元 710接收的每 个频带相应的参考信号信息中可以还包括: CRS端口信息和 CRS发射功率 信息。
当接收单元 710接收的至少一个频带相应的参考信号信息中缺失一些 信息时, 测量单元 720可根据其他频带相应的参考信号信息获得缺失的信 息, 其中, 所述其他频带相应的参考信号信息中包括所述缺失的信息, 并 根据获得所述缺失的信息后的全部参考信号信息进行信道测量。
例如, 在采用 CSI-RS的情况下, 接收单元 710接收的 N个频带中至 少一个频带相应的参考信号信息中缺失至少以下信息之一: CSI-RS位置索 引信息、 CSI-RS发射功率控制信息、 CSI-RS端口信息和 CSI-RS静默模式 信息获得所述缺失的信息, 其中, 所述其他频带相应的参考信号信息中包 括所述缺失的信息, 并根据获得所述缺失的信息后的全部参考信号信息进 行信道测量。
另外,在采用 CRS的情况下,接收单元 710接收的 N个频带中至少一 个频带相应的参考信号信息中缺失至少以下信息之一: CRS 端口信息和
CRS发射功率信息。 此时, 测量单元 720根据所述 N个频带中其他频带相 应的参考信号信息, 获得所述缺失的信息, 其中, 所述其他频带相应的参 考信号信息中包括所述缺失的信息, 并根据获得所述缺失的信息后的全部 参考信号信息进行信道测量。
接收单元 710可接收网络侧设备通过单个信令通知的所述参考信号信 息, 其中所述单个信令携带所述 N个频带相应的参考信号信息。 或者, 接 收单元 710可接收网络侧设备通过 N个信令通知的所述参考信号信息, 其 中所述 N个信令中的每个信令分别携带所述 N个频带中每个频带相应的参 考信号信息。
根据本发明实施例的通信系统可包括上述网络侧设备 600或用户设备
700。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合 来实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照 功能一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件 方式来执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员 可以对每个特定的应用来使用不同方法来实现所描述的功能, 但是这种实 现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的 对应过程, 在此不再赞述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置 和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅 是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成 到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论 的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单 元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的 部分或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软 件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方 案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储 在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人 计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全 部或部分步骤。而前述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应所述以权利要求的保护范围为准。

Claims

1、 一种信道测量的方法, 其特征在于, 包括:
对于具有相同载波频率的 N个频带中的每个频带, 分别根据测量需求 配置与所述每个频带相应的参考信号信息, 使得配置后的所述 N个频带中 至少两个频带的参考信号信息中所包含的参考信号密度不同,
其中, N为大于或等于 2的正整数, 所述参考信号信息指生成参考信 号所需的信息, 所述参考信号密度指所述参考信号或者所述参考信号的图 样在时域上的分布密度或者在频域上的分布密度;
向用户设备通知所述参考信号信息, 以使得所述用户设备根据所述参 考信号信息进行信道测量。
2、 如权利要求 1所述的方法, 其特征在于, 在所述分别根据测量需求 配置与所述每个频带相应的参考信号信息之后, 还包括:
向所述用户设备通知所述参考信号信息与所述 N个频带中每个频带的 对应关系, 以使得所述用户设备根据对应关系获知所述 N个频带中每个频 带相应的参考信号信息。
3、 如权利要求 1所述的方法, 其特征在于, 所述参考信号信息中还包 括生成所述参考信号所基于的带宽, 以使得所述用户设备根据所述带宽生 成所述参考信号; 其中, 所述带宽为所述参考信号信息相应的频带的带宽, 或者所述 N个频带中的任一频带的带宽,或者所述 N个频带中的最大带宽, 或者所述 N个频带中 K个频带的总带宽,其中 K为小于或等于 N的正整数。
4、 如权利要求 1-3中任一项所述的方法, 其特征在于, 所述 N个频带 中每个频带采用的参考信号均为信道状态信息参考信号 CSI-RS;
所述 N个频带中至少一个频带相应的参考信号信息中还包括: CSI-RS 位置索引信息、 CSI-RS发射功率控制信息、 CSI-RS端口信息和 CSI-RS静 默模式信息。
5、 如权利要求 1-3中任一项所述的方法, 其特征在于, 所述 N个频带 中每个频带采用的参考信号均为小区参考信号 CRS;
所述 N个频带中至少一个频带相应的参考信号信息中还包括以下 CRS 参考信号信息: CRS端口信息和 CRS发射功率信息。
6、 如权利要求 1-3中任一项所述的方法, 其特征在于, 所述每个频带 由一个或多个子载波组成, 或者由一个或多个物理资源块 PRB组成, 或者 由一个或多个资源块组 RBG组成。
7、 如权利要求 1-3中任一项所述的方法, 其特征在于, 所述向用户设 备通知所述参考信号信息包括:
通过携带所述 N个频带相应的参考信号信息的单个信令, 向用户设备 通知所述参考信号信息; 或者,
通过 N个信令向用户设备通知所述参考信号信息,其中所述 N个信令 中的每个信令分别携带所述 N个频带中每个频带相应的参考信号信息。
8、 一种信道测量的方法, 其特征在于, 包括:
接收网络侧设备通知的 N个频带中的每个频带相应的参考信号信息, 其中, 所述 N个频带具有相同载波频率, 所述参考信号信息为所述网络侧 设备根据测量需求为每个频带分别配置的, 且配置后的所述 N个频带中至 少两个频带的参考信号信息中所包含的参考信号密度不同,
其中, N为大于或等于 2的正整数, 所述参考信号信息指生成参考信 号所需的信息, 所述参考信号密度指所述参考信号或者所述参考信号的图 样在时域上的分布密度或者在频域上的分布密度;
根据所述参考信号信息进行信道测量。
9、 如权利要求 8所述的方法, 其特征在于, 在根据所述参考信号信息 进行信道测量之前, 还包括:
接收所述网络侧设备通知的所述参考信号信息与所述 N个频带中每个 频带的对应关系;
根据所述对应关系获知所述 N 个频带中每个频带相应的参考信号信
10、 如权利要求 8所述的方法, 其特征在于, 所述参考信号信息中还 包括生成所述参考信号所基于的带宽;
所述根据所述参考信号信息进行信道测量包括:
根据所述带宽生成所述参考信号;
利用所述参考信号进行所述信道测量;
其中, 所述带宽为所述参考信号信息相应的频带的带宽, 或者所述 Ν 个频带中的任一频带的带宽, 或者所述 Ν个频带中的最大带宽, 或者所述 Ν个频带中 Κ个频带的总带宽, 其中 Κ为小于或等于 Ν的正整数。
11、 如权利要求 8所述的方法, 其特征在于, 所述 Ν个频带中每个频 带采用的参考信号均为信道状态信息参考信号 CSI-RS;
所述每个频带相应的参考信号信息中还包括: CSI-RS位置索引信息、 CSI-RS发射功率控制信息、 CSI-RS端口信息和 CSI-RS静默模式信息。
12、 权利要求 8所述的方法, 其特征在于, 所述 N个频带中每个频带 采用的参考信号均为信道状态信息参考信号 CSI-RS;
所述 N个频带中至少一个频带相应的参考信号信息中缺失至少以下信 息之一: CSI-RS位置索引信息、 CSI-RS发射功率控制信息、 CSI-RS端口 信息和 CSI-RS静默模式信息,
所述根据所述参考信号信息进行信道测量还包括:
根据所述 N个频带中其他频带相应的参考信号信息获得所述缺失的信 息, 其中, 所述其他频带相应的参考信号信息中包括所述缺失的信息; 根据获得所述缺失的信息后的全部参考信号信息进行信道测量。
13、 如权利要求 8所述的方法, 其特征在于, 所述 N个频带中每个频 带采用的参考信号均为小区参考信号 CRS;
所述每个频带相应的参考信号信息中还包括: CRS端口信息和 CRS发 射功率信息。
14、 权利要求 8所述的方法, 其特征在于, 所述 N个频带中每个频带 采用的参考信号均为小区参考信号 CRS;
所述 N个频带中至少一个频带相应的参考信号信息中缺失至少以下信 息之一: CRS端口信息和 CRS发射功率信息,
所述根据所述参考信号信息进行信道测量还包括:
根据所述 N个频带中其他频带相应的参考信号信息, 获得所述缺失的 信息, 其中, 所述其他频带相应的参考信号信息中包括所述缺失的信息; 根据获得所述缺失的信息后的全部参考信号信息进行信道测量。
15、 如权利要求 8所述的方法, 其特征在于, 所述接收网络侧设备通 知的 N个频带中的每个频带相应的参考信号信息包括:
接收所述网络侧设备通过单个信令通知的所述参考信号信息, 其中所 述单个信令携带所述 N个频带相应的参考信号信息; 或者,
接收所述网络侧设备通过 N个信令通知的所述参考信号信息, 其中所 述 N个信令中的每个信令分别携带所述 N个频带中每个频带相应的参考信 号信息。
16、 一种网络侧设备, 其特征在于, 包括:
配置单元, 用于对于具有相同载波频率的 N个频带中的每个频带, 分 别根据测量需求配置与所述每个频带相应的参考信号信息, 使得配置后的 所述 N个频带中至少两个频带的参考信号信息中所包含的参考信号密度不 同, 其中, N为大于或等于 2的正整数, 所述参考信号信息指生成参考信 号所需的信息, 所述参考信号密度指所述参考信号或者所述参考信号的图 样在时域上的分布密度或者在频域上的分布密度;
通知单元, 用于向用户设备通知所述配置单元配置的参考信号信息, 以使得所述用户设备根据所述参考信号信息进行信道测量。
17、 如权利要求 16所述的网络侧设备, 其特征在于, 所述通知单元还 用于向所述用户设备通知所述参考信号信息与所述 N个频带中每个频带的 对应关系, 以使得所述用户设备根据对应关系获知所述 Ν个频带中每个频 带相应的参考信号信息。
18、 如权利要求 16所述的网络侧设备, 其特征在于, 所述配置单元配 置的参考信号信息中还包括生成所述参考信号所基于的带宽, 以使得所述 用户设备根据所述带宽生成所述参考信号; 其中, 所述带宽为所述参考信 号信息相应的频带的带宽, 或者所述 Ν个频带中的任一频带的带宽, 或者 所述 Ν个频带中的最大带宽, 或者所述 Ν个频带中 Κ个频带的总带宽, 其 中 Κ为小于或等于 Ν的正整数。
19、 如权利要求 16-18任一项所述的网络侧设备, 其特征在于, 所述 Ν个频带中每个频带采用的参考信号均为信道状态信息参考信号 CSI-RS; 所述配置模块配置的 Ν个频带中至少一个频带相应的参考信号信息中 还包括: CSI-RS位置索引信息、 CSI-RS发射功率控制信息、 CSI-RS端口 信息和 CSI-RS静默模式信息。
20、 如权利要求 16-18任一项所述的网络侧设备, 其特征在于, 所述 N个频带中每个频带采用的参考信号均为小区参考信号 CRS;
所述配置模块配置的 N个频带中至少一个频带相应的参考信号信息中 还包括以下 CRS参考信号信息: CRS端口信息和 CRS发射功率信息。
21、 如权利要求 16-18任一项所述的网络侧设备, 其特征在于, 所述 每个频带由一个或多个子载波组成, 或者由一个或多个物理资源块 PRB组 成, 或者由一个或多个资源块组 RBG组成。
22、 如权利要求 16-18任一项所述的方法, 其特征在于,
所述通知单元通过携带所述 N 个频带相应的参考信号信息的单个信 令, 向用户设备通知所述参考信号信息; 或者,
所述通知单元通过 N个信令向用户设备通知所述参考信号信息, 其中 所述 N个信令中的每个信令分别携带所述 N个频带中每个频带相应的参考 信号信息。
23、 一种用户设备, 其特征在于, 包括:
接收单元, 用于接收网络侧设备通知的 N个频带中的每个频带相应的 参考信号信息, 其中, 所述 N个频带具有相同载波频率, 所述参考信号信 息为所述网络侧设备根据测量需求为每个频带分别配置的, 且配置后的所 述 N 个频带中至少两个频带的参考信号信息中所包含的参考信号密度不 同, 其中, N为大于或等于 2的正整数, 所述参考信号信息指生成参考信 号所需的信息, 所述参考信号密度指所述参考信号或者所述参考信号的图 样在时域上的分布密度或者在频域上的分布密度;
测量单元,用于根据所述接收单元接收的参考信号信息进行信道测量。
24、 如权利要求 23所述的用户设备, 其特征在于,
所述接收单元还用于接收所述网络侧设备通知的所述参考信号信息与 所述 N个频带中每个频带的对应关系, 并根据所述对应关系获知所述 N个 频带中每个频带相应的参考信号信息。
25、 如权利要求 23所述的用户设备, 其特征在于,
所述接收单元接收的所述参考信号信息中还包括生成所述参考信号所 基于的带宽,
所述测量单元根据所述带宽生成所述参考信号, 并利用所述参考信号 进行所述信道测量,
其中, 所述带宽为所述参考信号信息相应的频带的带宽, 或者所述 N 个频带中的任一频带的带宽, 或者所述 N个频带中的最大带宽, 或者所述 N个频带中 K个频带的总带宽, 其中 K为小于或等于 N的正整数。
26、 如权利要求 23所述的用户设备, 其特征在于, 所述 N个频带中 每个频带采用的参考信号均为信道状态信息参考信号 CSI-RS;
所述接收单元接收的每个频带相应的参考信号信息中还包括: CSI-RS 位置索引信息、 CSI-RS发射功率控制信息、 CSI-RS端口信息和 CSI-RS静 默模式信息。
27、 权利要求 23所述的方法, 其特征在于, 所述 N个频带中每个频 带采用的参考信号均为信道状态信息参考信号 CSI-RS;
所述接收单元接收的 N个频带中至少一个频带相应的参考信号信息中 缺失至少以下信息之一: CSI-RS位置索引信息、 CSI-RS发射功率控制信息、 CSI-RS端口信息和 CSI-RS静默模式信息, 息获得所述缺失的信息, 其中, 所述其他频带相应的参考信号信息中包括 所述缺失的信息, 并根据获得所述缺失的信息后的全部参考信号信息进行 信道测量。
28、 如权利要求 23所述的用户设备, 其特征在于, 所述 N个频带中 每个频带采用的参考信号均为小区参考信号 CRS;
所述接收单元接收的每个频带相应的参考信号信息中还包括: CRS端 口信息和 CRS发射功率信息。
29、 权利要求 23所述的用户设备, 其特征在于, 所述 N个频带中每 个频带采用的参考信号均为小区参考信号 CRS;
所述接收单元接收的 N个频带中至少一个频带相应的参考信号信息中 缺失至少以下信息之一: CRS端口信息和 CRS发射功率信息, 息, 获得所述缺失的信息, 其中, 所述其他频带相应的参考信号信息中包 括所述缺失的信息, 并根据获得所述缺失的信息后的全部参考信号信息进 行信道测量。
30、 如权利要求 23所述的用户设备, 其特征在于,
所述接收单元接收所述网络侧设备通过单个信令通知的所述参考信号 信息, 其中所述单个信令携带所述 N个频带相应的参考信号信息; 或者, 所述接收单元接收所述网络侧设备通过 N个信令通知的所述参考信号 信息, 其中所述 N个信令中的每个信令分别携带所述 N个频带中每个频带 相应的参考信号信息 (
PCT/CN2012/075104 2011-05-09 2012-05-04 信道测量的方法及装置 WO2012152206A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12782417.5A EP2698935B1 (en) 2011-05-09 2012-05-04 Channel measurement method and device
US14/069,826 US9191845B2 (en) 2011-05-09 2013-11-01 Channel measurement method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110118188.6A CN102780532B (zh) 2011-05-09 2011-05-09 信道测量的方法及装置
CN201110118188.6 2011-05-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/069,826 Continuation US9191845B2 (en) 2011-05-09 2013-11-01 Channel measurement method and apparatus

Publications (1)

Publication Number Publication Date
WO2012152206A1 true WO2012152206A1 (zh) 2012-11-15

Family

ID=47125304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075104 WO2012152206A1 (zh) 2011-05-09 2012-05-04 信道测量的方法及装置

Country Status (4)

Country Link
US (1) US9191845B2 (zh)
EP (1) EP2698935B1 (zh)
CN (1) CN102780532B (zh)
WO (1) WO2012152206A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183074A (zh) * 2014-08-29 2014-12-03 武汉理工光科股份有限公司 基于时域反射技术的分布式周界系统信号增强方法及系统
CN109787738A (zh) * 2012-12-31 2019-05-21 上海华为技术有限公司 参考信号配置方法和参考信号发送方法及相关设备

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9184889B2 (en) * 2012-08-08 2015-11-10 Blackberry Limited Method and system having reference signal design for new carrier types
US9402256B2 (en) 2012-08-08 2016-07-26 Blackberry Limited Method and system having reference signal design for new carrier types
CN103856960B (zh) * 2012-11-30 2016-11-02 展讯通信(天津)有限公司 通信终端及长期演进系统中小区测量的方法与装置
CN103281700A (zh) * 2013-05-02 2013-09-04 苏州维特比信息技术有限公司 一种新类型载波的配置方法、基站及用户终端
CN105519181B (zh) * 2013-09-25 2019-09-27 日电(中国)有限公司 用于无线通信系统中的上行链路数据传输的方法和装置
CN104796232A (zh) * 2014-01-18 2015-07-22 上海朗帛通信技术有限公司 一种在非授权频谱上的传输方法和装置
CN106464461A (zh) * 2014-05-15 2017-02-22 诺基亚通信公司 用于发射和/或接收参考信号的方法和装置
US11581999B2 (en) * 2014-10-08 2023-02-14 Qualcomm Incorporated Reference signal design for wireless communications
CN105743606A (zh) * 2014-12-09 2016-07-06 深圳市中兴微电子技术有限公司 下行参考信号的调整方法及装置
CN112994864A (zh) * 2015-05-12 2021-06-18 日本电气株式会社 用于传输模式配置和信号检测的方法和装置
CN108141333B (zh) * 2015-09-25 2021-01-22 瑞典爱立信有限公司 用于处理无线通信网络中的信号测量的方法和通信终端
US10278180B2 (en) * 2016-01-15 2019-04-30 Qualcomm Incorporated Raster design for narrowband operation for machine type communications
WO2017148673A1 (en) 2016-02-29 2017-09-08 British Telecommunications Public Limited Company Adapting reference signal density
EP3424171B1 (en) * 2016-02-29 2020-03-11 British Telecommunications public limited company Controlling adaptive reference signal patterns
US10491350B2 (en) 2016-02-29 2019-11-26 British Telecommunications Public Limited Company Adaptive reference signal patterns
CN107204825B (zh) * 2016-03-16 2019-07-12 华为技术有限公司 数据发送方法、数据接收方法、发送端设备及接收端设备
US10715265B2 (en) * 2016-04-01 2020-07-14 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for controlling measurements bandwidth to account for impairments
WO2018057494A1 (en) 2016-09-21 2018-03-29 Intel Corporation Reduced csi (channel state information)-rs (reference signal) density support for fd (full dimensional)-mimo (multiple input multiple output) systems
CN108242987B (zh) * 2016-12-23 2022-09-13 中兴通讯股份有限公司 参考信号发送方法及基站,配置确定方法及终端
CN108282281B (zh) 2017-01-05 2020-02-21 中国移动通信有限公司研究院 一种信号配置方法及装置
CN108282307B (zh) * 2017-01-06 2022-12-02 中兴通讯股份有限公司 控制信道参考信号发送、接收方法及装置、基站、终端
CN108616300B (zh) * 2017-01-06 2024-03-08 华为技术有限公司 一种信道状态信息测量的配置方法及相关设备
JP7025423B2 (ja) * 2017-01-09 2022-02-24 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて、参照信号を送信する方法及びそのための装置
CN108809488A (zh) 2017-05-04 2018-11-13 电信科学技术研究院 一种消息解码方法、发送端和接收端
US11057800B2 (en) * 2017-05-04 2021-07-06 Qualcomm Incorporated Neighbor cell measurement and reselection for narrowband operation
CN108809576B (zh) 2017-05-05 2023-10-24 华为技术有限公司 参考信号的指示方法和装置
CN109328470B (zh) 2017-05-26 2021-06-01 北京小米移动软件有限公司 移动性测量的方法、装置及计算机可读存储介质
CN109429338B (zh) * 2017-08-24 2024-03-05 株式会社电装 频带指示方法、频带确定方法、发射端设备和接收端设备
JP6867256B2 (ja) * 2017-08-25 2021-04-28 株式会社日立製作所 磁気共鳴撮像装置及び画像処理方法
JP7094673B2 (ja) * 2017-09-08 2022-07-04 シャープ株式会社 基地局装置、端末装置、および、通信方法
CN110176981B (zh) 2017-11-17 2020-06-26 华为技术有限公司 参考信号的传输方法和传输装置
WO2019157737A1 (zh) 2018-02-14 2019-08-22 华为技术有限公司 传输参考信号的方法及设备
CN110198207B (zh) * 2018-02-26 2020-09-15 维沃移动通信有限公司 无线通信的方法和网络设备
US11343690B2 (en) * 2019-08-02 2022-05-24 Samsung Electronics Co., Ltd. Method and apparatus for performing frequency measurement and setting frequency measurement for non-connection mode terminal
US11569961B2 (en) * 2019-08-30 2023-01-31 Huawei Technologies Co., Ltd. Reference signaling overhead reduction apparatus and methods
WO2022261331A2 (en) * 2021-06-11 2022-12-15 Idac Holdings, Inc. Methods, architectures, apparatuses and systems directed to adaptive reference signal configuration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010008897A1 (en) * 2008-06-24 2010-01-21 Mitsubishi Electric Research Laboratories, Inc. Antenna selection with frequency-hopped sounding reference signals
CN101932014A (zh) * 2009-06-23 2010-12-29 中兴通讯股份有限公司 载波聚合中测量配置的处理方法
CN102036264A (zh) * 2009-09-30 2011-04-27 华为技术有限公司 对小区进行信道测量的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101265632B1 (ko) * 2006-12-12 2013-05-22 엘지전자 주식회사 참조 신호 전송, 참조 신호 전송 패턴 설정, 자원 블록설정 및 할당을 위한 방법 및 장치
JP5576301B2 (ja) * 2009-01-29 2014-08-20 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 無線通信装置及び無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010008897A1 (en) * 2008-06-24 2010-01-21 Mitsubishi Electric Research Laboratories, Inc. Antenna selection with frequency-hopped sounding reference signals
CN101932014A (zh) * 2009-06-23 2010-12-29 中兴通讯股份有限公司 载波聚合中测量配置的处理方法
CN102036264A (zh) * 2009-09-30 2011-04-27 华为技术有限公司 对小区进行信道测量的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2698935A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787738A (zh) * 2012-12-31 2019-05-21 上海华为技术有限公司 参考信号配置方法和参考信号发送方法及相关设备
US11336419B2 (en) 2012-12-31 2022-05-17 Huawei Technologies Co., Ltd. Reference signal measurement method, reference signal sending method, and related device
CN104183074A (zh) * 2014-08-29 2014-12-03 武汉理工光科股份有限公司 基于时域反射技术的分布式周界系统信号增强方法及系统

Also Published As

Publication number Publication date
EP2698935A4 (en) 2014-04-16
US20140086085A1 (en) 2014-03-27
EP2698935A1 (en) 2014-02-19
CN102780532B (zh) 2016-06-08
CN102780532A (zh) 2012-11-14
EP2698935B1 (en) 2016-12-07
US9191845B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
WO2012152206A1 (zh) 信道测量的方法及装置
CN115174318B (zh) 无线通信系统中的终端和基站及其方法
EP3391555B1 (en) Scheme for configuring reference signal and communicating channel state information in a wireless communication system using multiple antenna ports
CN110912589B (zh) 在移动通信系统中发送和接收反馈信息的方法和装置
US20170353985A1 (en) Method of transceiving for device to device communication
EP3573281B1 (en) Method and apparatus for transmitting and receiving reference signal
KR101710204B1 (ko) 다중 입출력 통신 시스템에서 채널측정을 위한 기준신호의 전송 방법 및 그 장치
KR101541636B1 (ko) 원격 라디오 헤드에 의한 무선 통신 방법 및 시스템
CN109547164B (zh) 用于在通信系统中配置信道状态信息的系统和方法
CN108183784B (zh) 接收物理下行链路共享信道信号的方法和用户设备
KR101797559B1 (ko) Csi-기준 신호(csi­rs) 자원들로의 비주기적 채널 상태 정보(a­csi) 보고들의 함축적 링킹
CN107872257B (zh) 在无线通信系统中通过考虑天线端口关系收发下行链路信号的方法和设备
EP2701425B1 (en) Method, device, and system for reporting channel quality indicator
EP2995113B1 (en) Measurements in a wireless system
CN106209320B (zh) 电信系统中用于报告信道状态信息的方法和装置
US10911176B2 (en) Method and apparatus for reporting channel state information
JP2019528610A (ja) 無線通信システムにおけるチャネル態報告のための方法及びその装置
CN109983730B (zh) 无线通信系统中的信道估计和数据解码的方法和装置
CN109155693B (zh) 低复杂度多配置csi报告
JP2019506084A (ja) ユーザ装置及び無線通信方法
WO2012142901A1 (zh) 一种多点协作传输下的干扰测量方法及设备
WO2014071638A1 (zh) 上报信道状态信息的方法、用户设备及基站
US9204400B2 (en) Method and device for resource configuration
CN109565878B (zh) 一种在大型mimo系统中发送信道状态信息参考信号的方法
US20210359800A1 (en) User equipment assisted demodulation reference signal configuration selection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012782417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012782417

Country of ref document: EP