WO2012152188A1 - 用二氧化碳溶解石灰岩建造地下储库的方法与装置 - Google Patents

用二氧化碳溶解石灰岩建造地下储库的方法与装置 Download PDF

Info

Publication number
WO2012152188A1
WO2012152188A1 PCT/CN2012/074710 CN2012074710W WO2012152188A1 WO 2012152188 A1 WO2012152188 A1 WO 2012152188A1 CN 2012074710 W CN2012074710 W CN 2012074710W WO 2012152188 A1 WO2012152188 A1 WO 2012152188A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
gas
outlet
liquid
inlet
Prior art date
Application number
PCT/CN2012/074710
Other languages
English (en)
French (fr)
Inventor
谢和平
王昱飞
刘建锋
谢凌志
张茹
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Priority to US14/351,138 priority Critical patent/US9850756B2/en
Publication of WO2012152188A1 publication Critical patent/WO2012152188A1/zh
Priority to US15/825,084 priority patent/US10415388B2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D13/00Large underground chambers; Methods or apparatus for making them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G5/00Storing fluids in natural or artificial cavities or chambers in the earth
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/38Gaseous or foamed well-drilling compositions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/35Arrangements for separating materials produced by the well specially adapted for separating solids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/40Separation associated with re-injection of separated materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to the field of underground storage or cavern construction, and more particularly to a method and apparatus for constructing underground reservoirs or caverns under geological conditions of limestone formations.
  • Underground energy/waste storage which can be used for storage of natural gas, petroleum and other energy sources, is an indispensable part of a large gas transmission trunk system; it can also contain nuclear waste or C0 2 for national security, energy supply and the environment. Improvement has an important role to play.
  • large-scale underground storage sites are mainly selected for oil and gas reservoirs in the goaf, abandoned coal mines, underground saline water layers and underground salt rock deposits suitable for water-soluble cavities.
  • the object of the present invention is to provide a method and a device for constructing an underground storage tank by dissolving limestone with carbon dioxide, to solve the problem of greenhouse gas co 2 emission existing in the existing limestone cavity forming method, and to provide a utilization of co 2 New approach.
  • the chemical composition of limestone is mainly calcium carbonate (CaC0 3 ). Calcium carbonate can be dissolved in C0 2 solution to form calcium bicarbonate solution.
  • the chemical reaction equation is as follows: C0 2 + H 2 0 + CaCO, -—— “CoiHCO ⁇ ), the dissolution reaction is a reversible reaction, and the temperature and co 2 partial pressure change can significantly affect the dissolution equilibrium. Lowering the reaction temperature and increasing the C0 2 partial pressure can make the reaction The balance moves to the right, causing CaC0 3 to dissolve; on the contrary, increasing the reaction temperature and lowering the partial pressure of C0 2 can decompose calcium bicarbonate and regenerate calcium carbonate, C0 2 and H 2 0. The chemical nature of calcium carbonate can be used.
  • the higher pressure C0 2 solution is injected into the limestone layer to dissolve the limestone to form a calcium bicarbonate solution, and then the calcium bicarbonate in the discharged calcium bicarbonate solution is decomposed by pressure relief to regenerate calcium carbonate, C0 2 and 3 ⁇ 40.
  • the separated CO 2 absorption liquid can continue to be used for dissolving CO 2 , and the separated CO 2 can continue to be used to form the CO 2 solution.
  • the present invention provides a carbon lime-dissolved limestone construction.
  • the calcium hydride solution is discharged from the second sleeve; c.
  • the discharged calcium bicarbonate solution is depressurized, and the calcium hydrogencarbonate in the calcium bicarbonate solution is decomposed to generate carbon dioxide, water and calcium carbonate, and then gas, liquid and solid.
  • the pressure of the C0 2 gas introduced into the CO 2 absorbing liquid is preferably 1 MPa -15 MPa, and the pressure of the C0 2 absorbing liquid is preferably 1 MPa ⁇ 15 MPa.
  • the pressure of the C0 2 gas introduced into the CO 2 absorption liquid is 2 MPa to 6 MPa, and the pressure of the C0 2 absorption liquid is 2 MPa to 6 MPa.
  • the C0 2 absorption liquid is at least one of water, sodium chloride solution, sodium oxalate solution, and sodium acetate solution, and the concentration of the sodium chloride solution is 0.001 mol/L to 10 mol/L, the oxalic acid The concentration of the nano solution is 0.001 mol/L to 5 mol/L, and the concentration of the sodium acetate solution is 0.001 mol/L to 5 mol/L.
  • the discharged calcium bicarbonate-containing solution is depressurize to 5 ⁇ 10 5 Pa ⁇ l ⁇ 10 2 Pa, and decompose the calcium hydrogencarbonate in the calcium bicarbonate solution at the pressure and 20° C. to 80° C. Produces carbon dioxide, water and calcium carbonate. More preferably, the discharged calcium bicarbonate solution is depressurized to 1.01 x l0 5 P a ⁇ lx l0 3 Pa, and the calcium hydrogencarbonate in the calcium bicarbonate solution is at the pressure of 20 ° C ⁇ 80 Decomposes to produce carbon dioxide, water and calcium carbonate at °C.
  • the present invention also provides an apparatus for constructing an underground reservoir using carbon dioxide to dissolve limestone, the apparatus comprising
  • the absorption tower is provided with a CO 2 gas inlet, C02 gas outlet, C02 absorbing liquid inlet, C02 solution outlet, wherein the CO2 gas inlet of the absorption tower is connected to the gas outlet of the C02 storage tank through the pipe fitting, and the C02 absorbing liquid inlet of the absorption tower passes through the outlet of the pipe fitting and the first boosting pump Port connection, the CO2 gas outlet of the absorption tower is connected to the inlet of the third booster pump through the pipe fitting; the inlet of the C02 storage tank is connected to the outlet port of the second booster pump and the third booster pump through the pipe fitting;
  • the liquid separator is provided with a calcium bicarbonate solution inlet, a C02 gas outlet and a separation liquid outlet, and the inlet of the gas-liquid separator containing the calcium bicarbonate solution is connected to the outlet of the pressure reducing valve (9) through the
  • the component is connected to the inlet of the vacuum pump, and the C02 absorption liquid outlet of the crystallizer is connected to the inlet port of the first booster pump through the pipe fitting, and the connecting pipe of the first booster pump and the crystallizer is provided with a C02 absorption liquid replenishing port;
  • the air inlet is connected to the CO2 gas outlet of the gas-liquid separator and the outlet of the vacuum pump through the pipe, and the air outlet of the buffer tank is connected to the air inlet of the second booster pump through the pipe.
  • the mold comprises a settling chamber, stripping chamber, nozzle, pump and conveying the heat exchanger; settling chamber is provided with a calcium carbonate slurry outlet and C0 2 absorbing liquid outlet chamber mounted on stripping the settling chamber, and with The settling chamber is connected, and the top of the stripping chamber is provided with a C0 2 gas outlet; the nozzle is located in the stripping chamber, and the inlet pipe of the nozzle is connected to the outlet of the heat exchanger through the tube, and the inlet of the heat exchanger passes through the tube and the inlet The liquid outlet of the material pump is connected, and the liquid inlet of the feed pump is connected to the separation liquid outlet of the gas-liquid separator through the pipe.
  • the invention has the following beneficial effects: 1. Compared with the prior art, the method of the invention not only contributes to environmental protection, but also provides a new way for the utilization of greenhouse gas C0 2 .
  • the by-product calcium carbonate obtained by the method of the present invention is an important industrial raw material and industrial additive.
  • the method of the present invention facilitates the establishment of an energy storage reservoir such as natural gas and petroleum in the vicinity of an energy consumption center or an oil and gas pipeline network, and can store or supply energy in time according to market needs.
  • an energy storage reservoir such as natural gas and petroleum
  • FIG. 1 is a first well, a second well, a passage connecting two wells, and a first casing and a second casing and a first in the method for constructing an underground storage tank by using carbon dioxide dissolved limestone according to the present invention
  • FIG. 2 is a schematic view of an underground storage constructed by the method of the present invention
  • FIG. 3 is a schematic structural view of an apparatus for constructing an underground storage using carbon dioxide dissolved limestone according to the present invention
  • It is a schematic structural view of a crystallizer in the apparatus for constructing an underground reservoir by using carbon dioxide to dissolve limestone according to the present invention
  • Embodiment 1 a device for constructing an underground storage tank by dissolving limestone with carbon dioxide is shown in FIG. 3, and includes a CO 2 storage tank 7, an absorption tower 8, a pressure reducing valve 9, a gas-liquid separator 10, a crystallizer 11, The vacuum pump 13, the damper 14, the first booster pump 12, the second booster pump 15, and the third booster pump 16.
  • C0 2 storage tank 7, absorption tower 8, pressure reducing valve 9, gas-liquid separator 10, vacuum pump 13, buffer 14, first booster pump 13, second booster pump 15, and third booster pump 16 are Conventional equipment can be manufactured according to chemical design specifications or purchased through the market according to requirements. As shown in FIG.
  • the crystallizer 11 is mainly composed of a sedimentation chamber 17, a stripping chamber 18, a spray head 19, a feed pump 23 and a heat exchanger 24;
  • the bottom of the settling chamber 17 is provided with a calcium carbonate slurry outlet 20,
  • the top of the settling chamber 17 is provided with a CO 2 absorbing liquid outlet 21
  • the stripping chamber 18 is installed on the settling chamber 17, and communicates with the settling chamber 17,
  • the top of the stripping chamber 18 is provided with a C0 2 gas outlet 22;
  • the spray head 19 is located in the stripping chamber 18, and the liquid inlet tube of the spray head 19
  • the tube is connected to the liquid outlet of the heat exchanger 24, and the inlet of the heat exchanger 24 is connected to the liquid outlet of the feed pump 23 through the tube.
  • the side wall of the absorption tower 8 is provided with a C0 2 gas inlet, a C0 2 absorption liquid inlet, the top of the absorption tower 8 is provided with a C0 2 gas outlet, and the bottom of the absorption tower 8 is provided with C0 2
  • the solution outlet, the C0 2 gas inlet of the absorption tower 8 is connected to the gas outlet of the C0 2 storage tank 7 through a pipe member, and the C0 2 absorption liquid inlet of the absorption tower 8 passes through the pipe member and the liquid outlet of the first booster pump 12.
  • the C0 2 gas outlet of the absorption tower 8 is connected to the intake port of the third booster pump 16 through a pipe; the intake port of the C0 2 storage tank 7 passes through the pipe and the second booster pump 15 and the third An air outlet of the booster pump 16 is connected; the gas-liquid separator 10 is provided with a calcium bicarbonate solution inlet, a C0 2 gas outlet and a separation liquid outlet, and the inlet of the gas-liquid separator 10 containing the calcium bicarbonate solution passes through the pipe fitting Connected to the liquid outlet of the pressure reducing valve 9, the separation liquid outlet of the gas-liquid separator 10 passes through the pipe and the crystal
  • the material conveying pump 23 connected to the fluid inlet; C0 2 gas outlet at the top of the crystallizer stripping chamber 22 through the tube set 13 is connected to a vacuum pump, the crystalline C0 2 absorbing liquid outlet is provided in the sedimentation chamber 21
  • the pipe fitting is connected to the liquid inlet of the first booster pump 12, and the connecting pipe of the first booster pump 12 and the crystallizer 11 is
  • Embodiment 2 a method for constructing an underground reservoir by dissolving limestone with carbon dioxide uses the apparatus described in Embodiment 1, and the steps are as follows: a. Drilling from the ground into the first well and the second well extending into the limestone layer, A channel 5 connecting the bottoms of the two wells is arranged in the limestone layer, and the first casing 3 and the second casing 4 are respectively installed in the first well and the second well (as shown in FIG.
  • the solution, the unabsorbed CO 2 gas is discharged from the C0 2 gas outlet at the top of the absorption tower 8, and is pressurized to 3 MPa by the third booster pump 16 to return to the C0 2 storage tank 7; the C0 2 solution passes through the first casing 3 Inflow into the underground limestone layer reacts with limestone to form a solution containing calcium bicarbonate, at the same time forming a cavity Calcium bicarbonate containing solution discharged from the second sleeve 4; c.
  • the discharged calcium bicarbonate solution is depressurized to a normal pressure by a pressure reducing valve 9 and enters the gas-liquid separator 10. In the gas-liquid separator 10, C0 2 dissolved in the calcium bicarbonate solution is precipitated, and the gas and liquid are separated.
  • the C0 2 gas outlet of the separator 10 is discharged into the pipeline, enters the buffer 14 through the pipeline, is pressurized into the second booster pump 15 through the buffer to 3 MPa, returns to the CO 2 storage tank 7, and the remaining separation liquid is separated by gas-liquid separation.
  • the separation liquid outlet of the device 10 is discharged, enters the feed pump 23 in the crystallizer through a pipe, is sent to the heat exchanger 24 by the feed pump to be heated to 40 ° C ⁇ 5 ° C, and enters the spray head 19 located in the stripping chamber through the pipe.
  • the vacuum of the stripping chamber 18 and the settling chamber 17 in the crystallizer is maintained at 100 500 Pa by a vacuum pump, the temperature is controlled at 35 ° C ⁇ 5 ° C, and the calcium hydrogencarbonate in the separating liquid is at the vacuum degree and temperature. Decomposed to generate carbon dioxide, water and calcium carbonate.
  • the C0 2 gas enters the buffer 14 through the C0 2 gas outlet 22 and the pipe at the top of the stripping chamber under the action of the vacuum pump 13, and is pressurized to 3 MPa through the buffer into the second booster pump 15.
  • Embodiment 3 the method for constructing an underground storage tank by dissolving limestone with carbon dioxide uses the apparatus described in Embodiment 1, and the steps are as follows: a. This step is the same as that of Embodiment 2; b.
  • the C0 2 storage tank 7 is The C0 2 gas with a pressure of 5 MPa is input into the absorption tower 8 through a pipeline, so that the C0 2 gas is sufficiently absorbed by a sodium acetate solution having a pressure of 5 MPa and a concentration of 0.05 mol/L to form a C0 2 solution, and the unabsorbed C0 2
  • the gas is discharged from the C0 2 gas outlet at the top of the absorption tower 8, and is pressurized to 5 MPa by the third booster pump 16 to return to the C0 2 storage tank 7; the C0 2 solution flows into the underground limestone layer via the first casing 3 to react with the limestone.
  • the calcium bicarbonate-containing solution is discharged from the second sleeve 4; c, the discharged calcium bicarbonate solution is discharged through a pressure reducing valve 9 to a normal pressure into the gas
  • the liquid separator 10, in the gas-liquid separator 10, the CO 2 dissolved in the calcium bicarbonate solution is precipitated, discharged into the pipeline through the C0 2 gas outlet of the gas-liquid separator 10, and enters the buffer 14 through the pipeline, and is buffered.
  • the controller enters the second booster pump 15 to pressurize to 5 MPa and returns to the C0 2 storage tank 7
  • the remaining separation liquid is discharged through the separation liquid outlet of the gas-liquid separator 10, enters the feed pump 23 in the crystallizer through the pipeline, and is sent to the heat exchanger 24 by the feed pump to be heated to 45 °C ⁇ 5 °C.
  • the stripping chamber 18 and the settling chamber 17 in the crystallizer work under normal pressure (the vacuum pump in this embodiment is in a non-operating state), and the temperature is controlled at 40 ° C ⁇ 5 ° C, the calcium hydrogencarbonate in the separation liquid is at normal pressure and the temperature Decomposes to produce carbon dioxide, water and calcium carbonate.
  • the C0 2 gas enters the buffer 14 through the C0 2 gas outlet 22 at the top of the stripping chamber and the pipe, and is pressurized to 5 MPa by the buffer to the second booster pump 15 to return to the C0 2 storage tank. 7.
  • the liquid phase material enters the settling chamber 17 of the crystallizer. In the settling chamber, the calcium carbonate crystals settle and is discharged from the calcium carbonate slurry outlet 20 at the bottom of the settling chamber 17, and the sodium acetate solution is discharged from the C0 2 absorbent outlet 21 at the top of the settling chamber. Discharge, mix with sodium acetate replenishing solution, pressurize to 5 MPa after the first booster pump 12, and then enter the absorption tower 8 again; repeat the steps!
  • the present invention is not limited to the above embodiment, for example, the pressure of the C0 2 gas introduced into the CO 2 absorbing liquid may be selected from any of I MPa ⁇ 15 MPa, and the pressure of the C0 2 absorbing liquid may be selected from any of 1 MPa to 15 MPa.
  • C0 2 absorption liquid can be sodium chloride solution, sodium oxalate solution, or sodium acetate solution, or a mixture of any two of them, or sodium chloride solution, sodium oxalate solution and acetic acid A mixture of three solutions of nano solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

用二氧化碳溶解石灰岩建造地下储库的方法与装置 技术领域 本发明属于地下储库或洞库建造领域, 特别涉及一种在石灰岩层地质条件下建造 地下储库或洞库的方法与装置。 背景技术 地下能源 /废物储存库, 可用于天然气、 石油等能源的储存, 是大型输气干线系统 不可或缺的重要组成部分; 也可以封存核废料或 C02, 对国家安全、 能源供应以及环 境改善有着重要作用。 目前, 大规模地下储存库的建造地点主要选择在采空的石油天 然气储层, 废弃煤矿, 地下咸水层以及适合于水溶造腔的地下盐岩矿床。 由于需要特 定的地质条件,油气输送管网以及油气消费中心附近不一定存在合适的储存地质环境, 这给地下储存库尤其是能源储存库的发展带来影响。 因此, 研究适合于多数地区使用 的地下储存库建造技术显得十分重要。 石灰岩在地层中的分布很广, 渗透率很低, 具有较好的密封性能。 其中, 成岩过 程中受裂隙化、 喀斯特化程度较小的石灰岩岩体裂隙不发育, 且通常被方解石、 粘土 等填充。 因此, 石灰岩层具有建立地下能源及废物储存库的基本地质条件。
US7156579B2中公开了一种建造石灰岩储气库的方法, 该方法利用盐酸溶解石灰 岩建造储气库, 石灰岩溶解的化学反应方程式如下所示:
C CO} + 2HCI CaCl2 + CO, + H20 从上述化学反应方程式可以看出,该方法在造腔过程中将产生大量温室气体 C02, 因此, C02气体若处理不当势必造成环境污染。 发明内容 本发明的目的在于提供一种用二氧化碳溶解石灰岩建造地下储库的方法与装置, 以解决现有石灰岩造腔方法所存在的温室气体 co2排放问题, 并为 co2的利用提供一 种新途径。 石灰岩的化学成分主要是碳酸钙 (CaC03), 碳酸钙能溶解于 C02溶液之中, 生成 碳酸氢钙溶液, 其化学反应方程式如下: C02 + H20 + CaCO, -—— " CoiHCO^), 该溶解反应是一个可逆反应, 温度和 co2分压变化可显著影响溶解平衡。 降低反 应温度, 增加 C02分压可使反应平衡向右移动, 促使 CaC03溶解; 反之, 提高反应温 度, 降低 C02分压可使碳酸氢钙分解, 重新生成碳酸钙、 C02和 H20。 利用碳酸钙的 这一化学性质, 可将具有较高压力的 C02溶液注入石灰岩层, 使石灰岩溶解, 生成碳 酸氢钙溶液, 再通过卸压促使排出的碳酸氢钙溶液中的碳酸氢钙分解, 重新生成碳酸 钙、 C02和 ¾0, 进行气、 液、 固分离后, 分离出的 C02吸收液可继续用于溶解 C02, 分离出的 C02可继续用于形成 C02溶液。 本发明提供了一种用二氧化碳溶解石灰岩建造地下储库的方法, 该方法包括以下 步骤: a、从地面钻取伸入石灰岩层的第一井和第二井, 在石灰岩层中设置至少一条将第 一井和第二井连通的通道, 在第一井和第二井中分别安装上第一套管和第二套管; b、将压力至少为 1 MPa 的 C02气体导入压力至少为 1 MPa 的 C02吸收液中形成
C02溶液, 然后将 C02溶液注入第一套管, 所述 C02溶液经第一套管流入地下石灰岩 层与石灰岩反应形成含碳酸氢钙溶液, 与此同时形成溶腔, 所述含碳酸氢钙溶液从第 二套管排出; c、将排出的含碳酸氢钙溶液卸压, 使含碳酸氢钙溶液中的碳酸氢钙分解生成二氧 化碳、 水和碳酸钙, 然后进行气、 液、 固分离, 将分离出的 C02吸收液继续用于溶解 C02, 将分离出的 C02继续用于形成 C02溶液, 将分离出的碳酸钙输出存放; 重复所述步骤 b和所述步骤 c的操作, 直至形成符合设计要求的溶腔, 则停止向 第一套管输入 co2溶液, 然后将溶腔中的液体排出, 即形成地下储库。 进一步地, 导入 C02吸收液的 C02气体压力优选 1 MPa -15 MPa, C02吸收液的 压力优选 1 MPa ~15 MPa。更优选的方案是:导入 C02吸收液的 C02气体压力为 2 MPa ~6 MPa, C02吸收液的压力为 2MPa ~ 6MPa。 进一步地, C02吸收液为水、 氯化钠溶液、 草酸纳溶液、 醋酸纳溶液中的至少一 种, 所述氯化钠溶液的浓度为 0.001 mol/L~10 mol/L, 所述草酸纳溶液的浓度为 0.001 mol/L~5 mol/L, 所述醋酸纳溶液的浓度为 0.001 mol/L~5 mol/L。 进一步地, 优选将排出的含碳酸氢钙溶液卸压至 5x l05 Pa~l x l02 Pa, 使含碳酸氢 钙溶液中的碳酸氢钙在所述压力与 20°C~80°C下分解生成二氧化碳、 水和碳酸钙。 更 优选的方案是: 将排出的含碳酸氢钙溶液卸压至 1.01 x l05 Pa~l x l03Pa, 使含碳酸氢钙 溶液中的碳酸氢钙在所述压力与 20°C~80°C下分解生成二氧化碳、 水和碳酸钙。 本发明还提供了一种用二氧化碳溶解石灰岩建造地下储库的装置, 该装置包括
C02储罐、 吸收塔、 减压阀、 气液分离器、 结晶器、 真空泵、 缓冲器、 第一增压泵、 第二增压泵和第三增压泵; 吸收塔设置有 C02气体进口、 C02气体出口、 C02吸收 液进口、 C02溶液出口, 其中, 吸收塔的 C02气体进口通过管件与 C02储罐的出气 口连接, 吸收塔的 C02 吸收液进口通过管件与第一增压泵的出液口连接, 吸收塔的 C02气体出口通过管件与第三增压泵的进气口连接; C02储罐的进气口通过管件与第 二增压泵和第三增压泵的出气口连接; 气液分离器设置有含碳酸氢钙溶液进口、 C02 气体出口和分离液出口, 气液分离器的含碳酸氢钙溶液进口通过管件与减压阀(9)的 出液口连接, 气液分离器的分离液出口通过管件与结晶器的分离液进口连接; 结晶器 设置有分离液进口、 C02 气体出口、 C02 吸收液出口和碳酸钙料浆出口, 结晶器的 C02气体出口通过管件与真空泵的进口连接,结晶器的 C02吸收液出口通过管件与第 一增压泵的进液口连接, 第一增压泵与结晶器的连接管件上设置有 C02 吸收液补充 口; 缓冲罐的进气口通过管件分别与气液分离器的 C02 气体出口和真空泵的出口连 接, 缓冲罐的出气口通过管件与第二增压泵的进气口连接。 进一步地, 结晶器包括沉降室、 气提室、 喷头、 输料泵和热交换器; 沉降室设置 有碳酸钙料浆出口和 C02吸收液出口, 气提室安装在沉降室上, 并与沉降室相通, 气 提室的顶部设置有 C02气体出口; 喷头位于气提室内, 喷头的进液管通过管件与热交 换器的出液口连接, 热交换器的进液口通过管件与输料泵的出液口连接, 输料泵的进 液口通过管件与气液分离器的分离液出口连接。 本发明具有以下有益效果: 1、本发明所述方法与现有技术相比, 不仅有利于环境保护, 而且为温室气体 C02 的利用提供了一种新途径。
2、 本发明所述方法获得的副产物碳酸钙是重要的工业原料及工业添加剂。
3、本发明所述方法便于实现在能源消费中心或油气输送管网附近建立天然气、石 油等能源储存库, 可根据市场需要及时储存或供应能源。
4、 本发明所述方法与配套装置易于实现工业化。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是本发明所述用二氧化碳溶解石灰岩建造地下储库的方法中的第一井、 第二 井、 连通两口井的通道及第一套管和第二套管与第一井和第二井的组装示意图; 图 2是本发明所述方法建造的地下储库的一种示意图; 图 3是本发明所述用二氧化碳溶解石灰岩建造地下储库的装置的结构示意图; 图 4是本发明所述用二氧化碳溶解石灰岩建造地下储库的装置中的结晶器的结构 示意图; 图中, 1 地面、 2—石灰岩层、 3—第一套管、 4一第二套管、 5—连通两口井的通 道、 6—地下储库、 7— C02储罐、 8—吸收塔、 9一减压阀、 10 气液分离器、 11一结 晶器、 12 第一增压泵、 13—真空泵、 14一缓冲器、 15 第二增压泵、 16—第三增压 泵、 17—沉降室、 18—气提室、 19 喷头、 20—碳酸钙料浆出口、 21— C02吸收液出 口、 22— C02气体出口、 23—输料泵、 24—热交换器。 具体实施方式 下面通过实施例对本发明所述用二氧化碳溶解石灰岩建造地下储库的方法与装置 作进一步说明。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的 特征可以相互组合。 实施例 1 本实施例中, 用二氧化碳溶解石灰岩建造地下储库的装置如图 3所示, 包括 C02 储罐 7、 吸收塔 8、 减压阀 9、 气液分离器 10、 结晶器 11、 真空泵 13、 缓冲器 14、 第 一增压泵 12、 第二增压泵 15和第三增压泵 16。 C02储罐 7, 吸收塔 8、 减压阀 9、 气 液分离器 10、 真空泵 13、 缓冲器 14、 第一增压泵 13、 第二增压泵 15和第三增压泵 16均为常规设备, 可根据要求按照化工设计规范进行制造或通过市场购买。结晶器 11 如图 4所示, 主要由沉降室 17、 气提室 18、 喷头 19、 输料泵 23和热交换器 24组成; 所述沉降室 17底部设置有碳酸钙料浆出口 20,所述沉降室 17顶部设置有 C02吸收液 出口 21, 所述气提室 18安装在沉降室 17上, 并与沉降室 17相通, 所述气提室 18的 顶部设置有 C02气体出口 22; 所述喷头 19位于气提室 18内, 所述喷头 19的进液管 通过管件与热交换器 24 的出液口连接, 热交换器 24 的进液口通过管件与输料泵 23 的出液口连接。
C02储罐 7、 吸收塔 8、 减压阀 9、 气液分离器 10、 结晶器 11、 真空泵 13、 缓冲 器 14、 第一增压泵 12、 第二增压泵 15和第三增压泵 16的连接关系如下: 所述吸收塔 8侧壁设置有 C02气体进口、 C02吸收液进口, 所述吸收塔 8顶部设 置有 C02气体出口, 所述吸收塔 8底部设置有 C02溶液出口, 所述吸收塔 8的 C02 气体进口通过管件与 C02储罐 7的出气口连接,所述吸收塔 8的 C02吸收液进口通过 管件与第一增压泵 12的出液口连接, 所述吸收塔 8的 C02气体出口通过管件与第三 增压泵 16的进气口连接; 所述 C02储罐 7的进气口通过管件与第二增压泵 15和第三 增压泵 16的出气口连接; 所述气液分离器 10设置有含碳酸氢钙溶液进口、 C02气体 出口和分离液出口, 所述气液分离器 10 的含碳酸氢钙溶液进口通过管件与减压阀 9 的出液口连接, 所述气液分离器 10的分离液出口通过管件与结晶器中的输料泵 23进 液口连接; 所述结晶器中气提室顶部设置的 C02气体出口 22通过管件与真空泵 13连 接, 所述结晶器中沉降室所设置的 C02吸收液出口 21通过管件与第一增压泵 12的进 液口连接, 第一增压泵 12与结晶器 11的连接管件上设置有 C02吸收液补充口; 所述 缓冲罐 14的进气口通过管件分别与气液分离器 10的 C02气体出口和真空泵 13的出 口连接, 所述缓冲罐 14的出气口通过管件与第二增压泵 15的进气口连接。 实施例 2 本实施例中, 用二氧化碳溶解石灰岩建造地下储库的方法使用实施例 1所述的装 置, 其步骤如下: a、从地面钻取伸入石灰岩层的第一井和第二井, 在石灰岩层中设置一条将两口井 底部连通的通道 5, 在第一井和第二井中分别安装上第一套管 3和第二套管 4 (如图 1 所示), 将第一套管 3通过管件与实施例 1所述装置中的吸收塔 8的 C02溶液出口相 连, 将第二套管 4通过管件与实施例 1所述装置中的减压阀 9的进液口相连; b、 将 C02储罐 7中的压力为 3 MPa 的 C02气体通过管道输入吸收塔 8, 使 C02 气体被压力为 3 MPa 、 浓度为 2 mol/L的氯化钠溶液吸收, 形成 C02溶液, 未被吸收 的 C02气体从吸收塔 8顶部的 C02气体出口排出, 通过第三增压泵 16增压至 3MPa 回到 C02储罐 7; 所述 C02溶液经第一套管 3流入地下石灰岩层与石灰岩反应形成含 碳酸氢钙溶液, 与此同时形成溶腔, 所述含碳酸氢钙溶液从第二套管 4排出; c、 排出的含碳酸氢钙溶液经减压阀 9卸压至常压进入气液分离器 10, 在气液分 离器 10中, 溶解于含碳酸氢钙溶液中的 C02析出, 经气液分离器 10的 C02气体出口 排入管道,经管道进入缓冲器 14,经缓冲器进入第二增压泵 15增压至 3MPa回到 C02 储罐 7, 余下的分离液则经气液分离器 10的分离液出口排出, 通过管道进入结晶器中 的输料泵 23, 由输料泵送入热交换器 24加热至 40°C±5 °C, 通过管道进入位于气提室 内的喷头 19, 结晶器中的气提室 18和沉降室 17的真空度通过真空泵维持在 100 500 Pa, 温度控制在 35 °C±5 °C, 分离液中的碳酸氢钙在所述真空度与温度下分解生成二氧 化碳、 水和碳酸钙, C02气体在真空泵 13的作用下经气提室顶部的 C02气体出口 22 及管道进入缓冲器 14,经缓冲器进入第二增压泵 15增压至 3MPa回到 C02储罐 7,液 相物料进入结晶器的沉降室 17, 在沉降室内, 碳酸钙结晶沉降, 从沉降室 17底部的 碳酸钙料浆出口 20排出, 氯化钠溶液从沉降室顶部的 C02吸收液出口 21排出, 与氯 化钠补充液混合后经第一增压泵 12增压至 3 MPa后再次进入吸收塔 8; 重复步骤!)、 c的操作循环, 直至形成符合设计要求的溶腔, 则停止向第一套管 3 输入 C02溶液, 然后向第一套管 3输入压缩空气, 将溶腔中的液体排出, 即形成地下 储库 6 (如图 2所示)。 实施例 3 本实施例中, 用二氧化碳溶解石灰岩建造地下储库的方法使用实施例 1所述的装 置, 其步骤如下: a、 该步骤与实施例 2相同; b、 将 C02储罐 7中的压力为 5 MPa 的 C02气体通过管道输入吸收塔 8, 使 C02 气体被压力为 5 MPa 、浓度为 0.05 mol/L的醋酸钠溶液充分吸收, 形成 C02溶液, 未 被吸收的 C02气体从吸收塔 8顶部的 C02气体出口排出, 通过第三增压泵 16增压至 5MPa回到 C02储罐 7; 所述 C02溶液经第一套管 3流入地下石灰岩层与石灰岩反应 形成含碳酸氢钙溶液, 与此同时形成溶腔, 所述含碳酸氢钙溶液从第二套管 4排出; c、 排出的含碳酸氢钙溶液经减压阀 9卸压至常压进入气液分离器 10, 在气液分 离器 10中, 溶解于含碳酸氢钙溶液中的 C02析出, 经气液分离器 10的 C02气体出口 排入管道,经管道进入缓冲器 14,经缓冲器进入第二增压泵 15增压至 5 MPa回到 C02 储罐 7, 余下的分离液则经气液分离器 10的分离液出口排出, 通过管道进入结晶器中 的输料泵 23, 由输料泵送入热交换器 24加热至 45 °C±5 °C, 通过管道进入位于气提室 内的喷头 19, 结晶器中的气提室 18和沉降室 17在常压下工作 (本实施例中的真空泵 处于非工作状态), 温度控制在 40°C±5 °C, 分离液中的碳酸氢钙在常压与所述温度下 分解生成二氧化碳、水和碳酸钙, C02气体经气提室顶部的 C02气体出口 22及管道进 入缓冲器 14,经缓冲器进入第二增压泵 15增压至 5MPa回到 C02储罐 7,液相物料进 入结晶器的沉降室 17, 在沉降室内, 碳酸钙结晶沉降, 从沉降室 17底部的碳酸钙料 浆出口 20排出, 醋酸钠溶液从沉降室顶部的 C02吸收液出口 21排出, 与醋酸钠补充 液混合后经第一增压泵 12增压至 5 MPa后再次进入吸收塔 8; 重复步骤!)、 c的操作循环, 直至形成符合设计要求的溶腔, 则停止向第一套管 3 输入 C02溶液, 然后向第一套管 3输入压缩甲烷, 将溶腔中的液体排出, 即形成地下 储库 6 (如图 2所示)。 本发明不限于上述实施例, 例如, 导入 C02吸收液的 C02气体压力可选择 I MPa ~15 MPa中的任一压力, C02吸收液的压力可选择 1 MPa ~15 MPa中的任一压力; C02 吸收液既可以是氯化钠溶液, 或草酸纳溶液, 或醋酸纳溶液, 又可以是它们中任两种 溶液的混合液, 还可以是氯化钠溶液、 草酸纳溶液和醋酸纳溶液三种溶液的混合液。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种用二氧化碳溶解石灰岩建造地下储库的方法, 其特征在于包括以下步骤: a、从地面钻取伸入石灰岩层的第一井和第二井,在所述石灰岩层中设置至 少一条将所述第一井和所述第二井连通的通道 (5 ), 在所述第一井和所述第二 井中分别安装上第一套管 (3 ) 和第二套管 (4);
b、 将压力至少为 1 MPa 的 C02气体导入压力至少为 1 MPa 的 C02吸收 液中, 形成 C02溶液, 然后将所述 C02溶液注入所述第一套管 (3 ), 所述 C02 溶液经所述第一套管 (3 )流入地下石灰岩层与石灰岩反应形成含碳酸氢钙溶液, 与此同时形成溶腔, 所述含碳酸氢钙溶液从所述第二套管 (4) 排出;
c、将排出的含碳酸氢钙溶液卸压,使所述含碳酸氢钙溶液中的碳酸氢钙分 解生成二氧化碳、 水和碳酸钙, 然后进行气、 液、 固分离, 将分离出的 C02吸 收液继续用于溶解 C02, 将分离出的 C02继续用于形成 C02溶液, 将分离出的 碳酸钙输出存放;
重复所述步骤 b和所述步骤 c的操作, 直至形成符合设计要求的溶腔, 则 停止向所述第一套管 (3 ) 输入 C02溶液, 然后将溶腔中的液体排出, 即形成 地下储库。
2. 根据权利要求 1所述的用二氧化碳溶解石灰岩建造地下储库的方法, 其特征在 于导入所述 C02吸收液的 C02气体压力为 1 MPa -15 MPa,所述 C02吸收液的 压力为 1 MPa ~15 MPa。
3. 根据权利要求 2所述的用二氧化碳溶解石灰岩建造地下储库的方法, 其特征在 于导入所述 C02吸收液的 C02气体压力为 2 MPa ~6 MPa, 所述 C02吸收液的 压力为 2MPa ~ 6MPa。
4. 根据权利要求 1至 3中任一权利要求所述的用二氧化碳溶解石灰岩建造地下储 库的方法, 其特征在于所述 co2吸收液为水、 氯化钠溶液、 草酸钠溶液、 醋酸 钠溶液中的至少一种,所述氯化钠溶液的浓度为 0.001 mol/L~10 mol/L,所述草 酸钠溶液的浓度为 0.001 mol/L~5 mol/L , 所述醋酸钠溶液的浓度为 0.001 mol/L~5 mol/L。
5. 根据权利要求 1至 3中任一权利要求所述的用二氧化碳溶解石灰岩建造地下储 库的方法, 其特征在于将排出的含碳酸氢钙溶液卸压至 5 x l 05 Pa~l x l 02 Pa, 使 所述含碳酸氢钙溶液中的碳酸氢钙在所述压力与 20°C~80°C下分解生成二氧化 碳、 水和碳酸钙。
6. 根据权利要求 5所述的用二氧化碳溶解石灰岩建造地下储库的方法, 其特征在 于将排出的含碳酸氢钙溶液卸压至 1.01 x l05 Pa~l x l03 Pa,使所述含碳酸氢钙溶 液中的碳酸氢钙在所述压力与 20°C~80°C下分解生成二氧化碳、 水和碳酸钙。
7. 一种用二氧化碳溶解石灰岩建造地下储库的装置, 其特征在于包括 C02储罐
(7)、吸收塔(8)、减压阀(9)、气液分离器(10)、结晶器(11 )、真空泵 ( 13 )、 缓冲器 (14)、 第一增压泵 (12)、 第二增压泵 (15 ) 和第三增压泵 (16); 所述吸收塔 (8) 设置有 C02气体进口、 C02气体出口、 C02吸收液进口、 C02溶液出口, 其中, 所述吸收塔 (8) 的 C02气体进口通过管件与所述 C02 储罐 (7) 的出气口连接, 所述吸收塔 (8) 的 C02吸收液进口通过管件与所述 第一增压泵 (12) 的出液口连接, 所述吸收塔 (8) 的 C02气体出口通过管件 与所述第三增压泵 (16) 的进气口连接;
所述 C02储罐 (7) 的进气口通过管件与所述第二增压泵 (15 ) 和所述第 三增压泵 (16) 的出气口连接;
所述气液分离器 (10) 设置有含碳酸氢钙溶液进口、 C02气体出口和分离 液出口, 所述气液分离器 (10) 的含碳酸氢钙溶液进口通过管件与所述减压阀 (9)的出液口连接, 所述气液分离器(10)的分离液出口通过管件与所述结晶 器 (11 ) 的分离液进口连接;
所述结晶器 (11 ) 设置有分离液进口、 C02气体出口、 C02吸收液出口和 碳酸钙料浆出口,所述结晶器( 11 )的 C02气体出口通过管件与所述真空泵( 13 ) 的进口连接, 所述结晶器 (11 ) 的 C02吸收液出口通过管件与所述第一增压泵 ( 12) 的进液口连接, 所述第一增压泵 (12) 与所述结晶器 (11 ) 的连接管件 上设置有 C02吸收液补充口;
所述缓冲罐 (14) 的进气口通过管件分别与所述气液分离器 (10) 的 C02 气体出口和所述真空泵 (13 ) 的出口连接, 所述缓冲罐 (14) 的出气口通过管 件与所述第二增压泵 (15 ) 的进气口连接。
8. 根据权利要求 7所述的用二氧化碳溶解石灰岩建造地下储库的装置, 其特征在 于所述结晶器(11 )包括沉降室(17)、 气提室(18)、 喷头(19)、 输料泵(23 ) 和热交换器 (24); 所述沉降室 (17) 设置有碳酸钙料浆出口 (20) 和 C02吸收液出口 (21 ), 所述气提室 (18) 安装在所述沉降室 (17) 上, 并与所述沉降室 (17) 相通, 所述气提室 (18) 的顶部设置有 C02气体出口 (22);
所述喷头 (19) 位于所述气提室 (18) 内, 所述喷头 (19) 的进液管通过 管件与所述热交换器 (24) 的出液口连接, 所述热交换器 (24) 的进液口通过 管件与所述输料泵 (23 ) 的出液口连接, 所述输料泵 (23 ) 的进液口通过管件 与所述气液分离器 (10) 的分离液出口连接。
PCT/CN2012/074710 2011-05-06 2012-04-26 用二氧化碳溶解石灰岩建造地下储库的方法与装置 WO2012152188A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/351,138 US9850756B2 (en) 2011-05-06 2012-04-26 Method and device for building underground storehouse by dissolving limestone with carbon dioxide
US15/825,084 US10415388B2 (en) 2011-05-06 2017-11-28 Apparatus for making underground reservoir

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110117074.X 2011-05-06
CN201110117074XA CN102207243B (zh) 2011-05-06 2011-05-06 用二氧化碳溶解石灰岩建造地下储库的方法与装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/351,138 A-371-Of-International US9850756B2 (en) 2011-05-06 2012-04-26 Method and device for building underground storehouse by dissolving limestone with carbon dioxide
US15/825,084 Division US10415388B2 (en) 2011-05-06 2017-11-28 Apparatus for making underground reservoir

Publications (1)

Publication Number Publication Date
WO2012152188A1 true WO2012152188A1 (zh) 2012-11-15

Family

ID=44696221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074710 WO2012152188A1 (zh) 2011-05-06 2012-04-26 用二氧化碳溶解石灰岩建造地下储库的方法与装置

Country Status (3)

Country Link
US (2) US9850756B2 (zh)
CN (1) CN102207243B (zh)
WO (1) WO2012152188A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102207243A (zh) * 2011-05-06 2011-10-05 四川大学 用二氧化碳溶解石灰岩建造地下储库的方法与装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103850711B (zh) * 2012-11-29 2016-08-10 中国石油天然气集团公司 盐穴储气库双井建库方法
CN109488273B (zh) * 2018-11-26 2020-12-29 武汉工程大学 一种二氧化碳和水混合流体压裂石灰岩顶板的装置
CN110207021A (zh) * 2019-03-22 2019-09-06 山东科技大学 基于液相导压且能快速泄露警示液态co2管输系统和方法
CN113772319A (zh) * 2020-05-20 2021-12-10 王昱飞 地下岩腔、地下岩腔的形成系统及基于地下岩腔的储能系统
CN111589805B (zh) * 2020-05-26 2022-07-01 重庆大学 一种去除长大岩溶隧道排水管道结晶的绿色系统
CN112619370B (zh) * 2020-12-01 2022-12-27 成都正升能源技术开发有限公司 一种二氧化碳驱油田伴生气回收装置及使用方法
CN115324528A (zh) * 2021-05-10 2022-11-11 中国石油天然气股份有限公司 利用盐穴储气库残渣空隙空间储气的作业方法
CN115637953B (zh) * 2022-12-26 2023-03-10 华北理工大学 深地煤层co2固化溶液堵孔增透强润系统及应用方法
CN117307243A (zh) * 2023-09-25 2023-12-29 中国科学院武汉岩土力学研究所 一种超深地层沉渣型储库构建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076078A (en) * 1976-08-23 1978-02-28 Shell Oil Company Process for forming a coalate solution in-situ
US5842519A (en) * 1997-05-21 1998-12-01 Marathon Oil Company Process for reducing hydrocarbon leakage from a subterranean storage cavern
US7156579B2 (en) * 2004-09-02 2007-01-02 Clemson University Manufactured caverns in carbonate rock
CN102207243A (zh) * 2011-05-06 2011-10-05 四川大学 用二氧化碳溶解石灰岩建造地下储库的方法与装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130960A (en) * 1956-02-08 1964-04-28 Oil Recovery Corp Recovery of uranium by carbonated water and surface action agents and wetting agents
US4358158A (en) * 1977-02-11 1982-11-09 Union Oil Company Of California Solution mining process
US5431482A (en) * 1993-10-13 1995-07-11 Sandia Corporation Horizontal natural gas storage caverns and methods for producing same
CN101190743B (zh) * 2007-11-30 2013-11-06 中国科学院武汉岩土力学研究所 基于混合流体自分离的二氧化碳地质封存方法
EP2382283A2 (en) * 2008-12-30 2011-11-02 Shell Oil Company Method and system for supplying synthesis gas
US8425149B2 (en) * 2010-06-10 2013-04-23 Praxair Technology, Inc. Hydrogen storage method and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076078A (en) * 1976-08-23 1978-02-28 Shell Oil Company Process for forming a coalate solution in-situ
US5842519A (en) * 1997-05-21 1998-12-01 Marathon Oil Company Process for reducing hydrocarbon leakage from a subterranean storage cavern
US7156579B2 (en) * 2004-09-02 2007-01-02 Clemson University Manufactured caverns in carbonate rock
CN102207243A (zh) * 2011-05-06 2011-10-05 四川大学 用二氧化碳溶解石灰岩建造地下储库的方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PENG, GUOXI ET AL.: "The Distributing Character and the Shaping Mechanism of the Karst in the Red Beds in Sichuan.", JOURNAL OF INSTITUTE OF DISASTER-PREVENTION SCIENCE AND TECHNOLOGY., vol. 12, no. 4, February 2010 (2010-02-01), pages 90 - 96 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102207243A (zh) * 2011-05-06 2011-10-05 四川大学 用二氧化碳溶解石灰岩建造地下储库的方法与装置

Also Published As

Publication number Publication date
US20150145315A1 (en) 2015-05-28
CN102207243B (zh) 2013-05-15
CN102207243A (zh) 2011-10-05
US9850756B2 (en) 2017-12-26
US10415388B2 (en) 2019-09-17
US20180080321A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
WO2012152188A1 (zh) 用二氧化碳溶解石灰岩建造地下储库的方法与装置
US11499407B2 (en) Exploiting structure for natural gas hydrate reservoir and exploiting method for natural gas hydrate by injecting hydraulic calcium oxide via gas fracturing
CN105971573B (zh) 地下自生co2泡沫吞吐开采煤层气的系统及方法
CN110821448B (zh) 一种海相天然气水合物的开采方法及开采装置
CN102481540B (zh) 储存物质的储存装置及储存物质的储存方法
CA2804097C (en) Methods for storing carbon dioxide compositions in subterranean geological formations and arrangements for use in such methods
US20160298425A1 (en) System and Method for Permanent Storage of Carbon Dioxide in Shale Reservoirs
CN113710611A (zh) 几乎零温室气体排放的烃类制氢
CN108868736A (zh) 利用压裂开采海洋水合物藏的双l井结构及方法
WO2024041668A1 (zh) 一种基于废弃矿井采空区的co2区块化封存方法
US9586759B2 (en) Method for storing carbon dioxide compositions in subterranean geological formations and an arrangement for use in such methods
CN103074047A (zh) 压裂剂和煤层气水平井压裂方法
CN111119800B (zh) 石墨烯和热碳开采可燃冰的系统及开采方法
CN103442798A (zh) 储存物质的储存装置及储存方法
Sarshar et al. Simultaneous water desalination and CO2 capturing by hydrate formation
EP3368738A1 (en) System and method for permanent storage of carbon dioxide in shale reservoirs
CN116658123B (zh) 一种自生热辅助降压强化开采水合物的方法
CN112761599A (zh) 一种基于co2捕集的自生co2提高原油采收率的方法
CN1423029A (zh) 油田注水调剖增产技术工艺
CN115306366B (zh) 一种天然气水合物高效增产开采方法
US20240084672A1 (en) Systems and methods for microbubble and nanobubble co2 and other gas dissolution and sequestration in geological formations
US11982160B1 (en) Systems for waste gas sequestration in geological formations and methods of gas sequestration of waste gases in geological formations
RU2320848C1 (ru) Способ цементирования скважины с аномально низким пластовым давлением
CN116201598A (zh) 一种二氧化碳封存方法和封存系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14351138

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12782333

Country of ref document: EP

Kind code of ref document: A1