WO2012152141A1 - 下行控制信道的检测方法、用户设备及基站 - Google Patents

下行控制信道的检测方法、用户设备及基站 Download PDF

Info

Publication number
WO2012152141A1
WO2012152141A1 PCT/CN2012/072973 CN2012072973W WO2012152141A1 WO 2012152141 A1 WO2012152141 A1 WO 2012152141A1 CN 2012072973 W CN2012072973 W CN 2012072973W WO 2012152141 A1 WO2012152141 A1 WO 2012152141A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
dci format
downlink control
control channel
grant
Prior art date
Application number
PCT/CN2012/072973
Other languages
English (en)
French (fr)
Inventor
吴欣
戴博
陈艺戬
左志松
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20203686.9A priority Critical patent/EP3840273B1/en
Priority to EP12782118.9A priority patent/EP2744258B1/en
Priority to ES12782118T priority patent/ES2834441T3/es
Priority to EP24156180.2A priority patent/EP4391672A2/en
Priority to US14/236,284 priority patent/US9425932B2/en
Publication of WO2012152141A1 publication Critical patent/WO2012152141A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access

Definitions

  • a radio frame in a Long Term Evolution (LTE) system includes a frame structure of a Frequency Division Duplex (FDD) mode and a Time Division Duplex (TDD) mode.
  • FDD mode frame structure as shown in Figure 1, a 10 millisecond (ms) radio frame consists of twenty slots of length 0.5ms, numbered 0 ⁇ 19, and slots 2i and 2i+l A subframe i with a length of 1 ms.
  • the frame structure of the TDD mode as shown in FIG.
  • a 10 ms radio frame is composed of two half frames of 5 ms length, one field includes five subframes of length 1 ms, and subframe i is defined as 2 time slots 2i and 2i+1 which are 0.5 ms long.
  • one slot contains seven symbols with a length of 66.7 microseconds (us), and the CP of the first symbol has a length of 5.21 us. The remaining 6 symbols have a length of 4.69 us; for extended cyclic prefix (Extended CP, Extended Cyclic Prefix), one slot contains 6 symbols, and the CP length of all symbols is 16.67 us.
  • the version number of LTE corresponds to R8 (Release 8), and the version number corresponding to the added version is R9 (Release 9), and for future LTE-Advance, the version number is R10 (Release 10).
  • the following three types of downlink physical control channels are defined in LTE: Physical Downlink Control Format Indicator Channel (PCFICH); Physical Hybrid Automatic Retransmission Request Indicator Channel (PHICH); physical downlink Control Channel (PDCCH, Physical Downlink Control Channel).
  • PCFICH Physical Downlink Control Format Indicator Channel
  • PHICH Physical Hybrid Automatic Retransmission Request Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • the information carried by the PCFICH is used to indicate the number of Orthogonal Frequency Division Multiplexing (OFDM) symbols for transmitting the PDCCH in one subframe, and is sent on the first OFDM symbol of the subframe, where the frequency is located. Determined by the system downlink bandwidth and cell ID (ID, Identity).
  • ID Cell ID
  • the PHICH is used to carry acknowledgement/negative acknowledgement (ACK/NACK) feedback information for uplink transmission data.
  • the number of PHICHs and the time-frequency location may be determined by a system message and a cell ID in a Physical Broadcast Channel (PBCH) of the downlink carrier where the PHICH is located.
  • PBCH Physical Broadcast Channel
  • the PDCCH is used to carry Downlink Control Information (DCI), and includes: uplink and downlink scheduling information, and uplink power control information.
  • DCI Downlink Control Information
  • the DCI format (DCI format) is divided into the following types: DCI format 0, DCI format 1, DCI format 1 A, DCI format 1B, DCI format 1C, DCI format 1D, DCI format 2, DCI format 2A, DCI format 3 and DCI format 3 A, etc.; where: DCI format 0 is used to indicate the physical uplink shared channel (PUSCH, Physical Uplink Shared
  • DCI format 1, DCI format 1A, DCI format 1B, DCI format 1C, DCI format ID are used in different modes of PDSCH codeword scheduling;
  • DCI format 2 DCI format 2A, DCI format 2B is used for different modes of space division multiplexing;
  • DCI format 3 DCI format 3A is used for physical uplink control channel (PUCCH, Physical Uplink)
  • Control Channel Different modes of power control commands than PUSCH.
  • the physical resources of the physical downlink control channel PDCCH are transmitted in units of Control Channel Elements (CCEs).
  • CCEs Control Channel Elements
  • the size of one CCE is 9 Resource Element Groups (REGs), that is, 36 Resource Elements.
  • RAGs Resource Element Groups
  • One PDCCH may occupy 1, 2, 4 or 8 CCEs.
  • a tree-like aggregation (Aggregation) is adopted, that is, a PDCCH occupying one CCE can start from an arbitrary CCE position; a PDCCH occupying two CCEs from an even CCE The position starts; the PDCCH occupying 4 CCEs starts from the CCE position which is an integer multiple of 4; the PDCCH occupying 8 CCEs starts from the CCE position which is an integral multiple of 8.
  • Each Aggregation level defines a search space, including a common search space and a User-specific (UE)-specific search space.
  • the number of CCEs in the entire search space is determined by the number of OFDM symbols and the number of groups of PHICHs occupied by the control region indicated by the PCFICH in each downlink subframe.
  • the UE blindly detects all possible PDCCH code rates in the search space according to the DCI format of the transmission mode.
  • the control domain carrying the PDCCH is composed of a set of CEEs numbered 0 to ⁇ ( ⁇ _ 1 .
  • the UE should be in each non-DRX (non-discontinuous reception)
  • the subframe detects a group of candidate PDCCHs to obtain control information, and the detection refers to decoding the PDCCHs in the group according to all DCI formats to be detected.
  • the candidate PDCCH (PDCCH candidate) to be detected is defined in a search space manner, and is aggregated. Aggregation level e i 1 ' 2 ' 4 ' , search space "by a group of candidates Select the PDCCH (PDCCH candidate) definition.
  • the UE should detect one common search space with an aggregation level of 4 and P 8, and one UE-specific search space with an aggregation level of 1 2 4 8 , and the common search space and the UE-specific search space may overlap.
  • the specific number of detections and the corresponding search space are shown in Table 1: Table 1
  • DCI format 1 A single antenna port, port 0 mode 1 specific
  • DCI format 1 C-RNTI defined UE specific single antenna port, port 0
  • DCI format 2A C-RNTI defined UE specific
  • DCI format 1 A number is 1, with single antenna port, mode 7 specific
  • DCI format 1 C-RNTI defined UE specific single antenna port; port 5 if PBCH antenna port
  • DCI format 1 A number is 1, with a single antenna port, specific
  • DCI format 2B C-RNTI defined UE specific
  • DCI format 1 A number is 1, with a single antenna port, specific
  • LTE-Advanced Since the LTE-Advanced network needs to be able to access LTE users, its operating band needs to cover the current LTE frequency band. There is no allocated 100 MHz spectrum bandwidth allocated in this frequency band, so LTE-Advanced needs to be solved.
  • a direct technique is to aggregate several component carriers (Distributed Carriers) distributed over different frequency bands using Carrier Aggregation technology to form a 100 MHz bandwidth that can be used by LTE-Advanced. That is, for the aggregated spectrum, it is divided into n component carrier frequencies (spectrums), and the spectrum in each component carrier frequency (spectrum) is continuous.
  • the present invention provides a method for detecting downlink control channel information, a user equipment, and a base station, to at least solve the problem that the original physical downlink control channel PDCCH resource is insufficient due to the increased demand for user access.
  • a method for detecting a downlink control channel including:
  • the UE detects the downlink control channel of the UE on the first search space and the second search space, where the first search space and the second search space are resources for the base station to send downlink control channel information.
  • the first search space is distributed in one subframe or one time slot or one time-frequency position; the second search space is distributed in another subframe or another time slot or another time-frequency position, where The time frequency at which the search space and the second search space are located may overlap.
  • the first search space and the second search space are both user-specific search spaces.
  • the UE detects an uplink scheduling grant UL grant of the downlink control channel on the first search space, and the UE detects a downlink scheduling grant DL grant of the downlink control channel in the second search space; or the UE searches for the first search space and the second search space.
  • the uplink scheduling permission and the downlink scheduling permission are detected on the space.
  • the downlink control information format configured on the first search space is different from the downlink control information format configured on the second search space.
  • detecting, by the UE, the downlink control channel of the UE on the first search space and the second search space includes:
  • the UE detects the UL grant carried by the DL grant and the downlink control information format DCI format 0 in the first search space, and detects all UL grants except the UL grant carried by the DCI format 0 in the second search space.
  • the UE detecting the downlink control channel of the UE on the first search space and the second search space comprises: the UE detecting the UL grant and the DL grant carried by the DCI format 1A on the second search space, and detecting on the first search space All DL grants except the DL grant carried by DCI format 1A.
  • the detecting, by the UE, the downlink control channel of the UE on the first search space and the second search space comprises: the UE detecting the DCI format 1A and the DCI format 0 on the public search space, and detecting, in addition to the DCI format 1A, on the first search space.
  • the other DL Grant detects other UL Grants other than DCI format 0 on the second search space, where the public search space is a search space that all UEs need to detect.
  • the method before detecting the downlink control channel of the UE on the first search space and the second search space, the method further includes: the base station transmitting downlink control channel information to the UE in the first search space and/or the second search space.
  • the method further includes: the base station combining the downlink control information format used to carry the downlink control channel information.
  • detecting, by the UE, the downlink control channel on the first search space and/or the second search space comprises: the UE adopting a candidate PDCCH number configuration of ⁇ a, b, c, for PDCCH detection, where a+b+c+ d is less than or equal to 8.
  • the UE performs PDCCH check using the candidate PDCCH number configuration of p, 3, 1, 1 ⁇
  • detecting, by the UE, the downlink control channel on the first search space and/or the second search space includes: the UE adopts a candidate PDCCH quantity configuration of ⁇ a, b, c, in the first search space or the second search space.
  • PDCCH detection is performed, and PDCCH detection is performed by using a candidate PDCCH number configuration of ⁇ 6, 6, 2, 2 ⁇ in another search space; or the UE adopts ⁇ a, b when detecting DCI format 1A and DCI format O
  • the number of candidate PDCCHs is configured to perform PDCCH detection.
  • the candidate PDCCH number configuration of ⁇ 6, 6, 2, 2 ⁇ is used for PDCCH detection; Or, when the UE detects the DCI format other than the DCI formats 0 and 1A, the PDCCH detection is performed by using the candidate PDCCH number configuration of ⁇ a, b, c, d ⁇ , and when the DCI format1A and the DCI format O are detected, the ⁇ The number of candidate PDCCHs of 6, 6, 2, 2 ⁇ is configured to perform PDCCH detection.
  • detecting, by the UE, the downlink control channel on the first search space and/or the second search space includes: the UE performs PDCCH detection by using an aggregation level configuration of ⁇ e, where e and f are positive integers.
  • the detecting, by the UE, the downlink control channel on the first search space and/or the second search space comprises: performing, by using the aggregation level configuration of ⁇ e, the PDCCH detection by the UE in the first search space or the second search space, In another search space, the aggregation level configuration of ⁇ 1, 2, 4, 8 ⁇ is used for PDCCH detection; or when the UE detects DCI format 1A and DCI format 0, the aggregation level configuration of ⁇ e, f ⁇ is used. Perform PDCCH detection.
  • a user equipment UE including: a detecting module, configured to detect a downlink control channel of a UE on a first search space and a second search space, where the first search space and the second The search space is a resource for the base station to transmit downlink control channel information.
  • the detecting module comprises: a first detecting module, configured to perform PDCCH detection by using a candidate PDCCH number configuration of ⁇ a, b, c, wherein a+b+c+d is less than or equal to 8.
  • the detecting module comprises: a second detecting module, configured to perform PDCCH detection by using an aggregation level configuration of ⁇ e, f ⁇ , where e and f respectively belong to any one of the set ⁇ 1, 2, 4, 8 ⁇ .
  • a base station including: a sending module, configured to send downlink control channel information to a UE in a first search space and a second search space, where the first search space and the second search The space is a resource for the base station to send downlink control channel information.
  • the sending module includes: a first sending sub-module, configured to send a DL grant and a UL grant carried in a downlink control information format DCI format 0 on the first search space, and send the DCI in the second search space except DCI format 0 All UL grants except the UL grant.
  • the sending module includes: a second sending submodule, configured to send the UL grant and the DL grant carried by the DCI format 1A in the second search space, and send the DL grant carried in the first search space except the DCI format 1A All DL grants.
  • the base station further includes: a merging module, configured to combine a downlink control information format for carrying downlink control channel information.
  • FIG. 1 is a frame structure of an FDD mode according to the related art
  • FIG. 2 is a frame structure of a TDD mode according to the related art
  • FIG. 3 is a flow of transmitting and detecting downlink control channel information according to Embodiment 1 of the present invention
  • 4 is a flow chart of transmitting and detecting downlink control channel information according to Embodiment 2 of the present invention
  • FIG. 5 is a block diagram showing a structure of a UE module according to an embodiment of the present invention
  • FIG. 6 is a base station module structure according to an embodiment of the present invention; block diagram. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • FIG. 3 is a flowchart of sending and detecting downlink control channel information according to the first embodiment of the present invention.
  • the method includes the following steps: Step S302: The base station sends downlink control channel information to the UE in two search spaces.
  • Step S304 the UE detects downlink control channel information sent by the base station on two search spaces.
  • the base station sends the downlink control channel information to the UE in the two search spaces, and opens up a new PDCCH resource, thereby solving the original physical downlink control channel PDCCH resource due to increased user access requirements. Insufficient problems, in turn, have the effect of increasing system capacity and reducing interference.
  • the two search spaces correspond to two subframes or two slots or two different time-frequency domain locations, where the time-frequency locations of the two search spaces may overlap.
  • the two search spaces are user-specific search spaces, respectively corresponding to uplink scheduling grant (UL grant) and downlink scheduling grant (DL grant) of downlink control channel information; or uplink and downlink scheduling are allowed in two user-specific searches. It can be sent in space.
  • the sending and detecting of the downlink control channel information may be performed in one or more of the following manners:
  • the base station ensures that the number of detections does not increase by configuring different downlink control information formats in different search spaces.
  • the base station ensures that the number of detections does not increase by reducing the number of candidate PDCCHs.
  • the base station ensures that the number of detections does not increase by reducing the aggregation level.
  • the base station ensures that the number of detections does not increase by combining the format of the downlink control information format.
  • the details are as follows: In the first mode, the DL grant and the downlink control information format (DCI format) 0 are transmitted and received on the first user-specific search space, and are transmitted and received on the second user-specific search space. All UL grants except the UL grant carried by DCI format 0. Alternatively, the DL grant carried by the UL grant and the DCI format 1A is sent and received on the second user-specific search space, and all but the DL grant carried by the DCI format 1A are sent and received on the first user-specific search space. DL grant.
  • DCI format downlink control information format
  • the UE detects DCI format 1A and DCI format 0 on the public search space, detects other DL Grants other than DCI format 1A on the first search space, and detects other than DCI format 0 on the second search space.
  • the UL Grant where the public search space is a search space that all UEs need to detect.
  • Manner 2 in one of the user-specific search spaces, or when detecting DCI format 1A and DCI format 0, or when detecting DCI formats other than DCI format 0 and 1A, use ⁇ a, b,
  • the number of candidate PDCCHs of c, d ⁇ is configured to perform PDCCH detection; the values of a, b, c, and d satisfy: a+b+c+d is less than or equal to 8, and the preferred value is ⁇ 3, 3, 1, 1 ⁇ .
  • the UL grant and the DL grant carried by the DCI format 0 are sent and received on the first user-specific search space, and all but the UL grant carried by the DCI format 0 are sent and received on the second user-specific search space.
  • the PDCCH is configured according to the number of candidate PDCCHs of ⁇ a, b, c, in the first and second user-specific search spaces. Detection, other DCI formats perform PDCCH detection according to the number of candidate PDCCHs of ⁇ 6, 6, 2, 2 ⁇ .
  • the DL grant carried by the UL grant and the DCI format 1A is sent and received on the second user-specific search space.
  • the first user-specific search space corresponds to all DL grants except the DL grant carried by the DCI format 1A.
  • the PDCCH detection is performed according to the candidate PDCCH number configuration of ⁇ a, b, c, in the first and second user-specific search spaces, and other DCIs are performed.
  • the format performs PDCCH detection according to the candidate PDCCH number configuration of ⁇ 6, 6, 2, 2 ⁇ .
  • the first and second user-specific search spaces are used interchangeably.
  • the values of a, b, c, and d satisfy: a+b+c+d is less than or equal to 8, and the preferred value is p, 3, 1, 1 ⁇ .
  • Mode 4 In one of the user-specific search spaces, or when detecting DCI format 1A and DCI format 0, or when DCI format other than DCI format 0 and 1A is detected, the UE adopts ⁇ e, f ⁇ Aggregation level configuration for PDCCH detection, where ⁇ e, f ⁇ takes values in ⁇ 1,4 ⁇ , ⁇ 1,8 ⁇ , ⁇ 2,4 ⁇ , ⁇ 2,8 ⁇ , and ⁇ 4,8 ⁇ One or more.
  • the DL grant carried by the UL grant and the DCI format 0 is sent and received on the first user-specific search space, and all but the UL grant carried by the DCI format 0 are sent and received on the second user-specific search space.
  • PDCCH detection is performed according to the aggregation level configuration of ⁇ e, in the first and second user-specific search spaces, and other DCI formats are used.
  • PDCCH detection according to the aggregation level configuration of ⁇ 1, 2, 4, 8 ⁇ ; sending and receiving the UL grant and the DL grant carried by the DCI format 1A on the second user-specific search space, the first user-specific search The space corresponds to all DL grants except the DL grant carried by DCI format 1A.
  • the PDCCH detection is performed according to the aggregation level configuration of ⁇ e, f ⁇ in the first and second user-specific search spaces, where ⁇ e, f
  • the value of ⁇ is ⁇ 1,4 ⁇ , ⁇ 1,8 ⁇ , One or more of ⁇ 2, 4 ⁇ ⁇ 2, 8 ⁇ and ⁇ 4, 8 ⁇ , other DCI formats perform PDCCH detection according to the aggregation level configuration of ⁇ 1, 2, 4, 8 ⁇ .
  • the first and second user-specific search spaces are used interchangeably.
  • Manner 6 Perform a merge operation on the DCI format carrying the UL grant, such as combining DCI format 0 and DCI format 4.
  • a corresponding 0 bit is added to the DCI format with a small load, so that the load is consistent with the size of the DCI format with a large load.
  • the n-bit is used to distinguish the DCI format before the merge.
  • the DCI format carrying the DL grant is merged, such as DCI format 1A and DCI format 2C.
  • a corresponding 0 bit is added to the DCI format with a small load, so that the load is consistent with the size of the DCI format with a large load.
  • the n-bit is used to distinguish the DCI format before the merge; or, the DCI format carrying the UL grant and the DL grant is merged at the same time.
  • the base station ensures that the number of detections does not increase compared with the prior art by configuring different downlink control information formats on different search spaces.
  • the method includes the following steps: Step S402: The base station sends downlink control channel information to the UE in two user-specific search spaces, including uplink scheduling permission and downlink scheduling permission.
  • the two user-specific search spaces are distributed in two sub-frames or two time slots or two different time-frequency positions, wherein the time-frequency positions of the two search spaces can overlap.
  • the first user-specific search space corresponds to the UL grant carried by the DL grant and the downlink control information format (DCI format) 0, and the second user-specific search space corresponds to all the UL grants carried by the DCI format 0.
  • DCI format downlink control information format
  • the second user-specific search space corresponds to the DL grant carried by the UL grant and the DCI format 1 A
  • the first user-specific search space corresponds to all DL grants except the DL grant carried by the DCI format 1A.
  • the UE detects DCI format 1A and DCI format 0 on the public search space, detects other DL Grants other than DCI format 1A on the first search space, and detects other than DCI format 0 on the second search space.
  • the UL Grant where the public search space is a search space that all UEs need to detect.
  • Step S404 the UE performs PDCCH check on the first and second user-specific search spaces according to the foregoing configuration.
  • the first and second user-specific search spaces are used interchangeably.
  • the UE monitors the total number of times the PDCCH needs to be detected on the first and second user-specific search spaces, and does not increase compared with the R10 version of LTE-Advance.
  • the base station ensures that the number of detections does not increase compared with the prior art by reducing the number of candidate PDCCHs.
  • the base station sends downlink control channel information to the UE in two user-specific search spaces, including uplink scheduling permission and downlink scheduling permission.
  • the two user-specific search spaces are distributed in two sub-frames or two time slots or two different time-frequency positions, wherein the time-frequency positions of the two search spaces can overlap.
  • the UE detects the DCI format carrying the UL grant on the first user-specific search space, and detects the DCI format carrying the DL grant on the second user-specific search space; or the UE detects on the second user-specific search space.
  • the DCI format carrying the UL grant detects the DCI format carrying the DL grant on the first user-specific search space; or detects the DCI format and the DL grant carrying the UL grant on both the first and second user-specific search spaces.
  • DCI format. On a user-specific search space the UE will no longer perform PDCCH detection according to the candidate PDCCH number configuration of ⁇ 6, 6, 2, 2 ⁇ , but adopt the configuration of ⁇ a, b, c, .
  • the UE performs PDCCH detection according to the candidate PDCCH number configuration of ⁇ 6, 6, 2, 2 ⁇ ; or, in a user-specific search space, when detecting DCI format 1
  • a PDCCH detection is performed according to the candidate PDCCH number configuration of ⁇ a, b, c, and at the same time, in another user-specific search space, when detecting DCI format 0, according to ⁇ a, b, c, d ⁇
  • the number of candidate PDCCHs is configured to perform PDCCH detection, and the remaining DCI formats are configured according to the number of candidate PDCCHs of ⁇ 6, 6, 2, 2 ⁇ for PDCCH detection; or, in a user-specific search space, DCI format 1A and DCI are detected.
  • PDCCH detection is performed according to the number of candidate PDCCHs of ⁇ a, b, c, and in another user-specific search space, when detecting DCI format 1A and DCI format 0, according to ⁇ a, b
  • the number of candidate PDCCHs of c, d ⁇ is configured to perform PDCCH detection, and the remaining DCI formats are configured according to the number of candidate PDCCHs of ⁇ 6, 6, 2, 2 ⁇ for PDCCH detection;
  • PDCCH detection is performed according to the candidate PDCCH number configuration of ⁇ a, b, c, d ⁇ , and at the same time, in another
  • PDCCH detection is performed according to the number of candidate PDCCHs of ⁇ a, b, c, d ⁇
  • the remaining DCI formats are according to ⁇ 6, 6,
  • the UE monitors the total number of times the PDCCH needs to be detected on the first and second user-specific search spaces, and does not increase compared with the R10 version of LTE-Advance.
  • the base station ensures that the number of detections is not increased compared with the prior art by configuring different downlink control information formats on different search spaces and reducing the number of candidate PDCCHs.
  • the base station sends downlink control channel information to the UE in two user-specific search spaces, including uplink scheduling permission and downlink scheduling permission.
  • the two user-specific search spaces are distributed in two sub-frames or two time slots or two different time-frequency positions, wherein the time-frequency positions of the two search spaces can overlap.
  • the first user-specific search space corresponds to the DL grant and the UL grant
  • the second user-specific search space corresponds to all UL grants except the UL grant carried by the DCI format 0.
  • all UL grants except the UL grant carried by the DCI format 0 perform PDCCH detection according to the number of candidate PDCCHs of ⁇ a, b, c, in the first and second user-specific search spaces, and other DCI formats.
  • the PDCCH detection is performed according to the candidate PDCCH number configuration of ⁇ a, b, c, and the other DCI formats are configured according to the candidate PDCCH number configuration of ⁇ 6, 6, 2, 2 ⁇ for PDCCH detection.
  • the first and second user-specific search spaces are used interchangeably.
  • the values of a, b, c, and d satisfy: a+b+c+d is less than or equal to 8, and the preferred value is ⁇ 3, 3, 1, 1 ⁇ 0 According to the above configuration, the UE is dedicated to the first and second users.
  • the base station ensures that the number of detections does not increase compared with the prior art by reducing the aggregation level.
  • the base station sends downlink control channel information to the UE in two user-specific search spaces, including uplink scheduling permission and downlink scheduling permission.
  • the two user-specific search spaces are distributed in two subframes or two slots or two different time-frequency positions, wherein the time-frequency positions of the two search spaces may overlap.
  • the UE detects the DCI format carrying the UL grant on the first user-specific search space, and detects the DCI format carrying the DL grant on the second user-specific search space; or the UE is in the second user-specific search space.
  • the DCI format carrying the UL grant is detected, and the DCI format carrying the DL grant is detected on the first user-specific search space; or the DCI format and the DL carrying the UL grant are detected on the first and second user-specific search spaces.
  • Grant's DCI format On a user-specific search space, the aggregation level configuration of ⁇ e, is used for PDCCH detection. On another user-specific search space, the UE performs PDCCH check according to the aggregation level configuration of ⁇ 1, 2, 4, 8 ⁇ .
  • the PDCCH detection when detecting the DCI format 1A, the PDCCH detection is performed by using the aggregation level configuration of ⁇ e, f ⁇ , and at the same time, the DCI format is detected on another user-specific search space.
  • the PDCCH detection is performed according to the aggregation level configuration of ⁇ e, and the remaining DCI formats are configured according to the aggregation level of ⁇ 1, 2, 4, 8 ⁇ for PDCCH detection.
  • PDCCH detection when detecting DCI format 1A and DCI format 0, PDCCH detection is performed using an aggregation level configuration of ⁇ e, and in another user-specific search space, DCI format is detected.
  • PDCCH detection is performed according to the aggregation level configuration of ⁇ e, f ⁇ , and the remaining DCI formats are configured according to the number of candidate PDCCHs of ⁇ 6, 6, 2, 2 ⁇ for PDCCH detection.
  • the aggregation level configuration of ⁇ e is used for PDCCH detection, and at the same time, in another user-specific search space,
  • the PDCCH detection is performed according to the aggregation level configuration of ⁇ e, and the remaining DCI formats are configured according to the aggregation level configuration of ⁇ 1, 2, 4, 8 ⁇ for PDCCH detection.
  • f ⁇ takes one or more of ⁇ 1,4 ⁇ , ⁇ 1,8 ⁇ , ⁇ 2,4 ⁇ ⁇ 2,8 ⁇ and ⁇ 4,8 ⁇ .
  • the UE monitors the total number of times the PDCCH needs to be detected on the first and second user-specific search spaces, which is not increased compared with the R10 version of LTE-Advance.
  • the base station ensures that the number of detections does not increase compared with the prior art by configuring different downlink control information formats on different search spaces and reducing the aggregation level.
  • the base station sends downlink control channel information to the UE in two user-specific search spaces, including uplink scheduling permission and downlink scheduling permission.
  • the two user-specific search spaces are distributed in two sub-frames or two time slots or two different time-frequency positions, wherein the time-frequency positions of the two search spaces can overlap.
  • the first user-specific search space corresponds to the DL grant and the UL grant
  • the second user-specific search space corresponds to all UL grants except the UL grant carried by the DCI format 0.
  • all UL grants except the UL grant carried by the DCI format 0 perform PDCCH detection according to the aggregation level configuration of ⁇ e, in the first and second user-specific search spaces, and other DCI formats are according to ⁇ 1, 2
  • the aggregation level of 4, 8 ⁇ is configured to perform PDCCH detection; or, the second user-specific search space corresponds to the UL grant and the DL grant, and the first user-specific search space corresponds to the DL grant carried by the DCI format 1A. All DL grants except. And, except for the DL grant carried by the DCI format 1A, all the DL grants are in the first and second user-specific search spaces.
  • the PDCCH detection is performed according to the aggregation level configuration of ⁇ e, and the other DCI formats are configured according to the aggregation level of ⁇ 1, 2, 4, 8 ⁇ for PDCCH detection.
  • the first and second user-specific search spaces are used interchangeably.
  • ⁇ e takes one or more of ⁇ 1,4 ⁇ , ⁇ 1,8 ⁇ , ⁇ 2,4 ⁇ , ⁇ 2,8 ⁇ and ⁇ 4,8 ⁇ .
  • the UE monitors the total number of times the PDCCH needs to be detected on the first and second user-specific search spaces, and does not increase compared with the R10 version of LTE-Advance.
  • the base station ensures that the number of detections does not increase by combining the methods of the downlink control information format.
  • the base station sends downlink control channel information to the UE in two user-specific search spaces, including uplink scheduling permission and downlink scheduling permission.
  • the two user-specific search spaces are distributed in two subframes or two slots or two different time-frequency positions, wherein the time-frequency positions of the two search spaces may overlap. For example: the UE detects the DCI format carrying the UL grant on the first user-specific search space, and detects the DCI format carrying the DL grant on the second user-specific search space; or the UE is in the second user-specific search space.
  • the DCI format carrying the UL grant is detected, and the DCI format carrying the DL grant is detected on the first user-specific search space; or the DCI format and the DL carrying the UL grant are detected on the first and second user-specific search spaces.
  • Grant's DCI format Perform a merge operation on the DCI format carrying the UL grant, such as combining DCI format 0 and DCI format 4. Specifically, a corresponding 0 bit is added to the DCI format with a small load, so that the load is consistent with the size of the DCI format with a large load. And, the n-bit is used to distinguish the DCI format before the merge; or the DCI format carrying the DL grant is merged, for example, the DCI format 1A and the DCI format 2C are combined.
  • FIG. 5 is a structural block diagram of a UE module according to an embodiment of the present invention. As shown in FIG.
  • the UE includes: a detecting module 30, configured to detect downlink control channel information sent by the base station on the first search space and the second search space.
  • the detecting module 30 may further include: a first detecting module 31, configured to perform PDCCH detection by using a candidate PDCCH number configuration of ⁇ a, b, c, where a+b+c+d is less than or equal to 8.
  • the second detecting module 32 is configured to perform PDCCH detection by using an aggregation level configuration of ⁇ e, where ⁇ e, the values are ⁇ 1, 4 ⁇ , ⁇ 1, 8 ⁇ , ⁇ 2, 4 ⁇ , ⁇ 2, One or more of 8 ⁇ and ⁇ 4,8 ⁇ .
  • FIG. 6 is a structural block diagram of a base station module according to an embodiment of the present invention.
  • the base station includes a sending module 10, and the sending module 10 is configured to send downlink control channel information to the UE in the first search space and the second search space.
  • the sending module 10 may further include: a first sending submodule 11 and a second sending submodule 12.
  • the first sending sub-module 11 is configured to send the DL grant and the UL grant carried by the downlink control information format DCI format 0 in the first search space, and send all ULs except the UL grant carried by the DCI format 0 in the second search space.
  • the second sending sub-module 12 is configured to send the UL grant and the DL grant carried by the DCI format 1 A in the second search space, and send all DL grants except the DL grant carried by the DCI format 1A in the first search space.
  • the base station may further include: a merging module 20, configured to combine a downlink control information format for carrying downlink control channel information.
  • the base station sends downlink control channel information to the UE in two search spaces, and opens up a new PDCCH resource, thereby solving the problem of increased user access and the original physical downlink. The problem that the control channel PDCCH resources are insufficient, thereby achieving the effect of increasing system capacity and reducing interference.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种下行控制信道的检测方法、用户设备及基站。该检测方法包括:UE在第一搜索空间和第二搜索空间上检测所述UE的下行控制信道,其中,所述第一搜索空间和所述第二搜索空间为基站发送下行控制信道信息的资源。在本发明中,通过在两个搜索空间上发送下行控制信道信息,从而开辟了一个新的PDCCH资源,解决了由于用户接入的需求增多,原有的物理下行控制信道PDCCH资源不足的问题,进而达到了增加系统容量、降低干扰的效果。

Description

下行控制信道的检测方法、 用户设备及基站 技术领域 本发明涉及通信领域, 具体而言, 涉及一种下行控制信道的检测方法、 用户设备 及基站。 背景技术 长期演进 (LTE, Long Term Evolution) 系统中的无线帧 (radio frame) 包括频分 双工(FDD, Frequency Division Duplex)模式和时分双工 (TDD, Time Division Duplex) 模式的帧结构。 FDD模式的帧结构, 如图 1所示, 一个 10毫秒 (ms) 的无线帧由二 十个长度为 0.5ms, 编号 0~19的时隙 (slot) 组成, 时隙 2i和 2i+l组成长度为 1ms 的子帧 (subframe) i。 TDD模式的帧结构, 如图 2所示, 一个 10ms的无线帧由两个 长为 5ms的半帧 (half frame) 组成, 一个半帧包括 5个长度为 1ms的子帧, 子帧 i定 义为 2个长为 0.5ms的时隙 2i和 2i+l。在上述两种帧结构里,对于标准循环前缀 (Normal CP, Normal Cyclic Prefix), 一个时隙包含 7个长度为 66.7微秒(us) 的符号, 其中第 一个符号的 CP长度为 5.21us, 其余 6个符号的长度为 4.69 us; 对于扩展循环前缀 (Extended CP, Extended Cyclic Prefix), 一个时隙包含 6个符号, 所有符号的 CP长 度均为 16.67 us。
LTE的版本号对应于 R8 (Release 8),其增加版本对应的版本号为 R9 (Release 9), 而对于今后的 LTE-Advance, 其版本号就为 R10 (Release 10)。 LTE中定义了如下三 种下行物理控制信道: 物理下行控制格式指示信道(PCFICH, Physical Control Format Indicator Channel);物理混合自动重传请求指示信道(PHICH, Physical Hybrid Automatic Retransmission Request Indicator Channel ); 物理下行控制信道 ( PDCCH, Physical Downlink Control Channel )。 其中, PCFICH承载的信息用于指示在一个子帧里传输 PDCCH的正交频分复用 ( OFDM, Orthogonal Frequency Division Multiplexing) 符号的数目, 在子帧的第一个 OFDM符号上发送, 所在频率位置由系统下行带宽与小区标识 (ID, Identity) 确定。
PHICH用于承载上行传输数据的肯定应答 /否定应答 (ACK/NACK) 反馈信息。 PHICH的数目、时频位置可由 PHICH所在的下行载波的物理广播信道 (PBCH, Physical Broadcast Channel) 中的系统消息和小区 ID确定。 PDCCH用于承载下行控制信息(DCI, Downlink Control Information), 包括: 上、 下行调度信息, 以及上行功率控制信息。 DCI 的格式 (DCI format) 分为以下几种: DCI format 0、 DCI format 1、 DCI format 1 A、 DCI format 1B、 DCI format 1C、 DCI format 1D、 DCI format 2、 DCI format 2A、 DCI format 3和 DCI format 3 A等; 其中: DCI format 0 用于指示物理上行共享信道 (PUSCH , Physical Uplink Shared
Channel) 的调度;
DCI format 1、 DCI format 1A、 DCI format 1B、 DCI format 1C、 DCI format ID用 于一个 PDSCH码字调度的不同模式;
DCI format 2、 DCI format 2A、 DCI format 2B用于空分复用的不同模式; DCI format 3、 DCI format 3A用于物理上行控制信道 (PUCCH, Physical Uplink
Control Channel) 和 PUSCH的功率控制指令的不同模式。 物理下行控制信道 PDCCH 传输的物理资源以控制信道元素 (CCE, Control Channel Element)为单位,一个 CCE的大小为 9个资源元素组(REG, Resource Element Group ) 即 36个资源元素 (Resource Element), —个 PDCCH可能占用 1、 2、 4或者 8个 CCE。 对于占用 1、 2、 4、 8个 CCE的这四种 PDCCH大小, 采用树状的聚合 (Aggregration), 即占用 1个 CCE的 PDCCH可以从任意 CCE位置开始; 占用 2个 CCE的 PDCCH从偶数 CCE位置开始;占用 4个 CCE的 PDCCH从 4的整数倍的 CCE 位置开始; 占用 8个 CCE的 PDCCH从 8的整数倍的 CCE位置开始。 每个聚合级别 (Aggregration level) 定义一个搜索空间 (Search space), 包括公共 ( common) 的搜索空间和用户设备 (UE, User Equipment) 专有 (UE- Specific) 的搜 索空间。整个搜索空间的 CCE数目由每个下行子帧中 PCFICH指示的控制区所占用的 OFDM符号数和 PHICH的组数确定。 UE在搜索空间内按所处传输模式的 DCI format 对所有的可能的 PDCCH码率进行盲检测。 在第 k个子帧中, 承载 PDCCH的控制域由一组编号为 0 至^(^ _ 1的 ^ee^个 CCE构成。 UE应当在每一个 non-DRX ( non- Discontinuous Reception, 非不连续接收) 子帧检测一组候选的 PDCCH以获取控制信息,检测是指按照所有待检测的 DCI format 对组内的 PDCCH进行解码。 需要检测的候选 PDCCH (PDCCH candidate) 以搜索空 间的方式定义, 对聚合等级 (aggregation level ) e i1' 2' 4' , 搜索空间 "由一组候 选 PDCCH (PDCCH candidate)定义。搜索空间 中候选 PDCCH (PDCCH candidate) m所对应的 CCE由下式定义:
Figure imgf000004_0001
其中, ' = (V..,i-l m = 0,..,M(L)-l , Mw为搜索空间 中待检的候选 PDCCH
(PDCCH candidate) 的个数。 对公共搜索空间 ( common search space ), ¾ = 0, 取 4禾口 8。 对 UE专有搜索空间 (UE-specific search space ), 取 1 2, 4 8
Yk ={A-Yk_x)moAD ^ 其中 = "RNn≠0, = 39827, D = 65537, = L"s/2」, "S为一个无线帧中的时 隙号 为相应的 RNTI (Radio Network Temporary Identifier)
UE应检测 aggregation level 为 4 禾 P 8的各一个公共搜索空间, 以及 aggregation level 为 1 2 4 8的各一个 UE专有搜索空间, 公共搜索空间 和 UE专有搜索空间 可以重叠。 具体的检测次数和对应的搜索空间如表 1: 表 1
Figure imgf000004_0002
UE 通过高层信令半静态 (semi-statically) 的被设置为基于以下的一种传输模式 (transmission mode), 按照用户设备专有 (UE-Specific) 的搜索空间的 PDCCH的指 示来接收 PDSCH数据传输: 模式 1: 单天线端口; 端口 0 (Single-antenna port; portO) 模式 2: 发射分集 (Transmit diversity) 模式 3 : 开环空间复用 (Open-loop spatial multiplexing) 模式 4: 闭环空间复用 (Closed-loop spatial multiplexing) 模式 5: 多用户多输入多输出 (Multi-user MIMO) 模式 6: 闭环 Rank=l预编码 (Closed-loop Rank=l precoding) 模式 7: 单天线端口; 端口 5 ( Single-antenna port; port 5 ) 如果 UE被高层设置为用小区无线网络临时标识 (C-RNTI, Cell Radio Network Temporary Identifier) 加扰的循环冗余校验 (CRC, Cyclical Redundancy Check) 来进 行 PDCCH解码,则 UE应当按照表 2中定义的相应组合来解码 PDCCH和所有相关的 PDSCH: 表 2
UE下行
PDCCH相应 PDSCH传 传输模 DCI格式 搜索空间
输方案 式
Common禾 P C-RNTI定 义 的 UE
DCI format 1 A 单天线端口, 端口 0 模式 1 specific
DCI format 1 C-RNTI定义的 UE specific 单天线端口, 端口 0
Common禾 P C-RNTI定 义 的 UE
DCI format 1 A 传输分集
模式 2 specific
DCI format 1 C-RNTI定义的 UE specific 传输分集
Common禾 P C-RNTI定 义 的 UE
DCI format 1 A 传输分集
specific
模式 3
开环空间复用或传输分
DCI format 2A C-RNTI定义的 UE specific
Common禾 P C-RNTI定 义 的 UE
DCI format 1 A 传输分集
specific
模式 4
闭环空间复用或传输分
DCI format 2 C-RNTI定义的 UE specific
Common禾 P C-RNTI定 义 的 UE
DCI format 1 A 传输分集
模式 5 specific
DCI format ID C-RNTI定义的 UE specific 多用户多输入多输出
Common禾 P C-RNTI定 义 的 UE
DCI format 1 A 传输分集
specific
模式 6
闭环 Rank=l 预编码
DCI format IB C-RNTI定义的 UE specific (Closed-loop Rank=l precoding) 如果 PBCH天线端口的
Common禾 P C-RNTI定 义 的 UE
DCI format 1 A 数目为 1,用单天线端口, 模式 7 specific
端口 0, 否则传输分集
DCI format 1 C-RNTI定义的 UE specific 单天线端口; 端口 5 如果 PBCH天线端口的
Common禾 P C-RNTI定 义 的 UE
DCI format 1 A 数目为 1,用单天线端口, specific
端口 0, 否则传输分集 模式 8 双层传输 ( dual-layer transmission),端□ 7禾口端
DCI format 2B C-RNTI定义的 UE specific
口 8 (port 7 and 8); 或者 单天线端口,端口 7或者 8 如果 PBCH天线端口的
Common禾 P C-RNTI定 义 的 UE
DCI format 1 A 数目为 1,用单天线端口, specific
端口 0, 否则传输分集 模式 9
最多 8层传输 (up to 8
DCI format 2C C-RNTI定义的 UE specific layer transmission),端口
7-端口 14 由于 LTE-Advanced网络需要能够接入 LTE用户, 所以其操作频带需要覆盖目前 LTE 频带, 在这个频段上已经不存在可分配的连续 100MHz 的频谱带宽了, 所以 LTE-Advanced 需要解决的一个直接技术是将几个分布在不同频段上的连续分量载频 (频谱) (Component Carrier)采用载波聚集 (Carrier Aggregation) 技术聚合起来, 形 成 LTE-Advanced可以使用的 100MHz带宽。 即对于聚集后的频谱, 被划分为 n个分 量载频 (频谱), 每个分量载频 (频谱) 内的频谱是连续的。 在 LTE-Advanced的未来版本 Release 11中, 由于用户接入的需求增多, 原有的物 理下行控制信道 PDCCH 资源将不足以满足新的版本需求。 同时, 在异构网 (Heterogeneous Networks) 的场景下, 由于不同基站类型都有较强的干扰, 宏基站 (Macro eNodeB) 对微基站 (Pico) 的干扰问题和家庭基站 (Home eNodeB) 对宏基 站 (Macro eNodeB) 干扰问题需要得到很好的解决。 发明内容 本发明提供了一种下行控制信道信息的检测方法、 用户设备及基站, 以至少解决 上述由于用户接入的需求增多, 原有的物理下行控制信道 PDCCH资源不足的问题。 根据本发明的一个方面, 提供了一种下行控制信道的检测方法, 包括: 用户设备
UE在第一搜索空间和第二搜索空间上检测 UE的下行控制信道, 其中, 第一搜索空间 和第二搜索空间为基站发送下行控制信道信息的资源。 优选地, 第一搜索空间分布在一个子帧或一个时隙或者一个时频位置上; 第二搜 索空间分布在另一个子帧或另一个时隙或者另一个时频位置上, 其中, 第一搜索空间 和第二搜索空间所在的时频可重叠。 优选地, 第一搜索空间和第二搜索空间均为用户专有搜索空间。 优选地, UE在第一搜索空间上检测下行控制信道的上行调度允许 UL grant, UE 在第二搜索空间上检测下行控制信道的下行调度允许 DL grant; 或者 UE在第一搜索 空间和第二搜索空间上均检测上行调度允许和下行调度允许。 优选地, 第一搜索空间上配置的下行控制信息格式与第二搜索空间上配置的下行 控制信息格式不相同。 优选地, UE在第一搜索空间和第二搜索空间上检测 UE 的下行控制信道包括:
UE在第一搜索空间上检测 DL grant和下行控制信息格式 DCI format 0携带的 UL grant, 以及在第二搜索空间上检测除 DCI format 0携带的 UL grant 以外所有的 UL grant。 优选地, UE在第一搜索空间和第二搜索空间上检测 UE 的下行控制信道包括: UE在第二搜索空间上检测 UL grant和 DCI format 1A携带的 DL grant, 以及在第一搜 索空间上检测除 DCI format 1A携带的 DL grant以外所有的 DL grant。 优选地, UE在第一搜索空间和第二搜索空间上检测 UE 的下行控制信道包括: UE在公有搜索空间上检测 DCI format 1A和 DCI format 0, 在第一搜索空间上检测除 了 DCI format 1A以外其他 DL Grant,在第二搜索空间上检测除了 DCI format 0以外其 他 UL Grant, 其中, 公有搜索空间为所有 UE需检测的搜索空间。 优选地, UE在第一搜索空间和第二搜索空间上检测 UE的下行控制信道之前, 还 包括: 基站在第一搜索空间和 /或第二搜索空间上发送下行控制信道信息给 UE。 优选地, 基站在第一搜索空间和 /或第二搜索空间上发送下行控制信道信息给 UE 之前, 还包括: 基站合并用于携带下行控制信道信息的下行控制信息格式。 优选地, UE在第一搜索空间和 /或第二搜索空间上检测下行控制信道包括: UE采 用 {a, b, c, 的候选 PDCCH数量配置来进行 PDCCH检测, 其中, a+b+c+d小于或 者等于 8。 优选地, UE采用 p, 3, 1, 1 }的候选 PDCCH数量配置来进行 PDCCH检 ij 优选地, UE在第一搜索空间和 /或第二搜索空间上检测下行控制信道包括: UE在 第一搜索空间或第二搜索空间上, 采用 {a, b, c, 的候选 PDCCH数量配置来进行 PDCCH检测, 在另一个搜索空间上, 采用 {6, 6, 2, 2}的候选 PDCCH数量配置来进 行 PDCCH检测; 或者 UE在检测 DCI format 1A和 DCI format O的时候, 采用 {a, b, c, 的候选 PDCCH数量配置来进行 PDCCH检测, 在检测其他除 DCI formatlA和 DCI format O以外其他 DCI format的时候, 采用 {6, 6, 2, 2}的候选 PDCCH数量配置 来进行 PDCCH检测;或者 UE在检测除了 DCI format 0和 1A以外的 DCI format的时 候,采用 {a,b, c, d}的候选 PDCCH数量配置来进行 PDCCH检测,在检测 DCI formatlA 和 DCI format O的时候, 采用 {6, 6, 2, 2}的候选 PDCCH数量配置来进行 PDCCH检 测。 优选地, UE在第一搜索空间和 /或第二搜索空间上检测下行控制信道包括: UE采 用 {e, 的聚合等级配置来进行 PDCCH检测, 其中, e、 f均为正整数。 优选地, UE在第一搜索空间和 /或第二搜索空间上检测下行控制信道包括: UE在 第一搜索空间或第二搜索空间上, 采用 {e, 的聚合等级配置来进行 PDCCH检测, 在 另一个搜索空间上, 采用 { 1, 2, 4, 8}的聚合等级配置来进行 PDCCH检测; 或者 UE 在检测 DCI format 1A和 DCI format 0 的时候, 采用 {e, f}的聚合等级配置来进行 PDCCH检测, 在检测其他除 DCI formatlA和 DCI format 0以外其他 DCI format的时 候, 采用 { 1, 2, 4, 8}的聚合等级配置来进行 PDCCH检测; 或者 UE在检测出了 DCI format 0和 1A以外的 DCI format的时候, 采用 {e, f}的聚合等级配置来进行 PDCCH 检测, 在检测 DCI formatlA和 DCI format O的时候, 采用 { 1, 2, 4, 8}的聚合等级配 置来进行 PDCCH检测。 根据本发明的另一方面, 提供了一种用户设备 UE, 包括: 检测模块, 设置为在第 一搜索空间和第二搜索空间上检测 UE的下行控制信道, 其中, 第一搜索空间和第二 搜索空间为基站发送下行控制信道信息的资源。 优选地, 检测模块包括: 第一检测模块, 设置为采用 {a, b, c, 的候选 PDCCH 数量配置来进行 PDCCH检测, 其中, a+b+c+d小于或者等于 8。 优选地, 检测模块包括: 第二检测模块, 设置为采用 {e, f}的聚合等级配置来进 行 PDCCH检测, 其中 e和 f分别属于集合 { 1, 2, 4, 8}中的任一值。 根据本发明的又一方面, 提供了一种基站, 包括: 发送模块, 设置为在第一搜索 空间和第二搜索空间上发送下行控制信道信息给 UE,其中,第一搜索空间和第二搜索 空间为基站发送下行控制信道信息的资源。 优选地,发送模块包括:第一发送子模块,设置为在第一搜索空间上发送 DL grant 和下行控制信息格式 DCI format 0携带的 UL grant,以及在第二搜索空间上发送除 DCI format 0携带的 UL grant以外所有的 UL grant。 优选地,发送模块包括:第二发送子模块,设置为在第二搜索空间上发送 UL grant 和 DCI format 1A携带的 DL grant, 以及在第一搜索空间上发送除 DCI format 1A携带 的 DL grant以外所有的 DL grant。 优选地, 基站还包括: 合并模块, 设置为合并用于携带下行控制信道信息的下行 控制信息格式。 在本发明中, 通过在两个搜索空间上发送下行控制信道信息, 从而开辟了一个新 的 PDCCH资源, 解决了由于用户接入的需求增多, 原有的物理下行控制信道 PDCCH 资源不足的问题, 进而达到了增加系统容量、 降低干扰的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的 FDD模式的帧结构; 图 2是根据相关技术的 TDD模式的帧结构; 图 3是根据本发明实施例一的下行控制信道信息的发送和检测流程图; 图 4是根据本发明实施例二的下行控制信道信息的发送和检测流程图; 图 5是根据本发明实施例的 UE模块结构框图; 以及 图 6是根据本发明实施例的基站模块结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例一 图 3是根据本发明实施例一的下行控制信道信息的发送和检测流程图, 如图 3所 示, 包括以下步骤: 步骤 S302, 基站在两个搜索空间上发送下行控制信道信息给 UE。 步骤 S304, UE在两个搜索空间上检测基站发送的下行控制信道信息。 在本实施例中,通过基站在两个搜索空间上发送下行控制信道信息给 UE,开辟了 一个新的 PDCCH资源, 从而解决了由于用户接入的需求增多, 原有的物理下行控制 信道 PDCCH资源不足的问题, 进而达到了增加系统容量、 降低干扰的效果。 其中, 两个搜索空间对应于两个子帧或者两个时隙或者两个不同的时频域位置, 其中两个搜索空间的时频位置可以重叠。 其中, 两个搜索空间为用户专有搜索空间, 分别对应于下行控制信道信息的上行 调度允许 (UL grant) 和下行调度允许 (DL grant); 或者上行和下行调度允许在两个 用户专有搜索空间上都可以发送。 其中, 下行控制信道信息的发送和检测, 可采用如下方式中的一种或者几种: 基 站通过在不同的搜索空间上配置不同的下行控制信息格式的方式, 来保证检测次数的 不增加。 基站通过降低候选 PDCCH数量的方式, 来保证检测的次数不增加。 基站通 过降低聚合等级的方式, 来保证检测的次数不增加。 基站通过合并下行控制信息格式 的方式, 来保证检测的次数不增加。 具体如下: 方式一, 在第一个用户专有搜索空间上发送和接收 DL grant和下行控制信息格式 (DCI format) 0携带的 UL grant, 在第二个用户专有搜索空间上发送和接收除 DCI format 0携带的 UL grant以外所有的 UL grant。 或者, 在第二个用户专有搜索空间上发送和接收 UL grant和 DCI format 1A携带 的 DL grant, 在第一个用户专有搜索空间上发送和接收除 DCI format 1A携带的 DL grant以外所有的 DL grant。 或者, UE在公有搜索空间上检测 DCI format 1A和 DCI format 0, 在所述第一搜 索空间上检测除了 DCI format 1A以外其他 DL Grant, 在所述第二搜索空间上检测除 了 DCI format 0以外其他 UL Grant, 其中, 所述公有搜索空间为所有 UE需检测的搜 索空间。 方式二, 在其中的一个用户专有搜索空间上, 或者在检测 DCI format 1A和 DCI format 0的时候, 或者在检测出了 DCI format 0和 1A以外的 DCI format的时候, 采用 {a, b, c, d}的候选 PDCCH数量配置来进行 PDCCH检测; a、 b、 c和 d的取值满足: a+b+c+d小于或者等于 8, 优选值为 {3, 3, 1, 1}。 方式三, 在第一个用户专有搜索空间上发送和接收 DCI format 0携带的 UL grant 和 DL grant,在第二个用户专有搜索空间上发送和接收除 DCI format 0携带的 UL grant 以外所有的 UL grant;并且,对于除 DCI format 0携带的 UL grant以外所有的 UL grant, 在第一和第二用户专有搜索空间上都按照 { a, b, c, 的候选 PDCCH数量配置来进行 PDCCH检测,其他 DCI format按照 {6, 6, 2, 2}的候选 PDCCH数量配置来进行 PDCCH 检测。 在第二个用户专有搜索空间上发送和接收 UL grant和 DCI format 1A携带的 DL grant, 第一个用户专有搜索空间对应于除 DCI format 1A携带的 DL grant以外所有的 DL grant。 并且, 对于除 DCI format 1A携带的 DL grant以外所有的 DL grant, 在第一 和第二用户专有搜索空间上都按照 { a, b, c, 的候选 PDCCH数量配置来进行 PDCCH 检测, 其他 DCI format按照 {6, 6, 2, 2}的候选 PDCCH数量配置来进行 PDCCH检测。 第一和第二用户专有搜索空间可以互换使用。 a、 b、 c和 d的取值满足: a+b+c+d 小于或者等于 8, 优选值为 p, 3, 1, 1 }。 方式四, 在其中一个用户专有搜索空间上, 或者在检测 DCI format 1A和 DCI format 0的时候, 或者在检测出了 DCI format 0和 1A以外的 DCI format的时候, UE 采用 {e, f}的聚合等级配置来进行 PDCCH检测, 其中 {e, f}的取值为 { 1,4}、 { 1,8} , {2,4}、 {2,8}和 {4,8}中的一种或者多种。 方式五, 在第一个用户专有搜索空间上发送和接收 UL grant和 DCI format 0携带 的 DL grant,在第二个用户专有搜索空间上发送和接收除 DCI format 0携带的 UL grant 以外所有的 UL grant;并且,对于除 DCI format 0携带的 UL grant以外所有的 UL grant, 在第一和第二用户专有搜索空间上都按照 {e, 的聚合等级配置来进行 PDCCH检测, 其他 DCI format按照 { 1, 2, 4, 8 }的聚合等级配置来进行 PDCCH检测; 在第二个用户 专有搜索空间上发送和接收 UL grant和 DCI format 1A携带的 DL grant,第一个用户专 有搜索空间对应于除 DCI format 1A携带的 DL grant以外所有的 DL grant。并且,对于 除 DCI format 1A携带的 DL grant以外所有的 DL grant,在第一和第二用户专有搜索空 间上都按照 {e,f}的聚合等级配置来进行 PDCCH检测,其中 {e,f}的取值为 { 1,4}、{ 1,8}、 {2,4} {2,8}和 {4,8}中的一种或者多种, 其他 DCI format按照 { 1, 2, 4, 8 }的聚合等级 配置来进行 PDCCH检测。 第一和第二用户专有搜索空间可以互换使用。 方式六, 对携带 UL grant的 DCI format进行合并操作, 如将 DCI format 0和 DCI format 4进行合并。 具体地, 对负载小的 DCI format添加相应的 0比特, 使得其负载 与负载大的 DCI format大小一致。 并且, 使用 n比特来对合并前的 DCI format进行区 分。 或者, 对携带 DL grant的 DCI format进行合并操作, 如将 DCI format 1A和 DCI format 2C进行合并。 具体地, 对负载小的 DCI format添加相应的 0比特, 使得其负载 与负载大的 DCI format大小一致。 并且, 使用 n比特来对合并前的 DCI format进行区 分; 或者, 同时对携带 UL grant和 DL grant的 DCI format进行合并操作。 实施例二 在本实施例中, 基站通过在不同的搜索空间上配置不同的下行控制信息格式的方 法, 来保证与现有技术相比的检测次数不增加。 如图 4所示, 包括以下步骤: 步骤 S402, 基站在两个用户专有搜索空间发送下行控制信道信息给 UE, 包括上 行调度允许和下行调度允许。 两个用户专有搜索空间分布在两个子帧或者两个时隙或 者两个不同的时频位置上, 其中两个搜索空间的时频位置可以重叠。 其中,第一个用户专有搜索空间对应于 DL grant和下行控制信息格式 (DCI format) 0携带的 UL grant, 第二个用户专有搜索空间对应于除 DCI format 0携带的 UL grant 以外所有的 UL grant。 或者,第二个用户专有搜索空间对应于 UL grant和 DCI format 1 A携带的 DL grant, 第一个用户专有搜索空间对应于除 DCI format 1A携带的 DL grant 以外所有的 DL grant。 或者, UE在公有搜索空间上检测 DCI format 1A和 DCI format 0, 在所述第一搜 索空间上检测除了 DCI format 1A以外其他 DL Grant, 在所述第二搜索空间上检测除 了 DCI format 0以外其他 UL Grant, 其中, 所述公有搜索空间为所有 UE需检测的搜 索空间。 步骤 S404, UE根据上述配置在第一和第二用户专有搜索空间上进行 PDCCH检
在本实施例中, 第一和第二用户专有搜索空间可以互换使用。 根据上述配置, UE 在第一和第二用户专有搜索空间上监测 PDCCH需要检测的次数总和,与 LTE-Advance 的 R10版本中相比较没有增加。 实施例三 在本实施例中, 基站通过降低候选 PDCCH数量的方法, 来保证与现有技术相比 的检测次数不增加。 基站在两个用户专有搜索空间发送下行控制信道信息给 UE,包括上行调度允许和 下行调度允许。 两个用户专有搜索空间分布在两个子帧或者两个时隙或者两个不同的时频位置 上,其中两个搜索空间的时频位置可以重叠。 UE在第一个用户专有搜索空间上检测携 带 UL grant的 DCI format, 在第二个用户专有搜索空间上检测携带 DL grant的 DCI format; 或者 UE在第二个用户专有搜索空间上检测携带 UL grant的 DCI format,在第 一个用户专有搜索空间上检测携带 DL grant的 DCI format; 或者在第一和第二用户专 有搜索空间上都检测携带 UL grant的 DCI format和 DL grant的 DCI format。 在一个用户专有搜索空间上, UE将不再根据 {6, 6, 2, 2}的候选 PDCCH数量配 置来进行 PDCCH检测, 而是采用 {a, b, c, 的配置。 在另一个用户专有搜索空间 上, UE按照 {6, 6, 2, 2}的候选 PDCCH数量配置来进行 PDCCH检测; 或者, 在一个用户专有搜索空间上, 在检测 DCI format 1 A的时候, 按照 {a, b, c, 的候选 PDCCH数量配置来进行 PDCCH检测, 同时, 在另一个用户专有搜索空间 上, 在检测 DCI format 0的时候, 按照 {a, b, c, d}的候选 PDCCH数量配置来进行 PDCCH检测,其余 DCI format按照 {6, 6, 2, 2}的候选 PDCCH数量配置来进行 PDCCH 检测; 或者,在一个用户专有搜索空间上,在检测 DCI format 1A和 DCI format 0的时候, 按照 {a, b, c, 的候选 PDCCH数量配置来进行 PDCCH检测, 在另一个用户专有搜 索空间上, 在检测 DCI format 1A和 DCI format 0的时候, 按照 {a, b, c, d}的候选 PDCCH数量配置来进行 PDCCH检测,其余 DCI format按照 {6, 6, 2, 2}的候选 PDCCH 数量配置来进行 PDCCH检测; 或者, 在一个用户专有搜索空间上, 在检测除了 DCI format 1A以外所有的 DCI format的时候, 按照 {a, b, c, d}的候选 PDCCH数量配置来进行 PDCCH检测, 同时, 在另一个用户专有搜索空间上, 在检测除了 DCI format 0以外所有的 DCI format的时 候, 按照 {a, b, c, d}的候选 PDCCH数量配置来进行 PDCCH检测, 其余 DCI format 按照 {6, 6, 2, 2}的候选 PDCCH数量配置来进行 PDCCH检测。 在本实施例中, a、 b、 c和 d的取值满足: a+b+c+d小于或者等于 8, 优选值为 {3, 3, 1, 1 } 0 如表 3中所示 表 3
Figure imgf000014_0001
根据上述配置, UE在第一和第二用户专有搜索空间上监测 PDCCH需要检测的次 数总和, 与 LTE-Advance的 R10版本中相比较没有增加。 实施例四 在本实施例中, 基站通过在不同的搜索空间上配置不同的下行控制信息格式, 同 时降低候选 PDCCH数量的方法, 来保证与现有技术相比的检测次数不增加。 基站在 两个用户专有搜索空间发送下行控制信道信息给 UE,包括上行调度允许和下行调度允 许。 两个用户专有搜索空间分布在两个子帧或者两个时隙或者两个不同时频位置上, 其中两个搜索空间的时频位置可以重叠。 其中, 第一个用户专有搜索空间对应于 DL grant和 UL grant, 第二个用户专有搜 索空间对应于除 DCI format 0携带的 UL grant以外所有的 UL grant。并且,除 DCI format 0携带的 UL grant以外所有的 UL grant, 在第一和第二用户专有搜索空间上都按照 {a, b, c, 的候选 PDCCH数量配置来进行 PDCCH检测, 其他 DCI format按照 {6, 6, 2, 2}的候选 PDCCH数量配置来进行 PDCCH检测; 或者, 第二个用户专有搜索空间对应于 UL grant和 DL grant, 第一个用户专有搜 索空间对应于除 DCI format 1A携带的 DL grant以外所有的 DL grant。 并且, 除 DCI format 1A携带的 DL grant以外所有的 DL grant,在第一和第二用户专有搜索空间上都 按照 {a, b, c, 的候选 PDCCH数量配置来进行 PDCCH检测, 其他 DCI format按 照 {6, 6, 2, 2}的候选 PDCCH数量配置来进行 PDCCH检测。 在本实施例中, 第一和第二用户专有搜索空间可以互换使用。 a、 b、 c和 d的取 值满足: a+b+c+d小于或者等于 8, 优选值为 {3, 3, 1, 1 } 0 根据上述配置, UE在第一和第二用户专有搜索空间上监测 PDCCH需要检测的次 数总和, 与 LTE-Advance的 R10版本中相比较没有增加。 实施例五 在本实施例中, 基站通过降低聚合等级的方法, 来保证与现有技术相比的检测次 数不增加。基站在两个用户专有搜索空间发送下行控制信道信息给 UE,包括上行调度 允许和下行调度允许。 其中, 两个用户专有搜索空间分布在两个子帧或者两个时隙或者两个不同的时频 位置上, 其中两个搜索空间的时频位置可以重叠。例如: UE在第一个用户专有搜索空 间上检测携带 UL grant的 DCI format,在第二个用户专有搜索空间上检测携带 DL grant 的 DCI format;或者 UE在第二个用户专有搜索空间上检测携带 UL grant的 DCI format, 在第一个用户专有搜索空间上检测携带 DL grant的 DCI format; 或者在第一和第二用 户专有搜索空间上都检测携带 UL grant的 DCI format和 DL grant的 DCI format。 在一个用户专有搜索空间上, 采用 {e, 的聚合等级配置来进行 PDCCH检测。在 另一个用户专有搜索空间上, UE按照 { 1, 2, 4, 8}的聚合等级配置来进行 PDCCH检
或者, 在一个用户专有搜索空间上, 在检测 DCI format 1A的时候, 采用 {e, f} 的聚合等级配置来进行 PDCCH检测, 同时, 在另一个用户专有搜索空间上, 在检测 DCI format 0的时候,按照 {e, 的聚合等级配置来进行 PDCCH检测,其余 DCI format 按照 { 1, 2, 4, 8}的聚合等级配置来进行 PDCCH检测。 或者,在一个用户专有搜索空间上,在检测 DCI format 1A和 DCI format 0的时候, 采用 {e, 的聚合等级配置来进行 PDCCH检测, 在另一个用户专有搜索空间上, 在检 测 DCI format 1A和 DCI format 0的时候, 按照 {e, f}的聚合等级配置来进行 PDCCH 检测, 其余 DCI format按照 {6, 6, 2, 2}的候选 PDCCH数量配置来进行 PDCCH检 或者, 在一个用户专有搜索空间上, 在检测除了 DCI format 1A以外所有的 DCI format的时候, 采用 {e, 的聚合等级配置来进行 PDCCH检测, 同时, 在另一个用户 专有搜索空间上, 在检测除了 DCI format 0以外所有的 DCI format的时候, 按照 {e, 的聚合等级配置来进行 PDCCH检测, 其余 DCI format按照 { 1, 2, 4, 8}的聚合等 级配置来进行 PDCCH检测。 其中 {e, f}的取值为 { 1,4}、 { 1,8}、 {2,4} {2,8}和 {4,8} 中的一种或者多种. 如表 4中所示, 根据上述配置,UE在第一和第二用户专有搜索空间上监测 PDCCH 需要检测的次数总和, 与 LTE-Advance的 R10版本中相比较没有增加。
表 4
Figure imgf000016_0001
实施例六 在本实施例中, 基站通过在不同的搜索空间上配置不同的下行控制信息格式, 同 时降低聚合等级的方法, 来保证与现有技术相比的检测次数不增加。 基站在两个用户专有搜索空间发送下行控制信道信息给 UE,包括上行调度允许和 下行调度允许。 两个用户专有搜索空间分布在两个子帧或者两个时隙或者两个不同的 时频位置上, 其中两个搜索空间的时频位置可以重叠。 其中, 第一个用户专有搜索空间对应于 DL grant和 UL grant, 第二个用户专有搜 索空间对应于除 DCI format 0携带的 UL grant以外所有的 UL grant。并且,除 DCI format 0携带的 UL grant以外所有的 UL grant, 在第一和第二用户专有搜索空间上都按照 {e, 的聚合等级配置来进行 PDCCH检测, 其他 DCI format按照 { 1, 2, 4, 8}的聚合等 级配置来进行 PDCCH检测; 或者, 第二个用户专有搜索空间对应于 UL grant和 DL grant, 第一个用户专有搜 索空间对应于除 DCI format 1A携带的 DL grant以外所有的 DL grant。 并且, 除 DCI format 1A携带的 DL grant以外所有的 DL grant,在第一和第二用户专有搜索空间上都 按照 {e, 的聚合等级配置来进行 PDCCH检测, 其他 DCI format按照 { 1, 2, 4, 8} 的聚合等级配置来进行 PDCCH检测。 在本实施例中, 第一和第二用户专有搜索空间可以互换使用。 其中 {e, 的取值 为 { 1,4}、 { 1,8}、 {2,4} , {2,8}和 {4,8}中的一种或者多种。 根据上述配置, UE在第一和第二用户专有搜索空间上监测 PDCCH需要检测的次 数总和, 与 LTE-Advance的 R10版本中相比较没有增加。 实施例七 在本实施例中, 基站通过合并下行控制信息格式的方法, 来保证检测的次数不增 加。 基站在两个用户专有搜索空间发送下行控制信道信息给 UE,包括上行调度允许和 下行调度允许。 其中, 两个用户专有搜索空间分布在两个子帧或者两个时隙或者两个不同的时频 位置上, 其中两个搜索空间的时频位置可以重叠。例如: UE在第一个用户专有搜索空 间上检测携带 UL grant的 DCI format,在第二个用户专有搜索空间上检测携带 DL grant 的 DCI format;或者 UE在第二个用户专有搜索空间上检测携带 UL grant的 DCI format, 在第一个用户专有搜索空间上检测携带 DL grant的 DCI format; 或者在第一和第二用 户专有搜索空间上都检测携带 UL grant的 DCI format和 DL grant的 DCI format。 对携带 UL grant的 DCI format进行合并操作, 如将 DCI format 0和 DCI format 4 进行合并。 具体地, 对负载小的 DCI format添加相应的 0比特, 使得其负载与负载大 的 DCI format大小一致。 并且, 使用 n比特来对合并前的 DCI format进行区分; 或者, 对携带 DL grant的 DCI format进行合并操作, 如将 DCI format 1A和 DCI format 2C进行合并。 具体地, 对负载小的 DCI format添加相应的 0比特, 使得其负载 与负载大的 DCI format大小一致。 并且, 使用 n比特来对合并前的 DCI format进行区 分; 或者, 同时对携带 UL grant和 DL grant的 DCI format进行合并操作。 根据上述配置, UE在第一和第二用户专有搜索空间上监测 PDCCH需要检测的次 数总和, 与 LTE-Advance的 R10版本中相比较没有增加。 图 5是根据本发明实施例的 UE模块结构框图。 如图 6所示, 该 UE包括: 检测 模块 30, 设置为在第一搜索空间和第二搜索空间上检测基站发送的下行控制信道信 息。 其中, 检测模块 30还可包括: 第一检测模块 31, 设置为采用 {a, b, c, 的候 选 PDCCH数量配置来进行 PDCCH检测, 其中, a+b+c+d小于或者等于 8。 第二检测 模块 32, 设置为采用 {e, 的聚合等级配置来进行 PDCCH检测, 其中 {e, 的取值为 { 1,4}、 { 1,8}、 {2,4} , {2,8}和 {4,8}中的一种或者多种。 图 6是根据本发明实施例的基站模块结构框图。 如图 5所示, 该基站包括一发送 模块 10, 发送模块 10设置为在第一搜索空间和第二搜索空间上发送下行控制信道信 息给 UE。 其中, 发送模块 10还可包括: 第一发送子模块 11和第二发送子模块 12。 第一发 送子模块 11设置为在第一搜索空间上发送 DL grant和下行控制信息格式 DCI format 0 携带的 UL grant, 以及在第二搜索空间上发送除 DCI format 0携带的 UL grant以外所 有的 UL grant。 第二发送子模块 12设置为在第二搜索空间上发送 UL grant和 DCI format 1 A携带的 DL grant, 以及在第一搜索空间上发送除 DCI format 1A携带的 DL grant以外所有的 DL grant。 其中, 基站还可包括: 合并模块 20, 设置为合并用于携带下行控制信道信息的下 行控制信息格式。 在本发明的上述各实施例中, 通过基站在两个搜索空间上发送下行控制信道信息 给 UE, 开辟了一个新的 PDCCH资源, 从而解决了由于用户接入的需求增多, 原有的 物理下行控制信道 PDCCH资源不足的问题, 进而达到了增加系统容量、 降低干扰的 效果。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种下行控制信道 PDCCH的检测方法, 包括:
用户设备 UE在第一搜索空间和第二搜索空间上检测所述 UE的下行控制 信道, 其中, 所述第一搜索空间和所述第二搜索空间为基站发送下行控制信道 信息的资源。
2. 根据权利要求 1所述的方法, 其中, 所述第一搜索空间分布在一个子帧或一个 时隙或者一个时频位置上; 所述第二搜索空间分布在另一个子帧或另一个时隙 或者另一个时频位置上, 其中, 所述第一搜索空间和所述第二搜索空间所在的 时频可重叠。
3. 根据权利要求 2所述的方法, 其中, 所述第一搜索空间和所述第二搜索空间均 为用户专有搜索空间。
4. 根据权利要求 3所述的方法, 其中, 所述 UE在所述第一搜索空间上检测下行 控制信道的上行调度允许 UL grant, 所述 UE在所述第二搜索空间上检测下行 控制信道的下行调度允许 DL grant; 或者所述 UE在所述第一搜索空间和所述 第二搜索空间上均检测所述上行调度允许和下行调度允许。
5. 根据权利要求 1所述的方法, 其中, 所述第一搜索空间上配置的下行控制信息 格式与所述第二搜索空间上配置的下行控制信息格式不相同。
6. 根据权利要求 5所述的方法, 其中, UE在第一搜索空间和第二搜索空间上检 测所述 UE的下行控制信道包括:
所述 UE在所述第一搜索空间上检测 DL grant和下行控制信息格式 DCI format 0携带的 UL grant,以及在所述第二搜索空间上检测除 DCI format 0携带 的 UL grant以外所有的 UL grant。
7. 根据权利要求 5所述的方法, 其中, UE在第一搜索空间和第二搜索空间上检 测所述 UE的下行控制信道包括:
所述 UE在所述第二搜索空间上检测 UL grant和 DCI format 1A携带的 DL grant, 以及在所述第一搜索空间上检测除 DCI format 1 A携带的 DL grant以外 所有的 DL grant。
8. 根据权利要求 5所述的方法, 其中, UE在第一搜索空间和第二搜索空间上检 测所述 UE的下行控制信道包括:
所述 UE在公有搜索空间上检测 DCI format 1A和 DCI format 0, 在所述第 一搜索空间上检测除了 DCI format 1A以外其他 DL Grant, 在所述第二搜索空 间上检测除了 DCI format 0以外其他 UL Grant, 其中, 所述公有搜索空间为所 有 UE需检测的搜索空间。
9. 根据权利要求 1所述的方法, 其中, UE在第一搜索空间和第二搜索空间上检 测所述 UE的下行控制信道之前, 还包括: 所述基站在所述第一搜索空间和 /或所述第二搜索空间上发送下行控制信 道信息给所述 UE。
10. 根据权利要求 9所述的方法, 其中, 所述基站在所述第一搜索空间和 /或第二搜 索空间上发送下行控制信道信息给所述 UE之前, 还包括:
所述基站合并携带所述下行控制信道信息的下行控制信息格式。
11. 根据权利要求 1所述的方法, 其中, 所述 UE在所述第一搜索空间和 /或所述第 二搜索空间上检测所述下行控制信道包括:
所述 UE采用 {a, b, c, 的候选 PDCCH数量配置来进行 PDCCH检测, 其中, a 、 b、 c、 d均为正整数, a+b+c+d小于或者等于 8。
12. 根据权利要求 11所述的方法, 其中, 所述 UE采用 p, 3, 1, 1 }的候选 PDCCH 数量配置来进行 PDCCH检测。
13. 根据权利要求 11所述的方法, 其中, 所述 UE在所述第一搜索空间和 /或所述 第二搜索空间上检测所述下行控制信道包括:
所述 UE在所述第一搜索空间或所述第二搜索空间上, 采用 {a, b, c, d} 的候选 PDCCH数量配置来进行 PDCCH检测, 在所述另一个搜索空间上, 采 用 {6, 6, 2, 2}的候选 PDCCH数量配置来进行 PDCCH检测;
或者所述 UE在检测 DCI format 1A和 DCI format 0的时候,采用 {a, b, c, d}的候选 PDCCH数量配置来进行 PDCCH检测, 在检测其他除 DCI format 1 A 禾口 DCI format 0以外其他 DCI format的时候, 采用 {6, 6, 2, 2}的候选 PDCCH 数量配置来进行 PDCCH检测; 或者所述 UE在检测除了 DCI format 0和 1A以外的 DCI format的时候, 采用 {a, b, c, 的候选 PDCCH数量配置来进行 PDCCH检测, 在检测 DCI formatlA和 DCI format 0的时候, 采用 {6, 6, 2, 2}的候选 PDCCH数量配置 来进行 PDCCH检测。
14. 根据权利要求 1所述的方法, 其中, 所述 UE在所述第一搜索空间和 /或所述第 二搜索空间上检测所述下行控制信道包括:
所述 UE采用 {e, 的聚合等级配置来进行 PDCCH检测,其中 e、 f均为正 整数。
15. 根据权利要求 14所述的方法, 其中, 所述 UE在所述第一搜索空间和 /或所述 第二搜索空间上检测所述下行控制信道包括:
所述 UE在所述第一搜索空间或所述第二搜索空间上, 采用 {e, 的聚合 等级配置来进行 PDCCH检测, 在所述另一个搜索空间上, 采用 { 1, 2, 4, 8} 的聚合等级配置来进行 PDCCH检测;
或者所述 UE在检测 DCI format 1 A和 DCI format 0的时候, 采用 {e, f}的 聚合等级配置来进行 PDCCH检测, 在检测其他除 DCI formatlA和 DCI format 0以外其他 DCI format的时候,采用 { 1, 2, 4, 8}的聚合等级配置来进行 PDCCH 检测;
或者所述 UE在检测出了 DCI format 0和 1A以外的 DCI format的时候, 采用 {e, 的聚合等级配置来进行 PDCCH检测, 在检测 DCI formatlA和 DCI format O的时候, 采用 { 1, 2, 4, 8}的聚合等级配置来进行 PDCCH检测。
16. 一种用户设备 UE, 包括:
检测模块, 设置为在第一搜索空间和第二搜索空间上检测所述 UE的下行 控制信道, 其中, 所述第一搜索空间和所述第二搜索空间为基站发送下行控制 信道信息的资源。
17. 根据权利要求 16所述的用户设备, 其中, 所述检测模块包括:
第一检测模块, 设置为采用 {a, b, c, 的候选 PDCCH数量配置来进行 PDCCH检测, 其中, a 、 b、 c、 d均为正整数, a+b+c+d小于或者等于 8。
18. 根据权利要求 16所述的用户设备, 其中, 所述检测模块包括: 第二检测模块, 设置为采用 {e, 的聚合等级配置来进行 PDCCH检测, 其中 e和 f分别属于集合 { 1, 2, 4, 8}中的任一值。
19. 一种基站, 包括:
发送模块, 设置为在第一搜索空间和第二搜索空间上发送下行控制信道信 息给 UE, 其中, 所述第一搜索空间和所述第二搜索空间为基站发送下行控制 信道信息的资源。
20. 根据权利要求 19所述的基站, 其中, 所述发送模块包括:
第一发送子模块, 设置为在所述第一搜索空间上发送 DL grant和下行控制 信息格式 DCI format 0携带的 UL grant,以及在所述第二搜索空间上发送除 DCI format 0携带的 UL grant以外所有的 UL grant。
21. 根据权利要求 19所述的基站, 其中, 所述发送模块包括:
第二发送子模块, 设置为在所述第二搜索空间上发送 UL grant 和 DCI format 1 A携带的 DL grant, 以及在所述第一搜索空间上发送除 DCI format 1A 携带的 DL grant以外所有的 DL grant。
22. 根据权利要求 19所述的基站, 其中, 所述基站还包括: 合并模块, 设置为合并用于携带所述下行控制信道信息的下行控制信息格 式。
PCT/CN2012/072973 2011-08-08 2012-03-23 下行控制信道的检测方法、用户设备及基站 WO2012152141A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20203686.9A EP3840273B1 (en) 2011-08-08 2012-03-23 Method for detecting downlink control channel, user equipment, and base station
EP12782118.9A EP2744258B1 (en) 2011-08-08 2012-03-23 Method for detecting downlink control channel, user equipment, and base station
ES12782118T ES2834441T3 (es) 2011-08-08 2012-03-23 Método para detectar canales de control de enlace descendente, equipo de usuario y estación base
EP24156180.2A EP4391672A2 (en) 2011-08-08 2012-03-23 Method for detecting downlink control channel, user equipment, and base station
US14/236,284 US9425932B2 (en) 2011-08-08 2012-03-23 Method for detecting downlink control channel, user equipment, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110225608.0A CN102291736B (zh) 2011-08-08 2011-08-08 下行控制信道的检测方法、用户设备及基站
CN201110225608.0 2011-08-08

Publications (1)

Publication Number Publication Date
WO2012152141A1 true WO2012152141A1 (zh) 2012-11-15

Family

ID=45337789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072973 WO2012152141A1 (zh) 2011-08-08 2012-03-23 下行控制信道的检测方法、用户设备及基站

Country Status (5)

Country Link
US (1) US9425932B2 (zh)
EP (3) EP3840273B1 (zh)
CN (1) CN102291736B (zh)
ES (1) ES2834441T3 (zh)
WO (1) WO2012152141A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110547007A (zh) * 2017-04-27 2019-12-06 Oppo广东移动通信有限公司 无线通信的方法、终端设备和传输与接收节点

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291736B (zh) * 2011-08-08 2017-11-24 中兴通讯股份有限公司 下行控制信道的检测方法、用户设备及基站
CN107257275B (zh) * 2012-01-27 2021-03-16 交互数字专利控股公司 由WTRU执行的用于ePDCCH的方法、WTRU、搜索空间监视方法和UE
CN107979456B (zh) * 2012-05-11 2021-01-22 中兴通讯股份有限公司 下行控制信息发送方法、检测方法、基站及用户设备
CN103688588B (zh) * 2012-06-26 2018-05-11 华为技术有限公司 信息传输方法、网络节点、用户设备及系统
CN103684674B (zh) * 2012-09-24 2018-05-15 中兴通讯股份有限公司 一种检测控制信令以及实现控制信令检测的方法和装置
CN103796316B (zh) * 2012-11-02 2018-10-12 中兴通讯股份有限公司 一种检测控制信令的方法和相应的终端
CN104969600B (zh) * 2013-03-25 2019-03-26 华为技术有限公司 省电方法、用户设备及基站
CN104348579B (zh) * 2013-08-05 2019-11-19 中兴通讯股份有限公司 下行信道时域位置确定方法和装置
CN104518806B (zh) * 2013-09-27 2018-11-30 中兴通讯股份有限公司 一种信令发送方法、接收方法及信令发送/接收系统
CN105450374B (zh) * 2014-08-25 2018-08-31 联想(北京)有限公司 一种信息处理方法、系统及基站
CN108605234B (zh) * 2016-02-02 2021-04-09 华为技术有限公司 下行控制信息检测方法、下行控制信息发送方法和装置
CN113692059B (zh) 2016-05-30 2023-12-15 北京三星通信技术研究有限公司 无线通信系统中的方法和设备
WO2017213421A1 (ko) * 2016-06-10 2017-12-14 엘지전자 주식회사 무선 통신 시스템에서 레이턴시 감소를 위한 신호 송수신 방법 및 이를 위한 장치
WO2018000362A1 (zh) * 2016-06-30 2018-01-04 华为技术有限公司 一种资源调度方法及对应设备
US11523376B2 (en) * 2017-01-05 2022-12-06 Huawei Technologies Co., Ltd. Method for downlink control channel design
KR102366007B1 (ko) * 2017-07-14 2022-02-22 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널 수신 시간 설정 방법 및 장치
CN109391361B (zh) * 2017-08-11 2021-02-26 华为技术有限公司 检测下行控制信道的方法、终端设备和网络设备
KR102290762B1 (ko) * 2018-01-18 2021-08-20 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국간 하향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
CN110166191B (zh) 2018-02-11 2021-01-08 维沃移动通信有限公司 一种搜索空间的监听信息的确定方法及装置
CN110351004B (zh) * 2018-04-04 2021-02-09 华为技术有限公司 通信方法和通信设备
CN110474743A (zh) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 候选信道映射方法、装置、基站、终端及存储介质
US11330575B2 (en) 2018-07-17 2022-05-10 Samsung Electronics Co., Ltd. Adaptation of communication parameters for a user equipment
CN117528805A (zh) * 2018-08-10 2024-02-06 华为技术有限公司 一种通信方法及设备
EP3858056A1 (en) * 2018-09-26 2021-08-04 Telefonaktiebolaget LM Ericsson (publ) Downlink control information in uss
CN111819898B (zh) * 2019-02-03 2021-10-22 Oppo广东移动通信有限公司 信道传输的方法和设备
CN111586853A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种无线通信的方法和装置
CN111817830B (zh) * 2019-07-10 2023-06-09 维沃移动通信有限公司 传输、接收控制方法、终端及网络侧设备
WO2021138795A1 (en) * 2020-01-07 2021-07-15 Qualcomm Incorporated Configuring a search space set for downlink control information
US20230247640A1 (en) * 2020-05-25 2023-08-03 Beijing Xiaomi Mobile Software Co., Ltd. Methods and apparatus for sending and receiving physical downlink control channel, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098289A1 (ja) * 2009-02-24 2010-09-02 シャープ株式会社 無線通信システム、基地局装置、移動局装置、無線通信方法及びプログラム
WO2010127300A2 (en) * 2009-04-30 2010-11-04 Qualcomm Incorporated Pdcch search space design for lte-a multi-carrier operation
CN102123432A (zh) * 2011-03-29 2011-07-13 电信科学技术研究院 一种下行控制信道的资源指示及检测方法、设备
CN102291736A (zh) * 2011-08-08 2011-12-21 中兴通讯股份有限公司 下行控制信道的检测方法、用户设备及基站

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2425669T (pt) * 2009-04-29 2018-12-18 Koninklijke Philips Nv Método para comunicar numa rede móvel
KR101697782B1 (ko) * 2009-05-14 2017-01-19 엘지전자 주식회사 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
CN101925109B (zh) * 2009-06-16 2012-12-26 华为技术有限公司 一种控制信道映射的方法和装置
JP2011035861A (ja) * 2009-08-06 2011-02-17 Sharp Corp 移動局装置、無線通信方法および移動局装置の制御プログラム
US8433251B2 (en) * 2009-09-28 2013-04-30 Qualcomm Incorporated Control information signaling
CN102056185B (zh) * 2009-10-31 2014-12-10 华为技术有限公司 信道盲检测方法、分配方法和装置
EP2514238A4 (en) * 2009-12-17 2016-03-09 Lg Electronics Inc APPARATUS AND METHOD FOR AVOIDING CONTROL CHANNEL BLOCKAGE
US9306723B2 (en) * 2010-02-20 2016-04-05 Google Technology Holdings LLC Multi-carrier control signaling in wireless communication system
US20110243059A1 (en) * 2010-04-05 2011-10-06 Samsung Electronics Co., Ltd. Apparatus and method for interleaving data in a relay physical downlink control channel (r-pdcch)
JP5455228B2 (ja) * 2010-04-05 2014-03-26 株式会社Nttドコモ 基地局装置及びユーザ端末
CN102082642B (zh) * 2010-04-30 2014-04-02 电信科学技术研究院 回程链路上的控制信令发送及检测方法、系统和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098289A1 (ja) * 2009-02-24 2010-09-02 シャープ株式会社 無線通信システム、基地局装置、移動局装置、無線通信方法及びプログラム
WO2010127300A2 (en) * 2009-04-30 2010-11-04 Qualcomm Incorporated Pdcch search space design for lte-a multi-carrier operation
CN102123432A (zh) * 2011-03-29 2011-07-13 电信科学技术研究院 一种下行控制信道的资源指示及检测方法、设备
CN102291736A (zh) * 2011-08-08 2011-12-21 中兴通讯股份有限公司 下行控制信道的检测方法、用户设备及基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification(Release 10)", 3GPP TSG RAN; 3GPP TS 36.321 V10.2.0, 30 June 2011 (2011-06-30), XP055144269 *
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures(Release 10)", 3GPP TSG RAN; 3GPP TS 36.213 V 10.2.0, 30 June 2011 (2011-06-30), XP055144267 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110547007A (zh) * 2017-04-27 2019-12-06 Oppo广东移动通信有限公司 无线通信的方法、终端设备和传输与接收节点

Also Published As

Publication number Publication date
EP2744258A1 (en) 2014-06-18
EP3840273B1 (en) 2024-02-14
CN102291736B (zh) 2017-11-24
EP3840273A1 (en) 2021-06-23
CN102291736A (zh) 2011-12-21
EP2744258A4 (en) 2015-06-10
EP4391672A2 (en) 2024-06-26
ES2834441T3 (es) 2021-06-17
EP2744258B1 (en) 2020-10-28
US20140177582A1 (en) 2014-06-26
US9425932B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
WO2012152141A1 (zh) 下行控制信道的检测方法、用户设备及基站
JP7088967B2 (ja) 拡張された物理ハイブリッド自動再送要求インジケータチャネル用のリソースを割り当てるための方法および装置
US11438883B2 (en) Method and apparatus for low latency and high reliability data transmission in wireless communication system
EP2901601B1 (en) Hybrid automatic repeat request (harq) mapping for carrier aggregation (ca)
EP2856685B1 (en) Hybrid automatic repeat request (harq) mapping for carrier aggregation (ca)
US9312997B2 (en) Method for transmitting or receiving PDCCH and user equipment or base station for the method
WO2012146095A1 (zh) 下行控制信息的传输方法及系统
US10028263B2 (en) Method and device for sending and receiving downlink control information
US20180359068A1 (en) Uplink channel transmitting method and user device, and uplink channel receiving method and base station
US20170026164A1 (en) Data transmission in carrier aggregation with different carrier configurations
WO2011157038A1 (zh) 载波聚合场景下下行控制信息的检测方法和用户设备
US20180048447A1 (en) User equipments, base stations and methods
WO2010060308A1 (zh) 下行控制信息处理方法
JP2017510214A (ja) Lte階層的バーストモード
WO2011097876A1 (zh) 下行控制信息的传输方法及传输系统
WO2012155753A1 (zh) 传输方法及装置
WO2011120278A1 (zh) 一种下行控制信息的检测方法和装置
WO2012016414A1 (zh) 一种确定用户专有搜索空间的方法和装置
WO2010124628A1 (zh) 一种下行控制信息的发送和检测方法
WO2011156989A1 (zh) 一种确定用户专有搜索空间的方法和装置
WO2011137651A1 (zh) 控制信息的传输方法、系统以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14236284

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE