WO2010060308A1 - 下行控制信息处理方法 - Google Patents

下行控制信息处理方法 Download PDF

Info

Publication number
WO2010060308A1
WO2010060308A1 PCT/CN2009/072925 CN2009072925W WO2010060308A1 WO 2010060308 A1 WO2010060308 A1 WO 2010060308A1 CN 2009072925 W CN2009072925 W CN 2009072925W WO 2010060308 A1 WO2010060308 A1 WO 2010060308A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
control channel
physical downlink
pdcch
primary
Prior art date
Application number
PCT/CN2009/072925
Other languages
English (en)
French (fr)
Inventor
李卫军
戴博
郁光辉
罗宇民
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010060308A1 publication Critical patent/WO2010060308A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present invention relates to the field of communications, and in particular, to a downlink control information processing method.
  • BACKGROUND OF THE INVENTION Figures la and lb respectively show a Frequency Division Duplex (Frequency Division Duplex) mode and a Time Division Duplex (Long Division Evolution).
  • a 10 ms radio frame includes twenty slots (slots) of length 0.5 ms, and the slots are numbered sequentially as 0 19 , where The slots 2i and 2i+1 form a subframe (frame) i of length lms.
  • FIG. 1a in the frame structure of the FDD mode, a 10 ms radio frame includes twenty slots (slots) of length 0.5 ms, and the slots are numbered sequentially as 0 19 , where The slots 2i and 2i+1 form a subframe (frame) i of length lms.
  • FIG. 1a in the frame structure of the FDD mode,
  • a 10 ms radio frame in the frame structure of the TDD mode, includes two half frames of length 5 ms, wherein one half frame contains five subframes of length lms, and two long frames.
  • the subframe i is composed of time slots 2i and 2i+1 of 0.5 ms.
  • Cyclic Prefix Normal Cyclic Prefix
  • one time slot contains seven symbols of length 66.7us, and the cyclic prefix of the first symbol (Cyclic Prefix, The length of the cylinder is called 5.21us, and the length of the remaining 6 symbols is 4.69us.
  • the extended cyclic prefix Extended Cyclic Prefix
  • one slot contains 6 symbols, the 6 symbols.
  • the CP length is 16.67us.
  • LTE Release-8 defines six types of bandwidth: 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, and 20MHz, and the LTE system defines the following three downlink physical control channels.
  • PCFICH Physical control format indicator channel
  • the information carried by the channel is used to indicate that a physical downlink control channel is transmitted in one subframe (Physical downlink control channel)
  • the number of OFDM symbols of the PDCCH, where the PDCCH is transmitted on the first OFDM symbol of the subframe, and the frequency position at which the PCFICH is located is determined by the system downlink bandwidth and the cell ID.
  • a physical hybrid ARQ indicator channel PHICH is used to carry ACK/NACK feedback information for uplink transmission data.
  • PHICH The number of channels and the time-frequency position can be determined by the system message and the cell ID in the PBCH.
  • the PDCCH is used to carry the uplink and downlink scheduling information, and the uplink power control information, where the PDCCH is mapped to a continuous control channel unit (Control Channel Element, CCE), and the format of the PDCCH indicates the CCE occupied by the PDCCH.
  • CCE Control Channel Element
  • the LTE-Advanced system is an evolved version of LTE Release-8. It needs to meet the backward compatibility requirements of LTE Release-8, that is, the LTE Release-8 terminal can work in the LTE-Advanced network, and the LTE-Advanced terminal can also work in the LTE Release-8 network.
  • LTE-Advanced can operate in different spectrum configurations, including a wider frequency configuration than LTE Release-8 (for example, 100MHz continuous frequency resources) to achieve higher performance and target peaks. rate.
  • two or more carrier carriers are aggregated to support downlink transmissions greater than 20 MHz by means of carrier aggregation.
  • the terminal can receive one or more carrier units simultaneously according to its capabilities; LTE-A terminals with more than 20 MHz receiving capability can simultaneously receive transmissions on multiple carrier units. Under the premise that the structure of the carrier unit follows the Rel-8 specification, the LTE Rel-8 terminal can only receive transmission on one carrier unit. It can be seen that the prior art solution does not provide a specific solution for the method for transmitting the downlink control information carried in the PDCCH in the LTE-Advanced system. Therefore, a solution capable of solving the problem is needed. SUMMARY OF THE INVENTION The present invention has been made in view of the problem in the related art that requires a technique to solve a method of transmitting downlink control information carried in a PDCCH in an LTE-Advanced system.
  • the main object of the present invention is to provide a The downlink control information processing method solves the above problem.
  • a downlink control information processing method includes: setting a primary physical downlink control channel and at least one secondary physical downlink control channel belonging to the primary physical downlink control channel on a carrier unit supported by the terminal; wherein, the primary physical downlink control channel Parameter information for carrying a slave downlink control channel, where the parameter information includes at least one of the following: location information from the physical downlink control channel, and a slave object The format information of the downlink control channel is used; the physical downlink control channel is used to carry all downlink control information of the terminal.
  • a downlink control information processing method includes: setting a primary physical downlink control channel and at least one secondary physical downlink control channel belonging to the primary physical downlink control channel on a carrier unit supported by the terminal; wherein, the primary physical downlink control channel
  • the downlink control information is used to carry the carrier unit where the carrier unit is located, and the physical downlink control channel is used to carry downlink control information of the carrier unit except the carrier unit where the primary physical downlink control channel is supported by the terminal.
  • FIG. 1 is a schematic diagram of a frame structure of an LTE system FDD mode according to the related art
  • FIG. 1b is a schematic diagram of a frame structure of an LTE system TDD mode according to the related art
  • FIG. 1b is a schematic diagram of a frame structure of an LTE system TDD mode according to the related art
  • FIG. 2 is a first embodiment of the method according to the present invention.
  • Figure 3a is a schematic diagram of a PDCCH structure of the first method of the method of the present invention
  • Figure 3b is a schematic diagram of a PDCCH structure of the second method of the method of the present invention
  • Figure 3c is a PDCCH of the third method of the method of the present invention
  • Figure 4 is a flowchart of a downlink control information processing method according to Embodiment 2 of the method of the present invention
  • Figure 5a is a schematic diagram of a PDCCH structure of Example 4 of the method of the present invention
  • Figure 5b is a fifth example of the method of the present invention Schematic diagram of a PDCCH structure
  • FIG. 1 is a schematic diagram of a PDCCH structure of the first method of the method of the present invention
  • Figure 3b is a schematic diagram of a PDCCH structure of the second method of the method of the present invention
  • Figure 3c is a PDCCH of the third method of
  • FIG. 5c is a schematic diagram of a PDCCH structure according to Example 6 of the method of the present invention
  • Figure 5d is a schematic diagram of a PDCCH structure according to Example 7 of the method of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic idea of the present invention is: Since the current LTE-Advanced standard does not have a corresponding description for the transmission of downlink control information (ie, the form of the PDCCH), the present invention provides a downlink control information for the problem.
  • the processing method by setting the primary PDCCH and the secondary PDCCH, and uploading corresponding information on the primary PDCCH and the secondary PDCCH, may enable the terminal to obtain downlink control information by reading the primary PDCCH and information carried on the PDCCH.
  • the invention will be described in detail below with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • Method Embodiment 1 According to an embodiment of the present invention, a downlink control information processing method is provided. It should be noted that, for convenience of description, the technical solutions of the method embodiments of the present invention are shown and described in the following steps, and the steps shown below may be in a computer system such as a set of computer executable instructions. carried out.
  • FIG. 2 is a flowchart of a downlink control information processing method according to an embodiment of the present invention. As shown in FIG.
  • the method includes the following steps (step S202 to step S204): Step S202, setting on a carrier unit supported by the terminal a primary physical downlink control channel and at least one secondary physical downlink control channel, wherein the number of the primary physical downlink control channels may be 1; and in step S204, the primary physical downlink control channel is used to carry the physical downlink Parameter information of the control channel, the parameter information includes at least one of: location information from the physical downlink control channel, format information of the physical downlink control channel, and physical downlink control channel used for all downlink control information of the bearer terminal, where The information may include one of the following: a location of a carrier unit from which the physical downlink control channel is located, a starting position of a control channel unit from a physical downlink control channel in a carrier unit in which the physical downlink control channel is located, and a control channel unit carrying a slave physical downlink control channel
  • the number of parameters preferably, the above parameter information can also Including the physical downlink control channel number.
  • the primary physical downlink control channel and the secondary physical downlink control channel may be located on the same carrier unit, or may be located on different carrier units, and each of the secondary physical downlink control channels may carry one or more carrier units.
  • Downlink control information where the primary physical downlink control channel may be located on one carrier unit, and each secondary physical downlink control channel may be located on one or more carrier units.
  • the technical solution provided by the embodiment of the present invention provides a method for transmitting downlink control information in an LTE-Advanced system, which is compatible with LTE-Advanced and LTE Release-8 compared to the prior art, and can improve scheduling of the LTE-Advanced system. Flexibility and throughput, reducing the number of blind detections in the terminal.
  • PDCCH physical downlink control channel
  • Downlink Control Downlink Control information
  • the format of the Information can be divided into the following types: DCI format 0, DCI format 1, DCI format 1A, DCI format 1B, DCI format 1C, DCI format 1D, DCI format 2, and DCI format 2A.
  • the DCI format 0 is used to indicate the scheduling of the physical uplink shared channel (PU).
  • the DCI format 1 and the DCI format 1A, the DCI format 1B, the DCI format 1C, and the DCI format ID are used to indicate the physical downlink.
  • PDCCH physical uplink control channel
  • UE physical uplink control channel
  • PUSCH Physical uplink control channel
  • the physical resource used for transmitting the PDCCH is in units of a Control Channel Element (CCE).
  • CCE Control Channel Element
  • One PDCCH may occupy 1, 2, 4, or 8 CCEs, where the size of one CCE is There are 9 resource elements (Resource Element Group), that is, 36 resource elements (Resource Element, called RE).
  • resource elements Resource Element Group
  • RE resource elements
  • the PDCCHs of the four CCEs start from the CCE position of an integer multiple of four; the PDCCHs of the eight CCEs start from the CCE position of an integer multiple of eight.
  • Each of the above Aggregation levels defines a search space, including common (common) and terminal-specific (UE Specific) search spaces.
  • the number of CCEs in the entire search space is determined by the number of OFDM symbols occupied by the control region indicated by the PCFICH in each downlink subframe and the number of groups of PHICHs.
  • the UE searches for all possible PDCCHs in the search space according to the DCI format of the transmission mode. The rate is blindly detected. Iii.
  • the number of downlink carrier units (component carriers) of the system is five, and the downlink receiving capability of the LTE-Advanced terminal is the same as the system downlink bandwidth.
  • the LTE-Advanced terminal obtains the parameter information of the at least one secondary PDCCH carried in the primary PDCCH by using the LDP-Advanced terminal, and the parameter information may include the number of the PDCCH and the location information of each of the PDCCHs, where the location information may be at least one of the following: : The CCE location in the carrier unit where the PDCCH is located from the carrier unit where the PDCCH is located.
  • FIG. 3a is a schematic diagram of a primary PDCCH and a PDCCH structure shown in the first example.
  • the primary PDCCH is located on the component carrier3, and the primary PDCCH separately carries multiple downlinks to the primary PDCCH for each downlink carrier unit.
  • component carrier 2, component carrier 3, and component carrier 5 From the parameter information of the PDCCH, in the figure, component carrier 2, component carrier 3, and component carrier 5 have downlink control information from the PDCCH, and component carrier 2, component carrier 3, and component carrier 5 carrying their respective carrier units from the PDCCH.
  • the LTE-Advanced terminal After the LTE-Advanced terminal obtains the parameter information of each slave PDCCH carried in the primary PDCCH by the blind detection, the LTE-Advanced terminal detects the slave PDCCH on the component carrier 2, the component carrier 3, and the component carrier 5 according to the indication of the parameter information, and detects the component carrier 2 After the PDCCH on the component carrier3 and the component carrier5, the LTE-Advanced terminal performs subsequent related operations according to the control information carried by the PDCCH on the component carrier2, the component carrier3, and the component carrier5.
  • the dotted line in Fig. 3a indicates that there is no slave PDCCH on the carrier unit, that is, there is no slave PDCCH on the component carrier 1 and component carrier 4, and no downlink control information is carried.
  • 3b is a schematic diagram of a primary PDCCH and a secondary PDCCH structure shown in the second embodiment.
  • the primary PDCCH is located on the component carrier3, and the primary PDCCH separately indicates, for each downlink carrier unit, a plurality of primary PDCCHs.
  • component carrier3 and component carrier5 have downlink control information from the PDCCH, and component carrier3 and component carrier5, which can carry multiple carrier units, for example, PDCCH from component carrier3 Carrying downlink control information on component carrier 1, component carrier2, and component carrier3, and downlink control information on component carrier5 from component carrier 4 and component carrier5.
  • FIG. 3c is a schematic diagram of a primary PDCCH and a secondary PDCCH structure shown in example 3. As shown in FIG.
  • the method includes a primary PDCCH and a secondary PDCCH, where the primary PDCCH is located on component carrier3, and the PDCCH is located in multiple components.
  • the carrier carrying downlink control information of multiple component carriers, that is, the slave PDCCH is located on component carrier3, component carrier4, and component carrier5, and carries downlink control information on component carrier4 and component carrier5, and the primary PDCCH carries the slave PDCCH.
  • Parameter information After obtaining the parameter information of the PDCCH from the PDCCH in the primary PDCCH, the LTE-Advanced terminal obtains the data carried by the CCE on the corresponding carrier unit according to the indication, and performs the data carried on the corresponding carrier unit according to the carrier unit number.
  • Method Embodiment 2 provides a downlink control information processing method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for processing downlink control information according to an embodiment of the present invention. As shown in FIG.
  • the method includes the following steps (step S402 to step S404): Step S402, setting on a carrier unit supported by the terminal a primary physical downlink control channel and at least one secondary physical downlink control channel, wherein the number of primary physical downlink control channels may be 1; and in step S404, the primary physical downlink control channel is used to carry the Downlink control information of the carrier unit, the physical downlink control channel is used to carry downlink control information of the carrier unit except the carrier unit where the primary physical downlink control channel is supported by the terminal.
  • the primary physical downlink control channel and the secondary physical downlink control channel may be located on the same carrier unit, or may be located on different carrier units, and each of the secondary physical downlink control channels may carry one or more carrier units.
  • the primary physical downlink control channel may be located on one carrier unit, and the physical downlink control channel may be located on one or more carrier units.
  • the primary physical downlink control channel is further configured to carry parameter information of the physical downlink control channel, where the parameter information includes at least one of the following: location information from the physical downlink control channel, format information of the physical downlink control channel, location information.
  • the method may include one of: a location of a carrier unit from a physical downlink control channel, a start position of a control channel unit in a carrier unit in which the physical downlink control channel is located, and a control channel unit carrying a physical downlink control channel.
  • the number, preferably, the parameter information may further include the number of physical downlink control channels.
  • the number of downlink carrier units of the system is five, and the downlink receiving capability of the LTE-Advanced terminal is the same as the downlink bandwidth of the system.
  • the LTE-Advanced terminal performs blind detection on both the primary PDCCH and the secondary PDCCH, and obtains downlink control information on the carrier component where the primary PDCCH is carried, and downlink control on other carrier components of the LTE-Advanced terminal carried in the PDCCH. information.
  • the LTE-Advanced terminal obtains the parameter information of the at least one secondary PDCCH carried in the primary PDCCH by using the LDP-Advanced terminal, and the parameter information may include the number of the PDCCH and the location information of each of the PDCCHs, where the location information may be at least one of the following: :
  • the LTE-Advanced terminal detects the slave PDCCH according to the indication of the parameter information, and detects each slave.
  • Figure 5a is a schematic diagram of a primary PDCCH and a secondary PDCCH structure shown in the fourth embodiment. As shown in Figure 5a, the primary PDCCH is located on the component carrier3, and the primary PDCCH carries the downlink control information of the component carrier3.
  • the component There is a slave PDCCH that is, the primary PDCCH and the secondary PDCCH are located on the same carrier unit, and the downlink control information of the plurality of carrier units from the PDCCH can be carried on the component carrier3, for example, the PDCCH-bearing component on the component carrier3 Downlink control information on carrier2 and component carrier4, that is, the number of component carriers corresponding to the PDCCH is 2.
  • the LTE-Advanced terminal can perform blind detection, obtain downlink control information from the PDCCH on the primary PDCCH and component carrier3, and perform subsequent related operations.
  • the primary PDCCH may also carry the parameter information of the plurality of PDCCHs that belong to the primary PDCCH.
  • Example 5 Figure 5b is a schematic diagram of the primary PDCCH and the PDCCH structure shown in the fifth embodiment. As shown in Figure 5b, the primary PDCCH is located on the component carrier3, and the primary PDCCH carries the downlink control information of the component carrier3.
  • the component There are slave PDCCHs that is, the primary PDCCH and the secondary PDCCH are located on different carrier units, and the downlink control information on the component carrier 4 that can carry multiple carrier units from the PDCCH, for example, the PDCCH bearer component carrier 1 on component carrier3 , component carrier4 and The downlink control information on the component carrier 5, that is, the number of component carriers corresponding to the PDCCH is 3.
  • the LTE-Advanced terminal can perform blind detection, obtain downlink control information from the PDCCH on the primary PDCCH and the component carrier 4, and perform subsequent related operations.
  • the primary PDCCH may also carry the parameter information of the plurality of PDCCHs that belong to the primary PDCCH.
  • FIG. 5c is a schematic diagram of a primary PDCCH and a secondary PDCCH structure shown in example 6. As shown in FIG. 5c, the primary PDCCH is located on component carrier3, and the primary PDCCH carries downlink control information of component carrier3.
  • component carrier4 And component carrier5 has downlink control information from the PDCCH, that is, the primary PDCCH and the secondary PDCCH are located on different carrier units, and the component carrier4 and the component carrier5 can carry multiple carrier units, for example, component carrier4 and component carrier5
  • the slave PDCCHs on the PDCCH carry downlink control information on component carrier 1, component carrier 2, component carrier 4, and component carrier 5. That is, the number of component carriers corresponding to each PDCCH is 4.
  • the LTE-Advanced terminal can perform blind detection, obtain downlink control information from the PDCCH on the PDCCH, component carrier 5 on the primary PDCCH and the component carrier 4, and perform subsequent related operations.
  • the primary PDCCH may also carry the parameter information of the plurality of PDCCHs that belong to the primary PDCCH.
  • the LTE-Advanced terminal obtains the parameter information of each PDCCH carried in the primary PDCCH by using the blind detection, and then the LTE-Advanced The terminal checks the 3 ⁇ 4A* PDCCH on the component carrier4 and the component carrier5 according to the indication of the parameter information, and after detecting the PDCCH on the component carrier4 and the component carrier5, the LTE-Advanced terminal separately performs the component carrier4 and the component carrier5. The subsequent related operations are performed from the control information carried by the PDCCH.
  • Figure 7 Figure 5d is a schematic diagram of the primary PDCCH and the PDCCH structure shown in the seventh embodiment.
  • the PDSCH indicated by the m subframe primary PDCCH carries upper layer signaling, and the upper layer signaling indicates the location of the PDCCH. And formatting information.
  • the LTE-Advanced terminal detects the PDCCH from the PDCCH and performs related operations according to the control information carried by the PDCCH until the new signaling configuration, where m, n takes a non-negative integer.
  • the LTE-Advanced terminal performs subsequent related operations according to the control information on the carrier unit where the primary PDCCH is located.
  • the carrier unit and format indicated by the LTE-Advanced terminal according to the high-layer signaling After detecting the PDCCH from the PDCCH, the LTE-Advanced terminal performs subsequent correlation operations according to the control information carried by the PDCCH on the component carrier 4 and the component carrier 5.
  • the downlink control information processing method provided by the present invention provides a method for transmitting downlink control information in an LTE-Advanced system, which is compatible with LTE-Advanced and LTE Release-8 and improves LTE-in comparison with the prior art.
  • a computer readable medium having stored thereon computer executable instructions for causing a computer or processor to perform, for example, when executed by a computer or processor
  • the processing of each step shown in FIG. 2 and FIG. 4 preferably performs one or more of the above-described method embodiments and examples.
  • the implementation of the present invention does not modify the system architecture and the current processing flow, is easy to implement, facilitates promotion in the technical field, and has strong industrial applicability.
  • the above description is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

下行控制信息处理方法
技术领域 本发明涉及通信领域, 尤其涉及一种下行控制信息处理方法。 背景技术 图 la和图 lb分别示出了长期演进( Long Term Evolution, 筒称为 LTE ) 系统中频分双工( Frequency Division Duplex, 筒称为 FDD )模式和时分双工 ( Time Division Duple , 筒称为 TDD )模式的帧结构示意图。 如图 la所示 ,在 FDD模式的帧结构中 ,一个 10ms的无线帧( radio frame ) 包括二十个长度为 0.5ms的时隙 ( slot ), 时隙的编号依次为 0 19 , 其中, 时 隙 2i和 2i+l组成长度为 lms的子帧 ( subframe ) i。 如图 lb所示, 在 TDD模式的帧结构中, 一个 10ms的 radio frame包括 两个长度为 5ms的半帧( half frame ), 其中, 一个 half frame包含 5个长度为 lms的 subframe, 2个长为 0.5ms的时隙 2i和 2i+l组成了子帧 i。 在上述两种帧结构中, 对于标准循环前缀 ( Normal Cyclic Prefix, 筒称 为 Normal CP ), —个时隙包含 7个长度为 66.7us的符号, 其中第一个符号的 循环前缀(Cyclic Prefix, 筒称为 CP ) 长度为 5.21us , 其余 6个符号的 CP 长度为 4.69us; 对于扩展循环前缀( Extended Cyclic Prefix, 筒称为 Extended CP ), 一个时隙包含 6个符号, 该 6个符号的 CP长度均为 16.67us。 目前, LTE Release-8定义了 6种带宽: 1.4MHz、 3MHz、 5MHz、 10MHz、 15MHz和 20MHz, 且 LTE系统定义了如下三种下行物理控制信道。 一、 物理下行控制格式才旨示信道 ( Physical control format indicator channel, 筒称为 PCFICH ): 该信道承载的信息用于指示在一个子帧中传输物 理下行控制信道( Physical downlink control channel,筒称为 PDCCH )的 OFDM 符号的数目, 其中, PDCCH在子帧的第一个 OFDM符号上发送, PCFICH 所在的频率位置由系统下行带宽与小区 ID决定。 二、 物理混合重传指示信道(Physical hybrid ARQ indicator channel, 筒 称为 PHICH ):用于承载上行传输数据的 ACK/NACK反馈信息。其中, PHICH 信道的数目、 时频位置可由 PBCH中的系统消息和小区 ID决定。 三、 PDCCH: 用于承载上、 下行调度信息, 以及上行功率控制信息, 其中, PDCCH映射到连续的控制信道单元 (Control Channel Element, 筒称 为 CCE ) 上, PDCCH的格式表明了 PDCCH占用的 CCE数量。 新一代长期演进技术计划 ( Long Term Evolution- Advanced , 筒称为
LTE- Advanced )系统是 LTE Release-8的演进版本。其要满足与 LTE Release-8 后向兼容的需求, 即, LTE Release-8的终端可以在 LTE- Advanced的网络中 工作, LTE- Advanced的终端也可以在 LTE Release-8的网络中工作。 另夕卜, LTE-Advanced能够在不同的频谱配置下工作 , 包括比 LTE Release-8更宽的 频 i普配置(例如, 100MHz的连续频 i普资源), 以达到更高的性能和目标峰值 速率。 考虑到 LTE-Advanced与 LTE Release-8的兼容性, 对于大于 20MHz的 带宽 , 采用频谱聚集 ( Carrier aggregation ) 的方式, 将两个或以上的载波单 元 ( component carrier ) 聚集以支持大于 20MHz的下行传输带宽; 终端按其 能力能同时接收一个或多个载波单元; 有超过 20MHz接收能力的 LTE-A终 端能够同时接收多个载波单元上的传输。 在载波单元的结构遵循 Rel-8规范 前提下, LTE Rel-8终端能且只能接收一个载波单元上的传输。 可以看出,现有的技术方案中对于 LTE-Advanced系统中承载在 PDCCH 中的下行控制信息的发送方法, 并没有给出具体的解决方案, 因此, 需要一 种能够解决该问题的方案。 发明内容 考虑到相关技术中存在的需要一种技术来解决 LTE-Advanced系统中承 载在 PDCCH中的下行控制信息的发送方法的问题而提出本发明, 为此, 本 发明的主要目的在于提供一种下行控制信息处理方法, 以解决上述问题。 根据本发明的一个方面, 提供一种下行控制信息处理方法。 才艮据本发明的下行控制信息处理方法包括:在终端支持的载波单元上设 置主物理下行控制信道和归属于主物理下行控制信道的至少一个从物理下行 控制信道; 其中, 主物理下行控制信道用于承载从物理下行控制信道的参数 信息, 参数信息包括至少以下之一: 从物理下行控制信道的位置信息、 从物 理下行控制信道的格式信息; 从物理下行控制信道用于承载终端的所有下行 控制信息。 根据本发明的一个方面, 提供一种下行控制信息处理方法。 才艮据本发明的下行控制信息处理方法包括:在终端支持的载波单元上设 置主物理下行控制信道和归属于主物理下行控制信道的至少一个从物理下行 控制信道; 其中, 主物理下行控制信道用于承载其所在的载波单元的下行控 制信息, 从物理下行控制信道用于承载终端所支持的除主物理下行控制信道 所在的载波单元之外的载波单元的下行控制信息。 通过本发明的上述至少一个技术方案, 提供 LTE-Advanced系统中下行 控制信息的发送方法, 相比于现有技术, 能够兼容 LTE-Advanced 与 LTE Release-8 , 能够提高 LTE-Advanced 系统的调度灵活性和吞吐量, 减少终端 的盲检测次数。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 la是根据相关技术的 LTE系统 FDD模式的帧结构示意图; 图 lb是根据相关技术的 LTE系统 TDD模式的帧结构示意图; 图 2是才艮据本发明方法实施例一的下行控制信息处理方法的流程图; 图 3a是 居本发明方法实例一的 PDCCH结构的示意图; 图 3b是 居本发明方法实例二的 PDCCH结构的示意图; 图 3c是 居本发明方法实例三的 PDCCH结构的示意图; 图 4是才艮据本发明方法实施例二的下行控制信息处理方法的流程图; 图 5a是 居本发明方法实例四的 PDCCH结构的示意图; 图 5b是 居本发明方法实例五的 PDCCH结构的示意图; 图 5c是才艮据本发明方法实例六的 PDCCH结构的示意图; 图 5d是才艮据本发明方法实例七的 PDCCH结构的示意图。 具体实施方式 功能相克述 本发明的基本思路是: 由于目前 LTE-Advanced标准中对于下行控制信 息的发送(即, PDCCH 的形式) 没有相应的描述, 针对该问题, 本发明提 供一种下行控制信息处理方法, 通过设置主 PDCCH和从 PDCCH, 并在主 PDCCH和从 PDCCH上 载相应的信息, 可以使得终端通过读取主 PDCCH 和从 PDCCH上承载的信息来获得下行控制信息。 下面将结合附图详细描述本发明。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 方法实施例一 才艮据本发明实施例 , 提供了一种下行控制信息处理方法。 需要说明的是, 为了便于描述, 在下文中以步骤的形式示出并描述了本 发明的方法实施例的技术方案, 在下文中所示出的步骤可以在诸如一组计算 机可执行指令的计算机系统中执行。 虽然在相关的附图中示出了逻辑顺序 , 但是在某些情况下 , 可以以不同于此处的顺序执行所示出或描述的步骤。 图 2 是才艮据本发明实施例的下行控制信息处理方法的流程图, 如图 2 所示, 该方法包括以下步骤 (步骤 S202至步骤 S204 ): 步骤 S202, 在终端支持的载波单元上设置主物理下行控制信道和归属 于主物理下行控制信道的至少一个从物理下行控制信道, 其中, 主物理下行 控制信道的个数可以为 1 ; 步骤 S204, 主物理下行控制信道用于承载从物理下行控制信道的参数 信息, 参数信息包括至少以下之一: 从物理下行控制信道的位置信息、 从物 理下行控制信道的格式信息; 从物理下行控制信道用于承载终端的所有下行 控制信息, 其中, 位置信息可以包括以下之一: 从物理下行控制信道所在的 载波单元的位置、 从物理下行控制信道在其所在的载波单元内的控制信道单 元的起始位置、 承载从物理下行控制信道的控制信道单元的数量, 优选地, 上述参数信息还可以包括从物理下行控制信道的个数。 在具体实施过程中 ,主物理下行控制信道与从物理下行控制信道可以位 于同一载波单元上, 也可以位于不同的载波单元上, 且每个从物理下行控制 信道可以承载一个或多个载波单元的下行控制信息, 其中, 主物理下行控制 信道可以位于一个载波单元上 , 每个从物理下行控制信道可以位于一个或多 个载波单元上。 通过本发明实施例提供的技术方案, 提供了 LTE-Advanced系统中下行 控制信息的发送方法, 相比于现有技术, 能够兼容 LTE-Advanced 与 LTE Release-8 , 能够提高 LTE-Advanced 系统的调度灵活性和吞吐量, 减少终端 的盲检测次数。 在物理下行控制信道(PDCCH ) 中, 下行控制信息 (Downlink Control
Information ) 的格式可以分为以下几种: DCI format 0、 DCI format 1、 DCI format 1A、 DCI format 1B、 DCI format 1C、 DCI format 1D、 DCI format 2和 DCI format 2A。 其中, DCI format 0用于指示物理上行共享信道 ( Physical uplink shared channel,筒称为 PUSCH )的调度; DCI format 1、 DCI format 1A、 DCI format 1B、 DCI format 1C、 DCI format ID用于指示物理下行共享信道 ( Physical downlink shared channel, 筒称为 PDSCH ) 码字调度的不同模式; DCI format 2, DCI format 2A用于空分复用不同的模式; DCI format 3 , DCI format 3A用于指示物理上行控制信道 ( Physical uplink control channel , 筒称 为 PUCCH ) 和 PUSCH的功率控制指令的不同模式。 在数据传输过程中, 业务数据的传输主要有 7种传输模式, 每种模式具 有相应的 DCI format,用户设备( user equipment, 筒称为 UE )接收的 PDCCH 模式由高层信令半静态配置。 其中, 用于传输 PDCCH的物理资源以控制信道单元 ( Control Channel Element, 筒称为 CCE )为单位, 一个 PDCCH可能占用 1个、 2个、 4个、 8 个 CCE , 其中, 一个 CCE的大小是 9个资源组 ( Resource Element Group , 筒称为 REG ), 即, 36个资源单元(Resource Element, 筒称为 RE )。 对于 1 个、 2个、 4个、 8个 CCE的四种 PDCCH, 采用树状的集合( Aggregation ), 即: 一个 CCE的 PDCCH可以从任意 CCE位置开始; 二个 CCE的 PDCCH 从偶数 CCE位置开始;四个 CCE的 PDCCH从四的整数倍的 CCE位置开始; 八个 CCE的 PDCCH从八的整数倍的 CCE位置开始。 上述每一个等级的集合 ( Aggregation level ) 定义一个搜索空间, 包括 公有 (common ) 和终端专有 ( UE Specific ) 的搜索空间。 整个搜索空间的 CCE数目由每个下行子帧中 PCFICH指示的控制区所占用的 OFDM符号数 和 PHICH的组数决定 , UE在搜索空间内按所处传输模式的 DCI format对所 有的可能的 PDCCH码率进行盲检测。 iii.设系统的下行载波单元 ( component carrier ) 的个数为 5 个, LTE-Advanced终端的下行接收能力与系统下行带宽相同。
LTE-Advanced终端通过盲检测, 获得主 PDCCH 中 载的至少一个从 PDCCH的参数信息, 该参数信息可以包括从 PDCCH的数量、 各从 PDCCH 的位置信息, 其中, 该位置信息可以为以下至少之一: 从 PDCCH所在的载 波单元、 从 PDCCH所在的载波单元内的 CCE位置。
LTE-Advanced 终端按该参数信息的指示检测从 PDCCH, 检测出各从 PDCCH后, LTE-Advanced终端按照各从 PDCCH所 载的控制信息进行后 续的相关操作。 实例一 图 3a为实例一所示的主 PDCCH和从 PDCCH结构的示意图, 如图 3a 所示, 主 PDCCH位于 component carrier3上, 主 PDCCH对每个下行载波单 元单独承载归属于该主 PDCCH的多个从 PDCCH的参数信息, 在该图中, component carrier2、 component carrier3和 component carrier5上有从 PDCCH, 且 component carrier2、 component carrier3 和 component carrier5 上的从 PDCCH承载其各自所在载波单元的下行控制信息。
LTE-Advanced终端通过盲检测 ,获得主 PDCCH中 载的各从 PDCCH 的参数信息后, LTE-Advanced 终端按照该参数信息的指示检测 component carrier2、 component carrier3和 component carrier5上的从 PDCCH, 检测出 component carrier2、 component carrier3和 component carrier5上的 PDCCH后 , LTE-Advanced终端才艮据 component carrier2、 component carrier3和 component carrier5上的从 PDCCH所承载的控制信息进行后续的相关操作。 图 3a 中虚线才匡表示在该载波单元上没有从 PDCCH, 即, component carrier 1和 component carrier4上没有从 PDCCH , 不 载下行控制信息。 实例二 图 3b为实例二所示的主 PDCCH和从 PDCCH结构的示意图, 如图 3b 所示, 主 PDCCH位于 component carrier3上, 主 PDCCH对每个下行载波单 元单独指示归属于该主 PDCCH的多个从 PDCCH的参数信息 , 在该图中 , component carrier3 和 component carrier5 上有从 PDCCH , 且 component carrier3和 component carrier5上的从 PDCCH可 载多个载波单元的下行控 制信息 , 例如, component carrier3上的从 PDCCH承载 component carrier 1、 component carrier2 和 component carrier3 上的下行控制信息, component carrier5上的从 PDCCH承载 component carrier4和 component carrier5上的下 行控制信息。
LTE- Advanced终端通过盲检测 ,获得主 PDCCH中 载的各从 PDCCH 的参数信息后, LTE-Advanced 终端按照该参数信息的指示检测 component carrier3和 component carrier5上的从 PDCCH, 检测出 component carrier3和 component carrier5 上的 PDCCH 后, LTE-Advanced 终端才艮据 component carrier3和 component carrier5上的从 PDCCH所 载的控制信息进行后续的 相关操作。 实例三 图 3c为实例三所示的主 PDCCH和从 PDCCH结构的示意图, 如图 3c 所示, 包括一个主 PDCCH 和一个从 PDCCH, 其中, 该主 PDCCH 位于 component carrier3上, 从 PDCCH位于多个 component carrier上, 并承载多 个 component carrier 的下行控制信息, 即, 该从 PDCCH 位于 component carrier3、 component carrier4 和 component carrier5 上, 且承载 component carrier4和 component carrier5上的下行控制信息,主 PDCCH 载该从 PDCCH 的参数信息。 LTE-Advanced终端通过盲检测, 获得主 PDCCH 中 载的从 PDCCH 的参数信息后,按其指示在相应的载波单元上得到 CCE承载的数据, 并按照 载波单元序号, 将相应载波单元上承载的数据合并, 检测出从 PDCCH后, LTE-Advanced终端根据从 PDCCH所承载的下行控制信息进行后续的相关操 作。 通过实例一、实例二和实例三所述的方法,可以增加系统调度的灵活性, 提高系统的吞吐量, 减少盲检测次数。 方法实施例二 才艮据本发明实施例 , 提供一种下行控制信息处理方法。 图 4 是才艮据本发明实施例的下行控制信息处理方法的流程图, 如图 4 所示, 该方法包括以下步骤 (步骤 S402至步骤 S404 ): 步骤 S402, 在终端支持的载波单元上设置主物理下行控制信道和归属 于主物理下行控制信道的至少一个从物理下行控制信道, 其中, 主物理下行 控制信道的个数可以为 1 ; 步骤 S404, 主物理下行控制信道用于承载其所在的载波单元的下行控 制信息, 从物理下行控制信道用于承载终端所支持的除主物理下行控制信道 所在的载波单元之外的载波单元的下行控制信息。 在具体实施过程中,主物理下行控制信道与从物理下行控制信道可以位 于同一载波单元上, 也可以位于不同的载波单元上, 且每个从物理下行控制 信道可以承载一个或多个载波单元的下行控制信息, 其中, 主物理下行控制 信道可以位于一个载波单元上, 从物理下行控制信道可以位于一个或多个载 波单元上。 优选地,主物理下行控制信道还可以用于承载从物理下行控制信道的参 数信息, 参数信息包括至少以下之一: 从物理下行控制信道的位置信息、 从 物理下行控制信道的格式信息, 位置信息可以包括以下之一: 从物理下行控 制信道所在的载波单元的位置、 从物理下行控制信道在其所在的载波单元内 的控制信道单元的起始位置、 承载从物理下行控制信道的控制信道单元的数 量, 优选地, 上述参数信息还可以包括从物理下行控制信道的个数。 i设系统的下行载波单元的个数为 5个, LTE-Advanced终端的下行接 收能力与系统下行带宽相同。
LTE-Advanced终端对主 PDCCH和从 PDCCH都进行盲检测, 获得主 PDCCH中 载的其所在的载波单元上的下行控制信息,以及从 PDCCH中 载的该 LTE-Advanced终端其他载波单元上的下行控制信息。 LTE-Advanced终端通过盲检测, 获得主 PDCCH 中 载的至少一个从 PDCCH的参数信息, 该参数信息可以包括从 PDCCH的数量、 各从 PDCCH 的位置信息, 其中, 该位置信息可以为以下至少之一: 从 PDCCH所在的载 波单元、 从 PDCCH所在的载波单元内的 CCE位置。 LTE-Advanced 终端按该参数信息的指示检测从 PDCCH, 检测出各从
PDCCH后, LTE-Advanced终端按照各从 PDCCH所 载的控制信息进行后 续的相关操作。 实例四 图 5a为实例四所示的主 PDCCH和从 PDCCH结构的示意图, 如图 5a 所示, 主 PDCCH位于 component carrier3上, 该主 PDCCH承载 component carrier3的下行控制信息,在该图中 ,只有 component carrier3上有从 PDCCH, 即 , 主 PDCCH和从 PDCCH位于相同的载波单元上 , 且 component carrier3 上的从 PDCCH 可 ^lc载多个载波单元的下行控制信息, 例如, component carrier3上的从 PDCCH承载 component carrier2和 component carrier4上的下 行控制信息 , 即 , 该从 PDCCH对应的 component carrier个数为 2。 jt匕时, LTE-Advanced终端可以进行盲检测,获得主 PDCCH和 component carrier3上的从 PDCCH的下行控制信息, 并进行后续的相关操作。 优选地 , 主 PDCCH还可以 载归属于该主 PDCCH的多个从 PDCCH 的参数信息, 此时, LTE-Advanced终端通过盲检测, 获得主 PDCCH中承载 的各从 PDCCH的参数信息后 , LTE-Advanced终端按照该参数信息的指示检 测 component carrier3上的从 PDCCH,检测出 component carrier3上的 PDCCH 后, LTE-Advanced终端才艮据 component carrier3上的从 PDCCH所^载的控 制信息进行后续的相关操作。 实例五 图 5b为实例五所示的主 PDCCH和从 PDCCH结构的示意图, 如图 5b 所示, 主 PDCCH位于 component carrier3上, 该主 PDCCH承载 component carrier3的下行控制信息 ,在该图中,只有 component carrier4上有从 PDCCH, 即 , 主 PDCCH和从 PDCCH位于不同的载波单元上 , 且 component carrier4 上的从 PDCCH 可以 载多个载波单元的下行控制信息, 例如, component carrier3 上的从 PDCCH 承载 component carrier 1、 component carrier4 和 component carrier5上的下行控制信息, 即, 该从 PDCCH对应的 component carrier个数为 3。 jt匕时 , LTE-Advanced终端可以进行盲检测 ,获得主 PDCCH和 component carrier4上的从 PDCCH的下行控制信息, 并进行后续的相关操作。 优选地 , 主 PDCCH还可以 载归属于该主 PDCCH的多个从 PDCCH 的参数信息, 此时, LTE-Advanced终端通过盲检测, 获得主 PDCCH中承载 的各从 PDCCH的参数信息后, LTE-Advanced终端按照该参数信息的指示检 测 component carrier4上的从 PDCCH,检测出 component carrier4上的 PDCCH 后, LTE-Advanced终端才艮据 component carrier4上的从 PDCCH所^载的控 制信息进行后续的相关操作。 实例六 图 5c为实例六所示的主 PDCCH和从 PDCCH结构的示意图, 如图 5c 所示, 主 PDCCH位于 component carrier3上, 该主 PDCCH承载 component carrier3的下行控制信息 ,在该图中, component carrier4和 component carrier5 上有从 PDCCH, 即, 主 PDCCH和从 PDCCH位于不同的载波单元上, 且 component carrier4和 component carrier5上的从 PDCCH可承载多个载波单元 的下行控制信息, 例如, component carrier4 和 component carrier5 上的从 PDCCH都承载 component carrier 1、 component carrier2、 component carrier4 和 component carrier5 上的下行控制信息, 即, 每个从 PDCCH 对应的 component carrier个数为 4。 jt匕时, LTE-Advanced终端可以进行盲检测,获得主 PDCCH、 component carrier4上的从 PDCCH, component carrier5上的从 PDCCH的下行控制信息, 并进行后续的相关操作。 优选地 , 主 PDCCH还可以 载归属于该主 PDCCH的多个从 PDCCH 的参数信息, 此时, LTE-Advanced终端通过盲检测, 获得主 PDCCH中承载 的各从 PDCCH的参数信息后 , LTE-Advanced终端按照该参数信息的指示检 ¾¾'J component carrier4和 component carrier5上 ¾A* PDCCH,检¾¾\1出 component carrier4和 component carrier5上的 PDCCH后 , LTE-Advanced终端分别才艮据 component carrier4和 component carrier5上的从 PDCCH所承载的控制信息进 行后续的相关操作。 实例七 图 5d为实例七所示的主 PDCCH和从 PDCCH结构的示意图, 如图 5d 所示, 在 m子帧主 PDCCH指示的 PDSCH中承载着上层信令, 该上层信令 指示从 PDCCH的位置和格式等信息。从第( m+n )个子帧开始, LTE-Advanced 终端按 m子帧上层信令的配置对从 PDCCH进行检测并按其承载的控制信息 进行相关操作, 直至新的信令配置为止, 其中, m, n取值为非负整数。
LTE-Advanced 终端才艮据主 PDCCH所在的载波单元上的控制信息进行 后续的相关操作 , 在高层信令由载波单元的 PDSCH 载时 , LTE-Advanced 终端根据该高层信令指示的载波单元和格式检测从 PDCCH , 检测出从 PDCCH后 , LTE-Advanced终端才艮据 component carrier4和 component carrier5 上的从 PDCCH所承载的控制信息进行后续的相关操作。 如上所述, 借助于本发明提供的下行控制信息处理方法, 提供 LTE-Advanced系统中下行控制信息的发送方法, 相比于现有技术, 能够兼容 LTE-Advanced与 LTE Release-8 ,提高 LTE-Advanced系统的调度灵活性和吞 吐量, 减少终端的盲检测次数。 才艮据本发明实施例, 还提供了一种计算机可读介质, 该计算机可读介质 上存储有计算机可执行的指令, 当该指令被计算机或处理器执行时, 使得计 算机或处理器执行如图 2及图 4所示的各步骤的处理, 优选地, 可以执行上 述的各方法实施例及实例中的一个或多个。 另外,本发明的实现没有对系统架构和目前的处理流程修改,易于实现, 便于在技术领域中进行推广, 具有较强的工业适用性。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^^申和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书 一种下行控制信息处理方法, 其特征在于, 包括:
在终端支持的载波单元上设置主物理下行控制信道和归属于所述 主物理下行控制信道的至少一个从物理下行控制信道;
其中,所述主物理下行控制信道用于承载所述从物理下行控制信道 的参数信息, 所述参数信息包括至少以下之一: 从物理下行控制信道的 位置信息、 从物理下行控制信道的格式信息; 所述从物理下行控制信道 用于承载终端的所有下行控制信息。 根据权利要求 1所述的方法, 其特征在于, 所述主物理下行控制信道与 所述从物理下行控制信道位于同一载波单元上。 根据权利要求 1所述的方法, 其特征在于, 所述主物理下行控制信道与 所述从物理下行控制信道位于不同的载波单元上。 根据权利要求 1所述的方法, 其特征在于, 每个从物理下行控制信道承 载一个或多个载波单元的下行控制信息。 才艮据权利要求 1所述的方法, 其特征在于, 所述主物理下行控制信道位 于一个载波单元上。 根据权利要求 1所述的方法, 其特征在于, 每个从物理下行控制信道位 于一个或多个载波单元上。 根据权利要求 1至 6中任一项所述的方法, 其特征在于, 所述主物理下 行控制信道的个数为 1。 根据权利要求 1至 6中任一项所述的方法, 其特征在于, 所述位置信息 包括至少以下之一: 从物理下行控制信道所在的载波单元的位置、 从物 理下行控制信道在其所在的载波单元内的控制信道单元的起始位置、 载从物理下行控制信道的控制信道单元的数量。
9. 一种下行控制信息处理方法, 其特征在于, 包括:
在终端支持的载波单元上设置主物理下行控制信道和归属于所述 主物理下行控制信道的至少一个从物理下行控制信道;
其中,所述主物理下行控制信道用于^载其所在的载波单元的下行 控制信息, 所述从物理下行控制信道用于承载终端所支持的除所述主物 理下行控制信道所在的载波单元之外的载波单元的下行控制信息。
10. 根据权利要求 9所述的方法 , 其特征在于 , 所述主物理下行控制信道与 所述从物理下行控制信道位于同一载波单元上。
11. 根据权利要求 9所述的方法 , 其特征在于 , 所述主物理下行控制信道与 所述从物理下行控制信道位于不同的载波单元上。
12. 根据权利要求 9所述的方法, 其特征在于, 每个从物理下行控制信道承 载一个或多个载波单元的下行控制信息。
13 根据权利要求 9所述的方法 , 其特征在于 , 所述主物理下行控制信道位 于一个载波单元上。
14. 根据权利要求 9所述的方法, 其特征在于, 每个从物理下行控制信道位 于一个或多个载波单元上。
15. 根据权利要求 9所述的方法, 其特征在于, 所述主物理下行控制信道的 个数为 1。
16. 根据权利要求 9所述的方法, 其特征在于, 从物理下行控制信道的参数 信息由高层信令控制, 所述参数信息包括至少以下之一: 从物理下行控 制信道的位置信息、 从物理下行控制信道的格式信息。
17. 根据权利要求 9所述的方法, 其特征在于, 还包括:
所述主物理下行控制信道用于 7|c载所述从物理下行控制信道的参 数信息, 所述参数信息包括至少以下之一: 从物理下行控制信道的位置 信息、 从物理下行控制信道的格式信息。 根据权利要求 16或 17所述的方法 , 其特征在于 , 所述位置信息包括至 少以下之一: 从物理下行控制信道所在的载波单元的位置、 从物理下行 控制信道在其所在的载波单元内的控制信道单元的起始位置、 承载从物 理下行控制信道的控制信道单元的数量。
PCT/CN2009/072925 2008-11-03 2009-07-27 下行控制信息处理方法 WO2010060308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810175504.1 2008-11-03
CN 200810175504 CN101404526B (zh) 2008-11-03 2008-11-03 下行控制信息处理方法

Publications (1)

Publication Number Publication Date
WO2010060308A1 true WO2010060308A1 (zh) 2010-06-03

Family

ID=40538407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072925 WO2010060308A1 (zh) 2008-11-03 2009-07-27 下行控制信息处理方法

Country Status (2)

Country Link
CN (1) CN101404526B (zh)
WO (1) WO2010060308A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9204400B2 (en) 2009-11-06 2015-12-01 Huawei Technologies Co., Ltd. Method and device for resource configuration

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404526B (zh) * 2008-11-03 2013-05-01 中兴通讯股份有限公司 下行控制信息处理方法
CN101873669B (zh) * 2009-04-22 2012-12-26 电信科学技术研究院 系统信息通知方法、系统及装置
GB2469800A (en) 2009-04-27 2010-11-03 Nec Corp Communications system
WO2010124444A1 (zh) * 2009-04-27 2010-11-04 华为技术有限公司 信息发射与接收的方法和设备
WO2010125769A1 (ja) * 2009-04-28 2010-11-04 三菱電機株式会社 移動体通信システム
CN101610564B (zh) 2009-04-29 2015-04-01 中兴通讯股份有限公司 一种下行控制信息的发送和检测方法
US8989208B2 (en) * 2009-04-30 2015-03-24 Qualcomm Incorporated PDCCH search space design for LTE-A multi-carrier operation
US8995358B2 (en) * 2009-04-30 2015-03-31 Qualcomm Incorporated False detection reduction during multi-carrier operation
CN101888648A (zh) * 2009-05-11 2010-11-17 大唐移动通信设备有限公司 上行同步控制方法及装置
KR101365844B1 (ko) * 2009-05-25 2014-02-21 닛본 덴끼 가부시끼가이샤 기지국 장치, 통신 시스템, 맵핑 제어 방법 및 프로그램 기록 매체
CN101909333B (zh) * 2009-06-05 2014-08-20 电信科学技术研究院 一种pdcch调度传输的方法、设备和系统
AU2010261246B2 (en) 2009-06-19 2014-10-02 Mitsubishi Electric Corporation Mobile communication system
ES2541836T3 (es) * 2009-06-25 2015-07-27 Koninklijke Philips N.V. Procedimiento de comunicaciones en una red móvil
CN101938841B (zh) * 2009-06-30 2016-03-09 华为技术有限公司 一种上行资源获取方法、调度方法、装置及系统
CN101998504B (zh) * 2009-08-10 2013-04-10 电信科学技术研究院 多载波聚合系统中下行信息的传输方法及装置
CN101998681B (zh) * 2009-08-15 2014-07-09 华为技术有限公司 信令处理方法、基站以及用户设备
CN101998509B (zh) * 2009-08-28 2013-01-23 华为技术有限公司 确定搜索空间、候选控制信道资源的方法及装置
BR112012006948B1 (pt) 2009-09-28 2021-04-27 Samsung Electronics., Ltd Método para estender uma região de pdcch e aparelho de ue para receber informação de dci
CN102035772B (zh) * 2009-09-29 2014-06-04 华为技术有限公司 基于多载波的盲检测方法和用户设备
CN102014494B (zh) * 2009-09-29 2012-07-04 电信科学技术研究院 一种下行调度信息的配置方法及装置
CN102036305B (zh) 2009-09-30 2014-05-07 华为技术有限公司 控制信息的发送和接收方法、装置和通信系统
CN102056185B (zh) * 2009-10-31 2014-12-10 华为技术有限公司 信道盲检测方法、分配方法和装置
CN102056198B (zh) * 2009-10-31 2015-06-03 华为技术有限公司 一种下行信道传输及检测方法、装置和系统
US20110105105A1 (en) 2009-11-02 2011-05-05 Sagfors Mats Fredrik Methods and Arrangements in a Wireless Communication System
CN102088343B (zh) 2009-12-03 2014-06-25 华为技术有限公司 载波聚合时反馈ack/nack信息的方法、基站和用户设备
CN102111851B (zh) * 2009-12-23 2014-06-18 中兴通讯股份有限公司南京分公司 一种实现下行控制信令传输的方法及系统
US8804586B2 (en) 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
CA2786801C (en) * 2010-01-11 2016-09-27 Research In Motion Limited Control channel interference management for heterogeneous network via an extended pdcch
KR20190090089A (ko) 2010-02-12 2019-07-31 인터디지탈 패튼 홀딩스, 인크 셀-에지 사용자 성능을 향상시키고 하향링크 협력 컴포넌트 캐리어를 통해 무선 링크 실패 조건을 시그널링하는 방법 및 장치
CN102083223A (zh) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 一种发送dci和上行传输的方法、系统及装置
CN102215586B (zh) * 2010-04-02 2014-12-17 电信科学技术研究院 一种物理下行控制信道pdcch盲检的方法及设备
CN102215507B (zh) * 2010-04-02 2015-07-22 中兴通讯股份有限公司 下行控制信道的检测方法和系统
AU2011241357B2 (en) * 2010-04-14 2014-12-18 Lg Electronics Inc. Method for setting a search space for a relay node in a wireless communication system and apparatus for same
CN102378255B (zh) * 2010-08-24 2014-07-16 中兴通讯股份有限公司 一种提高物理下行控制信道传输性能的方法及装置
CN102158976B (zh) * 2011-04-02 2013-06-26 电信科学技术研究院 一种调度和接收数据的方法、系统及设备
JP5801093B2 (ja) 2011-04-27 2015-10-28 シャープ株式会社 基地局、端末、通信システムおよび通信方法
JP5810399B2 (ja) * 2011-04-27 2015-11-11 シャープ株式会社 基地局、端末および無線通信方法
CN102186251B (zh) * 2011-04-29 2016-09-28 中兴通讯股份有限公司 下行控制信息的传输方法及系统
CN102781095B (zh) * 2011-05-09 2015-07-29 华为技术有限公司 数据传输的方法、基站、用户设备及系统
CN102891728B (zh) * 2011-07-20 2016-06-08 华为技术有限公司 一种物理下行控制信道发送和盲检测方法、设备
CN102932299B (zh) * 2011-08-08 2015-12-16 普天信息技术研究院有限公司 一种物理下行控制信道的发送方法
CN102820960B (zh) * 2012-01-09 2014-08-20 华为终端有限公司 实现混合自动重传请求的方法、用户设备和基站
CN104936206A (zh) * 2014-03-20 2015-09-23 中兴通讯股份有限公司 控制信道的配置、检测方法、装置及系统
CN111556571B (zh) 2015-11-11 2023-11-14 华为技术有限公司 传输调度信息的方法和装置
CN107534532A (zh) * 2015-12-04 2018-01-02 华为技术有限公司 数据传输的方法和设备
CN107959557B (zh) * 2016-10-15 2020-01-03 上海朗帛通信技术有限公司 一种支持多载波通信的ue、基站中的方法和设备
CN108271261B (zh) * 2016-12-30 2023-06-27 华为技术有限公司 一种下行控制信道指示方法、终端设备及网络设备
WO2018132983A1 (zh) 2017-01-18 2018-07-26 广东欧珀移动通信有限公司 传输下行控制信息的方法、终端设备和网络设备
US10757581B2 (en) * 2017-03-22 2020-08-25 Mediatek Inc. Physical downlink control channel design for NR systems
CN116133098A (zh) * 2017-03-24 2023-05-16 中兴通讯股份有限公司 一种物理下行控制信道的传输方法及装置
CN110719645B (zh) * 2018-07-13 2021-12-14 维沃移动通信有限公司 一种信道检测指示方法、终端及网络设备
CN113014641A (zh) * 2021-02-23 2021-06-22 合肥师范学院 一种利用工业大数据系统控制机器设备的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719942A (zh) * 2005-08-17 2006-01-11 中兴通讯股份有限公司 Td-scdma系统中多载波小区配置高速下行共享信道的方法
CN1968050A (zh) * 2005-11-15 2007-05-23 鼎桥通信技术有限公司 时分-同步码分多址接入系统中的物理信道配置方法
CN101043499A (zh) * 2006-04-14 2007-09-26 华为技术有限公司 在正交频分复用系统中捕获信道上传输信号的方法和设备
WO2008014275A2 (en) * 2006-07-24 2008-01-31 Qualcomm Incorporated Variable control channel for a wireless communication system
CN101404526A (zh) * 2008-11-03 2009-04-08 中兴通讯股份有限公司 下行控制信息处理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433924C (zh) * 2005-10-27 2008-11-12 华为技术有限公司 一种上行/下行控制信道的实现方法
CN101242216A (zh) * 2007-02-06 2008-08-13 北京三星通信技术研究有限公司 无线通信系统中下行控制信令的传输设备和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719942A (zh) * 2005-08-17 2006-01-11 中兴通讯股份有限公司 Td-scdma系统中多载波小区配置高速下行共享信道的方法
CN1968050A (zh) * 2005-11-15 2007-05-23 鼎桥通信技术有限公司 时分-同步码分多址接入系统中的物理信道配置方法
CN101043499A (zh) * 2006-04-14 2007-09-26 华为技术有限公司 在正交频分复用系统中捕获信道上传输信号的方法和设备
WO2008014275A2 (en) * 2006-07-24 2008-01-31 Qualcomm Incorporated Variable control channel for a wireless communication system
CN101404526A (zh) * 2008-11-03 2009-04-08 中兴通讯股份有限公司 下行控制信息处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9204400B2 (en) 2009-11-06 2015-12-01 Huawei Technologies Co., Ltd. Method and device for resource configuration

Also Published As

Publication number Publication date
CN101404526B (zh) 2013-05-01
CN101404526A (zh) 2009-04-08

Similar Documents

Publication Publication Date Title
WO2010060308A1 (zh) 下行控制信息处理方法
US11190318B2 (en) Uplink channel transmitting method and user device, and uplink channel receiving method and base station
JP6786665B2 (ja) アンライセンスバンドをサポートする無線アクセスシステムにおいて部分サブフレームを構成してスケジューリングする方法及びこれをサポートする装置
US11438883B2 (en) Method and apparatus for low latency and high reliability data transmission in wireless communication system
EP3327975B1 (en) Downlink control information receiving method and user equipment, and downlink control information transmission method and base station
US11240790B2 (en) Method and apparatus for transmitting control and data information in wireless cellular communication system
US9894656B2 (en) Method and apparatus for transceiving data in a wireless communication system which supports a plurality of component carriers
US9281930B2 (en) Method for transmitting/receiving data in wireless access system and base station for same
US9225503B2 (en) Method for transmitting/receiving data in wireless communication system and base station for same
US9438399B2 (en) Method for receiving downlink control information in wireless access system and terminal therefor
EP2856685B1 (en) Hybrid automatic repeat request (harq) mapping for carrier aggregation (ca)
US10057032B2 (en) Method and device for transmitting data for half-duplex device
WO2012152141A1 (zh) 下行控制信道的检测方法、用户设备及基站
KR101798740B1 (ko) 무선 통신 시스템에서 ack/nack 수신 방법 및 장치
WO2011157038A1 (zh) 载波聚合场景下下行控制信息的检测方法和用户设备
WO2013064106A1 (zh) Pucch的资源配置方法、传输方法、装置和系统
KR20110081070A (ko) 복수의 컴포넌트 캐리어를 지원하는 무선통신 시스템에서 크로스-캐리어 스케쥴링을 통한 데이터 전송 방법 및 장치
WO2011032397A1 (zh) 一种分量载波的索引和控制格式指示值的传输方法及系统
TWI566622B (zh) 用於行動式網路通信之方法
WO2014109552A1 (ko) 반송파 집성 시스템에서 통신 방법 및 장치
CN106688202B (zh) 支持载波聚合的无线通信系统中的信号发送和接收方法及其装置
JP7398562B2 (ja) 下りリンク制御情報を送信する方法及び基地局、並びに下りリンク制御情報を受信するユーザ機器、装置及び格納媒体
WO2012013149A1 (zh) 反馈信息的信道资源指示方法及设备
WO2015163707A1 (ko) 비면허 대역을 지원하는 무선 접속 시스템에서 데이터 송수신 방법 및 장치
WO2012015215A2 (ko) 다중 반송파를 지원하는 무선 통신 시스템에서 기지국이 하향링크 할당 인덱스 정보를 포함하는 하향링크 제어정보를 전송하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828569

Country of ref document: EP

Kind code of ref document: A1