WO2012150746A1 - Self-resonance coil having multiloop for magnetic resonance wireless power transfer - Google Patents

Self-resonance coil having multiloop for magnetic resonance wireless power transfer Download PDF

Info

Publication number
WO2012150746A1
WO2012150746A1 PCT/KR2011/006898 KR2011006898W WO2012150746A1 WO 2012150746 A1 WO2012150746 A1 WO 2012150746A1 KR 2011006898 W KR2011006898 W KR 2011006898W WO 2012150746 A1 WO2012150746 A1 WO 2012150746A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic field
resonance
loop
magnetic
Prior art date
Application number
PCT/KR2011/006898
Other languages
French (fr)
Korean (ko)
Inventor
박영진
손현창
강지명
김관호
김도현
김진욱
이순우
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2012150746A1 publication Critical patent/WO2012150746A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H04B5/79

Definitions

  • the present invention relates to a magnetic resonance wireless power transmission system, and more particularly, to a magnetic resonance coil having a plurality of multiple loops for increasing efficiency and utilization of a system in a magnetic resonance wireless power transmission system.
  • Magnetic field resonant wireless power transmission technology is a technology having a high transmission efficiency even at a distance farther than the resonant coil diameter by a strong magnetic field coupling between magnetic resonators having the same resonance frequency.
  • a helix or spiral coil structure is used by winding several turns in one loop structure as a self resonator structure.
  • a structure having a plurality of loop structures is used for multi-device charging in the electromagnetic induction method, or a structure having a plurality of loop structures connected in order to make the intensity of the transmitter magnetic field uniform in the transmitting coil range.
  • the transmitting magnetic resonator in the case of a magnetic resonator having one loop, power transmission to a plurality of receivers around the magnetic resonator is possible, but may be somewhat inadequate in terms of its efficiency.
  • the width of the transmitting magnetic resonator is larger than three or four times the total size of the receiving magnetic resonators, the transmitting magnetic resonator generates unnecessary magnetic fields even in the absence of the receiving magnetic resonator.
  • a single loop structure is used as a magnetic coil by winding several turns, a magnetic field is generated throughout, and a radiating magnetic field is generated due to the large area of the loop, thereby causing electromagnetic interference. Therefore, it is not efficient because it is necessary to shield the electromagnetic waves by using expensive shielding material over the entire area.
  • the portion in which the receiving magnetic resonator is placed may increase the efficiency by making a larger magnetic coupling than the portion without the receiving magnetic resonator, but is unsuitable because it has a uniform magnetic field defect in the entire area of the transmitting resonator.
  • each independent loop coil should have the same resonant frequency, and a small independent loop coil in a large loop coil may have electromagnetic induction by a large loop coil. This also causes a relatively large magnetic field to be generated in unnecessary areas, which is inefficient in terms of transmission efficiency.
  • an object of the present invention is to provide a magnetic field resonant wireless power transmission system capable of efficiently transmitting wireless power using a magnetic resonance coil having a separate multiple loop.
  • the loop of the magnetic resonance coil is separated into several parts to increase the coupling coefficient by increasing the magnetic field generation in the place where the transmission / reception resonance coil is placed, and to minimize the magnetic field generation in the part without the loop and to make the entire surface of the magnetic resonance coil. It is to provide a magnetic field resonant wireless power transmission system having a wide frequency characteristics so as to reduce the generated magnetic field and increase the reliability of power transmission efficiency against frequency fluctuations.
  • Both ends of the plurality of loop coils included in the self-resonant coil may be open, and may include a capacitor for resonant frequency tuning connected between both ends of the plurality of loop coils included in the self-resonant coil.
  • the magnetic resonance coil is disposed between the transmitter transmitter coil and the receiver receiver coil, and a time-varying magnetic field of the transmitter transmitter coil is concentrated to the first loop coil of the magnetic resonance coil through magnetic field inductive coupling.
  • the time-varying magnetic field formed in the second loop coil of the magnetic resonance coil connected to the first loop coil may be transmitted to the receiver receiver coil through a magnetic field inductive coupling.
  • the magnetic resonance coil includes a first loop coil, a second loop coil, and a third loop coil, and a time-varying magnetic field of a transmitter transmitting resonance coil is transferred to the first loop coil through magnetic field resonance.
  • the time-varying magnetic field is formed in the second loop coil and the third loop coil, and the second loop coil transfers the time-varying magnetic field to the reception resonance coil of the first receiving unit through magnetic field resonance.
  • the loop coil may transfer the time-varying magnetic field to the reception resonance coil of the second receiver through magnetic field resonance.
  • the magnetic resonance coil is disposed between a transmitter transmitter coil and a receiver receiver resonance coil, and a time-varying magnetic field of the transmitter transmitter coil is formed through a magnetic field inductive coupling.
  • the time-varying magnetic field formed in the second loop coil of the magnetic resonance coil connected to the first loop coil may be transferred to the receiver receiving resonance coil through magnetic field resonance.
  • the AC power is connected to both ends of the primary coil of the transformer of the transmitter
  • the transmission resonant coil of the transmitter is connected to both ends of the secondary coil of the transformer of the transmitter
  • the time-varying magnetic field is intensively transmitted to the first loop coil of the magnetic resonance coil through magnetic field resonance
  • the time-varying magnetic field formed in the second loop coil of the magnetic resonance coil connected to the first loop coil is connected to the receiver through magnetic field resonance.
  • the resonant coil of the receiver may be connected to both ends of the secondary coil of the transformer of the receiver
  • the load may be connected to both ends of the primary coil of the transformer of the receiver.
  • a wireless power transmission method for transmitting and receiving a time-varying magnetic field, using a magnetic resonance coil having a structure in which a plurality of loop coils having one or more windings are connected in series or parallel,
  • the time-varying magnetic field is intensively received by one loop coil of the magnetic resonance coil through magnetic field resonance or magnetic field inductive coupling, and the time-varying magnetic field of the other loop coil of the magnetic resonance coil connected to the one loop coil is subjected to magnetic field resonance or It characterized in that the transmission to the receiver coil through the magnetic field induction coupling.
  • a very high coupling can be obtained in a plurality of strong magnetic coupling regions, thereby improving the transmission and reception efficiency and the transmission distance.
  • the magnetic resonance wireless power transmission system using a magnetic resonator having multiple loops according to the present invention it is possible to efficiently transmit power to multiple devices in the magnetic resonance type wireless power transmission system.
  • the magnetic field resonant wireless power transmission system according to the present invention, even if the size of the transmission and reception resonant coil is small and the arrangement with the relay resonant coil is displaced horizontally, it is possible to transmit power with high efficiency at a medium distance.
  • the magnetic field resonance wireless power transmission system it is easy to shield the electromagnetic waves by reducing the generation of magnetic and electric fields.
  • wireless power transmission using a self-resonant coil having multiple loops has a wide frequency characteristic, it is possible to increase the reliability of power transmission efficiency against frequency variation of the source unit.
  • FIG. 1 is a view for explaining a magnetic resonator having multiple loops according to an embodiment of the present invention.
  • 2A is an equivalent circuit example of applying a magnetic resonator having multiple loops as a magnetic resonance coil to an electromagnetic induction wireless power transmission system.
  • 2B is an equivalent circuit of an example in which a magnetic resonator having multiple loops is used as a magnetic resonance coil in a magnetic resonance resonant wireless power transmission system to transmit power to a plurality of loads.
  • 2C is an equivalent circuit of an example in which a magnetic resonator having multiple loops is simultaneously applied to a magnetic resonance and an electromagnetic induction wireless power transmission system.
  • FIG. 3A illustrates a magnetic resonance wireless power transmission system including a magnetic resonator having multiple loops of FIG. 1 as a relay magnetic resonance coil.
  • 3B is an equivalent circuit of FIG. 3A.
  • 4A is a magnetic field distribution diagram of a magnetic resonance coil analyzed using a commercial electromagnetic wave analysis tool.
  • 4B is a magnetic field distribution diagram along the x-axis of FIG. 3A.
  • 4C is a magnetic field distribution diagram of the y-axis of FIG. 3A.
  • FIG. 5 is a simulation circuit diagram for FIG. 3A.
  • FIG. 6 is an S-Parameter result of the simulation for FIG. 4.
  • FIG. 1 is a view for explaining a magnetic resonator (or a magnetic resonance coil) having a multi-loop coil according to an embodiment of the present invention.
  • 1 illustrates a structure of a magnetic resonator having two loop coils as an embodiment of the present invention.
  • the magnetic resonator may include more loop coils, and the loop coils may have a structure in which both ends and ends of each coil are connected in series. The ends of the structure may be connected in parallel, or the loop coils may be connected in a combination of series and parallel.
  • the arrows indicated on the loop coils indicate the current direction, and the direction may be opposite because the AC signal is used.
  • the magnetic resonator collects current in each of the two loop coils
  • the magnetic coil since currents are collected in the region A and the region B of the loop coil, the magnetic coil resonates from the loop coil in the region A and the region B of the loop coil.
  • a strong magnetic field is created, resulting in strong magnetic coupling.
  • region C produces much smaller magnetic fields than regions A and B, and magnetic coupling is also low.
  • 1 illustrates a structure in which a capacitor is connected to the ends of the loop coils so that the loop coils are connected in series at both ends of the capacitor.
  • the present invention is not limited thereto, and the terminal may be opened without using a capacitor as necessary. It is preferable to use a value with a small loss resistance for the capacitor used.
  • a magnetic resonator having multiple loops according to an embodiment of the present invention as shown in FIG. 1 is a structure having a plurality of separate magnetic field coupling portions formed by loop coils, and includes a transmission resonance of a single resonance frequency in the same coil. It can be applied to any magnetic resonance type wireless power transmission system in which reception resonance can occur.
  • Each coupling portion of the magnetic resonator having multiple loops according to an embodiment of the present invention may be coupled to a transmitting coil of a transmitter and a receiving (load) coil of a receiver, as described below. (See FIG. 2A), or may be coupled to a transmitter's transmit coil and a receiver's receive resonant coil and a receiver (load) coil, respectively (see FIG.
  • a transmitter's transmit coil and a transmit resonant coil respectively. It may be used (see FIG. 2B), or may be used as a relay self resonant coil between the transmitting and receiving resonant coils using a transformer and coupled with each resonant coil as shown in FIG. 3B.
  • the transmitting coil of the transmitter is a coil connected to the power supply
  • the transmitting resonant coil of the transmitting unit is a coil between the transmitting coil and the relay resonant coil
  • the relay resonant coil is the transmitting resonant coil of the transmitting unit or the transmitting coil of the transmitting unit (when there is no transmitting resonant coil).
  • the magnetic field is transmitted from the magnetic field through the magnetic resonance or the magnetic field inductive coupling, and the magnetic field is transmitted to the receiving resonance coil of the receiver or the receiving (load) coil of the receiver (if there is no receiving resonance coil).
  • the receiving (load) coil receives a magnetic field from the receiving resonant coil, and the receiving (load) coil is connected to a rectifying circuit, a rectifying circuit, and a circuit such as a DC / DC converter to charge a battery or It can provide power.
  • 2A is an equivalent circuit of an example in which a magnetic resonator having multiple loops is used as a magnetic resonance coil proposed in an electromagnetic induction wireless power transmission system.
  • Magnetic resonators (equivalent circuits Rm1, Cm1, Lm1, Lm2) having two loop coils may be arranged.
  • the loop coils Lm1 and Lm2 are connected between both ends of the capacitor Cm1 of the magnetic resonator, and Rm1 is an internal resistance.
  • a transmitter (Tx) transmitting coil and a receiver (Rx) receiving coil are arranged horizontally and the distance is very close so that efficient transmission is possible.
  • the proposed self-resonant coil is disposed between the transmitter Tx coil and the receiver Rx receiver coil to transfer the power transmitted from the transmitter Tx coil to the receiver Rx at a desired position.
  • the time-varying magnetic field generated by the transmitting unit Tx transmitting coils (equivalent circuits Rs and Ls) is formed by the magnetic resonance coils (equivalent circuits Rm1, Cm1, Lm1, Lm2) and the first loop coil Lm1 by magnetic induction coupling. Is delivered intensively).
  • the magnetic field received by the first loop coil Lm1 is converted into a current and transmitted to the second loop coil Lm2, and the second loop coil Lm2 receives the receiver Rx again through magnetic field inductive coupling.
  • the magnetic field is transmitted to the coils (equivalent circuits R L and L L ).
  • FIG. 2B is an equivalent circuit of an example in which a magnetic resonator having multiple loops is used as a magnetic resonance coil (relay relay magnetic resonance coil) proposed in a magnetic resonance wireless power transmission system in order to transmit power to a plurality of loads.
  • a magnetic resonance coil relay magnetic resonance coil
  • three loop coils Lm1, Lm2, and Lm3 may be connected between the ends of the capacitor Cm1, and Rm1 may be an internal resistance. to be.
  • the time-varying magnetic field generated by the transmission unit Tx transmission resonance coils is the first loop coil by the relay magnetic resonance coils (equivalent circuits Rm1, Cm1, Lm1, Lm2) and magnetic resonance. It is delivered intensively to (Lm1).
  • the magnetic field received by the first loop coil Lm1 is converted into a current and transmitted to the second and third loop coils Lm2 and Lm3, respectively, and in the second loop coil Lm2, through a magnetic resonance.
  • the magnetic field is transmitted to the reception resonance coils (equivalent circuits C2, R2, L2) of the first reception unit Rx, and the reception resonance of the second reception unit Rx is performed through the magnetic resonance in the third loop coil Lm3.
  • the magnetic field is transmitted to the coils (equivalent circuits C2, R2, L2).
  • the relay self resonant coils (equivalent circuits Rm1, Cm1, Lm1, Lm2) can efficiently transmit power simultaneously to two receive (Rx) resonant coils.
  • 2C is an equivalent circuit of an example in which a magnetic resonator having multiple loops is simultaneously applied to a magnetic resonance and an electromagnetic induction wireless power transmission system.
  • the self-resonant coils (equivalent circuits Rm1, Cm1, Lm1, Lm2) having two loop coils Lm1, Lm2 are transmitted by the transmitter Tx (equivalent circuits Rs, Ls) and receiver Rx. It may be arranged between the receiving resonance coils (equivalent circuits C1, R1, L1).
  • the time-varying magnetic field generated by the transmitting unit (Tx) transmitting coils is a magnetic induction coupling (magnetic induction coupling) magnetic resonance coils (equivalent circuits Rm1, Cm1, Lm1, Lm2), in particular the first loop coil ( Intensively delivered to Lm1).
  • the magnetic resonance coils (equivalent circuits Rm1, Cm1, Lm1, Lm2), in particular the second loop coil Lm2, have a receiver Rx receiving resonance coils (equivalent circuits R1, C1, L1) which form a magnetic resonance. Intensive transmission of time-varying magnetic fields.
  • FIG. 3A illustrates a magnetic resonance wireless power transmission system including a magnetic resonator having multiple loops of FIG. 1 as an intermediate self resonant coil.
  • 3B is an equivalent circuit of FIG. 3A.
  • a magnetic field resonant wireless power transmission system including a relay magnetic resonance coil (Cm1, Rm1, Lm1, Lm2 of an equivalent circuit) includes a transmitter (Tx) and a relay magnetic field.
  • Resonant coils Cm1, Rm1, Lm1, Lm2 and a receiver Rx Between the magnetic resonance coils of Tx and Rx having two single loops, the relay magnetic resonance coils Cm1, Rm1, Lm1 and Lm2 having multiple loops proposed in the present invention are placed.
  • the proposed relay magnetic resonance coils Cm1, Rm1, Lm1, Lm2 (or magnetic resonators) have two loops for strong magnetic resonance with the transmitting and receiving magnetic resonance coils.
  • the first loop coil Lm1 of the transmission unit Tx transmission resonant coils (equivalent circuits R1, L1, C1) and the relay self-resonant coils Cm1, Rm1, Lm1, Lm2 are vertical in the center axis of each loop. have.
  • the receiving section Rx receiving resonant coils (equivalent circuits R2, L2, C2) and the second loop coil Lm2 of the relay self resonant coils Cm1, Rm1, Lm1, Lm2 are also arranged vertically.
  • both ends of the AC power supply Vs are connected to both ends of the primary coils (equivalent circuits Rs and Ls) of the transmitter Tx transformer, and the secondary coils (equivalent circuits RT1 and LT1 of the transmitter Tx transformer) are connected.
  • the transmission unit Tx resonant coil that is, the transmission resonant coils (equivalent circuits R1, L1, C1).
  • the receiving unit Rx resonant coil that is, the receiving resonant coils (equivalent circuits R2, L2, C2) is connected to both ends of the secondary coils (equivalent circuits RT2, LT2) of the receiving unit Rx transformer, and the receiving unit Rx Both ends of the transformer's primary coils (equivalent circuits RL and LL) may be connected to the load.
  • the load may be a rectifier circuit for rectifying the AC voltage of the primary coils (equivalent circuits RL and LL) of the receiver Rx transformer, and in addition to the rectifier circuit, a DC-DC converter may be further included. .
  • the magnetic resonance coils (Cm1, Rm1, Lm1, Lm2 of the equivalent circuit) proposed in the present invention are time-varying magnetic fields from the transmission resonance coils (equivalent circuits R1, L1, C1) to the receiving resonance coils (equivalent circuits R2, L2, C2). It relays the power so that the power can be transmitted wirelessly.
  • the proposed self-resonant coil (Cm1, Rm1, Lm1, Lm2 of the equivalent circuit) has a first loop coil Lm1 having at least one winding number connected in series between both ends of the capacitor Cm1 and at least one winding number.
  • the second loop coil Lm2 is included.
  • the first loop coil Lm1 is disposed around the transmission resonant coils (equivalent circuits R1, L1, C1), and the second loop coil Lm2 is disposed around the reception resonant coils (equivalent circuits R2, L2, C2).
  • the capacitor Cm1 is used to tune the resonant frequencies of the magnetic resonators Cm1, Rm1, Lm1, Lm2. Since the self capacitances of the magnetic resonators Cm1, Rm1, Lm1, and Lm2 fluctuate due to external influences, the resulting change in resonance frequency can be reduced by using the capacitor Cm1, thereby increasing the reliability of power transmission. have.
  • the resonance frequency can be accurately adjusted by tuning the capacitor Cm1 according to the external environment.
  • low loss capacitance is used to have the accurate resonance frequency as possible.
  • the time-varying magnetic field generated in the transmission resonance coils (equivalent circuits R1, L1, C1) by the AC power supply Vs is the first loop coil Lm1 of the magnetic resonance coils (Cm1, Rm1, Lm1, Lm2 of the equivalent circuit).
  • the current generated from the first loop coil Lm1 is a second loop coil ( Lm2, and the second loop coil Lm2 transmits electric power to the receiving resonance coils (equivalent circuits R2, L2, C2) again by magnetic resonance.
  • the time-varying magnetic fields of the transmission resonant coils (equivalent circuits R1, L1, C1) are generated by the first loop coil Lm1 and the second loop coil Lm2. Can be delivered.
  • the proposed self-resonant coil (Cm1, Rm1, Lm1, Lm2 of the equivalent circuit) is composed of the first loop coil Lm1 and the second loop coil Lm2, the present invention is not limited thereto.
  • One or more loop coils connected in series or in parallel with Lm1 may be further included, and one or more loop coils in series or in parallel with the second loop coil Lm2 may be further included.
  • the magnetic resonance coils (Cm1, Rm1, Lm1, and Lm2 of the equivalent circuit) of the present invention have a structure in which a loop coil is separated into two, and magnetic field coupling with the transmission resonance coil and the reception resonance coil, respectively.
  • the transmission / reception resonance coil has a very small area compared to the relay resonance coil or when the arrangement between the transmission / reception resonance coil and the relay resonance coil (Cm1, Rm2, Lm1, Lm2 in the equivalent circuit) is displaced horizontally Although the ring may be weakened, the power transmission efficiency may be lowered.
  • the loop coil is disposed in the regions where the transmission / reception resonance coil and the strongest coupling are respectively formed using a relay resonant coil structure having a separate multiple loop coil. By making them separately and connecting them in series, it is possible to increase the number of turns of each loop coil to increase power coupling efficiency by increasing the coupling with the transmission / reception resonance coil.
  • the magnetic field generation is concentrated on a very small portion (around the first loop coil Lm1 and the second loop coil Lm2), and is a connection portion between the first loop coil Lm1 and the second loop coil Lm2.
  • the magnetic field in the middle part can be reduced and the area of the loop coil can be reduced to reduce the size of the magnetic field generated in the middle part without coupling, only the electromagnetic wave in the limited portion where the coupling is generated needs to be shielded. The problem of electromagnetic interference can be reduced.
  • 4A is a magnetic field distribution diagram of a magnetic resonance coil analyzed using a commercial electromagnetic wave analysis tool HFSS (High-Frequency Structure Simulator).
  • FIG. 5 is a simulation circuit diagram of the coil configuration of FIG. 3A.
  • AGILENT ADS a simulation tool, was used, and the values of each element (resistance, capacitor, inductor, etc.) are shown in FIG. 5.
  • the conventional wireless power transmission system having a self-resonant coil made of one loop has a narrow frequency characteristic, and the power transmission efficiency is very sensitive to the frequency change of the source portion.
  • the first loop coil Lm1 and the second loop coil Lm2 Since the bandwidth can be increased by the multi-loop coil including a), the reliability of the power transfer efficiency can be improved with respect to the fluctuation of the frequency of the source unit (AC power supply or transmission resonance coil, etc.).

Abstract

The present invention provides a magnetic resonance wireless power transfer system for increasing a coupling coefficient by separating a loop of a self-resonance coil into multiples and increasing a magnetic field generation in places having a transmission/reception resonance coil, reducing the magnetic field generated overall in the magnetic resonance coil by minimizing the magnetic field generation in portions without a loop, and having a frequency characteristic of a broadband for enhancing the reliability of power transfer efficiency in response to frequency fluctuation.

Description

자계 공진 무선전력전송을 위한 다중 루프를 갖는 자기 공진코일Magnetic Resonant Coils with Multiple Loops for Magnetic Resonant Wireless Power Transmission
본 발명은 자계 공진 무선전력전송 시스템에 관한 것으로서, 자계 공진 무선전력전송 시스템에 있어 시스템의 효율 및 활용을 높이기 위한 복수 개의 다중 루프를 가지는 자기 공진(self resonance) 코일에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic resonance wireless power transmission system, and more particularly, to a magnetic resonance coil having a plurality of multiple loops for increasing efficiency and utilization of a system in a magnetic resonance wireless power transmission system.
자계 공진 무선전력전송 기술은 동일한 공진 주파수를 갖는 자기 공진기 사이에 강한 자계 결합에 의하여 공진 코일 직경 보다 더 먼 거리에서도 높은 전송효율을 갖는 기술이다. Magnetic field resonant wireless power transmission technology is a technology having a high transmission efficiency even at a distance farther than the resonant coil diameter by a strong magnetic field coupling between magnetic resonators having the same resonance frequency.
미국 특허 US 7,741,734 B2와 US 7,825,543 B2에는 단일 루프 및 헬릭스 형태의 자기 공진기를 사용한 자계 공진형 무선전력전송 시스템을 제안하였고, US2010/0259108A1에서는 단일 루프를 갖는 자기 공진기를 이용한 전력 중계(repeater) 구조를 제안하였다. 국내 공개특허 10-2010-0026075에서는 전자기 유도를 이용한 무선전력전송 시스템을 위하여 송신 구조 내에 여러 개의 독립된 송신 코일을 사용하여 다중 부하에 무선전력전송을 할 수 있는 구조를 제안하였다. In the US patents US 7,741,734 B2 and US 7,825,543 B2, a magnetic resonance type wireless power transmission system using a single loop and helix type magnetic resonator has been proposed, and US2010 / 0259108A1 employs a power repeater structure using a magnetic loop having a single loop. Suggested. In Korea Patent Publication 10-2010-0026075 proposed a structure for wireless power transmission to multiple loads using a plurality of independent transmission coils in the transmission structure for a wireless power transmission system using electromagnetic induction.
이와 같은 종래 기술에서는 자기 공진기 (self resonator) 구조로 하나의 루프 구조에 여러 턴을 감아 헬릭스나 스파이럴 형태의 코일 구조를 사용하였다. 또한, 전자기 유도 방식에서 다중 기기 충전을 위하여 복수개의 루프 구조를 갖는 구조를 사용하였고, 또는 송신부 자기장의 세기를 송신 코일 범위에서는 균일하게 하기 위하여 연결된 복수개의 루프 구조를 갖는 구조를 사용하였다. In the related art, a helix or spiral coil structure is used by winding several turns in one loop structure as a self resonator structure. In addition, a structure having a plurality of loop structures is used for multi-device charging in the electromagnetic induction method, or a structure having a plurality of loop structures connected in order to make the intensity of the transmitter magnetic field uniform in the transmitting coil range.
그러나, 하나의 루프를 갖는 자기 공진기의 경우, 자기 공진기 주위에서 복수의 수신기에 전력 전달이 가능하지만, 그것의 효율 면에서는 다소 부적합할 수 있다. 예를 들어, 송신 자기 공진기의 넓이가 수신 자기 공진기들 전체 크기의 서너 배 보다 클 경우, 송신 자기 공진기는 수신 자기 공진기가 없는 부분에서도 불필요한 자기장을 생성하게 된다. 특히, 하나의 루프 구조로 여러 턴으로 감아서 자기 코일로 사용하기 때문에 전면적으로 자기장의 발생이 이루어지고 루프의 면적이 크기 때문에 방사하는 자기장이 발생하여 전자파 장해의 문제가 있다. 그래서 전 면적에 걸쳐서 값비싼 차폐재를 사용하여 전자파를 차폐해야 하므로 효율적이지 못하다. 또한, 수신 자기 공진기가 놓이는 부분은 수신 자기 공진기가 없는 부분에 비해 더 큰 자계 결합을 만들어 효율을 높이는 것이 좋으나, 송신 공진기의 전 면적에서 균일한 자계 결함을 갖기 때문에 부적합하다. However, in the case of a magnetic resonator having one loop, power transmission to a plurality of receivers around the magnetic resonator is possible, but may be somewhat inadequate in terms of its efficiency. For example, if the width of the transmitting magnetic resonator is larger than three or four times the total size of the receiving magnetic resonators, the transmitting magnetic resonator generates unnecessary magnetic fields even in the absence of the receiving magnetic resonator. In particular, since a single loop structure is used as a magnetic coil by winding several turns, a magnetic field is generated throughout, and a radiating magnetic field is generated due to the large area of the loop, thereby causing electromagnetic interference. Therefore, it is not efficient because it is necessary to shield the electromagnetic waves by using expensive shielding material over the entire area. In addition, the portion in which the receiving magnetic resonator is placed may increase the efficiency by making a larger magnetic coupling than the portion without the receiving magnetic resonator, but is unsuitable because it has a uniform magnetic field defect in the entire area of the transmitting resonator.
또한, 전자기 유도에서 사용된 독립된 복수개의 루프를 자기 공진기 구조로 사용될 경우, 각각의 독립된 루프 코일이 동일 공진 주파수를 가져야 하고, 또한, 큰 루프 코일 속의 작은 독립 루프 코일은 큰 루프 코일에 의한 전자기 유도에 의한 것으로 이 또한 불필요한 영역에서 상대적으로 큰 자기장이 만들어져, 전송 효율 측면에서 비효율적이다. In addition, when a plurality of independent loops used in electromagnetic induction are used as a magnetic resonator structure, each independent loop coil should have the same resonant frequency, and a small independent loop coil in a large loop coil may have electromagnetic induction by a large loop coil. This also causes a relatively large magnetic field to be generated in unnecessary areas, which is inefficient in terms of transmission efficiency.
따라서, 본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은, 분리된 다중 루프를 가지는 자기 공진 코일을 사용해 효율적으로 무선 전력 전송이 가능한 자계 공진 무선전력전송 시스템을 제공하는 데 있다. Accordingly, an object of the present invention is to provide a magnetic field resonant wireless power transmission system capable of efficiently transmitting wireless power using a magnetic resonance coil having a separate multiple loop.
그리고, 자기 공진코일의 루프를 여러 개로 분리시켜 송/수신 공진코일이 놓여있는 곳의 자기장 발생을 증가시켜 커플링 계수를 증가시키며, 루프가 없는 부분의 자기장 발생을 최소화해 자기 공진 코일에서 전면적으로 발생하는 자기장을 줄여주고, 주파수 변동에 대한 전력전송효율의 신뢰도를 높일 수 있도록 광대역의 주파수 특성을 가지는 자계 공진 무선전력전송 시스템을 제공하는 데 있다. In addition, the loop of the magnetic resonance coil is separated into several parts to increase the coupling coefficient by increasing the magnetic field generation in the place where the transmission / reception resonance coil is placed, and to minimize the magnetic field generation in the part without the loop and to make the entire surface of the magnetic resonance coil. It is to provide a magnetic field resonant wireless power transmission system having a wide frequency characteristics so as to reduce the generated magnetic field and increase the reliability of power transmission efficiency against frequency fluctuations.
먼저, 본 발명의 특징을 요약하면, 상기와 같은 본 발명의 목적을 달성하기 위한 본 발명의 일면에 따른, 시변 자기장을 송수신하는 무선전력전송 시스템은, 1회 이상의 감은 회수를 갖는 루프 코일의 복수개가 직렬 또는 병렬 연결된 구조의 자기 공진 코일을 포함하고, 송신부 코일의 시변 자기장을 자계 공진 또는 자계 유도 커플링을 통해 상기 자기 공진 코일의 어느 한 루프 코일로 집중적으로 수신하고, 상기 어느 한 루프 코일에 연결된 상기 자기 공진 코일의 다른 루프 코일에서의 시변 자기장을 자계 공진 또는 자계 유도 커플링을 통해 수신부 코일로 전송하는 것을 특징으로 한다.First, to summarize the features of the present invention, in accordance with an aspect of the present invention for achieving the object of the present invention, a wireless power transmission system for transmitting and receiving a time-varying magnetic field, a plurality of loop coils having one or more winding times Includes a magnetic resonance coil having a structure connected in series or in parallel, and receives the time-varying magnetic field of the transmitter coil intensively through either magnetic resonance or magnetic induction coupling to one loop coil of the magnetic resonance coil, The time-varying magnetic field of the other loop coil of the connected magnetic resonance coil is transmitted to the receiver coil through magnetic field resonance or magnetic field inductive coupling.
상기 자기 공진 코일에 포함된 복수로 연결된 루프 코일의 양끝은 개방될 수도 있고, 상기 자기 공진 코일에 포함된 복수로 연결된 루프 코일의 양끝 사이에 연결된 공진 주파수 튜닝을 위한 커패시터를 포함할 수도 있다.Both ends of the plurality of loop coils included in the self-resonant coil may be open, and may include a capacitor for resonant frequency tuning connected between both ends of the plurality of loop coils included in the self-resonant coil.
일례로, 도 2a와 같이, 상기 자기 공진 코일은 송신부 송신 코일과 수신부 수신 코일 사이에 배치되며, 상기 송신부 송신 코일의 시변 자기장이 자계 유도 커플링을 통해 상기 자기 공진 코일의 제1 루프 코일로 집중적으로 전달되고, 상기 제1 루프 코일에 연결된 상기 자기 공진 코일의 제2 루프 코일에 형성된 시변 자기장이 자계 유도 커플링을 통해 상기 수신부 수신 코일로 전달될 수 있다.For example, as shown in FIG. 2A, the magnetic resonance coil is disposed between the transmitter transmitter coil and the receiver receiver coil, and a time-varying magnetic field of the transmitter transmitter coil is concentrated to the first loop coil of the magnetic resonance coil through magnetic field inductive coupling. The time-varying magnetic field formed in the second loop coil of the magnetic resonance coil connected to the first loop coil may be transmitted to the receiver receiver coil through a magnetic field inductive coupling.
다른 예로, 도 2b와 같이, 상기 자기 공진 코일은 제1 루프 코일, 제2 루프 코일, 및 제3 루프 코일을 포함하며, 송신부 송신 공진 코일의 시변 자기장이 자계 공진을 통해 상기 제1 루프 코일로 집중적으로 전달되어, 상기 제2 루프 코일 및 상기 제3 루프 코일에 시변 자기장이 형성되며, 상기 제2 루프 코일은 자계 공진을 통해 시변 자기장을 제1수신부의 수신 공진 코일로 전달하고, 상기 제3 루프 코일은 자계 공진을 통해 시변 자기장을 제2수신부의 수신 공진 코일로 전달할 수 있다.As another example, as shown in FIG. 2B, the magnetic resonance coil includes a first loop coil, a second loop coil, and a third loop coil, and a time-varying magnetic field of a transmitter transmitting resonance coil is transferred to the first loop coil through magnetic field resonance. In this case, the time-varying magnetic field is formed in the second loop coil and the third loop coil, and the second loop coil transfers the time-varying magnetic field to the reception resonance coil of the first receiving unit through magnetic field resonance. The loop coil may transfer the time-varying magnetic field to the reception resonance coil of the second receiver through magnetic field resonance.
또 다른 예로, 도 2c와 같이, 상기 자기 공진 코일은 송신부 송신 코일과 수신부 수신 공진 코일 사이에 배치되며, 상기 송신부 송신 코일의 시변 자기장이 자계 유도 커플링을 통해 상기 자기 공진 코일의 제1 루프 코일로 집중적으로 전달되고, 상기 제1 루프 코일에 연결된 상기 자기 공진 코일의 제2 루프 코일에 형성된 시변 자기장이 자계 공진을 통해 상기 수신부 수신 공진 코일로 전달될 수 있다.As another example, as shown in FIG. 2C, the magnetic resonance coil is disposed between a transmitter transmitter coil and a receiver receiver resonance coil, and a time-varying magnetic field of the transmitter transmitter coil is formed through a magnetic field inductive coupling. The time-varying magnetic field formed in the second loop coil of the magnetic resonance coil connected to the first loop coil may be transferred to the receiver receiving resonance coil through magnetic field resonance.
또한, 도 3b와 같이, 상기 송신부의 트랜스포머의 1차 코일의 양단에 교류 전원이 연결되며, 상기 송신부의 트랜스포머의 2차 코일의 양단에 상기 송신부의 송신 공진 코일이 연결되며, 상기 송신 공진 코일의 시변 자기장이 자계 공진을 통해 상기 자기 공진 코일의 제1 루프 코일로 집중적으로 전달되고, 상기 제1 루프 코일에 연결된 상기 자기 공진 코일의 제2 루프 코일에 형성된 시변 자기장이 자계 공진을 통해 상기 수신부의 수신 공진 코일로 전달되며, 상기 수신부의 공진 코일이 상기 수신부의 트랜스포머의 2차 코일의 양단에 연결되며, 상기 수신부의 트랜스포머의 1차 코일의 양단에 부하가 연결될 수 있다.In addition, as shown in Figure 3b, the AC power is connected to both ends of the primary coil of the transformer of the transmitter, the transmission resonant coil of the transmitter is connected to both ends of the secondary coil of the transformer of the transmitter, The time-varying magnetic field is intensively transmitted to the first loop coil of the magnetic resonance coil through magnetic field resonance, and the time-varying magnetic field formed in the second loop coil of the magnetic resonance coil connected to the first loop coil is connected to the receiver through magnetic field resonance. The resonant coil of the receiver may be connected to both ends of the secondary coil of the transformer of the receiver, and the load may be connected to both ends of the primary coil of the transformer of the receiver.
그리고, 본 발명의 다른 일면에 따른, 시변 자기장을 송수신하기 위한 무선전력전송 방법은, 1회 이상의 감은 회수를 갖는 루프 코일의 복수개가 직렬 또는 병렬 연결된 구조의 자기 공진 코일을 이용하여, 송신부 코일의 시변 자기장을 자계 공진 또는 자계 유도 커플링을 통해 상기 자기 공진 코일의 어느 한 루프 코일로 집중적으로 수신하고, 상기 어느 한 루프 코일에 연결된 상기 자기 공진 코일의 다른 루프 코일에서의 시변 자기장을 자계 공진 또는 자계 유도 커플링을 통해 수신부 코일로 전송하는 것을 특징으로 한다.In addition, according to another aspect of the present invention, a wireless power transmission method for transmitting and receiving a time-varying magnetic field, using a magnetic resonance coil having a structure in which a plurality of loop coils having one or more windings are connected in series or parallel, The time-varying magnetic field is intensively received by one loop coil of the magnetic resonance coil through magnetic field resonance or magnetic field inductive coupling, and the time-varying magnetic field of the other loop coil of the magnetic resonance coil connected to the one loop coil is subjected to magnetic field resonance or It characterized in that the transmission to the receiver coil through the magnetic field induction coupling.
본 발명에 따른 다중 루프를 갖는 자기 공진기를 활용한 자계 공진 무선전력전송 시스템에 따르면, 복수개의 강한 자계 결합 영역에서 매우 높은 커플링을 얻을 수 있어, 송수신 전송효율 개선 및 전송거리를 개선할 수 있다.According to the magnetic resonance wireless power transmission system using a magnetic resonator having multiple loops according to the present invention, a very high coupling can be obtained in a plurality of strong magnetic coupling regions, thereby improving the transmission and reception efficiency and the transmission distance. .
또한, 본 발명에 따른 다중 루프를 갖는 자기 공진기를 활용한 자계 공진 무선전력전송 시스템에 따르면, 자계 공진형 무선전력전송 시스템에서 다중 디바이스에 대한 효율적 전력 전송이 가능하다.In addition, according to the magnetic resonance wireless power transmission system using a magnetic resonator having multiple loops according to the present invention, it is possible to efficiently transmit power to multiple devices in the magnetic resonance type wireless power transmission system.
또한, 본 발명에 따른 자계 공진 무선전력전송 시스템에 따르면, 송/수신 공진 코일의 크기가 작고 중계 공진 코일과의 배열이 수평에서 틀어져 있어도 중거리로 높은 효율로 전력을 전송할 수 있다. In addition, according to the magnetic field resonant wireless power transmission system according to the present invention, even if the size of the transmission and reception resonant coil is small and the arrangement with the relay resonant coil is displaced horizontally, it is possible to transmit power with high efficiency at a medium distance.
또한, 본 발명에 따른 자계 공진 무선전력전송 시스템에 따르면, 자기장과 전기장의 발생을 줄여주어, 전자파 차폐에 용이하다.In addition, according to the magnetic field resonance wireless power transmission system according to the present invention, it is easy to shield the electromagnetic waves by reducing the generation of magnetic and electric fields.
그리고, 다중 루프를 갖는 자기 공진 코일을 사용하는 무선전력전송은 광대역의 주파수 특성을 가지기 때문에 소스부의 주파수 변동에 대한 전력전송효율의 신뢰도를 높일 수 있다. In addition, since wireless power transmission using a self-resonant coil having multiple loops has a wide frequency characteristic, it is possible to increase the reliability of power transmission efficiency against frequency variation of the source unit.
도 1은 본 발명의 일실시예에 따른 다중 루프를 갖는 자기 공진기를 설명하기 위한 도면이다.1 is a view for explaining a magnetic resonator having multiple loops according to an embodiment of the present invention.
도 2a는 다중 루프를 갖는 자기 공진기를 전자기 유도 무선전력전송 시스템에 자기 공진 코일로 적용한 예의 등가회로이다.2A is an equivalent circuit example of applying a magnetic resonator having multiple loops as a magnetic resonance coil to an electromagnetic induction wireless power transmission system.
도 2b는 다수의 부하에 전력을 전송하기 위해 다중 루프를 갖는 자기 공진기를 자계 공진 무선전력전송 시스템에 자기 공진 코일로 적용한 예의 등가회로이다.2B is an equivalent circuit of an example in which a magnetic resonator having multiple loops is used as a magnetic resonance coil in a magnetic resonance resonant wireless power transmission system to transmit power to a plurality of loads.
도 2c는 다중 루프를 갖는 자기 공진기를 자계 공진과 전자기 유도 무선전력전송 시스템에 동시에 적용한 예의 등가회로이다.2C is an equivalent circuit of an example in which a magnetic resonator having multiple loops is simultaneously applied to a magnetic resonance and an electromagnetic induction wireless power transmission system.
도 3a는 도 1의 다중 루프를 갖는 자기 공진기를 중계 자기 공진 코일로 포함한 자계 공진 무선전력전송 시스템을 설명하기 위한 도면이다.FIG. 3A illustrates a magnetic resonance wireless power transmission system including a magnetic resonator having multiple loops of FIG. 1 as a relay magnetic resonance coil.
도 3b는 도3a의 등가회로이다.3B is an equivalent circuit of FIG. 3A.
도 4a는 상용 전자파 해석 툴을 사용하여 해석한 자기 공진 코일의 자기장 분포도이다.4A is a magnetic field distribution diagram of a magnetic resonance coil analyzed using a commercial electromagnetic wave analysis tool.
도 4b는 도 3a의 x축에서의 자기장 분포도이다.4B is a magnetic field distribution diagram along the x-axis of FIG. 3A.
도 4c 도 3a의 y축에서의 자기장 분포도이다.4C is a magnetic field distribution diagram of the y-axis of FIG. 3A.
도 5는 도 3a에 대한 시뮬레이션 회로도이다.5 is a simulation circuit diagram for FIG. 3A.
도 6은 도 4에 대한 시뮬레이션의 S-Parameter 결과이다.FIG. 6 is an S-Parameter result of the simulation for FIG. 4.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하지만, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings and the contents described in the accompanying drawings, but the present invention is not limited or limited to the embodiments.
도 1은 본 발명의 일실시예에 따른 다중 루프 코일을 갖는 자기 공진기(또는 자기 공진 코일)를 설명하기 위한 도면이다. 도 1에는 본 발명의 일실시예로서 두 개의 루프 코일을 갖는 자기 공진기 구조를 나타내었다. 다만 이에 이에 한정되는 것은 아니며, 사용 목적에 따라 자기 공진기에는 더 많은 루프 코일들이 포함될 수 있으며 루프 코일들은 모두 각 코일의 끝과 끝이 직렬 연결되는 구조일 수 있고, 경우에 따라서는 루프 코일들 각각의 끝이 병렬 연결되는 구조일 수도 있으며, 루프 코일들이 직렬과 병렬의 조합으로 연결되는 구조일 수도 있다.1 is a view for explaining a magnetic resonator (or a magnetic resonance coil) having a multi-loop coil according to an embodiment of the present invention. 1 illustrates a structure of a magnetic resonator having two loop coils as an embodiment of the present invention. However, the present invention is not limited thereto, and the magnetic resonator may include more loop coils, and the loop coils may have a structure in which both ends and ends of each coil are connected in series. The ends of the structure may be connected in parallel, or the loop coils may be connected in a combination of series and parallel.
도 1에서, 루프 코일들 상에 표시한 화살표는 전류 방향을 나타내며, 교류 신호를 사용하기 때문에 방향은 반대 방향일 수도 있다. 또한, 도 1과 같이, 자기 공진기는 두 개의 루프 코일들에서 각각 전류가 모이므로, 루프 코일의 영역 A, 영역 B 부근에서는 전류가 모여 있기 때문에, 루프 코일의 영역 A, 영역 B 에서는 루프 코일로부터 떨어진 영역C와 비교하여 강한 자기장이 만들어져 강한 자계 커플링이 일어난다. 이와는 반대로 영역 C는 영역 A와 B와 비교하여 훨씬 더 작은 자기장이 만들어지며, 자계 커플링 또한 낮다. 도 1에서 루프 코일들의 종단에 커패시터가 연결되어 커패시터 양단에 루프 코일들이 직렬 연결되는 구조를 예시하였으나, 이에 한정되지 않으며 필요에 따라 커패시터를 사용하지 않고 종단을 개방해서 사용할 수도 있다. 사용되는 커패시터는 손실 저항이 작은 값을 사용하는 것이 바람직하다.In Fig. 1, the arrows indicated on the loop coils indicate the current direction, and the direction may be opposite because the AC signal is used. In addition, as shown in FIG. 1, since the magnetic resonator collects current in each of the two loop coils, since currents are collected in the region A and the region B of the loop coil, the magnetic coil resonates from the loop coil in the region A and the region B of the loop coil. Compared with the distant region C, a strong magnetic field is created, resulting in strong magnetic coupling. In contrast, region C produces much smaller magnetic fields than regions A and B, and magnetic coupling is also low. 1 illustrates a structure in which a capacitor is connected to the ends of the loop coils so that the loop coils are connected in series at both ends of the capacitor. However, the present invention is not limited thereto, and the terminal may be opened without using a capacitor as necessary. It is preferable to use a value with a small loss resistance for the capacitor used.
도 1과 같은 본 발명의 일실시예에 따른 다중 루프를 갖는 자기 공진기는, 루프 코일들에 의해 형성되는 복수개의 분리된 자계 커플링 부분을 갖는 구조로서, 동일 코일에서 단일 공진 주파수의 송신 공진과 수신 공진이 일어날 수 있는 모든 자계 공진형 무선전력전송 시스템에 적용될 수 있다. 이와 같은 본 발명의 일실시예에 따른 다중 루프를 갖는 자기 공진기의 각각의 커플링 부분은, 이하에서 설명하는 바와 같이, 송신부의 송신 코일 및 수신부의 수신 (부하) 코일과 각각 커플링될 수 있으며(도 2a 참조), 또는 송신부의 송신 코일, 및 수신부의 수신 공진 코일과 수신 (부하) 코일과 각각 커플링될 수도 있으며(도 2b 참조), 또는 송신부의 송신 코일 및 송신 공진 코일과 각각 커플링될 수도 있고(도 2b 참조), 또는 도 3b와 같이 트랜스포머를 사용하는 송수신 공진 코일 사이에서 중계 자기 공진 코일로 사용되어 각각의 공진 코일과 커플링될 수도 있다. A magnetic resonator having multiple loops according to an embodiment of the present invention as shown in FIG. 1 is a structure having a plurality of separate magnetic field coupling portions formed by loop coils, and includes a transmission resonance of a single resonance frequency in the same coil. It can be applied to any magnetic resonance type wireless power transmission system in which reception resonance can occur. Each coupling portion of the magnetic resonator having multiple loops according to an embodiment of the present invention may be coupled to a transmitting coil of a transmitter and a receiving (load) coil of a receiver, as described below. (See FIG. 2A), or may be coupled to a transmitter's transmit coil and a receiver's receive resonant coil and a receiver (load) coil, respectively (see FIG. 2B), or a transmitter's transmit coil and a transmit resonant coil, respectively. It may be used (see FIG. 2B), or may be used as a relay self resonant coil between the transmitting and receiving resonant coils using a transformer and coupled with each resonant coil as shown in FIG. 3B.
송신부의 송신 코일은 전원과 연결된 코일이며, 송신부의 송신 공진 코일은 송신 코일과 중계 공진 코일 사이의 코일이고, 중계 공진 코일은 송신부의 송신 공진 코일 또는 송신부의 송신 코일(송신 공진 코일이 없는 경우)로부터 자계 공진 또는 자계 유도 커플링을 통해 자기장을 전달받아 수신부의 수신 공진 코일 또는 수신부의 수신 (부하) 코일(수신 공진 코일이 없는 경우)로 자기장을 전달한다. 수신 공진 코일이 있는 경우 수신 (부하) 코일은 수신 공진 코일로부터 자기장을 전달받으며, 수신 (부하) 코일은 정류 회로나 정류회로와 DC/DC 컨버터 등의 회로에 연결되어, 배터리를 충전하거나 시스템에 전력을 제공할 수 있다.The transmitting coil of the transmitter is a coil connected to the power supply, the transmitting resonant coil of the transmitting unit is a coil between the transmitting coil and the relay resonant coil, and the relay resonant coil is the transmitting resonant coil of the transmitting unit or the transmitting coil of the transmitting unit (when there is no transmitting resonant coil). The magnetic field is transmitted from the magnetic field through the magnetic resonance or the magnetic field inductive coupling, and the magnetic field is transmitted to the receiving resonance coil of the receiver or the receiving (load) coil of the receiver (if there is no receiving resonance coil). If there is a receiving resonant coil, the receiving (load) coil receives a magnetic field from the receiving resonant coil, and the receiving (load) coil is connected to a rectifying circuit, a rectifying circuit, and a circuit such as a DC / DC converter to charge a battery or It can provide power.
도 2a는 다중 루프를 갖는 자기 공진기를 전자기 유도 무선전력전송 시스템에 제안된 자기 공진 코일로 적용한 예의 등가회로이다.2A is an equivalent circuit of an example in which a magnetic resonator having multiple loops is used as a magnetic resonance coil proposed in an electromagnetic induction wireless power transmission system.
도 2a와 같이, 전자기 유도 방식의 무선전력전송을 위하여, 송신부(Tx) 송신 코일(등가회로 Rs, Ls)과 수신부(Rx) 수신 (부하) 코일(등가회로RL,LL) 사이에 2개의 루프 코일을 가지는 자기 공진기(등가회로 Rm1,Cm1,Lm1,Lm2)가 배치될 수 있다. 여기서, 자기 공진기의 커패시터(Cm1) 양단 사이에 루프 코일들(Lm1,Lm2)이 연결된 구조를 의미하며, Rm1은 내부 저항이다. As shown in Figure 2a, for the wireless power transmission of the electromagnetic induction method, between the transmitting unit (Tx) transmitting coil (equivalent circuit Rs, Ls) and the receiving unit (Rx) receiving (load) coil (equivalent circuit R L , L L ) Magnetic resonators (equivalent circuits Rm1, Cm1, Lm1, Lm2) having two loop coils may be arranged. Here, the loop coils Lm1 and Lm2 are connected between both ends of the capacitor Cm1 of the magnetic resonator, and Rm1 is an internal resistance.
기존 전자기 유도 방식은 송신부(Tx) 송신 코일과 수신부(Rx) 수신 코일을 수평으로 배치하고 거리가 매우 가까워야 효율적인 전송이 가능하다. 하지만, 도 2a 처럼 송신부(Tx) 송신 코일과 수신부(Rx) 수신 코일 사이에 제안된 자기 공진 코일을 배치함으로써 송신부(Tx) 송신 코일에서 전달하는 전력을 자기 공진 코일을 통해 원하는 위치의 수신부(Rx) 수신 코일에 전달할 수 있다. 송신부(Tx) 송신 코일(등가회로 Rs, Ls)에서 발생된 시변 자기장은 자기 공진 코일(등가회로 Rm1,Cm1,Lm1,Lm2)과 자계 유도 커플링(magnetic induction)에 의해 제1루프 코일(Lm1)로 집중적으로 전달된다. 또한, 제1루프 코일(Lm1)로 수신된 자기장은 전류로 변환되어 제 2루프 코일(Lm2)로 전달되고, 제2루프 코일(Lm2)에서는 다시 자계 유도 커플링을 통하여 수신부(Rx)의 수신 코일(등가회로 RL, LL)로 자기장을 전달한다.In the conventional electromagnetic induction method, a transmitter (Tx) transmitting coil and a receiver (Rx) receiving coil are arranged horizontally and the distance is very close so that efficient transmission is possible. However, as shown in FIG. 2A, the proposed self-resonant coil is disposed between the transmitter Tx coil and the receiver Rx receiver coil to transfer the power transmitted from the transmitter Tx coil to the receiver Rx at a desired position. ) Can be delivered to the receiving coil. The time-varying magnetic field generated by the transmitting unit Tx transmitting coils (equivalent circuits Rs and Ls) is formed by the magnetic resonance coils (equivalent circuits Rm1, Cm1, Lm1, Lm2) and the first loop coil Lm1 by magnetic induction coupling. Is delivered intensively). In addition, the magnetic field received by the first loop coil Lm1 is converted into a current and transmitted to the second loop coil Lm2, and the second loop coil Lm2 receives the receiver Rx again through magnetic field inductive coupling. The magnetic field is transmitted to the coils (equivalent circuits R L and L L ).
도 2b는 다수의 부하에 전력을 전송하기 위해 다중 루프를 갖는 자기 공진기를 자계 공진 무선전력전송 시스템에 제안된 자기 공진 코일(중계 자기 공진 코일)로 적용한 예의 등가회로이다.FIG. 2B is an equivalent circuit of an example in which a magnetic resonator having multiple loops is used as a magnetic resonance coil (relay relay magnetic resonance coil) proposed in a magnetic resonance wireless power transmission system in order to transmit power to a plurality of loads.
도 2b와 같이, 복수의 부하에 전력을 효율적으로 전송하기 위해, 중계 자기 공진 코일은 커패시터(Cm1) 양단 사이에 루프 코일들 3개(Lm1,Lm2,Lm3)가 연결될 수 있으며, Rm1은 내부 저항이다. As shown in FIG. 2B, in order to efficiently transmit power to a plurality of loads, three loop coils Lm1, Lm2, and Lm3 may be connected between the ends of the capacitor Cm1, and Rm1 may be an internal resistance. to be.
송신부(Tx) 송신 공진 코일(등가회로 C1, R1, L1)에서 발생된 시변 자기장은 중계 자기 공진 코일(등가회로 Rm1,Cm1,Lm1,Lm2)과 자계 공진(magnetic resonance)에 의해 제1루프 코일(Lm1)로 집중적으로 전달된다. 또한, 제1루프 코일(Lm1)로 수신된 자기장은 전류로 변환되어 제 2, 3루프 코일(Lm2, Lm3)로 각각 전달되고, 제2루프 코일(Lm2)에서는 자계 공진(magnetic resonance)을 통하여 제1수신부(Rx)의 수신 공진 코일(등가회로 C2, R2, L2)로 자기장을 전달하며, 제3루프 코일(Lm3)에서는 자계 공진(magnetic resonance)을 통하여 제2수신부(Rx)의 수신 공진 코일(등가회로 C2, R2, L2)로 자기장을 전달한다. 이와 같이 여기서의 중계 자기 공진 코일(등가회로 Rm1,Cm1,Lm1,Lm2)은 2개의 수신(Rx) 공진 코일로 효율적으로 동시에 전력을 전달할 수 있다.The time-varying magnetic field generated by the transmission unit Tx transmission resonance coils (equivalent circuits C1, R1, L1) is the first loop coil by the relay magnetic resonance coils (equivalent circuits Rm1, Cm1, Lm1, Lm2) and magnetic resonance. It is delivered intensively to (Lm1). In addition, the magnetic field received by the first loop coil Lm1 is converted into a current and transmitted to the second and third loop coils Lm2 and Lm3, respectively, and in the second loop coil Lm2, through a magnetic resonance. The magnetic field is transmitted to the reception resonance coils (equivalent circuits C2, R2, L2) of the first reception unit Rx, and the reception resonance of the second reception unit Rx is performed through the magnetic resonance in the third loop coil Lm3. The magnetic field is transmitted to the coils (equivalent circuits C2, R2, L2). In this way, the relay self resonant coils (equivalent circuits Rm1, Cm1, Lm1, Lm2) can efficiently transmit power simultaneously to two receive (Rx) resonant coils.
도 2c는 다중 루프를 갖는 자기 공진기를 자계 공진과 전자기 유도 무선전력전송 시스템에 동시에 적용한 예의 등가회로이다.2C is an equivalent circuit of an example in which a magnetic resonator having multiple loops is simultaneously applied to a magnetic resonance and an electromagnetic induction wireless power transmission system.
도 2c와 같이, 루프 코일들(Lm1,Lm2) 2개를 갖는 자기 공진 코일(등가 회로 Rm1, Cm1, Lm1, Lm2)이 송신부(Tx) 송신 코일(등가회로 Rs, Ls)과 수신부(Rx) 수신 공진 코일(등가회로 C1, R1, L1) 사이에 배치될 수 있다. 송신부(Tx) 송신 코일(등가회로 Rs, Ls)에서 발생된 시변 자기장은 자계 유도 커플링(magnetic induction coupling)으로 자기 공진 코일(등가 회로 Rm1, Cm1, Lm1, Lm2), 특히 제1루프 코일(Lm1)로 집중적으로 전달된다. 또한, 자기 공진 코일(등가 회로 Rm1, Cm1, Lm1, Lm2), 특히 제2루프 코일(Lm2)은 자계 공진(magnetic resonance)을 이루는 수신부(Rx) 수신 공진 코일(등가회로 R1, C1, L1)로 시변 자기장을 집중적으로 전달한다. As shown in Fig. 2C, the self-resonant coils (equivalent circuits Rm1, Cm1, Lm1, Lm2) having two loop coils Lm1, Lm2 are transmitted by the transmitter Tx (equivalent circuits Rs, Ls) and receiver Rx. It may be arranged between the receiving resonance coils (equivalent circuits C1, R1, L1). The time-varying magnetic field generated by the transmitting unit (Tx) transmitting coils (equivalent circuits Rs, Ls) is a magnetic induction coupling (magnetic induction coupling) magnetic resonance coils (equivalent circuits Rm1, Cm1, Lm1, Lm2), in particular the first loop coil ( Intensively delivered to Lm1). In addition, the magnetic resonance coils (equivalent circuits Rm1, Cm1, Lm1, Lm2), in particular the second loop coil Lm2, have a receiver Rx receiving resonance coils (equivalent circuits R1, C1, L1) which form a magnetic resonance. Intensive transmission of time-varying magnetic fields.
도 3a는 도 1의 다중 루프를 갖는 자기 공진기를 중계 공진 코일(중계 자기 공진 코일)(Intermediate Self Resonant Coil)로 포함한 자계 공진 무선전력전송 시스템을 설명하기 위한 도면이다. 도 3b는 도3a의 등가회로이다.FIG. 3A illustrates a magnetic resonance wireless power transmission system including a magnetic resonator having multiple loops of FIG. 1 as an intermediate self resonant coil. 3B is an equivalent circuit of FIG. 3A.
도 3a 및 도 3b를 참조하면, 본 발명의 일실시예에 따른 중계 자기 공진 코일(등가 회로의 Cm1, Rm1, Lm1, Lm2)을 포함한 자계 공진 무선전력전송 시스템은, 송신부(Tx), 중계 자기 공진 코일(Cm1, Rm1, Lm1, Lm2) 및 수신부(Rx)를 포함한다. 두 개의 단일 루프를 갖는 Tx, Rx의 자기 공진 코일 사이에 본 발명에서 제안한 다중 루프를 가지는 중계 자기 공진 코일(Cm1, Rm1, Lm1, Lm2)이 놓여 있다. 제안한 중계 자기 공진 코일(Cm1, Rm1, Lm1, Lm2)(또는 자기 공진기)는 송신과 수신 자기 공진 코일과의 강한 자계 공진(magnetic resonance)을 위하여 두 개의 루프를 갖는다. 특히, 송신부(Tx) 송신 공진 코일(등가 회로 R1, L1, C1)과 중계 자기 공진 코일(Cm1, Rm1, Lm1, Lm2)의 제 1루프 코일(Lm1)는 각 루프의 중심 축이 수직으로 되어 있다. 또한, 수신부(Rx) 수신 공진 코일(등가 회로 R2, L2, C2) 또한 중계 자기 공진 코일(Cm1, Rm1, Lm1, Lm2)의 제2루프 코일(Lm2)과 중심 축이 수직으로 배열되어 있다.3A and 3B, a magnetic field resonant wireless power transmission system including a relay magnetic resonance coil (Cm1, Rm1, Lm1, Lm2 of an equivalent circuit) according to an embodiment of the present invention includes a transmitter (Tx) and a relay magnetic field. Resonant coils Cm1, Rm1, Lm1, Lm2 and a receiver Rx. Between the magnetic resonance coils of Tx and Rx having two single loops, the relay magnetic resonance coils Cm1, Rm1, Lm1 and Lm2 having multiple loops proposed in the present invention are placed. The proposed relay magnetic resonance coils Cm1, Rm1, Lm1, Lm2 (or magnetic resonators) have two loops for strong magnetic resonance with the transmitting and receiving magnetic resonance coils. In particular, the first loop coil Lm1 of the transmission unit Tx transmission resonant coils (equivalent circuits R1, L1, C1) and the relay self-resonant coils Cm1, Rm1, Lm1, Lm2 are vertical in the center axis of each loop. have. The receiving section Rx receiving resonant coils (equivalent circuits R2, L2, C2) and the second loop coil Lm2 of the relay self resonant coils Cm1, Rm1, Lm1, Lm2 are also arranged vertically.
도 3b와 같이, 교류 전원(Vs)의 양단이 송신부(Tx) 트랜스포머의 1차 코일(등가 회로 Rs, Ls)의 양단에 연결되고, 송신부(Tx) 트랜스포머의 2차 코일(등가 회로 RT1, LT1)의 양단에 송신부(Tx) 공진 코일, 즉, 송신 공진 코일(등가 회로 R1, L1, C1)이 연결된다. 또한, 수신부(Rx) 공진 코일, 즉, 수신 공진 코일(등가 회로 R2, L2, C2)는 수신부(Rx) 트랜스포머의 2차 코일(등가 회로 RT2, LT2)의 양단에 연결되며, 수신부(Rx) 트랜스포머의 1차 코일(등가 회로 RL, LL)의 양단이 부하에 연결될 수 있다. 부하는 수신부(Rx) 트랜스포머의 1차 코일(등가 회로 RL, LL)의 교류 전압을 정류하는 정류회로일 수도 있고, 이러한 정류 회로 이외에도 DC-DC(DC-to-DC) 컨버터가 더 포함될 수도 있다. As shown in Fig. 3B, both ends of the AC power supply Vs are connected to both ends of the primary coils (equivalent circuits Rs and Ls) of the transmitter Tx transformer, and the secondary coils (equivalent circuits RT1 and LT1 of the transmitter Tx transformer) are connected. Are connected to both ends of the transmission unit Tx resonant coil, that is, the transmission resonant coils (equivalent circuits R1, L1, C1). In addition, the receiving unit Rx resonant coil, that is, the receiving resonant coils (equivalent circuits R2, L2, C2) is connected to both ends of the secondary coils (equivalent circuits RT2, LT2) of the receiving unit Rx transformer, and the receiving unit Rx Both ends of the transformer's primary coils (equivalent circuits RL and LL) may be connected to the load. The load may be a rectifier circuit for rectifying the AC voltage of the primary coils (equivalent circuits RL and LL) of the receiver Rx transformer, and in addition to the rectifier circuit, a DC-DC converter may be further included. .
특히, 본 발명에서 제안한 자기 공진 코일(등가 회로의 Cm1, Rm1, Lm1, Lm2)은 송신 공진 코일(등가 회로 R1, L1, C1)로부터 수신 공진 코일(등가 회로 R2, L2, C2)로 시변 자기장을 전달하여 무선으로 전력이 전달될 수 있도록 중계(repeating)한다. 여기서, 제안한 자기 공진 코일(등가 회로의 Cm1, Rm1, Lm1, Lm2)은 커패시터 (Cm1) 양단 사이에 직렬 연결된 1회 이상의 감은 회수를 갖는 제1 루프 코일(Lm1)과 1회 이상의 감은 회수를 갖는 제2 루프 코일(Lm2)를 포함한다. 제1 루프 코일(Lm1)은 송신 공진 코일(등가 회로 R1, L1, C1) 주위에 배치되며, 제2 루프 코일(Lm2)은 수신 공진 코일(등가 회로 R2, L2, C2) 주위에 배치된다. 커패시터(Cm1)는 자기 공진기(Cm1, Rm1, Lm1, Lm2)의 공진 주파수를 튜닝하기 위해 사용된다. 외부 영향에 의해 자기 공진기(Cm1, Rm1, Lm1, Lm2)의 자체 커패시턴스(self capacitance)가 변동하기 때문에, 이로 인한 공진 주파수 변화를 커패시터(Cm1)를 사용하여 줄일 수 있어 전력전송의 신뢰도를 높일 수 있다. 또한 실제 제작에 있어서 제 1,2 루프의 인덕턴스(Lm1, Lm2)가 외부 영향으로 변화하기 때문에, 외부 환경에 맞춰서 커패시터(Cm1)를 튜닝하여 공진주파수를 정확하게 맞춰줄 수 있다. 이때, 자기 공진기의 높은 효율을 유지하기 위해 저손실 커패시턴스를 사용하여 가능한 정확한 공진 주파수를 갖도록 한다. 그리고, 제안된 자기 공진기의 공진 주파수 fres는 공진기의 전체 인덕턴스(L = Lm1 + Lm2)와 커패시터(Cm1)에 의해 [수학식 1]과 같이 정할 수 있다. In particular, the magnetic resonance coils (Cm1, Rm1, Lm1, Lm2 of the equivalent circuit) proposed in the present invention are time-varying magnetic fields from the transmission resonance coils (equivalent circuits R1, L1, C1) to the receiving resonance coils (equivalent circuits R2, L2, C2). It relays the power so that the power can be transmitted wirelessly. Here, the proposed self-resonant coil (Cm1, Rm1, Lm1, Lm2 of the equivalent circuit) has a first loop coil Lm1 having at least one winding number connected in series between both ends of the capacitor Cm1 and at least one winding number. The second loop coil Lm2 is included. The first loop coil Lm1 is disposed around the transmission resonant coils (equivalent circuits R1, L1, C1), and the second loop coil Lm2 is disposed around the reception resonant coils (equivalent circuits R2, L2, C2). The capacitor Cm1 is used to tune the resonant frequencies of the magnetic resonators Cm1, Rm1, Lm1, Lm2. Since the self capacitances of the magnetic resonators Cm1, Rm1, Lm1, and Lm2 fluctuate due to external influences, the resulting change in resonance frequency can be reduced by using the capacitor Cm1, thereby increasing the reliability of power transmission. have. In addition, since the inductances Lm1 and Lm2 of the first and second loops are changed by external influences in actual manufacturing, the resonance frequency can be accurately adjusted by tuning the capacitor Cm1 according to the external environment. At this time, in order to maintain the high efficiency of the magnetic resonator, low loss capacitance is used to have the accurate resonance frequency as possible. The resonant frequency f res of the proposed magnetic resonator can be determined by Equation 1 by the total inductance L = Lm1 + Lm2 and the capacitor Cm1 of the resonator.
[수학식 1][Equation 1]
Figure PCTKR2011006898-appb-I000001
Figure PCTKR2011006898-appb-I000001
이에 따라, 교류 전원(Vs)에 의해 송신 공진 코일(등가 회로 R1, L1, C1)에 발생된 시변 자기장은 자기 공진 코일(등가 회로의 Cm1, Rm1, Lm1, Lm2)의 제 1루프 코일(Lm1)와 강한 자계 커플링되어 송신 공진 코일과 제1루프 코일(Lm1)에는 각각 자계 공진(magnetic resonance)이 일어나면서 전력이 전달되고, 제1루프 코일(Lm1)에서 만들어진 전류는 제2루프 코일(Lm2)로 흘러가고, 제 2루프 코일(Lm2)에서는 다시 자계 공진(magnetic resonance)으로 수신 공진 코일(등가 회로 R2, L2, C2)에 전력을 전달한다. 제1 루프 코일(Lm1)과 제2 루프 코일(Lm2)이 직렬 연결되므로 송신 공진 코일(등가 회로 R1, L1, C1)의 시변 자기장이 제1 루프 코일(Lm1)과 제2 루프 코일(Lm2)로 전달될 수 있다.Accordingly, the time-varying magnetic field generated in the transmission resonance coils (equivalent circuits R1, L1, C1) by the AC power supply Vs is the first loop coil Lm1 of the magnetic resonance coils (Cm1, Rm1, Lm1, Lm2 of the equivalent circuit). ) Is coupled to a strong magnetic field so that electric power is transmitted to the transmission resonance coil and the first loop coil Lm1 while magnetic resonance occurs, respectively, and the current generated from the first loop coil Lm1 is a second loop coil ( Lm2, and the second loop coil Lm2 transmits electric power to the receiving resonance coils (equivalent circuits R2, L2, C2) again by magnetic resonance. Since the first loop coil Lm1 and the second loop coil Lm2 are connected in series, the time-varying magnetic fields of the transmission resonant coils (equivalent circuits R1, L1, C1) are generated by the first loop coil Lm1 and the second loop coil Lm2. Can be delivered.
여기서, 제안한 자기 공진 코일(등가 회로의 Cm1, Rm1, Lm1, Lm2)이 제1 루프 코일(Lm1)과 제2 루프 코일(Lm2)로 이루어지는 것을 설명하지만, 이에 한정되는 것은 아니며, 제1 루프 코일(Lm1)과 직렬 또는 병렬 연결되는 1 이상의 루프 코일이 더 포함될 수도 있고, 또한, 제2 루프 코일(Lm2)과 직렬 또는 병렬 연결되는 1 이상의 루프 코일이 더 포함될 수도 있다.Here, although the proposed self-resonant coil (Cm1, Rm1, Lm1, Lm2 of the equivalent circuit) is composed of the first loop coil Lm1 and the second loop coil Lm2, the present invention is not limited thereto. One or more loop coils connected in series or in parallel with Lm1 may be further included, and one or more loop coils in series or in parallel with the second loop coil Lm2 may be further included.
이와 같이 본 발명의 자기 공진 코일(등가 회로의 Cm1, Rm1, Lm1, Lm2)은 루프 코일이 2개로 분리된 형태로 각각 송신 공진 코일 및 수신 공진 코일과 자기장 커플링되는 구조이다. 또한, 송/수신 공진 코일이 중계 공진 코일에 비하여 면적이 매우 작은 경우나 송/수신 공진 코일과 중계 공진 코일(등가 회로의 Cm1, Rm2, Lm1, Lm2) 간의 배열이 수평에서 틀어지게 되는 경우 커플링이 약해져 전력 전달 효율이 낮아질 수 있지만, 본 발명에서는 도 1과 같이, 분리된 다중 루프 코일을 가지는 중계 공진 코일 구조를 이용해 송/수신 공진 코일과 각각 커플링이 가장 강한 영역들에 루프 코일을 따로 만들고 이를 직렬로 연결하여, 이때 각 루프 코일의 턴 수를 복수로 늘려주어 송/수신 공진 코일과의 커플링을 증가시킴으로써 전력전송 효율을 높여줄 수 있다. 또한 자기장 발생을 전면적이 아닌 극소 부분(제1 루프 코일(Lm1)과 제2 루프 코일(Lm2) 주위)에 집중시키고 제1 루프 코일(Lm1)과 제2 루프 코일(Lm2) 사이의 연결 부분인 중간 부분의 자기장 발생을 줄일 수 있고, 루프 코일의 면적이 작아져서 커플링을 하지 않는 중간 부분에서 발생되는 자기장의 크기를 줄일 수 있기 때문에 커플링이 발생되는 한정된 부분의 전자파만 차폐하면 되기 때문에, 전자파 장해의 문제를 줄일 수 있다. As described above, the magnetic resonance coils (Cm1, Rm1, Lm1, and Lm2 of the equivalent circuit) of the present invention have a structure in which a loop coil is separated into two, and magnetic field coupling with the transmission resonance coil and the reception resonance coil, respectively. In addition, when the transmission / reception resonance coil has a very small area compared to the relay resonance coil or when the arrangement between the transmission / reception resonance coil and the relay resonance coil (Cm1, Rm2, Lm1, Lm2 in the equivalent circuit) is displaced horizontally Although the ring may be weakened, the power transmission efficiency may be lowered. However, in the present invention, as illustrated in FIG. 1, the loop coil is disposed in the regions where the transmission / reception resonance coil and the strongest coupling are respectively formed using a relay resonant coil structure having a separate multiple loop coil. By making them separately and connecting them in series, it is possible to increase the number of turns of each loop coil to increase power coupling efficiency by increasing the coupling with the transmission / reception resonance coil. In addition, the magnetic field generation is concentrated on a very small portion (around the first loop coil Lm1 and the second loop coil Lm2), and is a connection portion between the first loop coil Lm1 and the second loop coil Lm2. Since the magnetic field in the middle part can be reduced and the area of the loop coil can be reduced to reduce the size of the magnetic field generated in the middle part without coupling, only the electromagnetic wave in the limited portion where the coupling is generated needs to be shielded. The problem of electromagnetic interference can be reduced.
도 4a는 상용 전자파 해석 툴 HFSS(High-Frequency Structure Simulator)을 사용하여 해석한 자기 공진 코일의 자기장 분포도이다. 도 4b와 도 4c는 z = 10cm에서 x, y축에 대한 자기장 세기를 그래프로 표시한 그림이다. 도 4b와 도 4c와 같이, 시뮬레이션 결과를 보면 중계 공진 코일의 제1 루프 코일(Lm1)과 제2 루프 코일(Lm2) 부분에서 자기장이 강하게 생기는 것을 볼 수 있다. 또한 루프 코일이 없는 부분에서 자기장의 세기는 루프 부분의 비해 현저히 작다는 것을 볼 수 있다.4A is a magnetic field distribution diagram of a magnetic resonance coil analyzed using a commercial electromagnetic wave analysis tool HFSS (High-Frequency Structure Simulator). 4B and 4C are graphs of magnetic field intensities for x and y axes at z = 10 cm. As shown in FIG. 4B and FIG. 4C, it can be seen that the magnetic field is strongly generated in the first loop coil Lm1 and the second loop coil Lm2 of the relay resonant coil. It can also be seen that the strength of the magnetic field in the absence of the loop coil is significantly smaller than that of the loop.
도 5는 도 3a의 코일 구성에 대한 시뮬레이션 회로도이다. 본 발명의 무선전력전송 시스템의 등가회로를 시뮬레이션하기 위하여, 시뮬레이션 툴인 AGILENT ADS를 사용하였으며, 각 소자(저항, 커패시터, 인덕터 등)의 값들은 도 5에 도시된 바와 같다. FIG. 5 is a simulation circuit diagram of the coil configuration of FIG. 3A. In order to simulate the equivalent circuit of the wireless power transmission system of the present invention, AGILENT ADS, a simulation tool, was used, and the values of each element (resistance, capacitor, inductor, etc.) are shown in FIG. 5.
하나의 루프로 만들어진 자기 공진 코일을 가지는 종래의 무선전력전송 시스템은 협대역의 주파수 특성을 가지고, 이는 소스부의 주파수 변화에 전력전송효율이 매우 민감하였다. 그러나, 도 6의 시뮬레이션 결과에 따른 S-Parameter 값에서 보듯이, 본 발명에서 제안하는 (중계) 자기 공진 코일을 사용하는 무선전력전송 시스템은 제1 루프 코일(Lm1)과 제2 루프 코일(Lm2)을 포함한 다중 루프 코일에 의해 주파수 특성상 대역폭을 증가시킬 수 있으므로, 소스부(교류 전원 또는 송신 공진 코일 등)의 주파수의 변동에 대한 전력전달효율의 신뢰도를 높일 수 있다.The conventional wireless power transmission system having a self-resonant coil made of one loop has a narrow frequency characteristic, and the power transmission efficiency is very sensitive to the frequency change of the source portion. However, as shown in the S-parameter value according to the simulation result of FIG. 6, in the wireless power transmission system using the (relay) self-resonant coil proposed in the present invention, the first loop coil Lm1 and the second loop coil Lm2 Since the bandwidth can be increased by the multi-loop coil including a), the reliability of the power transfer efficiency can be improved with respect to the fluctuation of the frequency of the source unit (AC power supply or transmission resonance coil, etc.).
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

Claims (8)

  1. 시변 자기장을 송수신하는 무선전력전송 시스템에 있어서,In the wireless power transmission system for transmitting and receiving a time-varying magnetic field,
    1회 이상의 감은 회수를 갖는 루프 코일의 복수개가 직렬 또는 병렬로 연결된 구조의 자기 공진 코일을 포함하고,A magnetic resonance coil having a structure in which a plurality of loop coils having one or more windings are connected in series or in parallel,
    송신부 코일의 시변 자기장을 자계 공진 또는 자계 유도 커플링을 통해 상기 자기 공진 코일의 어느 한 루프 코일로 집중적으로 수신하고, The time-varying magnetic field of the transmitter coil is intensively received by either loop coil of the magnetic resonance coil through magnetic resonance or magnetic induction coupling,
    상기 어느 한 루프 코일에 연결된 상기 자기 공진 코일의 다른 루프 코일에서의 시변 자기장을 자계 공진 또는 자계 유도 커플링을 통해 수신부 코일로 전송하는 것을 특징으로 하는 무선전력전송 시스템.And transmitting a time-varying magnetic field in another loop coil of the magnetic resonance coil connected to the one loop coil to a receiver coil through magnetic resonance or magnetic induction coupling.
  2. 제1항에 있어서,The method of claim 1,
    상기 자기 공진 코일에 포함된 복수로 연결된 루프 코일의 양끝은 개방된 것을 특징으로 하는 무선전력전송 시스템.Wireless power transmission system, characterized in that both ends of the plurality of loop coils included in the magnetic resonance coil is open.
  3. 제1항에 있어서,The method of claim 1,
    상기 자기 공진 코일에 포함된 복수로 연결된 루프 코일의 양끝 사이에 연결된 공진 주파수 튜닝을 위한 커패시터를 포함하는 것을 특징으로 하는 무선전력전송 시스템.And a capacitor for resonant frequency tuning connected between both ends of a plurality of loop coils included in the magnetic resonance coil.
  4. 제1항에 있어서,The method of claim 1,
    상기 자기 공진 코일은 송신부 송신 코일과 수신부 수신 코일 사이에 배치되며, The self resonant coil is disposed between the transmitter transmitter coil and the receiver receiver coil,
    상기 송신부 송신 코일의 시변 자기장이 자계 유도 커플링을 통해 상기 자기 공진 코일의 제1 루프 코일로 집중적으로 전달되고, The time-varying magnetic field of the transmitter transmitting coil is concentrated to the first loop coil of the magnetic resonance coil through a magnetic field inductive coupling,
    상기 제1 루프 코일에 연결된 상기 자기 공진 코일의 제2 루프 코일에 형성된 시변 자기장이 자계 유도 커플링을 통해 상기 수신부 수신 코일로 전달되는 것을 특징으로 하는 무선전력전송 시스템.The time-varying magnetic field formed in the second loop coil of the magnetic resonance coil connected to the first loop coil is transmitted to the receiver receiving coil through the magnetic field induction coupling.
  5. 제1항에 있어서,The method of claim 1,
    상기 자기 공진 코일은 제1 루프 코일, 제2 루프 코일, 및 제3 루프 코일을 포함하며,The self resonant coil includes a first loop coil, a second loop coil, and a third loop coil,
    송신부 송신 공진 코일의 시변 자기장이 자계 공진을 통해 상기 제1 루프 코일로 집중적으로 전달되어, 상기 제2 루프 코일 및 상기 제3 루프 코일에 시변 자기장이 형성되며,The time-varying magnetic field of the transmitter transmitting resonance coil is concentrated to the first loop coil through magnetic field resonance, and a time-varying magnetic field is formed in the second loop coil and the third loop coil.
    상기 제2 루프 코일은 자계 공진을 통해 시변 자기장을 제1수신부의 수신 공진 코일로 전달하고, 상기 제3 루프 코일은 자계 공진을 통해 시변 자기장을 제2수신부의 수신 공진 코일로 전달하는 것을 특징으로 하는 무선전력전송 시스템.The second loop coil transfers the time-varying magnetic field to the reception resonance coil of the first receiver through magnetic field resonance, and the third loop coil transfers the time-varying magnetic field to the reception resonance coil of the second receiver through magnetic field resonance. Wireless power transmission system.
  6. 제1항에 있어서,The method of claim 1,
    상기 자기 공진 코일은 송신부 송신 코일과 수신부 수신 공진 코일 사이에 배치되며, The magnetic resonance coil is disposed between the transmitter transmitter coil and the receiver receiver resonance coil,
    상기 송신부 송신 코일의 시변 자기장이 자계 유도 커플링을 통해 상기 자기 공진 코일의 제1 루프 코일로 집중적으로 전달되고, The time-varying magnetic field of the transmitter transmitting coil is concentrated to the first loop coil of the magnetic resonance coil through a magnetic field inductive coupling,
    상기 제1 루프 코일에 연결된 상기 자기 공진 코일의 제2 루프 코일에 형성된 시변 자기장이 자계 공진을 통해 상기 수신부 수신 공진 코일로 전달되는 것을 특징으로 하는 무선전력전송 시스템.The time-varying magnetic field formed in the second loop coil of the magnetic resonance coil connected to the first loop coil is transmitted to the receiver receiving resonance coil through the magnetic field resonance.
  7. 제1항에 있어서,The method of claim 1,
    상기 송신부의 트랜스포머의 1차 코일의 양단에 교류 전원이 연결되며, 상기 송신부의 트랜스포머의 2차 코일의 양단에 상기 송신부의 송신 공진 코일이 연결되며,AC power is connected to both ends of the primary coil of the transformer of the transmitter, and a transmission resonance coil of the transmitter is connected to both ends of the secondary coil of the transformer of the transmitter,
    상기 송신 공진 코일의 시변 자기장이 자계 공진을 통해 상기 자기 공진 코일의 제1 루프 코일로 집중적으로 전달되고, 상기 제1 루프 코일에 연결된 상기 자기 공진 코일의 제2 루프 코일에 형성된 시변 자기장이 자계 공진을 통해 상기 수신부의 수신 공진 코일로 전달되며,The time-varying magnetic field of the transmission resonance coil is intensively transferred to the first loop coil of the magnetic resonance coil through magnetic field resonance, and the time-varying magnetic field formed in the second loop coil of the magnetic resonance coil connected to the first loop coil is magnetic field resonance. It is transmitted to the receiving resonance coil of the receiver through,
    상기 수신부의 공진 코일이 상기 수신부의 트랜스포머의 2차 코일의 양단에 연결되며, 상기 수신부의 트랜스포머의 1차 코일의 양단에 부하가 연결된 것을 특징으로 하는 무선전력전송 시스템.And a resonant coil of the receiver is connected to both ends of the secondary coil of the transformer of the receiver, and a load is connected to both ends of the primary coil of the transformer of the receiver.
  8. 시변 자기장을 송수신하기 위한 무선전력전송 방법에 있어서,In the wireless power transmission method for transmitting and receiving a time-varying magnetic field,
    1회 이상의 감은 회수를 갖는 루프 코일의 복수개가 직렬 또는 병렬 연결된 구조의 자기 공진 코일을 이용하여,By using a magnetic resonance coil having a structure in which a plurality of loop coils having one or more windings are connected in series or in parallel,
    송신부 코일의 시변 자기장을 자계 공진 또는 자계 유도 커플링을 통해 상기 자기 공진 코일의 어느 한 루프 코일로 집중적으로 수신하고, The time-varying magnetic field of the transmitter coil is intensively received by either loop coil of the magnetic resonance coil through magnetic resonance or magnetic induction coupling,
    상기 어느 한 루프 코일에 연결된 상기 자기 공진 코일의 다른 루프 코일에서의 시변 자기장을 자계 공진 또는 자계 유도 커플링을 통해 수신부 코일로 전송하는 것을 특징으로 하는 무선전력전송 방법.And transmitting a time-varying magnetic field in the other loop coil of the magnetic resonance coil connected to the one loop coil to the receiver coil through magnetic field resonance or magnetic field inductive coupling.
PCT/KR2011/006898 2011-05-04 2011-09-19 Self-resonance coil having multiloop for magnetic resonance wireless power transfer WO2012150746A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110042427A KR101249242B1 (en) 2011-05-04 2011-05-04 Self resonant coil with multiple loops for magnetic resonant wireless power transfer
KR10-2011-0042427 2011-05-04

Publications (1)

Publication Number Publication Date
WO2012150746A1 true WO2012150746A1 (en) 2012-11-08

Family

ID=47107923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006898 WO2012150746A1 (en) 2011-05-04 2011-09-19 Self-resonance coil having multiloop for magnetic resonance wireless power transfer

Country Status (2)

Country Link
KR (1) KR101249242B1 (en)
WO (1) WO2012150746A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682574A (en) * 2015-02-09 2015-06-03 重庆大学 U-shaped wireless power transmission coupled structure and design method thereof
CN105790448A (en) * 2016-04-19 2016-07-20 上海交通大学 Electric automobile wireless charging coil apparatus capable of effectively increasing coupling coefficient
US10547215B2 (en) 2015-03-05 2020-01-28 Ge Hybrid Technologies, Llc Wireless power transmission/reception device
US11381116B2 (en) 2018-04-18 2022-07-05 Samsung Electronics Co., Ltd. Display system for wirelessly supplying power
US11804874B2 (en) 2021-05-03 2023-10-31 Electronics And Telecommunications Research Institute Method and apparatus for magnetic field communication

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102236576B1 (en) * 2013-09-26 2021-04-05 온세미컨덕터코리아 주식회사 Wireless power transfer system
US9837830B2 (en) 2014-04-25 2017-12-05 Electronics And Telecommunications Research Institute Wireless power transmitting method and apparatus using dual-loop in-phase feeding
JP7373995B6 (en) * 2017-03-07 2023-12-08 パワーマット テクノロジーズ リミテッド System for wireless power charging
KR102172179B1 (en) * 2018-12-14 2020-10-30 영남대학교 산학협력단 Power transfer direction control device and wireless charging system including the same
KR102162859B1 (en) * 2019-08-22 2020-10-20 한국전기연구원 Wireless Power Transmitter and Receiver for Free Positioning Charging of Multiple Devices
KR102379486B1 (en) * 2019-11-15 2022-03-25 대구대학교 산학협력단 System for simultaneous wireless power and data transfer between satellite and payload using repeater
KR102239540B1 (en) * 2020-09-25 2021-04-13 한국전기연구원 Wireless Power Transmitter and Receiver for Free Positioning Charging of Multiple Devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198826A (en) * 1989-09-22 1993-03-30 Nippon Sheet Glass Co., Ltd. Wide-band loop antenna with outer and inner loop conductors
US20020003498A1 (en) * 2000-05-17 2002-01-10 Luc Wuidart Electromagnetic field generation antenna for a transponder
US20100117454A1 (en) * 2008-07-17 2010-05-13 Qualcomm Incorporated Adaptive matching and tuning of hf wireless power transmit antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982476B2 (en) * 2003-10-01 2007-09-26 ソニー株式会社 Communications system
JP4639857B2 (en) * 2005-03-07 2011-02-23 富士ゼロックス株式会社 A storage box for storing articles to which RFID tags are attached, an arrangement method thereof, a communication method, a communication confirmation method, and a packaging structure.
KR101006187B1 (en) * 2008-05-02 2011-01-07 정춘길 Wireless charging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198826A (en) * 1989-09-22 1993-03-30 Nippon Sheet Glass Co., Ltd. Wide-band loop antenna with outer and inner loop conductors
US20020003498A1 (en) * 2000-05-17 2002-01-10 Luc Wuidart Electromagnetic field generation antenna for a transponder
US20100117454A1 (en) * 2008-07-17 2010-05-13 Qualcomm Incorporated Adaptive matching and tuning of hf wireless power transmit antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINWOOK KIM ET AL.: "Efficiency Analysis of Magnetic Resonance Wireless Power Transfer with Intermediate Resonant Coil", IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS., vol. 10, 2 May 2011 (2011-05-02), pages 389 - 392 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682574A (en) * 2015-02-09 2015-06-03 重庆大学 U-shaped wireless power transmission coupled structure and design method thereof
US10547215B2 (en) 2015-03-05 2020-01-28 Ge Hybrid Technologies, Llc Wireless power transmission/reception device
US11025100B2 (en) 2015-03-05 2021-06-01 Ge Hybrid Technologies, Llc Wireless power transmission/reception device
CN105790448A (en) * 2016-04-19 2016-07-20 上海交通大学 Electric automobile wireless charging coil apparatus capable of effectively increasing coupling coefficient
US11381116B2 (en) 2018-04-18 2022-07-05 Samsung Electronics Co., Ltd. Display system for wirelessly supplying power
US11804874B2 (en) 2021-05-03 2023-10-31 Electronics And Telecommunications Research Institute Method and apparatus for magnetic field communication

Also Published As

Publication number Publication date
KR101249242B1 (en) 2013-04-01
KR20120124646A (en) 2012-11-14

Similar Documents

Publication Publication Date Title
WO2012150746A1 (en) Self-resonance coil having multiloop for magnetic resonance wireless power transfer
CN111756121B (en) High-power wireless power supply coupling mechanism and parameter design method thereof
US20210012959A1 (en) Coil module, wireless charging transmitting apparatus, receiving apparatus, system, and terminal
EP2894764B1 (en) Contactless power supply system and contactless extension plug
KR101045585B1 (en) Wireless power transfer device for reducing electromagnetic wave leakage
US20140197694A1 (en) Contactless connector system tolerant of position displacement between transmitter coil and receiver coil and having high transmission efficiency
CN103560811A (en) Long range low frequency resonator and materials
KR20130058423A (en) Apparatus for relaying wireless power, method for transmitting wireless power and method for contorlling resonance frequency
KR20150032366A (en) Resonator device with improved isoalation for stable wireless power transfer
CN113708506B (en) Wireless anti-offset coupling mechanism that charges
US20130181536A1 (en) Icpt system, components and design method
WO2016114629A1 (en) Wireless power transmission device
KR101312532B1 (en) Capacitive and Transformer Coupling Method for Resonance based Wireless Power Transfer
US20180375379A1 (en) Voltage source isolation in wireless power transfer systems
KR101853491B1 (en) Coil Structure for Wireless Power Transfer and Wireless Power Transfer System
KR20150039809A (en) Wireless power transmission device and power supply method of wireless power transmission device
KR101973143B1 (en) System and apparatus for wireless power transfer with improved transfer range and efficiency
WO2011126306A1 (en) Antenna having a broadband power supply structural body, and a power supply method
WO2013141533A1 (en) Transmitter for transmitting wireless power and wireless power transmitting system including same
WO2012169728A2 (en) Resonant coil, wireless power transmitter using the same, wireless power receiver using the same
WO2020189351A1 (en) Non-contact power feeding device
KR101360024B1 (en) Apparatus and method for transmitting wireless power using capacitors
WO2019208887A1 (en) Wireless power transmission system
CN109728655A (en) Variable topological structure magnetic coupling resonant radio energy Transmission system and method
KR20150055755A (en) Hybrid wireless power transmission device which enables to transmit resonance power signal and induced power signal simultaneously and hybrid wireless power transmission system including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864880

Country of ref document: EP

Kind code of ref document: A1