WO2012150703A1 - Video display system, projection display device, directional reflection screen and layer display device - Google Patents

Video display system, projection display device, directional reflection screen and layer display device Download PDF

Info

Publication number
WO2012150703A1
WO2012150703A1 PCT/JP2012/061518 JP2012061518W WO2012150703A1 WO 2012150703 A1 WO2012150703 A1 WO 2012150703A1 JP 2012061518 W JP2012061518 W JP 2012061518W WO 2012150703 A1 WO2012150703 A1 WO 2012150703A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
projection
recursive
image
video
Prior art date
Application number
PCT/JP2012/061518
Other languages
French (fr)
Japanese (ja)
Inventor
柴田 諭
時由 梅田
豪 鎌田
誠二 大橋
昌洋 ▲辻▼本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011103102A external-priority patent/JP2014139591A/en
Priority claimed from JP2011103103A external-priority patent/JP2014139592A/en
Priority claimed from JP2011107495A external-priority patent/JP2014139594A/en
Priority claimed from JP2011169309A external-priority patent/JP2014139596A/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012150703A1 publication Critical patent/WO2012150703A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/373Image reproducers using viewer tracking for tracking forward-backward translational head movements, i.e. longitudinal movements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/376Image reproducers using viewer tracking for tracking left-right translational head movements, i.e. lateral movements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N2013/40Privacy aspects, i.e. devices showing different images to different viewers, the images not being viewpoints of the same scene
    • H04N2013/403Privacy aspects, i.e. devices showing different images to different viewers, the images not being viewpoints of the same scene the images being monoscopic

Definitions

  • the present invention relates to a video display system, a projection display device, a directional reflective screen, and a layer display device.
  • This application includes Japanese Patent Application No. 2011-107495 filed in Japan on May 12, 2011, Japanese Patent Application No. 2011-103102 filed in Japan on May 2, 2011, and May 2, 2011. Claiming priority based on Japanese Patent Application No. 2011-103103 filed in Japan and Japanese Patent Application No. 2011-169309 filed in Japan on August 2, 2011, the contents of which are incorporated herein by reference. To do.
  • an image display device that combines image projection means such as a projector and a directional reflective screen having directivity
  • image projection means such as a projector and a directional reflective screen having directivity
  • an image signal irradiated on the directional reflective screen is reflected in the horizontal direction when reflected by the directional reflective screen. Condensed at the position of the image projection means. Taking advantage of such reflection characteristics, two projectors are placed directly above or below the right and left eyes of the observer, and a pair of video signals that are stereoscopic image signals based on the principle of binocular parallax are converted into directivity. By irradiating the reflective screen, a stereoscopic image can be viewed without wearing special glasses.
  • An image display device that extends the viewing range in the horizontal direction of the directional reflection screen includes a directional reflection screen and image projection means for projecting an image onto the directional reflection screen.
  • An anisotropic diffuser, and the mirror mirror group and the anisotropic diffuser diffuse anisotropically after incident light from the image projection means is transmitted through the anisotropic diffuser and reflected by the mirror mirror group.
  • the anisotropic diffuser is known to have a microlens group that has a width in a direction parallel to the ridgeline of the mirror group and a width in a direction perpendicular to the ridgeline of the mirror group. (For example, refer to Patent Document 1).
  • a projection display device that includes a recursive screen that reflects light in the same direction as the direction in which light is incident, and a projector that projects an image on the recursive screen.
  • the projector is disposed in the vicinity of the eyes of the viewer (viewer) who views the video. Further, the light emitted from the projector to the recursive screen returns to the direction of the projector. Therefore, this projection type display device has extremely high light utilization efficiency, and even when a low output projector is used, a high brightness image can be obtained.
  • each image (light) is directed in the direction of each projector. Since the viewer returns, each viewer can see a different video.
  • individual projectors are arranged in the vicinity of the viewer's eyes, and images corresponding to the respective eyes are projected from the respective projectors to the recursive screen. It is also known that 3D video can be realized (see, for example, Patent Document 2).
  • a projection display device that includes a recursive screen that reflects light in the same direction as the direction in which light is incident, and a projector that projects an image on the recursive screen.
  • the projector is disposed in the vicinity of the eyes of the viewer (viewer) who views the video. Further, the light emitted from the projector to the recursive screen returns to the direction of the projector. Therefore, this projection type display device has extremely high light utilization efficiency, and even when a low output projector is used, a high brightness image can be obtained.
  • a directional scattering screen is arranged near the projection surface of the recursive screen, and the image of the recursive screen is greatly enlarged in the left-right direction (the width direction of the recursive screen), and the vertical direction (the vertical direction of the recursive screen). It is also known to enlarge in a small direction (for example, see Patent Document 3).
  • an image display device that combines an image projection unit such as a projector and a retroreflective screen (hereinafter referred to as a directional reflection screen) that reflects image light emitted from the image projection unit with directivity.
  • a directional reflection screen a retroreflective screen
  • the image signal irradiated on the directional reflection screen is condensed at the position of the image projection means in the horizontal direction when reflected by the directional reflection screen.
  • two projectors are arranged directly above or below the right and left eyes of the observer, and a pair of video signals that are stereoscopic image signals based on the principle of binocular parallax are converted into directivity.
  • a stereoscopic image can be viewed without wearing special glasses.
  • a group of mirrors arranged with mirrors crossing at a predetermined angle and an anisotropic diffuser are provided.
  • Combined directional reflective screens are also known.
  • Such a directional reflection screen is arranged so that incident light from the image projection means is transmitted through the anisotropic diffuser, reflected by the mirror group, and then transmitted through the anisotropic diffuser.
  • An anisotropic diffuser is known that includes a group of minute lenses having a width in a direction parallel to a ridge line of a group of mirrors and a width in a direction perpendicular to the ridge line.
  • an image display device is also known in which different images are projected from a plurality of image projection means onto one directional reflective screen, and the images that can be observed differ depending on the position of the observer (for example, patents).
  • 69A and 69B are schematic diagrams briefly showing the mechanism of the above-described image display apparatus.
  • the image display device 4200 includes a directional reflection screen 4201 and projectors 4202a, 4202b, and 4202c arranged in the vicinity of the plurality of viewers 400A, 400B, and 400C. Then, the image light A11 projected from the projector 4202a is reflected toward the observer 400C by the directional reflection screen 4201 (see the solid line arrow Ic in the figure).
  • the viewer 400C can observe the image projected by the projector 4202a as the regular reflection light A12 of the projector 4202a.
  • the image light B11 projected from the projector 4202b is perpendicularly incident on the directional reflection screen 4201 and reflected toward the observer 400B (see the solid arrow Ib in the figure).
  • the image light C11 projected from the projector 4202c is reflected by the directional reflection screen 4201 toward the observer 400A (see the solid line arrow Ia in the figure).
  • the image display apparatus described in the first background art can widen the diffusion range of the image (reflected light) over the entire screen of the directional reflection screen, but at any position on the screen of the directional reflection screen.
  • the diffusion range of the image could not be controlled.
  • the projection display device described in the second background art when the viewer's eyes are displaced along a plane parallel to the projection surface of the recursive screen, the brightness of the entire screen (video) is lowered. There was a problem that it was difficult to see the video.
  • the distance between the projection screen of the recursive screen and the viewer's eyes is deviated, that is, when the position of the viewer's eyes approaches the optimal position relative to the projection surface of the recursive screen, or When moving away, there was a problem that the brightness of the image was uneven. Specifically, when the viewer's eye position approaches or moves away from the optimal position with respect to the projection surface of the recursive screen, the center portion of the video is bright and the peripheral portion is dark. There was a problem of showing a luminance distribution.
  • the projection display device described in the third background art when the 3D image is realized by using the feature of the recursive screen, the image that should originally return to the viewer's left and right eyes respectively. There was a problem that the crosstalk was worsened because the eye returned to the other side. Further, when the position of the viewer's eyes is shifted along a plane parallel to the projection surface of the recursive screen, there is a problem that the brightness of the entire screen (video) is lowered and the video is difficult to see.
  • the distance between the projection screen of the recursive screen and the viewer's eyes is deviated, that is, when the position of the viewer's eyes approaches the optimal position relative to the projection surface of the recursive screen, or When moving away, there is a problem that the brightness of the image becomes uneven. Specifically, when the viewer's eye position approaches or moves away from the optimal position with respect to the projection surface of the recursive screen, the center of the video is along the width direction of the recursive screen. There is a problem that it shows a luminance distribution that is bright in a strip shape and dark at the periphery.
  • a part of the image light emitted from the image projection unit and incident on the directional reflection screen reaches the mirror group. Without being reflected on the surface of the anisotropic diffuser.
  • part of the image light emitted from the image projection unit for the left eye may be reflected by the surface of the diffusing lens and return to the direction of the image projection unit for the right eye.
  • part of the image light emitted from the image projection means is easily reflected on the surface of the anisotropic diffuser due to a large refractive index difference between the air layer and the anisotropic diffuser.
  • the video for the right eye and the video for the left eye are mixed, and there is a problem that the quality of the image is deteriorated due to crosstalk.
  • part of the image light projected from the projector 4202a is specularly reflected (specular reflection) on the surface of the directional reflection screen 4201.
  • the image light projected from the projector 4202a may be seen by the observer 4000C (see the dotted arrow Ea in the figure).
  • the observer 4000C receives the image light projected from the projector 4202c to be originally observed (see the solid arrow Ic in the figure) and the image light projected from the projector 4202a that cannot be originally observed (see the dotted arrow Ea in the figure). I see an image with a mixture of (crosstalk).
  • the image projected from the projector 4202c to be observed by the observer 4000C is greatly deteriorated.
  • the image light projected from the projector 4202a to be originally observed (see the solid arrow Ia in the figure) and the projector 4202c are projected to the observer 4000A, and a part thereof is specularly reflected by the directional reflection screen 4201. In some cases, an image in which the image light (see the dotted arrow Ec in the figure) mixed is seen.
  • FIG. 69B since the projector 4202a and the projector 4202c are installed at the same height, the axes of the emitted light are actually overlapped, but they are shifted in the vertical direction for easy understanding. ing.
  • the present invention has been made in view of the first background art, and provides a video display system capable of controlling the diffusion range of an image at an arbitrary position on the screen of a retroreflective screen. Objective.
  • the present invention has been made in view of the second background art, and an object thereof is to provide a projection type display device that can observe an image with little luminance unevenness.
  • the present invention has been made in view of the third background art, and an object thereof is to provide a projection type display device that can observe an image with little luminance unevenness.
  • the present invention has been made in view of the fourth background art, and an image display including a screen capable of projecting a clear image while maintaining desired light reflection performance and diffusion performance.
  • An object is to provide an apparatus.
  • a first aspect of the present invention includes a retroreflective screen and a plurality of projectors that project an image on the retroreflective screen, and the projector is positioned at an eye position of an observer of the image.
  • the image display system is provided at a position spaced apart in either the vertical direction, and a diffusion control body that diffuses light in the vertical direction is laminated on the projection surface of the retroreflective screen.
  • the diffusion controller may be capable of forming regions having partially different refractive indexes.
  • the diffusion control body may be a liquid lens.
  • the diffusion control body may be a liquid crystal lens.
  • the diffusion controller may be a polymer dispersed liquid crystal element.
  • the retroreflective screen may have three reflective surfaces.
  • the retroreflective screen may include a group of mirrors.
  • a recursive screen, a projection video processing unit that processes a video signal projected on the recursive screen, and a video from the projection video processing unit are projected onto the recursive screen.
  • a correction mechanism that corrects the luminance distribution of the image projected from the projector onto the recursive screen when the distance from the projection screen to the projection surface is longer than the optimum position.
  • a directional scattering screen is disposed in the vicinity of the projection surface of the recursive screen, and the reflected light of the recursive screen is reflected by the directional scattering screen.
  • the angle of diffusion may be different between the width direction and the vertical direction of the screen.
  • the luminance distribution may be concentric.
  • the luminance distribution may be darkest at the center and gradually brighter toward the peripheral edge.
  • the luminance distribution is a projection of the recursive screen, wherein a straight line connecting the eye of the viewer of the video and the projection unit is extended to the recursive screen side. It is good also considering the point which cross
  • the correction mechanism may be the projection video processing unit, and the projection video processing unit may process the video signal to correct the luminance distribution.
  • the correction mechanism is a correction filter provided between the projection unit and the recursive screen, and the luminance distribution is corrected by the correction filter. good.
  • position detecting means for detecting the position of the projection unit and / or the position of the viewer's eyes.
  • a chair having position detecting means for detecting the position of the projection unit and / or the position of the viewer's eyes may be provided.
  • a recursive screen, a projection video processing unit that processes a signal of a video projected on the recursive screen, and a video from the projection video processing unit are projected onto the recursive screen.
  • a directional scattering screen is disposed in the vicinity of the projection surface of the recursive screen, and the reflected light from the recursive screen is reflected by the directional scattering screen.
  • the angle of diffusion may be different between the width direction and the vertical direction of the screen.
  • the plurality of projectors project an image on the recursive screen so that an enlargement ratio of the image increases sequentially from those arranged on the recursive screen side. Also good.
  • the plurality of projectors may display images on the recursive screen so that the sizes of the images projected from the projectors are equal on the projection surface of the recursive screen. May be projected.
  • a correction mechanism for correcting the luminance distribution of images projected from the plurality of projectors onto the recursive screen is provided, and the correction mechanism causes the luminance distribution to be centered. You may correct
  • the correction mechanism may be the projection video processing unit, and the projection video processing unit may process the video signal to correct the luminance distribution.
  • the correction mechanism is a correction filter provided between the projection unit and the recursive screen, and the luminance distribution is corrected by the correction filter. good.
  • position detection means for detecting the position of the eyes of the viewer of the video may be provided.
  • the plurality of projectors are arranged in parallel in a direction orthogonal to the larger diffusion angle of the reflected light in the width direction or the reflected light in the vertical direction of the recursive screen. May be.
  • the angle at which the reflected light of the recursive screen diffuses is such that the vertical direction of the recursive screen is larger than the width direction of the recursive screen, and the plurality of projectors are You may arrange
  • the plurality of projectors may be installed above or below the viewer's head.
  • a horizontal reflection unit that collects incident light along at least the horizontal direction and reflects the incident light toward the incident direction, and a vertical that diffuses the horizontal reflected light along the vertical direction.
  • the horizontal reflection part and the vertical diffusion part are spread so as to overlap and overlap each other, and the surface of the vertical diffusion part has the incident light directed toward the horizontal reflection part. It is a directional reflective screen in which an antireflection body for preventing surface reflection is formed.
  • the antireflection body may have a fine concavo-convex structure and a large number of fine conical protrusions may be arranged.
  • the antireflection body may have a refractive index smaller than that of the vertical diffusion portion.
  • the antireflection body may be formed in a sheet shape and attached to the surface of the vertical diffusion portion.
  • a planarization layer may be further formed between the antireflection body and the surface of the vertical diffusion portion.
  • the planarizing layer may have a refractive index smaller than that of the vertical diffusion portion and larger than that of the antireflection body.
  • the horizontal reflecting portion may be formed by arranging a plurality of sets of two reflecting surfaces intersecting each other at a predetermined angle and reflecting the incident light on two surfaces.
  • the vertical diffusing unit may comprise a lens group in which a plurality of lenses are arranged.
  • the fifth aspect of the present invention includes a three-dimensional reflection unit that reflects incident light in the horizontal direction and the vertical direction in the incident direction, and the surface of the three-dimensional reflection unit includes the three-dimensional reflection unit. It is a directional reflective screen in which an antireflection body for preventing surface reflection of the incident light traveling toward the reflection portion is formed.
  • the stereoscopic reflecting portion may be composed of a prism sheet in which a plurality of cubic prisms that reflect the incident light in three planes are arranged.
  • a reflective film may be further formed on the front surface or the back surface of the horizontal reflection portion or the three-dimensional reflection portion.
  • the antireflection body may be formed by laminating a plurality of optical interference layers.
  • the antireflection body may be transparent.
  • a horizontal reflecting unit that collects incident light at least along the horizontal direction and reflects the incident light toward the incident direction, and a vertical that diffuses the horizontal reflected light along the vertical direction.
  • the horizontal reflection part and the vertical diffusion part are spread so as to overlap and overlap each other, and the surface of the vertical diffusion part has the incident light directed toward the horizontal reflection part.
  • An image display apparatus comprising: a directional reflection screen on which an antireflection body for preventing surface reflection is formed; and image projection means for projecting an image as incident light incident on the directional reflection screen.
  • the seventh aspect of the present invention includes a three-dimensional reflection part that reflects incident light in the horizontal direction and the vertical direction in the incident direction, and the surface of the three-dimensional reflection part includes the three-dimensional reflection part.
  • An image display device provided.
  • the diffusion range of an image can be controlled at an arbitrary position on the screen of the retroreflective screen.
  • the position before and after the projection unit of the projector arranged at an optimal position with respect to the projection surface of the recursive screen, the recursive screen, the projection unit of the projector Even at a position shifted in the vertical direction or the horizontal direction with respect to a straight line connecting the images, an image with little luminance unevenness can be observed.
  • the position before and after the projection unit of the projector arranged at an optimal position with respect to the projection surface of the recursive screen, the recursive screen, the projection unit of the projector Even at a position shifted in the vertical direction or the horizontal direction with respect to a straight line connecting the images, an image with little luminance unevenness can be observed.
  • 1 is a plan view of a schematic configuration showing an embodiment of a video display system.
  • 1 is a side view of a schematic configuration showing an embodiment of a video display system.
  • It is a schematic perspective view which shows an example of a retroreflection screen.
  • It is a schematic perspective view which shows the other example of a retroreflection screen.
  • It is a schematic sectional drawing which shows an example of a liquid lens.
  • It is a schematic sectional drawing which shows an example of a liquid crystal lens.
  • It is a schematic sectional drawing which shows another example of a liquid crystal lens.
  • It is a schematic sectional drawing which shows the other example of a liquid crystal lens.
  • It is a schematic sectional drawing which shows the other example of a liquid crystal lens.
  • a directional scattering screen When a directional scattering screen is used, it is a 1st figure which shows the luminance distribution of the image
  • FIG. 15 It is a top view of schematic structure which shows a part of projection type display apparatus of 14th Embodiment. It is a top view of schematic structure which shows the projection type display apparatus of 15th Embodiment. It is a side view of schematic structure which shows the projection type display apparatus of 15th Embodiment. It is a 1st figure which shows the luminance distribution of the image
  • a directional scattering screen When a directional scattering screen is used, it is a 3rd figure which shows the luminance distribution of the image
  • FIGS. 1A and 1B are schematic configuration diagrams showing an embodiment of a video display system, FIG. 1A is a plan view, and FIG. 1B is a side view.
  • the video display system 1010 of this embodiment includes a retroreflective screen 1011, three projectors 1012, 1013, and 1014 that project an image on the retroreflective screen 1011, a half mirror 1015 corresponding to the projector 1012, and a retroreflective screen.
  • a diffusion control body 1016 stacked on the projection surface 1011a of the screen 1011 is schematically configured.
  • the projector 1012 is installed in front of the retroreflective screen 1011, is in front of the retroreflective screen 1011, and is positioned with respect to the position of the eyes of the observer 1021 who views the image projected on the retroreflective screen 1011. It is installed at a position spaced downward, that is, in the vicinity of the feet of the observer 1021.
  • the projector 1012 is installed with its projection unit 1012a facing upward in the vertical direction.
  • the half mirror 1015 is installed in the vicinity of the observer 1021 and in front.
  • the half mirror 1015 is installed such that one surface (reflection surface) 1015a is inclined toward the retroreflection screen 1011.
  • the image emitted from the projector 1012 is reflected by one surface 1015a of the half mirror 1015, and the reflected light (image) is projected onto the projection surface 1011a of the retroreflective screen 1011.
  • the image (light) projected on the retroreflective screen 1011 is reflected by the retroreflective screen 1011, and the reflected light is diffused in the vertical direction (vertical direction) of the projection surface 1011 a by the diffusion controller 1016 for observation. Focused on the eyes of the person 1021.
  • the projector 1013 is installed obliquely with respect to the retroreflective screen 1011, is in an oblique position with respect to the retroreflective screen 1011, and the eyes of the observer 1022 who views the image projected on the retroreflective screen 1011. It is installed at a position spaced upward from the position, that is, above the observer 1022. Note that the projector 1013 is installed obliquely with respect to the retroreflective screen 1011 that the projector 1013 is lateral to a line connecting the projector 1012 and the projection surface 1011a of the retroreflective screen 1011 (in FIG. It is installed at a position shifted to the right side of 1012.
  • An image emitted from the projector 1013 is projected onto the projection surface 1011 a of the retroreflective screen 1011. Then, the image (light) projected on the retroreflective screen 1011 is reflected by the retroreflective screen 1011, and the reflected light is diffused in the vertical direction (vertical direction) of the projection surface 1011 a by the diffusion control body 1016 for observation. The light is condensed on the eyes of the person 1022.
  • the projector 1014 is installed obliquely with respect to the retroreflective screen 1011, is in an oblique position with respect to the retroreflective screen 1011, and the eyes of the observer 1023 viewing the image projected on the retroreflective screen 1011. It is installed at a position spaced upward from the position, that is, above the observer 1023. Note that the projector 1014 is installed obliquely with respect to the retroreflective screen 1011 that the projector 1014 is located laterally from a straight line connecting the projector 1012 and the projection surface 1011a of the retroreflective screen 1011 (in FIG. It is installed at a position shifted to the left) with respect to 1012.
  • An image emitted from the projector 1013 is projected onto the projection surface 1011 a of the retroreflective screen 1011. Then, the image (light) projected on the retroreflective screen 1011 is reflected by the retroreflective screen 1011, and the reflected light is diffused in the vertical direction (vertical direction) of the projection surface 1011 a by the diffusion control body 1016 for observation. The light is condensed on the eyes of the person 1023.
  • the retroreflective screen 1011 examples include those having a group of mirrors and those having three reflective surfaces.
  • a retroreflective screen 1011 a screen having a group of mirrors, for example, as shown in FIG. 2, a projection surface 1011 a is continuous with a plane (reflective surface) sandwiched between ridge lines 1011 b and valley lines 1011 c that are parallel to each other. It has an uneven surface. That is, the projection surface 1011a of the retroreflective screen 1011 has a shape in which one of the planes (reflecting surfaces) is a mirror, and the mirror is continuously combined with the ridge line 1011b and the valley line 1011c as a boundary. . Further, the included angle of the mating mirror, that is, the angle between two adjacent flat surfaces (reflecting surfaces) forming one valley is not particularly limited, but is preferably near 90 °.
  • Examples of the retroreflective screen 1011 having three reflective surfaces include those having a trihedral corner cube 1030 made of a mirror surface of a vertical right triangle as shown in FIG.
  • the incident light 1041 is sequentially reflected by the three reflecting surfaces 1030a, 1030b, and 1030c, and returns to the light source direction.
  • the ridge line 1011b is installed so as to extend in the vertical direction (vertical direction) of the projection plane 1011a, the recursive property does not appear in the vertical direction.
  • the trihedral corner cube 1030 since all the XYZ directions of the incident light 1041 are inverted, the reciprocity is exhibited in both the vertical and horizontal directions, so that the efficiency is higher.
  • the diffusion control body 1016 is not particularly limited as long as it is a structure capable of controlling the light diffusion direction (diffusibility).
  • a liquid lens as shown in FIG. 4 as shown in FIG. 5A to FIG.
  • a liquid lens 1050 shown in FIG. 4 is roughly composed of a cell 1051, an electrode 1052 provided therein, and oil 1054 and water 1055 enclosed in a recess 1053 formed at the center of the cell 1051 by the electrode 1052. It is configured.
  • the liquid lens 1050 has a function of changing the refraction direction of light by changing the shape of the interface between the oil 1054 and the water 1055 according to the voltage applied to the electrode 1052, and changing the traveling direction of the light after transmission. is doing.
  • the liquid lens 1050 is laminated on the projection surface 1011 a of the retroreflective screen 1011.
  • the light diffused by the diffusion controller 1016 passes through the liquid lens 1050 from the water 1055 side.
  • the liquid lens 1050 controls the diffusibility of light diffused by the diffusion controller 1016 by changing the light refraction direction.
  • a liquid crystal lens 1060 shown in FIGS. 5A and 5B includes a cell 1061, a pair of electrodes 1062 and 1063 provided to face the cell 1061, a prism structure 1064 provided in the cell 1061, and a pair of electrodes.
  • a liquid crystal 1065 sealed between the electrodes 1062 and 1063 is schematically configured.
  • An electrode 1063 is provided on the surface of the prism structure 1064 facing the electrode 1062.
  • the liquid crystal lens 1060 changes the alignment state of the liquid crystal 1065 and changes the refractive index of the liquid crystal 1065 according to the voltage applied to the pair of electrodes 1062 and 1063, thereby changing the refractive index of the liquid crystal 1065.
  • the liquid crystal lens 1060 has a function of changing the direction of refraction when passing through the prism structure 1064 and changing the traveling direction of the light after transmission.
  • the liquid crystal lens 1060 is laminated on the projection surface 1011 a of the retroreflective screen 1011.
  • the light diffused by the diffusion controller 1016 passes through the liquid crystal lens 1060 from the electrode 1062 side.
  • the liquid crystal lens 1060 controls the diffusibility of the light diffused by the diffusion controller 1016 by changing the light refraction direction.
  • a liquid crystal lens 1070 shown in FIG. 6 includes a cell 1073 having a pair of substrates 1071 and 1072 facing each other at a predetermined interval, a pair of electrodes 1074 and 1075 provided on the facing surfaces of the substrates 1071 and 1072, respectively.
  • a liquid crystal 1076 sealed between a pair of electrodes 1074 and 1075 is schematically configured.
  • the electrode 1075 includes a plurality of annular electrode elements 1075a, 1075b, 1075c, 1075d, and 1075e arranged concentrically.
  • the liquid crystal lens 1070 applies a constant voltage to one electrode 1074 and applies different voltages to the electrode elements 1075a, 1075b, 1075c, 1075d, and 1075e of the other electrode 1075.
  • a phase profile that follows is generated, and has a function of causing lens action.
  • the liquid crystal lens 1070 is laminated on the projection surface 1011 a of the retroreflection screen 1011.
  • the light diffused by the diffusion controller 1016 passes through the liquid crystal lens 1070 from the electrode 1075 side.
  • the liquid crystal lens 1070 controls the diffusibility of the light diffused by the diffusion controller 1016 by changing the light refraction direction.
  • a liquid crystal lens 1080 shown in FIG. 7 includes a cell 1083 having a pair of electrode-attached substrates 1081 and 1082 facing each other at a predetermined interval, and within the cell 1083, one electrode-attached substrate 1081 and the other electrode-attached substrate 1082. It is schematically composed of a Fresnel lens 1084 provided on the opposite surface and a liquid crystal 1085 sealed between a pair of substrates 1081 and 1082 with electrodes.
  • the liquid crystal lens 1080 changes the alignment state of the liquid crystal 1085 and changes the refractive index of the liquid crystal 1085 in accordance with the voltage applied to the pair of electrode substrates 1081 and 1082, thereby allowing light to pass through the Fresnel lens 1084.
  • the liquid crystal lens 1080 is laminated on the projection surface 1011 a of the retroreflective screen 1011.
  • the light diffused by the diffusion controller 1016 passes through the liquid crystal lens 1080 from the electrode-attached substrate 1081 side.
  • the liquid crystal lens 1080 controls the diffusibility of light diffused by the diffusion controller 1016 by changing the light refraction direction.
  • the liquid crystal lens 1090 shown in FIG. 8 is provided on a surface facing the substrate 1091 with an electrode of the substrate 1092 in the cell 1093 having a substrate 1091 and a substrate 1092 facing each other at a predetermined interval.
  • the lens 1094 having a substantially semicircular cross section, an electrode film 1095 provided on the surface of the lens 1094 facing the substrate with electrode 1091, and a liquid crystal 1096 sealed between the substrate with electrode 1091 and the substrate 1092 are schematically shown. It is configured.
  • the liquid crystal lens 1090 changes the alignment state of the liquid crystal 1096 and changes the refractive index of the liquid crystal 1096 in accordance with the voltage applied to the electrode substrate 1091 and the electrode film 1095, so that light passes through the lens 1094.
  • the liquid crystal lens 1090 is laminated on the projection surface 1011 a of the retroreflection screen 1011.
  • the light diffused by the diffusion controller 1016 passes through the liquid crystal lens 1090 from the substrate 1092 side.
  • the liquid crystal lens 1090 controls the diffusibility of the light diffused by the diffusion controller 1016 by changing the light refraction direction.
  • a polymer dispersed liquid crystal element 1100 shown in FIGS. 9A and 9B is a composite film in which liquid crystal molecules 1101 and a polymer material (polymer material) 1102 are arranged in a network.
  • the polymer dispersed liquid crystal element 1100 is an optical element that can be switched between a non-scattering state when an electric field is applied and a scattering state when no voltage is applied. That is, since the liquid crystal molecules 1101 respond to an electric field, it is possible to switch between a scattering state and a non-scattering state.
  • the refractive index is uniform (electric field application state)
  • the polymer dispersed liquid crystal element 1100 is in a non-scattering state.
  • the refractive index is randomly dispersed (no voltage applied state)
  • it is in a scattering state.
  • FIG. 9A in a voltage non-application state (scattering state), for example, incident light 1111 from the projector 1012 shown in FIGS. 1A and 1B is scattered by the polymer dispersed liquid crystal element 1100. At this time, a part of the light 1111 is once irradiated to the mirror surface 1011b of the retroreflective screen 1011 and retroreflected by forward scattering.
  • a voltage non-application state for example, incident light 1111 from the projector 1012 shown in FIGS. 1A and 1B is scattered by the polymer dispersed liquid crystal element 1100.
  • a part of the light 1111 is once irradiated to the mirror surface 1011b of the retroreflective screen 1011 and retroreflected by forward scattering.
  • the reflected light 1112 is once scattered by the polymer dispersed liquid crystal element 1100 and converted into a different orientation from the original incident light 1111, the reflected light is condensed at the lens (projection unit) position of the projector 1012. None. Therefore, the reflected light 1112 returns while being diffused over a wide range. As a result, the observer can view the video even at a position other than the vicinity of the lens (projection unit). That is, the viewers 1021, 1022, and 1023 shown in FIGS. 1A and 1B can all watch the same video.
  • the polymer dispersed liquid crystal element 1100 is in a non-scattering state (transparent state) in an electric field applied state.
  • incident light 1111 from the projector 1012 shown in FIGS. It is not scattered by the polymer dispersed liquid crystal element 1100. Therefore, the reflected light 1112 of the incident light (image) 1111 irradiated on the mirror surface 1011b of the retroreflective screen 1011 is collected at the lens (projection unit) position of the projector 1012. That is, the video from the projector 1012 can be viewed only at the position of the observer 1021 shown in FIGS. 1A and 1B.
  • the polymer dispersed liquid crystal element 1120 shown in FIGS. 10A and 10B is a composite film in which liquid crystal molecules 1121 and a polymer material (polymer material) 1122 are arranged in a network.
  • the polymer dispersed liquid crystal element 1120 is an optical element that can be switched between a scattering state when an electric field is applied and a non-scattering state when no voltage is applied. That is, since the liquid crystal molecules 1121 respond to an electric field, it is possible to switch between a scattering state and a non-scattering state, and the polymer dispersion type liquid crystal element 1120 is in a non-scattering state when the refractive indexes are uniform (no voltage applied state). When the refractive index is randomly dispersed (electric field application state), a scattering state is obtained.
  • the polymer dispersion type liquid crystal element 1120 when no voltage is applied, the polymer dispersed liquid crystal element 1120 is in a non-scattering state (transparent state).
  • incident light 1131 from the projector 1012 shown in FIGS. It is not scattered by the molecular dispersion type liquid crystal element 1120. Therefore, the reflected light 1132 of the incident light (image) 1131 irradiated on the mirror surface 1011b of the retroreflective screen 1011 is condensed at the lens (projection unit) position of the projector 1012.
  • the video from the projector 1012 can be viewed only at the position of the observer 1021 shown in FIGS. 1A and 1B.
  • incident light 1131 from the projector 1012 shown in FIGS. 1A and 1B is scattered by the polymer dispersed liquid crystal element 1120.
  • a part of the light 1131 is once irradiated on the mirror surface 1011b of the retroreflective screen 1011 and retroreflected by forward scattering.
  • the reflected light 1132 is once scattered by the polymer-dispersed liquid crystal element 1120 and converted into a different orientation from the original incident light 1131, and thus is condensed at the lens (projection unit) position of the projector 1012. None. Therefore, the reflected light 1132 returns while being diffused over a wide range. As a result, the observer can view the video even at a position other than the vicinity of the lens (projection unit). That is, the viewers 1021, 1022, and 1023 shown in FIGS. 1A and 1B can all watch the same video.
  • the refractive index of the diffusion control body 1016 (liquid lens 1050, liquid crystal lenses 1060, 1070, 1080, and 1090, polymer dispersion type liquid crystal elements 1100 and 1120) stacked on the projection surface 1011a of the retroreflective screen 1011.
  • the diffusion control body 1016 makes the diffusibility of the upper region and the lower region different in the vertical direction.
  • the refractive index of the diffusion control body 1016 is partially changed to diffuse light to a position corresponding to a part of the lower region of the projection surface 1011a of the retroreflective screen 1011.
  • a region (non-diffusion region) 1011B that is not to be formed is formed.
  • the diffusion control body 1016 is formed with a region (diffusion region) 1011A and a non-diffusion region 1011B for diffusing light.
  • the observer 1021 is projected to the diffusion region 1011A, the diffusion controller 1016, a video alpha 1 diffused in the longitudinal direction of the projection plane 1011a of the retro-reflective screen 1011 (vertical direction), the non-diffusion region 1011B
  • the projected image ⁇ 1 can be seen.
  • the image ⁇ 1 projected on the non-diffusing region 1011B is condensed at the position of the projector 1012 without being diffused in the vertical direction (vertical direction) of the projection surface 1011a of the retroreflective screen 1011. Therefore, the image beta 1 projected in the non-diffusion region 1011B can only observer 1021 who is in front of the retro-reflective screen 1011 is seen. That is, the observer 1022 who is oblique position with respect to the retroreflective screen 1011 can not see the video beta 1 projected in the non-diffusion region 1011 B.
  • the projector 1013 is projected to the diffusion region 1011A, it is possible to see the longitudinal image gamma 1 diffused in the (vertical direction) of the projection plane 1011a of the retro-reflective screen 1011 by diffusion controller 1016.
  • the observer 1023 views the image ⁇ 1 projected from the projector 1014 onto the diffusion region 1011A and diffused by the diffusion control body 1016 in the vertical direction (vertical direction) of the projection surface 1011a of the retroreflective screen 1011. Can do.
  • the diffusion range of the image in the diffusion control body 1016 can be arbitrarily set corresponding to an arbitrary position of the projection surface 1011a of the retroreflective screen 1011. Therefore, the diffusion range of the image can be controlled at an arbitrary position on the projection surface 1011a of the retroreflective screen 1011.
  • the diffusion range of the image in the diffusion control body can be arbitrarily set corresponding to an arbitrary position on the projection surface of the retroreflective screen.
  • a diffusion control body 1016 (liquid lens 1050, liquid crystal lenses 1060, 1070, 1080, 1090, polymer dispersion type liquid crystal element laminated on the projection surface 1011a of the retroreflective screen 1011 is used. 1100, 1120) by forming regions having different refractive indexes, the diffusion control body 1016 makes the diffusivity of the rectangular region formed so as to be unevenly distributed on one side of the four corners different from that of the other regions. .
  • the refractive index of the diffusion control body 1016 is partially changed so that light is not diffused at positions corresponding to the upper right corners of the projection surface 1011a of the retroreflective screen 1011.
  • a diffusion region 1011D is formed. Thereby, in the diffusion control body 1016, a diffusion region 1011C for diffusing light and a non-diffusion region 1011D are formed.
  • the projector 1012 with projecting the primary image alpha 2 diffusion region 1011C, projecting an image beta 2 for three-dimensional (3D) in the non-diffusion region 1011d.
  • the observer 1021 is projected to the diffusion region 1011C, the diffusion controller 1016, a video alpha 2 diffused in the longitudinal direction of the projection plane 1011a of the retro-reflective screen 1011 (vertical direction), the non-diffusion region 1011D
  • the projected image ⁇ 2 can be seen.
  • a projector 1012 by using one for the right eye of the observer 1021 and the one for the left eye can only observer 1021 sees the image beta 2 which is three-dimensional.
  • the image ⁇ 2 projected on the non-diffusing region 1011D is not diffused in the vertical direction (vertical direction) of the projection surface 1011a of the retroreflective screen 1011, it is condensed at the position of the projector 1012. Therefore, the image beta 2 projected on the non-diffusion region 1011D can only observer 1021 who is in front of the retro-reflective screen 1011 is seen. That is, the observer 1022 who is oblique position with respect to the retroreflective screen 1011 can not see the video beta 2 projected on the non-diffusion region 1011 B.
  • the projector 1013 is projected to the diffusion region 1011C
  • the diffusion controller 1016 can be seen in the vertical direction (vertical direction) is diffused to the video gamma 2 in projection surface 1011a of the retro-reflective screen 1011 .
  • the observer 1023 views the image ⁇ 2 projected from the projector 1014 onto the diffusion region 1011C and diffused by the diffusion control body 1016 in the vertical direction (vertical direction) of the projection surface 1011a of the retroreflective screen 1011. Can do.
  • the diffusion range of the image in the diffusion control body 1016 can be arbitrarily set corresponding to an arbitrary position of the projection surface 1011a of the retroreflective screen 1011. Therefore, the diffusion range of the image can be controlled at an arbitrary position on the projection plane 1011a of the retroreflective screen 1011.
  • FIGS. 13A and 13B are schematic configuration diagrams showing a projection display apparatus according to a third embodiment.
  • FIG. 13A is a plan view and FIG. 13B is a side view.
  • FIG. 14 is a schematic configuration diagram illustrating an example of a projector and a correction mechanism of the projection display device according to the third embodiment.
  • the projection type display apparatus 2010 according to the present embodiment is generally configured by a recursive screen 2011, a projector 2012 arranged to face the recursive screen 2011 at a predetermined distance, and a correction mechanism (not shown). ing.
  • what is indicated by reference numeral 2012 is a projection unit 2026 that constitutes a part of the projector 2012.
  • the recursive screen 2011 has a structure in which transparent beads (spherical bodies) are embedded in one surface 2013a of a substrate 2013 made of resin or the like.
  • One surface 2013a of the substrate 2013 embedded with transparent beads is a projection surface 2011a of the recursive screen 2011.
  • the projector 2012 is a projection video processing unit 2021 for processing a video signal projected on the recursive screen 2011, and converts the signal from the projection video processing unit 2021 into light, and projects the light on the recursive screen 2011.
  • a projection optical unit 2022 that performs the same operation.
  • the projection video processing unit 2021 is projected on the correction data storage unit 2023 in which correction data for correcting the luminance distribution of the video (light) projected from the projector 2012 onto the recursive screen 2011 is recorded, and the recursive screen 2011.
  • a video processing circuit 2025 having at least a correction circuit 2024 for processing a video signal to correct the luminance distribution of the video (light).
  • the projection optical unit 2022 includes a projection unit 2026 that projects an image on the recursive screen 2011.
  • the projection unit 2026 is arranged such that the emission surface 2026a faces the projection surface 2011a of the recursive screen 2011. Then, an image is projected from the exit surface 2026 a of the projection unit 2026 onto the recursive
  • the projection video processing unit 2021 functions as a correction mechanism.
  • the position of the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is closer than the optimum position, or the correction mechanism, the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is corrected.
  • the position is farther than the optimum position, a similar luminance distribution occurs, and the luminance distribution of the image (light) projected from the projector 2012 onto the recursive screen 2011 is corrected in order to reduce this luminance distribution.
  • a video correction method using the projection display apparatus 2010 will be described.
  • the projection unit 2026 of the projector 2012 is arranged separately from the viewer's eyes 2031 of the video projected on the recursive screen 2011.
  • a straight line (extended line) 2042 obtained by extending a straight line 2041 connecting the viewer's eyes 2031 and the projection unit 2026 to the recursive screen 2011 side is a projection surface 2011a of the recursive screen 2011.
  • the intersecting point is set as the correction center point P2.
  • the luminance distribution of the image (light) projected from the projection unit 2026 onto the projection surface 2011a of the recursive screen 2011 by the projection image processing unit 2021 is concentric with the central point P2 forming the central part, and the central part Is so dark that it gradually becomes brighter toward the peripheral edge.
  • the correction circuit 2024 processes the input video information (video-related signal) 2051 based on the data necessary for video correction recorded in the correction data storage unit 2023, and the video.
  • the brightness distribution of (light) is corrected.
  • the definition of the correction function is also recorded in the correction data storage unit 2023.
  • the projection video processing unit 2021 corrects video information by calculation based on the correction function. Thereby, recursiveness is achieved with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the distance between the projection surface 2011a and the ejection surface 2026a when the position of the exit surface 2026a of the projection unit 2026 is in the optimum position.
  • the video information 2051 is corrected so that the luminance unevenness generated in the video projected on the recursive screen 2011 is canceled out.
  • the luminance distribution of the image 2062 obtained from the image information 2051 is centered as shown in FIG. 15B.
  • the point P2 is a concentric circle forming a central part, and the central part is corrected to be darkest and gradually become brighter toward the peripheral part.
  • the signal corrected by the correction circuit 2024 is output as a drive signal 2052 to the projection optical unit 2022, converted into light by the projection optical unit 2022, and the light is returned from the exit surface 2026a of the projection unit 2026 to the recursive screen. 2011 is projected onto the projection surface 2011a. Then, as shown in FIG.
  • the image 2063 projected from the projection unit 2026 onto the recursive screen 2011 is when the distance between the projection surface 2011a of the recursive screen 2011 and the eyes 2031 of the viewer is optimal. As compared with the image 2061 before correcting the luminance distribution, the luminance unevenness is slightly deteriorated.
  • the recursive screen With respect to the distance between the projection surface 2011a and the exit surface 2026a when the position of the exit surface 2026a of the projection unit 2026 is in the optimum position with respect to the projection surface 2011a of the recurrence screen 2011, the recursive screen.
  • the video 2063 can be viewed as a video with reduced luminance unevenness.
  • viewing and listening can be performed by correcting the luminance distribution of the image 2062 obtained from the image information 2051. Even if the position of the person's eye 2031 is shifted back and forth with respect to the optimum position, the image 2063 projected on the recursive screen 2011 has less luminance unevenness and a wider visual field range.
  • the optimal position of the projection surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is the distance between the projection surface 2011a of the recursive screen 2011 and the viewer's eyes 2031 and the recursive screen 2011.
  • the distance between the projection surface 2011a and the exit surface 2026a of the projection unit 2026 is equal, and even if the image information 2051 is projected on the recursive screen 2011 without correction, the luminance of the image (light) does not vary. It is a position where becomes uniform.
  • a correction filter 2071 provided between the projection unit 2026 and the recursive screen 2011 may be used as shown in FIG.
  • the correction filter 2071 is for correcting the transmittance of light projected from the emission surface 2026a of the projection unit 2026 onto the projection surface 2011a of the recursive screen 2011.
  • the luminance distribution of the light is concentric with the center point P2 forming a central portion on the projection surface 2011a of the recursive screen 2011.
  • the correction is performed so that the central part is darkest and gradually becomes brighter toward the peripheral part. Note that when the correction filter 2071 is used, the video information 2051 input to the correction circuit 2024 is converted into the drive signal 2052 without being corrected by the projection video processing unit 2021, and is output to the projection optical unit 2022.
  • the projector 2012 can be disposed in front of and behind the viewer's eyes 2031 with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the viewer's eyes 2031. It becomes. Therefore, the degree of freedom of the positional relationship between the projector 2012 and the viewer's eyes 2031 becomes extremely high, and the utility value is improved.
  • the projector 2012 is arranged such that the distance between the projection surface 2011a of the recursive screen 2011 and the viewer's eye 2031 is equal to the distance between the projection surface 2011a of the recursive screen 2011 and the exit surface 2026a of the projection unit 2026. It is physically impossible.
  • the projection display apparatus 2010 of the present embodiment the degree of freedom of the positional relationship between the projector 2012 and the viewer's eyes 2031 can be increased without significantly reducing the brightness of the video.
  • FIG. 17 is a schematic configuration diagram showing a projection display device according to a fourth embodiment.
  • the projection type display device 2080 according to the present embodiment is generally configured by a recursive screen 2011, a projector 2012 arranged to face the recursive screen 2011 at a predetermined distance, and a correction mechanism (not shown). ing. Note that what is indicated by reference numeral 2012 in FIG. 17 is a projection unit 2026 that constitutes a part of the projector 2012.
  • a video correction method using the projection display device 2080 will be described.
  • the projection unit 2026 of the projector 2012 is arranged separately from the viewer's eyes 2031.
  • the point where the straight line (extension line) obtained by extending the straight line connecting the viewer's eyes 2031 and the projection unit 2026 to the recursive screen 2011 intersects the projection surface 2011a of the recursive screen 2011 is the correction center point. Set as P2.
  • the position of the viewer's eye 2031 is the optimal position of the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 as in the third embodiment described above. Not only when the position is shifted back and forth with respect to the position, but also when the position is shifted vertically or horizontally with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 disposed at the optimum position.
  • the center point P2 is set according to the shifted position.
  • the position of the viewer's eye 2031A 1 is behind the projection unit 2026 on a straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position.
  • a correction center point P2 is set at the center of the projection surface 2011a of the recursive screen 2011.
  • the position of the viewer's eye 2031B 1 is on the left side (the left side of the page) with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position. when shifted in), as shown in FIG.
  • a straight line connecting the projection portion 2026 eye 2031B 1 of the viewer, straight lines extending in retro-screen 2011 side (extension) is the projection surface of the retro-screen 2011
  • a point that intersects 2011a is set as a correction center point P2. That is, the correction center point P2 is set on the right side (right side of the drawing) of the projection surface 2011a of the recursive screen 2011.
  • the position of the viewer's eye 2031C 1 is shifted to the right side (the right side of the page) with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position. and if, as shown in FIG.
  • the correction center point P2 is set on the left side (left side of the paper surface) of the projection surface 2011a of the recursive screen 2011.
  • the position of the correction center point P2 set on the projection surface 2011a of the recursive screen 2011 is the position of the viewer's eye 2031 is the recursive screen 2011, and the projection unit 2026 arranged at the optimum position.
  • the luminance distribution of the image (light) projected on the projection surface 2011a of the recursive screen 2011 from the projection unit 2026 is corrected in the same manner as in the third embodiment described above.
  • the projection display device 2080 of this embodiment by setting the position of the correction center point P2 according to the position of the viewer's eye 2031 with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026, Up and down direction with respect to a position before and after the emission surface 2026a of the projection unit 2026 arranged at an optimal position with respect to the projection surface 2011a of the recursive screen 2011, and a straight line connecting the recursive screen 2011 and the projection unit 2026 Alternatively, an image with little luminance unevenness can be observed even at a position shifted in the left-right direction.
  • FIG. 19 is a schematic configuration diagram showing a projection display device of a fifth embodiment.
  • the projection type display device 2090 according to the present embodiment is roughly configured by a recursive screen 2011, a projector 2012 arranged to face the recursive screen 2011 at a predetermined distance, and a correction mechanism (not shown). ing.
  • reference numeral 2012 what is indicated by reference numeral 2012 is a projection unit 2026 that constitutes a part of the projector 2012.
  • the viewer's eyes 2031 have the same position as the emission surface 2026a of the projection unit 2026 disposed at an optimal position with respect to the projection surface 2011a of the recursive screen 2011, and the projection surface of the recursive screen 2011.
  • An object of the present invention is to enable observation of an image with less luminance unevenness even at positions before and after the emission surface 2026a of the projection unit 2026 arranged at an optimal position with respect to 2011a.
  • the luminance distribution of the video 2101 is corrected so that the central point P2 is a concentric circle having a central portion, the central portion being the darkest and gradually becoming brighter toward the peripheral portion.
  • the luminance distribution of the image 2102 is corrected so that the central point P2 is a concentric circle having a central portion, the central portion being the darkest and gradually becoming brighter toward the peripheral portion. Note that although the video 2102 is generally inferior to the luminance of the video 2101, the luminance unevenness is reduced.
  • the luminance distribution of the video 2103 is corrected so that the central point P2 is a concentric circle having a central portion, the central portion is darkest, and gradually becomes brighter toward the peripheral portion. Note that although the video 2103 is generally inferior to the luminance of the video 2101, the luminance unevenness is reduced.
  • the correction of the luminance distribution of the image (light) projected from the projection unit 2026 onto the projection surface 2011a of the recursive screen 2011 is performed in the same manner as in the third embodiment described above.
  • the luminance unevenness of the image 2101 projected from the exit surface 2026a of the projection unit 2026 onto the recursive screen 2011 is slightly deteriorated, but the luminance unevenness of the image 2102 and the image 2103 is reduced.
  • the image projected on the recursive screen 2011 has little luminance unevenness and a wide visual field range.
  • the projection display apparatus 2090 of this embodiment even when the distance between the recursive screen 2011 and the viewer's eyes 2031 is shifted back and forth from the optimal position, it is possible to observe an image with little luminance unevenness. .
  • the correction center point P2 is set in the same manner as in the fourth embodiment. Set according to the shifted position. In this way, correction is performed according to the position (deviation amount) of the viewer's eye 2031 with respect to a straight line connecting the projection surface 2011a of the recursive screen 2011 and the exit surface 2026a of the projection unit 2026 arranged at an optimal position.
  • the vertical plane or the horizontal direction is shifted with respect to the straight line connecting the projection surface 2011a of the recursive screen 2011 and the emission surface 2026a of the projection unit 2026 arranged at the optimum position. Even at the position, an image with less luminance unevenness can be observed.
  • FIG. 21 is a schematic configuration diagram illustrating an example of a projection display device and a correction mechanism thereof according to a sixth embodiment.
  • the projection display device 2110 of this embodiment is a position detection unit 2111 that detects the position of the viewer's eye 2031 in addition to the projection display device of the third embodiment, the fourth embodiment, or the fifth embodiment described above. It has.
  • the projection video processing unit 2021 functions as a correction mechanism.
  • the position detection means 2111 for example, an infrared detection device, a detection device that captures the position of the viewer's eye 2031 and detects the position by image processing is used.
  • a straight line (extension line) obtained by extending a straight line connecting the viewer's eyes 2031 and the projection unit 2026 to the recursive screen 2011 side is as follows.
  • a point that intersects the projection surface 2011a of the recursive screen 2011 is set as a correction center point P2.
  • the position detection unit 2111 detects the position of the viewer's eye 2031, and outputs data relating to the position of the eye 2031 to the correction circuit 2024.
  • the luminance distribution of the image (light) projected from the projection unit 2026 onto the projection surface 2011a of the recursive screen 2011 by the projection image processing unit 2021 is concentric with the central point P2 forming the central part, and the central part Is so dark that it gradually becomes brighter toward the peripheral edge.
  • the correction circuit 2024 selects or corrects data necessary for video correction from among a plurality of data recorded in the correction data storage unit 2023 according to the position of the eye 2031.
  • the input video information 2051 is processed based on data necessary for video correction by switching data or a correction function, and the luminance distribution of the video (light) is corrected.
  • the projection surface 2011a of the recursive screen 2011 and the viewer's eyes 2031 with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the distance between the projection surface 2026a of the projection unit 2026 and the projection screen 2011a are optimal positions.
  • the video information 2051 is corrected so that the luminance unevenness generated in the video projected on the recursive screen 2011 is canceled.
  • a correction filter 2071 provided between the projection unit 2026 and the recursive screen 2011 may be used as shown in FIG.
  • the projection display device 2110 includes, in addition to the correction filter 2071, a position detection unit 2121 that detects the position of the viewer's eye 2031 and a correction filter position variation mechanism 2122 that varies the position of the correction filter 2071. ing.
  • the position of the viewer's eye 2031 is detected by the position detection unit 2121, and data relating to the position of the eye 2031 is output to the correction filter position variation mechanism 2122. Then, the correction filter position changing mechanism 2122 changes the position of the correction filter 2071 along the straight line connecting the recursive screen 2011 and the projection unit 2026 according to the position of the eye 2031, thereby causing the emission surface of the projection unit 2026 to exit.
  • the transmittance of light projected from 2026a onto the projection surface 2011a of the recursive screen 2011 is corrected.
  • the luminance distribution of the light transmitted through the correction filter 2071 is concentric with the center point P2 forming a central portion on the projection surface 2011a of the recursive screen 2011, the central portion being the darkest, toward the peripheral portion. Correct so that it gradually becomes brighter.
  • the luminance distribution of the video (light) projected from the projection unit 2026 onto the recursive screen 2011 is optimized by the correction mechanism according to the position of the viewer's eyes 2031.
  • the position of the viewer's eye 2031 is vertically or horizontally with respect to a straight line connecting the projection surface 2011a of the recursive screen 2011 and the exit surface 2026a of the projection unit 2026 arranged at an optimal position. Even at a shifted position, an image with little luminance unevenness can be observed. Therefore, the degree of freedom of the positional relationship between the projector 2012 and the viewer's eyes 2031 can be further increased without significantly reducing the luminance of the video. As a result, a virtual space can be easily realized.
  • FIG. 23 is a schematic block diagram which shows a part of projection type display apparatus of 7th Embodiment.
  • the projection display device 2130 of this embodiment is a position detection unit that detects the position of the eye 2031 of the viewer 2030 in addition to the projection display devices of the third embodiment, the fourth embodiment, or the fifth embodiment described above. 2141 are provided.
  • the projection video processing unit 2021 functions as a correction mechanism.
  • the position detection unit 2141 is attached to the ceiling 2151. As the position detection means 2141, the same one as in the above-described sixth embodiment is used.
  • a video correction method using the projection display device 2130 will be described. Similar to the third embodiment, the fourth embodiment, and the fifth embodiment described above, a straight line (extension line) obtained by extending a straight line connecting the eye 2031 of the viewer 2030 and the projection unit 2026 to the recursive screen 2011 side is provided. A point that intersects the projection surface 2011a of the recursive screen 2011 is set as a correction center point P2. Further, the position detection unit 2141 detects the position of the eye 2031 of the viewer 2030 and outputs data related to the position of the eye 2031 of the viewer 2030 to the correction circuit 2024.
  • the luminance distribution of the image (light) projected from the projection unit 2026 onto the projection surface 2011a of the recursive screen 2011 by the projection image processing unit 2021 is concentric with the central point P2 forming the central part, and the central part Is so dark that it gradually becomes brighter toward the peripheral edge.
  • the correction circuit 2024 selects data necessary for video correction from a plurality of data recorded in the correction data storage unit 2023 according to the position of the eye 2031 of the viewer 2030.
  • the input video information 2051 is processed based on data necessary for video correction by correcting the correction data or correction function, and the luminance distribution of the video (light) is corrected.
  • the projection surface 2011a of the recursive screen 2011 and the eyes of the viewer 2030 with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the distance between the projection surface 2026a of the projection unit 2026 and the optimal position.
  • the video information 2051 is corrected so that the luminance unevenness generated in the video projected on the recursive screen 2011 is canceled out.
  • the luminance distribution of the image (light) projected from the projection unit 2026 onto the recursive screen 2011 is optimized by the correction mechanism according to the position of the eye 2031 of the viewer 2030.
  • the position of the eye 2031 of the viewer 2030 is vertically or horizontally with respect to a straight line connecting the projection surface 2011a of the recursive screen 2011 and the emission surface 2026a of the projection unit 2026 arranged at an optimal position. Even at a position shifted in the direction, an image with little luminance unevenness can be observed. Therefore, even when the viewer 2030 moves from the position of the projector 2012 arranged at the optimal position, an image with little luminance unevenness can be observed.
  • FIG. 24 is a schematic configuration diagram showing a part of a projection display apparatus according to an eighth embodiment. 24, the same components as those shown in FIG. 13A, FIG. 13B, and FIG.
  • the projection type display device 2160 of this embodiment includes the position of the projection unit 2026 of the projector 2012 and the eyes of the viewer 2030 in addition to the projection type display device of the third embodiment, the fourth embodiment, or the fifth embodiment described above.
  • a chair 2170 having position detection means 2172 for detecting the position of 2031 is provided.
  • the projection video processing unit 2021 functions as a correction mechanism.
  • the position detection means 2172 is attached to a position at which the head 2032 of the viewer 2030 abuts on the backrest 2171 of the chair 2170. As the position detection means 2172, the same one as in the sixth embodiment described above is used. In addition, the projection unit 2026 of the projector 2012 is attached to the backrest 2171 of the chair 2170 in the vicinity of the position where the head 2032 of the viewer 2030 abuts.
  • a video correction method using the projection display device 2160 will be described.
  • a straight line (extension line) obtained by extending a straight line connecting the eyes 2031 of the viewer 2030 and the projection unit 2026 to the recursive screen 2011 side is a recursive screen.
  • a point intersecting the 2011 projection surface 2011a is set as a correction center point P2.
  • the position detection unit 2172 detects the position of the eye 2031 of the viewer 2030 and outputs data relating to the position of the eye 2031 of the viewer 2030 to the correction circuit 2024.
  • the luminance distribution of the image (light) projected from the projection unit 2026 onto the projection surface 2011a of the recursive screen 2011 by the projection image processing unit 2021 is concentric with the central point P2 forming the central part, and the central part Is so dark that it gradually becomes brighter toward the peripheral edge.
  • the correction circuit 2024 selects data necessary for video correction from a plurality of data recorded in the correction data storage unit 2023 according to the position of the eye 2031 of the viewer 2030.
  • the input video information 2051 is processed based on data necessary for video correction by correcting the correction data or correction function, and the luminance distribution of the video (light) is corrected.
  • the projection surface 2011a of the recursive screen 2011 and the eyes of the viewer 2030 with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the distance between the projection surface 2026a of the projection unit 2026 and the optimal position.
  • the video information 2051 is corrected so that the luminance unevenness generated in the video projected on the recursive screen 2011 is canceled out.
  • the luminance distribution of the video (light) projected from the projection unit 2026 onto the recursive screen 2011 is optimized by the correction mechanism according to the position of the eye 2031 of the viewer 2030.
  • the position of the eye 2031 of the viewer 2030 is vertically or horizontally with respect to a straight line connecting the projection surface 2011a of the recursive screen 2011 and the emission surface 2026a of the projection unit 2026 arranged at an optimal position. Even at a position shifted in the direction, an image with little luminance unevenness can be observed. Therefore, even when the viewer 2030 moves from the position of the projector 2012 arranged at the optimal position, an image with little luminance unevenness can be observed.
  • FIGS. 25A and 25B are schematic configuration diagrams showing a projection display apparatus according to a ninth embodiment.
  • FIG. 25A is a plan view and FIG. 25B is a side view.
  • 25A and 25B the same components as those shown in FIGS. 13A and 13B are denoted by the same reference numerals, and the description thereof is omitted.
  • the projection type display device 2180 of this embodiment includes a recursive screen 2011, a directional scattering screen 2181 disposed in the vicinity of the projection surface 2011a of the recursive screen 2011 so as to overlap the projection surface 2011a, and a directivity.
  • a projector 2012 arranged to face the scattering screen 2181 at a predetermined distance and a correction mechanism (not shown) are schematically configured.
  • a projection unit 2026 that constitutes a part of the projector 2012.
  • the directional scattering screen 2181 has different angles for diffusing the reflected light of the recursive screen 2011 in the width direction and the vertical direction of the recursive screen 2011. That is, the directional scattering screen 2181 diffuses the reflected light of the recursive screen 2011 so that the diffusion angle in the width direction of the recursive screen 2011 is wider than the diffusion angle in the vertical direction, or the recursive screen. The diffusion is performed such that the vertical diffusion angle of 2011 is wider than the diffusion angle in the width direction. In this embodiment, the directional scattering screen 2181 exemplifies a case where the reflected light of the recursive screen 2011 is diffused so that the vertical diffusion angle of the recursive screen 2011 is larger than the diffusion angle in the width direction. .
  • a video correction method using the projection display device 2180 will be described.
  • the projection unit 2026 of the projector 2012 is arranged separately from the viewer's eyes 2031 of the video projected on the recursive screen 2011.
  • a straight line 2041 obtained by extending a straight line 2041 connecting the viewer's eyes 2031 and the projection unit 2026 to the recursive screen 2011 side is one surface of the directional scattering screen 2181.
  • a point that intersects 2181a is set as a correction center point P2.
  • the position of the emission surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is in an optimal position, as shown in FIG. 26A, the video information 2051 input to the correction circuit 2024 is not corrected, and the projector An image 2191 obtained by projecting from 2012 to the recursive screen 2011 has no luminance unevenness and uniform luminance.
  • the distance between the recursive screen 2011 and the viewer's eyes 2031 is small or large with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the exit surface 2026a of the projection unit 2026.
  • the image 2191 projected on the recursive screen 2011 has uneven brightness in which the central part is brightest in an elliptical shape and gradually becomes darker toward the peripheral part.
  • the luminance distribution of the image 2192 obtained by the image information 2051 is centered as shown in FIG. 26C.
  • a correction is made so that the central portion around the point P2 has an elliptical shape, the central portion is darkest, and gradually becomes brighter toward the peripheral portion.
  • the signal corrected by the correction circuit 2024 is output as a drive signal 2052 to the projection optical unit 2022, converted into light by the projection optical unit 2022, and the light is returned from the exit surface 2026a of the projection unit 2026 to the recursive screen. 2011 is projected onto the projection surface 2011a. Then, as shown in FIG.
  • the image 2193 projected from the projection unit 2026 onto the recursive screen 2011 is when the distance between the projection surface 2011a of the recursive screen 2011 and the viewer's eyes 2031 is optimal. Compared with the image 2191 before correcting the luminance distribution, the luminance unevenness is slightly deteriorated.
  • the recursive screen With respect to the distance between the projection surface 2011a and the exit surface 2026a when the position of the exit surface 2026a of the projection unit 2026 is in the optimum position with respect to the projection surface 2011a of the recurrence screen 2011, the recursive screen.
  • the video 2193 can be viewed as a video with reduced luminance unevenness. That is, as described above, when the position of the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is in an optimal position, the brightness distribution of the image 2192 obtained by the image information 2051 is corrected, thereby allowing viewing. Even if the position of the person's eye 2031 is shifted back and forth with respect to the optimum position, the image 2193 projected on the recursive screen 2011 has less luminance unevenness and a wider visual field range.
  • the luminance distribution of the image (light) projected on the projection surface 2011a of the recursive screen 2011 from the projection unit 2026 is corrected in the same manner as in the third embodiment described above.
  • the recursive screen 2011 is provided.
  • the position of the correction center point P2 according to the position of the viewer's eye 2031 with respect to the straight line connecting the projection unit 2026 and the projection unit 2026, it is arranged at an optimal position with respect to the projection surface 2011a of the recursive screen 2011.
  • an image with little luminance unevenness can be observed even at a position shifted to a position before and after the emission surface 2026a of the projection unit 2026.
  • the directional scattering screen 2181 when the reflected light of the recursive screen 2011 is diffused using the directional scattering screen 2181 or the like, the luminance unevenness of the image (light) increases as the diffusivity increases.
  • the center portion When the directional scattering screen 2181 is not used, as shown in FIG. 27A, the center portion has a circular shape, the center portion is brightest, and brightness unevenness that gradually becomes dark toward the peripheral edge portion occurs.
  • the directional scattering screen 2181 having a small diffusivity is used, as shown in FIG. 27B, the central portion has an elliptical shape, the central portion is brightest, and the brightness unevenness gradually becomes darker toward the peripheral portion. .
  • the diffusivity of the directional scattering screen 2181 When the diffusivity of the directional scattering screen 2181 is gradually increased, the luminance unevenness region exceeds the lower end of the recursive screen 2011 as shown in FIG. 27C. Further, when the diffusivity of the directional scattering screen 2181 is increased, the uneven luminance region exceeds the upper and lower ends of the recursive screen 2011 as shown in FIG. 27D.
  • FIG. 28 is a schematic plan view showing a projection display apparatus according to a tenth embodiment.
  • the projection type display device 2200 of this embodiment includes a recursive screen 2011, a directional scattering screen 2181 disposed near the projection surface 2011a of the recursive screen 2011 so as to overlap the projection surface 2011a, and a directivity.
  • a projector 2012 arranged to face the scattering screen 2181 at a predetermined distance and a correction mechanism (not shown) are schematically configured.
  • what is indicated by reference numeral 2012 is a projection unit 2026 that constitutes a part of the projector 2012.
  • a video correction method using the projection display device 2200 will be described.
  • the projection unit 2026 of the projector 2012 is arranged separately from the viewer's eyes 2031.
  • the point where the straight line (extension line) obtained by extending the straight line connecting the viewer's eyes 2031 and the projection unit 2026 to the recursive screen 2011 intersects the projection surface 2011a of the recursive screen 2011 is the correction center point. Set as P2.
  • the position of the viewer's eye 2031 is the optimal position of the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 as in the third embodiment described above. Not only when the position is shifted back and forth with respect to the position, but also when the position is shifted vertically or horizontally with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 disposed at the optimum position.
  • the center point P2 is set according to the shifted position.
  • the position of the viewer's eye 2031A 3 is behind the projection unit 2026 on the straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position.
  • the central portion of the projection surface 2011a of the recursive screen 2011 has an elliptical shape, the central portion is brightest, and the brightness unevenness gradually becomes darker toward the peripheral portion.
  • the correction center point P2 is set in the brightest area having an elliptical shape.
  • FIG. 29B the central portion of the projection surface 2011a of the recursive screen 2011 has an elliptical shape, the central portion is brightest, and the brightness unevenness gradually becomes darker toward the peripheral portion.
  • the correction center point P2 is set in the brightest area having an elliptical shape.
  • the position of the viewer's eye 2031B 3 is on the left side (the left side of the page) with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position.
  • 29A as shown in FIG. 29A, a straight line (extension line) obtained by extending a straight line connecting the viewer's eye 2031B 3 and the projection unit 2026 to the recursive screen 2011 side is a projection surface of the recursive screen 2011. Centering on a point that intersects with 2011a, the central portion is elliptical, and the central portion is brightest, and brightness unevenness that gradually becomes darker toward the peripheral edge portion occurs.
  • the correction center point P2 is set in the brightest area having an elliptical shape, that is, in the area on the right side of the projection surface 2011a of the recursive screen 2011 (the right side of the sheet).
  • the position of the viewer's eye 2031C 3 is shifted to the right side (the right side of the page) with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position. and if, as shown in FIG. 29C, intersects the eye 2031 c 3 of viewer straight line connecting the projection portion 2026, a straight line obtained by extending the recursive screen 2011 side (extension) is a projection surface 2011a of the retro-screen 2011
  • the center portion is elliptical with the point to be centered, and the center portion is the brightest, and brightness unevenness that gradually becomes darker toward the peripheral portion is generated.
  • the correction center point P2 is set in the brightest area having an elliptical shape, that is, the area on the left side of the projection screen 2011a of the recursive screen 2011 (the left side of the sheet). Further, as shown in FIG. 28, the position of the viewer's eye 2031D 3 is more than the position of the eye 2031C 3 with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position. Furthermore, when shifted to the right (toward the right), as shown in FIG.
  • the straight line connecting the projection portion 2026 and the eye 2031 d 3 of the viewer, straight lines extending in retro-screen 2011 side (extension) is recursive Centering around the point intersecting the projection surface 2011a of the reflective screen 2011, the central portion is elliptical, the central portion is brightest, and the luminance unevenness gradually becomes darker toward the peripheral portion.
  • the left side (left side of the drawing) of the brightest area having an elliptical shape exceeds the left end (left end of the drawing) of the recursive screen 2011.
  • the correction center point P2 is set in the brightest area having an elliptical shape, that is, the area on the left side of the projection screen 2011a of the recursive screen 2011 (the left side of the sheet).
  • the position of the correction center point P2 set on the projection surface 2011a of the recursive screen 2011 is the position of the viewer's eye 2031 is the recursive screen 2011, and the projection unit 2026 arranged at the optimum position.
  • the luminance distribution of the image (light) projected on the projection surface 2011a of the recursive screen 2011 from the projection unit 2026 is corrected in the same manner as in the third embodiment described above.
  • the projection type display device 2200 of this embodiment even when the directional scattering screen 2181 is disposed in the vicinity of the projection surface 2011a of the recursive screen 2011 so as to overlap the projection surface 2011a, By setting the position of the correction center point P2 according to the position of the viewer's eye 2031 with respect to the straight line connecting the projection unit 2026, it is arranged at an optimal position with respect to the projection surface 2011a of the recursive screen 2011. An image with less luminance unevenness is observed at a position before and after the emission surface 2026a of the projection unit 2026 and at a position shifted in the vertical direction or the horizontal direction with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026. be able to.
  • the luminance unevenness of the image (light) projected on the projection surface 2011a of the recursive screen 2011 includes the relative positions and angles of the recursive screen 2011, the projector 2012, and the viewer's eyes 2031, and the recursive screen 2011 recursively. It depends on the directivity of the reflected light. Since the directivity of the retroreflected light of the recursive screen 2011 is unique (known) to each, by grasping the relative positions and angles of the recursive screen 2011, the projector 2012, and the viewer's eyes 2031, The luminance distribution of the video (light) can be corrected.
  • FIG. 30 is a schematic configuration diagram showing a projection display apparatus according to an eleventh embodiment.
  • FIG. 31 is a schematic configuration diagram illustrating an example of a projector and a correction mechanism of the projection display apparatus according to the eleventh embodiment.
  • the projection display device 3010 of this embodiment includes a recursive screen 3011, a directional scattering screen 3012 disposed in the vicinity of the projection surface 3011 a of the recursive screen 3011 so as to overlap the projection surface 3011 a, and directivity.
  • the projector is roughly composed of three projectors 3013 (3013A, 3013B, 3013C) arranged to face the scattering screen 3012 at a predetermined distance and a correction mechanism (not shown). Note that what is indicated by reference numeral 3013 in FIG. 30 is a projection unit 3026 that constitutes a part of the projector 3013.
  • the recursive screen 3011 has a structure in which transparent beads (spherical bodies) are embedded in one surface 3014a of a substrate 3014 made of resin or the like.
  • One surface 3014a of the substrate 3014 in which the transparent beads are embedded is a projection surface 3011a of the recursive screen 3011.
  • the directional scattering screen 3012 has different angles for diffusing the reflected light of the recursive screen 3011 in the width direction and the vertical direction of the recursive screen 3011. That is, the directional scattering screen 3012 diffuses the reflected light of the recursive screen 3011 so that the diffusion angle in the width direction of the recursive screen 3011 is wider than the diffusion angle in the vertical direction, or the recursive screen.
  • the diffusion is performed so that the diffusion angle in the vertical direction 3011 is wider than the diffusion angle in the width direction.
  • the case where the directional scattering screen 3012 diffuses the reflected light of the recursive screen 3011 so that the vertical diffusion angle of the recursive screen 3011 is larger than the diffusion angle in the width direction is exemplified. .
  • Projectors 3013A, 3013B, and 3013C are arranged at intervals from the directional scattering screen 3012 in order. That is, the projectors 3013A, 3013B, and 3013C are arranged such that the distances from the recursive screen 3011 (directional scattering screen 3012) are different from each other. Further, the projectors 3013A, 3013B, and 3013C are attached to the ceiling of the room where the projection display device 3010 is installed. That is, the projectors 3013A, 3013B, and 3013C are installed above the viewer 3030.
  • the projector 3013 converts a signal from the projection video processing unit 3021 for processing a video signal projected on the recursive screen 3011 and the projection video processing unit 3021 into light, and projects the light onto the recursive screen 3011.
  • the projection optical unit 3022 is configured roughly.
  • the projection video processing unit 3021 is projected on the correction data storage unit 3023 in which correction data for correcting the luminance distribution of video (light) projected from the projector 3013 onto the recursive screen 3011 is recorded, and the recursive screen 3011.
  • a video processing circuit 3025 having at least a correction circuit 3024 for processing a video signal to correct a luminance distribution of the video (light).
  • the projection optical unit 3022 includes a projection unit 3026 that projects an image on the recursive screen 3011.
  • the projection unit 3026 is arranged such that the emission surface 3026a faces the projection surface 3011a of the recursive screen 3011 (one surface 3012a of the directional scattering screen 3012). Then, an image is projected from the emission surface 3026 a of the projection unit 3026 onto the projection surface 3011 a of the recursive screen 3011.
  • An exit surface 3026a of the projection unit 3026 of the projector 3013A is disposed at an optimal position with respect to the projection surface 3011a of the recursive screen 3011.
  • the image 3041 is high in luminance as shown in FIG. 32A. There is no unevenness.
  • FIGS. 32A to 32C when the luminance of the video is high, the video is displayed in a light color.
  • FIGS. 32A to 32C when the luminance of the video is low, the video is displayed in a dark color.
  • the video 3042 has a luminance distribution as shown in FIG. 32B.
  • the central portion of the recursive screen 3011 is brightest in a strip shape along the vertical direction, and gradually becomes darker toward the peripheral portion.
  • the video 3043 has a luminance distribution as shown in FIG. 32C.
  • the central portion of the recursive screen 3011 is brightest in a strip shape along the vertical direction, and gradually becomes darker toward the peripheral portion. Note that as the distance of the projector 3013 from the recursive screen 3011 increases, the image projected from the projector 3013 onto the recursive screen 3011 has lower luminance and higher luminance unevenness.
  • each of the projectors 3013A, 3013B, and 3013C projects the images 3041, 3042, and 3043 on the recursive screen 3011 so that the angle at which the reflected light is diffused is different between the width direction and the vertical direction of the recursive screen 3011.
  • the projectors 3013A, 3013B, and 3013C project images on the recursive screen 3011 so that the enlargement ratios of the images 3041, 3042, and 3043 are sequentially increased from those arranged on the recursive screen 3011 side.
  • the projectors 3013A, 3013B, and 3013C have the images 3041, 3042, and 3043 on the recursive screen 3011 so that the sizes of the images 3041, 3042, and 3043 projected from the projectors are equal on the projection surface 3011a of the recursive screen 3011. 3042 and 3043 are projected.
  • the video that the viewer 3030 can see at any of the observation positions 3030A, 3030B, and 3030C is a video 3044 formed by overlapping the video 3041, 3042, and 3043 as shown in FIG. .
  • the image 3041 projected from the projector 3013A arranged at an optimal position with respect to the projection surface 3011a of the recursive screen 3011 is brightest and dominant, the image 3044 follows the vertical direction of the recursive screen 3011. Although the luminance unevenness occurs such that the central portion is brightest in a belt shape and gradually becomes darker toward the peripheral portion, the luminance unevenness is reduced as a whole, and the visual field range is wide, resulting in a favorable display.
  • the degree of freedom in the positional relationship between the projector 3013 and the eye 3031 of the viewer 3030 is extremely high, and the utility value is improved.
  • the enlargement ratios of the images 3041, 3042, and 3043 are made different. Since the images 3041, 3042, and 3043 are projected on the recursive screen 3011 so that the sizes of 3042 and 3043 are equal to each other, even if the viewer 3030 moves to any of the observation positions 3030A, 3030B, and 3030C, it feels strange. A video 3044 with a small amount can be seen.
  • the directional scattering screen 3012 diffuses the reflected light of the recursive screen 3011 so that the diffusion angle in the vertical direction of the recursive screen 3011 is wider than the diffusion angle in the width direction.
  • this invention is not limited to this.
  • the directional scattering screen may diffuse the reflected light of the recursive screen so that the diffusion angle in the width direction of the recursive screen is wider than the diffusion angle in the vertical direction.
  • the image projected on the recursive screen has brightness unevenness in which the central portion is brightest in a strip shape along the width direction of the recursive screen and gradually becomes darker toward the peripheral portion.
  • the projector 3013 is installed above the viewer 3030.
  • the present invention is not limited to this. In the present invention, the projector may be installed below the viewer.
  • FIG. 34 is a schematic block diagram which shows the projection type display apparatus of 12th Embodiment.
  • FIG. 35 is a schematic configuration diagram illustrating an example of a projector and a correction mechanism of the projection display apparatus according to the twelfth embodiment. 34, the same components as those shown in FIG. 30 are denoted by the same reference numerals, and the description thereof is omitted. 35, the same components as those shown in FIG. 31 are given the same reference numerals, and descriptions thereof will be omitted.
  • the projection type display device 3050 of this embodiment includes a recursive screen 3011, a directional scattering screen 3012 disposed in the vicinity of the projection surface 3011 a of the recursive screen 3011 so as to overlap the projection surface 3011 a, and directivity.
  • the projector is roughly composed of three projectors 3013 (3013A, 3013B, 3013C) arranged to face the scattering screen 3012 at a predetermined distance and a correction mechanism (not shown). Note that what is indicated by reference numeral 3013 in FIG. 34 is a projection unit 3026 that constitutes a part of the projector 3013.
  • the projection video processing unit 3021 functions as a correction mechanism.
  • the projected image processing unit 3021 shows the luminance distribution of the image (light) formed by overlapping the images projected from each of the three projectors 3013A, 3013B, and 3013C on the projection surface 3011a of the recursive screen 3011. Correction is made so that the band is darkest and gradually becomes brighter toward the periphery.
  • the correction circuit 3024 processes the input video information (video-related signal) 3061 based on data necessary for video correction recorded in the correction data storage unit 3023. Then, the luminance distribution of the image (light) is corrected. Further, the correction data storage unit 3023 also records the definition of the correction function.
  • the projection video processing unit 3021 corrects video information by calculation based on the correction function.
  • the signal corrected by the correction circuit 3024 is output as a drive signal 3062 to the projection optical unit 3022, converted into light by the projection optical unit 3022, and the light is returned from the exit surface 3026a of the projection unit 3026. 3011 is projected onto a projection surface 3011a.
  • An exit surface 3026a of the projection unit 3026 of the projector 3013A is disposed at an optimal position with respect to the projection surface 3011a of the recursive screen 3011.
  • the video 3071 has a recursive luminance distribution as shown in FIG. 36A.
  • the central portion is corrected to be darkest in a strip shape along the vertical direction of the screen 3011 and gradually brighter toward the peripheral portion.
  • FIGS. 36A to 36C when the luminance of the video is high, the video is displayed in a light color.
  • FIGS. 36A to 36C when the luminance of the video is low, the video is displayed in a dark color.
  • the central part is brightest in a strip shape along the vertical direction of the recursive screen 3011 and gradually becomes darker toward the peripheral part.
  • the video that the viewer 3030 can see at any of the observation positions 3030A, 3030B, and 3030C is a video 3074 formed by overlapping the videos 3071, 3072, and 3073 as shown in FIG. .
  • the video 3074 has a luminance distribution that is darkest in a band at the center and gradually becomes brighter toward the periphery, but the luminance unevenness is reduced as a whole, and the visual field range is wide and the display is good.
  • a correction filter 3081 provided between the projection unit 3026 and the recursive screen 3011 may be used as shown in FIG.
  • the correction filter 3081 is for correcting the transmittance of light projected from the emission surface 3026a of the projection unit 3026 onto the projection surface 3011a of the recursive screen 3011.
  • the luminance distribution of the light has a central portion along the vertical direction of the recursive screen 3011 on the projection surface 3011a of the recursive screen 3011. Correction is performed so that the band is darkest and gradually becomes brighter toward the periphery. Note that when the correction filter 3081 is used, the video information 3061 input to the correction circuit 3024 is converted into the drive signal 3062 without being corrected by the projection video processing unit 3021, and is output to the projection optical unit 3022.
  • the degree of freedom in the positional relationship between the projector 3013 and the eye 3031 of the viewer 3030 is extremely high, and the utility value is improved.
  • FIG. 39 is a schematic block diagram which shows the projection type display apparatus of 13th Embodiment.
  • FIG. 40 is a schematic configuration diagram illustrating an example of a projector and a correction mechanism of the projection display apparatus according to the thirteenth embodiment. 39, the same components as those shown in FIG. 30 are denoted by the same reference numerals, and the description thereof is omitted. In FIG. 40, the same components as those shown in FIG. 31 are denoted by the same reference numerals, and the description thereof is omitted.
  • the projection type display device 3090 of this embodiment includes a recursive screen 3011, a directional scattering screen 3012 disposed in the vicinity of the projection surface 3011a of the recursive screen 3011 so as to overlap the projection surface 3011a, and a directivity.
  • the projector is roughly composed of three projectors 3013 (3013A, 3013B, 3013C) arranged to face the scattering screen 3012 at a predetermined distance and a correction mechanism (not shown). Note that what is indicated by reference numeral 3013 in FIG. 39 is a projection unit 3026 constituting a part of the projector 3013.
  • the projection display device 3090 of this embodiment includes position detection means 3091 that detects the position of the eye 3031 of the viewer 3030 in addition to the projection display device of the eleventh embodiment or the twelfth embodiment described above. .
  • the projection video processing unit 3021 functions as a correction mechanism.
  • the position detection unit 3091 for example, an infrared detection device, a detection device that captures the position of the eye 3031 of the viewer 3030 and detects the position by image processing is used.
  • a method of projecting an image by the projection display device 3090 will be described.
  • data related to the position of the eye 3031 eg, observation positions 3030A, 3030B, and 3030C
  • the correction circuit 3024 is output to the correction circuit 3024.
  • the projection video processing unit 3021 selects an optimal projector from the projectors 3013A, 3013B, and 3013C according to the positions of the eyes 3031 (observation positions 3030A, 3030B, and 3030C). For example, when the position of the eye 3031 of the viewer 3030 is at the observation position 3030A, the projector 3013A is selected as the optimum projector. Then, the projector 3013A projects an image 3101 on the recursive screen 3011 as shown in FIG. 41A. On the other hand, as shown in FIG.
  • the projector 3013B located at a position farther from the recursive screen 3011 than the projector 3013A does not project an image on the recursive screen 3011 or an image 3101 projected from the projector 3013A.
  • a video 3102 with a significantly lower brightness is projected.
  • the projector 3013C at a position farther from the recursive screen 3011 than the projector 3013B does not project an image on the recursive screen 3011 or an image 3101 projected from the projector 3013A.
  • a video 3103 with a much lower brightness is projected.
  • the video 3104 is alleviated in luminance unevenness as a whole, has a wide visual field range, and is excellent in display.
  • the degree of freedom in the positional relationship between the projector 3013 and the eye 3031 of the viewer 3030 is extremely high, and the utility value is improved.
  • the enlargement ratios of the images 3101, 3102, and 3103 are different. Since the images 3101, 3102, and 3103 are projected on the recursive screen 3011 so that the sizes of 3102 and 3103 are equal, an optimal projector 3013 A is selected according to the position of the viewer 3030 (observation positions 3030 A, 3030 B, and 3030 C). , 3013B and 3013C can be viewed, the video 3104 with less discomfort can be seen.
  • FIGS. 43A and 43B are schematic configuration diagrams showing a part of a projection display apparatus according to a fourteenth embodiment.
  • FIG. 43A is a side view and FIG. 43B is a plan view.
  • 43A and 43B the same components as those shown in FIG. 30 are denoted by the same reference numerals, and the description thereof is omitted.
  • the projection type display device 3100 of this embodiment includes a recursive screen 3011, a directional scattering screen 3012 disposed in the vicinity of the projection surface 3011 a of the recursive screen 3011 so as to overlap the projection surface 3011 a, and directivity.
  • a plurality of projectors 3013 (3013A 1-6 , 3013B 1-6 , 3013C 1-6 ) disposed so as to face the scattering screen 3012 at a predetermined distance and a correction mechanism (not shown) are schematically configured.
  • reference numeral 3013 indicates a projection unit 3026 that constitutes a part of the projector 3013.
  • the projectors 3013A 1 to 6 are arranged at predetermined intervals along the width direction of the recursive screen 3011 and form one row.
  • the projectors 3013B 1 to 6 are arranged at predetermined intervals along the width direction of the recursive screen 3011, and form one row.
  • the projectors 3013C 1 to 6 are arranged at predetermined intervals along the width direction of the recursive screen 3011 and form one row.
  • the projector 3000A 1 , the projector 3000B 1 and the projector 3000C 1 are arranged in order from the recursive screen 3011 side, and form one row.
  • the projector 3000A 2 , the projector 3000B 2 and the projector 3000C 2 are arranged in order from the recursive screen 3011 side, and form one row.
  • the projector 3000A 3 , the projector 3000B 3 and the projector 3000C 3 are arranged in order from the recursive screen 3011 side, and form one row.
  • the projector 3000A 4 , the projector 3000B 4 and the projector 3000C 4 are arranged in this order from the recursive screen 3011 side and form one row.
  • the projector 3000A 5 , the projector 3000B 5 and the projector 3000C 5 are arranged in order from the recursive screen 3011 side, and form one row.
  • the projector 3000A 6 , the projector 3000B 6 and the projector 3000C 6 are arranged in order from the recursive screen 3011 side, and form one row.
  • the first row of the projector 3013a 1 ⁇ 6 is formed, the second column the projector 3013 b 1 ⁇ 6 is formed, the third column the projector 3013C 1 ⁇ 6 is formed, in order from the retro-screen 3011 side Arranged at intervals.
  • a method of projecting an image by the projection display device 3100 will be described. For example, in the same manner as in the thirteenth embodiment described above, when the position of the eye 3031 of the viewer 3030 is detected by the position detection unit, data relating to the position of the eye 3031 (for example, the observation positions 3030A, 3030B, and 3030C) is obtained. , And output to the correction circuit 3024 of the projection video processing unit 3021 described above.
  • the projected image processing section 3021 the position of the eye 3031 (observation position 3030A, 3030B, 3030C) in response to, among projectors 3013A 1 ⁇ 6, 3013B 1 ⁇ 6, 3013C 1 ⁇ 6, the optimal projector selection Is done.
  • the position of the eye 3031 of the viewer 3030 is at the observation position 3030A
  • either the projector 3013A 3 or the projector 3013A 4 or both the projector 3013A 3 and the projector 3013A 4 is selected as the optimum projector.
  • either the projector 3013A 3 or the projector 3013A 4 or both the projector 3013A 3 and the projector 3013A 4 project an image on the recursive screen 3011.
  • the projector 3013 other than the projectors 3013A 3 and 3013A 4 does not project an image on the recursive screen 3011, or projects an image with a significantly lower brightness than the image projected from the projectors 3013A 3 and 3013A 4. .
  • the image projected from 3013 is formed so as to overlap. This image has a reduced luminance unevenness as a whole, a wide visual field range, and a good display.
  • the degree of freedom in the positional relationship between the projector 3013 and the eye 3031 of the viewer 3030 can be further increased without significantly reducing the luminance of the video. As a result, a virtual space can be easily realized.
  • FIGS. 44A and 44B are schematic configuration diagrams showing a projection display apparatus according to a fifteenth embodiment.
  • FIG. 44A is a plan view and FIG. 44B is a side view. 44A and 44B, the same components as those shown in FIG. 30 are denoted by the same reference numerals, and the description thereof is omitted.
  • the projection type display device 3110 of this embodiment includes a recursive screen 3011, a directional scattering screen 3012 disposed in the vicinity of the projection surface 3011 a of the recursive screen 3011 so as to overlap the projection surface 3011 a, and directivity.
  • the projector 3013 is roughly configured by a projector 3013 arranged to face the scattering screen 3012 at a predetermined distance and a correction mechanism (not shown). 44A and 44B, reference numeral 3013 denotes a projection unit 3026 that constitutes a part of the projector 3013.
  • the projection unit 3026 of the projector 3013 is arranged apart from the viewer's eyes 3031 of the video projected on the recursive screen 3011.
  • a straight line (extended line) 3122 obtained by extending a straight line 3121 connecting the viewer's eye 3031 and the projection unit 3026 to the recursive screen 3011 side is one surface of the directional scattering screen 3012.
  • a point that intersects 3012a is set as a correction center point P3.
  • the projector does not correct the video information 3061 input to the correction circuit 3024.
  • An image 3131 obtained by projecting from 3013 onto the recursive screen 3011 has no luminance unevenness and uniform luminance.
  • the distance between the recursive screen 3011 and the viewer's eyes 3031 is small or large with respect to the distance between the projection surface 3011a of the recursive screen 3011 and the exit surface 3026a of the projection unit 3026, As shown in FIG. 45B, the video 3131 projected on the recursive screen 3011 has brightness unevenness in which the central part is brightest in an elliptical shape and gradually becomes darker toward the peripheral part.
  • the luminance distribution of the image 3132 obtained by the image information 3061 is centered as shown in FIG. 45C.
  • the center portion around the point P3 has an elliptical shape, and the center portion is darkest and is corrected so that it gradually becomes brighter toward the peripheral portion.
  • the signal corrected by the correction circuit 3024 is output as a drive signal 3062 to the projection optical unit 3022, converted into light by the projection optical unit 3022, and the light is returned from the exit surface 3026a of the projection unit 3026.
  • 3011 is projected onto a projection surface 3011a. Then, as shown in FIG.
  • the recursive screen With respect to the distance between the projection surface 3011a of the projection unit 3026 and the projection surface 3011a of the recursive screen 3011 in the optimum position (distance between the projection surface 3011a and the ejection surface 3026a), the recursive screen.
  • the video 3133 can be viewed as a video with reduced luminance unevenness.
  • the position of the exit surface 3026a of the projection unit 3026 with respect to the projection surface 3011a of the recursive screen 3011 is in an optimal position, the brightness distribution of the image 3132 obtained by the image information 3061 is corrected, thereby allowing viewing. Even if the position of the person's eye 3031 is shifted back and forth with respect to the optimum position, the image 3133 projected on the recursive screen 3011 has less luminance unevenness and a wider visual field range.
  • the luminance distribution of the image (light) projected from the projection unit 3026 onto the projection surface 3011a of the recursive screen 3011 is corrected in the same manner as in the above eleventh embodiment.
  • the recursive screen 3011 even when the directional scattering screen 3012 is disposed in the vicinity of the projection surface 3011a of the recursive screen 3011 so as to overlap the projection surface 3011a, the recursive screen 3011.
  • the position of the correction center point P3 according to the position of the viewer's eye 3031 with respect to the straight line connecting the projection unit 3026 and the projection unit 3026, it is arranged at an optimal position with respect to the projection surface 3011a of the recursive screen 3011.
  • an image with less luminance unevenness can be observed even at a position shifted to a position before and after the emission surface 3026a of the projection unit 3026.
  • the central portion has a circular shape, the central portion is brightest, and the brightness unevenness is gradually reduced toward the peripheral portion.
  • the central portion has an elliptical shape, the central portion is brightest, and the brightness unevenness gradually becomes darker toward the peripheral portion. .
  • FIG. 47 is a schematic plan view showing a projection display apparatus according to a sixteenth embodiment. 47, the same components as those shown in FIGS. 30, 44A, and 44B are denoted by the same reference numerals, and the description thereof is omitted.
  • the projection type display device 3140 of the present embodiment includes a recursive screen 3011, a directional scattering screen 3012 disposed in the vicinity of the projection surface 3011a of the recursive screen 3011 so as to overlap the projection surface 3011a, and a directivity.
  • the projector 3013 is roughly configured by a projector 3013 disposed so as to face the scattering screen 3012 at a predetermined distance and a correction mechanism (not shown).
  • what is indicated by reference numeral 3013 is a projection unit 3026 that constitutes a part of the projector 3013.
  • a video correction method using the projection display device 3140 will be described.
  • the projection unit 3026 of the projector 3013 is arranged separately from the viewer's eyes 3031.
  • a point where a straight line (extended line) obtained by extending a straight line connecting the viewer's eyes 3031 and the projection unit 3026 to the recursive screen 3011 intersects the projection surface 3011a of the recursive screen 3011 is a correction center point.
  • the position of the viewer's eye 3031 is the optimum position of the exit surface 3026a of the projection unit 3026 with respect to the projection surface 3011a of the recursive screen 3011 as in the eleventh embodiment. Not only when the position is shifted back and forth with respect to the position, but also when the position is shifted vertically or horizontally with respect to a straight line connecting the recursive screen 3011 and the projection unit 3026 arranged at the optimum position.
  • the center point P3 is set according to the shifted position.
  • the position of the viewer's eye 3031A 11 is behind the projection unit 3026 on a straight line connecting the recursive screen 3011 and the projection unit 3026 arranged at the optimum position.
  • the central portion of the projection surface 3011a of the recursive screen 3011 has an elliptical shape, the central portion is brightest, and brightness unevenness that gradually becomes darker toward the peripheral portion is generated.
  • the correction center point P3 is set in the brightest area having an elliptical shape.
  • FIG. 48B the central portion of the projection surface 3011a of the recursive screen 3011 has an elliptical shape, the central portion is brightest, and brightness unevenness that gradually becomes darker toward the peripheral portion is generated.
  • the correction center point P3 is set in the brightest area having an elliptical shape.
  • the position of the viewer's eye 3031B 11 is on the left side (the left side of the page) with respect to the straight line connecting the recursive screen 3011 and the projection unit 3026 arranged at the optimum position.
  • 48A as shown in FIG. 48A, a straight line (extension line) obtained by extending a straight line connecting the viewer's eye 3031B 11 and the projection unit 3026 to the recursive screen 3011 side is the projection surface of the recursive screen 3011. Centering on a point that intersects 3011a, the central portion is elliptical, and the central portion is brightest, and brightness unevenness that gradually becomes darker toward the peripheral portion is generated. At this time, the correction center point P3 is set in the brightest area having an elliptical shape, that is, the area on the right side of the projection surface 3011a of the recursive screen 3011 (the right side of the sheet).
  • the position of the viewer's eyes 3031C 11 is shifted rightward (toward the right) to a straight line connecting the retro-screen 3011, a projection portion 3026 disposed in the optimum position and if, as shown in FIG. 48C, intersects the eye 3031C 11 of viewer straight line connecting the projection portion 3026, a straight line obtained by extending the recursive screen 3011 side (extension) is a projection surface 3011a of the retro-screen 3011
  • the center portion is elliptical with the point to be centered, and the center portion is the brightest, and brightness unevenness that gradually becomes darker toward the peripheral portion is generated.
  • the correction center point P3 is set in the brightest area having an elliptical shape, that is, the area on the left side of the projection surface 3011a of the recursive screen 3011 (the left side of the sheet). Further, as shown in FIG. 47, the position of the viewer's eye 3031D 11 is more than the position of the eye 3031C 11 with respect to a straight line connecting the recursive screen 3011 and the projection unit 3026 arranged at the optimum position. Furthermore, when shifted to the right (toward the right), as shown in FIG.
  • the straight line connecting the projection portion 3026 eye 3031D 11 viewers, straight lines extending in retro-screen 3011 side (extension) is recursive Centering on the point intersecting the projection surface 3011a of the reflective screen 3011, the central part is elliptical, the central part is brightest, and the brightness unevenness gradually becomes darker toward the peripheral part.
  • the left side (left side of the drawing) of the brightest area having an elliptical shape exceeds the left end (left end of the drawing) of the recursive screen 3011.
  • the correction center point P3 is set in the brightest area having an elliptical shape, that is, the area on the left side of the projection surface 3011a of the recursive screen 3011 (the left side of the sheet).
  • the position of the correction center point P3 set on the projection surface 3011a of the recursive screen 3011 is set such that the position of the viewer's eye 3031 is the recursive screen 3011 and the projection unit 3026 arranged at the optimum position.
  • the luminance distribution of the image (light) projected from the projection unit 3026 onto the projection surface 3011a of the recursive screen 3011 is corrected in the same manner as in the above eleventh embodiment.
  • the projection display device 3140 of this embodiment by setting the position of the correction center point P3 according to the position of the viewer's eye 3031 with respect to the straight line connecting the recursive screen 3011 and the projection unit 3026, Up and down direction with respect to a position before and after the exit surface 3026a of the projection unit 3026 arranged at an optimal position with respect to the projection surface 3011a of the recursive screen 3011 and a straight line connecting the recursive screen 3011 and the projection unit 3026 Alternatively, an image with little luminance unevenness can be observed even at a position shifted in the left-right direction.
  • the luminance unevenness of the image (light) projected on the projection surface 3011a of the recursive screen 3011 includes the relative positions and angles of the recursive screen 3011, the projector 3013, and the viewer's eyes 3031, and the recursive screen 3011 recursively. It depends on the directivity of the reflected light. Since the directivity of the retroreflected light of the recursive screen 3011 is unique (known), the relative position and angle of the recursive screen 3011, the projector 3013, and the viewer's eye 3031 can be grasped. The luminance distribution of the video (light) can be corrected.
  • FIG. 49 is an enlarged perspective view of the main part showing the configuration of the directional reflective screen of this embodiment.
  • the directional reflection screen 4010 condenses incident light (image light) projected from an image projection unit such as a projector along the horizontal direction H and reflects it again toward the incident direction of the incident light (image light).
  • a horizontal reflection unit 4011 and a vertical diffusion unit 4012 that diffuses the horizontal reflected light along the vertical direction P are provided.
  • the horizontal reflection part 4011 and the vertical diffusion part 4012 are formed so as to spread and overlap on different surfaces.
  • the horizontal reflection portion 4011 and the vertical diffusion portion 4012 are joined via a joining surface (bonding surface) 4015, and are integrated into a sheet shape.
  • Such a directional reflection screen 4010 has an incident surface for incident light projected from the image projection unit and an exit surface for reflected light reflected on the vertical diffusion unit 4012 side.
  • the horizontal reflecting portion 4011 is formed by arranging a plurality of sets of two reflecting surfaces 4011a and 4011b intersecting each other at a predetermined angle ⁇ , for example, 90 °. That is, the prism shapes are made continuous and the ridgelines that intersect with the prism shapes are arranged so as to extend along the vertical direction P.
  • a brightness enhancement film BEFII Suditomo 3M Co., Ltd.
  • BEFII Suditomo 3M Co., Ltd.
  • the prism-shaped projector side (hereinafter sometimes referred to as the front surface S41) or the back surface S42 in FIG. 50 may be a mirror (mirror surface). Since the above-described brightness enhancement film BEFII is made of resin, depending on the angle of the light incident on the prism shape, the light may not be reflected and may be transmitted. Therefore, the amount of reflected light can be increased by adding a mirror to the prism shape. This mirror can be easily formed, for example, by vapor-depositing aluminum on the prism-shaped surface or back surface shown in FIG.
  • the vertical diffusing unit 4012 only needs to be composed of, for example, a lenticular sheet including a lens group in which a plurality of bowl-shaped lenses 4012a extending in the horizontal direction H are arranged in the vertical direction P.
  • the vertical diffusion portion 4012 generally has a refractive index n3 of around 1.5, but may have other values.
  • incident light (image light) L is incident on the directional reflection screen 4010 from, for example, a projector (image projection unit) 4030 or the like
  • the incident light L is transmitted through the vertical diffusing unit 4012 and is incident on the horizontal reflecting unit 4011.
  • Incident light L reaching the horizontal reflecting portion 4011 is sequentially reflected by two reflecting surfaces 4011a and 4011b intersecting each other, and reflected in the incident direction in the horizontal direction H. Therefore, the incident light L that reaches the entire surface of the horizontal reflecting portion 4011 is condensed and diffused at the light emitting position of the projector 4030 in the horizontal direction H.
  • the vertical diffusing unit 4012 extends so that each bowl-shaped lens is orthogonal to the intersecting line of the reflecting surfaces 4011a and 4011b, and the reflected light M that retains the horizontal directivity reflected by the horizontal reflecting unit 4011. Are diffused in the vertical direction P by the respective lenses 4012a and returned to the light emitting direction of the projector 4030. With such a structure, an image projected on the directional reflection screen 4010 can be observed even when an image observer is directly under the projector 4030.
  • Such a projector (image projection means) 4030 is composed of, for example, two projectors, a right-eye projector 4030L and a left-eye projector 4030R, and is combined with a directional reflection screen 4010 to constitute an image display device 4001. Then, by projecting images corresponding to the parallax of both eyes from these two projectors 4030L and 4030R, as shown in FIG. 51, a stereoscopic image can be obtained even if the observer does not use special instruments such as stereoscopic glasses. 3D image display device capable of observing various images can be realized.
  • an antireflection body 4013 is formed on the surface of the vertical diffusion portion 4012 constituting the directional reflection screen 4010, that is, the incident light incident surface.
  • FIG. 52 is an enlarged cross-sectional view showing an antireflection body.
  • the antireflection body 4013 is formed, for example, by arranging a large number of fine conical projections 4013a (see the micrograph shown in FIG. 66).
  • the antireflector 4013 has a moth-eye structure, and incident light that has propagated through the air layer is incident on the vertical diffuser 4012 due to a sudden change in refractive index due to such fine protrusions 4013a. To prevent reflection.
  • the moth-eye structure constituting the antireflection body 4013 is, for example, a concavo-convex structure having a height h of about several hundreds of nanometers, where the wavelength of incident light from the projector is ⁇ , and the formation period (formation pitch) of the concavo-convex is a. , A ⁇ .
  • the incident light from the projector is incident on the interface of the antireflection body 4013 (refractive index n3) on which the moth-eye structure is formed.
  • the refractive index gradually changes from n1 to n3 by such a moth-eye structure, surface reflection is suppressed, and most of the light (incident light) emitted from the projector is not reflected (lost).
  • the light is incident on the vertical diffusion unit 4012 and can reach the horizontal reflection unit 4011.
  • the refractive index stepwise it is also preferable to change the refractive index stepwise. That is, when the refractive index n1 of the air layer is 1.0, the refractive index n2 of the antireflection body 4013 is 1.3, the refractive index n3 of the vertical diffusion part 4012 is 1.5, and the refractive index of the antireflection body 4013. It is also preferable to use a material in which the refractive index of the vertical diffusion portion 4012 is larger than that of the air layer and the refractive index of the vertical diffusion portion 4012 is changed stepwise by using a material that is larger than that of the antireflection body 4013.
  • the vertical diffusion unit 4012 is used. Since the antireflection body 4013 is formed on the surface, the surface reflection is suppressed, and the incident light is incident on the vertical diffusing unit 4012 without being reflected and can reach the horizontal reflecting unit 4011. As a result, a higher quality display image can be obtained.
  • the stereoscopic display device using the projector (image projection unit) 4030 for example, two projectors, a right eye projector 4030L and a left eye projector 4030R, by suppressing reflected light on the surface of the vertical diffusion unit 4012. Since the right-eye video and the left-eye video are mixed (crosstalk), it is possible to project a high-quality and clear stereoscopic image without deteriorating the quality of the image.
  • the above-described directional reflection screen 4010 has different images for each observer, depending on the projectors 4030a, 4030b, and 4030c corresponding to the plurality of observers 4000A, 4000B, and 4000C. Images from different viewpoints can be projected clearly without crosstalk.
  • the projection light projected from the projector 4030a is surface-reflected before entering the directional reflection screen 4010 and is directed toward the observer 4000C, and image light (reflected light) C4 originally observed by the observer 4000C. It is possible to effectively prevent image deterioration due to mixing (crosstalk).
  • an antireflection body 4013 is formed integrally with the surface of the vertical diffusion portion 4012 or is formed by sticking a sheet-like antireflection body 4013 to the surface of the vertical diffusion portion 4012. Also good.
  • other embodiments of the antireflection body will be exemplified.
  • FIG. 54 is an essential part enlarged perspective view showing a configuration of a directional reflective screen according to an eighteenth embodiment.
  • the directional reflection screen 4040 is formed by joining a vertical diffusion unit 4041 made of a lenticular sheet having a lens group in which a plurality of bowl-shaped lenses 4041a are arranged in the vertical direction and a horizontal reflection unit 4042 made of a prism reflection sheet. .
  • An antireflection body 4043 having a large number of moth-eye structures is formed on the surface of the vertical diffusion portion 4041 through a planarization layer 4044.
  • the flattening layer 4044 fills the groove at the boundary portion between the adjacent bowl-shaped lenses 4041a, and forms the flat surface F on the side where the antireflection body 4043 is formed. Accordingly, the antireflection body 4043 can be formed flat without causing large unevenness, and a predetermined antireflection function can be exhibited.
  • Such a flattening layer 4044 has an antireflector when the refractive index n1 of the air layer is 1, the refractive index n2 of the antireflector 4043 is 1.3, and the refractive index n3 of the vertical diffuser 4041 is 1.5. What is necessary is just to be comprised from the material of the refractive index larger than the refractive index of 4043, and smaller than the refractive index of the vertical diffusion part 4041. As a result, the incident light incident from the air layer gradually increases in refractive index as it travels to the antireflection body 4043 and the flattening layer 4044, and before the incident light reaches the horizontal reflecting portion 4042 due to a sudden change in refractive index. Can be prevented from being reflected.
  • FIG. 55A Nineteenth Embodiment
  • a corner cube (cubic prism) 4051 which is a three-dimensional reflection portion.
  • a three-dimensional reflection portion is constructed from corner cube sheets (prism sheets) 4052 in which such corner cubes (three-dimensional reflection portions) 4051 are arranged vertically and horizontally at a fine pitch (usually nanometer (nm) order to micrometer ( ⁇ m) order). (See FIG. 55B).
  • This corner cube (stereoscopic reflecting portion) 4051 has three reflecting surfaces (first mirror surface 4051a, second mirror surface 4051b, third mirror surface 4051c, first mirror surface 4051a, second mirror surface 4051b in the 17th embodiment.
  • the third mirror surface 4051c is formed so as to be perpendicular to the first mirror surface 4051a and the second mirror surface 4051b, respectively, in the same manner as the prism shape of the embodiment, and is emitted from the projector 4056 which is a left eye projector.
  • Incident light incident on 4051 sequentially hits all reflective surfaces (three surfaces) (see symbols m1 to m3 indicating reflection in the figure), and the reflected light is emitted in the incident direction of the incident light.
  • 63A and 63B show an image display device 4054 using a corner cube sheet 4052 in which a large number of such corner cubes 4051 are arranged.
  • 63A is a view as seen from the top surface along the vertical direction
  • FIG. 63B is a view as seen from the side surface along the horizontal direction.
  • the corner cube sheet 4052 has directivity in both the horizontal direction and the vertical direction from the incident light L43 (see the solid line in the figure) incident on the directional reflection screen 4059 provided with the corner cube sheet 4052 from the projector (image projection means) 4056. Reflect while keeping (see dotted line in the figure).
  • incident light L43 incident on the corner cube sheet 4052 solid line in the figure
  • reflected light L44 reflected on the corner cube sheet 4052 see the dotted line in the figure
  • an image can be selectively observed with the observer's eyes 4000 only in the vicinity of the projector 4056.
  • an antireflection body 4058 is provided on the surface of the corner cube sheet 4052.
  • a vertical diffusion portion 4053 made of a lenticular sheet or the like on the surface of the corner cube sheet 4052.
  • the corner cube sheet 4052 retains not only the horizontal direction but also the directivity in the vertical direction.
  • the antireflection body 4058 may be formed on the surface of the corner cube sheet 4052 or the surface of the vertical diffusion portion 4053.
  • the light emitted from the projector 4056 is diffused in the vertical direction on the surface of the diffusion lens of the vertical diffusion unit 4053.
  • Reference numeral 404 denotes light reflected by the corner cube sheet 4052 and diffused by the diffusion lens of the vertical diffusion unit 4053.
  • fine irregularities (projections) 4062a constituting the antireflection body 4062 formed in the vertical diffusion portion 4061 are elongated and extend in the vertical direction P of the vertical diffusion portion 4061. You may be comprised from a protrusion.
  • a directional reflecting screen 4070 shown in FIG. 57 is formed by joining a horizontal reflecting portion 4071 and a vertical diffusing portion 4072 as in the seventeenth embodiment, but the surface of the vertical diffusing portion 4072 has a surface.
  • This is a bowl-shaped lenticular sheet (refractive index n2), which is an example in which a low reflection layer (antireflection body: refractive index n3) 4073 is formed on the vertical diffusion portion 4072.
  • refractive index n3 antireflection body
  • the reflection R1 is expressed by the following formula (1).
  • the reflection R2 at the interface between the low reflection layer 4073 and the vertical diffusion portion 4072 is expressed by the following formula (2).
  • the low reflection layer 4073 When the low reflection layer 4073 is not formed (conventional example), reflection at the interface between the air layer (refractive index n1) and the vertical diffusion portion (lenticular sheet: refractive index n3) reaches 4%. For this reason, it is possible to effectively suppress surface reflection of incident light by forming the low reflection layer 4073 between the air layer and the vertical diffusion portion 4072 as in the present embodiment. Therefore, by applying such a directional reflection screen 4070 to a stereoscopic image display apparatus as shown in FIG. 61, a clearer and higher quality display image can be obtained.
  • another low reflection layer may be formed in an overlapping manner.
  • two low reflection layers (antireflection bodies) 4083 (refractive index n2) and 4084 (refractive index n5) are formed so as to overlap the vertical diffusion portion 4082 (refractive index n3). Yes. Assuming that the air layer (refractive index n1) is used, it is only necessary that the relationship between these refractive indexes be n1 ⁇ n5 ⁇ n2 ⁇ n3.
  • the refractive index gradually changes in the optical path of incident light from the air layer through the two low reflection layers 4083 and 4084 to the vertical diffusing portion 4082, so the ratio of incident light reflected on the way is reduced. It becomes possible to do.
  • FIG. 60 is an explanatory view showing an embodiment in which an optical interference layer is applied as an antireflection body.
  • the incident light L constituting the directional reflection screen 4090 is reflected by the surface F1 of the optical interference layer (antireflection body) 4091 and the interface F2 of the vertical diffusion portion 4092 and the optical interference layer 4091.
  • the optical interference layer 4091 is in contact with air.
  • the optical interference effect is wavelength-dependent and also has an optical interference layer thickness dependency.
  • a plurality of optical interference layers (antireflection bodies) 4091a, 4091b, and 4091c may be formed on the vertical diffusion portion 4092 functioning as a diffusion lens.
  • Examples of means for forming such an optical interference layer (antireflection body) include formation by a coating method or film sticking method.
  • the optical interference layer 4091a has a thickness of d1 and a refractive index of n1.
  • the optical interference layer 4091b has a thickness of d2 and a refractive index of n2.
  • the optical interference layer 4091c has a thickness of d3 and a refractive index of n3.
  • the vertical diffusion portion 4092 has a thickness of d4 and a refractive index of n4. Note that the optical interference layer 4091a is in contact with air having a refractive index of n0.
  • a protective layer 4093 may be further formed over the uppermost optical interference layer (antireflection body) 4091a as shown in FIG.
  • a protective layer 4093 may be made of a hard film such as TAC (triacetyl cellulose) or PET (polyethylene terephthalate). Note that the protective layer 4093 is in contact with air having a refractive index of n0.
  • FIGS. 64A and 64B are plan views showing the configuration of an image display apparatus according to a twenty-fourth embodiment.
  • 64A is a view as seen from the top surface along the vertical direction
  • FIG. 64B is a view as seen from the side surface along the horizontal direction.
  • the directional reflection screen 4095 in this embodiment includes a horizontal reflection portion 4096 and a vertical diffusion portion 4097. Further, an antireflection body 4098a is provided on the front side of the horizontal reflection portion 4096, and an antireflection is provided on the front surface of the vertical diffusion portion 4097.
  • Each body 4098b is formed.
  • the horizontal reflecting portion 4096 is, for example, from a sheet in which prism shapes shown in FIG. 50 are continuously formed, or a sheet (corner cube sheet) in which corner cubes that are three-dimensional reflecting portions shown in FIG. 55A are continuously formed. It only has to be configured.
  • the antireflection body 4098a and the antireflection body 4098b are composed of, for example, a moth eye (compound eye) structure in which a number of fine conical protrusions shown in FIG. 52 are arranged, a low reflection layer shown in FIG. It only has to be done.
  • the antireflection body 4098a includes surface reflection that occurs when incident light from the projector (image projection unit) 4099 enters the horizontal reflecting portion 4096 and surface reflection that occurs when the incident light enters the vertical diffusing portion 4097. And the antireflection body 4098b can suppress or prevent each of them. Accordingly, even when the vertical reflection and the horizontal reflection of the directional reflection screen 4095 are configured by different reflectors, it becomes possible to display a clearer image.
  • FIG. 67 is an optical micrograph (transmission) of the anisotropic diffusion adhesive sheet.
  • This anisotropic diffusion sheet includes needle-like fillers dispersed in an anisotropic diffusion adhesive layer, and the fillers are oriented in one direction parallel to the sheet plane. The action of the anisotropic diffusion sheet in which such needle-like fillers are oriented is shown in FIG.
  • the light L45 incident on the anisotropic diffusion sheet (vertical diffusion portion) 4101 is perpendicular to the orientation direction of the needle-like filler 4103 by the needle-like filler 4103 dispersed in the anisotropic diffusion adhesive layer 4102 (in the drawing). In the Y direction). In FIG. 68, the anisotropic diffusion adhesive layer 4102 diffuses the light L45 in one direction (Y axis).
  • Reference numeral 405 indicates the shape of light diffused anisotropically.
  • the first aspect of the present invention can be used in the field of projection-type video display systems.
  • the second aspect of the present invention can be used in the field of projection display devices.
  • the third aspect of the present invention can be used in the field of projection display devices.
  • SYMBOLS 1010 Video display system, 1011 ... Retroreflective screen, 1012, 1013, 1014 ... Projector, 1015 ... Half mirror, 1016 ... Diffusion control body, 1050 ... Liquid lens, 1060 1070, 1080, 1090 ... liquid crystal lens, 1100, 1120 ... polymer dispersed liquid crystal element, 2010, 2080, 2090, 2110, 2130, 2160, 2180, 2200 ... projection type display device, 2011. ..Recursive screen 2012 ... Projector 2013 ... Substrate 2021 Projection image processing unit 2022 Projection optical unit 2023 Correction data storage unit 2024 Correction circuit , 2025 ... Video processing circuit, 2026 ... Projection unit, 2030 ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

A video display system is provided with a retroreflective screen, and a plurality of projectors each for projecting an image on the retroreflective screen, the projectors are each provided at any position vertically away from the position of the eye of a viewer of an image, and a diffusion control element for vertically diffusing light is stacked on the projection surface of the retroreflective screen.

Description

映像表示システム、投射型表示装置、指向性反射スクリーン及び画層表示装置Video display system, projection display device, directional reflective screen, and layer display device
 本発明は、映像表示システム、投射型表示装置、指向性反射スクリーン及び画層表示装置に関する。
 本願は、2011年5月12日に、日本に出願された特願2011-107495号と、2011年5月2日に、日本に出願された特願2011-103102号と、2011年5月2日に、日本に出願された特願2011-103103号と、2011年8月2日に、日本に出願された特願2011-169309号とに基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a video display system, a projection display device, a directional reflective screen, and a layer display device.
This application includes Japanese Patent Application No. 2011-107495 filed in Japan on May 12, 2011, Japanese Patent Application No. 2011-103102 filed in Japan on May 2, 2011, and May 2, 2011. Claiming priority based on Japanese Patent Application No. 2011-103103 filed in Japan and Japanese Patent Application No. 2011-169309 filed in Japan on August 2, 2011, the contents of which are incorporated herein by reference. To do.
 初めに、第1の背景技術について説明する。プロジェクタなどの画像投影手段と指向性を有する指向性反射スクリーンを組み合わせた画像表示装置では、指向性反射スクリーンに照射された画像信号は、その指向性反射スクリーンで反射されると、水平方向には画像投影手段の位置に集光する。このような反射特性を活かして、2つのプロジェクタを観察者の右眼および左眼の直上または直下に配置するとともに、両眼視差の原理に基づく立体画像信号となる一対の映像信号を、指向性反射スクリーンに照射することによって、特殊な眼鏡を着用することなく、立体映像を鑑賞することができる。 First, the first background art will be described. In an image display device that combines image projection means such as a projector and a directional reflective screen having directivity, an image signal irradiated on the directional reflective screen is reflected in the horizontal direction when reflected by the directional reflective screen. Condensed at the position of the image projection means. Taking advantage of such reflection characteristics, two projectors are placed directly above or below the right and left eyes of the observer, and a pair of video signals that are stereoscopic image signals based on the principle of binocular parallax are converted into directivity. By irradiating the reflective screen, a stereoscopic image can be viewed without wearing special glasses.
 指向性反射スクリーンの水平方向の鑑賞範囲を拡張した画像表示装置としては、指向性反射スクリーンと、指向性反射スクリーンに画像を投影する画像投影手段とを備え、指向性反射スクリーンは合わせ鏡群と異方性拡散体とを有し、合わせ鏡群と異方性拡散体とは画像投影手段からの入射光が異方性拡散体を透過し、合わせ鏡群で反射された後に異方性拡散体を透過して射出するように配置されており、異方性拡散体は、合わせ鏡群の稜線に平行な方向の幅と垂直な方向の幅が異なる微小レンズ群を備えたものが知られている(例えば、特許文献1参照)。 An image display device that extends the viewing range in the horizontal direction of the directional reflection screen includes a directional reflection screen and image projection means for projecting an image onto the directional reflection screen. An anisotropic diffuser, and the mirror mirror group and the anisotropic diffuser diffuse anisotropically after incident light from the image projection means is transmitted through the anisotropic diffuser and reflected by the mirror mirror group. The anisotropic diffuser is known to have a microlens group that has a width in a direction parallel to the ridgeline of the mirror group and a width in a direction perpendicular to the ridgeline of the mirror group. (For example, refer to Patent Document 1).
 次に、第2の背景技術について説明する。光を入射した方向と同じ方向に反射する再帰性スクリーンと、その再帰性スクリーンに映像を投射するプロジェクタと、を備えた投射型表示装置が知られている。この投射型表示装置では、プロジェクタが、映像を見る者(視聴者)の眼の近傍に配置される。また、プロジェクタから再帰性スクリーンに照射された光は、プロジェクタの方向に戻る。そのため、この投射型表示装置は、光の利用効率が極めて高く、低出力のプロジェクタを用いた場合でも、高輝度の映像が得られる。 Next, the second background art will be described. 2. Description of the Related Art A projection display device is known that includes a recursive screen that reflects light in the same direction as the direction in which light is incident, and a projector that projects an image on the recursive screen. In this projection display device, the projector is disposed in the vicinity of the eyes of the viewer (viewer) who views the video. Further, the light emitted from the projector to the recursive screen returns to the direction of the projector. Therefore, this projection type display device has extremely high light utilization efficiency, and even when a low output projector is used, a high brightness image can be obtained.
 また、同一の再帰性スクリーンに対して、多数の視聴者がそれぞれの傍に配置されたプロジェクタから異なる映像(光)を投射しても、それぞれの映像(光)は、それぞれのプロジェクタの方向に戻るので、視聴者はそれぞれ異なる映像を見ることができる。このような再帰性スクリーンの特徴を利用して、視聴者の両眼の近傍に個別のプロジェクタを配置し、それぞれのプロジェクタから再帰性スクリーンに対して、それぞれの眼に対応する映像を投射することによって、3D映像を実現できることも知られている(例えば、特許文献2参照)。 In addition, even if a large number of viewers project different images (light) from the projectors arranged beside each other on the same recursive screen, each image (light) is directed in the direction of each projector. Since the viewer returns, each viewer can see a different video. Utilizing such a characteristic of the recursive screen, individual projectors are arranged in the vicinity of the viewer's eyes, and images corresponding to the respective eyes are projected from the respective projectors to the recursive screen. It is also known that 3D video can be realized (see, for example, Patent Document 2).
 次に、第3の背景技術について説明する。光を入射した方向と同じ方向に反射する再帰性スクリーンと、その再帰性スクリーンに映像を投射するプロジェクタと、を備えた投射型表示装置が知られている。この投射型表示装置では、プロジェクタが、映像を見る者(視聴者)の眼の近傍に配置される。また、プロジェクタから再帰性スクリーンに照射された光は、プロジェクタの方向に戻る。そのため、この投射型表示装置は、光の利用効率が極めて高く、低出力のプロジェクタを用いた場合でも、高輝度の映像が得られる。
 また、再帰性スクリーンの投射面の近傍に、指向性散乱スクリーンを配設し、再帰性スクリーンの映像を左右方向(再帰性スクリーンの幅方向)に大きく拡大し、上下方向(再帰性スクリーンの縦方向)に小さく拡大することも知られている(例えば、特許文献3参照)。
Next, the third background art will be described. 2. Description of the Related Art A projection display device is known that includes a recursive screen that reflects light in the same direction as the direction in which light is incident, and a projector that projects an image on the recursive screen. In this projection display device, the projector is disposed in the vicinity of the eyes of the viewer (viewer) who views the video. Further, the light emitted from the projector to the recursive screen returns to the direction of the projector. Therefore, this projection type display device has extremely high light utilization efficiency, and even when a low output projector is used, a high brightness image can be obtained.
In addition, a directional scattering screen is arranged near the projection surface of the recursive screen, and the image of the recursive screen is greatly enlarged in the left-right direction (the width direction of the recursive screen), and the vertical direction (the vertical direction of the recursive screen). It is also known to enlarge in a small direction (for example, see Patent Document 3).
 次に、第4の背景技術について説明する。例えば、プロジェクターなどの画像投影手段と、この画像投影手段から出射された画像光を指向性をもって反射させる再帰性反射スクリーン(以下、指向性反射スクリーンと称する)を組み合わせた画像表示装置が知られている(例えば、特許文献1参照)。こうした画像表示装置では、指向性反射スクリーンに照射された画像信号は、その指向性反射スクリーンで反射されると、水平方向には画像投影手段の位置に集光する。このような反射特性を活かして、2つのプロジェクターを観察者の右眼および左眼の直上または直下に配置するとともに、両眼視差の原理に基づく立体画像信号となる一対の映像信号を、指向性反射スクリーンに照射することによって、特殊な眼鏡を着用することなく、立体映像を鑑賞することができる。 Next, the fourth background art will be described. For example, there is known an image display device that combines an image projection unit such as a projector and a retroreflective screen (hereinafter referred to as a directional reflection screen) that reflects image light emitted from the image projection unit with directivity. (For example, refer to Patent Document 1). In such an image display device, the image signal irradiated on the directional reflection screen is condensed at the position of the image projection means in the horizontal direction when reflected by the directional reflection screen. Taking advantage of such reflection characteristics, two projectors are arranged directly above or below the right and left eyes of the observer, and a pair of video signals that are stereoscopic image signals based on the principle of binocular parallax are converted into directivity. By irradiating the reflective screen, a stereoscopic image can be viewed without wearing special glasses.
 画像表示装置の水平方向の鑑賞範囲を拡張し、多人数で画像を鑑賞することを可能にする構成として、所定の角度で交差した合わせ鏡を配列した合わせ鏡群と異方性拡散体とを組み合わせた指向性反射スクリーンも知られている。こうした指向性反射スクリーンは、画像投影手段からの入射光が異方性拡散体を透過し、合わせ鏡群で反射された後に異方性拡散体を透過して射出するように配置されており、異方性拡散体は、合わせ鏡群の稜線に平行な方向の幅と垂直な方向の幅が異なる微小レンズ群を備えたものが知られている。 As a configuration that expands the viewing range of the image display device in the horizontal direction and allows an image to be viewed by a large number of people, a group of mirrors arranged with mirrors crossing at a predetermined angle and an anisotropic diffuser are provided. Combined directional reflective screens are also known. Such a directional reflection screen is arranged so that incident light from the image projection means is transmitted through the anisotropic diffuser, reflected by the mirror group, and then transmitted through the anisotropic diffuser. An anisotropic diffuser is known that includes a group of minute lenses having a width in a direction parallel to a ridge line of a group of mirrors and a width in a direction perpendicular to the ridge line.
 更に、複数の画像投影手段から互いに異なる画像を1つの指向性反射スクリーンに向けて投影し、観察者の居る位置に応じて観察可能な画像が違う画像表示装置も知られている(例えば、特許文献4参照)。
 図69A及び図69Bは、上述した画像表示装置の仕組みを簡潔に示した模式図を示す。
 この画像表示装置4200は、指向性反射スクリーン4201と、複数の観察者400A、400B、400Cのそれぞれの近傍に配置されたプロジェクター4202a、4202b、4202cとを備えている。そして、プロジェクター4202aから投影された映像光A11は指向性反射スクリーン4201で観察者400Cに向けて反射される(図中実線矢印Ic参照)。これによって、プロジェクター4202aによって投影された映像を、プロジェクター4202aの正反射光A12として、観察者400Cが観察できる。同様に、プロジェクター4202bから投影された映像光B11は、指向性反射スクリーン4201に垂直に入射し、観察者400Bに向けて反射される(図中実線矢印Ib参照)。またプロジェクター4202cから投影された映像光C11は観察者400Aに向けて、指向性反射スクリーン4201で反射される(図中実線矢印Ia参照)。
Further, an image display device is also known in which different images are projected from a plurality of image projection means onto one directional reflective screen, and the images that can be observed differ depending on the position of the observer (for example, patents). Reference 4).
69A and 69B are schematic diagrams briefly showing the mechanism of the above-described image display apparatus.
The image display device 4200 includes a directional reflection screen 4201 and projectors 4202a, 4202b, and 4202c arranged in the vicinity of the plurality of viewers 400A, 400B, and 400C. Then, the image light A11 projected from the projector 4202a is reflected toward the observer 400C by the directional reflection screen 4201 (see the solid line arrow Ic in the figure). Thus, the viewer 400C can observe the image projected by the projector 4202a as the regular reflection light A12 of the projector 4202a. Similarly, the image light B11 projected from the projector 4202b is perpendicularly incident on the directional reflection screen 4201 and reflected toward the observer 400B (see the solid arrow Ib in the figure). Further, the image light C11 projected from the projector 4202c is reflected by the directional reflection screen 4201 toward the observer 400A (see the solid line arrow Ia in the figure).
特許第4041397号公報Japanese Patent No. 4041397 特開昭56-29223号公報JP 56-29223 A 特開2001-42251号公報Japanese Patent Laid-Open No. 2001-42251 特開2006-154143号公報JP 2006-154143 A
 しかし、第1の背景技術で説明した画像表示装置は、指向性反射スクリーンの画面の全面で画像(反射光)の拡散範囲を拡げることができるが、指向性反射スクリーンの画面の任意の位置において画像の拡散範囲を制御することはできなかった。 However, the image display apparatus described in the first background art can widen the diffusion range of the image (reflected light) over the entire screen of the directional reflection screen, but at any position on the screen of the directional reflection screen. The diffusion range of the image could not be controlled.
 また、第2の背景技術で説明した投射型表示装置では、再帰性スクリーンの投射面と平行な面に沿って視聴者の眼の位置がずれた場合、画面(映像)全体の輝度が低下し、映像が見難くなるという問題があった。また、再帰性スクリーンの投射面と視聴者の眼との距離がずれた場合、すなわち、再帰性スクリーンの投射面に対して、視聴者の眼の位置が、最適な位置から近付いた場合、あるいは、遠ざかった場合、映像の輝度にむらが生じるという問題があった。具体的には、再帰性スクリーンの投射面に対して、視聴者の眼の位置が、最適な位置から近付いた場合および遠ざかった場合に、映像の中央部が明るく、その周縁部が暗くなるという輝度分布を示すという問題があった。 In the projection display device described in the second background art, when the viewer's eyes are displaced along a plane parallel to the projection surface of the recursive screen, the brightness of the entire screen (video) is lowered. There was a problem that it was difficult to see the video. In addition, when the distance between the projection screen of the recursive screen and the viewer's eyes is deviated, that is, when the position of the viewer's eyes approaches the optimal position relative to the projection surface of the recursive screen, or When moving away, there was a problem that the brightness of the image was uneven. Specifically, when the viewer's eye position approaches or moves away from the optimal position with respect to the projection surface of the recursive screen, the center portion of the video is bright and the peripheral portion is dark. There was a problem of showing a luminance distribution.
 また、第3の背景技術で説明した投射型表示装置では、再帰性スクリーンの特徴を利用して、3D映像を実現しようとすると、視聴者の左右の眼にそれぞれ、本来戻らなければならない映像が、反対側の眼に戻ってしまい、クロストークが悪化するという問題があった。
 また、再帰性スクリーンの投射面と平行な面に沿って視聴者の眼の位置がずれた場合、画面(映像)全体の輝度が低下し、映像が見難くなるという問題があった。また、再帰性スクリーンの投射面と視聴者の眼との距離がずれた場合、すなわち、再帰性スクリーンの投射面に対して、視聴者の眼の位置が、最適な位置から近付いた場合、あるいは、遠ざかった場合、映像の輝度にむらが生じるという問題があった。具体的には、再帰性スクリーンの投射面に対して、視聴者の眼の位置が、最適な位置から近付いた場合および遠ざかった場合に、映像の中央部が、再帰性スクリーンの幅方向に沿って帯状に明るく、その周縁部が暗くなるという輝度分布を示すという問題があった。
Further, in the projection display device described in the third background art, when the 3D image is realized by using the feature of the recursive screen, the image that should originally return to the viewer's left and right eyes respectively. There was a problem that the crosstalk was worsened because the eye returned to the other side.
Further, when the position of the viewer's eyes is shifted along a plane parallel to the projection surface of the recursive screen, there is a problem that the brightness of the entire screen (video) is lowered and the video is difficult to see. Also, when the distance between the projection screen of the recursive screen and the viewer's eyes is deviated, that is, when the position of the viewer's eyes approaches the optimal position relative to the projection surface of the recursive screen, or When moving away, there is a problem that the brightness of the image becomes uneven. Specifically, when the viewer's eye position approaches or moves away from the optimal position with respect to the projection surface of the recursive screen, the center of the video is along the width direction of the recursive screen. There is a problem that it shows a luminance distribution that is bright in a strip shape and dark at the periphery.
 また、第4の背景技術において、特許文献1に示したような画像表示装置では、画像投影手段から出射され、指向性反射スクリーンに入射する画像光の一部が、合わせ鏡群まで到達することなく異方性拡散体の表面で反射されてしまうことがあった。例えば、左眼用の画像投影手段から出射された画像光の一部が拡散レンズの表面で反射され、右眼用の画像投影手段の方向に戻ってくることがあった。これは、空気層と異方性拡散体との大きな屈折率差によって、画像投影手段から出射された画像光の一部が異方性拡散体の表面で反射されやすいことが原因である。これによって右目用映像と左目用映像とが混入してしまい、クロストークとなって画像の品位を劣化させてしまうという課題があった。 In the fourth background art, in the image display apparatus as shown in Patent Document 1, a part of the image light emitted from the image projection unit and incident on the directional reflection screen reaches the mirror group. Without being reflected on the surface of the anisotropic diffuser. For example, part of the image light emitted from the image projection unit for the left eye may be reflected by the surface of the diffusing lens and return to the direction of the image projection unit for the right eye. This is because part of the image light emitted from the image projection means is easily reflected on the surface of the anisotropic diffuser due to a large refractive index difference between the air layer and the anisotropic diffuser. As a result, the video for the right eye and the video for the left eye are mixed, and there is a problem that the quality of the image is deteriorated due to crosstalk.
 また、図69A及び図69Bに示したような従来の画像表示装置4200では、例えば、プロジェクター4202aから投影された映像光のうちの一部が指向性反射スクリーン4201の表面で正反射(鏡面反射)されてしまい、観察者4000Cにもプロジェクター4202aから投影された映像光が見えてしまうことがあった(図中点線矢印Ea参照)。この場合、観察者4000Cは、本来観察すべきプロジェクター4202cから投影された映像光(図中実線矢印Ic参照)と、本来観察できないプロジェクター4202aから投影された映像光(図中点線矢印Ea参照)とが混在した画像が見えてしまう(クロストーク)。これによって、観察者4000Cが観察すべきプロジェクター4202cから投影された映像が大幅に劣化してしまう。 In the conventional image display device 4200 as shown in FIGS. 69A and 69B, for example, part of the image light projected from the projector 4202a is specularly reflected (specular reflection) on the surface of the directional reflection screen 4201. As a result, the image light projected from the projector 4202a may be seen by the observer 4000C (see the dotted arrow Ea in the figure). In this case, the observer 4000C receives the image light projected from the projector 4202c to be originally observed (see the solid arrow Ic in the figure) and the image light projected from the projector 4202a that cannot be originally observed (see the dotted arrow Ea in the figure). I see an image with a mixture of (crosstalk). As a result, the image projected from the projector 4202c to be observed by the observer 4000C is greatly deteriorated.
 同様に、観察者4000Aに対しても、本来観察すべきプロジェクター4202aから投影された映像光(図中実線矢印Ia参照)と、プロジェクター4202cから投影され、指向性反射スクリーン4201で一部が正反射された映像光(図中点線矢印Ec参照)とが混在した画像が見えてしまうことがあった。なお、図69Bにおいては、プロジェクター4202aおよびプロジェクター4202cは同じ高さに設置されているため、出射光の軸線は実際には重なって表現されるが、分かりやすくするために上下方向にずらして記載している。 Similarly, the image light projected from the projector 4202a to be originally observed (see the solid arrow Ia in the figure) and the projector 4202c are projected to the observer 4000A, and a part thereof is specularly reflected by the directional reflection screen 4201. In some cases, an image in which the image light (see the dotted arrow Ec in the figure) mixed is seen. In FIG. 69B, since the projector 4202a and the projector 4202c are installed at the same height, the axes of the emitted light are actually overlapped, but they are shifted in the vertical direction for easy understanding. ing.
 本発明は、上記第1の背景技術に鑑みてなされたものであって、再帰性反射スクリーンの画面の任意の位置において画像の拡散範囲を制御することが可能な映像表示システムを提供することを目的とする。 The present invention has been made in view of the first background art, and provides a video display system capable of controlling the diffusion range of an image at an arbitrary position on the screen of a retroreflective screen. Objective.
 また、本発明は、上記第2の背景技術に鑑みてなされたものであって、輝度むらが少ない映像を観察することができる投射型表示装置を提供することを目的とする。 Also, the present invention has been made in view of the second background art, and an object thereof is to provide a projection type display device that can observe an image with little luminance unevenness.
 また、本発明は、上記第3の背景技術に鑑みてなされたものであって、輝度むらが少ない映像を観察することができる投射型表示装置を提供することを目的とする。 Also, the present invention has been made in view of the third background art, and an object thereof is to provide a projection type display device that can observe an image with little luminance unevenness.
 また、本発明は、上記第4の背景技術に鑑みてなされたものであって、所望の光反射性能、拡散性能を維持して鮮明な画像を投影することが可能なスクリーンを備えた画像表示装置を提供することを目的とする。 In addition, the present invention has been made in view of the fourth background art, and an image display including a screen capable of projecting a clear image while maintaining desired light reflection performance and diffusion performance. An object is to provide an apparatus.
(1) 本発明の第1の態様は、再帰性反射スクリーンと、該再帰性反射スクリーンに画像を投影する複数のプロジェクタと、を備え、前記プロジェクタは、前記画像の観察者の目の位置に対して、上下方向のいずれかに離隔した位置に設けられ、前記再帰性反射スクリーンの投影面に、上下方向に光を拡散する拡散制御体が積層される映像表示システムである。 (1) A first aspect of the present invention includes a retroreflective screen and a plurality of projectors that project an image on the retroreflective screen, and the projector is positioned at an eye position of an observer of the image. On the other hand, the image display system is provided at a position spaced apart in either the vertical direction, and a diffusion control body that diffuses light in the vertical direction is laminated on the projection surface of the retroreflective screen.
(2) 本発明の第1の態様において、前記拡散制御体は、部分的に屈折率の異なる領域を形成可能であっても良い。 (2) In the first aspect of the present invention, the diffusion controller may be capable of forming regions having partially different refractive indexes.
(3) 本発明の第1の態様において、前記拡散制御体は、液体レンズであっても良い。 (3) In the first aspect of the present invention, the diffusion control body may be a liquid lens.
(4) 本発明の第1の態様において、前記拡散制御体は、液晶レンズであっても良い。 (4) In the first aspect of the present invention, the diffusion control body may be a liquid crystal lens.
(5) 本発明の第1の態様において、前記拡散制御体は、高分子分散型液晶素子であっても良い。 (5) In the first aspect of the present invention, the diffusion controller may be a polymer dispersed liquid crystal element.
(6) 本発明の第1の態様において、前記再帰性反射スクリーンは、反射面を3面有しても良い。 (6) In the first aspect of the present invention, the retroreflective screen may have three reflective surfaces.
(7) 本発明の第1の態様において、前記再帰性反射スクリーンは、合わせ鏡群を有しても良い。 (7) In the first aspect of the present invention, the retroreflective screen may include a group of mirrors.
(8) 本発明の第2の態様は、再帰性スクリーンと、前記再帰性スクリーンに投射する映像の信号を処理する投射映像処理部および該投射映像処理部からの映像を前記再帰性スクリーンに投射する投射部が設けられた投射光学部を少なくとも有するプロジェクタと、前記プロジェクタの位置が、前記再帰性スクリーンの投射面に対する距離が最適な位置よりも近い場合、または、前記プロジェクタの位置が、前記再帰性スクリーンの投射面に対する距離が最適な位置よりも遠い場合に、前記プロジェクタから前記再帰性スクリーンに投射される前記映像の輝度分布を補正する補正機構と、を備えた投射型表示装置である。 (8) According to a second aspect of the present invention, a recursive screen, a projection video processing unit that processes a video signal projected on the recursive screen, and a video from the projection video processing unit are projected onto the recursive screen. A projector having at least a projection optical unit provided with a projecting optical unit, and the position of the projector is closer than the optimal position to the projection surface of the recursive screen, or the position of the projector is the recursive And a correction mechanism that corrects the luminance distribution of the image projected from the projector onto the recursive screen when the distance from the projection screen to the projection surface is longer than the optimum position.
(9) 本発明の第2の態様において、前記再帰性スクリーンの投射面の近傍に指向性散乱スクリーンが配設され、該指向性散乱スクリーンにより、前記再帰性スクリーンの反射光を、前記再帰性スクリーンの幅方向と縦方向で拡散する角度が異なるようにしても良い。 (9) In the second aspect of the present invention, a directional scattering screen is disposed in the vicinity of the projection surface of the recursive screen, and the reflected light of the recursive screen is reflected by the directional scattering screen. The angle of diffusion may be different between the width direction and the vertical direction of the screen.
(10) 本発明の第2の態様において、前記輝度分布は同心円状であっても良い。 (10) In the second aspect of the present invention, the luminance distribution may be concentric.
(11) 本発明の第2の態様において、前記輝度分布は、中央部が最も暗く、周縁部に向かって次第に明るくなっても良い。 (11) In the second aspect of the present invention, the luminance distribution may be darkest at the center and gradually brighter toward the peripheral edge.
(12) 本発明の第2の態様において、前記輝度分布は、前記映像の視聴者の眼と前記投射部を結ぶ直線を、前記再帰性スクリーン側に延長した直線が、前記再帰性スクリーンの投射面または該投射面を延伸した面と交差する点を中心としても良い。 (12) In the second aspect of the present invention, the luminance distribution is a projection of the recursive screen, wherein a straight line connecting the eye of the viewer of the video and the projection unit is extended to the recursive screen side. It is good also considering the point which cross | intersects the surface which extended the surface or this projection surface.
(13) 本発明の第2の態様において、前記補正機構は、前記投射映像処理部であり、前記投射映像処理部により、前記映像の信号が処理され、前記輝度分布が補正されても良い。 (13) In the second aspect of the present invention, the correction mechanism may be the projection video processing unit, and the projection video processing unit may process the video signal to correct the luminance distribution.
(14) 本発明の第2の態様において、前記補正機構は、前記投射部と前記再帰性スクリーンとの間に設けられた補正フィルタであり、該補正フィルタにより、前記輝度分布が補正されても良い。 (14) In the second aspect of the present invention, the correction mechanism is a correction filter provided between the projection unit and the recursive screen, and the luminance distribution is corrected by the correction filter. good.
(15) 本発明の第2の態様において、前記投射部の位置および/または前記視聴者の眼の位置を検知する位置検知手段を備えても良い。 (15) In the second aspect of the present invention, there may be provided position detecting means for detecting the position of the projection unit and / or the position of the viewer's eyes.
(16) 本発明の第2の態様において、前記投射部の位置および/または前記視聴者の眼の位置を検知する位置検知手段を有する椅子を備えても良い。 (16) In the second aspect of the present invention, a chair having position detecting means for detecting the position of the projection unit and / or the position of the viewer's eyes may be provided.
(17) 本発明の第3の態様は、再帰性スクリーンと、前記再帰性スクリーンに投射する映像の信号を処理する投射映像処理部および該投射映像処理部からの映像を前記再帰性スクリーンに投射する投射部が設けられた投射光学部を少なくとも有する複数のプロジェクタと、を備え、前記複数のプロジェクタはそれぞれ、前記再帰性スクリーンとの距離が互いに異なるように配置される投射型表示装置である。 (17) According to a third aspect of the present invention, a recursive screen, a projection video processing unit that processes a signal of a video projected on the recursive screen, and a video from the projection video processing unit are projected onto the recursive screen. A plurality of projectors having at least a projection optical unit provided with a projection unit, and each of the plurality of projectors is a projection type display device arranged so that the distance from the recursive screen is different from each other.
(18) 本発明の第3の態様において、前記再帰性スクリーンの投射面の近傍に指向性散乱スクリーンが配設され、該指向性散乱スクリーンにより、前記再帰性スクリーンの反射光を、前記再帰性スクリーンの幅方向と縦方向で拡散する角度が異なるようにしても良い。 (18) In the third aspect of the present invention, a directional scattering screen is disposed in the vicinity of the projection surface of the recursive screen, and the reflected light from the recursive screen is reflected by the directional scattering screen. The angle of diffusion may be different between the width direction and the vertical direction of the screen.
(19) 本発明の第3の態様において、前記複数のプロジェクタは、前記再帰性スクリーン側に配置されたものから順に映像の拡大率が大きくなるように、前記再帰性スクリーンに映像を投射しても良い。 (19) In the third aspect of the present invention, the plurality of projectors project an image on the recursive screen so that an enlargement ratio of the image increases sequentially from those arranged on the recursive screen side. Also good.
(20) 本発明の第3の態様において、前記複数のプロジェクタは、前記再帰性スクリーンの投射面において、それぞれのプロジェクタから投射される映像の大きさが等しくなるように、前記再帰性スクリーンに映像を投射しても良い。 (20) In the third aspect of the present invention, the plurality of projectors may display images on the recursive screen so that the sizes of the images projected from the projectors are equal on the projection surface of the recursive screen. May be projected.
(21) 本発明の第3の態様において、前記複数のプロジェクタから前記再帰性スクリーンに投射される映像の輝度分布を補正する補正機構を備え、前記補正機構により、前記輝度分布は、中央部が帯状に最も暗く、周辺部に向かって次第に明るくなるように補正されても良い。 (21) In the third aspect of the present invention, a correction mechanism for correcting the luminance distribution of images projected from the plurality of projectors onto the recursive screen is provided, and the correction mechanism causes the luminance distribution to be centered. You may correct | amend so that it may become darkest in a strip | belt shape, and it becomes bright gradually toward a peripheral part.
(22) 本発明の第3の態様において、前記補正機構は、前記投射映像処理部であり、前記投射映像処理部により、前記映像の信号が処理され、前記輝度分布が補正されても良い。 (22) In the third aspect of the present invention, the correction mechanism may be the projection video processing unit, and the projection video processing unit may process the video signal to correct the luminance distribution.
(23) 本発明の第3の態様において、前記補正機構は、前記投射部と前記再帰性スクリーンとの間に設けられた補正フィルタであり、該補正フィルタにより、前記輝度分布が補正されても良い。 (23) In the third aspect of the present invention, the correction mechanism is a correction filter provided between the projection unit and the recursive screen, and the luminance distribution is corrected by the correction filter. good.
(24) 本発明の第3の態様において、前記映像の視聴者の眼の位置を検知する位置検知手段を備えても良い。 (24) In the third aspect of the present invention, position detection means for detecting the position of the eyes of the viewer of the video may be provided.
(25) 本発明の第3の態様において、前記再帰性スクリーンの幅方向の反射光または縦方向の反射光のうち拡散する角度が大きい方と直交する方向に、前記複数のプロジェクタが並列に配置されても良い。 (25) In the third aspect of the present invention, the plurality of projectors are arranged in parallel in a direction orthogonal to the larger diffusion angle of the reflected light in the width direction or the reflected light in the vertical direction of the recursive screen. May be.
(26) 本発明の第3の態様において、前記再帰性スクリーンの反射光の拡散する角度は、前記再帰性スクリーンの縦方向が前記再帰性スクリーンの幅方向よりも大きく、前記複数のプロジェクタは、前記再帰性スクリーンの幅方向に沿って形成された列と、前記再帰性スクリーン側から順に間隔を置いて形成された行とをなすように配置されても良い。 (26) In the third aspect of the present invention, the angle at which the reflected light of the recursive screen diffuses is such that the vertical direction of the recursive screen is larger than the width direction of the recursive screen, and the plurality of projectors are You may arrange | position so that the column formed along the width direction of the said recursive screen and the row | line | column formed at intervals from the said recursive screen side may be made | formed.
(27) 本発明の第3の態様において、前記複数のプロジェクタは、前記視聴者の頭上または足下に設置されても良い。 (27) In the third aspect of the present invention, the plurality of projectors may be installed above or below the viewer's head.
(28) 本発明の第4の態様は、入射光を少なくとも水平方向に沿って集光させ、入射方向に向けて反射させる水平反射部と、該水平反射光を垂直方向に沿って拡散させる垂直拡散部とを有し、前記水平反射部と前記垂直拡散部とは互いに異なる面で広がり、かつ重なるように形成され、前記垂直拡散部の表面には、前記水平反射部に向かう前記入射光の表面反射を防止するための反射防止体が形成されている指向性反射スクリーンである。 (28) According to a fourth aspect of the present invention, a horizontal reflection unit that collects incident light along at least the horizontal direction and reflects the incident light toward the incident direction, and a vertical that diffuses the horizontal reflected light along the vertical direction. The horizontal reflection part and the vertical diffusion part are spread so as to overlap and overlap each other, and the surface of the vertical diffusion part has the incident light directed toward the horizontal reflection part. It is a directional reflective screen in which an antireflection body for preventing surface reflection is formed.
(29) 本発明の第4の態様において、前記反射防止体は微細な凹凸構造を成し、微細な円錐形状の突起を多数配列したものであっても良い。 (29) In the fourth aspect of the present invention, the antireflection body may have a fine concavo-convex structure and a large number of fine conical protrusions may be arranged.
(30) 本発明の第4の態様において、前記反射防止体は前記垂直拡散部よりも屈折率が小さくても良い。 (30) In the fourth aspect of the present invention, the antireflection body may have a refractive index smaller than that of the vertical diffusion portion.
(31) 本発明の第4の態様において、前記反射防止体はシート状に形成され、前記垂直拡散部の表面に貼着されても良い。 (31) In the fourth aspect of the present invention, the antireflection body may be formed in a sheet shape and attached to the surface of the vertical diffusion portion.
(32) 本発明の第4の態様において、前記反射防止体と前記垂直拡散部の表面との間には、更に平坦化層が形成されても良い。 (32) In the fourth aspect of the present invention, a planarization layer may be further formed between the antireflection body and the surface of the vertical diffusion portion.
(33) 本発明の第4の態様において、前記平坦化層は、屈折率が前記垂直拡散部よりも小さく、かつ前記反射防止体よりも大きくても良い。 (33) In the fourth aspect of the present invention, the planarizing layer may have a refractive index smaller than that of the vertical diffusion portion and larger than that of the antireflection body.
(34) 本発明の第4の態様において、前記水平反射部は、互いに所定の角度で交わる2つの反射面を複数組配列し、前記入射光を2面反射させてなるものでも良い。 (34) In the fourth aspect of the present invention, the horizontal reflecting portion may be formed by arranging a plurality of sets of two reflecting surfaces intersecting each other at a predetermined angle and reflecting the incident light on two surfaces.
(35) 本発明の第4の態様において、前記垂直拡散部は、レンズを複数配列したレンズ群からなっても良い。 (35) In the fourth aspect of the present invention, the vertical diffusing unit may comprise a lens group in which a plurality of lenses are arranged.
(36) 本発明の第5の態様は、入射光を水平方向、および垂直方向に沿って、入射方向に向けて反射させる立体反射部を有し、前記立体反射部の表面には、該立体反射部に向かう前記入射光の表面反射を防止するための反射防止体が形成される指向性反射スクリーンである。 (36) The fifth aspect of the present invention includes a three-dimensional reflection unit that reflects incident light in the horizontal direction and the vertical direction in the incident direction, and the surface of the three-dimensional reflection unit includes the three-dimensional reflection unit. It is a directional reflective screen in which an antireflection body for preventing surface reflection of the incident light traveling toward the reflection portion is formed.
(37) 本発明の第5の態様において、前記立体反射部は、前記入射光を3面反射させる立方体プリズムを複数個配列したプリズムシートからなっても良い。 (37) In the fifth aspect of the present invention, the stereoscopic reflecting portion may be composed of a prism sheet in which a plurality of cubic prisms that reflect the incident light in three planes are arranged.
(38) 本発明の第4又は第5の態様において、前記水平反射部あるいは、前記立体反射部の表面、または裏面には、反射膜が更に形成されても良い。 (38) In the fourth or fifth aspect of the present invention, a reflective film may be further formed on the front surface or the back surface of the horizontal reflection portion or the three-dimensional reflection portion.
(39) 本発明の第4又は第5の態様において、前記反射防止体は、複数の光学干渉層を積層したものからなっても良い。 (39) In the fourth or fifth aspect of the present invention, the antireflection body may be formed by laminating a plurality of optical interference layers.
(40) 本発明の第4又は第5の態様において、前記反射防止体は、透明であっても良い。 (40) In the fourth or fifth aspect of the present invention, the antireflection body may be transparent.
(41) 本発明の第6の態様は、入射光を少なくとも水平方向に沿って集光させ、入射方向に向けて反射させる水平反射部と、該水平反射光を垂直方向に沿って拡散させる垂直拡散部とを有し、前記水平反射部と前記垂直拡散部とは互いに異なる面で広がり、かつ重なるように形成され、前記垂直拡散部の表面には、前記水平反射部に向かう前記入射光の表面反射を防止するための反射防止体が形成されている指向性反射スクリーンと、該指向性反射スクリーンに入射させる入射光として画像を投影する画像投影手段と、を備える画像表示装置である。 (41) According to a sixth aspect of the present invention, a horizontal reflecting unit that collects incident light at least along the horizontal direction and reflects the incident light toward the incident direction, and a vertical that diffuses the horizontal reflected light along the vertical direction. The horizontal reflection part and the vertical diffusion part are spread so as to overlap and overlap each other, and the surface of the vertical diffusion part has the incident light directed toward the horizontal reflection part. An image display apparatus comprising: a directional reflection screen on which an antireflection body for preventing surface reflection is formed; and image projection means for projecting an image as incident light incident on the directional reflection screen.
(42) 本発明の第7の態様は、入射光を水平方向、および垂直方向に沿って、入射方向に向けて反射させる立体反射部を有し、前記立体反射部の表面には、該立体反射部に向かう前記入射光の表面反射を防止するための反射防止体が形成されている指向性反射スクリーンと、該指向性反射スクリーンに入射させる入射光として画像を投影する画像投影手段と、を備える画像表示装置である。 (42) The seventh aspect of the present invention includes a three-dimensional reflection part that reflects incident light in the horizontal direction and the vertical direction in the incident direction, and the surface of the three-dimensional reflection part includes the three-dimensional reflection part. A directional reflection screen on which an antireflection body for preventing surface reflection of the incident light directed toward the reflection portion is formed, and image projection means for projecting an image as incident light incident on the directional reflection screen. An image display device provided.
 本発明の第1の態様によれば、再帰性反射スクリーンの画面の任意の位置において画像の拡散範囲を制御することができる。
 また、本発明の第2の態様によれば、再帰性スクリーンの投射面に対して最適な位置に配置されたプロジェクタの投射部よりも前後の位置、並びに、再帰性スクリーンとプロジェクタの投射部とを結ぶ直線に対して上下方向または左右方向にずれた位置においても、輝度むらが少ない映像を観察することができる。
 また、本発明の第3の態様によれば、再帰性スクリーンの投射面に対して最適な位置に配置されたプロジェクタの投射部よりも前後の位置、並びに、再帰性スクリーンとプロジェクタの投射部とを結ぶ直線に対して上下方向または左右方向にずれた位置においても、輝度むらが少ない映像を観察することができる。
 また、本発明の第4~第7の態様によれば、所望の光反射性能、拡散性能を維持して鮮明な画像を投影することが可能になる。
According to the first aspect of the present invention, the diffusion range of an image can be controlled at an arbitrary position on the screen of the retroreflective screen.
Further, according to the second aspect of the present invention, the position before and after the projection unit of the projector arranged at an optimal position with respect to the projection surface of the recursive screen, the recursive screen, the projection unit of the projector, Even at a position shifted in the vertical direction or the horizontal direction with respect to a straight line connecting the images, an image with little luminance unevenness can be observed.
In addition, according to the third aspect of the present invention, the position before and after the projection unit of the projector arranged at an optimal position with respect to the projection surface of the recursive screen, the recursive screen, the projection unit of the projector, Even at a position shifted in the vertical direction or the horizontal direction with respect to a straight line connecting the images, an image with little luminance unevenness can be observed.
According to the fourth to seventh aspects of the present invention, it is possible to project a clear image while maintaining desired light reflection performance and diffusion performance.
映像表示システムの一実施形態を示す概略構成の平面図である。1 is a plan view of a schematic configuration showing an embodiment of a video display system. 映像表示システムの一実施形態を示す概略構成の側面図である。1 is a side view of a schematic configuration showing an embodiment of a video display system. 再帰性反射スクリーンの一例を示す概略斜視図である。It is a schematic perspective view which shows an example of a retroreflection screen. 再帰性反射スクリーンの他の例を示す概略斜視図である。It is a schematic perspective view which shows the other example of a retroreflection screen. 液体レンズの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a liquid lens. 液晶レンズの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a liquid crystal lens. 液晶レンズの他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a liquid crystal lens. 液晶レンズの他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a liquid crystal lens. 液晶レンズの他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a liquid crystal lens. 液晶レンズの他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a liquid crystal lens. 高分子分散型液晶素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a polymer dispersion type liquid crystal element. 高分子分散型液晶素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a polymer dispersion type liquid crystal element. 高分子分散型液晶素子の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a polymer dispersion type liquid crystal element. 高分子分散型液晶素子の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a polymer dispersion type liquid crystal element. 拡散制御体に形成された拡散領域と非拡散領域の一例を示す概略図である。It is the schematic which shows an example of the diffusion area | region and non-diffusion area | region formed in the diffusion control body. 拡散制御体に形成された拡散領域と非拡散領域の他の例を示す概略図である。It is the schematic which shows the other example of the diffusion area | region and non-diffusion area | region formed in the diffusion control body. 第3実施形態の投射型表示装置を示す概略構成の平面図である。It is a top view of schematic structure which shows the projection type display apparatus of 3rd Embodiment. 第3実施形態の投射型表示装置を示す概略構成の側面図である。It is a side view of schematic structure which shows the projection type display apparatus of 3rd Embodiment. 第3実施形態の投射型表示装置のプロジェクタおよび補正機構の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the projector and correction mechanism of the projection type display apparatus of 3rd Embodiment. 第3実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第1の図である。It is a 1st figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 3rd Embodiment. 第3実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第2の図である。It is a 2nd figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 3rd Embodiment. 第3実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第3の図である。It is a 3rd figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 3rd Embodiment. 第3実施形態の投射型表示装置の補正機構の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the correction mechanism of the projection type display apparatus of 3rd Embodiment. 第4実施形態の投射型表示装置を示す概略構成図である。It is a schematic block diagram which shows the projection type display apparatus of 4th Embodiment. 第4実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の補正の中心点P2を示す第1の図である。It is a 1st figure which shows the center point P2 of correction | amendment of the image | video projected on a recursive screen by the projection type display apparatus of 4th Embodiment. 第4実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の補正の中心点Pを示す第2の図である。It is a 2nd figure which shows the center point P of correction | amendment of the image | video projected on a recursive screen by the projection type display apparatus of 4th Embodiment. 第4実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の補正の中心点Pを示す第3の図である。It is a 3rd figure which shows the center point P of the correction | amendment of the image | video projected on a recursive screen by the projection type display apparatus of 4th Embodiment. 第5実施形態の投射型表示装置を示す概略構成図である。It is a schematic block diagram which shows the projection type display apparatus of 5th Embodiment. 第5実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第1の図である。It is a 1st figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 5th Embodiment. 第5実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第2の図である。It is a 2nd figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 5th Embodiment. 第5実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第3の図である。It is a 3rd figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 5th Embodiment. 第6実施形態の投射型表示装置およびその補正機構の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the projection type display apparatus of 6th Embodiment, and its correction mechanism. 第6実施形態の投射型表示装置およびその補正機構の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the projection type display apparatus of 6th Embodiment, and its correction mechanism. 第7実施形態の投射型表示装置の一部を示す概略構成図である。It is a schematic block diagram which shows a part of projection type display apparatus of 7th Embodiment. 第8実施形態の投射型表示装置の一部を示す概略構成図である。It is a schematic block diagram which shows a part of projection type display apparatus of 8th Embodiment. 第9実施形態の投射型表示装置を示す概略構成の平面図である。It is a top view of schematic structure which shows the projection type display apparatus of 9th Embodiment. 第9実施形態の投射型表示装置を示す概略構成の側面図である。It is a side view of schematic structure which shows the projection type display apparatus of 9th Embodiment. 第9実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第1の図である。It is a 1st figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 9th Embodiment. 第9実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第2の図である。It is a 2nd figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 9th Embodiment. 第9実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第3の図である。It is a 3rd figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 9th Embodiment. 第9実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第4の図である。It is a 4th figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 9th Embodiment. 指向性散乱スクリーンを用いた場合、再帰性スクリーンに投射される映像の輝度分布を示す第1の図である。When a directional scattering screen is used, it is a 1st figure which shows the luminance distribution of the image | video projected on a recursive screen. 指向性散乱スクリーンを用いた場合、再帰性スクリーンに投射される映像の輝度分布を示す第2の図である。When a directional scattering screen is used, it is a 2nd figure which shows the luminance distribution of the image | video projected on a recursive screen. 指向性散乱スクリーンを用いた場合、再帰性スクリーンに投射される映像の輝度分布を示す第3の図である。When a directional scattering screen is used, it is a 3rd figure which shows the luminance distribution of the image | video projected on a recursive screen. 指向性散乱スクリーンを用いた場合、再帰性スクリーンに投射される映像の輝度分布を示す第4の図である。When a directional scattering screen is used, it is a 4th figure which shows the luminance distribution of the image | video projected on a recursive screen. 第10実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す図である。It is a figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 10th Embodiment. 第10実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第1の図である。It is a 1st figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 10th Embodiment. 第10実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第2の図である。It is a 2nd figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 10th Embodiment. 第10実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第3の図である。It is a 3rd figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 10th Embodiment. 第10実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第4の図である。It is a 4th figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 10th Embodiment. 第11実施形態の投射型表示装置を示す概略構成図である。It is a schematic block diagram which shows the projection type display apparatus of 11th Embodiment. 第11実施形態の投射型表示装置のプロジェクタおよび補正機構の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the projector and correction mechanism of the projection type display apparatus of 11th Embodiment. 第11実施形態の投射型表示装置を構成する複数のプロジェクタのそれぞれによって、再帰性スクリーンに投射される映像の輝度分布を示す第1の図である。It is a 1st figure which shows the luminance distribution of the image | video projected on a recursive screen by each of the some projector which comprises the projection type display apparatus of 11th Embodiment. 第11実施形態の投射型表示装置を構成する複数のプロジェクタのそれぞれによって、再帰性スクリーンに投射される映像の輝度分布を示す第2の図である。It is a 2nd figure which shows the luminance distribution of the image | video projected on a recursive screen by each of the several projector which comprises the projection type display apparatus of 11th Embodiment. 第11実施形態の投射型表示装置を構成する複数のプロジェクタのそれぞれによって、再帰性スクリーンに投射される映像の輝度分布を示す第3の図である。It is a 3rd figure which shows the luminance distribution of the image | video projected on a recursive screen by each of the some projector which comprises the projection type display apparatus of 11th Embodiment. 第11実施形態の投射型表示装置を構成する複数のプロジェクタのそれぞれによって再帰性スクリーンに投射された映像を重ね合わせて得られた映像の輝度分布を示す図である。It is a figure which shows the luminance distribution of the image | video obtained by superimposing the image | video projected on the recursive screen by each of the several projector which comprises the projection type display apparatus of 11th Embodiment. 第12実施形態の投射型表示装置を示す概略構成図である。It is a schematic block diagram which shows the projection type display apparatus of 12th Embodiment. 第12実施形態の投射型表示装置のプロジェクタおよび補正機構の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the projector and correction mechanism of the projection type display apparatus of 12th Embodiment. 第12実施形態の投射型表示装置を構成する複数のプロジェクタのそれぞれによって、再帰性スクリーンに投射される映像の輝度分布を示す第1の図である。It is a 1st figure which shows the luminance distribution of the image | video projected on a recursive screen by each of the some projector which comprises the projection type display apparatus of 12th Embodiment. 第12実施形態の投射型表示装置を構成する複数のプロジェクタのそれぞれによって、再帰性スクリーンに投射される映像の輝度分布を示す第2の図である。It is a 2nd figure which shows the luminance distribution of the image | video projected on a recursive screen by each of the several projector which comprises the projection type display apparatus of 12th Embodiment. 第12実施形態の投射型表示装置を構成する複数のプロジェクタのそれぞれによって、再帰性スクリーンに投射される映像の輝度分布を示す第3の図である。It is a 3rd figure which shows the luminance distribution of the image | video projected on a recursive screen by each of the several projector which comprises the projection type display apparatus of 12th Embodiment. 第12実施形態の投射型表示装置を構成する複数のプロジェクタのそれぞれによって再帰性スクリーンに投射された映像を重ね合わせて得られた映像の輝度分布を示す図である。It is a figure which shows the luminance distribution of the image | video obtained by superimposing the image | video projected on the recursive screen by each of the several projector which comprises the projection type display apparatus of 12th Embodiment. 第12実施形態の投射型表示装置およびその補正機構の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the projection type display apparatus of 12th Embodiment, and its correction mechanism. 第13実施形態の投射型表示装置を示す概略構成図である。It is a schematic block diagram which shows the projection type display apparatus of 13th Embodiment. 第13実施形態の投射型表示装置のプロジェクタおよび補正機構の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the projector and correction mechanism of the projection type display apparatus of 13th Embodiment. 第13実施形態の投射型表示装置を構成する複数のプロジェクタのそれぞれによって、再帰性スクリーンに投射される映像の輝度分布を示す第1の図である。It is a 1st figure which shows the luminance distribution of the image | video projected on a recursive screen by each of the several projector which comprises the projection type display apparatus of 13th Embodiment. 第13実施形態の投射型表示装置を構成する複数のプロジェクタのそれぞれによって、再帰性スクリーンに投射される映像の輝度分布を示す第2の図である。It is a 2nd figure which shows the luminance distribution of the image | video projected on a recursive screen by each of the some projector which comprises the projection type display apparatus of 13th Embodiment. 第13実施形態の投射型表示装置を構成する複数のプロジェクタのそれぞれによって、再帰性スクリーンに投射される映像の輝度分布を示す第3の図である。It is a 3rd figure which shows the luminance distribution of the image | video projected on a recursive screen by each of the several projector which comprises the projection type display apparatus of 13th Embodiment. 第13実施形態の投射型表示装置を構成する複数のプロジェクタのそれぞれによって再帰性スクリーンに投射された映像を重ね合わせて得られた映像の輝度分布を示す図である。It is a figure which shows the luminance distribution of the image | video obtained by superimposing the image | video projected on the recursive screen by each of the several projector which comprises the projection type display apparatus of 13th Embodiment. 第14実施形態の投射型表示装置の一部を示す概略構成の側面図である。It is a side view of schematic structure which shows a part of projection type display apparatus of 14th Embodiment. 第14実施形態の投射型表示装置の一部を示す概略構成の平面図である。It is a top view of schematic structure which shows a part of projection type display apparatus of 14th Embodiment. 第15実施形態の投射型表示装置を示す概略構成の平面図である。It is a top view of schematic structure which shows the projection type display apparatus of 15th Embodiment. 第15実施形態の投射型表示装置を示す概略構成の側面図である。It is a side view of schematic structure which shows the projection type display apparatus of 15th Embodiment. 第15実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第1の図である。It is a 1st figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 15th Embodiment. 第15実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第2の図である。It is a 2nd figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 15th Embodiment. 第15実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第3の図である。It is a 3rd figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 15th Embodiment. 第15実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第4の図である。It is a 4th figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 15th Embodiment. 指向性散乱スクリーンを用いた場合、再帰性スクリーンに投射される映像の輝度分布を示す第1の図である。When a directional scattering screen is used, it is a 1st figure which shows the luminance distribution of the image | video projected on a recursive screen. 指向性散乱スクリーンを用いた場合、再帰性スクリーンに投射される映像の輝度分布を示す第2の図である。When a directional scattering screen is used, it is a 2nd figure which shows the luminance distribution of the image | video projected on a recursive screen. 指向性散乱スクリーンを用いた場合、再帰性スクリーンに投射される映像の輝度分布を示す第3の図である。When a directional scattering screen is used, it is a 3rd figure which shows the luminance distribution of the image | video projected on a recursive screen. 指向性散乱スクリーンを用いた場合、再帰性スクリーンに投射される映像の輝度分布を示す第4の図である。When a directional scattering screen is used, it is a 4th figure which shows the luminance distribution of the image | video projected on a recursive screen. 第16実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す図である。It is a figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 16th Embodiment. 第16実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第1の図である。It is a 1st figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 16th Embodiment. 第16実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第2の図である。It is a 2nd figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 16th Embodiment. 第16実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第3の図である。It is a 3rd figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 16th Embodiment. 第16実施形態の投射型表示装置によって、再帰性スクリーンに投射される映像の輝度分布を示す第4の図である。It is a 4th figure which shows the luminance distribution of the image | video projected on a recursive screen by the projection type display apparatus of 16th Embodiment. 第17実施形態の指向性反射スクリーンを示す斜視図である。It is a perspective view which shows the directional reflective screen of 17th Embodiment. 図49の作用を示す説明図である。It is explanatory drawing which shows the effect | action of FIG. 第17実施形態の画像表示装置を示す説明図である。It is explanatory drawing which shows the image display apparatus of 17th Embodiment. 反射防止体の詳細を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the detail of a reflection preventing body. 反射防止体の作用を説明する説明図である。It is explanatory drawing explaining the effect | action of an antireflection body. 第18実施形態を示す断面図である。It is sectional drawing which shows 18th Embodiment. 第19実施形態を示す斜視図である。It is a perspective view which shows 19th Embodiment. 第19実施形態を示す断面図である。It is sectional drawing which shows 19th Embodiment. 第20実施形態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows 20th Embodiment. 第21実施形態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows 21st Embodiment. 第22実施形態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows 22nd Embodiment. 第23実施形態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows 23rd Embodiment. 第24実施形態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows 24th Embodiment. 第21実施形態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows 21st Embodiment. 第23実施形態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows 23rd Embodiment. 第19実施形態を示す第1の要部拡大断面図である。It is a 1st principal part expanded sectional view which shows 19th Embodiment. 第19実施形態を示す第2の要部拡大断面図である。It is a 2nd principal part expanded sectional view which shows 19th Embodiment. 第24実施形態を示す第1の要部拡大断面図である。It is a 1st principal part expanded sectional view which shows 24th Embodiment. 第24実施形態を示す第2の要部拡大断面図である。It is a 2nd principal part expanded sectional view which shows 24th Embodiment. 第17実施形態を示す第1の要部拡大断面図である。It is a 1st principal part expanded sectional view which shows 17th Embodiment. 第17実施形態を示す第2の要部拡大断面図である。It is a 2nd principal part expanded sectional view which shows 17th Embodiment. モスアイ構造の反射防止体の表面を示す顕微鏡写真である。It is a microscope picture which shows the surface of the antireflection body of a moth eye structure. 異方性拡散粘着層を示す顕微鏡写真である。It is a microscope picture which shows an anisotropic diffusion adhesion layer. 第24実施形態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows 24th Embodiment. 従来の画像表示装置の作用を示す第1の説明図である。It is the 1st explanatory view showing an operation of the conventional image display device. 従来の画像表示装置の作用を示す第2の説明図である。It is the 2nd explanatory view showing an operation of the conventional image display device.
(1)第1実施形態
 図1A及び図1Bは、映像表示システムの一実施形態を示す概略構成図であり、図1Aは平面図、図1Bは側面図である。
 本実施形態の映像表示システム1010は、再帰性反射スクリーン1011と、再帰性反射スクリーン1011に画像を投影する3つのプロジェクタ1012、1013、1014と、プロジェクタ1012に対応するハーフミラー1015と、再帰性反射スクリーン1011の投影面1011aに積層された拡散制御体1016とから概略構成されている。
(1) First Embodiment FIGS. 1A and 1B are schematic configuration diagrams showing an embodiment of a video display system, FIG. 1A is a plan view, and FIG. 1B is a side view.
The video display system 1010 of this embodiment includes a retroreflective screen 1011, three projectors 1012, 1013, and 1014 that project an image on the retroreflective screen 1011, a half mirror 1015 corresponding to the projector 1012, and a retroreflective screen. A diffusion control body 1016 stacked on the projection surface 1011a of the screen 1011 is schematically configured.
 プロジェクタ1012は、再帰性反射スクリーン1011に対して正面に設置され、再帰性反射スクリーン1011の正面に居て、再帰性反射スクリーン1011に投影される画像を見る観察者1021の目の位置に対して下方向に離隔した位置、すなわち、観察者1021の足下近傍に設置されている。また、プロジェクタ1012は、その投影部1012aを鉛直方向上向きにして設置されている。 The projector 1012 is installed in front of the retroreflective screen 1011, is in front of the retroreflective screen 1011, and is positioned with respect to the position of the eyes of the observer 1021 who views the image projected on the retroreflective screen 1011. It is installed at a position spaced downward, that is, in the vicinity of the feet of the observer 1021. The projector 1012 is installed with its projection unit 1012a facing upward in the vertical direction.
 ハーフミラー1015は、観察者1021の近傍、かつ、正面に設置されている。また、ハーフミラー1015は、その一方の面(反射面)1015aが再帰性反射スクリーン1011側に傾くように設置されている。
 これにより、プロジェクタ1012から出射された画像が、ハーフミラー1015の一方の面1015aで反射され、その反射光(画像)が再帰性反射スクリーン1011の投影面1011aに投影される。すると、再帰性反射スクリーン1011に投影された画像(光)は、再帰性反射スクリーン1011で反射され、その反射光が拡散制御体1016で投影面1011aの縦方向(上下方向)に拡散され、観察者1021の目の位置に集光される。
The half mirror 1015 is installed in the vicinity of the observer 1021 and in front. The half mirror 1015 is installed such that one surface (reflection surface) 1015a is inclined toward the retroreflection screen 1011.
As a result, the image emitted from the projector 1012 is reflected by one surface 1015a of the half mirror 1015, and the reflected light (image) is projected onto the projection surface 1011a of the retroreflective screen 1011. Then, the image (light) projected on the retroreflective screen 1011 is reflected by the retroreflective screen 1011, and the reflected light is diffused in the vertical direction (vertical direction) of the projection surface 1011 a by the diffusion controller 1016 for observation. Focused on the eyes of the person 1021.
 プロジェクタ1013は、再帰性反射スクリーン1011に対して斜めに設置され、再帰性反射スクリーン1011に対して斜めの位置に居て、再帰性反射スクリーン1011に投影される画像を見る観察者1022の目の位置に対して上方向に離隔した位置、すなわち、観察者1022の頭上に設置されている。
 なお、プロジェクタ1013が、再帰性反射スクリーン1011に対して斜めに設置されているとは、プロジェクタ1013が、プロジェクタ1012と再帰性反射スクリーン1011の投影面1011aを結ぶ直線から横(図1Aにおいて、プロジェクタ1012に対して右側)にずれた位置に設置されていることを言う。
 プロジェクタ1013から出射された画像は、再帰性反射スクリーン1011の投影面1011aに投影される。すると、再帰性反射スクリーン1011に投影された画像(光)は、再帰性反射スクリーン1011で反射され、その反射光が拡散制御体1016で投影面1011aの縦方向(上下方向)に拡散され、観察者1022の目の位置に集光される。
The projector 1013 is installed obliquely with respect to the retroreflective screen 1011, is in an oblique position with respect to the retroreflective screen 1011, and the eyes of the observer 1022 who views the image projected on the retroreflective screen 1011. It is installed at a position spaced upward from the position, that is, above the observer 1022.
Note that the projector 1013 is installed obliquely with respect to the retroreflective screen 1011 that the projector 1013 is lateral to a line connecting the projector 1012 and the projection surface 1011a of the retroreflective screen 1011 (in FIG. It is installed at a position shifted to the right side of 1012.
An image emitted from the projector 1013 is projected onto the projection surface 1011 a of the retroreflective screen 1011. Then, the image (light) projected on the retroreflective screen 1011 is reflected by the retroreflective screen 1011, and the reflected light is diffused in the vertical direction (vertical direction) of the projection surface 1011 a by the diffusion control body 1016 for observation. The light is condensed on the eyes of the person 1022.
 プロジェクタ1014は、再帰性反射スクリーン1011に対して斜めに設置され、再帰性反射スクリーン1011に対して斜めの位置に居て、再帰性反射スクリーン1011に投影される画像を見る観察者1023の目の位置に対して上方向に離隔した位置、すなわち、観察者1023の頭上に設置されている。
 なお、プロジェクタ1014が、再帰性反射スクリーン1011に対して斜めに設置されているとは、プロジェクタ1014が、プロジェクタ1012と再帰性反射スクリーン1011の投影面1011aを結ぶ直線から横(図1Aにおいて、プロジェクタ1012に対して左側)にずれた位置に設置されていることを言う。
 プロジェクタ1013から出射された画像は、再帰性反射スクリーン1011の投影面1011aに投影される。すると、再帰性反射スクリーン1011に投影された画像(光)は、再帰性反射スクリーン1011で反射され、その反射光が拡散制御体1016で投影面1011aの縦方向(上下方向)に拡散され、観察者1023の目の位置に集光される。
The projector 1014 is installed obliquely with respect to the retroreflective screen 1011, is in an oblique position with respect to the retroreflective screen 1011, and the eyes of the observer 1023 viewing the image projected on the retroreflective screen 1011. It is installed at a position spaced upward from the position, that is, above the observer 1023.
Note that the projector 1014 is installed obliquely with respect to the retroreflective screen 1011 that the projector 1014 is located laterally from a straight line connecting the projector 1012 and the projection surface 1011a of the retroreflective screen 1011 (in FIG. It is installed at a position shifted to the left) with respect to 1012.
An image emitted from the projector 1013 is projected onto the projection surface 1011 a of the retroreflective screen 1011. Then, the image (light) projected on the retroreflective screen 1011 is reflected by the retroreflective screen 1011, and the reflected light is diffused in the vertical direction (vertical direction) of the projection surface 1011 a by the diffusion control body 1016 for observation. The light is condensed on the eyes of the person 1023.
 再帰性反射スクリーン1011としては、合わせ鏡群を有するものや、反射面を3面有するものが挙げられる。
 再帰性反射スクリーン1011として、合わせ鏡群を有するものは、例えば、図2に示すように、投影面1011aが、互いに平行な稜線1011bと谷線1011cで挟まれた平面(反射面)が連続する凹凸面をなしている。すなわち、再帰性反射スクリーン1011の投影面1011aは、前記の平面(反射面)の1つが鏡をなし、その鏡が稜線1011bと谷線1011cを境に連続して組み合わされた形状をなしている。
 また、合わせ鏡の挟角、すなわち、1つの谷を形成する隣接した2つの平面(反射面)の間の角度は特に限定されないが、90°近傍であることが好ましい。
Examples of the retroreflective screen 1011 include those having a group of mirrors and those having three reflective surfaces.
As a retroreflective screen 1011, a screen having a group of mirrors, for example, as shown in FIG. 2, a projection surface 1011 a is continuous with a plane (reflective surface) sandwiched between ridge lines 1011 b and valley lines 1011 c that are parallel to each other. It has an uneven surface. That is, the projection surface 1011a of the retroreflective screen 1011 has a shape in which one of the planes (reflecting surfaces) is a mirror, and the mirror is continuously combined with the ridge line 1011b and the valley line 1011c as a boundary. .
Further, the included angle of the mating mirror, that is, the angle between two adjacent flat surfaces (reflecting surfaces) forming one valley is not particularly limited, but is preferably near 90 °.
 再帰性反射スクリーン1011として、反射面を3面有するものとしては、例えば、図3に示すように、垂直の直角三角形の鏡面からなる3面体コーナーキューブ1030を有するものが挙げられる。
 3面体コーナーキューブ1030に光が入射すると、入射光1041は3つの反射面1030a、1030b、1030cで順に反射され、光源方向に戻る。図2に示したような合わせ鏡群では、稜線1011bが投影面1011aの縦方向(上下方向)に延びるように設置された場合、上下方向については再帰性が発現しない。これに対して、3面体コーナーキューブ1030では、入射光1041のXYZ全ての方位が反転するため、上下、左右いずれの方位に対しても再帰性を発現するため、より効率が高い。
Examples of the retroreflective screen 1011 having three reflective surfaces include those having a trihedral corner cube 1030 made of a mirror surface of a vertical right triangle as shown in FIG.
When light enters the trihedral corner cube 1030, the incident light 1041 is sequentially reflected by the three reflecting surfaces 1030a, 1030b, and 1030c, and returns to the light source direction. In the group of mirrors as shown in FIG. 2, when the ridge line 1011b is installed so as to extend in the vertical direction (vertical direction) of the projection plane 1011a, the recursive property does not appear in the vertical direction. On the other hand, in the trihedral corner cube 1030, since all the XYZ directions of the incident light 1041 are inverted, the reciprocity is exhibited in both the vertical and horizontal directions, so that the efficiency is higher.
 拡散制御体1016としては、光の拡散する方向(拡散性)を制御することができる構造であれば特に限定されないが、例えば、図4に示すような液体レンズ、図5A~図8に示すような液晶レンズ、図9A及び図9B、図10A及び図10Bに示すような高分子分散型液晶素子などが挙げられる。 The diffusion control body 1016 is not particularly limited as long as it is a structure capable of controlling the light diffusion direction (diffusibility). For example, a liquid lens as shown in FIG. 4, as shown in FIG. 5A to FIG. Liquid crystal lenses, polymer dispersed liquid crystal elements as shown in FIGS. 9A and 9B, 10A and 10B, and the like.
 図4に示す液体レンズ1050は、セル1051と、その内部に設けられた電極1052と、電極1052によってセル1051の中央部に形成された凹部1053内に封入されたオイル1054および水1055とから概略構成されている。
 液体レンズ1050は、電極1052への印加電圧に応じて、オイル1054と水1055の界面の形状を変化させることにより光の屈折方向を変化させ、透過後の光の進行方向を変更する機能を有している。
 液体レンズ1050は、再帰性反射スクリーン1011の投影面1011aに積層されている。拡散制御体1016によって拡散された光は、水1055側から液体レンズ1050を透過する。
 液体レンズ1050は、光の屈折方向を変化させることにより、拡散制御体1016によって拡散される光の拡散性を制御する。
A liquid lens 1050 shown in FIG. 4 is roughly composed of a cell 1051, an electrode 1052 provided therein, and oil 1054 and water 1055 enclosed in a recess 1053 formed at the center of the cell 1051 by the electrode 1052. It is configured.
The liquid lens 1050 has a function of changing the refraction direction of light by changing the shape of the interface between the oil 1054 and the water 1055 according to the voltage applied to the electrode 1052, and changing the traveling direction of the light after transmission. is doing.
The liquid lens 1050 is laminated on the projection surface 1011 a of the retroreflective screen 1011. The light diffused by the diffusion controller 1016 passes through the liquid lens 1050 from the water 1055 side.
The liquid lens 1050 controls the diffusibility of light diffused by the diffusion controller 1016 by changing the light refraction direction.
 図5A及び図5Bに示す液晶レンズ1060は、セル1061と、その内部に対向するように設けられた一対の電極1062、1063と、セル1061の内部に設けられたプリズム構造体1064と、一対の電極1062、1063の間に封入された液晶1065とから概略構成されている。プリズム構造体1064の電極1062と対向する面に、電極1063が設けられている。
 液晶レンズ1060は、一対の電極1062、1063への印加電圧に応じて、図5A及び図5Bに示すように、液晶1065の配向状態を変化させ、液晶1065の屈折率を変化させることにより、光がプリズム構造体1064を透過する際にその屈折方向を変化させ、透過後の光の進行方向を変更する機能を有している。
 液晶レンズ1060は、再帰性反射スクリーン1011の投影面1011aに積層されている。拡散制御体1016によって拡散された光は、電極1062側から液晶レンズ1060を透過する。
 液晶レンズ1060は、光の屈折方向を変化させることにより、拡散制御体1016によって拡散される光の拡散性を制御する。
A liquid crystal lens 1060 shown in FIGS. 5A and 5B includes a cell 1061, a pair of electrodes 1062 and 1063 provided to face the cell 1061, a prism structure 1064 provided in the cell 1061, and a pair of electrodes. A liquid crystal 1065 sealed between the electrodes 1062 and 1063 is schematically configured. An electrode 1063 is provided on the surface of the prism structure 1064 facing the electrode 1062.
The liquid crystal lens 1060 changes the alignment state of the liquid crystal 1065 and changes the refractive index of the liquid crystal 1065 according to the voltage applied to the pair of electrodes 1062 and 1063, thereby changing the refractive index of the liquid crystal 1065. Has a function of changing the direction of refraction when passing through the prism structure 1064 and changing the traveling direction of the light after transmission.
The liquid crystal lens 1060 is laminated on the projection surface 1011 a of the retroreflective screen 1011. The light diffused by the diffusion controller 1016 passes through the liquid crystal lens 1060 from the electrode 1062 side.
The liquid crystal lens 1060 controls the diffusibility of the light diffused by the diffusion controller 1016 by changing the light refraction direction.
 図6に示す液晶レンズ1070は、所定の間隔を置いて対向する一対の基板1071、1072を有するセル1073と、基板1071、1072の対向する面にそれぞれ設けられた一対の電極1074、1075と、一対の電極1074、1075の間に封入された液晶1076とから概略構成されている。
 電極1075は、同心円状に配置された複数の円環状の電極子1075a、1075b、1075c、1075d、1075eから構成されている。
 液晶レンズ1070は、一方の電極1074に一定の電圧を印加し、他方の電極1075の電極子1075a、1075b、1075c、1075d、1075eに異なる電圧を印加すると、液晶1076中に電極1075の半径方向に沿う位相プロファイルが生じ、レンズ作用が生じる機能を有している。
 液晶レンズ1070は、再帰性反射スクリーン1011の投影面1011aに積層されている。拡散制御体1016によって拡散された光は、電極1075側から液晶レンズ1070を透過する。
 液晶レンズ1070は、光の屈折方向を変化させることにより、拡散制御体1016によって拡散される光の拡散性を制御する。
A liquid crystal lens 1070 shown in FIG. 6 includes a cell 1073 having a pair of substrates 1071 and 1072 facing each other at a predetermined interval, a pair of electrodes 1074 and 1075 provided on the facing surfaces of the substrates 1071 and 1072, respectively. A liquid crystal 1076 sealed between a pair of electrodes 1074 and 1075 is schematically configured.
The electrode 1075 includes a plurality of annular electrode elements 1075a, 1075b, 1075c, 1075d, and 1075e arranged concentrically.
The liquid crystal lens 1070 applies a constant voltage to one electrode 1074 and applies different voltages to the electrode elements 1075a, 1075b, 1075c, 1075d, and 1075e of the other electrode 1075. A phase profile that follows is generated, and has a function of causing lens action.
The liquid crystal lens 1070 is laminated on the projection surface 1011 a of the retroreflection screen 1011. The light diffused by the diffusion controller 1016 passes through the liquid crystal lens 1070 from the electrode 1075 side.
The liquid crystal lens 1070 controls the diffusibility of the light diffused by the diffusion controller 1016 by changing the light refraction direction.
 図7に示す液晶レンズ1080は、所定の間隔を置いて対向する一対の電極付基板1081、1082を有するセル1083と、セル1083内において、一方の電極付基板1081の他方の電極付基板1082と対向する面に設けられたフレネルレンズ1084と、一対の電極付基板1081、1082の間に封入された液晶1085とから概略構成されている。
 液晶レンズ1080は、一対の電極付基板1081、1082への印加電圧に応じて、液晶1085の配向状態を変化させ、液晶1085の屈折率を変化させることにより、光がフレネルレンズ1084を透過する際にその屈折方向を変化させ、透過後の光の進行方向を変更する機能を有している。
 液晶レンズ1080は、再帰性反射スクリーン1011の投影面1011aに積層されている。拡散制御体1016によって拡散された光は、電極付基板1081側から液晶レンズ1080を透過する。
 液晶レンズ1080は、光の屈折方向を変化させることにより、拡散制御体1016によって拡散される光の拡散性を制御する。
A liquid crystal lens 1080 shown in FIG. 7 includes a cell 1083 having a pair of electrode-attached substrates 1081 and 1082 facing each other at a predetermined interval, and within the cell 1083, one electrode-attached substrate 1081 and the other electrode-attached substrate 1082. It is schematically composed of a Fresnel lens 1084 provided on the opposite surface and a liquid crystal 1085 sealed between a pair of substrates 1081 and 1082 with electrodes.
The liquid crystal lens 1080 changes the alignment state of the liquid crystal 1085 and changes the refractive index of the liquid crystal 1085 in accordance with the voltage applied to the pair of electrode substrates 1081 and 1082, thereby allowing light to pass through the Fresnel lens 1084. It has a function of changing the direction of refraction and changing the traveling direction of light after transmission.
The liquid crystal lens 1080 is laminated on the projection surface 1011 a of the retroreflective screen 1011. The light diffused by the diffusion controller 1016 passes through the liquid crystal lens 1080 from the electrode-attached substrate 1081 side.
The liquid crystal lens 1080 controls the diffusibility of light diffused by the diffusion controller 1016 by changing the light refraction direction.
 図8に示す液晶レンズ1090は、所定の間隔を置いて対向する電極付基板1091および基板1092を有するセル1093と、セル1093内において、基板1092の電極付基板1091と対向する面に設けられた断面形状が略半円形状のレンズ1094と、レンズ1094の電極付基板1091と対向する面に設けられた電極膜1095と、電極付基板1091と基板1092の間に封入された液晶1096とから概略構成されている。
 液晶レンズ1090は、電極付基板1091と電極膜1095への印加電圧に応じて、液晶1096の配向状態を変化させ、液晶1096の屈折率を変化させることにより、光がレンズ1094を透過する際にその屈折方向を変化させ、透過後の光の進行方向を変更する機能を有している。
 液晶レンズ1090は、再帰性反射スクリーン1011の投影面1011aに積層されている。拡散制御体1016によって拡散された光は、基板1092側から液晶レンズ1090を透過する。
 液晶レンズ1090は、光の屈折方向を変化させることにより、拡散制御体1016によって拡散される光の拡散性を制御する。
The liquid crystal lens 1090 shown in FIG. 8 is provided on a surface facing the substrate 1091 with an electrode of the substrate 1092 in the cell 1093 having a substrate 1091 and a substrate 1092 facing each other at a predetermined interval. The lens 1094 having a substantially semicircular cross section, an electrode film 1095 provided on the surface of the lens 1094 facing the substrate with electrode 1091, and a liquid crystal 1096 sealed between the substrate with electrode 1091 and the substrate 1092 are schematically shown. It is configured.
The liquid crystal lens 1090 changes the alignment state of the liquid crystal 1096 and changes the refractive index of the liquid crystal 1096 in accordance with the voltage applied to the electrode substrate 1091 and the electrode film 1095, so that light passes through the lens 1094. It has a function of changing the direction of refraction and changing the traveling direction of light after transmission.
The liquid crystal lens 1090 is laminated on the projection surface 1011 a of the retroreflection screen 1011. The light diffused by the diffusion controller 1016 passes through the liquid crystal lens 1090 from the substrate 1092 side.
The liquid crystal lens 1090 controls the diffusibility of the light diffused by the diffusion controller 1016 by changing the light refraction direction.
 図9A及び図9Bに示す高分子分散型液晶素子1100は、液晶分子1101とポリマー材料(高分子材料)1102がネットワーク状に入り組んだ複合膜である。高分子分散型液晶素子1100は、電界印加状態で非散乱状態、電圧無印加状態で散乱状態に切り替え可能な光学素子である。すなわち、液晶分子1101は電界応答するので、散乱状態と非散乱状態を切り替えることが可能であり、高分子分散型液晶素子1100は、屈折率が揃った場合(電界印加状態)は非散乱状態、屈折率がランダムに分散した場合(電圧無印加状態)は散乱状態となる。 A polymer dispersed liquid crystal element 1100 shown in FIGS. 9A and 9B is a composite film in which liquid crystal molecules 1101 and a polymer material (polymer material) 1102 are arranged in a network. The polymer dispersed liquid crystal element 1100 is an optical element that can be switched between a non-scattering state when an electric field is applied and a scattering state when no voltage is applied. That is, since the liquid crystal molecules 1101 respond to an electric field, it is possible to switch between a scattering state and a non-scattering state. When the refractive index is uniform (electric field application state), the polymer dispersed liquid crystal element 1100 is in a non-scattering state. When the refractive index is randomly dispersed (no voltage applied state), it is in a scattering state.
 以下に、高分子分散型液晶素子1100が、再帰性反射スクリーン1011の投影面1011aに積層された場合の動作を示す。
 図9Aに示すように、電圧無印加状態(散乱状態)では、例えば、図1A及び図1Bに示すプロジェクタ1012からの入射光1111は、高分子分散型液晶素子1100で散乱される。このとき、光1111の一部は、前方散乱により、一旦、再帰性反射スクリーン1011のミラー面1011bに照射され、再帰反射される。しかしながら、その反射光1112は、一旦、高分子分散型液晶素子1100で散乱され、元の入射光1111とは異なる方位に変換されているため、プロジェクタ1012のレンズ(投影部)位置に集光されることない。したがって、反射光1112は、広範囲に拡散されながら戻る。その結果、観察者は、レンズ(投影部)の近傍以外の位置においても、映像を視聴することができる。すなわち、図1A及び図1Bに示す観察者1021、1022、1023は全て、同じ映像を視聴することができる。
 一方、図9Bに示すように、電界印加状態では、高分子分散型液晶素子1100は非散乱状態(透明状態)であり、例えば、図1A及び図1Bに示すプロジェクタ1012からの入射光1111は、高分子分散型液晶素子1100で散乱されない。そのため、再帰性反射スクリーン1011のミラー面1011bに照射された入射光(映像)1111の反射光1112は、プロジェクタ1012のレンズ(投影部)位置に集光される。すなわち、図1A及び図1Bに示す観察者1021の位置のみにおいて、プロジェクタ1012からの映像を視聴することができる。
The operation when the polymer dispersion type liquid crystal element 1100 is laminated on the projection surface 1011a of the retroreflective screen 1011 will be described below.
As shown in FIG. 9A, in a voltage non-application state (scattering state), for example, incident light 1111 from the projector 1012 shown in FIGS. 1A and 1B is scattered by the polymer dispersed liquid crystal element 1100. At this time, a part of the light 1111 is once irradiated to the mirror surface 1011b of the retroreflective screen 1011 and retroreflected by forward scattering. However, since the reflected light 1112 is once scattered by the polymer dispersed liquid crystal element 1100 and converted into a different orientation from the original incident light 1111, the reflected light is condensed at the lens (projection unit) position of the projector 1012. Never. Therefore, the reflected light 1112 returns while being diffused over a wide range. As a result, the observer can view the video even at a position other than the vicinity of the lens (projection unit). That is, the viewers 1021, 1022, and 1023 shown in FIGS. 1A and 1B can all watch the same video.
On the other hand, as shown in FIG. 9B, the polymer dispersed liquid crystal element 1100 is in a non-scattering state (transparent state) in an electric field applied state. For example, incident light 1111 from the projector 1012 shown in FIGS. It is not scattered by the polymer dispersed liquid crystal element 1100. Therefore, the reflected light 1112 of the incident light (image) 1111 irradiated on the mirror surface 1011b of the retroreflective screen 1011 is collected at the lens (projection unit) position of the projector 1012. That is, the video from the projector 1012 can be viewed only at the position of the observer 1021 shown in FIGS. 1A and 1B.
 図10A及び図10Bに示す高分子分散型液晶素子1120は、液晶分子1121とポリマー材料(高分子材料)1122がネットワーク状に入り組んだ複合膜である。高分子分散型液晶素子1120は、電界印加状態で散乱状態、電圧無印加状態で非散乱状態に切り替え可能な光学素子である。すなわち、液晶分子1121は電界応答するので、散乱状態と非散乱状態を切り替えることが可能であり、高分子分散型液晶素子1120は、屈折率が揃った場合(電圧無印加状態)は非散乱状態、屈折率がランダムに分散した場合(電界印加状態)は散乱状態となる。 The polymer dispersed liquid crystal element 1120 shown in FIGS. 10A and 10B is a composite film in which liquid crystal molecules 1121 and a polymer material (polymer material) 1122 are arranged in a network. The polymer dispersed liquid crystal element 1120 is an optical element that can be switched between a scattering state when an electric field is applied and a non-scattering state when no voltage is applied. That is, since the liquid crystal molecules 1121 respond to an electric field, it is possible to switch between a scattering state and a non-scattering state, and the polymer dispersion type liquid crystal element 1120 is in a non-scattering state when the refractive indexes are uniform (no voltage applied state). When the refractive index is randomly dispersed (electric field application state), a scattering state is obtained.
 以下に、高分子分散型液晶素子1120が、再帰性反射スクリーン1011の投影面1011aに積層された場合の動作を示す。
 図10Aに示すように、電圧無印加状態では、高分子分散型液晶素子1120は非散乱状態(透明状態)であり、例えば、図1A及び図1Bに示すプロジェクタ1012からの入射光1131は、高分子分散型液晶素子1120で散乱されない。そのため、再帰性反射スクリーン1011のミラー面1011bに照射された入射光(映像)1131の反射光1132は、プロジェクタ1012のレンズ(投影部)位置に集光される。すなわち、図1A及び図1Bに示す観察者1021の位置のみにおいて、プロジェクタ1012からの映像を視聴することができる。
 一方、図10Bに示すように、電界印加状態では、例えば、図1A及び図1Bに示すプロジェクタ1012からの入射光1131は、高分子分散型液晶素子1120で散乱される。このとき、光1131の一部は、前方散乱により、一旦、再帰性反射スクリーン1011のミラー面1011bに照射され、再帰反射される。しかしながら、その反射光1132は、一旦、高分子分散型液晶素子1120で散乱され、元の入射光1131とは異なる方位に変換されているため、プロジェクタ1012のレンズ(投影部)位置に集光されることない。したがって、反射光1132は、広範囲に拡散されながら戻る。その結果、観察者は、レンズ(投影部)の近傍以外の位置においても、映像を視聴することができる。すなわち、図1A及び図1Bに示す観察者1021、1022、1023は全て、同じ映像を視聴することができる。
The operation when the polymer dispersion type liquid crystal element 1120 is laminated on the projection surface 1011a of the retroreflective screen 1011 will be described below.
As shown in FIG. 10A, when no voltage is applied, the polymer dispersed liquid crystal element 1120 is in a non-scattering state (transparent state). For example, incident light 1131 from the projector 1012 shown in FIGS. It is not scattered by the molecular dispersion type liquid crystal element 1120. Therefore, the reflected light 1132 of the incident light (image) 1131 irradiated on the mirror surface 1011b of the retroreflective screen 1011 is condensed at the lens (projection unit) position of the projector 1012. That is, the video from the projector 1012 can be viewed only at the position of the observer 1021 shown in FIGS. 1A and 1B.
On the other hand, as shown in FIG. 10B, in an electric field application state, for example, incident light 1131 from the projector 1012 shown in FIGS. 1A and 1B is scattered by the polymer dispersed liquid crystal element 1120. At this time, a part of the light 1131 is once irradiated on the mirror surface 1011b of the retroreflective screen 1011 and retroreflected by forward scattering. However, the reflected light 1132 is once scattered by the polymer-dispersed liquid crystal element 1120 and converted into a different orientation from the original incident light 1131, and thus is condensed at the lens (projection unit) position of the projector 1012. Never. Therefore, the reflected light 1132 returns while being diffused over a wide range. As a result, the observer can view the video even at a position other than the vicinity of the lens (projection unit). That is, the viewers 1021, 1022, and 1023 shown in FIGS. 1A and 1B can all watch the same video.
 本実施形態では、再帰性反射スクリーン1011の投影面1011aに積層された拡散制御体1016(液体レンズ1050、液晶レンズ1060、1070、1080、1090、高分子分散型液晶素子1100、1120)に屈折率の異なる領域を形成することによって、拡散制御体1016において、その縦方向の上側の領域と下側の領域の拡散性を相違させる。
 例えば、図11に示すように、拡散制御体1016の屈折率を部分的に変化させて、再帰性反射スクリーン1011の投影面1011aの下側の領域の一部に対応する位置に、光を拡散させない領域(非拡散領域)1011Bを形成する。これにより、拡散制御体1016には、光を拡散させる領域(拡散領域)1011Aと非拡散領域1011Bが形成される。
In this embodiment, the refractive index of the diffusion control body 1016 (liquid lens 1050, liquid crystal lenses 1060, 1070, 1080, and 1090, polymer dispersion type liquid crystal elements 1100 and 1120) stacked on the projection surface 1011a of the retroreflective screen 1011. By forming the different regions, the diffusion control body 1016 makes the diffusibility of the upper region and the lower region different in the vertical direction.
For example, as shown in FIG. 11, the refractive index of the diffusion control body 1016 is partially changed to diffuse light to a position corresponding to a part of the lower region of the projection surface 1011a of the retroreflective screen 1011. A region (non-diffusion region) 1011B that is not to be formed is formed. Thus, the diffusion control body 1016 is formed with a region (diffusion region) 1011A and a non-diffusion region 1011B for diffusing light.
 ここで、例えば、プロジェクタ1012から、拡散領域1011Aに主たる映像αを投影するとともに、非拡散領域1011Bに字幕などの補助情報に関する映像βを投影する。すると、観察者1021は、拡散領域1011Aに投影され、拡散制御体1016によって、再帰性反射スクリーン1011の投影面1011aの縦方向(上下方向)に拡散された映像αと、非拡散領域1011Bに投影された映像βとを見ることができる。非拡散領域1011Bに投影された映像βは、再帰性反射スクリーン1011の投影面1011aの縦方向(上下方向)に拡散されずに、プロジェクタ1012の位置に集光する。したがって、非拡散領域1011Bに投影された映像βは、再帰性反射スクリーン1011の正面に居る観察者1021のみが見ることができる。すなわち、再帰性反射スクリーン1011に対して斜めの位置に居る観察者1022、1023は、非拡散領域1011Bに投影された映像βを見ることができない。 Here, for example, from the projector 1012, with projecting the primary image alpha 1 in the diffusion region 1011A, projecting an image beta 1 about auxiliary information such as subtitles in a non-diffusion region 1011 B. Then, the observer 1021 is projected to the diffusion region 1011A, the diffusion controller 1016, a video alpha 1 diffused in the longitudinal direction of the projection plane 1011a of the retro-reflective screen 1011 (vertical direction), the non-diffusion region 1011B The projected image β 1 can be seen. The image β 1 projected on the non-diffusing region 1011B is condensed at the position of the projector 1012 without being diffused in the vertical direction (vertical direction) of the projection surface 1011a of the retroreflective screen 1011. Therefore, the image beta 1 projected in the non-diffusion region 1011B can only observer 1021 who is in front of the retro-reflective screen 1011 is seen. That is, the observer 1022 who is oblique position with respect to the retroreflective screen 1011 can not see the video beta 1 projected in the non-diffusion region 1011 B.
 観察者1022は、プロジェクタ1013から、拡散領域1011Aに投影され、拡散制御体1016によって再帰性反射スクリーン1011の投影面1011aの縦方向(上下方向)に拡散された映像γを見ることができる。
 また、観察者1023は、プロジェクタ1014から、拡散領域1011Aに投影され、拡散制御体1016によって、再帰性反射スクリーン1011の投影面1011aの縦方向(上下方向)に拡散された映像δを見ることができる。
Observer 1022, the projector 1013 is projected to the diffusion region 1011A, it is possible to see the longitudinal image gamma 1 diffused in the (vertical direction) of the projection plane 1011a of the retro-reflective screen 1011 by diffusion controller 1016.
In addition, the observer 1023 views the image δ 1 projected from the projector 1014 onto the diffusion region 1011A and diffused by the diffusion control body 1016 in the vertical direction (vertical direction) of the projection surface 1011a of the retroreflective screen 1011. Can do.
 本実施形態の映像表示システム1010によれば、再帰性反射スクリーン1011の投影面1011aの任意の位置に対応して、拡散制御体1016における画像の拡散範囲を任意に設定することができる。したがって、再帰性反射スクリーン1011の投影面1011aの任意の位置において画像の拡散範囲を制御することができる。 According to the video display system 1010 of the present embodiment, the diffusion range of the image in the diffusion control body 1016 can be arbitrarily set corresponding to an arbitrary position of the projection surface 1011a of the retroreflective screen 1011. Therefore, the diffusion range of the image can be controlled at an arbitrary position on the projection surface 1011a of the retroreflective screen 1011.
 なお、本実施形態では、拡散制御体1016の縦方向の上側の拡散領域1011Aと下側の非拡散領域1011Bの拡散性を相違させた場合を例示したが、本発明はこれに限定されない。本発明にあっては、再帰性反射スクリーンの投影面の任意の位置に対応して、拡散制御体における画像の拡散範囲を任意に設定することができる。 In the present embodiment, the case where the diffusibility of the upper diffusion region 1011A and the lower non-diffusion region 1011B in the vertical direction of the diffusion control body 1016 is illustrated, but the present invention is not limited to this. In the present invention, the diffusion range of the image in the diffusion control body can be arbitrarily set corresponding to an arbitrary position on the projection surface of the retroreflective screen.
(2)第2実施形態
 本実施形態では、再帰性反射スクリーン1011の投影面1011aに積層された拡散制御体1016(液体レンズ1050、液晶レンズ1060、1070、1080、1090、高分子分散型液晶素子1100、1120)に屈折率の異なる領域を形成することによって、拡散制御体1016において、その四隅の1つ側に偏在するように形成された長方形状の領域とその他の領域の拡散性を相違させる。
 例えば、図12に示すように、拡散制御体1016の屈折率を部分的に変化させて、再帰性反射スクリーン1011の投影面1011aの右上方の四隅側に対応する位置に、光を拡散させない非拡散領域1011Dを形成する。これにより、拡散制御体1016には、光を拡散させる拡散領域1011Cと、非拡散領域1011Dとが形成される。
(2) Second Embodiment In this embodiment, a diffusion control body 1016 (liquid lens 1050, liquid crystal lenses 1060, 1070, 1080, 1090, polymer dispersion type liquid crystal element laminated on the projection surface 1011a of the retroreflective screen 1011 is used. 1100, 1120) by forming regions having different refractive indexes, the diffusion control body 1016 makes the diffusivity of the rectangular region formed so as to be unevenly distributed on one side of the four corners different from that of the other regions. .
For example, as shown in FIG. 12, the refractive index of the diffusion control body 1016 is partially changed so that light is not diffused at positions corresponding to the upper right corners of the projection surface 1011a of the retroreflective screen 1011. A diffusion region 1011D is formed. Thereby, in the diffusion control body 1016, a diffusion region 1011C for diffusing light and a non-diffusion region 1011D are formed.
 ここで、例えば、プロジェクタ1012から、拡散領域1011Cに主たる映像αを投影するとともに、非拡散領域1011Dに立体(3D)用の映像βを投影する。すると、観察者1021は、拡散領域1011Cに投影され、拡散制御体1016によって、再帰性反射スクリーン1011の投影面1011aの縦方向(上下方向)に拡散された映像αと、非拡散領域1011Dに投影された映像βとを見ることができる。プロジェクタ1012として、観察者1021の右目用のものと左目用のものを用いれば、観察者1021のみが立体化した映像βを見ることができる。非拡散領域1011Dに投影された映像βは、再帰性反射スクリーン1011の投影面1011aの縦方向(上下方向)に拡散されないため、プロジェクタ1012の位置に集光する。したがって、非拡散領域1011Dに投影された映像βは、再帰性反射スクリーン1011の正面に居る観察者1021のみが見ることができる。すなわち、再帰性反射スクリーン1011に対して斜めの位置に居る観察者1022、1023は、非拡散領域1011Bに投影された映像βを見ることができない。 Here, for example, from the projector 1012, with projecting the primary image alpha 2 diffusion region 1011C, projecting an image beta 2 for three-dimensional (3D) in the non-diffusion region 1011d. Then, the observer 1021 is projected to the diffusion region 1011C, the diffusion controller 1016, a video alpha 2 diffused in the longitudinal direction of the projection plane 1011a of the retro-reflective screen 1011 (vertical direction), the non-diffusion region 1011D The projected image β 2 can be seen. As a projector 1012, by using one for the right eye of the observer 1021 and the one for the left eye can only observer 1021 sees the image beta 2 which is three-dimensional. Since the image β 2 projected on the non-diffusing region 1011D is not diffused in the vertical direction (vertical direction) of the projection surface 1011a of the retroreflective screen 1011, it is condensed at the position of the projector 1012. Therefore, the image beta 2 projected on the non-diffusion region 1011D can only observer 1021 who is in front of the retro-reflective screen 1011 is seen. That is, the observer 1022 who is oblique position with respect to the retroreflective screen 1011 can not see the video beta 2 projected on the non-diffusion region 1011 B.
 観察者1022は、プロジェクタ1013から、拡散領域1011Cに投影され、拡散制御体1016によって、再帰性反射スクリーン1011の投影面1011aの縦方向(上下方向)に拡散された映像γを見ることができる。
 また、観察者1023は、プロジェクタ1014から、拡散領域1011Cに投影され、拡散制御体1016によって、再帰性反射スクリーン1011の投影面1011aの縦方向(上下方向)に拡散された映像δを見ることができる。
Observer 1022, the projector 1013 is projected to the diffusion region 1011C, the diffusion controller 1016 can be seen in the vertical direction (vertical direction) is diffused to the video gamma 2 in projection surface 1011a of the retro-reflective screen 1011 .
In addition, the observer 1023 views the image δ 2 projected from the projector 1014 onto the diffusion region 1011C and diffused by the diffusion control body 1016 in the vertical direction (vertical direction) of the projection surface 1011a of the retroreflective screen 1011. Can do.
 本実施形態の映像表示システム1010によれば、再帰性反射スクリーン1011の投影面1011aの任意の位置に対応して、拡散制御体1016における画像の拡散範囲を任意に設定することができる。したがって、再帰性反射スクリー1011の投影面1011aの任意の位置において画像の拡散範囲を制御することができる。 According to the video display system 1010 of the present embodiment, the diffusion range of the image in the diffusion control body 1016 can be arbitrarily set corresponding to an arbitrary position of the projection surface 1011a of the retroreflective screen 1011. Therefore, the diffusion range of the image can be controlled at an arbitrary position on the projection plane 1011a of the retroreflective screen 1011.
(3)第3実施形態
 図13A及び図13Bは、第3実施形態の投射型表示装置を示す概略構成図であり、図13Aは平面図、図13Bは側面図である。図14は、第3実施形態の投射型表示装置のプロジェクタおよび補正機構の一例を示す概略構成図である。
 本実施形態の投射型表示装置2010は、再帰性スクリーン2011と、再帰性スクリーン2011と所定の距離を置いて対向するように配置されたプロジェクタ2012と、補正機構(図示略)とから概略構成されている。
 なお、図13A及び図13Bにおいて符号2012で示すものは、プロジェクタ2012の一部を構成する投射部2026である。
(3) Third Embodiment FIGS. 13A and 13B are schematic configuration diagrams showing a projection display apparatus according to a third embodiment. FIG. 13A is a plan view and FIG. 13B is a side view. FIG. 14 is a schematic configuration diagram illustrating an example of a projector and a correction mechanism of the projection display device according to the third embodiment.
The projection type display apparatus 2010 according to the present embodiment is generally configured by a recursive screen 2011, a projector 2012 arranged to face the recursive screen 2011 at a predetermined distance, and a correction mechanism (not shown). ing.
In FIG. 13A and FIG. 13B, what is indicated by reference numeral 2012 is a projection unit 2026 that constitutes a part of the projector 2012.
 再帰性スクリーン2011は、樹脂などからなる基板2013の一方の面2013aに、透明のビーズ(球状体)が埋め込まれた構造をなしている。透明のビーズが埋め込まれた基板2013の一方の面2013aは、再帰性スクリーン2011の投射面2011aである。 The recursive screen 2011 has a structure in which transparent beads (spherical bodies) are embedded in one surface 2013a of a substrate 2013 made of resin or the like. One surface 2013a of the substrate 2013 embedded with transparent beads is a projection surface 2011a of the recursive screen 2011.
 プロジェクタ2012は、再帰性スクリーン2011に投射する映像の信号を処理するための投射映像処理部2021と、投射映像処理部2021からの信号を光に変換して、その光を再帰性スクリーン2011に投射する投射光学部2022とから概略構成されている。
 投射映像処理部2021は、プロジェクタ2012から再帰性スクリーン2011に投射される映像(光)の輝度分布を補正するための補正データが記録された補正データ記憶部2023と、再帰性スクリーン2011に投射される映像の信号を処理して、映像(光)の輝度分布を補正する補正回路2024とを少なくとも有する映像処理回路2025を備えている。
 投射光学部2022は、再帰性スクリーン2011に映像を投射する投射部2026を備えている。
 投射部2026は、その射出面2026aが再帰性スクリーン2011の投射面2011aに対向するように配置されている。そして、投射部2026の射出面2026aから、再帰性スクリーン2011に対して映像が投射される。
The projector 2012 is a projection video processing unit 2021 for processing a video signal projected on the recursive screen 2011, and converts the signal from the projection video processing unit 2021 into light, and projects the light on the recursive screen 2011. And a projection optical unit 2022 that performs the same operation.
The projection video processing unit 2021 is projected on the correction data storage unit 2023 in which correction data for correcting the luminance distribution of the video (light) projected from the projector 2012 onto the recursive screen 2011 is recorded, and the recursive screen 2011. A video processing circuit 2025 having at least a correction circuit 2024 for processing a video signal to correct the luminance distribution of the video (light).
The projection optical unit 2022 includes a projection unit 2026 that projects an image on the recursive screen 2011.
The projection unit 2026 is arranged such that the emission surface 2026a faces the projection surface 2011a of the recursive screen 2011. Then, an image is projected from the exit surface 2026 a of the projection unit 2026 onto the recursive screen 2011.
 本実施形態では、投射映像処理部2021が補正機構として機能する。
 補正機構は、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置よりも近い場合、または、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置よりも遠い場合の両方において、同様の輝度分布が生じ、この輝度分布を軽減するべく、プロジェクタ2012から再帰性スクリーン2011に投射される映像(光)の輝度分布を補正する。
In the present embodiment, the projection video processing unit 2021 functions as a correction mechanism.
When the position of the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is closer than the optimum position, or the correction mechanism, the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is corrected. In both cases where the position is farther than the optimum position, a similar luminance distribution occurs, and the luminance distribution of the image (light) projected from the projector 2012 onto the recursive screen 2011 is corrected in order to reduce this luminance distribution.
 投射型表示装置2010による映像の補正方法を説明する。
 まず、プロジェクタ2012の投射部2026を、再帰性スクリーン2011に投射される映像の視聴者の眼2031と離隔して配置する。この時、図13Bに示すように、視聴者の眼2031と投射部2026を結ぶ直線2041を、再帰性スクリーン2011側に延長した直線(延長線)2042が、再帰性スクリーン2011の投射面2011aと交差する点を、補正の中心点P2として設定する。
A video correction method using the projection display apparatus 2010 will be described.
First, the projection unit 2026 of the projector 2012 is arranged separately from the viewer's eyes 2031 of the video projected on the recursive screen 2011. At this time, as shown in FIG. 13B, a straight line (extended line) 2042 obtained by extending a straight line 2041 connecting the viewer's eyes 2031 and the projection unit 2026 to the recursive screen 2011 side is a projection surface 2011a of the recursive screen 2011. The intersecting point is set as the correction center point P2.
 次いで、投射映像処理部2021により、投射部2026から再帰性スクリーン2011の投射面2011aに投射される映像(光)の輝度分布を、中心点P2が中央部をなす同心円状であり、その中央部が最も暗く、周縁部に向かって次第に明るくなるように補正する。 Next, the luminance distribution of the image (light) projected from the projection unit 2026 onto the projection surface 2011a of the recursive screen 2011 by the projection image processing unit 2021 is concentric with the central point P2 forming the central part, and the central part Is so dark that it gradually becomes brighter toward the peripheral edge.
 投射映像処理部2021では、補正回路2024において、入力された映像情報(映像に関する信号)2051を、補正データ記憶部2023に記録されている、映像の補正に必要なデータに基づいて処理し、映像(光)の輝度分布を補正する。さらに、補正データ記憶部2023には、補正関数の定義も記録されている。投射映像処理部2021では、その補正関数に基づいて、演算により映像情報を補正する。
 これにより、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置にある場合における両者の距離(投射面2011aと射出面2026aとの距離)に対して、再帰性スクリーン2011の投射面2011aと視聴者の眼2031の距離が小さい場合または大きい場合に、再帰性スクリーン2011に投射される映像に生じる輝度むらが打ち消されるように、映像情報2051が補正される。
In the projection video processing unit 2021, the correction circuit 2024 processes the input video information (video-related signal) 2051 based on the data necessary for video correction recorded in the correction data storage unit 2023, and the video. The brightness distribution of (light) is corrected. Furthermore, the definition of the correction function is also recorded in the correction data storage unit 2023. The projection video processing unit 2021 corrects video information by calculation based on the correction function.
Thereby, recursiveness is achieved with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the distance between the projection surface 2011a and the ejection surface 2026a when the position of the exit surface 2026a of the projection unit 2026 is in the optimum position. When the distance between the projection surface 2011a of the screen 2011 and the viewer's eyes 2031 is small or large, the video information 2051 is corrected so that the luminance unevenness generated in the video projected on the recursive screen 2011 is canceled out.
 再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置にある場合、図15Aに示すように、補正回路2024に入力される映像情報2051を補正せずに、プロジェクタ2012から再帰性スクリーン2011に投射して得られる映像2061は、輝度むらがなく、輝度が均一である。しかし、このままでは、再帰性スクリーン2011の投射面2011aと投射部2026の射出面2026aとの距離に対して、再帰性スクリーン2011と視聴者の眼2031との距離が小さい場合または大きい場合には、再帰性スクリーン2011に投射される映像2061は輝度むらを生じる。 When the position of the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is in an optimum position, as shown in FIG. 15A, the video information 2051 input to the correction circuit 2024 is not corrected, and the projector An image 2061 obtained by projecting from 2012 to the recursive screen 2011 has no luminance unevenness and uniform luminance. However, in this state, when the distance between the recursive screen 2011 and the viewer's eyes 2031 is small or large with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the exit surface 2026a of the projection unit 2026, The image 2061 projected on the recursive screen 2011 causes uneven brightness.
 そこで、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置にある場合に、映像情報2051によって得られる映像2062の輝度分布を、図15Bに示すように、中心点P2が中央部をなす同心円状であり、その中央部が最も暗く、周縁部に向かって次第に明るくなるように補正する。
 補正回路2024で補正された信号は、駆動信号2052として、投射光学部2022に出力され、投射光学部2022にて光に変換されて、その光が、投射部2026の射出面2026aから再帰性スクリーン2011の投射面2011aに投射される。
 すると、図15Cに示すように、投射部2026から再帰性スクリーン2011に対して投射された映像2063は、再帰性スクリーン2011の投射面2011aと視聴者の眼2031との距離が最適な場合には、輝度分布を補正する前の映像2061と比較すると、輝度むらが若干悪化する。
Therefore, when the position of the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is in an optimal position, the luminance distribution of the image 2062 obtained from the image information 2051 is centered as shown in FIG. 15B. The point P2 is a concentric circle forming a central part, and the central part is corrected to be darkest and gradually become brighter toward the peripheral part.
The signal corrected by the correction circuit 2024 is output as a drive signal 2052 to the projection optical unit 2022, converted into light by the projection optical unit 2022, and the light is returned from the exit surface 2026a of the projection unit 2026 to the recursive screen. 2011 is projected onto the projection surface 2011a.
Then, as shown in FIG. 15C, the image 2063 projected from the projection unit 2026 onto the recursive screen 2011 is when the distance between the projection surface 2011a of the recursive screen 2011 and the eyes 2031 of the viewer is optimal. As compared with the image 2061 before correcting the luminance distribution, the luminance unevenness is slightly deteriorated.
 一方、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置にある場合における両者の距離(投射面2011aと射出面2026aとの距離)に対して、再帰性スクリーン2011の投射面2011aと視聴者の眼2031の距離が小さい場合または大きい場合には、映像2063は、輝度むらが軽減された映像として見ることができる。
 すなわち、上述のように再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置にある場合、映像情報2051によって得られる映像2062の輝度分布を補正することより、視聴者の眼2031の位置が、前記の最適な位置を基準として前後にずれても、再帰性スクリーン2011に投射される映像2063は、輝度むらが少なくなり、視野範囲が広くなる。
On the other hand, with respect to the distance between the projection surface 2011a and the exit surface 2026a when the position of the exit surface 2026a of the projection unit 2026 is in the optimum position with respect to the projection surface 2011a of the recurrence screen 2011, the recursive screen. When the distance between the 2011 projection surface 2011a and the viewer's eyes 2031 is small or large, the video 2063 can be viewed as a video with reduced luminance unevenness.
In other words, as described above, when the position of the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is in an optimal position, viewing and listening can be performed by correcting the luminance distribution of the image 2062 obtained from the image information 2051. Even if the position of the person's eye 2031 is shifted back and forth with respect to the optimum position, the image 2063 projected on the recursive screen 2011 has less luminance unevenness and a wider visual field range.
 なお、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置とは、再帰性スクリーン2011の投射面2011aと視聴者の眼2031の距離と、再帰性スクリーン2011の投射面2011aと投射部2026の射出面2026aの距離とが等しくなる位置であり、映像情報2051を補正することなく再帰性スクリーン2011に投射しても、映像(光)の輝度むらがなく、輝度が均一となる位置のことである。 The optimal position of the projection surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is the distance between the projection surface 2011a of the recursive screen 2011 and the viewer's eyes 2031 and the recursive screen 2011. The distance between the projection surface 2011a and the exit surface 2026a of the projection unit 2026 is equal, and even if the image information 2051 is projected on the recursive screen 2011 without correction, the luminance of the image (light) does not vary. It is a position where becomes uniform.
 また、補正機構としては、図16に示すように、投射部2026と再帰性スクリーン2011との間に設けられた補正フィルタ2071を用いてもよい。
 補正フィルタ2071は、投射部2026の射出面2026aから再帰性スクリーン2011の投射面2011aに投射される光の透過率を補正するためのものである。投射部2026の射出面2026aから出射された光が補正フィルタ2071を透過すると、その光の輝度分布は、再帰性スクリーン2011の投射面2011aにおいて、中心点P2が中央部をなす同心円状であり、その中央部が最も暗く、周縁部に向かって次第に明るくなるように補正される。
 なお、補正フィルタ2071を用いる場合、補正回路2024に入力された映像情報2051は、投射映像処理部2021にて補正されることなく、駆動信号2052に変換され、投射光学部2022に出力される。
As a correction mechanism, a correction filter 2071 provided between the projection unit 2026 and the recursive screen 2011 may be used as shown in FIG.
The correction filter 2071 is for correcting the transmittance of light projected from the emission surface 2026a of the projection unit 2026 onto the projection surface 2011a of the recursive screen 2011. When the light emitted from the emission surface 2026a of the projection unit 2026 passes through the correction filter 2071, the luminance distribution of the light is concentric with the center point P2 forming a central portion on the projection surface 2011a of the recursive screen 2011. The correction is performed so that the central part is darkest and gradually becomes brighter toward the peripheral part.
Note that when the correction filter 2071 is used, the video information 2051 input to the correction circuit 2024 is converted into the drive signal 2052 without being corrected by the projection video processing unit 2021, and is output to the projection optical unit 2022.
 本実施形態の投射型表示装置2010によれば、再帰性スクリーン2011の投射面2011aと視聴者の眼2031との距離に対して、視聴者の眼2031の前後にプロジェクタ2012を配置することが可能となる。したがって、プロジェクタ2012と視聴者の眼2031との位置関係の自由度が極めて高くなり、利用価値が向上する。
 そもそも、再帰性スクリーン2011の投射面2011aと視聴者の眼2031の距離と、再帰性スクリーン2011の投射面2011aと投射部2026の射出面2026aの距離とが等しくなるように、プロジェクタ2012を配置することは物理的に不可能である。そこで、従来、ハーフミラーなどを用いて、光学的に共役な位置にプロジェクタを配置することが提案されている。ところが、ハーフミラーを用いると、映像の輝度が1/2以下になるという問題があった。
 本実施形態の投射型表示装置2010によれば、映像の輝度が大幅に低下することなく、プロジェクタ2012と視聴者の眼2031との位置関係の自由度を高くすることができる。
According to the projection display apparatus 2010 of the present embodiment, the projector 2012 can be disposed in front of and behind the viewer's eyes 2031 with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the viewer's eyes 2031. It becomes. Therefore, the degree of freedom of the positional relationship between the projector 2012 and the viewer's eyes 2031 becomes extremely high, and the utility value is improved.
In the first place, the projector 2012 is arranged such that the distance between the projection surface 2011a of the recursive screen 2011 and the viewer's eye 2031 is equal to the distance between the projection surface 2011a of the recursive screen 2011 and the exit surface 2026a of the projection unit 2026. It is physically impossible. Thus, conventionally, it has been proposed to arrange a projector at an optically conjugate position using a half mirror or the like. However, when the half mirror is used, there is a problem that the luminance of the video is ½ or less.
According to the projection display apparatus 2010 of the present embodiment, the degree of freedom of the positional relationship between the projector 2012 and the viewer's eyes 2031 can be increased without significantly reducing the brightness of the video.
(4)第4実施形態
 図17は、第4実施形態の投射型表示装置を示す概略構成図である。
 なお、図17において、図13A及び図13Bに示したものと同一構成部分には同一符号を附してその説明を省略する。
 本実施形態の投射型表示装置2080は、再帰性スクリーン2011と、再帰性スクリーン2011と所定の距離を置いて対向するように配置されたプロジェクタ2012と、補正機構(図示略)とから概略構成されている。
 なお、図17において符号2012で示すものは、プロジェクタ2012の一部を構成する投射部2026である。
(4) Fourth Embodiment FIG. 17 is a schematic configuration diagram showing a projection display device according to a fourth embodiment.
In FIG. 17, the same components as those shown in FIGS. 13A and 13B are denoted by the same reference numerals, and description thereof is omitted.
The projection type display device 2080 according to the present embodiment is generally configured by a recursive screen 2011, a projector 2012 arranged to face the recursive screen 2011 at a predetermined distance, and a correction mechanism (not shown). ing.
Note that what is indicated by reference numeral 2012 in FIG. 17 is a projection unit 2026 that constitutes a part of the projector 2012.
 投射型表示装置2080による映像の補正方法を説明する。
 まず、プロジェクタ2012の投射部2026を、視聴者の眼2031と離隔して配置する。この時、視聴者の眼2031と投射部2026を結ぶ直線を、再帰性スクリーン2011側に延長した直線(延長線)が、再帰性スクリーン2011の投射面2011aと交差する点を、補正の中心点P2として設定する。
A video correction method using the projection display device 2080 will be described.
First, the projection unit 2026 of the projector 2012 is arranged separately from the viewer's eyes 2031. At this time, the point where the straight line (extension line) obtained by extending the straight line connecting the viewer's eyes 2031 and the projection unit 2026 to the recursive screen 2011 intersects the projection surface 2011a of the recursive screen 2011 is the correction center point. Set as P2.
 この補正の中心点P2の設定において、上述の第3実施形態のように、視聴者の眼2031の位置が、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置に対して前後にずれた場合だけでなく、再帰性スクリーン2011と、最適な位置に配置された投射部2026とを結ぶ直線に対して、上下方向や左右方向にずれた場合にも、補正の中心点P2をずれた位置に合わせて設定する。 In the setting of the correction center point P2, the position of the viewer's eye 2031 is the optimal position of the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 as in the third embodiment described above. Not only when the position is shifted back and forth with respect to the position, but also when the position is shifted vertically or horizontally with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 disposed at the optimum position. The center point P2 is set according to the shifted position.
 例えば、図17に示すように、視聴者の眼2031Aの位置が、再帰性スクリーン2011と、最適な位置に配置された投射部2026とを結ぶ直線上において、その投射部2026よりも後にある場合、図18Bに示すように、再帰性スクリーン2011の投射面2011aの中央部に、補正の中心点P2を設定する。
 これに対して、図17に示すように、視聴者の眼2031Bの位置が、再帰性スクリーン2011と、最適な位置に配置された投射部2026とを結ぶ直線に対して左側(紙面の左側)にずれた場合、図18Aに示すように、視聴者の眼2031Bと投射部2026を結ぶ直線を、再帰性スクリーン2011側に延長した直線(延長線)が、再帰性スクリーン2011の投射面2011aと交差する点を、補正の中心点P2として設定する。すなわち、再帰性スクリーン2011の投射面2011aの右側(紙面の右側)に、補正の中心点P2を設定する。
 また、図17に示すように、視聴者の眼2031Cの位置が、再帰性スクリーン2011と、最適な位置に配置された投射部2026とを結ぶ直線に対して右側(紙面の右側)にずれた場合、図18Cに示すように、視聴者の眼2031Cと投射部2026を結ぶ直線を、再帰性スクリーン2011側に延長した直線(延長線)が、再帰性スクリーン2011の投射面2011aと交差する点を、補正の中心点P2として設定する。すなわち、再帰性スクリーン2011の投射面2011aの左側(紙面の左側)に、補正の中心点P2を設定する。
For example, as shown in FIG. 17, the position of the viewer's eye 2031A 1 is behind the projection unit 2026 on a straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position. In this case, as shown in FIG. 18B, a correction center point P2 is set at the center of the projection surface 2011a of the recursive screen 2011.
On the other hand, as shown in FIG. 17, the position of the viewer's eye 2031B 1 is on the left side (the left side of the page) with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position. when shifted in), as shown in FIG. 18A, a straight line connecting the projection portion 2026 eye 2031B 1 of the viewer, straight lines extending in retro-screen 2011 side (extension) is the projection surface of the retro-screen 2011 A point that intersects 2011a is set as a correction center point P2. That is, the correction center point P2 is set on the right side (right side of the drawing) of the projection surface 2011a of the recursive screen 2011.
Also, as shown in FIG. 17, the position of the viewer's eye 2031C 1 is shifted to the right side (the right side of the page) with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position. and if, as shown in FIG. 18C, intersecting the eye 2031 c 1 of the viewer straight line connecting the projection portion 2026, a straight line obtained by extending the recursive screen 2011 side (extension) is a projection surface 2011a of the retro-screen 2011 The point to be corrected is set as the correction center point P2. That is, the correction center point P2 is set on the left side (left side of the paper surface) of the projection surface 2011a of the recursive screen 2011.
 このように、再帰性スクリーン2011の投射面2011aに設定する補正の中心点P2の位置を、視聴者の眼2031の位置が、再帰性スクリーン2011と、最適な位置に配置された投射部2026とを結ぶ直線に対してずれた方向とは反対側の方向とする。 In this way, the position of the correction center point P2 set on the projection surface 2011a of the recursive screen 2011 is the position of the viewer's eye 2031 is the recursive screen 2011, and the projection unit 2026 arranged at the optimum position. The direction opposite to the direction shifted from the straight line connecting
 投射部2026から再帰性スクリーン2011の投射面2011aに投射される映像(光)の輝度分布は、上述の第3実施形態と同様に補正される。 The luminance distribution of the image (light) projected on the projection surface 2011a of the recursive screen 2011 from the projection unit 2026 is corrected in the same manner as in the third embodiment described above.
 本実施形態の投射型表示装置2080によれば、再帰性スクリーン2011と投射部2026とを結ぶ直線に対する視聴者の眼2031の位置に応じて、補正の中心点P2の位置を設定することにより、再帰性スクリーン2011の投射面2011aに対して最適な位置に配置された投射部2026の射出面2026aよりも前後の位置、並びに、再帰性スクリーン2011と投射部2026とを結ぶ直線に対して上下方向または左右方向にずれた位置においても、輝度むらが少ない映像を観察することができる。 According to the projection display device 2080 of this embodiment, by setting the position of the correction center point P2 according to the position of the viewer's eye 2031 with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026, Up and down direction with respect to a position before and after the emission surface 2026a of the projection unit 2026 arranged at an optimal position with respect to the projection surface 2011a of the recursive screen 2011, and a straight line connecting the recursive screen 2011 and the projection unit 2026 Alternatively, an image with little luminance unevenness can be observed even at a position shifted in the left-right direction.
(5)第5実施形態
 図19は、第5実施形態の投射型表示装置を示す概略構成図である。
 なお、図19において、図13A及び図13Bに示したものと同一構成部分には同一符号を附してその説明を省略する。
 本実施形態の投射型表示装置2090は、再帰性スクリーン2011と、再帰性スクリーン2011と所定の距離を置いて対向するように配置されたプロジェクタ2012と、補正機構(図示略)とから概略構成されている。
 なお、図19において符号2012で示すものは、プロジェクタ2012の一部を構成する投射部2026である。
(5) Fifth Embodiment FIG. 19 is a schematic configuration diagram showing a projection display device of a fifth embodiment.
In FIG. 19, the same components as those shown in FIGS. 13A and 13B are denoted by the same reference numerals, and description thereof is omitted.
The projection type display device 2090 according to the present embodiment is roughly configured by a recursive screen 2011, a projector 2012 arranged to face the recursive screen 2011 at a predetermined distance, and a correction mechanism (not shown). ing.
In FIG. 19, what is indicated by reference numeral 2012 is a projection unit 2026 that constitutes a part of the projector 2012.
 投射型表示装置2090による映像の補正方法を説明する。
 本実施形態では、視聴者の目2031が、再帰性スクリーン2011の投射面2011aに対して最適な位置に配置された投射部2026の射出面2026aと同じ位置、および、再帰性スクリーン2011の投射面2011aに対して最適な位置に配置された投射部2026の射出面2026aよりも前後の位置にあっても、輝度むらが少ない映像を観察することができるようにすることを目的とする。
A video correction method using the projection display device 2090 will be described.
In the present embodiment, the viewer's eyes 2031 have the same position as the emission surface 2026a of the projection unit 2026 disposed at an optimal position with respect to the projection surface 2011a of the recursive screen 2011, and the projection surface of the recursive screen 2011. An object of the present invention is to enable observation of an image with less luminance unevenness even at positions before and after the emission surface 2026a of the projection unit 2026 arranged at an optimal position with respect to 2011a.
 図19に示すように、視聴者の眼2031Aの位置が、再帰性スクリーン2011の投射面2011aに対して最適な位置に配置された投射部2026の射出面2026aと同じ位置にある場合、図20Bに示すように、映像2101の輝度分布を、中心点P2が中央部をなす同心円状であり、その中央部が最も暗く、周縁部に向かって次第に明るくなるように補正する。 As shown in FIG. 19, when the position of the viewer's eye 2031A 2 is at the same position as the emission surface 2026a of the projection unit 2026 arranged at an optimal position with respect to the projection surface 2011a of the recursive screen 2011, As shown in 20B, the luminance distribution of the video 2101 is corrected so that the central point P2 is a concentric circle having a central portion, the central portion being the darkest and gradually becoming brighter toward the peripheral portion.
 また、図19に示すように、視聴者の眼2031Bの位置が、再帰性スクリーン2011の投射面2011aに対して最適な位置に配置された投射部2026の射出面2026aよりも前にある場合、図20Aに示すように、映像2102の輝度分布を、中心点P2が中央部をなす同心円状であり、その中央部が最も暗く、周縁部に向かって次第に明るくなるように補正する。なお、映像2102は、全体的に映像2101の輝度よりも劣るものの、輝度むらが少なくなる。 In addition, as shown in FIG. 19, when the position of the viewer's eye 2031B 2 is in front of the emission surface 2026a of the projection unit 2026 arranged at an optimal position with respect to the projection surface 2011a of the recursive screen 2011. As shown in FIG. 20A, the luminance distribution of the image 2102 is corrected so that the central point P2 is a concentric circle having a central portion, the central portion being the darkest and gradually becoming brighter toward the peripheral portion. Note that although the video 2102 is generally inferior to the luminance of the video 2101, the luminance unevenness is reduced.
 また、図19に示すように、視聴者の眼2031Cの位置が、再帰性スクリーン2011の投射面2011aに対して最適な位置に配置された投射部2026の射出面2026aよりも後にある場合、図20Cに示すように、映像2103の輝度分布を、中心点P2が中央部をなす同心円状であり、その中央部が最も暗く、周縁部に向かって次第に明るくなるように補正する。なお、映像2103は、全体的に映像2101の輝度よりも劣るものの、輝度むらが少なくなる。 In addition, as shown in FIG. 19, when the position of the viewer's eye 2031C 2 is behind the emission surface 2026a of the projection unit 2026 arranged at an optimal position with respect to the projection surface 2011a of the recursive screen 2011, As shown in FIG. 20C, the luminance distribution of the video 2103 is corrected so that the central point P2 is a concentric circle having a central portion, the central portion is darkest, and gradually becomes brighter toward the peripheral portion. Note that although the video 2103 is generally inferior to the luminance of the video 2101, the luminance unevenness is reduced.
 投射部2026から再帰性スクリーン2011の投射面2011aに投射される映像(光)の輝度分布の補正は、上述の第3実施形態と同様に行われる。 The correction of the luminance distribution of the image (light) projected from the projection unit 2026 onto the projection surface 2011a of the recursive screen 2011 is performed in the same manner as in the third embodiment described above.
 これにより、投射部2026の射出面2026aから再帰性スクリーン2011に対して投射された映像2101は輝度むらが若干悪化するが、映像2102および映像2103は輝度むらが軽減される。その結果、再帰性スクリーン2011に投射される映像は、輝度むらが少なく、視野範囲が広くなる。 Thereby, the luminance unevenness of the image 2101 projected from the exit surface 2026a of the projection unit 2026 onto the recursive screen 2011 is slightly deteriorated, but the luminance unevenness of the image 2102 and the image 2103 is reduced. As a result, the image projected on the recursive screen 2011 has little luminance unevenness and a wide visual field range.
 本実施形態の投射型表示装置2090によれば、再帰性スクリーン2011と視聴者の眼2031の距離が最適な位置よりも前後にずれた場合にも、輝度むらが少ない映像を観察することができる。 According to the projection display apparatus 2090 of this embodiment, even when the distance between the recursive screen 2011 and the viewer's eyes 2031 is shifted back and forth from the optimal position, it is possible to observe an image with little luminance unevenness. .
 また、視聴者の目2031が、再帰性スクリーン2011と投射部2026とを結ぶ直線に対して上下方向または左右方向にずれた場合、上述の第4実施形態と同様にして補正の中心点P2をずれた位置に合わせて設定する。このようにすれば、再帰性スクリーン2011の投射面2011aと最適な位置に配置された投射部2026の射出面2026aとを結ぶ直線に対する視聴者の眼2031の位置(ずれ量)に応じて、補正の中心点P2の位置を設定することにより、再帰性スクリーン2011の投射面2011aと最適な位置に配置された投射部2026の射出面2026aとを結ぶ直線に対して上下方向または左右方向にずれた位置においても、輝度むらが少ない映像を観察することができる。 When the viewer's eyes 2031 are displaced in the vertical direction or the horizontal direction with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026, the correction center point P2 is set in the same manner as in the fourth embodiment. Set according to the shifted position. In this way, correction is performed according to the position (deviation amount) of the viewer's eye 2031 with respect to a straight line connecting the projection surface 2011a of the recursive screen 2011 and the exit surface 2026a of the projection unit 2026 arranged at an optimal position. By setting the position of the center point P2, the vertical plane or the horizontal direction is shifted with respect to the straight line connecting the projection surface 2011a of the recursive screen 2011 and the emission surface 2026a of the projection unit 2026 arranged at the optimum position. Even at the position, an image with less luminance unevenness can be observed.
(6)第6実施形態
 図21は、第6実施形態の投射型表示装置およびその補正機構の一例を示す概略構成図である。
 なお、図21において、図13A及び図13Bおよび図14に示したものと同一構成部分には同一符号を附してその説明を省略する。
 本実施形態の投射型表示装置2110は、上述の第3実施形態、第4実施形態または第5実施形態の投射型表示装置に加えて、視聴者の眼2031の位置を検知する位置検知手段2111を備えている。
 本実施形態では、例えば、投射映像処理部2021が補正機構として機能する。
(6) Sixth Embodiment FIG. 21 is a schematic configuration diagram illustrating an example of a projection display device and a correction mechanism thereof according to a sixth embodiment.
In FIG. 21, the same components as those shown in FIG. 13A, FIG. 13B, and FIG.
The projection display device 2110 of this embodiment is a position detection unit 2111 that detects the position of the viewer's eye 2031 in addition to the projection display device of the third embodiment, the fourth embodiment, or the fifth embodiment described above. It has.
In the present embodiment, for example, the projection video processing unit 2021 functions as a correction mechanism.
 位置検知手段2111としては、例えば、赤外線検知装置、視聴者の眼2031の位置を撮影して画像処理により位置を検知する検知装置などが用いられる。 As the position detection means 2111, for example, an infrared detection device, a detection device that captures the position of the viewer's eye 2031 and detects the position by image processing is used.
 投射型表示装置2110による映像の補正方法を説明する。
 上述の第3実施形態、第4実施形態および第5実施形態と同様にして、視聴者の眼2031と投射部2026を結ぶ直線を、再帰性スクリーン2011側に延長した直線(延長線)が、再帰性スクリーン2011の投射面2011aと交差する点を、補正の中心点P2として設定する。
 また、位置検知手段2111により、視聴者の眼2031の位置が検知され、眼2031の位置に関するデータが補正回路2024に出力される。
A video correction method using the projection display device 2110 will be described.
Similarly to the third embodiment, the fourth embodiment, and the fifth embodiment described above, a straight line (extension line) obtained by extending a straight line connecting the viewer's eyes 2031 and the projection unit 2026 to the recursive screen 2011 side is as follows. A point that intersects the projection surface 2011a of the recursive screen 2011 is set as a correction center point P2.
Further, the position detection unit 2111 detects the position of the viewer's eye 2031, and outputs data relating to the position of the eye 2031 to the correction circuit 2024.
 次いで、投射映像処理部2021により、投射部2026から再帰性スクリーン2011の投射面2011aに投射される映像(光)の輝度分布を、中心点P2が中央部をなす同心円状であり、その中央部が最も暗く、周縁部に向かって次第に明るくなるように補正する。 Next, the luminance distribution of the image (light) projected from the projection unit 2026 onto the projection surface 2011a of the recursive screen 2011 by the projection image processing unit 2021 is concentric with the central point P2 forming the central part, and the central part Is so dark that it gradually becomes brighter toward the peripheral edge.
 投射映像処理部2021では、補正回路2024において、眼2031の位置に応じて、補正データ記憶部2023に記録されている複数のデータの中から、映像の補正に必要なデータを選択したり、補正データあるいは補正関数を切り替えたりするなどして、入力された映像情報2051を、映像の補正に必要なデータに基づいて処理し、映像(光)の輝度分布を補正する。
 これにより、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置にある場合における両者の距離に対して、再帰性スクリーン2011の投射面2011aと視聴者の眼2031の距離が小さい場合または大きい場合に、再帰性スクリーン2011に投射される映像に生じる輝度むらが打ち消されるように、映像情報2051が補正される。
In the projection video processing unit 2021, the correction circuit 2024 selects or corrects data necessary for video correction from among a plurality of data recorded in the correction data storage unit 2023 according to the position of the eye 2031. The input video information 2051 is processed based on data necessary for video correction by switching data or a correction function, and the luminance distribution of the video (light) is corrected.
As a result, the projection surface 2011a of the recursive screen 2011 and the viewer's eyes 2031 with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the distance between the projection surface 2026a of the projection unit 2026 and the projection screen 2011a are optimal positions. When the distance is small or large, the video information 2051 is corrected so that the luminance unevenness generated in the video projected on the recursive screen 2011 is canceled.
 また、補正機構としては、図22に示すように、投射部2026と再帰性スクリーン2011との間に設けられた補正フィルタ2071を用いてもよい。この場合、投射型表示装置2110は、補正フィルタ2071に加えて、視聴者の眼2031の位置を検知する位置検知手段2121と、補正フィルタ2071の位置を変動させる補正フィルタ位置変動機構2122とを備えている。 As the correction mechanism, a correction filter 2071 provided between the projection unit 2026 and the recursive screen 2011 may be used as shown in FIG. In this case, the projection display device 2110 includes, in addition to the correction filter 2071, a position detection unit 2121 that detects the position of the viewer's eye 2031 and a correction filter position variation mechanism 2122 that varies the position of the correction filter 2071. ing.
 ここでは、位置検知手段2121により、視聴者の眼2031の位置が検知され、眼2031の位置に関するデータが補正フィルタ位置変動機構2122に出力される。
 すると、補正フィルタ位置変動機構2122が、眼2031の位置に応じて、補正フィルタ2071の位置を、再帰性スクリーン2011と投射部2026を結ぶ直線に沿って変動させることにより、投射部2026の射出面2026aから再帰性スクリーン2011の投射面2011aに投射される光の透過率を補正する。これにより、補正フィルタ2071を透過した光の輝度分布を、再帰性スクリーン2011の投射面2011aにおいて、中心点P2が中央部をなす同心円状であり、その中央部が最も暗く、周縁部に向かって次第に明るくなるように補正する。
Here, the position of the viewer's eye 2031 is detected by the position detection unit 2121, and data relating to the position of the eye 2031 is output to the correction filter position variation mechanism 2122.
Then, the correction filter position changing mechanism 2122 changes the position of the correction filter 2071 along the straight line connecting the recursive screen 2011 and the projection unit 2026 according to the position of the eye 2031, thereby causing the emission surface of the projection unit 2026 to exit. The transmittance of light projected from 2026a onto the projection surface 2011a of the recursive screen 2011 is corrected. As a result, the luminance distribution of the light transmitted through the correction filter 2071 is concentric with the center point P2 forming a central portion on the projection surface 2011a of the recursive screen 2011, the central portion being the darkest, toward the peripheral portion. Correct so that it gradually becomes brighter.
 本実施形態の投射型表示装置2110によれば、補正機構により、視聴者の眼2031の位置に応じて、投射部2026から再帰性スクリーン2011に投射される映像(光)の輝度分布を最適に補正することにより、視聴者の眼2031の位置が、再帰性スクリーン2011の投射面2011aと最適な位置に配置された投射部2026の射出面2026aとを結ぶ直線に対して上下方向または左右方向にずれた位置でも、輝度むらが少ない映像を観察することができる。したがって、映像の輝度が大幅に低下することなく、プロジェクタ2012と視聴者の眼2031との位置関係の自由度をさらに高くすることができる。その結果、仮想空間を容易に実現することができる。 According to the projection type display device 2110 of this embodiment, the luminance distribution of the video (light) projected from the projection unit 2026 onto the recursive screen 2011 is optimized by the correction mechanism according to the position of the viewer's eyes 2031. By correcting, the position of the viewer's eye 2031 is vertically or horizontally with respect to a straight line connecting the projection surface 2011a of the recursive screen 2011 and the exit surface 2026a of the projection unit 2026 arranged at an optimal position. Even at a shifted position, an image with little luminance unevenness can be observed. Therefore, the degree of freedom of the positional relationship between the projector 2012 and the viewer's eyes 2031 can be further increased without significantly reducing the luminance of the video. As a result, a virtual space can be easily realized.
(7)第7実施形態
 図23は、第7実施形態の投射型表示装置の一部を示す概略構成図である。
なお、図23において、図13A及び図13Bに示したものと同一構成部分には同一符号を附してその説明を省略する。
 本実施形態の投射型表示装置2130は、上述の第3実施形態、第4実施形態または第5実施形態の投射型表示装置に加えて、視聴者2030の眼2031の位置を検知する位置検知手段2141を備えている。
 本実施形態では、例えば、投射映像処理部2021が補正機構として機能する。
(7) 7th Embodiment FIG. 23: is a schematic block diagram which shows a part of projection type display apparatus of 7th Embodiment.
In FIG. 23, the same components as those shown in FIGS. 13A and 13B are denoted by the same reference numerals, and description thereof is omitted.
The projection display device 2130 of this embodiment is a position detection unit that detects the position of the eye 2031 of the viewer 2030 in addition to the projection display devices of the third embodiment, the fourth embodiment, or the fifth embodiment described above. 2141 are provided.
In the present embodiment, for example, the projection video processing unit 2021 functions as a correction mechanism.
 位置検知手段2141は、天井2151に取り付けられている。
 位置検知手段2141としては、上述の第6実施形態と同様のものが用いられる。
The position detection unit 2141 is attached to the ceiling 2151.
As the position detection means 2141, the same one as in the above-described sixth embodiment is used.
 投射型表示装置2130による映像の補正方法を説明する。
 上述の第3実施形態、第4実施形態および第5実施形態と同様にして、視聴者2030の眼2031と投射部2026を結ぶ直線を、再帰性スクリーン2011側に延長した直線(延長線)が、再帰性スクリーン2011の投射面2011aと交差する点を、補正の中心点P2として設定する。
 また、位置検知手段2141により、視聴者2030の眼2031の位置が検知され、視聴者2030の眼2031の位置に関するデータが補正回路2024に出力される。
A video correction method using the projection display device 2130 will be described.
Similar to the third embodiment, the fourth embodiment, and the fifth embodiment described above, a straight line (extension line) obtained by extending a straight line connecting the eye 2031 of the viewer 2030 and the projection unit 2026 to the recursive screen 2011 side is provided. A point that intersects the projection surface 2011a of the recursive screen 2011 is set as a correction center point P2.
Further, the position detection unit 2141 detects the position of the eye 2031 of the viewer 2030 and outputs data related to the position of the eye 2031 of the viewer 2030 to the correction circuit 2024.
 次いで、投射映像処理部2021により、投射部2026から再帰性スクリーン2011の投射面2011aに投射される映像(光)の輝度分布を、中心点P2が中央部をなす同心円状であり、その中央部が最も暗く、周縁部に向かって次第に明るくなるように補正する。 Next, the luminance distribution of the image (light) projected from the projection unit 2026 onto the projection surface 2011a of the recursive screen 2011 by the projection image processing unit 2021 is concentric with the central point P2 forming the central part, and the central part Is so dark that it gradually becomes brighter toward the peripheral edge.
 投射映像処理部2021では、補正回路2024において、視聴者2030の眼2031の位置に応じて、補正データ記憶部2023に記録されている複数のデータの中から、映像の補正に必要なデータを選択したり、補正データあるいは補正関数を切り替えたりするなどして、入力された映像情報2051を、映像の補正に必要なデータに基づいて処理し、映像(光)の輝度分布を補正する。
 これにより、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置にある場合における両者の距離に対して、再帰性スクリーン2011の投射面2011aと視聴者2030の眼2031の距離が小さい場合または大きい場合に、再帰性スクリーン2011に投射される映像に生じる輝度むらが打ち消されるように、映像情報2051が補正される。
In the projection video processing unit 2021, the correction circuit 2024 selects data necessary for video correction from a plurality of data recorded in the correction data storage unit 2023 according to the position of the eye 2031 of the viewer 2030. The input video information 2051 is processed based on data necessary for video correction by correcting the correction data or correction function, and the luminance distribution of the video (light) is corrected.
As a result, the projection surface 2011a of the recursive screen 2011 and the eyes of the viewer 2030 with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the distance between the projection surface 2026a of the projection unit 2026 and the optimal position. When the distance 2031 is small or large, the video information 2051 is corrected so that the luminance unevenness generated in the video projected on the recursive screen 2011 is canceled out.
 本実施形態の投射型表示装置2130によれば、補正機構により、視聴者2030の眼2031の位置に応じて、投射部2026から再帰性スクリーン2011に投射される映像(光)の輝度分布を最適に補正することにより、視聴者2030の眼2031の位置が、再帰性スクリーン2011の投射面2011aと最適な位置に配置された投射部2026の射出面2026aとを結ぶ直線に対して上下方向または左右方向にずれた位置でも、輝度むらが少ない映像を観察することができる。したがって、視聴者2030が最適な位置に配置されたプロジェクタ2012の位置から動いても、輝度むらが少ない映像を観察することができる。 According to the projection display apparatus 2130 of this embodiment, the luminance distribution of the image (light) projected from the projection unit 2026 onto the recursive screen 2011 is optimized by the correction mechanism according to the position of the eye 2031 of the viewer 2030. As a result, the position of the eye 2031 of the viewer 2030 is vertically or horizontally with respect to a straight line connecting the projection surface 2011a of the recursive screen 2011 and the emission surface 2026a of the projection unit 2026 arranged at an optimal position. Even at a position shifted in the direction, an image with little luminance unevenness can be observed. Therefore, even when the viewer 2030 moves from the position of the projector 2012 arranged at the optimal position, an image with little luminance unevenness can be observed.
(8)第8実施形態
 図24は、第8実施形態の投射型表示装置の一部を示す概略構成図である。
 なお、図24において、図13A及び図13Bおよび図23に示したものと同一構成部分には同一符号を附してその説明を省略する。
 本実施形態の投射型表示装置2160は、上述の第3実施形態、第4実施形態または第5実施形態の投射型表示装置に加えて、プロジェクタ2012の投射部2026の位置および視聴者2030の眼2031の位置を検知する位置検知手段2172を有する椅子2170を備えている。
 本実施形態では、例えば、投射映像処理部2021が補正機構として機能する。
(8) Eighth Embodiment FIG. 24 is a schematic configuration diagram showing a part of a projection display apparatus according to an eighth embodiment.
24, the same components as those shown in FIG. 13A, FIG. 13B, and FIG.
The projection type display device 2160 of this embodiment includes the position of the projection unit 2026 of the projector 2012 and the eyes of the viewer 2030 in addition to the projection type display device of the third embodiment, the fourth embodiment, or the fifth embodiment described above. A chair 2170 having position detection means 2172 for detecting the position of 2031 is provided.
In the present embodiment, for example, the projection video processing unit 2021 functions as a correction mechanism.
 位置検知手段2172は、椅子2170の背もたれ2171において、視聴者2030の頭部2032が当接する位置に取り付けられている。
 位置検知手段2172としては、上述の第6実施形態と同様のものが用いられる。
 また、プロジェクタ2012の投射部2026は、椅子2170の背もたれ2171において、視聴者2030の頭部2032が当接する位置の近傍に取り付けられている。
The position detection means 2172 is attached to a position at which the head 2032 of the viewer 2030 abuts on the backrest 2171 of the chair 2170.
As the position detection means 2172, the same one as in the sixth embodiment described above is used.
In addition, the projection unit 2026 of the projector 2012 is attached to the backrest 2171 of the chair 2170 in the vicinity of the position where the head 2032 of the viewer 2030 abuts.
 投射型表示装置2160による映像の補正方法を説明する。
 視聴者2030が椅子2170に腰掛けて、背もたれ2171に寄り掛かると、視聴者2030の眼2031と投射部2026を結ぶ直線を、再帰性スクリーン2011側に延長した直線(延長線)が、再帰性スクリーン2011の投射面2011aと交差する点が、補正の中心点P2として設定される。
 また、位置検知手段2172により、視聴者2030の眼2031の位置が検知され、視聴者2030の眼2031の位置に関するデータが補正回路2024に出力される。
A video correction method using the projection display device 2160 will be described.
When the viewer 2030 sits down on the chair 2170 and leans on the backrest 2171, a straight line (extension line) obtained by extending a straight line connecting the eyes 2031 of the viewer 2030 and the projection unit 2026 to the recursive screen 2011 side is a recursive screen. A point intersecting the 2011 projection surface 2011a is set as a correction center point P2.
Further, the position detection unit 2172 detects the position of the eye 2031 of the viewer 2030 and outputs data relating to the position of the eye 2031 of the viewer 2030 to the correction circuit 2024.
 次いで、投射映像処理部2021により、投射部2026から再帰性スクリーン2011の投射面2011aに投射される映像(光)の輝度分布を、中心点P2が中央部をなす同心円状であり、その中央部が最も暗く、周縁部に向かって次第に明るくなるように補正する。 Next, the luminance distribution of the image (light) projected from the projection unit 2026 onto the projection surface 2011a of the recursive screen 2011 by the projection image processing unit 2021 is concentric with the central point P2 forming the central part, and the central part Is so dark that it gradually becomes brighter toward the peripheral edge.
 投射映像処理部2021では、補正回路2024において、視聴者2030の眼2031の位置に応じて、補正データ記憶部2023に記録されている複数のデータの中から、映像の補正に必要なデータを選択したり、補正データあるいは補正関数を切り替えたりするなどして、入力された映像情報2051を、映像の補正に必要なデータに基づいて処理し、映像(光)の輝度分布を補正する。
 これにより、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置にある場合における両者の距離に対して、再帰性スクリーン2011の投射面2011aと視聴者2030の眼2031の距離が小さい場合または大きい場合に、再帰性スクリーン2011に投射される映像に生じる輝度むらが打ち消されるように、映像情報2051が補正される。
In the projection video processing unit 2021, the correction circuit 2024 selects data necessary for video correction from a plurality of data recorded in the correction data storage unit 2023 according to the position of the eye 2031 of the viewer 2030. The input video information 2051 is processed based on data necessary for video correction by correcting the correction data or correction function, and the luminance distribution of the video (light) is corrected.
As a result, the projection surface 2011a of the recursive screen 2011 and the eyes of the viewer 2030 with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the distance between the projection surface 2026a of the projection unit 2026 and the optimal position. When the distance 2031 is small or large, the video information 2051 is corrected so that the luminance unevenness generated in the video projected on the recursive screen 2011 is canceled out.
 本実施形態の投射型表示装置2160によれば、補正機構により、視聴者2030の眼2031の位置に応じて、投射部2026から再帰性スクリーン2011に投射される映像(光)の輝度分布を最適に補正することにより、視聴者2030の眼2031の位置が、再帰性スクリーン2011の投射面2011aと最適な位置に配置された投射部2026の射出面2026aとを結ぶ直線に対して上下方向または左右方向にずれた位置でも、輝度むらが少ない映像を観察することができる。したがって、視聴者2030が最適な位置に配置されたプロジェクタ2012の位置から動いても、輝度むらが少ない映像を観察することができる。 According to the projection display device 2160 of this embodiment, the luminance distribution of the video (light) projected from the projection unit 2026 onto the recursive screen 2011 is optimized by the correction mechanism according to the position of the eye 2031 of the viewer 2030. As a result, the position of the eye 2031 of the viewer 2030 is vertically or horizontally with respect to a straight line connecting the projection surface 2011a of the recursive screen 2011 and the emission surface 2026a of the projection unit 2026 arranged at an optimal position. Even at a position shifted in the direction, an image with little luminance unevenness can be observed. Therefore, even when the viewer 2030 moves from the position of the projector 2012 arranged at the optimal position, an image with little luminance unevenness can be observed.
(9)第9実施形態
 図25A及び図25Bは、第9実施形態の投射型表示装置を示す概略構成図であり、図25Aは平面図、図25Bは側面図である。
 なお、図25A及び図25Bにおいて、図13A及び図13Bに示したものと同一構成部分には同一符号を附してその説明を省略する。
 本実施形態の投射型表示装置2180は、再帰性スクリーン2011と、再帰性スクリーン2011の投射面2011aの近傍に、その投射面2011aと重なるように配設された指向性散乱スクリーン2181と、指向性散乱スクリーン2181と所定の距離を置いて対向するように配置されたプロジェクタ2012と、補正機構(図示略)とから概略構成されている。
 なお、図25A及び図25Bにおいて符号2012で示すものは、プロジェクタ2012の一部を構成する投射部2026である。
(9) Ninth Embodiment FIGS. 25A and 25B are schematic configuration diagrams showing a projection display apparatus according to a ninth embodiment. FIG. 25A is a plan view and FIG. 25B is a side view.
25A and 25B, the same components as those shown in FIGS. 13A and 13B are denoted by the same reference numerals, and the description thereof is omitted.
The projection type display device 2180 of this embodiment includes a recursive screen 2011, a directional scattering screen 2181 disposed in the vicinity of the projection surface 2011a of the recursive screen 2011 so as to overlap the projection surface 2011a, and a directivity. A projector 2012 arranged to face the scattering screen 2181 at a predetermined distance and a correction mechanism (not shown) are schematically configured.
In FIG. 25A and FIG. 25B, what is indicated by reference numeral 2012 is a projection unit 2026 that constitutes a part of the projector 2012.
 指向性散乱スクリーン2181は、再帰性スクリーン2011の反射光を、再帰性スクリーン2011の幅方向と縦方向で拡散する角度を異なるようにするものである。すなわち、指向性散乱スクリーン2181は、再帰性スクリーン2011の反射光を、再帰性スクリーン2011の幅方向の拡散角度が、縦方向の拡散角度よりも広くなるように拡散するか、あるいは、再帰性スクリーン2011の縦方向の拡散角度が、幅方向の拡散角度よりも広くなるように拡散する。本実施形態では、指向性散乱スクリーン2181が、再帰性スクリーン2011の反射光を、再帰性スクリーン2011の縦方向の拡散角度が、幅方向の拡散角度よりも広くなるように拡散する場合を例示する。 The directional scattering screen 2181 has different angles for diffusing the reflected light of the recursive screen 2011 in the width direction and the vertical direction of the recursive screen 2011. That is, the directional scattering screen 2181 diffuses the reflected light of the recursive screen 2011 so that the diffusion angle in the width direction of the recursive screen 2011 is wider than the diffusion angle in the vertical direction, or the recursive screen. The diffusion is performed such that the vertical diffusion angle of 2011 is wider than the diffusion angle in the width direction. In this embodiment, the directional scattering screen 2181 exemplifies a case where the reflected light of the recursive screen 2011 is diffused so that the vertical diffusion angle of the recursive screen 2011 is larger than the diffusion angle in the width direction. .
 投射型表示装置2180による映像の補正方法を説明する。
 まず、プロジェクタ2012の投射部2026を、再帰性スクリーン2011に投射される映像の視聴者の眼2031と離隔して配置する。この時、図25Bに示すように、視聴者の眼2031と投射部2026を結ぶ直線2041を、再帰性スクリーン2011側に延長した直線(延長線)2042が、指向性散乱スクリーン2181の一方の面2181a(再帰性スクリーン2011の投射面2011a)と交差する点を、補正の中心点P2として設定する。
A video correction method using the projection display device 2180 will be described.
First, the projection unit 2026 of the projector 2012 is arranged separately from the viewer's eyes 2031 of the video projected on the recursive screen 2011. At this time, as shown in FIG. 25B, a straight line 2041 obtained by extending a straight line 2041 connecting the viewer's eyes 2031 and the projection unit 2026 to the recursive screen 2011 side is one surface of the directional scattering screen 2181. A point that intersects 2181a (projection surface 2011a of the recursive screen 2011) is set as a correction center point P2.
 再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置にある場合、図26Aに示すように、補正回路2024に入力される映像情報2051を補正せずに、プロジェクタ2012から再帰性スクリーン2011に投射して得られる映像2191は、輝度むらがなく、輝度が均一である。しかし、このままでは、再帰性スクリーン2011の投射面2011aと投射部2026の射出面2026aとの距離に対して、再帰性スクリーン2011と視聴者の眼2031との距離が小さい場合または大きい場合には、図26Bに示すように、再帰性スクリーン2011に投射される映像2191は、中央部が楕円形状に最も明るく、周縁部に向かって次第に暗くなるという輝度むらを生じる。 When the position of the emission surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is in an optimal position, as shown in FIG. 26A, the video information 2051 input to the correction circuit 2024 is not corrected, and the projector An image 2191 obtained by projecting from 2012 to the recursive screen 2011 has no luminance unevenness and uniform luminance. However, in this state, when the distance between the recursive screen 2011 and the viewer's eyes 2031 is small or large with respect to the distance between the projection surface 2011a of the recursive screen 2011 and the exit surface 2026a of the projection unit 2026, As shown in FIG. 26B, the image 2191 projected on the recursive screen 2011 has uneven brightness in which the central part is brightest in an elliptical shape and gradually becomes darker toward the peripheral part.
 そこで、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置にある場合に、映像情報2051によって得られる映像2192の輝度分布を、図26Cに示すように、中心点P2を中心とする中央部が楕円形状をなし、その中央部が最も暗く、周縁部に向かって次第に明るくなるように補正する。
 補正回路2024で補正された信号は、駆動信号2052として、投射光学部2022に出力され、投射光学部2022にて光に変換されて、その光が、投射部2026の射出面2026aから再帰性スクリーン2011の投射面2011aに投射される。
 すると、図26Dに示すように、投射部2026から再帰性スクリーン2011に対して投射された映像2193は、再帰性スクリーン2011の投射面2011aと視聴者の眼2031との距離が最適な場合には、輝度分布を補正する前の映像2191と比較すると、輝度むらが若干悪化する。
Therefore, when the position of the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is at an optimal position, the luminance distribution of the image 2192 obtained by the image information 2051 is centered as shown in FIG. 26C. A correction is made so that the central portion around the point P2 has an elliptical shape, the central portion is darkest, and gradually becomes brighter toward the peripheral portion.
The signal corrected by the correction circuit 2024 is output as a drive signal 2052 to the projection optical unit 2022, converted into light by the projection optical unit 2022, and the light is returned from the exit surface 2026a of the projection unit 2026 to the recursive screen. 2011 is projected onto the projection surface 2011a.
Then, as shown in FIG. 26D, the image 2193 projected from the projection unit 2026 onto the recursive screen 2011 is when the distance between the projection surface 2011a of the recursive screen 2011 and the viewer's eyes 2031 is optimal. Compared with the image 2191 before correcting the luminance distribution, the luminance unevenness is slightly deteriorated.
 一方、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置にある場合における両者の距離(投射面2011aと射出面2026aとの距離)に対して、再帰性スクリーン2011の投射面2011aと視聴者の眼2031の距離が小さい場合または大きい場合には、映像2193は、輝度むらが軽減された映像として見ることができる。
 すなわち、上述のように再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置にある場合、映像情報2051によって得られる映像2192の輝度分布を補正することより、視聴者の眼2031の位置が、前記の最適な位置を基準として前後にずれても、再帰性スクリーン2011に投射される映像2193は、輝度むらが少なくなり、視野範囲が広くなる。
On the other hand, with respect to the distance between the projection surface 2011a and the exit surface 2026a when the position of the exit surface 2026a of the projection unit 2026 is in the optimum position with respect to the projection surface 2011a of the recurrence screen 2011, the recursive screen. When the distance between the 2011 projection surface 2011a and the viewer's eye 2031 is small or large, the video 2193 can be viewed as a video with reduced luminance unevenness.
That is, as described above, when the position of the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 is in an optimal position, the brightness distribution of the image 2192 obtained by the image information 2051 is corrected, thereby allowing viewing. Even if the position of the person's eye 2031 is shifted back and forth with respect to the optimum position, the image 2193 projected on the recursive screen 2011 has less luminance unevenness and a wider visual field range.
 投射部2026から再帰性スクリーン2011の投射面2011aに投射される映像(光)の輝度分布は、上述の第3実施形態と同様に補正される。 The luminance distribution of the image (light) projected on the projection surface 2011a of the recursive screen 2011 from the projection unit 2026 is corrected in the same manner as in the third embodiment described above.
 本実施形態の投射型表示装置2180によれば、再帰性スクリーン2011の投射面2011aの近傍に、その投射面2011aと重なるように指向性散乱スクリーン2181を配設した場合にも、再帰性スクリーン2011と投射部2026とを結ぶ直線に対する視聴者の眼2031の位置に応じて、補正の中心点P2の位置を設定することにより、再帰性スクリーン2011の投射面2011aに対して最適な位置に配置された投射部2026の射出面2026aよりも前後の位置にずれた位置においても、輝度むらが少ない映像を観察することができる。 According to the projection type display device 2180 of this embodiment, even when the directional scattering screen 2181 is disposed in the vicinity of the projection surface 2011a of the recursive screen 2011 so as to overlap the projection surface 2011a, the recursive screen 2011 is provided. By setting the position of the correction center point P2 according to the position of the viewer's eye 2031 with respect to the straight line connecting the projection unit 2026 and the projection unit 2026, it is arranged at an optimal position with respect to the projection surface 2011a of the recursive screen 2011. In addition, an image with little luminance unevenness can be observed even at a position shifted to a position before and after the emission surface 2026a of the projection unit 2026.
 ところで、上記の指向性散乱スクリーン2181などを用いて、再帰性スクリーン2011の反射光を拡散させた場合、拡散度が大きくなるにつれて、映像(光)の輝度むらが大きくなる。
 指向性散乱スクリーン2181を用いない場合、図27Aに示すように、中央部が円形状をなし、その中央部が最も明るく、周縁部に向かって次第に暗くなるような輝度むらを生じる。
 拡散度の小さい指向性散乱スクリーン2181を用いた場合、図27Bに示すように、中央部が楕円形状をなし、その中央部が最も明るく、周縁部に向かって次第に暗くなるような輝度むらを生じる。
 次第に、指向性散乱スクリーン2181の拡散度を大きくしていくと、図27Cに示すように、輝度むらの領域が再帰性スクリーン2011の下端を超える。そして、さらに、指向性散乱スクリーン2181の拡散度を大きくすると、図27Dに示すように、輝度むらの領域が再帰性スクリーン2011の上下端を超える。
By the way, when the reflected light of the recursive screen 2011 is diffused using the directional scattering screen 2181 or the like, the luminance unevenness of the image (light) increases as the diffusivity increases.
When the directional scattering screen 2181 is not used, as shown in FIG. 27A, the center portion has a circular shape, the center portion is brightest, and brightness unevenness that gradually becomes dark toward the peripheral edge portion occurs.
When the directional scattering screen 2181 having a small diffusivity is used, as shown in FIG. 27B, the central portion has an elliptical shape, the central portion is brightest, and the brightness unevenness gradually becomes darker toward the peripheral portion. .
When the diffusivity of the directional scattering screen 2181 is gradually increased, the luminance unevenness region exceeds the lower end of the recursive screen 2011 as shown in FIG. 27C. Further, when the diffusivity of the directional scattering screen 2181 is increased, the uneven luminance region exceeds the upper and lower ends of the recursive screen 2011 as shown in FIG. 27D.
(10)第10実施形態
 図28は、第10実施形態の投射型表示装置を示す概略平面図である。
 なお、図28において、図13A及び図13Bおよび図25A及び図25Bに示したものと同一構成部分には同一符号を附してその説明を省略する。
 本実施形態の投射型表示装置2200は、再帰性スクリーン2011と、再帰性スクリーン2011の投射面2011aの近傍に、その投射面2011aと重なるように配設された指向性散乱スクリーン2181と、指向性散乱スクリーン2181と所定の距離を置いて対向するように配置されたプロジェクタ2012と、補正機構(図示略)とから概略構成されている。
 なお、図28において符号2012で示すものは、プロジェクタ2012の一部を構成する投射部2026である。
(10) Tenth Embodiment FIG. 28 is a schematic plan view showing a projection display apparatus according to a tenth embodiment.
In FIG. 28, the same components as those shown in FIGS. 13A and 13B and FIGS. 25A and 25B are denoted by the same reference numerals, and the description thereof is omitted.
The projection type display device 2200 of this embodiment includes a recursive screen 2011, a directional scattering screen 2181 disposed near the projection surface 2011a of the recursive screen 2011 so as to overlap the projection surface 2011a, and a directivity. A projector 2012 arranged to face the scattering screen 2181 at a predetermined distance and a correction mechanism (not shown) are schematically configured.
In FIG. 28, what is indicated by reference numeral 2012 is a projection unit 2026 that constitutes a part of the projector 2012.
 投射型表示装置2200による映像の補正方法を説明する。
 まず、プロジェクタ2012の投射部2026を、視聴者の眼2031と離隔して配置する。この時、視聴者の眼2031と投射部2026を結ぶ直線を、再帰性スクリーン2011側に延長した直線(延長線)が、再帰性スクリーン2011の投射面2011aと交差する点を、補正の中心点P2として設定する。
A video correction method using the projection display device 2200 will be described.
First, the projection unit 2026 of the projector 2012 is arranged separately from the viewer's eyes 2031. At this time, the point where the straight line (extension line) obtained by extending the straight line connecting the viewer's eyes 2031 and the projection unit 2026 to the recursive screen 2011 intersects the projection surface 2011a of the recursive screen 2011 is the correction center point. Set as P2.
 この補正の中心点P2の設定において、上述の第3実施形態のように、視聴者の眼2031の位置が、再帰性スクリーン2011の投射面2011aに対する投射部2026の射出面2026aの位置が最適な位置に対して前後にずれた場合だけでなく、再帰性スクリーン2011と、最適な位置に配置された投射部2026とを結ぶ直線に対して、上下方向や左右方向にずれた場合にも、補正の中心点P2をずれた位置に合わせて設定する。 In the setting of the correction center point P2, the position of the viewer's eye 2031 is the optimal position of the exit surface 2026a of the projection unit 2026 with respect to the projection surface 2011a of the recursive screen 2011 as in the third embodiment described above. Not only when the position is shifted back and forth with respect to the position, but also when the position is shifted vertically or horizontally with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 disposed at the optimum position. The center point P2 is set according to the shifted position.
 例えば、図28に示すように、視聴者の眼2031Aの位置が、再帰性スクリーン2011と、最適な位置に配置された投射部2026とを結ぶ直線上において、その投射部2026よりも後にある場合、図29Bに示すように、再帰性スクリーン2011の投射面2011aの中央部が楕円形状をなし、その中央部が最も明るく、周縁部に向かって次第に暗くなるような輝度むらを生じる。このとき、楕円形状をなす最も明るい領域に、補正の中心点P2を設定する。
 これに対して、図28に示すように、視聴者の眼2031Bの位置が、再帰性スクリーン2011と、最適な位置に配置された投射部2026とを結ぶ直線に対して左側(紙面の左側)にずれた場合、図29Aに示すように、視聴者の眼2031Bと投射部2026を結ぶ直線を、再帰性スクリーン2011側に延長した直線(延長線)が、再帰性スクリーン2011の投射面2011aと交差する点を中心として、その中央部が楕円形状をなし、その中央部が最も明るく、周縁部に向かって次第に暗くなるような輝度むらを生じる。このとき、楕円形状をなす最も明るい領域、すなわち、再帰性スクリーン2011の投射面2011aの右側(紙面の右側)の領域に、補正の中心点P2を設定する。
For example, as shown in FIG. 28, the position of the viewer's eye 2031A 3 is behind the projection unit 2026 on the straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position. In this case, as shown in FIG. 29B, the central portion of the projection surface 2011a of the recursive screen 2011 has an elliptical shape, the central portion is brightest, and the brightness unevenness gradually becomes darker toward the peripheral portion. At this time, the correction center point P2 is set in the brightest area having an elliptical shape.
On the other hand, as shown in FIG. 28, the position of the viewer's eye 2031B 3 is on the left side (the left side of the page) with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position. 29A, as shown in FIG. 29A, a straight line (extension line) obtained by extending a straight line connecting the viewer's eye 2031B 3 and the projection unit 2026 to the recursive screen 2011 side is a projection surface of the recursive screen 2011. Centering on a point that intersects with 2011a, the central portion is elliptical, and the central portion is brightest, and brightness unevenness that gradually becomes darker toward the peripheral edge portion occurs. At this time, the correction center point P2 is set in the brightest area having an elliptical shape, that is, in the area on the right side of the projection surface 2011a of the recursive screen 2011 (the right side of the sheet).
 また、図28に示すように、視聴者の眼2031Cの位置が、再帰性スクリーン2011と、最適な位置に配置された投射部2026とを結ぶ直線に対して右側(紙面の右側)にずれた場合、図29Cに示すように、視聴者の眼2031Cと投射部2026を結ぶ直線を、再帰性スクリーン2011側に延長した直線(延長線)が、再帰性スクリーン2011の投射面2011aと交差する点を中心として、その中央部が楕円形状をなし、その中央部が最も明るく、周縁部に向かって次第に暗くなるような輝度むらを生じる。このとき、楕円形状をなす最も明るい領域、すなわち、再帰性スクリーン2011の投射面2011aの左側(紙面の左側)の領域に、補正の中心点P2を設定する。
 また、図28に示すように、視聴者の眼2031Dの位置が、再帰性スクリーン2011と、最適な位置に配置された投射部2026とを結ぶ直線に対して、眼2031Cの位置よりもさらに右側(紙面の右側)にずれた場合、図29Dに示すように、視聴者の眼2031Dと投射部2026を結ぶ直線を、再帰性スクリーン2011側に延長した直線(延長線)が、再帰性スクリーン2011の投射面2011aと交差する点を中心として、その中央部が楕円形状をなし、その中央部が最も明るく、周縁部に向かって次第に暗くなるような輝度むらを生じる。
 ここでは、楕円形状をなす最も明るい領域における左側(紙面の左側)の部分が、再帰性スクリーン2011の左端(紙面の左端)を超える。このとき、楕円形状をなす最も明るい領域、すなわち、再帰性スクリーン2011の投射面2011aの左側(紙面の左側)の領域に、補正の中心点P2を設定する。
Further, as shown in FIG. 28, the position of the viewer's eye 2031C 3 is shifted to the right side (the right side of the page) with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position. and if, as shown in FIG. 29C, intersects the eye 2031 c 3 of viewer straight line connecting the projection portion 2026, a straight line obtained by extending the recursive screen 2011 side (extension) is a projection surface 2011a of the retro-screen 2011 The center portion is elliptical with the point to be centered, and the center portion is the brightest, and brightness unevenness that gradually becomes darker toward the peripheral portion is generated. At this time, the correction center point P2 is set in the brightest area having an elliptical shape, that is, the area on the left side of the projection screen 2011a of the recursive screen 2011 (the left side of the sheet).
Further, as shown in FIG. 28, the position of the viewer's eye 2031D 3 is more than the position of the eye 2031C 3 with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026 arranged at the optimum position. Furthermore, when shifted to the right (toward the right), as shown in FIG. 29D, the straight line connecting the projection portion 2026 and the eye 2031 d 3 of the viewer, straight lines extending in retro-screen 2011 side (extension) is recursive Centering around the point intersecting the projection surface 2011a of the reflective screen 2011, the central portion is elliptical, the central portion is brightest, and the luminance unevenness gradually becomes darker toward the peripheral portion.
Here, the left side (left side of the drawing) of the brightest area having an elliptical shape exceeds the left end (left end of the drawing) of the recursive screen 2011. At this time, the correction center point P2 is set in the brightest area having an elliptical shape, that is, the area on the left side of the projection screen 2011a of the recursive screen 2011 (the left side of the sheet).
 このように、再帰性スクリーン2011の投射面2011aに設定する補正の中心点P2の位置を、視聴者の眼2031の位置が、再帰性スクリーン2011と、最適な位置に配置された投射部2026とを結ぶ直線に対してずれた方向とは反対側の方向とする。 In this way, the position of the correction center point P2 set on the projection surface 2011a of the recursive screen 2011 is the position of the viewer's eye 2031 is the recursive screen 2011, and the projection unit 2026 arranged at the optimum position. The direction opposite to the direction shifted from the straight line connecting
 投射部2026から再帰性スクリーン2011の投射面2011aに投射される映像(光)の輝度分布は、上述の第3実施形態と同様に補正される。 The luminance distribution of the image (light) projected on the projection surface 2011a of the recursive screen 2011 from the projection unit 2026 is corrected in the same manner as in the third embodiment described above.
 本実施形態の投射型表示装置2200によれば、再帰性スクリーン2011の投射面2011aの近傍に、その投射面2011aと重なるように指向性散乱スクリーン2181を配設した場合も、再帰性スクリーン2011と投射部2026とを結ぶ直線に対する視聴者の眼2031の位置に応じて、補正の中心点P2の位置を設定することにより、再帰性スクリーン2011の投射面2011aに対して最適な位置に配置された投射部2026の射出面2026aよりも前後の位置、並びに、再帰性スクリーン2011と投射部2026とを結ぶ直線に対して上下方向または左右方向にずれた位置においても、輝度むらが少ない映像を観察することができる。 According to the projection type display device 2200 of this embodiment, even when the directional scattering screen 2181 is disposed in the vicinity of the projection surface 2011a of the recursive screen 2011 so as to overlap the projection surface 2011a, By setting the position of the correction center point P2 according to the position of the viewer's eye 2031 with respect to the straight line connecting the projection unit 2026, it is arranged at an optimal position with respect to the projection surface 2011a of the recursive screen 2011. An image with less luminance unevenness is observed at a position before and after the emission surface 2026a of the projection unit 2026 and at a position shifted in the vertical direction or the horizontal direction with respect to the straight line connecting the recursive screen 2011 and the projection unit 2026. be able to.
 ところで、再帰性スクリーン2011の投射面2011aに投射される映像(光)の輝度むらは、再帰性スクリーン2011、プロジェクタ2012および視聴者の眼2031の相対位置や角度、並びに、再帰性スクリーン2011の再帰反射光の指向性などによって決まる。再帰性スクリーン2011の再帰反射光の指向性は、それぞれに固有の(既知の)ものであるので、再帰性スクリーン2011、プロジェクタ2012および視聴者の眼2031の相対位置や角度を把握することによって、映像(光)の輝度分布を補正することができる。 By the way, the luminance unevenness of the image (light) projected on the projection surface 2011a of the recursive screen 2011 includes the relative positions and angles of the recursive screen 2011, the projector 2012, and the viewer's eyes 2031, and the recursive screen 2011 recursively. It depends on the directivity of the reflected light. Since the directivity of the retroreflected light of the recursive screen 2011 is unique (known) to each, by grasping the relative positions and angles of the recursive screen 2011, the projector 2012, and the viewer's eyes 2031, The luminance distribution of the video (light) can be corrected.
(11)第11実施形態
 図30は、第11実施形態の投射型表示装置を示す概略構成図である。図31は、第11実施形態の投射型表示装置のプロジェクタおよび補正機構の一例を示す概略構成図である。
 本実施形態の投射型表示装置3010は、再帰性スクリーン3011と、再帰性スクリーン3011の投射面3011aの近傍に、その投射面3011aと重なるように配設された指向性散乱スクリーン3012と、指向性散乱スクリーン3012と所定の距離を置いて対向するように配置された3つのプロジェクタ3013(3013A、3013B、3013C)と、補正機構(図示略)とから概略構成されている。
 なお、図30において符号3013で示すものは、プロジェクタ3013の一部を構成する投射部3026である。
(11) Eleventh Embodiment FIG. 30 is a schematic configuration diagram showing a projection display apparatus according to an eleventh embodiment. FIG. 31 is a schematic configuration diagram illustrating an example of a projector and a correction mechanism of the projection display apparatus according to the eleventh embodiment.
The projection display device 3010 of this embodiment includes a recursive screen 3011, a directional scattering screen 3012 disposed in the vicinity of the projection surface 3011 a of the recursive screen 3011 so as to overlap the projection surface 3011 a, and directivity. The projector is roughly composed of three projectors 3013 (3013A, 3013B, 3013C) arranged to face the scattering screen 3012 at a predetermined distance and a correction mechanism (not shown).
Note that what is indicated by reference numeral 3013 in FIG. 30 is a projection unit 3026 that constitutes a part of the projector 3013.
 再帰性スクリーン3011は、樹脂などからなる基板3014の一方の面3014aに、透明のビーズ(球状体)が埋め込まれた構造をなしている。透明のビーズが埋め込まれた基板3014の一方の面3014aは、再帰性スクリーン3011の投射面3011aである。
 指向性散乱スクリーン3012は、再帰性スクリーン3011の反射光を、再帰性スクリーン3011の幅方向と縦方向で拡散する角度を異なるようにするものである。すなわち、指向性散乱スクリーン3012は、再帰性スクリーン3011の反射光を、再帰性スクリーン3011の幅方向の拡散角度が、縦方向の拡散角度よりも広くなるように拡散するか、あるいは、再帰性スクリーン3011の縦方向の拡散角度が、幅方向の拡散角度よりも広くなるように拡散する。
 本実施形態では、指向性散乱スクリーン3012が、再帰性スクリーン3011の反射光を、再帰性スクリーン3011の縦方向の拡散角度が、幅方向の拡散角度よりも広くなるように拡散する場合を例示する。
The recursive screen 3011 has a structure in which transparent beads (spherical bodies) are embedded in one surface 3014a of a substrate 3014 made of resin or the like. One surface 3014a of the substrate 3014 in which the transparent beads are embedded is a projection surface 3011a of the recursive screen 3011.
The directional scattering screen 3012 has different angles for diffusing the reflected light of the recursive screen 3011 in the width direction and the vertical direction of the recursive screen 3011. That is, the directional scattering screen 3012 diffuses the reflected light of the recursive screen 3011 so that the diffusion angle in the width direction of the recursive screen 3011 is wider than the diffusion angle in the vertical direction, or the recursive screen. The diffusion is performed so that the diffusion angle in the vertical direction 3011 is wider than the diffusion angle in the width direction.
In this embodiment, the case where the directional scattering screen 3012 diffuses the reflected light of the recursive screen 3011 so that the vertical diffusion angle of the recursive screen 3011 is larger than the diffusion angle in the width direction is exemplified. .
 プロジェクタ3013A、3013B、3013Cは、指向性散乱スクリーン3012側から順に間隔を置いて配置されている。すなわち、プロジェクタ3013A、3013B、3013Cはそれぞれ、再帰性スクリーン3011(指向性散乱スクリーン3012)との距離が互いに異なるように配置されている。
 また、プロジェクタ3013A、3013B、3013Cは、投射型表示装置3010が設置される部屋の天井に取り付けられている。すなわち、プロジェクタ3013A、3013B、3013Cは、視聴者3030の頭上に設置されている。
Projectors 3013A, 3013B, and 3013C are arranged at intervals from the directional scattering screen 3012 in order. That is, the projectors 3013A, 3013B, and 3013C are arranged such that the distances from the recursive screen 3011 (directional scattering screen 3012) are different from each other.
Further, the projectors 3013A, 3013B, and 3013C are attached to the ceiling of the room where the projection display device 3010 is installed. That is, the projectors 3013A, 3013B, and 3013C are installed above the viewer 3030.
 プロジェクタ3013は、再帰性スクリーン3011に投射する映像の信号を処理するための投射映像処理部3021と、投射映像処理部3021からの信号を光に変換して、その光を再帰性スクリーン3011に投射する投射光学部3022とから概略構成されている。
 投射映像処理部3021は、プロジェクタ3013から再帰性スクリーン3011に投射される映像(光)の輝度分布を補正するための補正データが記録された補正データ記憶部3023と、再帰性スクリーン3011に投射される映像の信号を処理して、映像(光)の輝度分布を補正する補正回路3024とを少なくとも有する映像処理回路3025を備えている。
 投射光学部3022は、再帰性スクリーン3011に映像を投射する投射部3026を備えている。
 投射部3026は、その射出面3026aが再帰性スクリーン3011の投射面3011a(指向性散乱スクリーン3012の一方の面3012a)に対向するように配置されている。そして、投射部3026の射出面3026aから、再帰性スクリーン3011の投射面3011aに対して映像が投射される。
The projector 3013 converts a signal from the projection video processing unit 3021 for processing a video signal projected on the recursive screen 3011 and the projection video processing unit 3021 into light, and projects the light onto the recursive screen 3011. The projection optical unit 3022 is configured roughly.
The projection video processing unit 3021 is projected on the correction data storage unit 3023 in which correction data for correcting the luminance distribution of video (light) projected from the projector 3013 onto the recursive screen 3011 is recorded, and the recursive screen 3011. A video processing circuit 3025 having at least a correction circuit 3024 for processing a video signal to correct a luminance distribution of the video (light).
The projection optical unit 3022 includes a projection unit 3026 that projects an image on the recursive screen 3011.
The projection unit 3026 is arranged such that the emission surface 3026a faces the projection surface 3011a of the recursive screen 3011 (one surface 3012a of the directional scattering screen 3012). Then, an image is projected from the emission surface 3026 a of the projection unit 3026 onto the projection surface 3011 a of the recursive screen 3011.
 投射型表示装置3010による映像の投射方法を説明する。
 プロジェクタ3013Aの投射部3026の射出面3026aは、再帰性スクリーン3011の投射面3011aに対して最適な位置に配置される。
 観察位置3030A(プロジェクタ3013Aの下方)において、視聴者3030がプロジェクタ3013Aから再帰性スクリーン3011に投射された映像3041のみを見ると、その映像3041は、図32Aに示すように、輝度が高く、輝度むらがない。
 なお、図32A~図32Cにおいて、映像の輝度が高い場合、その映像を淡色で表示する。また、図32A~図32Cにおいて、映像の輝度が低い場合、その映像を濃色で表示する。
A method of projecting an image using the projection display device 3010 will be described.
An exit surface 3026a of the projection unit 3026 of the projector 3013A is disposed at an optimal position with respect to the projection surface 3011a of the recursive screen 3011.
When the viewer 3030 sees only the image 3041 projected from the projector 3013A onto the recursive screen 3011 at the observation position 3030A (below the projector 3013A), the image 3041 is high in luminance as shown in FIG. 32A. There is no unevenness.
In FIGS. 32A to 32C, when the luminance of the video is high, the video is displayed in a light color. In FIGS. 32A to 32C, when the luminance of the video is low, the video is displayed in a dark color.
 一方、観察位置3030B(プロジェクタ3013の下方)において、視聴者3030がプロジェクタ3013Aから再帰性スクリーン3011に投射された映像3042のみを見ると、その映像3042は、図32Bに示すように、輝度分布が、再帰性スクリーン3011の縦方向に沿って中央部が帯状に最も明るく、周辺部に向かって次第に暗くなっている。
 また、観察位置3030C(プロジェクタ3013Cの下方)において、視聴者3030がプロジェクタ3013Aから再帰性スクリーン3011に投射された映像3043のみを見ると、その映像3043は、図32Cに示すように、輝度分布が、再帰性スクリーン3011の縦方向に沿って中央部が帯状に最も明るく、周辺部に向かって次第に暗くなっている。
 なお、再帰性スクリーン3011に対するプロジェクタ3013の距離が大きくなる程、そのプロジェクタ3013から再帰性スクリーン3011に投射された映像は、輝度が低く、輝度むらが多くなる。
On the other hand, when the viewer 3030 sees only the video 3042 projected from the projector 3013A to the recursive screen 3011 at the observation position 3030B (below the projector 3013), the video 3042 has a luminance distribution as shown in FIG. 32B. The central portion of the recursive screen 3011 is brightest in a strip shape along the vertical direction, and gradually becomes darker toward the peripheral portion.
Further, when the viewer 3030 sees only the video 3043 projected on the recursive screen 3011 from the projector 3013A at the observation position 3030C (below the projector 3013C), the video 3043 has a luminance distribution as shown in FIG. 32C. The central portion of the recursive screen 3011 is brightest in a strip shape along the vertical direction, and gradually becomes darker toward the peripheral portion.
Note that as the distance of the projector 3013 from the recursive screen 3011 increases, the image projected from the projector 3013 onto the recursive screen 3011 has lower luminance and higher luminance unevenness.
 ここで、プロジェクタ3013A、3013B、3013Cはそれぞれ、再帰性スクリーン3011の幅方向と縦方向で反射光の拡散する角度が異なるように、再帰性スクリーン3011に映像3041、3042、3043を投射する。
 また、プロジェクタ3013A、3013B、3013Cは、再帰性スクリーン3011側に配置されたものから順に映像3041、3042、3043の拡大率が大きくなるように、再帰性スクリーン3011に映像を投射する。
 さらに、プロジェクタ3013A、3013B、3013Cは、再帰性スクリーン3011の投射面3011aにおいて、それぞれのプロジェクタから投射された映像3041、3042、3043の大きさが等しくなるように、再帰性スクリーン3011に映像3041、3042、3043を投射する。
Here, each of the projectors 3013A, 3013B, and 3013C projects the images 3041, 3042, and 3043 on the recursive screen 3011 so that the angle at which the reflected light is diffused is different between the width direction and the vertical direction of the recursive screen 3011.
The projectors 3013A, 3013B, and 3013C project images on the recursive screen 3011 so that the enlargement ratios of the images 3041, 3042, and 3043 are sequentially increased from those arranged on the recursive screen 3011 side.
Further, the projectors 3013A, 3013B, and 3013C have the images 3041, 3042, and 3043 on the recursive screen 3011 so that the sizes of the images 3041, 3042, and 3043 projected from the projectors are equal on the projection surface 3011a of the recursive screen 3011. 3042 and 3043 are projected.
 プロジェクタ3013A、3013B、3013Cから投射された映像3041、3042、3043は、再帰性スクリーン3011の投射面3011aにおいて大きさが等しいので、その投射面3011aで重なり合う。したがって、視聴者3030が、観察位置3030A、3030B、3030Cのいずれの位置においても見ることができる映像は、図33に示すように、映像3041、3042、3043が重なり合って形成される映像3044となる。
 再帰性スクリーン3011の投射面3011aに対して最適な位置に配置されたプロジェクタ3013Aから投射された映像3041が最も明るく、支配的であることから、映像3044は、再帰性スクリーン3011の縦方向に沿って中央部が帯状に最も明るく、周辺部に向かって次第に暗くなるという輝度むらが生じるものの、全体的に輝度むらが緩和され、視野範囲が広く、良好な表示となる。
Since the images 3041, 3042, and 3043 projected from the projectors 3013A, 3013B, and 3013C have the same size on the projection surface 3011a of the recursive screen 3011, they overlap on the projection surface 3011a. Therefore, the video that the viewer 3030 can see at any of the observation positions 3030A, 3030B, and 3030C is a video 3044 formed by overlapping the video 3041, 3042, and 3043 as shown in FIG. .
Since the image 3041 projected from the projector 3013A arranged at an optimal position with respect to the projection surface 3011a of the recursive screen 3011 is brightest and dominant, the image 3044 follows the vertical direction of the recursive screen 3011. Although the luminance unevenness occurs such that the central portion is brightest in a belt shape and gradually becomes darker toward the peripheral portion, the luminance unevenness is reduced as a whole, and the visual field range is wide, resulting in a favorable display.
 本実施形態の投射型表示装置3010によれば、プロジェクタ3013と視聴者3030の眼3031との位置関係の自由度が極めて高くなり、利用価値が向上する。
 また、プロジェクタ3013A、3013B、3013Cから出射される際に映像3041、3042、3043の拡大率を相違させ、再帰性スクリーン3011の投射面3011aにおいて、プロジェクタ3013A、3013B、3013Cから投射された映像3041、3042、3043の大きさが等しくなるように、再帰性スクリーン3011に映像3041、3042、3043を投射するので、視聴者3030が、観察位置3030A、3030B、3030Cのうちいずれに移動しても、違和感が少ない映像3044を見ることができる。
According to the projection display device 3010 of this embodiment, the degree of freedom in the positional relationship between the projector 3013 and the eye 3031 of the viewer 3030 is extremely high, and the utility value is improved.
In addition, when the images 3041A, 3013B, and 3013C are emitted from the projectors 3013A, 3013B, and 3013C, the enlargement ratios of the images 3041, 3042, and 3043 are made different. Since the images 3041, 3042, and 3043 are projected on the recursive screen 3011 so that the sizes of 3042 and 3043 are equal to each other, even if the viewer 3030 moves to any of the observation positions 3030A, 3030B, and 3030C, it feels strange. A video 3044 with a small amount can be seen.
 なお、本実施形態では、プロジェクタを3つ設けた場合を例示したが、本発明はこれに限定されない。本発明にあっては、プロジェクタが2つまたは4つ以上設けられていてもよい。
 また、本実施形態では、指向性散乱スクリーン3012が、再帰性スクリーン3011の反射光を、再帰性スクリーン3011の縦方向の拡散角度が、幅方向の拡散角度よりも広くなるように拡散する場合を例示したが、本発明はこれに限定されない。本発明にあっては、指向性散乱スクリーンが、再帰性スクリーンの反射光を、再帰性スクリーンの幅方向の拡散角度が、縦方向の拡散角度よりも広くなるように拡散してもよい。その場合、再帰性スクリーンに投射された映像には、再帰性スクリーンの幅方向に沿って中央部が帯状に最も明るく、周辺部に向かって次第に暗くなるという輝度むらが生じる。
 また、本実施形態では、プロジェクタ3013が視聴者3030の頭上に設置されている場合を例示したが、本発明はこれに限定されない。本発明にあっては、プロジェクタが視聴者の足下に設置されていてもよい。
In the present embodiment, the case where three projectors are provided is illustrated, but the present invention is not limited to this. In the present invention, two or four or more projectors may be provided.
In the present embodiment, the directional scattering screen 3012 diffuses the reflected light of the recursive screen 3011 so that the diffusion angle in the vertical direction of the recursive screen 3011 is wider than the diffusion angle in the width direction. Although illustrated, this invention is not limited to this. In the present invention, the directional scattering screen may diffuse the reflected light of the recursive screen so that the diffusion angle in the width direction of the recursive screen is wider than the diffusion angle in the vertical direction. In this case, the image projected on the recursive screen has brightness unevenness in which the central portion is brightest in a strip shape along the width direction of the recursive screen and gradually becomes darker toward the peripheral portion.
In this embodiment, the projector 3013 is installed above the viewer 3030. However, the present invention is not limited to this. In the present invention, the projector may be installed below the viewer.
(12)第12実施形態
 図34は、第12実施形態の投射型表示装置を示す概略構成図である。図35は、第12実施形態の投射型表示装置のプロジェクタおよび補正機構の一例を示す概略構成図である。
 なお、図34において、図30に示したものと同一構成部分には同一符号を附してその説明を省略する。また、図35において、図31に示したものと同一構成部分には同一符号を附してその説明を省略する。
 本実施形態の投射型表示装置3050は、再帰性スクリーン3011と、再帰性スクリーン3011の投射面3011aの近傍に、その投射面3011aと重なるように配設された指向性散乱スクリーン3012と、指向性散乱スクリーン3012と所定の距離を置いて対向するように配置された3つのプロジェクタ3013(3013A、3013B、3013C)と、補正機構(図示略)とから概略構成されている。
 なお、図34において符号3013で示すものは、プロジェクタ3013の一部を構成する投射部3026である。
(12) 12th Embodiment FIG. 34: is a schematic block diagram which shows the projection type display apparatus of 12th Embodiment. FIG. 35 is a schematic configuration diagram illustrating an example of a projector and a correction mechanism of the projection display apparatus according to the twelfth embodiment.
34, the same components as those shown in FIG. 30 are denoted by the same reference numerals, and the description thereof is omitted. 35, the same components as those shown in FIG. 31 are given the same reference numerals, and descriptions thereof will be omitted.
The projection type display device 3050 of this embodiment includes a recursive screen 3011, a directional scattering screen 3012 disposed in the vicinity of the projection surface 3011 a of the recursive screen 3011 so as to overlap the projection surface 3011 a, and directivity. The projector is roughly composed of three projectors 3013 (3013A, 3013B, 3013C) arranged to face the scattering screen 3012 at a predetermined distance and a correction mechanism (not shown).
Note that what is indicated by reference numeral 3013 in FIG. 34 is a projection unit 3026 that constitutes a part of the projector 3013.
 投射型表示装置3050による映像の補正方法を説明する。
 本実施形態では、投射映像処理部3021が補正機構として機能する。
 投射映像処理部3021により、3つのプロジェクタ3013A、3013B、3013Cのそれぞれから投射された映像が、再帰性スクリーン3011の投射面3011aで重なり合って形成される映像(光)の輝度分布を、中央部が帯状に最も暗く、周辺部に向かって次第に明るくなるように補正する。
A video correction method using the projection display device 3050 will be described.
In the present embodiment, the projection video processing unit 3021 functions as a correction mechanism.
The projected image processing unit 3021 shows the luminance distribution of the image (light) formed by overlapping the images projected from each of the three projectors 3013A, 3013B, and 3013C on the projection surface 3011a of the recursive screen 3011. Correction is made so that the band is darkest and gradually becomes brighter toward the periphery.
 それには、投射映像処理部3021では、補正回路3024において、入力された映像情報(映像に関する信号)3061を、補正データ記憶部3023に記録されている、映像の補正に必要なデータに基づいて処理し、映像(光)の輝度分布を補正する。さらに、補正データ記憶部3023には、補正関数の定義も記録されている。投射映像処理部3021では、その補正関数に基づいて、演算により映像情報を補正する。
 補正回路3024で補正された信号は、駆動信号3062として、投射光学部3022に出力され、投射光学部3022にて光に変換されて、その光が、投射部3026の射出面3026aから再帰性スクリーン3011の投射面3011aに投射される。
For this purpose, in the projection video processing unit 3021, the correction circuit 3024 processes the input video information (video-related signal) 3061 based on data necessary for video correction recorded in the correction data storage unit 3023. Then, the luminance distribution of the image (light) is corrected. Further, the correction data storage unit 3023 also records the definition of the correction function. The projection video processing unit 3021 corrects video information by calculation based on the correction function.
The signal corrected by the correction circuit 3024 is output as a drive signal 3062 to the projection optical unit 3022, converted into light by the projection optical unit 3022, and the light is returned from the exit surface 3026a of the projection unit 3026. 3011 is projected onto a projection surface 3011a.
 プロジェクタ3013Aの投射部3026の射出面3026aは、再帰性スクリーン3011の投射面3011aに対して最適な位置に配置される。
 観察位置3030A(プロジェクタ3013Aの下方)において、視聴者3030がプロジェクタ3013Aから再帰性スクリーン3011に投射された映像3071のみを見ると、その映像3071は、図36Aに示すように、輝度分布が、再帰性スクリーン3011の縦方向に沿って中央部が帯状に最も暗く、周辺部に向かって次第に明るくなるように補正されている。
 なお、図36A~図36Cにおいて、映像の輝度が高い場合、その映像を淡色で表示する。また、図36A~図36Cにおいて、映像の輝度が低い場合、その映像を濃色で表示する。
An exit surface 3026a of the projection unit 3026 of the projector 3013A is disposed at an optimal position with respect to the projection surface 3011a of the recursive screen 3011.
When the viewer 3030 sees only the video 3071 projected from the projector 3013A onto the recursive screen 3011 at the observation position 3030A (below the projector 3013A), the video 3071 has a recursive luminance distribution as shown in FIG. 36A. The central portion is corrected to be darkest in a strip shape along the vertical direction of the screen 3011 and gradually brighter toward the peripheral portion.
In FIGS. 36A to 36C, when the luminance of the video is high, the video is displayed in a light color. In FIGS. 36A to 36C, when the luminance of the video is low, the video is displayed in a dark color.
 一方、観察位置3030B(プロジェクタ3013Bの下方)において、視聴者3030がプロジェクタ3013Bから再帰性スクリーン3011に投射された映像3072のみを見ると、その映像3072は、図36Bに示すように、映像3071よりも輝度むらがない。
 また、観察位置3030C(プロジェクタ3013Cの下方)において、視聴者3030がプロジェクタ3013Cから再帰性スクリーン3011に投射された映像3073のみを見ると、その映像3073は、図36Cに示すように、映像3071よりも再帰性スクリーン3011の縦方向に沿って中央部が帯状に最も明るく、周辺部に向かって次第に暗くなっている。
On the other hand, when the viewer 3030 sees only the video 3072 projected on the recursive screen 3011 from the projector 3013B at the observation position 3030B (below the projector 3013B), the video 3072 is displayed from the video 3071 as shown in FIG. 36B. There is no uneven brightness.
In addition, when the viewer 3030 sees only the video 3073 projected from the projector 3013C onto the recursive screen 3011 at the observation position 3030C (below the projector 3013C), the video 3073 is displayed from the video 3071 as shown in FIG. 36C. Also, the central part is brightest in a strip shape along the vertical direction of the recursive screen 3011 and gradually becomes darker toward the peripheral part.
 プロジェクタ3013A、3013B、3013Cから投射された映像3071、3072、3073は、再帰性スクリーン3011の投射面3011aにおいて大きさが等しいので、その投射面3011aで重なり合う。したがって、視聴者3030が、観察位置3030A、3030B、3030Cのいずれの位置においても見ることができる映像は、図37に示すように、映像3071、3072、3073が重なり合って形成される映像3074となる。この映像3074は、輝度分布が、中央部が帯状に最も暗く、周辺部に向かって次第に明るくなっているものの、全体的に輝度むらが緩和され、視野範囲が広く、良好な表示となる。 Since the images 3071, 3072, and 3073 projected from the projectors 3013A, 3013B, and 3013C have the same size on the projection surface 3011a of the recursive screen 3011, they overlap on the projection surface 3011a. Therefore, the video that the viewer 3030 can see at any of the observation positions 3030A, 3030B, and 3030C is a video 3074 formed by overlapping the videos 3071, 3072, and 3073 as shown in FIG. . The video 3074 has a luminance distribution that is darkest in a band at the center and gradually becomes brighter toward the periphery, but the luminance unevenness is reduced as a whole, and the visual field range is wide and the display is good.
 また、補正機構としては、図38に示すように、投射部3026と再帰性スクリーン3011との間に設けられた補正フィルタ3081を用いてもよい。
 補正フィルタ3081は、投射部3026の射出面3026aから再帰性スクリーン3011の投射面3011aに投射される光の透過率を補正するためのものである。投射部3026の射出面3026aから出射された光が補正フィルタ3081を透過すると、その光の輝度分布は、再帰性スクリーン3011の投射面3011aにおいて、再帰性スクリーン3011の縦方向に沿って中央部が帯状に最も暗く、周辺部に向かって次第に明るくなるように補正される。
 なお、補正フィルタ3081を用いる場合、補正回路3024に入力された映像情報3061は、投射映像処理部3021にて補正されることなく、駆動信号3062に変換され、投射光学部3022に出力される。
As a correction mechanism, a correction filter 3081 provided between the projection unit 3026 and the recursive screen 3011 may be used as shown in FIG.
The correction filter 3081 is for correcting the transmittance of light projected from the emission surface 3026a of the projection unit 3026 onto the projection surface 3011a of the recursive screen 3011. When the light emitted from the emission surface 3026a of the projection unit 3026 passes through the correction filter 3081, the luminance distribution of the light has a central portion along the vertical direction of the recursive screen 3011 on the projection surface 3011a of the recursive screen 3011. Correction is performed so that the band is darkest and gradually becomes brighter toward the periphery.
Note that when the correction filter 3081 is used, the video information 3061 input to the correction circuit 3024 is converted into the drive signal 3062 without being corrected by the projection video processing unit 3021, and is output to the projection optical unit 3022.
 本実施形態の投射型表示装置3050によれば、プロジェクタ3013と視聴者3030の眼3031との位置関係の自由度が極めて高くなり、利用価値が向上する。 According to the projection display device 3050 of this embodiment, the degree of freedom in the positional relationship between the projector 3013 and the eye 3031 of the viewer 3030 is extremely high, and the utility value is improved.
(13)第13実施形態
 図39は、第13実施形態の投射型表示装置を示す概略構成図である。図40は、第13実施形態の投射型表示装置のプロジェクタおよび補正機構の一例を示す概略構成図である。
 なお、図39において、図30に示したものと同一構成部分には同一符号を附してその説明を省略する。また、図40において、図31に示したものと同一構成部分には同一符号を附してその説明を省略する。
 本実施形態の投射型表示装置3090は、再帰性スクリーン3011と、再帰性スクリーン3011の投射面3011aの近傍に、その投射面3011aと重なるように配設された指向性散乱スクリーン3012と、指向性散乱スクリーン3012と所定の距離を置いて対向するように配置された3つのプロジェクタ3013(3013A、3013B、3013C)と、補正機構(図示略)とから概略構成されている。
 なお、図39において符号3013で示すものは、プロジェクタ3013の一部を構成する投射部3026である。
(13) 13th Embodiment FIG. 39: is a schematic block diagram which shows the projection type display apparatus of 13th Embodiment. FIG. 40 is a schematic configuration diagram illustrating an example of a projector and a correction mechanism of the projection display apparatus according to the thirteenth embodiment.
39, the same components as those shown in FIG. 30 are denoted by the same reference numerals, and the description thereof is omitted. In FIG. 40, the same components as those shown in FIG. 31 are denoted by the same reference numerals, and the description thereof is omitted.
The projection type display device 3090 of this embodiment includes a recursive screen 3011, a directional scattering screen 3012 disposed in the vicinity of the projection surface 3011a of the recursive screen 3011 so as to overlap the projection surface 3011a, and a directivity. The projector is roughly composed of three projectors 3013 (3013A, 3013B, 3013C) arranged to face the scattering screen 3012 at a predetermined distance and a correction mechanism (not shown).
Note that what is indicated by reference numeral 3013 in FIG. 39 is a projection unit 3026 constituting a part of the projector 3013.
 本実施形態の投射型表示装置3090は、上述の第11実施形態または第12実施形態の投射型表示装置に加えて、視聴者3030の眼3031の位置を検知する位置検知手段3091を備えている。
 本実施形態では、例えば、投射映像処理部3021が補正機構として機能する。
The projection display device 3090 of this embodiment includes position detection means 3091 that detects the position of the eye 3031 of the viewer 3030 in addition to the projection display device of the eleventh embodiment or the twelfth embodiment described above. .
In the present embodiment, for example, the projection video processing unit 3021 functions as a correction mechanism.
 位置検知手段3091としては、例えば、赤外線検知装置、視聴者3030の眼3031の位置を撮影して画像処理により位置を検知する検知装置などが用いられる。 As the position detection unit 3091, for example, an infrared detection device, a detection device that captures the position of the eye 3031 of the viewer 3030 and detects the position by image processing is used.
 投射型表示装置3090による映像の投射方法を説明する。
 位置検知手段3091により、視聴者3030の眼3031の位置が検知されると、眼3031の位置(例えば、観察位置3030A、3030B、3030C)に関するデータが補正回路3024に出力される。
A method of projecting an image by the projection display device 3090 will be described.
When the position of the eye 3031 of the viewer 3030 is detected by the position detection unit 3091, data related to the position of the eye 3031 (eg, observation positions 3030A, 3030B, and 3030C) is output to the correction circuit 3024.
 次いで、投射映像処理部3021により、眼3031の位置(観察位置3030A、3030B、3030C)に応じて、プロジェクタ3013A、3013B、3013Cの中から、最適なプロジェクタが選択される。例えば、視聴者3030の眼3031の位置が観察位置3030Aにある場合、最適なプロジェクタとしてプロジェクタ3013Aが選択される。すると、プロジェクタ3013Aは、図41Aに示すように、再帰性スクリーン3011に映像3101を投射する。
 一方、プロジェクタ3013Aよりも再帰性スクリーン3011に対する距離が離れた位置にあるプロジェクタ3013Bは、図41Bに示すように、再帰性スクリーン3011に映像を投射しないか、もしくは、プロジェクタ3013Aから投射される映像3101よりも大幅に輝度を下げた映像3102を投射する。
 また、プロジェクタ3013Bよりも再帰性スクリーン3011に対する距離が離れた位置にあるプロジェクタ3013Cは、図41Cに示すように、再帰性スクリーン3011に映像を投射しないか、もしくは、プロジェクタ3013Aから投射される映像3101よりも大幅に輝度を下げた映像3103を投射する。
Next, the projection video processing unit 3021 selects an optimal projector from the projectors 3013A, 3013B, and 3013C according to the positions of the eyes 3031 (observation positions 3030A, 3030B, and 3030C). For example, when the position of the eye 3031 of the viewer 3030 is at the observation position 3030A, the projector 3013A is selected as the optimum projector. Then, the projector 3013A projects an image 3101 on the recursive screen 3011 as shown in FIG. 41A.
On the other hand, as shown in FIG. 41B, the projector 3013B located at a position farther from the recursive screen 3011 than the projector 3013A does not project an image on the recursive screen 3011 or an image 3101 projected from the projector 3013A. A video 3102 with a significantly lower brightness is projected.
Further, as shown in FIG. 41C, the projector 3013C at a position farther from the recursive screen 3011 than the projector 3013B does not project an image on the recursive screen 3011 or an image 3101 projected from the projector 3013A. A video 3103 with a much lower brightness is projected.
 プロジェクタ3013A、3013B、3013Cから投射された映像3101、3102、3103は、再帰性スクリーン3011の投射面3011aで重なり合う。したがって、視聴者3030が、観察位置3030A、3030B、3030Cのいずれの位置においても見ることができる映像は、図42に示すように、映像3101、3102、3103が重なり合って形成される映像3104となる。
 この映像3104は、全体的に輝度むらが緩和され、視野範囲が広く、良好な表示となる。
The images 3101, 3102, 3103 projected from the projectors 3013 A, 3013 B, 3013 C overlap on the projection surface 3011 a of the recursive screen 3011. Therefore, the video that can be viewed by the viewer 3030 at any of the observation positions 3030A, 3030B, and 3030C is a video 3104 formed by overlapping the videos 3101, 3102, and 3103 as shown in FIG. .
The video 3104 is alleviated in luminance unevenness as a whole, has a wide visual field range, and is excellent in display.
 本実施形態の投射型表示装置3090によれば、プロジェクタ3013と視聴者3030の眼3031との位置関係の自由度が極めて高くなり、利用価値が向上する。
 また、プロジェクタ3013A、3013B、3013Cから出射される際に映像3101、3102、3103の拡大率を相違させ、再帰性スクリーン3011の投射面3011aにおいて、プロジェクタ3013A、3013B、3013Cから投射された映像3101、3102、3103の大きさが等しくなるように、再帰性スクリーン3011に映像3101、3102、3103を投射するので、視聴者3030の位置(観察位置3030A、3030B、3030C)に応じて、最適なプロジェクタ3013A、3013B、3013Cが切り替わっても、違和感が少ない映像3104を見ることができる。
According to the projection display device 3090 of this embodiment, the degree of freedom in the positional relationship between the projector 3013 and the eye 3031 of the viewer 3030 is extremely high, and the utility value is improved.
Further, when the images 3101, 3102, and 3103 are output from the projectors 3013 </ b> A, 3013 </ b> B, and 3013 </ b> C, the enlargement ratios of the images 3101, 3102, and 3103 are different. Since the images 3101, 3102, and 3103 are projected on the recursive screen 3011 so that the sizes of 3102 and 3103 are equal, an optimal projector 3013 A is selected according to the position of the viewer 3030 ( observation positions 3030 A, 3030 B, and 3030 C). , 3013B and 3013C can be viewed, the video 3104 with less discomfort can be seen.
(14)第14実施形態
 図43A及び図43Bは、第14実施形態の投射型表示装置の一部を示す概略構成図であり、図43Aは側面図、図43Bは平面図である。
 なお、図43A及び図43Bにおいて、図30に示したものと同一構成部分には同一符号を附してその説明を省略する。
 本実施形態の投射型表示装置3100は、再帰性スクリーン3011と、再帰性スクリーン3011の投射面3011aの近傍に、その投射面3011aと重なるように配設された指向性散乱スクリーン3012と、指向性散乱スクリーン3012と所定の距離を置いて対向するように配置された複数のプロジェクタ3013(3013A1~6、3013B1~6、3013C1~6)と、補正機構(図示略)とから概略構成されている。
 なお、図43A及び図43Bにおいて符号3013で示すものは、プロジェクタ3013の一部を構成する投射部3026である。
(14) Fourteenth Embodiment FIGS. 43A and 43B are schematic configuration diagrams showing a part of a projection display apparatus according to a fourteenth embodiment. FIG. 43A is a side view and FIG. 43B is a plan view.
43A and 43B, the same components as those shown in FIG. 30 are denoted by the same reference numerals, and the description thereof is omitted.
The projection type display device 3100 of this embodiment includes a recursive screen 3011, a directional scattering screen 3012 disposed in the vicinity of the projection surface 3011 a of the recursive screen 3011 so as to overlap the projection surface 3011 a, and directivity. A plurality of projectors 3013 (3013A 1-6 , 3013B 1-6 , 3013C 1-6 ) disposed so as to face the scattering screen 3012 at a predetermined distance and a correction mechanism (not shown) are schematically configured. ing.
43A and 43B, reference numeral 3013 indicates a projection unit 3026 that constitutes a part of the projector 3013.
 プロジェクタ3013A1~6は、再帰性スクリーン3011の幅方向に沿って所定の間隔を置いて配置され、1つの列を形成している。
 プロジェクタ3013B1~6は、再帰性スクリーン3011の幅方向に沿って所定の間隔を置いて配置され、1つの列を形成している。
 プロジェクタ3013C1~6は、再帰性スクリーン3011の幅方向に沿って所定の間隔を置いて配置され、1つの列を形成している。
The projectors 3013A 1 to 6 are arranged at predetermined intervals along the width direction of the recursive screen 3011 and form one row.
The projectors 3013B 1 to 6 are arranged at predetermined intervals along the width direction of the recursive screen 3011, and form one row.
The projectors 3013C 1 to 6 are arranged at predetermined intervals along the width direction of the recursive screen 3011 and form one row.
 プロジェクタ3000A、プロジェクタ3000Bおよびプロジェクタ3000Cは、再帰性スクリーン3011側から順に間隔を置いて配置され、1つの行を形成している。
 プロジェクタ3000A、プロジェクタ3000Bおよびプロジェクタ3000Cは、再帰性スクリーン3011側から順に間隔を置いて配置され、1つの行を形成している。
 プロジェクタ3000A、プロジェクタ3000Bおよびプロジェクタ3000Cは、再帰性スクリーン3011側から順に間隔を置いて配置され、1つの行を形成している。
 プロジェクタ3000A、プロジェクタ3000Bおよびプロジェクタ3000Cは、再帰性スクリーン3011側から順に間隔を置いて配置され、1つの行を形成している。
 プロジェクタ3000A、プロジェクタ3000Bおよびプロジェクタ3000Cは、再帰性スクリーン3011側から順に間隔を置いて配置され、1つの行を形成している。
 プロジェクタ3000A、プロジェクタ3000Bおよびプロジェクタ3000Cは、再帰性スクリーン3011側から順に間隔を置いて配置され、1つの行を形成している。
The projector 3000A 1 , the projector 3000B 1 and the projector 3000C 1 are arranged in order from the recursive screen 3011 side, and form one row.
The projector 3000A 2 , the projector 3000B 2 and the projector 3000C 2 are arranged in order from the recursive screen 3011 side, and form one row.
The projector 3000A 3 , the projector 3000B 3 and the projector 3000C 3 are arranged in order from the recursive screen 3011 side, and form one row.
The projector 3000A 4 , the projector 3000B 4 and the projector 3000C 4 are arranged in this order from the recursive screen 3011 side and form one row.
The projector 3000A 5 , the projector 3000B 5 and the projector 3000C 5 are arranged in order from the recursive screen 3011 side, and form one row.
The projector 3000A 6 , the projector 3000B 6 and the projector 3000C 6 are arranged in order from the recursive screen 3011 side, and form one row.
 これにより、プロジェクタ3013A1~6が形成する第1列と、プロジェクタ3013B1~6が形成する第2列と、プロジェクタ3013C1~6が形成する第3列とが、再帰性スクリーン3011側から順に間隔を置いて配置されている。 Thus, the first row of the projector 3013a 1 ~ 6 is formed, the second column the projector 3013 b 1 ~ 6 is formed, the third column the projector 3013C 1 ~ 6 is formed, in order from the retro-screen 3011 side Arranged at intervals.
 投射型表示装置3100による映像の投射方法を説明する。
 例えば、上述の第13実施形態と同様にして、位置検知手段により、視聴者3030の眼3031の位置が検知されると、眼3031の位置(例えば、観察位置3030A、3030B、3030C)に関するデータが、上述の投射映像処理部3021の補正回路3024に出力される。
A method of projecting an image by the projection display device 3100 will be described.
For example, in the same manner as in the thirteenth embodiment described above, when the position of the eye 3031 of the viewer 3030 is detected by the position detection unit, data relating to the position of the eye 3031 (for example, the observation positions 3030A, 3030B, and 3030C) is obtained. , And output to the correction circuit 3024 of the projection video processing unit 3021 described above.
 次いで、投射映像処理部3021により、眼3031の位置(観察位置3030A、3030B、3030C)に応じて、プロジェクタ3013A1~6、3013B1~6、3013C1~6の中から、最適なプロジェクタが選択される。例えば、視聴者3030の眼3031の位置が観察位置3030Aにある場合、最適なプロジェクタとして、プロジェクタ3013Aまたはプロジェクタ3013Aのいずれか一方、あるいは、プロジェクタ3013Aおよびプロジェクタ3013Aの両方が選択される。すると、プロジェクタ3013Aまたはプロジェクタ3013Aのいずれか一方、あるいは、プロジェクタ3013Aおよびプロジェクタ3013Aの両方が、再帰性スクリーン3011に映像を投射する。
 一方、プロジェクタ3013A、3013A以外のプロジェクタ3013は、再帰性スクリーン3011に映像を投射しないか、もしくは、プロジェクタ3013A、3013Aから投射される映像よりも大幅に輝度を下げた映像を投射する。
Then, the projected image processing section 3021, the position of the eye 3031 ( observation position 3030A, 3030B, 3030C) in response to, among projectors 3013A 1 ~ 6, 3013B 1 ~ 6, 3013C 1 ~ 6, the optimal projector selection Is done. For example, when the position of the eye 3031 of the viewer 3030 is at the observation position 3030A, either the projector 3013A 3 or the projector 3013A 4 or both the projector 3013A 3 and the projector 3013A 4 is selected as the optimum projector. . Then, either the projector 3013A 3 or the projector 3013A 4 or both the projector 3013A 3 and the projector 3013A 4 project an image on the recursive screen 3011.
On the other hand, the projector 3013 other than the projectors 3013A 3 and 3013A 4 does not project an image on the recursive screen 3011, or projects an image with a significantly lower brightness than the image projected from the projectors 3013A 3 and 3013A 4. .
 プロジェクタ3013A、3013Aと、それ以外のプロジェクタ3013とから投射された映像は、再帰性スクリーン3011の投射面3011aで重なり合う。したがって、視聴者3030が、再帰性スクリーン3011の投射面3011aに対面する位置のいずれの位置においても見ることができる映像は、プロジェクタ3013A、3013Aとから投射された映像と、それ以外のプロジェクタ3013から投射された映像とが重なり合って形成されるものとなる。この映像は、全体的に輝度むらが緩和され、視野範囲が広く、良好な表示となる。また、映像の輝度が大幅に低下することなく、プロジェクタ3013と視聴者3030の眼3031との位置関係の自由度をさらに高くすることができる。その結果、仮想空間を容易に実現することができる。 Images projected from the projectors 3013A 3 and 3013A 4 and the other projectors 3013 overlap on the projection surface 3011a of the recursive screen 3011. Therefore, images that can be viewed by the viewer 3030 at any position facing the projection surface 3011a of the recursive screen 3011 are images projected from the projectors 3013A 3 and 3013A 4 and other projectors. The image projected from 3013 is formed so as to overlap. This image has a reduced luminance unevenness as a whole, a wide visual field range, and a good display. In addition, the degree of freedom in the positional relationship between the projector 3013 and the eye 3031 of the viewer 3030 can be further increased without significantly reducing the luminance of the video. As a result, a virtual space can be easily realized.
(15)第15実施形態
 図44A及び図44Bは、第15実施形態の投射型表示装置を示す概略構成図であり、図44Aは平面図、図44Bは側面図である。
 なお、図44A及び図44Bにおいて、図30に示したものと同一構成部分には同一符号を附してその説明を省略する。
 本実施形態の投射型表示装置3110は、再帰性スクリーン3011と、再帰性スクリーン3011の投射面3011aの近傍に、その投射面3011aと重なるように配設された指向性散乱スクリーン3012と、指向性散乱スクリーン3012と所定の距離を置いて対向するように配置されたプロジェクタ3013と、補正機構(図示略)とから概略構成されている。
 なお、図44A及び図44Bにおいて符号3013で示すものは、プロジェクタ3013の一部を構成する投射部3026である。
(15) Fifteenth Embodiment FIGS. 44A and 44B are schematic configuration diagrams showing a projection display apparatus according to a fifteenth embodiment. FIG. 44A is a plan view and FIG. 44B is a side view.
44A and 44B, the same components as those shown in FIG. 30 are denoted by the same reference numerals, and the description thereof is omitted.
The projection type display device 3110 of this embodiment includes a recursive screen 3011, a directional scattering screen 3012 disposed in the vicinity of the projection surface 3011 a of the recursive screen 3011 so as to overlap the projection surface 3011 a, and directivity. The projector 3013 is roughly configured by a projector 3013 arranged to face the scattering screen 3012 at a predetermined distance and a correction mechanism (not shown).
44A and 44B, reference numeral 3013 denotes a projection unit 3026 that constitutes a part of the projector 3013.
 投射型表示装置3110による映像の補正方法を説明する。
 まず、プロジェクタ3013の投射部3026を、再帰性スクリーン3011に投射される映像の視聴者の眼3031と離隔して配置する。この時、図44Bに示すように、視聴者の眼3031と投射部3026を結ぶ直線3121を、再帰性スクリーン3011側に延長した直線(延長線)3122が、指向性散乱スクリーン3012の一方の面3012a(再帰性スクリーン3011の投射面3011a)と交差する点を、補正の中心点P3として設定する。
A video correction method using the projection display device 3110 will be described.
First, the projection unit 3026 of the projector 3013 is arranged apart from the viewer's eyes 3031 of the video projected on the recursive screen 3011. At this time, as shown in FIG. 44B, a straight line (extended line) 3122 obtained by extending a straight line 3121 connecting the viewer's eye 3031 and the projection unit 3026 to the recursive screen 3011 side is one surface of the directional scattering screen 3012. A point that intersects 3012a (projection surface 3011a of the recursive screen 3011) is set as a correction center point P3.
 再帰性スクリーン3011の投射面3011aに対する投射部3026の射出面3026aの位置が最適な位置にある場合、図45Aに示すように、補正回路3024に入力される映像情報3061を補正せずに、プロジェクタ3013から再帰性スクリーン3011に投射して得られる映像3131は、輝度むらがなく、輝度が均一である。しかし、このままでは、再帰性スクリーン3011の投射面3011aと投射部3026の射出面3026aとの距離に対して、再帰性スクリーン3011と視聴者の眼3031との距離が小さい場合または大きい場合には、図45Bに示すように、再帰性スクリーン3011に投射される映像3131は、中央部が楕円形状に最も明るく、周縁部に向かって次第に暗くなるという輝度むらを生じる。 When the position of the exit surface 3026a of the projection unit 3026 with respect to the projection surface 3011a of the recursive screen 3011 is in an optimal position, as shown in FIG. 45A, the projector does not correct the video information 3061 input to the correction circuit 3024. An image 3131 obtained by projecting from 3013 onto the recursive screen 3011 has no luminance unevenness and uniform luminance. However, if the distance between the recursive screen 3011 and the viewer's eyes 3031 is small or large with respect to the distance between the projection surface 3011a of the recursive screen 3011 and the exit surface 3026a of the projection unit 3026, As shown in FIG. 45B, the video 3131 projected on the recursive screen 3011 has brightness unevenness in which the central part is brightest in an elliptical shape and gradually becomes darker toward the peripheral part.
 そこで、再帰性スクリーン3011の投射面3011aに対する投射部3026の射出面3026aの位置が最適な位置にある場合に、映像情報3061によって得られる映像3132の輝度分布を、図45Cに示すように、中心点P3を中心とする中央部が楕円形状をなし、その中央部が最も暗く、周縁部に向かって次第に明るくなるように補正する。
 補正回路3024で補正された信号は、駆動信号3062として、投射光学部3022に出力され、投射光学部3022にて光に変換されて、その光が、投射部3026の射出面3026aから再帰性スクリーン3011の投射面3011aに投射される。
 すると、図45Dに示すように、投射部3026から再帰性スクリーン3011に対して投射された映像3133は、再帰性スクリーン3011の投射面3011aと視聴者の眼3031との距離が最適な場合には、輝度分布を補正する前の映像3131と比較すると、輝度むらが若干悪化する。
Therefore, when the position of the exit surface 3026a of the projection unit 3026 with respect to the projection surface 3011a of the recursive screen 3011 is at an optimal position, the luminance distribution of the image 3132 obtained by the image information 3061 is centered as shown in FIG. 45C. The center portion around the point P3 has an elliptical shape, and the center portion is darkest and is corrected so that it gradually becomes brighter toward the peripheral portion.
The signal corrected by the correction circuit 3024 is output as a drive signal 3062 to the projection optical unit 3022, converted into light by the projection optical unit 3022, and the light is returned from the exit surface 3026a of the projection unit 3026. 3011 is projected onto a projection surface 3011a.
Then, as shown in FIG. 45D, when the image 3133 projected from the projection unit 3026 onto the recursive screen 3011 has the optimum distance between the projection surface 3011a of the recursive screen 3011 and the viewer's eyes 3031, Compared with the image 3131 before correcting the luminance distribution, the luminance unevenness is slightly deteriorated.
 一方、再帰性スクリーン3011の投射面3011aに対する投射部3026の射出面3026aの位置が最適な位置にある場合における両者の距離(投射面3011aと射出面3026aとの距離)に対して、再帰性スクリーン3011の投射面3011aと視聴者の眼3031の距離が小さい場合または大きい場合には、映像3133は、輝度むらが軽減された映像として見ることができる。
 すなわち、上述のように再帰性スクリーン3011の投射面3011aに対する投射部3026の射出面3026aの位置が最適な位置にある場合、映像情報3061によって得られる映像3132の輝度分布を補正することより、視聴者の眼3031の位置が、前記の最適な位置を基準として前後にずれても、再帰性スクリーン3011に投射される映像3133は、輝度むらが少なくなり、視野範囲が広くなる。
On the other hand, with respect to the distance between the projection surface 3011a of the projection unit 3026 and the projection surface 3011a of the recursive screen 3011 in the optimum position (distance between the projection surface 3011a and the ejection surface 3026a), the recursive screen. When the distance between the projection surface 3011a 3011 and the viewer's eyes 3031 is small or large, the video 3133 can be viewed as a video with reduced luminance unevenness.
In other words, as described above, when the position of the exit surface 3026a of the projection unit 3026 with respect to the projection surface 3011a of the recursive screen 3011 is in an optimal position, the brightness distribution of the image 3132 obtained by the image information 3061 is corrected, thereby allowing viewing. Even if the position of the person's eye 3031 is shifted back and forth with respect to the optimum position, the image 3133 projected on the recursive screen 3011 has less luminance unevenness and a wider visual field range.
 投射部3026から再帰性スクリーン3011の投射面3011aに投射される映像(光)の輝度分布は、上述の第11実施形態と同様に補正される。 The luminance distribution of the image (light) projected from the projection unit 3026 onto the projection surface 3011a of the recursive screen 3011 is corrected in the same manner as in the above eleventh embodiment.
 本実施形態の投射型表示装置3110によれば、再帰性スクリーン3011の投射面3011aの近傍に、その投射面3011aと重なるように指向性散乱スクリーン3012を配設した場合にも、再帰性スクリーン3011と投射部3026とを結ぶ直線に対する視聴者の眼3031の位置に応じて、補正の中心点P3の位置を設定することにより、再帰性スクリーン3011の投射面3011aに対して最適な位置に配置された投射部3026の射出面3026aよりも前後の位置にずれた位置においても、輝度むらが少ない映像を観察することができる。 According to the projection type display device 3110 of this embodiment, even when the directional scattering screen 3012 is disposed in the vicinity of the projection surface 3011a of the recursive screen 3011 so as to overlap the projection surface 3011a, the recursive screen 3011. By setting the position of the correction center point P3 according to the position of the viewer's eye 3031 with respect to the straight line connecting the projection unit 3026 and the projection unit 3026, it is arranged at an optimal position with respect to the projection surface 3011a of the recursive screen 3011. In addition, an image with less luminance unevenness can be observed even at a position shifted to a position before and after the emission surface 3026a of the projection unit 3026.
 ところで、上記の指向性散乱スクリーン3012などを用いて、再帰性スクリーン3011の反射光を拡散させた場合、拡散度が大きくなるにつれて、映像(光)の輝度むらが大きくなる。
 指向性散乱スクリーン3012を用いない場合、図46Aに示すように、中央部が円形状をなし、その中央部が最も明るく、周縁部に向かって次第に暗くなるような輝度むらを生じる。
 拡散度の小さい指向性散乱スクリーン3012を用いた場合、図46Bに示すように、中央部が楕円形状をなし、その中央部が最も明るく、周縁部に向かって次第に暗くなるような輝度むらを生じる。
 次第に、指向性散乱スクリーン3012の拡散度を大きくしていくと、図46Cに示すように、輝度むらの領域が再帰性スクリーン3011の下端を超える。そして、さらに、指向性散乱スクリーン3012の拡散度を大きくすると、図46Dに示すように、輝度むらの領域が再帰性スクリーン3011の上下端を超える。
By the way, when the reflected light of the recursive screen 3011 is diffused using the directional scattering screen 3012 or the like, the luminance unevenness of the video (light) increases as the diffusivity increases.
When the directional scattering screen 3012 is not used, as shown in FIG. 46A, the central portion has a circular shape, the central portion is brightest, and the brightness unevenness is gradually reduced toward the peripheral portion.
When the directional scattering screen 3012 having a low diffusivity is used, as shown in FIG. 46B, the central portion has an elliptical shape, the central portion is brightest, and the brightness unevenness gradually becomes darker toward the peripheral portion. .
Gradually, when the diffusivity of the directional scattering screen 3012 is increased, the luminance unevenness region exceeds the lower end of the recursive screen 3011 as shown in FIG. 46C. Further, when the diffusivity of the directional scattering screen 3012 is increased, the uneven brightness region exceeds the upper and lower ends of the recursive screen 3011 as shown in FIG. 46D.
(16)第16実施形態
 図47は、第16実施形態の投射型表示装置を示す概略平面図である。
なお、図47において、図30および図44A及び図44Bに示したものと同一構成部分には同一符号を附してその説明を省略する。
 本実施形態の投射型表示装置3140は、再帰性スクリーン3011と、再帰性スクリーン3011の投射面3011aの近傍に、その投射面3011aと重なるように配設された指向性散乱スクリーン3012と、指向性散乱スクリーン3012と所定の距離を置いて対向するように配置されたプロジェクタ3013と、補正機構(図示略)とから概略構成されている。
 なお、図47において符号3013で示すものは、プロジェクタ3013の一部を構成する投射部3026である。
(16) Sixteenth Embodiment FIG. 47 is a schematic plan view showing a projection display apparatus according to a sixteenth embodiment.
47, the same components as those shown in FIGS. 30, 44A, and 44B are denoted by the same reference numerals, and the description thereof is omitted.
The projection type display device 3140 of the present embodiment includes a recursive screen 3011, a directional scattering screen 3012 disposed in the vicinity of the projection surface 3011a of the recursive screen 3011 so as to overlap the projection surface 3011a, and a directivity. The projector 3013 is roughly configured by a projector 3013 disposed so as to face the scattering screen 3012 at a predetermined distance and a correction mechanism (not shown).
In FIG. 47, what is indicated by reference numeral 3013 is a projection unit 3026 that constitutes a part of the projector 3013.
 投射型表示装置3140による映像の補正方法を説明する。
 まず、プロジェクタ3013の投射部3026を、視聴者の眼3031と離隔して配置する。この時、視聴者の眼3031と投射部3026を結ぶ直線を、再帰性スクリーン3011側に延長した直線(延長線)が、再帰性スクリーン3011の投射面3011aと交差する点を、補正の中心点P3として設定する。
A video correction method using the projection display device 3140 will be described.
First, the projection unit 3026 of the projector 3013 is arranged separately from the viewer's eyes 3031. At this time, a point where a straight line (extended line) obtained by extending a straight line connecting the viewer's eyes 3031 and the projection unit 3026 to the recursive screen 3011 intersects the projection surface 3011a of the recursive screen 3011 is a correction center point. Set as P3.
 この補正の中心点P3の設定において、上述の第11実施形態のように、視聴者の眼3031の位置が、再帰性スクリーン3011の投射面3011aに対する投射部3026の射出面3026aの位置が最適な位置に対して前後にずれた場合だけでなく、再帰性スクリーン3011と、最適な位置に配置された投射部3026とを結ぶ直線に対して、上下方向や左右方向にずれた場合にも、補正の中心点P3をずれた位置に合わせて設定する。 In the setting of the correction center point P3, the position of the viewer's eye 3031 is the optimum position of the exit surface 3026a of the projection unit 3026 with respect to the projection surface 3011a of the recursive screen 3011 as in the eleventh embodiment. Not only when the position is shifted back and forth with respect to the position, but also when the position is shifted vertically or horizontally with respect to a straight line connecting the recursive screen 3011 and the projection unit 3026 arranged at the optimum position. The center point P3 is set according to the shifted position.
 例えば、図47に示すように、視聴者の眼3031A11の位置が、再帰性スクリーン3011と、最適な位置に配置された投射部3026とを結ぶ直線上において、その投射部3026よりも後にある場合、図48Bに示すように、再帰性スクリーン3011の投射面3011aの中央部が楕円形状をなし、その中央部が最も明るく、周縁部に向かって次第に暗くなるような輝度むらを生じる。このとき、楕円形状をなす最も明るい領域に、補正の中心点P3を設定する。
 これに対して、図47に示すように、視聴者の眼3031B11の位置が、再帰性スクリーン3011と、最適な位置に配置された投射部3026とを結ぶ直線に対して左側(紙面の左側)にずれた場合、図48Aに示すように、視聴者の眼3031B11と投射部3026を結ぶ直線を、再帰性スクリーン3011側に延長した直線(延長線)が、再帰性スクリーン3011の投射面3011aと交差する点を中心として、その中央部が楕円形状をなし、その中央部が最も明るく、周縁部に向かって次第に暗くなるような輝度むらを生じる。このとき、楕円形状をなす最も明るい領域、すなわち、再帰性スクリーン3011の投射面3011aの右側(紙面の右側)の領域に、補正の中心点P3を設定する。
For example, as shown in FIG. 47, the position of the viewer's eye 3031A 11 is behind the projection unit 3026 on a straight line connecting the recursive screen 3011 and the projection unit 3026 arranged at the optimum position. In this case, as shown in FIG. 48B, the central portion of the projection surface 3011a of the recursive screen 3011 has an elliptical shape, the central portion is brightest, and brightness unevenness that gradually becomes darker toward the peripheral portion is generated. At this time, the correction center point P3 is set in the brightest area having an elliptical shape.
On the other hand, as shown in FIG. 47, the position of the viewer's eye 3031B 11 is on the left side (the left side of the page) with respect to the straight line connecting the recursive screen 3011 and the projection unit 3026 arranged at the optimum position. 48A, as shown in FIG. 48A, a straight line (extension line) obtained by extending a straight line connecting the viewer's eye 3031B 11 and the projection unit 3026 to the recursive screen 3011 side is the projection surface of the recursive screen 3011. Centering on a point that intersects 3011a, the central portion is elliptical, and the central portion is brightest, and brightness unevenness that gradually becomes darker toward the peripheral portion is generated. At this time, the correction center point P3 is set in the brightest area having an elliptical shape, that is, the area on the right side of the projection surface 3011a of the recursive screen 3011 (the right side of the sheet).
 また、図47に示すように、視聴者の眼3031C11の位置が、再帰性スクリーン3011と、最適な位置に配置された投射部3026とを結ぶ直線に対して右側(紙面の右側)にずれた場合、図48Cに示すように、視聴者の眼3031C11と投射部3026を結ぶ直線を、再帰性スクリーン3011側に延長した直線(延長線)が、再帰性スクリーン3011の投射面3011aと交差する点を中心として、その中央部が楕円形状をなし、その中央部が最も明るく、周縁部に向かって次第に暗くなるような輝度むらを生じる。このとき、楕円形状をなす最も明るい領域、すなわち、再帰性スクリーン3011の投射面3011aの左側(紙面の左側)の領域に、補正の中心点P3を設定する。
 また、図47に示すように、視聴者の眼3031D11の位置が、再帰性スクリーン3011と、最適な位置に配置された投射部3026とを結ぶ直線に対して、眼3031C11の位置よりもさらに右側(紙面の右側)にずれた場合、図48Dに示すように、視聴者の眼3031D11と投射部3026を結ぶ直線を、再帰性スクリーン3011側に延長した直線(延長線)が、再帰性スクリーン3011の投射面3011aと交差する点を中心として、その中央部が楕円形状をなし、その中央部が最も明るく、周縁部に向かって次第に暗くなるような輝度むらを生じる。ここでは、楕円形状をなす最も明るい領域における左側(紙面の左側)の部分が、再帰性スクリーン3011の左端(紙面の左端)を超える。このとき、楕円形状をなす最も明るい領域、すなわち、再帰性スクリーン3011の投射面3011aの左側(紙面の左側)の領域に、補正の中心点P3を設定する。
Further, as shown in FIG. 47, the position of the viewer's eyes 3031C 11 is shifted rightward (toward the right) to a straight line connecting the retro-screen 3011, a projection portion 3026 disposed in the optimum position and if, as shown in FIG. 48C, intersects the eye 3031C 11 of viewer straight line connecting the projection portion 3026, a straight line obtained by extending the recursive screen 3011 side (extension) is a projection surface 3011a of the retro-screen 3011 The center portion is elliptical with the point to be centered, and the center portion is the brightest, and brightness unevenness that gradually becomes darker toward the peripheral portion is generated. At this time, the correction center point P3 is set in the brightest area having an elliptical shape, that is, the area on the left side of the projection surface 3011a of the recursive screen 3011 (the left side of the sheet).
Further, as shown in FIG. 47, the position of the viewer's eye 3031D 11 is more than the position of the eye 3031C 11 with respect to a straight line connecting the recursive screen 3011 and the projection unit 3026 arranged at the optimum position. Furthermore, when shifted to the right (toward the right), as shown in FIG. 48D, the straight line connecting the projection portion 3026 eye 3031D 11 viewers, straight lines extending in retro-screen 3011 side (extension) is recursive Centering on the point intersecting the projection surface 3011a of the reflective screen 3011, the central part is elliptical, the central part is brightest, and the brightness unevenness gradually becomes darker toward the peripheral part. Here, the left side (left side of the drawing) of the brightest area having an elliptical shape exceeds the left end (left end of the drawing) of the recursive screen 3011. At this time, the correction center point P3 is set in the brightest area having an elliptical shape, that is, the area on the left side of the projection surface 3011a of the recursive screen 3011 (the left side of the sheet).
 このように、再帰性スクリーン3011の投射面3011aに設定する補正の中心点P3の位置を、視聴者の眼3031の位置が、再帰性スクリーン3011と、最適な位置に配置された投射部3026とを結ぶ直線に対してずれた方向とは反対側の方向とする。 As described above, the position of the correction center point P3 set on the projection surface 3011a of the recursive screen 3011 is set such that the position of the viewer's eye 3031 is the recursive screen 3011 and the projection unit 3026 arranged at the optimum position. The direction opposite to the direction shifted from the straight line connecting
 投射部3026から再帰性スクリーン3011の投射面3011aに投射される映像(光)の輝度分布は、上述の第11実施形態と同様に補正される。 The luminance distribution of the image (light) projected from the projection unit 3026 onto the projection surface 3011a of the recursive screen 3011 is corrected in the same manner as in the above eleventh embodiment.
 本実施形態の投射型表示装置3140によれば、再帰性スクリーン3011と投射部3026とを結ぶ直線に対する視聴者の眼3031の位置に応じて、補正の中心点P3の位置を設定することにより、再帰性スクリーン3011の投射面3011aに対して最適な位置に配置された投射部3026の射出面3026aよりも前後の位置、並びに、再帰性スクリーン3011と投射部3026とを結ぶ直線に対して上下方向または左右方向にずれた位置においても、輝度むらが少ない映像を観察することができる。 According to the projection display device 3140 of this embodiment, by setting the position of the correction center point P3 according to the position of the viewer's eye 3031 with respect to the straight line connecting the recursive screen 3011 and the projection unit 3026, Up and down direction with respect to a position before and after the exit surface 3026a of the projection unit 3026 arranged at an optimal position with respect to the projection surface 3011a of the recursive screen 3011 and a straight line connecting the recursive screen 3011 and the projection unit 3026 Alternatively, an image with little luminance unevenness can be observed even at a position shifted in the left-right direction.
 ところで、再帰性スクリーン3011の投射面3011aに投射される映像(光)の輝度むらは、再帰性スクリーン3011、プロジェクタ3013および視聴者の眼3031の相対位置や角度、並びに、再帰性スクリーン3011の再帰反射光の指向性などによって決まる。再帰性スクリーン3011の再帰反射光の指向性は、それぞれに固有の(既知の)ものであるので、再帰性スクリーン3011、プロジェクタ3013および視聴者の眼3031の相対位置や角度を把握することによって、映像(光)の輝度分布を補正することができる。 By the way, the luminance unevenness of the image (light) projected on the projection surface 3011a of the recursive screen 3011 includes the relative positions and angles of the recursive screen 3011, the projector 3013, and the viewer's eyes 3031, and the recursive screen 3011 recursively. It depends on the directivity of the reflected light. Since the directivity of the retroreflected light of the recursive screen 3011 is unique (known), the relative position and angle of the recursive screen 3011, the projector 3013, and the viewer's eye 3031 can be grasped. The luminance distribution of the video (light) can be corrected.
 以下、図面を参照して、本発明の第17~第24実施形態に係る指向性反射スクリーン、およびこれを備えた画像表示装置の一実施形態について説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, with reference to the drawings, embodiments of directional reflective screens according to 17th to 24th embodiments of the present invention and image display apparatuses including the directional reflective screens will be described. The following embodiments are specifically described for better understanding of the gist of the invention, and do not limit the present invention unless otherwise specified. In addition, in the drawings used in the following description, in order to make the features of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for the sake of convenience. Not necessarily.
(17)第17実施形態
 図49は、本実施形態の指向性反射スクリーンの構成を示す要部拡大斜視図である。
 指向性反射スクリーン4010は、例えばプロジェクターなどの画像投影手段から投影された入射光(画像光)を水平方向Hに沿って集光し、入射光(画像光)の入射方向に向けて再び反射させる(再帰性)水平反射部4011と、この水平反射光を垂直方向Pに沿って拡散させる垂直拡散部4012とを備えている。
(17) Seventeenth Embodiment FIG. 49 is an enlarged perspective view of the main part showing the configuration of the directional reflective screen of this embodiment.
The directional reflection screen 4010 condenses incident light (image light) projected from an image projection unit such as a projector along the horizontal direction H and reflects it again toward the incident direction of the incident light (image light). (Recursive) A horizontal reflection unit 4011 and a vertical diffusion unit 4012 that diffuses the horizontal reflected light along the vertical direction P are provided.
 水平反射部4011と垂直拡散部4012とは互いに異なる面で広がり、かつ重なるように形成されている。そして、水平反射部4011と垂直拡散部4012とは、接合面(貼り合わせ面)4015を介して接合され、シート状に一体とされている。
 こうした指向性反射スクリーン4010は、垂直拡散部4012側が画像投影手段から投影された入射光の入射面、かつ、反射された反射光の出射面とされる。
The horizontal reflection part 4011 and the vertical diffusion part 4012 are formed so as to spread and overlap on different surfaces. The horizontal reflection portion 4011 and the vertical diffusion portion 4012 are joined via a joining surface (bonding surface) 4015, and are integrated into a sheet shape.
Such a directional reflection screen 4010 has an incident surface for incident light projected from the image projection unit and an exit surface for reflected light reflected on the vertical diffusion unit 4012 side.
 図50に示すように、水平反射部4011は、互いに所定の角度θ、例えば90°で交わる2つの反射面4011a、4011bを複数組配列したものからなる。即ち、プリズム形状を連続させ、その交線となる稜線が垂直方向Pに沿って延びるように配置されたものである。こうした水平反射部4011の例としては、輝度上昇フィルムBEFII(住友スリーエム株式会社)などを好ましく適用することができる。 As shown in FIG. 50, the horizontal reflecting portion 4011 is formed by arranging a plurality of sets of two reflecting surfaces 4011a and 4011b intersecting each other at a predetermined angle θ, for example, 90 °. That is, the prism shapes are made continuous and the ridgelines that intersect with the prism shapes are arranged so as to extend along the vertical direction P. As an example of such a horizontal reflecting portion 4011, a brightness enhancement film BEFII (Sumitomo 3M Co., Ltd.) or the like can be preferably applied.
 また、反射光を増やすため、図50においてプリズム形状のプロジェクター側(以下、表面S41と称する場合がある)あるいは、裏面S42がミラー(鏡面)となっていても良い。上述した輝度上昇フィルムBEFIIは樹脂で形成されているため、プリズム形状に入射してきた光の角度によっては、光が反射せず、透過してしまう虞がある。したがって、プリズム形状にミラーを付け加えることによって、反射光の光量を増加させることができる。このミラーは、例えばアルミニウムを図50に示すプリズム形状の表面、あるいは裏面に蒸着することで容易に形成することができる。 Further, in order to increase the reflected light, the prism-shaped projector side (hereinafter sometimes referred to as the front surface S41) or the back surface S42 in FIG. 50 may be a mirror (mirror surface). Since the above-described brightness enhancement film BEFII is made of resin, depending on the angle of the light incident on the prism shape, the light may not be reflected and may be transmitted. Therefore, the amount of reflected light can be increased by adding a mirror to the prism shape. This mirror can be easily formed, for example, by vapor-depositing aluminum on the prism-shaped surface or back surface shown in FIG.
 垂直拡散部4012は、例えば、水平方向Hに沿って延びる蒲鉾状のレンズ4012aを垂直方向Pに複数並べたレンズ群からなるレンチキュラーシートから構成されていればよい。
こうした垂直拡散部4012の屈折率n3は1.5前後のものが一般的であるが、その他の値であっても良い。
The vertical diffusing unit 4012 only needs to be composed of, for example, a lenticular sheet including a lens group in which a plurality of bowl-shaped lenses 4012a extending in the horizontal direction H are arranged in the vertical direction P.
The vertical diffusion portion 4012 generally has a refractive index n3 of around 1.5, but may have other values.
 図50に示すように指向性反射スクリーン4010に例えばプロジェクター(画像投影手段)4030などから入射光(画像光)Lが入射すると、入射光Lは垂直拡散部4012を透過して水平反射部4011に達する。水平反射部4011に達した入射光Lは、互いに交わる2つの反射面4011a、4011bに順次反射され、水平方向Hには入射した方向に反射される。従って、水平反射部4011全面に達した入射光Lは、水平方向Hにはプロジェクター4030の光出射位置に集光拡散される。 As shown in FIG. 50, when incident light (image light) L is incident on the directional reflection screen 4010 from, for example, a projector (image projection unit) 4030 or the like, the incident light L is transmitted through the vertical diffusing unit 4012 and is incident on the horizontal reflecting unit 4011. Reach. Incident light L reaching the horizontal reflecting portion 4011 is sequentially reflected by two reflecting surfaces 4011a and 4011b intersecting each other, and reflected in the incident direction in the horizontal direction H. Therefore, the incident light L that reaches the entire surface of the horizontal reflecting portion 4011 is condensed and diffused at the light emitting position of the projector 4030 in the horizontal direction H.
 一方、垂直拡散部4012は、それぞれの蒲鉾状のレンズが反射面4011a、4011bの交線と直交するように延びており、水平反射部4011で反射された水平方向指向性を保った反射光Mは、それぞれのレンズ4012aによって垂直方向Pに向かって拡散され、プロジェクター4030の光出射方向に戻る。こうした構造によって、プロジェクター4030の直下に画像の観察者がいた場合でも、指向性反射スクリーン4010に投影された画像を観察することが出来る。 On the other hand, the vertical diffusing unit 4012 extends so that each bowl-shaped lens is orthogonal to the intersecting line of the reflecting surfaces 4011a and 4011b, and the reflected light M that retains the horizontal directivity reflected by the horizontal reflecting unit 4011. Are diffused in the vertical direction P by the respective lenses 4012a and returned to the light emitting direction of the projector 4030. With such a structure, an image projected on the directional reflection screen 4010 can be observed even when an image observer is directly under the projector 4030.
 こうしたプロジェクター(画像投影手段)4030を、例えば右眼用プロジェクター4030Lと左眼用プロジェクター4030Rの2つのプロジェクターを用い、指向性反射スクリーン4010と組み合わせて画像表示装置4001を構成する。そして、これら2つのプロジェクター4030L、4030Rからそれぞれ両眼の視差に対応した画像を投影することによって、図51に示すように、観察者が立体視メガネなど特殊な器具を用いなくても、立体的な画像を観察可能な3D画像表示装置を実現できる。 Such a projector (image projection means) 4030 is composed of, for example, two projectors, a right-eye projector 4030L and a left-eye projector 4030R, and is combined with a directional reflection screen 4010 to constitute an image display device 4001. Then, by projecting images corresponding to the parallax of both eyes from these two projectors 4030L and 4030R, as shown in FIG. 51, a stereoscopic image can be obtained even if the observer does not use special instruments such as stereoscopic glasses. 3D image display device capable of observing various images can be realized.
 再び図49を参照して、指向性反射スクリーン4010を構成する垂直拡散部4012の表面、即ち入射光の入射面には、反射防止体4013が形成されている。図52は、反射防止体を示す拡大断面図である。反射防止体4013は、例えば、微細な円錐形状の突起4013aを多数配列したものからなる(図66に示す顕微鏡写真を参照)。例えば、反射防止体4013はモスアイ(蛾の複眼)構造となっており、こうした微細な突起4013aによって、空気層を伝播してきた入射光が、屈折率の急激な変化によって垂直拡散部4012に入射せずに反射されてしまうことを防止する。 Referring to FIG. 49 again, an antireflection body 4013 is formed on the surface of the vertical diffusion portion 4012 constituting the directional reflection screen 4010, that is, the incident light incident surface. FIG. 52 is an enlarged cross-sectional view showing an antireflection body. The antireflection body 4013 is formed, for example, by arranging a large number of fine conical projections 4013a (see the micrograph shown in FIG. 66). For example, the antireflector 4013 has a moth-eye structure, and incident light that has propagated through the air layer is incident on the vertical diffuser 4012 due to a sudden change in refractive index due to such fine protrusions 4013a. To prevent reflection.
 反射防止体4013を構成するモスアイ構造とは、例えば、高さhが数百nm程度の凹凸構造であり、プロジェクターからの入射光の波長をλ、凹凸の形成周期(形成ピッチ)をaとすると、a<λとなるように設計されている。 The moth-eye structure constituting the antireflection body 4013 is, for example, a concavo-convex structure having a height h of about several hundreds of nanometers, where the wavelength of incident light from the projector is λ, and the formation period (formation pitch) of the concavo-convex is a. , A <λ.
 ここで、図53に示すように、空気層401(屈折率n1=1)とガラス基板402(屈折率n2)との間に、高さhのモスアイ構造をもつ反射防止体403が形成されている場合を想定すると、モスアイ構造内での屈折率は図53の右側に示したグラフのように、1からn2へと緩やかに変化することが一般的に知られている。 Here, as shown in FIG. 53, an antireflection body 403 having a moth-eye structure with a height h is formed between the air layer 401 (refractive index n1 = 1) and the glass substrate 402 (refractive index n2). It is generally known that the refractive index in the moth-eye structure changes gradually from 1 to n2, as shown in the graph shown on the right side of FIG.
 こうしたモスアイ構造が無く、空気層とガラス基板が直接接触している場合には、空気層とガラス基板の屈折率差に応じた表面反射が発生するが、図53のようにモスアイ構造を垂直拡散部の表面、即ち垂直拡散部と空気層との間に形成することによって、表面反射を抑制することが出来る。 When there is no such moth-eye structure and the air layer and the glass substrate are in direct contact, surface reflection occurs depending on the refractive index difference between the air layer and the glass substrate, but the moth-eye structure is vertically diffused as shown in FIG. Surface reflection can be suppressed by forming the surface of the portion, that is, between the vertical diffusion portion and the air layer.
 同様に、プロジェクターから出射された光(入射光)が指向性反射スクリーン4010に入射する場合も、プロジェクターからの入射光は、モスアイ構造が形成された反射防止体4013(屈折率n3)の界面に到達するが、こうしたモスアイ構造により、屈折率がn1からn3へ緩やかに変化するため、表面反射が抑制され、プロジェクターから出射された光(入射光)の殆どが反射する(損失する)ことなく、垂直拡散部4012に入射され、水平反射部4011に達することができる。 Similarly, when light (incident light) emitted from the projector enters the directional reflection screen 4010, the incident light from the projector is incident on the interface of the antireflection body 4013 (refractive index n3) on which the moth-eye structure is formed. However, since the refractive index gradually changes from n1 to n3 by such a moth-eye structure, surface reflection is suppressed, and most of the light (incident light) emitted from the projector is not reflected (lost). The light is incident on the vertical diffusion unit 4012 and can reach the horizontal reflection unit 4011.
 これらの作用と同等の効果を得るために、屈折率を段階的に変化させることも好ましい。即ち、空気層の屈折率n1=1.0とした時に、反射防止体4013の屈折率n2=1.3、垂直拡散部4012の屈折率n3=1.5など、反射防止体4013の屈折率が空気層よりも大きく、またも垂直拡散部4012の屈折率が反射防止体4013よりも大きくなるような材料を用い、屈折率を段階的に変化させる構成も好ましい。 In order to obtain the same effect as these functions, it is also preferable to change the refractive index stepwise. That is, when the refractive index n1 of the air layer is 1.0, the refractive index n2 of the antireflection body 4013 is 1.3, the refractive index n3 of the vertical diffusion part 4012 is 1.5, and the refractive index of the antireflection body 4013. It is also preferable to use a material in which the refractive index of the vertical diffusion portion 4012 is larger than that of the air layer and the refractive index of the vertical diffusion portion 4012 is changed stepwise by using a material that is larger than that of the antireflection body 4013.
 以上のように、本発明の指向性反射スクリーン、画像表示装置によれば、プロジェクターなど画像投影手段から出射された光(入射光)が指向性反射スクリーン4010に入射する際に、垂直拡散部4012の表面に反射防止体4013が形成されているので、表面反射が抑制され、入射光が殆ど反射されることなく垂直拡散部4012に入射され、水平反射部4011に達することができる。これによって、より高画質の表示映像を得ることができる。 As described above, according to the directional reflection screen and the image display device of the present invention, when the light (incident light) emitted from the image projection unit such as a projector enters the directional reflection screen 4010, the vertical diffusion unit 4012 is used. Since the antireflection body 4013 is formed on the surface, the surface reflection is suppressed, and the incident light is incident on the vertical diffusing unit 4012 without being reflected and can reach the horizontal reflecting unit 4011. As a result, a higher quality display image can be obtained.
 また、プロジェクター(画像投影手段)4030を、例えば右眼用プロジェクター4030Lと左眼用プロジェクター4030Rの2つのプロジェクターを用いた立体表示装置において、垂直拡散部4012の表面での反射光を抑制することによって、右目用映像と左目用映像とが混入(クロストーク)することで画像の品位を劣化することがなく、高品位で鮮明な立体画像を投影することが可能になる。 Further, in the stereoscopic display device using the projector (image projection unit) 4030, for example, two projectors, a right eye projector 4030L and a left eye projector 4030R, by suppressing reflected light on the surface of the vertical diffusion unit 4012. Since the right-eye video and the left-eye video are mixed (crosstalk), it is possible to project a high-quality and clear stereoscopic image without deteriorating the quality of the image.
 図65A、図65Bに示すように、上述した指向性反射スクリーン4010は、複数の観察者4000A、4000B、4000Cのそれぞれに対応したプロジェクター4030a、4030b、4030cによって、観察者ごとに互いに異なる画像、あるいは異なる視点の画像をクロストークすることなく鮮明に投影することもできる。 As shown in FIGS. 65A and 65B, the above-described directional reflection screen 4010 has different images for each observer, depending on the projectors 4030a, 4030b, and 4030c corresponding to the plurality of observers 4000A, 4000B, and 4000C. Images from different viewpoints can be projected clearly without crosstalk.
 即ち、観察者4000Aに対してはプロジェクター4030aから投影され、指向性反射スクリーン4010で反射された画像光(反射光)A4のみ観察できる。また、観察者4000Bに対してはプロジェクター4030bから投影され、指向性反射スクリーン4010に垂直に入射した光であって、指向性反射スクリーン4010で垂直反射された画像光(反射光)B4のみ観察できる。更に観察者4000Cに対してはプロジェクター4030cから投影され、指向性反射スクリーン4010で反射された画像光(反射光)C4のみ観察できる。 That is, only the image light (reflected light) A4 projected from the projector 4030a and reflected by the directional reflective screen 4010 can be observed for the observer 4000A. For the observer 4000B, only image light (reflected light) B4 projected from the projector 4030b and perpendicularly incident on the directional reflection screen 4010 and vertically reflected by the directional reflection screen 4010 can be observed. . Further, only the image light (reflected light) C4 projected from the projector 4030c and reflected by the directional reflective screen 4010 can be observed for the observer 4000C.
 これによって、複数の観察者のそれぞれに適切な画像を、1つの指向性反射スクリーン4010で鮮明に観察することができる。例えば、プロジェクター4030aから投影された投影光が指向性反射スクリーン4010に入射する前に表面反射され、観察者4000Cの方向に向かってしまい、観察者4000Cが本来観察する画像光(反射光)C4と混合(クロストーク)して画像を劣化させることを効果的に防止することができる。 Thereby, an image suitable for each of a plurality of observers can be clearly observed on one directional reflection screen 4010. For example, the projection light projected from the projector 4030a is surface-reflected before entering the directional reflection screen 4010 and is directed toward the observer 4000C, and image light (reflected light) C4 originally observed by the observer 4000C. It is possible to effectively prevent image deterioration due to mixing (crosstalk).
 なお、こうした反射防止体4013は、垂直拡散部4012の表面に一体に形成されていても、あるいはシート状の反射防止体4013を垂直拡散部4012の表面に貼着するなどして形成されていても良い。
 以下、反射防止体の他の実施形態を例示する。
Note that such an antireflection body 4013 is formed integrally with the surface of the vertical diffusion portion 4012 or is formed by sticking a sheet-like antireflection body 4013 to the surface of the vertical diffusion portion 4012. Also good.
Hereinafter, other embodiments of the antireflection body will be exemplified.
(18)第18実施形態
 図54は、第18実施形態の指向性反射スクリーンの構成を示す要部拡大斜視図である。
 この指向性反射スクリーン4040は、蒲鉾状のレンズ4041aを垂直方向に複数並べたレンズ群を備えたレンチキュラーシートからなる垂直拡散部4041と、プリズム反射シートからなる水平反射部4042とが接合されてなる。そして、垂直拡散部4041の表面には、モスアイ構造を多数形成した反射防止体4043が、平坦化層4044を介して形成されている
(18) Eighteenth Embodiment FIG. 54 is an essential part enlarged perspective view showing a configuration of a directional reflective screen according to an eighteenth embodiment.
The directional reflection screen 4040 is formed by joining a vertical diffusion unit 4041 made of a lenticular sheet having a lens group in which a plurality of bowl-shaped lenses 4041a are arranged in the vertical direction and a horizontal reflection unit 4042 made of a prism reflection sheet. . An antireflection body 4043 having a large number of moth-eye structures is formed on the surface of the vertical diffusion portion 4041 through a planarization layer 4044.
 平坦化層4044は、隣接する蒲鉾状のレンズ4041aどうしの境界部分の溝を埋め、反射防止体4043が形成される側に平坦面Fを形成する。これによって、反射防止体4043に大きな凹凸が生じることなく平坦に形成することができ、所定の反射防止機能を発揮することができる。 The flattening layer 4044 fills the groove at the boundary portion between the adjacent bowl-shaped lenses 4041a, and forms the flat surface F on the side where the antireflection body 4043 is formed. Accordingly, the antireflection body 4043 can be formed flat without causing large unevenness, and a predetermined antireflection function can be exhibited.
 こうした平坦化層4044は、例えば空気層の屈折率n1=1、反射防止体4043の屈折率n2=1.3、垂直拡散部4041の屈折率n3=1.5としたときに、反射防止体4043の屈折率よりも大きく、かつ垂直拡散部4041の屈折率よりも小さい屈折率の材料から構成されればよい。これによって、空気層から入射した入射光は、反射防止体4043、平坦化層4044と進むにつれて段階的に屈折率が大きくなり、急激な屈折率の変化によって入射光が水平反射部4042に達する前に反射されてしまうことを防止できる。 Such a flattening layer 4044 has an antireflector when the refractive index n1 of the air layer is 1, the refractive index n2 of the antireflector 4043 is 1.3, and the refractive index n3 of the vertical diffuser 4041 is 1.5. What is necessary is just to be comprised from the material of the refractive index larger than the refractive index of 4043, and smaller than the refractive index of the vertical diffusion part 4041. As a result, the incident light incident from the air layer gradually increases in refractive index as it travels to the antireflection body 4043 and the flattening layer 4044, and before the incident light reaches the horizontal reflecting portion 4042 due to a sudden change in refractive index. Can be prevented from being reflected.
(19)第19実施形態
 第17実施形態に示したプリズム形状(合わせ鏡構造)以外にも、例えば、図55Aに示すように、立体反射部であるコーナーキューブ(立方体プリズム)4051から構成してもよい。こうしたコーナーキューブ(立体反射部)4051を微細ピッチ(通常、ナノメートル(nm)オーダー~マイクロメートル(μm)オーダー)で縦横に配列されたコーナーキューブシート(プリズムシート)4052から立体反射部を構成すればよい(図55B参照)。
(19) Nineteenth Embodiment In addition to the prism shape (matching mirror structure) shown in the seventeenth embodiment, for example, as shown in FIG. 55A, it is composed of a corner cube (cubic prism) 4051 which is a three-dimensional reflection portion. Also good. A three-dimensional reflection portion is constructed from corner cube sheets (prism sheets) 4052 in which such corner cubes (three-dimensional reflection portions) 4051 are arranged vertically and horizontally at a fine pitch (usually nanometer (nm) order to micrometer (μm) order). (See FIG. 55B).
 このコーナーキューブ(立体反射部)4051は、3つの反射面(第1ミラー面4051a、第2ミラー面4051b、第3ミラー面4051cが、第1ミラー面4051a、第2ミラー面4051bが第17実施形態のプリズム形状と同様に、そして第3ミラー面4051cが第1ミラー面4051a、第2ミラー面4051bとそれぞれ垂直になるように形成されている。左目用プロジェクターであるプロジェクター4056から出射されコーナーキューブ4051に入射した入射光は、全ての反射面(3つの面)に順次当たる(図中で反射を示す記号m1~m3参照)。そして、入射光の入射方向に向けて反射光を出射させる。 This corner cube (stereoscopic reflecting portion) 4051 has three reflecting surfaces (first mirror surface 4051a, second mirror surface 4051b, third mirror surface 4051c, first mirror surface 4051a, second mirror surface 4051b in the 17th embodiment. The third mirror surface 4051c is formed so as to be perpendicular to the first mirror surface 4051a and the second mirror surface 4051b, respectively, in the same manner as the prism shape of the embodiment, and is emitted from the projector 4056 which is a left eye projector. Incident light incident on 4051 sequentially hits all reflective surfaces (three surfaces) (see symbols m1 to m3 indicating reflection in the figure), and the reflected light is emitted in the incident direction of the incident light.
 図63A、図63Bには、こうしたコーナーキューブ4051を多数配列したコーナーキューブシート4052を用いた画像表示装置4054を示す。図63Aは垂直方向に沿った上面から見た図であり、図63Bは水平方向に沿った側面から見た図である。コーナーキューブシート4052は、プロジェクター(画像投影手段)4056からコーナーキューブシート4052を備えた指向性反射スクリーン4059に入射された入射光L43(図中の実線参照)を水平方向および垂直方向ともに指向性を保ったまま反射させる(図中の点線参照)。なお、この図63A、図63Bにおいては、コーナーキューブシート4052に入射された入射光L43(図中の実線)と、コーナーキューブシート4052で反射された反射光L44(図中の点線参照)を、見易いようにずらして表現しているが、実際には重なった範囲である。 63A and 63B show an image display device 4054 using a corner cube sheet 4052 in which a large number of such corner cubes 4051 are arranged. 63A is a view as seen from the top surface along the vertical direction, and FIG. 63B is a view as seen from the side surface along the horizontal direction. The corner cube sheet 4052 has directivity in both the horizontal direction and the vertical direction from the incident light L43 (see the solid line in the figure) incident on the directional reflection screen 4059 provided with the corner cube sheet 4052 from the projector (image projection means) 4056. Reflect while keeping (see dotted line in the figure). 63A and 63B, incident light L43 incident on the corner cube sheet 4052 (solid line in the figure) and reflected light L44 reflected on the corner cube sheet 4052 (see the dotted line in the figure) Although it is expressed so as to be easy to see, it is actually an overlapped range.
 このような構成によって、プロジェクター4056から出射された光は、コーナーキューブシート4052によってプロジェクター4056の方向に反射される。従って、本実施形態においては、プロジェクター4056の近傍でのみ選択的に映像を、観察者の目4000により観察することができる。そして、こうしたコーナーキューブシート4055を用いた画像表示装置4054においても、コーナーキューブシート4052の表面には、反射防止体4058が設けられている。コーナーキューブシート4052の表面に反射防止体4058を設けることによって、プロジェクター(画像投影手段)4056から出射された光の一部がコーナーキューブシート4052表面で正反射されてしまうことを防止し、鮮明な画像を表示することが可能になる。また、水平方向だけでなく、垂直方向の指向性も保持される。 With this configuration, the light emitted from the projector 4056 is reflected by the corner cube sheet 4052 toward the projector 4056. Therefore, in this embodiment, an image can be selectively observed with the observer's eyes 4000 only in the vicinity of the projector 4056. Also in the image display device 4054 using such a corner cube sheet 4055, an antireflection body 4058 is provided on the surface of the corner cube sheet 4052. By providing the anti-reflection body 4058 on the surface of the corner cube sheet 4052, it is possible to prevent a part of the light emitted from the projector (image projection means) 4056 from being regularly reflected on the surface of the corner cube sheet 4052. An image can be displayed. Further, not only the horizontal direction but also the directivity in the vertical direction is maintained.
 なお、図55Bに示すように、コーナーキューブシート4052の表面に、更にレンチキュラーシートなどからなる垂直拡散部4053を形成することも好ましい。コーナーキューブシート4052は、水平方向だけでなく、垂直方向の指向性も保持する。このような実施形態では、反射防止体4058は、コーナーキューブシート4052の表面、または垂直拡散部4053の表面に形成されていれば良い。垂直拡散部4053の拡散レンズ表面で、プロジェクター4056から照射される光は、上下方向に拡散される。コーナーキューブシート4052の表面に垂直拡散部4053を形成することによって、プロジェクター4056の近傍に加えて、プロジェクター4056の垂直方向に沿った広い範囲で鮮明な映像を、観察者の左目406で観察することが可能になる。なお、符号404は、コーナーキューブシート4052で反射され、垂直拡散部4053の拡散レンズで拡散された光を示す。 As shown in FIG. 55B, it is also preferable to further form a vertical diffusion portion 4053 made of a lenticular sheet or the like on the surface of the corner cube sheet 4052. The corner cube sheet 4052 retains not only the horizontal direction but also the directivity in the vertical direction. In such an embodiment, the antireflection body 4058 may be formed on the surface of the corner cube sheet 4052 or the surface of the vertical diffusion portion 4053. The light emitted from the projector 4056 is diffused in the vertical direction on the surface of the diffusion lens of the vertical diffusion unit 4053. By forming the vertical diffusion portion 4053 on the surface of the corner cube sheet 4052, in addition to the vicinity of the projector 4056, a clear image in a wide range along the vertical direction of the projector 4056 can be observed with the left eye 406 of the observer. Is possible. Reference numeral 404 denotes light reflected by the corner cube sheet 4052 and diffused by the diffusion lens of the vertical diffusion unit 4053.
(20)第20実施形態
 図56に示すように、垂直拡散部4061に形成した反射防止体4062を構成する微細な凹凸(突起)4062aは、垂直拡散部4061の垂直方向Pに向けて延びる細長い突条から構成されていてもよい。
(20) Twentieth Embodiment As shown in FIG. 56, fine irregularities (projections) 4062a constituting the antireflection body 4062 formed in the vertical diffusion portion 4061 are elongated and extend in the vertical direction P of the vertical diffusion portion 4061. You may be comprised from a protrusion.
(21)第21実施形態
 図57に示す指向性反射スクリーン4070は、第17実施形態と同様に水平反射部4071と、垂直拡散部4072とを接合してなるが、垂直拡散部4072は表面が蒲鉾状のレンチキュラーシート(屈折率n2)であり、この垂直拡散部4072の上に低反射層(反射防止体:屈折率n3)4073を形成した例である。ここで、図57のA-A付近の拡大図を図58に示す。また、プロジェクター(画像投影手段)からの光を1と設定し、空気の屈折率n1=1、n2=1.4、n3=1.5とすると、空気層と低反射層4073との界面での反射R1は下記の式(1)で表される。
(21) Twenty-first embodiment A directional reflecting screen 4070 shown in FIG. 57 is formed by joining a horizontal reflecting portion 4071 and a vertical diffusing portion 4072 as in the seventeenth embodiment, but the surface of the vertical diffusing portion 4072 has a surface. This is a bowl-shaped lenticular sheet (refractive index n2), which is an example in which a low reflection layer (antireflection body: refractive index n3) 4073 is formed on the vertical diffusion portion 4072. Here, an enlarged view of the vicinity of AA in FIG. 57 is shown in FIG. Further, when the light from the projector (image projection means) is set to 1 and the refractive index of air is n1 = 1, n2 = 1.4, and n3 = 1.5, at the interface between the air layer and the low reflection layer 4073 The reflection R1 is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 次に、低反射層4073に入射した光(1-0.028=0.972)は、垂直拡散部4072との界面まで達する。低反射層4073と垂直拡散部4072との界面での反射R2は、下記の式(2)ように表わされる。 Next, the light (1-0.028 = 0.972) incident on the low reflection layer 4073 reaches the interface with the vertical diffusion portion 4072. The reflection R2 at the interface between the low reflection layer 4073 and the vertical diffusion portion 4072 is expressed by the following formula (2).
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 このR2のうちのほとんどが空気層まで反射されるため、観察者407の目に入る反射光Rは、下記の式(3)のようになる。 Since most of R2 is reflected to the air layer, the reflected light R entering the eyes of the observer 407 is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 低反射層4073を形成しなかった場合(従来例)では、空気層(屈折率n1)と垂直拡散部(レンチキュラーシート:屈折率n3)の界面での反射は4%にも達する。このため、本実施形態のように、空気層と垂直拡散部4072との間に低反射層4073を形成することによって、入射光の表面反射を効果的に抑制することが可能になる。
 したがって、こうした指向性反射スクリーン4070を図61のような立体映像表示装置に適用することで、より鮮明な高画質の表示映像を得ることができる。
When the low reflection layer 4073 is not formed (conventional example), reflection at the interface between the air layer (refractive index n1) and the vertical diffusion portion (lenticular sheet: refractive index n3) reaches 4%. For this reason, it is possible to effectively suppress surface reflection of incident light by forming the low reflection layer 4073 between the air layer and the vertical diffusion portion 4072 as in the present embodiment.
Therefore, by applying such a directional reflection screen 4070 to a stereoscopic image display apparatus as shown in FIG. 61, a clearer and higher quality display image can be obtained.
(22)第22実施形態
 図57に示す低反射層に加えて、更に別な低反射層を重ねて形成しても良い。
 図59に示す指向性反射スクリーン4080では、垂直拡散部4082(屈折率n3)に重ねて2つの低反射層(反射防止体)4083(屈折率n2)、4084(屈折率n5)が形成されている。空気層(屈折率n1)とすると、これらの屈折率の関係がn1<n5<n2<n3となるように構成されていればよい。
(22) Twenty-second Embodiment In addition to the low reflection layer shown in FIG. 57, another low reflection layer may be formed in an overlapping manner.
In the directional reflection screen 4080 shown in FIG. 59, two low reflection layers (antireflection bodies) 4083 (refractive index n2) and 4084 (refractive index n5) are formed so as to overlap the vertical diffusion portion 4082 (refractive index n3). Yes. Assuming that the air layer (refractive index n1) is used, it is only necessary that the relationship between these refractive indexes be n1 <n5 <n2 <n3.
 これによって、空気層から2つの低反射層4083、4084を介して垂直拡散部4082に至る入射光の光路において、屈折率が徐々に変化するために、途中で入射光が反射される割合を低減することが可能になる。
 なお、こうした低反射層(反射防止体)は、更に3層以上、複数層重ねて形成することも好ましい。
As a result, the refractive index gradually changes in the optical path of incident light from the air layer through the two low reflection layers 4083 and 4084 to the vertical diffusing portion 4082, so the ratio of incident light reflected on the way is reduced. It becomes possible to do.
In addition, it is also preferable to form such a low reflection layer (antireflection body) by further stacking three or more layers.
(23)第23実施形態
 図60は、反射防止体として光学干渉層を適用した実施形態を示す説明図である。
 この実施形態においては、指向性反射スクリーン4090を構成する入射光Lは、光学干渉層(反射防止体)4091の表面F1と、垂直拡散部4092および光学干渉層4091の界面F2で反射する。この表面反射光L41と界面反射光L42の位相を逆転させ打ち消しあうことで、画像の品質を劣化させる反射光を軽減することができる。なお、光学干渉層4091は、空気と接している。
 このときの光学干渉層4091の屈折率(n1)および膜厚(d1)と、垂直拡散部4092の屈折率(n2)とが下記の式(4)を満たす場合、波長λ(nm)における反射率が0%となる。
(23) 23rd Embodiment FIG. 60 is an explanatory view showing an embodiment in which an optical interference layer is applied as an antireflection body.
In this embodiment, the incident light L constituting the directional reflection screen 4090 is reflected by the surface F1 of the optical interference layer (antireflection body) 4091 and the interface F2 of the vertical diffusion portion 4092 and the optical interference layer 4091. By reversing and canceling the phases of the surface reflected light L41 and the interface reflected light L42, the reflected light that degrades the image quality can be reduced. Note that the optical interference layer 4091 is in contact with air.
When the refractive index (n1) and film thickness (d1) of the optical interference layer 4091 at this time and the refractive index (n2) of the vertical diffusion portion 4092 satisfy the following formula (4), reflection at the wavelength λ (nm) The rate is 0%.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 上記の式(4)から、光学干渉効果は波長依存性があり、光学干渉層膜厚依存性もあることが分かる。例えば、可視光が350nm~750nmの範囲であると仮定し、上記の式(4)においてn0=1、n2=1.5、λ=550nmとするとn1=1.22であり、d1=112.3nmとなる。しかしながら、この膜厚d1=112.3nmは550nmの可視光に対して設計されたものであり、全ての波長の可視光に対しての反射防止効果は得られない。 From the above equation (4), it can be seen that the optical interference effect is wavelength-dependent and also has an optical interference layer thickness dependency. For example, assuming that the visible light is in the range of 350 nm to 750 nm, and n0 = 1, n2 = 1.5, and λ = 550 nm in the above equation (4), then n1 = 1.22 and d1 = 1112. 3 nm. However, this film thickness d1 = 12.3 nm is designed for visible light of 550 nm, and the antireflection effect for visible light of all wavelengths cannot be obtained.
 したがって、図61に示すように、拡散レンズとして機能する垂直拡散部4092に重ねて複数の光学干渉層(反射防止体)4091a、4091b、4091cを形成してもよい。こうした光学干渉層(反射防止体)の形成手段としては、例えば、塗布法による形成あるいは、フィルム貼着法などが例示できる。光学干渉層4091aは、厚さがd1であり、屈折率はn1である。光学干渉層4091b、厚さがd2であり、屈折率はn2である。光学干渉層4091c、厚さがd3であり、屈折率はn3である。垂直拡散部4092、厚さがd4であり、屈折率はn4である。なお、光学干渉層4091aは、屈折率がn0の空気と接している。 Therefore, as shown in FIG. 61, a plurality of optical interference layers (antireflection bodies) 4091a, 4091b, and 4091c may be formed on the vertical diffusion portion 4092 functioning as a diffusion lens. Examples of means for forming such an optical interference layer (antireflection body) include formation by a coating method or film sticking method. The optical interference layer 4091a has a thickness of d1 and a refractive index of n1. The optical interference layer 4091b has a thickness of d2 and a refractive index of n2. The optical interference layer 4091c has a thickness of d3 and a refractive index of n3. The vertical diffusion portion 4092 has a thickness of d4 and a refractive index of n4. Note that the optical interference layer 4091a is in contact with air having a refractive index of n0.
 また、光学干渉層(反射防止体)への物理的な接触、または塵や指紋などが付着した場合、光学干渉層の屈折率が変化し、表面反射が起こるため、塵や指紋などの拭き取りが行われる。こうした接触や拭き取りなどに対して、十分な硬度を保つため、図62に示すように、最上層の光学干渉層(反射防止体)4091aに重ねて更に保護層4093を形成しても良い。こうした保護層4093は、例えばTAC(トリアセチルセルロース)、PET(ポリエチレンテレフタレート)などの硬質膜から構成されていればよい。なお、保護層4093は、屈折率がn0の空気と接している。
Also, if physical contact with the optical interference layer (antireflection body) or dust or fingerprints adheres, the refractive index of the optical interference layer changes and surface reflection occurs. Done. In order to maintain sufficient hardness against such contact and wiping, a protective layer 4093 may be further formed over the uppermost optical interference layer (antireflection body) 4091a as shown in FIG. Such a protective layer 4093 may be made of a hard film such as TAC (triacetyl cellulose) or PET (polyethylene terephthalate). Note that the protective layer 4093 is in contact with air having a refractive index of n0.
(24)第24実施形態
 図64A及び図64Bは、第24実施形態の画像表示装置の構成を示す平面図である。図64Aは垂直方向に沿った上面から見た図であり、図64Bは水平方向に沿った側面から見た図である。
 この実施形態における指向性反射スクリーン4095は、水平反射部4096および垂直拡散部4097を備え、更に、水平反射部4096の前面側は反射防止体4098aが、また垂直拡散部4097の前面には反射防止体4098bが、それぞれ形成されている。
(24) Twenty-fourth Embodiment FIGS. 64A and 64B are plan views showing the configuration of an image display apparatus according to a twenty-fourth embodiment. 64A is a view as seen from the top surface along the vertical direction, and FIG. 64B is a view as seen from the side surface along the horizontal direction.
The directional reflection screen 4095 in this embodiment includes a horizontal reflection portion 4096 and a vertical diffusion portion 4097. Further, an antireflection body 4098a is provided on the front side of the horizontal reflection portion 4096, and an antireflection is provided on the front surface of the vertical diffusion portion 4097. Each body 4098b is formed.
 水平反射部4096は、例えば、図50に示したプリズム形状が連続的に形成されたシート、あるいは図55Aに示す立体反射部であるコーナーキューブが連続的に形成されたシート(コーナーキューブシート)から構成されていればよい。
 また、反射防止体4098a、反射防止体4098bは、例えば、図52に示した微細な円錐形状の突起を多数配列したモスアイ(蛾の複眼)構造や、図57に示した低反射層などから構成されていればよい。
The horizontal reflecting portion 4096 is, for example, from a sheet in which prism shapes shown in FIG. 50 are continuously formed, or a sheet (corner cube sheet) in which corner cubes that are three-dimensional reflecting portions shown in FIG. 55A are continuously formed. It only has to be configured.
Further, the antireflection body 4098a and the antireflection body 4098b are composed of, for example, a moth eye (compound eye) structure in which a number of fine conical protrusions shown in FIG. 52 are arranged, a low reflection layer shown in FIG. It only has to be done.
 こうした実施形態では、プロジェクター(画像投影手段)4099からの入射光が水平反射部4096に入射する際に生じる表面反射と、垂直拡散部4097に入射する際に生じる表面反射とを、反射防止体4098aおよび反射防止体4098bによってそれぞれ抑制、ないし防止することが可能になる。これによって、指向性反射スクリーン4095の垂直方向の反射と水平方向の反射とを別な反射体で構成した場合においても、より一層鮮明な画像を表示することが可能になる。 In such an embodiment, the antireflection body 4098a includes surface reflection that occurs when incident light from the projector (image projection unit) 4099 enters the horizontal reflecting portion 4096 and surface reflection that occurs when the incident light enters the vertical diffusing portion 4097. And the antireflection body 4098b can suppress or prevent each of them. Accordingly, even when the vertical reflection and the horizontal reflection of the directional reflection screen 4095 are configured by different reflectors, it becomes possible to display a clearer image.
 また、上述した実施形態においては、垂直拡散部としてレンチキュラーシートを用いた例を示しているが、図67に示す異方性拡散シートを垂直拡散部として用いることも好ましい。図67は、異方性拡散粘着シートの光学顕微鏡写真(透過)である。
 この異方性拡散シートは、異方性拡散粘着層中に分散された針状フィラーを含み、そのフィラーがシート平面に平行で一方向に配向したものである。この様な針状フィラーを配向させた異方性拡散シートの作用を図68に示す。異方性拡散シート(垂直拡散部)4101に入射した光L45は、異方性拡散粘着層4102中に分散された針状フィラー4103によって、針状フィラー4103の配向方向と直交する方向(図中のY方向)に拡散される。図68では、異方性拡散粘着層4102は、光L45を、一方向(Y軸)に拡散する。符号405は、異方性に拡散された光の形状を示す。このような異方性拡散シート4101を用いることによって、レンチキュラーシートを用いた場合と同様の垂直拡散効果を得ることができる。
In the above-described embodiment, an example in which a lenticular sheet is used as the vertical diffusion portion is shown, but it is also preferable to use the anisotropic diffusion sheet shown in FIG. 67 as the vertical diffusion portion. FIG. 67 is an optical micrograph (transmission) of the anisotropic diffusion adhesive sheet.
This anisotropic diffusion sheet includes needle-like fillers dispersed in an anisotropic diffusion adhesive layer, and the fillers are oriented in one direction parallel to the sheet plane. The action of the anisotropic diffusion sheet in which such needle-like fillers are oriented is shown in FIG. The light L45 incident on the anisotropic diffusion sheet (vertical diffusion portion) 4101 is perpendicular to the orientation direction of the needle-like filler 4103 by the needle-like filler 4103 dispersed in the anisotropic diffusion adhesive layer 4102 (in the drawing). In the Y direction). In FIG. 68, the anisotropic diffusion adhesive layer 4102 diffuses the light L45 in one direction (Y axis). Reference numeral 405 indicates the shape of light diffused anisotropically. By using such an anisotropic diffusion sheet 4101, the same vertical diffusion effect as when a lenticular sheet is used can be obtained.
 本発明の第1の態様は、投射型の映像表示システムの分野に利用することができる。
 また、本発明の第2の態様は、投射型表示装置の分野に利用することができる。
 また、本発明の第3の態様は、投射型表示装置の分野に利用することができる。
The first aspect of the present invention can be used in the field of projection-type video display systems.
The second aspect of the present invention can be used in the field of projection display devices.
The third aspect of the present invention can be used in the field of projection display devices.
1010・・・映像表示システム、1011・・・再帰性反射スクリーン、1012、1013、1014・・・プロジェクタ、1015・・・ハーフミラー、1016・・・拡散制御体、1050・・・液体レンズ、1060、1070、1080、1090・・・液晶レンズ、1100、1120・・・高分子分散型液晶素子、2010、2080、2090、2110、2130、2160、2180、2200・・・投射型表示装置、2011・・・再帰性スクリーン、2012・・・プロジェクタ、2013・・・基板、2021・・・投射映像処理部、2022・・・投射光学部、2023・・・補正データ記憶部、2024・・・補正回路、2025・・・映像処理回路、2026・・・投射部、2030・・・視聴者、2031・・・眼、2111、2121、2141、2172・・・位置検知手段、2122・・・補正フィルタ位置変動機構、2170・・・椅子、2171・・・背もたれ、2181・・・指向性散乱スクリーン、3010、3050、3090、3100、3110、3140・・・投射型表示装置、3011・・・再帰性スクリーン、3012・・・指向性散乱スクリーン、3013・・・プロジェクタ、3014・・・基板、3021・・・投射映像処理部、3022・・・投射光学部、3023・・・補正データ記憶部、3024・・・補正回路、3025・・・映像処理回路、3026・・・投射部、3030・・・視聴者、3031・・・眼、3081・・・補正フィルタ、3091・・・位置検知手段、4010・・・指向性反射スクリーン、4011・・・水平反射部、4012・・・垂直拡散部、4013・・・反射防止体 DESCRIPTION OF SYMBOLS 1010 ... Video display system, 1011 ... Retroreflective screen, 1012, 1013, 1014 ... Projector, 1015 ... Half mirror, 1016 ... Diffusion control body, 1050 ... Liquid lens, 1060 1070, 1080, 1090 ... liquid crystal lens, 1100, 1120 ... polymer dispersed liquid crystal element, 2010, 2080, 2090, 2110, 2130, 2160, 2180, 2200 ... projection type display device, 2011. ..Recursive screen 2012 ... Projector 2013 ... Substrate 2021 Projection image processing unit 2022 Projection optical unit 2023 Correction data storage unit 2024 Correction circuit , 2025 ... Video processing circuit, 2026 ... Projection unit, 2030 ... Viewer, 20 DESCRIPTION OF SYMBOLS 1 ... Eye, 2111, 2121, 2141, 2172 ... Position detection means, 2122 ... Correction filter position fluctuation mechanism, 2170 ... Chair, 2171 ... Backrest, 2181 ... Directional scattering screen , 3010, 3050, 3090, 3100, 3110, 3140 ... projection type display device, 3011 ... recursive screen, 3012 ... directional scattering screen, 3013 ... projector, 3014 ... substrate, 3021 ... Projection image processing unit, 3022 ... Projection optical unit, 3023 ... Correction data storage unit, 3024 ... Correction circuit, 3025 ... Image processing circuit, 3026 ... Projection unit, 3030 ... -Viewer, 3031 ... eyes, 3081 ... correction filter, 3091 ... position detection means, 4010 ... directivity Morphism screen, 4011 ... horizontal reflection portion, 4012 ... vertical diffusion unit, 4013 ... antireflector

Claims (42)

  1.  再帰性反射スクリーンと、該再帰性反射スクリーンに画像を投影する複数のプロジェクタと、を備え、
     前記プロジェクタは、前記画像の観察者の目の位置に対して、上下方向のいずれかに離隔した位置に設けられ、
     前記再帰性反射スクリーンの投影面に、上下方向に光を拡散する拡散制御体が積層される映像表示システム。
    A retroreflective screen, and a plurality of projectors that project images onto the retroreflective screen,
    The projector is provided at a position separated in either the vertical direction with respect to the position of the observer's eye of the image,
    An image display system in which a diffusion control body that diffuses light in the vertical direction is laminated on a projection surface of the retroreflective screen.
  2.  前記拡散制御体は、部分的に屈折率の異なる領域を形成可能である請求項1に記載の映像表示システム。 The image display system according to claim 1, wherein the diffusion control body can partially form regions having different refractive indexes.
  3.  前記拡散制御体は、液体レンズである請求項1に記載の映像表示システム。 The image display system according to claim 1, wherein the diffusion control body is a liquid lens.
  4.  前記拡散制御体は、液晶レンズである請求項1に記載の映像表示システム。 The video display system according to claim 1, wherein the diffusion control body is a liquid crystal lens.
  5.  前記拡散制御体は、高分子分散型液晶素子である請求項1に記載の映像表示システム。 The image display system according to claim 1, wherein the diffusion controller is a polymer dispersed liquid crystal element.
  6.  前記再帰性反射スクリーンは、反射面を3面有する請求項1に記載の映像表示システム。 The video display system according to claim 1, wherein the retroreflective screen has three reflective surfaces.
  7.  前記再帰性反射スクリーンは、合わせ鏡群を有する請求項1に記載の映像表示システム。 The video display system according to claim 1, wherein the retroreflective screen has a group of mirrors.
  8.  再帰性スクリーンと、
     前記再帰性スクリーンに投射する映像の信号を処理する投射映像処理部および該投射映像処理部からの映像を前記再帰性スクリーンに投射する投射部が設けられた投射光学部を少なくとも有するプロジェクタと、
     前記プロジェクタの位置が、前記再帰性スクリーンの投射面に対する距離が最適な位置よりも近い場合、または、前記プロジェクタの位置が、前記再帰性スクリーンの投射面に対する距離が最適な位置よりも遠い場合に、前記プロジェクタから前記再帰性スクリーンに投射される前記映像の輝度分布を補正する補正機構と、を備えた投射型表示装置。
    A recursive screen,
    A projector having at least a projection optical unit provided with a projection video processing unit that processes a video signal projected on the recursive screen and a projection unit that projects video from the projection video processing unit onto the recursive screen;
    When the position of the projector is closer than the optimum position with respect to the projection surface of the recursive screen, or when the position of the projector is farther than the optimum position with respect to the projection surface of the recursive screen And a correction mechanism for correcting a luminance distribution of the video projected from the projector onto the recursive screen.
  9.  前記再帰性スクリーンの投射面の近傍に指向性散乱スクリーンが配設され、該指向性散乱スクリーンにより、前記再帰性スクリーンの反射光を、前記再帰性スクリーンの幅方向と縦方向で拡散する角度が異なるようにする請求項8に記載の投射型表示装置。 A directional scattering screen is disposed in the vicinity of the projection surface of the recursive screen, and the directional scattering screen causes an angle of diffusing reflected light of the recursive screen in the width direction and the vertical direction of the recursive screen. The projection type display device according to claim 8, wherein the projection type display device is different.
  10.  前記輝度分布は同心円状である請求項8に記載の投射型表示装置。 The projection display device according to claim 8, wherein the luminance distribution is concentric.
  11.  前記輝度分布は、中央部が最も暗く、周縁部に向かって次第に明るくなる請求項10に記載の投射型表示装置。 The projection display device according to claim 10, wherein the luminance distribution is darkest at a central portion and gradually becomes brighter toward a peripheral portion.
  12.  前記輝度分布は、前記映像の視聴者の眼と前記投射部を結ぶ直線を、前記再帰性スクリーン側に延長した直線が、前記再帰性スクリーンの投射面または該投射面を延伸した面と交差する点を中心とする請求項8に記載の投射型表示装置。 In the luminance distribution, a straight line obtained by extending a straight line connecting the viewer's eye of the video and the projection unit to the recursive screen side intersects a projection surface of the recursive screen or a surface obtained by extending the projection surface. The projection display device according to claim 8, wherein the projection center is a point.
  13.  前記補正機構は、前記投射映像処理部であり、前記投射映像処理部により、前記映像の信号が処理され、前記輝度分布が補正される請求項8に記載の投射型表示装置。 The projection display device according to claim 8, wherein the correction mechanism is the projection video processing unit, and the video signal is processed by the projection video processing unit to correct the luminance distribution.
  14.  前記補正機構は、前記投射部と前記再帰性スクリーンとの間に設けられた補正フィルタであり、該補正フィルタにより、前記輝度分布が補正される請求項8に記載の投射型表示装置。 The projection display device according to claim 8, wherein the correction mechanism is a correction filter provided between the projection unit and the recursive screen, and the luminance distribution is corrected by the correction filter.
  15.  前記投射部の位置および/または前記視聴者の眼の位置を検知する位置検知手段を備える請求項8に記載の投射型表示装置。 The projection display device according to claim 8, further comprising position detection means for detecting a position of the projection unit and / or a position of the viewer's eyes.
  16.  前記投射部の位置および/または前記視聴者の眼の位置を検知する位置検知手段を有する椅子を備える請求項8に記載の投射型表示装置。 The projection type display device according to claim 8, further comprising a chair having a position detection means for detecting the position of the projection unit and / or the position of the viewer's eyes.
  17.  再帰性スクリーンと、
     前記再帰性スクリーンに投射する映像の信号を処理する投射映像処理部および該投射映像処理部からの映像を前記再帰性スクリーンに投射する投射部が設けられた投射光学部を少なくとも有する複数のプロジェクタと、を備え、
     前記複数のプロジェクタはそれぞれ、前記再帰性スクリーンとの距離が互いに異なるように配置される投射型表示装置。
    A recursive screen,
    A plurality of projectors including at least a projection video processing unit that processes a video signal projected on the recursive screen, and a projection optical unit provided with a projection unit that projects the video from the projection video processing unit onto the recursive screen; With
    Each of the plurality of projectors is a projection type display device arranged so that the distance from the recursive screen is different from each other.
  18.  前記再帰性スクリーンの投射面の近傍に指向性散乱スクリーンが配設され、該指向性散乱スクリーンにより、前記再帰性スクリーンの反射光を、前記再帰性スクリーンの幅方向と縦方向で拡散する角度が異なるようにする請求項17に記載の投射型表示装置。 A directional scattering screen is disposed in the vicinity of the projection surface of the recursive screen, and the directional scattering screen causes an angle of diffusing reflected light of the recursive screen in the width direction and the vertical direction of the recursive screen. The projection display device according to claim 17, wherein the projection type display device is different.
  19.  前記複数のプロジェクタは、前記再帰性スクリーン側に配置されたものから順に映像の拡大率が大きくなるように、前記再帰性スクリーンに映像を投射する請求項17に記載の投射型表示装置。 18. The projection display device according to claim 17, wherein the plurality of projectors project images on the recursive screen so that an enlargement ratio of the image is increased in order from those arranged on the recursive screen side.
  20.  前記複数のプロジェクタは、前記再帰性スクリーンの投射面において、それぞれのプロジェクタから投射される映像の大きさが等しくなるように、前記再帰性スクリーンに映像を投射する請求項17に記載の投射型表示装置。 The projection display according to claim 17, wherein the plurality of projectors project images on the recursive screen so that the sizes of the images projected from the respective projectors are equal on the projection surface of the recursive screen. apparatus.
  21.  前記複数のプロジェクタから前記再帰性スクリーンに投射される映像の輝度分布を補正する補正機構を備え、
     前記補正機構により、前記輝度分布は、中央部が帯状に最も暗く、周辺部に向かって次第に明るくなるように補正される請求項17に記載の投射型表示装置。
    A correction mechanism for correcting a luminance distribution of an image projected on the recursive screen from the plurality of projectors;
    The projection display device according to claim 17, wherein the luminance distribution is corrected by the correction mechanism so that the central portion is darkest in a band shape and gradually becomes brighter toward the peripheral portion.
  22.  前記補正機構は、前記投射映像処理部であり、前記投射映像処理部により、前記映像の信号が処理され、前記輝度分布が補正される請求項17に記載の投射型表示装置。 The projection display device according to claim 17, wherein the correction mechanism is the projection video processing unit, and the video signal is processed by the projection video processing unit to correct the luminance distribution.
  23.  前記補正機構は、前記投射部と前記再帰性スクリーンとの間に設けられた補正フィルタであり、該補正フィルタにより、前記輝度分布が補正される請求項17に記載の投射型表示装置。 The projection type display device according to claim 17, wherein the correction mechanism is a correction filter provided between the projection unit and the recursive screen, and the luminance distribution is corrected by the correction filter.
  24.  前記映像の視聴者の眼の位置を検知する位置検知手段を備える請求項17に記載の投射型表示装置。 The projection display device according to claim 17, further comprising position detection means for detecting a position of an eye of a viewer of the video.
  25.  前記再帰性スクリーンの幅方向の反射光または縦方向の反射光のうち拡散する角度が大きい方と直交する方向に、前記複数のプロジェクタが並列に配置される請求項18に記載の投射型表示装置。 19. The projection display device according to claim 18, wherein the plurality of projectors are arranged in parallel in a direction orthogonal to a larger diffusing angle of reflected light in the width direction or reflected light in the vertical direction of the recursive screen. .
  26.  前記再帰性スクリーンの反射光の拡散する角度は、前記再帰性スクリーンの縦方向が前記再帰性スクリーンの幅方向よりも大きく、
     前記複数のプロジェクタは、前記再帰性スクリーンの幅方向に沿って形成された列と、前記再帰性スクリーン側から順に間隔を置いて形成された行とをなすように配置される請求項18に記載の投射型表示装置。
    The angle at which the reflected light of the recursive screen diffuses is such that the vertical direction of the recursive screen is larger than the width direction of the recursive screen,
    The plurality of projectors are arranged so as to form columns formed along a width direction of the recursive screen and rows formed at intervals from the recursive screen side. Projection type display device.
  27.  前記複数のプロジェクタは、前記視聴者の頭上または足下に設置される請求項17に記載の投射型表示装置。 The projection display device according to claim 17, wherein the plurality of projectors are installed above or below the viewer's head.
  28.  入射光を少なくとも水平方向に沿って集光させ、入射方向に向けて反射させる水平反射部と、該水平反射光を垂直方向に沿って拡散させる垂直拡散部とを有し、
     前記水平反射部と前記垂直拡散部とは互いに異なる面で広がり、かつ重なるように形成され、
     前記垂直拡散部の表面には、前記水平反射部に向かう前記入射光の表面反射を防止するための反射防止体が形成されている指向性反射スクリーン。
    A horizontal reflection part that collects incident light along at least the horizontal direction and reflects the incident light toward the incident direction; and a vertical diffusion part that diffuses the horizontal reflected light along the vertical direction;
    The horizontal reflecting portion and the vertical diffusing portion are formed so as to spread and overlap on different surfaces,
    A directional reflective screen in which an antireflection body is formed on the surface of the vertical diffusion portion to prevent surface reflection of the incident light traveling toward the horizontal reflection portion.
  29.  前記反射防止体は微細な凹凸構造を成し、微細な円錐形状の突起を多数配列したものである請求項28に記載の指向性反射スクリーン。 29. The directional reflective screen according to claim 28, wherein the antireflection body has a fine concavo-convex structure and a large number of fine conical protrusions are arranged.
  30.  前記反射防止体は前記垂直拡散部よりも屈折率が小さい請求項28に記載の指向性反射スクリーン。 The directional reflective screen according to claim 28, wherein the antireflective body has a refractive index smaller than that of the vertical diffusion portion.
  31.  前記反射防止体はシート状に形成され、前記垂直拡散部の表面に貼着される請求項28に記載の指向性反射スクリーン。 29. The directional reflective screen according to claim 28, wherein the antireflective body is formed in a sheet shape and is adhered to the surface of the vertical diffusion portion.
  32.  前記反射防止体と前記垂直拡散部の表面との間には、更に平坦化層が形成される請求項28に記載の指向性反射スクリーン。 29. The directional reflection screen according to claim 28, further comprising a flattening layer formed between the antireflection body and the surface of the vertical diffusion portion.
  33.  前記平坦化層は、屈折率が前記垂直拡散部よりも小さく、かつ前記反射防止体よりも大きい請求項32に記載の指向性反射スクリーン。 The directional reflective screen according to claim 32, wherein the planarizing layer has a refractive index smaller than that of the vertical diffusion portion and larger than that of the antireflection body.
  34.  前記水平反射部は、互いに所定の角度で交わる2つの反射面を複数組配列し、前記入射光を2面反射させてなる請求項28に記載の指向性反射スクリーン。 29. The directional reflecting screen according to claim 28, wherein the horizontal reflecting portion is formed by arranging a plurality of sets of two reflecting surfaces intersecting each other at a predetermined angle and reflecting the incident light on two surfaces.
  35.  前記垂直拡散部は、レンズを複数配列したレンズ群からなる請求項28に記載の指向性反射スクリーン。 29. The directional reflective screen according to claim 28, wherein the vertical diffusing unit includes a lens group in which a plurality of lenses are arranged.
  36.  入射光を水平方向、および垂直方向に沿って、入射方向に向けて反射させる立体反射部を有し、
     前記立体反射部の表面には、該立体反射部に向かう前記入射光の表面反射を防止するための反射防止体が形成される指向性反射スクリーン。
    A solid reflection part that reflects incident light in the horizontal direction and the vertical direction toward the incident direction,
    A directional reflective screen in which an antireflection body for preventing surface reflection of the incident light traveling toward the stereoscopic reflecting portion is formed on a surface of the stereoscopic reflecting portion.
  37.  前記立体反射部は、前記入射光を3面反射させる立方体プリズムを複数個配列したプリズムシートからなる請求項36に記載の指向性反射スクリーン。 37. The directional reflective screen according to claim 36, wherein the three-dimensional reflection portion is formed of a prism sheet in which a plurality of cubic prisms that reflect the incident light on three sides are arranged.
  38.  前記水平反射部あるいは、前記立体反射部の表面、または裏面には、反射膜が更に形成される請求項28または36に記載の指向性反射スクリーン。 37. The directional reflection screen according to claim 28 or 36, wherein a reflection film is further formed on the front surface or the back surface of the horizontal reflection portion or the three-dimensional reflection portion.
  39.  前記反射防止体は、複数の光学干渉層を積層したものからなる請求項28または36に記載の指向性反射スクリーン。 37. The directional reflection screen according to claim 28 or 36, wherein the antireflection body is formed by laminating a plurality of optical interference layers.
  40.  前記反射防止体は、透明である請求項28または36に記載の指向性反射スクリーン。 The directional reflection screen according to claim 28 or 36, wherein the antireflection body is transparent.
  41.  入射光を少なくとも水平方向に沿って集光させ、入射方向に向けて反射させる水平反射部と、該水平反射光を垂直方向に沿って拡散させる垂直拡散部とを有し、
     前記水平反射部と前記垂直拡散部とは互いに異なる面で広がり、かつ重なるように形成され、
     前記垂直拡散部の表面には、前記水平反射部に向かう前記入射光の表面反射を防止するための反射防止体が形成されている指向性反射スクリーンと、
     該指向性反射スクリーンに入射させる入射光として画像を投影する画像投影手段と、
     を備える画像表示装置。
    A horizontal reflection part that collects incident light along at least the horizontal direction and reflects the incident light toward the incident direction; and a vertical diffusion part that diffuses the horizontal reflected light along the vertical direction;
    The horizontal reflecting portion and the vertical diffusing portion are formed so as to spread and overlap on different surfaces,
    On the surface of the vertical diffusion part, a directional reflection screen in which an antireflection body for preventing surface reflection of the incident light directed to the horizontal reflection part is formed,
    Image projection means for projecting an image as incident light incident on the directional reflection screen;
    An image display device comprising:
  42.  入射光を水平方向、および垂直方向に沿って、入射方向に向けて反射させる立体反射部を有し、
     前記立体反射部の表面には、該立体反射部に向かう前記入射光の表面反射を防止するための反射防止体が形成されている指向性反射スクリーンと、
     該指向性反射スクリーンに入射させる入射光として画像を投影する画像投影手段と、
     を備える画像表示装置。
    A solid reflection part that reflects incident light in the horizontal direction and the vertical direction toward the incident direction,
    On the surface of the stereoscopic reflecting portion, a directional reflecting screen in which an antireflection body for preventing the surface reflection of the incident light toward the stereoscopic reflecting portion is formed,
    Image projection means for projecting an image as incident light incident on the directional reflection screen;
    An image display device comprising:
PCT/JP2012/061518 2011-05-02 2012-05-01 Video display system, projection display device, directional reflection screen and layer display device WO2012150703A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011103102A JP2014139591A (en) 2011-05-02 2011-05-02 Projection type display device
JP2011-103103 2011-05-02
JP2011103103A JP2014139592A (en) 2011-05-02 2011-05-02 Projection type display device
JP2011-103102 2011-05-02
JP2011107495A JP2014139594A (en) 2011-05-12 2011-05-12 Video display system
JP2011-107495 2011-05-12
JP2011169309A JP2014139596A (en) 2011-08-02 2011-08-02 Directional reflection screen and image display device
JP2011-169309 2011-08-02

Publications (1)

Publication Number Publication Date
WO2012150703A1 true WO2012150703A1 (en) 2012-11-08

Family

ID=47107889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061518 WO2012150703A1 (en) 2011-05-02 2012-05-01 Video display system, projection display device, directional reflection screen and layer display device

Country Status (1)

Country Link
WO (1) WO2012150703A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164197A (en) * 2013-02-26 2014-09-08 Nikon Corp Screen and projection system
CN104766928A (en) * 2014-01-06 2015-07-08 三星显示有限公司 Organic light emitting diode display panel and method of manufacturing same
JP2017201418A (en) * 2017-07-13 2017-11-09 株式会社ニコン Screen and projection system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242511A (en) * 1993-02-19 1994-09-02 A G Technol Kk Screen for projection display
JP2001042251A (en) * 1999-08-04 2001-02-16 Minolta Co Ltd Video display device
WO2002025369A1 (en) * 2000-09-21 2002-03-28 Hitachi, Ltd. Image display
JP2005010481A (en) * 2003-06-19 2005-01-13 Seiko Epson Corp Reflection type screen
WO2007105721A1 (en) * 2006-03-13 2007-09-20 Dai Nippon Printing Co., Ltd. Optical diffusion element, projection screen, design member and security medium
JP2009258701A (en) * 2008-03-28 2009-11-05 Sanyo Electric Co Ltd Projection image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242511A (en) * 1993-02-19 1994-09-02 A G Technol Kk Screen for projection display
JP2001042251A (en) * 1999-08-04 2001-02-16 Minolta Co Ltd Video display device
WO2002025369A1 (en) * 2000-09-21 2002-03-28 Hitachi, Ltd. Image display
JP2005010481A (en) * 2003-06-19 2005-01-13 Seiko Epson Corp Reflection type screen
WO2007105721A1 (en) * 2006-03-13 2007-09-20 Dai Nippon Printing Co., Ltd. Optical diffusion element, projection screen, design member and security medium
JP2009258701A (en) * 2008-03-28 2009-11-05 Sanyo Electric Co Ltd Projection image display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164197A (en) * 2013-02-26 2014-09-08 Nikon Corp Screen and projection system
CN104766928A (en) * 2014-01-06 2015-07-08 三星显示有限公司 Organic light emitting diode display panel and method of manufacturing same
EP2894688A1 (en) * 2014-01-06 2015-07-15 Samsung Display Co., Ltd. Organic light emitting diode display panel and method of manufacturing the same
US9666649B2 (en) 2014-01-06 2017-05-30 Samsung Display Co., Ltd. Organic light emitting diode display panel and method of manufacturing the same
US10141382B2 (en) 2014-01-06 2018-11-27 Samsung Display Co., Ltd. Method of manufacturing organic light emitting diode display panel having polymer network liquid crystal
JP2017201418A (en) * 2017-07-13 2017-11-09 株式会社ニコン Screen and projection system

Similar Documents

Publication Publication Date Title
JP4509978B2 (en) Lighting system and display equipped with the same
JP4470355B2 (en) Display system without glasses
US9715117B2 (en) Autostereoscopic three dimensional display
US20130114007A1 (en) Auto-stereoscopic multi-dimensional display component and display thereof
US9190019B2 (en) Image display apparatus
US9508291B2 (en) Image display apparatus
TW201439593A (en) Directional backlight
US9030643B2 (en) Liquid crystal optical element and image display apparatus including the same
US9500874B2 (en) Liquid crystal optical element and image display apparatus including the same
JP2005078094A (en) Multiple view directional display
WO2014155984A1 (en) Image display device
WO2015068431A1 (en) Screen and display/imaging device
US8459797B2 (en) Image viewing systems with an integrated screen lens
US20140211308A1 (en) Glasses-free reflective 3d color display
US20210088808A1 (en) Multi-view display device
KR20140144617A (en) Apparatus for projecting space image
EP3072295A1 (en) Dual viewing film and dual view display apparatus using the same
US20140247211A1 (en) Image display apparatus
TWI476482B (en) Liquid crystal display
JP2007163627A (en) Illumination device, electro-optical device and electronic apparatus
WO2012150703A1 (en) Video display system, projection display device, directional reflection screen and layer display device
TWI428632B (en) Three-dimensional image display
US11231644B2 (en) Fresnel projection screen and projection system
JP4747408B2 (en) Screen and 3D display system using it
JP5942150B2 (en) Image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12779792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12779792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP