WO2012149773A1 - 无源光网络中光纤链路的检测方法、系统和装置 - Google Patents

无源光网络中光纤链路的检测方法、系统和装置 Download PDF

Info

Publication number
WO2012149773A1
WO2012149773A1 PCT/CN2011/080201 CN2011080201W WO2012149773A1 WO 2012149773 A1 WO2012149773 A1 WO 2012149773A1 CN 2011080201 W CN2011080201 W CN 2011080201W WO 2012149773 A1 WO2012149773 A1 WO 2012149773A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
olt
optical
uplink
fiber link
Prior art date
Application number
PCT/CN2011/080201
Other languages
English (en)
French (fr)
Inventor
王运时
万民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/080201 priority Critical patent/WO2012149773A1/zh
Priority to CN201180002223.6A priority patent/CN102388549B/zh
Publication of WO2012149773A1 publication Critical patent/WO2012149773A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks

Definitions

  • the present invention relates to a PON (Passive Optical Network) technology, and more particularly to a method, system and apparatus for detecting a fiber link in a passive optical network.
  • PON Passive Optical Network
  • the PON usually includes an OLT (Optical Line Terminal), an ODN (Optical Distribution Network), and a plurality of ONUs (Optical Network Units).
  • OLT Optical Line Terminal
  • ODN Optical Distribution Network
  • ONUs Optical Network Units
  • the PON is connected in a point-to-multipoint manner, and multiple ONUs in the uplink use the TDMA (Time Division Multiple Access) working mode to share the optical transmission medium.
  • the OLT performs bandwidth authorization for the ONU.
  • the bandwidth authorization is its illuminating time slot.
  • Each ONU has its own specific illuminating time slot. Under normal circumstances, each ONU is only allocated.
  • the upstream optical signal is sent to the specific illuminating time slot of its own.
  • the fiber link between the OLT and the ONU may generate a reflective end face. If there are two reflective end faces on the fiber link, the upstream optical signal generated by an ONU may be A secondary reflection of the end face is formed between the two reflective end faces to generate secondary reflected light in the upward direction. As shown in FIG. 1 , the ONU sends an uplink optical signal in an illuminating time slot allocated by the OLT. When the upstream optical signal encounters the end surface 0, a part of the uplink optical signal is reflected by the end surface 0 and generates a reflected light in the downlink direction.
  • the primary reflected light falls down on the end face 1, it is reflected by the end face 1 and forms secondary reflected light in the upward direction, that is, the secondary end reflected light. Since the illuminating time slots of each ONU are different in the TDMA mode, when the secondary reflected light of the end face is located in the illuminating time slot of another ONU, the secondary reflected light of the end face may interfere with the upstream optical signal of the ONU. , resulting in Loss of Frame (LOF).
  • LEF Loss of Frame
  • OTDR Optical Time Domain Reflectometer
  • the OTDR is a commonly used fiber transmission characteristic detection device that can detect the test pulse at the event point of the fiber link (such as fusion point, connector, adapter, fiber bending). Or the reflected signal that is reflected and returned to obtain the transmission characteristics of the fiber link, thereby locating and analyzing the network fault existing in the PON.
  • the invention provides a method, a system and a device for detecting a fiber link in a passive optical network to reduce the artificial cost and improve the fault detection efficiency.
  • a method for detecting an optical fiber link in a passive optical network includes: allocating an uplink bandwidth to an ONU, and configuring an idle bandwidth after the uplink bandwidth; and receiving, by the uplink bandwidth, the ONU And detecting an optical signal that matches the uplink optical signal in the idle bandwidth, and determining, according to the detection result, whether the optical fiber link between the ONU and the OLT has secondary reflection of the end face.
  • the invention provides a detection system for a fiber link in a passive optical network, including an OLT and an ONU: the OLT is configured to allocate an uplink bandwidth to the ONU, and configure an idle bandwidth after the uplink bandwidth; The uplink bandwidth receives the uplink optical signal sent by the ONU, and detects whether an optical signal matching the uplink optical signal is received in the idle bandwidth, and determines an optical fiber between the ONU and the OLT according to the detection result. Whether the link has secondary reflection of the end face;
  • the ONU is configured to send the uplink optical signal to the OLT according to an uplink bandwidth allocated by the OLT.
  • a device for detecting a fiber link in a passive optical network which includes a bandwidth allocation module, configured to allocate an uplink bandwidth to an ONU, and configure an idle bandwidth after the uplink bandwidth, and a receiving module, configured to The uplink bandwidth receives the uplink optical signal sent by the ONU, and the detecting module is configured to detect whether an optical signal matching the uplink optical signal is received in the idle bandwidth, and determine the ONU according to the detection result. Whether the secondary link of the end face is reflected on the fiber link between the OLT and the OLT; the positioning module is configured to locate the reflective end face that causes the secondary reflection of the end face according to the detection result of the fiber link between each ONU and the OLT.
  • the OLT configures an idle bandwidth after being allocated to the uplink bandwidth of the ONU, and according to whether the ONU is received or not according to the idle bandwidth
  • the optical signal matched by the uplink optical signal sent by the uplink bandwidth automatically detects whether there is secondary reflection of the end face of the optical fiber link between the ONU and the OLT. Therefore, the detection method provided by the embodiment of the present invention does not need to perform on-site operations, and only needs to perform simple analysis and judgment, thereby realizing the efficiency of checking the secondary reflection of the end face while saving labor cost.
  • Figure 1 is a schematic diagram showing the principle of secondary reflection of the end face
  • FIG. 2 is a flowchart of a method for detecting a fiber link in a passive optical network according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a network architecture of a passive optical network system
  • FIG. 4 is a flowchart of a method for detecting a fiber link in a passive optical network according to another embodiment of the present invention
  • FIG. 5 is a diagram showing whether an optical fiber link between an ONU and an OLT has an end face in the detection method shown in FIG. Flow chart of secondary reflection;
  • FIG. 6 is a schematic structural diagram of a device for detecting a fiber link in a passive optical network according to an embodiment of the present invention. detailed description
  • An embodiment of the present invention provides a method for detecting a fiber link in a passive optical network.
  • an optical line terminal may first allocate an uplink bandwidth to an optical network unit (ONU), and Configuring an idle bandwidth after the uplink bandwidth; the OLT receives the uplink optical signal sent by the ONU in the uplink bandwidth; and the OLT may further detect whether the uplink optical signal is received in the idle bandwidth. And matching the optical signal, and determining, according to the detection result, whether the fiber link between the ONU and the OLT has secondary reflection of the end face.
  • the method for detecting a fiber link in a passive optical network provided by the embodiment of the present invention can be applied to the method shown in FIG. 3
  • the Passive Optical Network System (PON) 100 can include at least one Optical Line Terminal (OLT) 110, an Optical Distribution Network 120 (ODN), and a plurality of Optical Network Units (ONUs) 130.
  • OLT Optical Line Terminal
  • ODN Optical Distribution Network
  • ONUs Optical Network Units
  • the direction from the OLT to the ONU is defined as a downlink direction, and the direction from the ONU to the OLT is defined as an uplink direction.
  • the OLT broadcasts the downlink data to the multiple ONUs by using a Time Division Multiplexing (TDM) mode, and each ONU receives only data carrying its own identifier; and in the uplink direction, the multiple ONUs
  • TDM Time Division Multiplexing
  • the OLT is in communication with the OLT by means of time division multiple access (TDMA), and each ONU sends uplink data strictly according to the time slot allocated by the OLT.
  • TDMA time division multiple access
  • the downlink optical signal sent by the OLT is a continuous optical signal
  • the uplink optical signal sent by the ONU is a burst optical signal.
  • the passive optical network system may be a communication network system that does not require any active device to implement data distribution between the OLT and the ONU.
  • the OLT and the ONU Data between Distribution can be achieved by passive optical devices (such as optical splitters) in the ODN.
  • the passive optical network system 100 may be an Asynchronous Transfer Mode Passive Optical Network (ATM PON) system or a Broadband Passive Optical Network (BPON) system defined by the ITU-T G.983 standard, ITU-T G.984 A standard defined Gigabit Passive Optical Network (GPON) system, an Ethernet Passive Optical Network (EPON) defined by the IEEE 802.3ah standard, or a next-generation passive optical network (NGA PON, such as XGPON or 10G EPON).
  • ATM PON Asynchronous Transfer Mode Passive Optical Network
  • BPON Broadband Passive Optical Network
  • GPON Gigabit Passive Optical Network
  • EPON Ethernet Passive Optical Network
  • NGA PON next-generation passive optical network
  • the OLT is usually located in a Central Office (CO), which can uniformly manage the plurality of ONUs and transmit data between the ONUs and an upper layer network.
  • the OLT may serve as a medium between the ONU and the upper layer network (such as the Internet, a Public Switched Telephone Network (PSTN), and forward data received from the upper layer network to the The ONU, and the data received from the ONU are forwarded to the upper layer network.
  • the specific configuration of the OLT may vary depending on the specific type of the passive optical network 100, for example, in an embodiment.
  • the OLT may include a transmitter and a receiver, the transmitter is configured to send a downlink continuous optical signal to the ONU, and the receiver is configured to receive an uplink burst optical signal from the ONU, where the The downlink optical signal and the upstream optical signal may be transmitted through the optical distribution network.
  • the ONUs may be distributed in a user-side location (such as a customer premises).
  • the ONU may be a network device for communicating with the OLT and the user.
  • the ONU may serve as a medium between the OLT and the user, for example, the ONU may Data received by the OLT is forwarded to the user, and data received from the user is forwarded to the OLT.
  • OLT Optical Network Terminal
  • the ODN may be a data distribution system that may include optical fibers, optical couplers, optical splitters, and/or other devices.
  • the optical fiber, optical coupler, optical splitter, and/or other device may be a passive optical device, in particular, the optical fiber, optical coupler, optical splitter, and/or other device may be Distributing data signals between the OLT and the ONU is a device that does not require power supply support.
  • the optical splitter may be connected to the OLT through a trunk optical fiber, and connected to the multiple ONUs through multiple branch optical fibers respectively, thereby implementing the OLT.
  • a point-to-multipoint connection with the ONU may be a point-to-multipoint connection with the ONU.
  • the ODN may also include one or more processing devices, such as optical amplifiers or relay devices.
  • the ODN may specifically extend from the optical line terminal 110 to the plurality of ONUs, but may be configured in any other point-to-multipoint configuration.
  • a method for detecting a fiber link in a passive optical network may be as shown in FIG. 4, which may To apply to the PON system shown in FIG. 3, the method includes:
  • Step S300 The OLT detects whether an uplink optical signal from the ONU has an uplink frame loss.
  • the PON system When there is a rogue ONU or a secondary end reflection of a fiber link, the PON system will have abnormal upstream light.
  • the abnormal upstream light may cause interference to the upstream light of one or some ONUs, causing uplink.
  • the frame is lost. If the OLT detects that an ONU has no uplink frame loss, it indicates that the uplink fiber link communication of the ONU is normal. If the OLT detects that an uplink frame is lost in an ONU, the process proceeds to step S301 to start the rogue ONU detection, or directly proceeds to step S302. Start end face secondary reflection detection.
  • Step S301 the OLT starts the rogue ONU detection, and determines whether the rogue ONU exists in the PON system.
  • step S307 is performed to further determine the rogue ONU. If there is no rogue ONU, step S302 is performed.
  • step S301 is an optional step, and step S302 may be directly performed without going through this step.
  • Step S302 the OLT starts the secondary reflection detection of the end face, allocates an uplink bandwidth A to the ONU one by one, and configures the idle bandwidth B after the uplink bandwidth A of the ONU.
  • the PON system includes N ONUs, and the uplink bandwidth A allocated to the i-th ONU (1 ⁇ i ⁇ N) is recorded as the uplink bandwidth Ai, and will be added after the uplink bandwidth Ai.
  • the bandwidth B is denoted as Bio, wherein the uplink bandwidth Ai satisfies the requirement of the ith ONU-the shortest uplink frame, that is, the length of the shortest uplink frame that is not smaller than the length of the i-th ONU;
  • a dedicated bandwidth for detecting the secondary reflection of the optical fiber link between the ith ONU and the OLT it is not authorized to perform uplink transmission to any ONU, that is, no ONU can be used.
  • the width of the idle bandwidth Bi can ensure that the OLT does not receive the uplink light sent by other ONUs when performing end face secondary reflection detection on the fiber link between the i-th ONU and the OLT.
  • the signal for example, the length of the idle bandwidth Bi may be greater than twice the length of the optical transmission distance of the i-th ONU plus the length of the upstream bandwidth Ai, wherein the optical fiber is twice the distance of the optical signal. The time during which the fiber link between the i-th ONU and the OLT is transmitted twice, such as when the light travels twice on the fiber link.
  • Step S303 The ONU sends an uplink optical signal to the OLT according to the uplink bandwidth A allocated by the OLT through the optical fiber link between the ONU and the OLT.
  • Step S304 the OLT receives the uplink optical signal sent by the ONU in the uplink bandwidth A, and detects whether the idle bandwidth B is received from the optical fiber link between the ONU and the OLT. Horse The optical signal is matched to determine whether there is secondary reflection of the end face of the fiber link between the ONU and the OLT.
  • the uplink signal sent by the ONU will form an end face secondary reflection on the reflective end face, wherein the reflected signal formed by the secondary reflection of the end face matches the ascending optical signal, and The reflected optical signal will be received by the OLT at the free bandwidth B.
  • step S304 may specifically include:
  • the OLT receives an uplink optical signal sent by the ONU from the optical fiber link between the ONU and the OLT in the uplink bandwidth A.
  • the OLT detects whether the optical signal from the optical link between the ONU and the OLT is received in the uplink idle bandwidth B. If yes, go to step S304-3; otherwise, go to step S304- 6.
  • the OLT determines whether the uplink optical signal received in the uplink bandwidth A matches the optical signal received in the idle bandwidth B, and if the two match, the process goes to step S304-4; otherwise, Go to step S304-6.
  • the OLT compares and analyzes the uplink optical signal received in the uplink bandwidth A with the optical signal received in the idle bandwidth B, when the data of the two is the same or the proximity exceeds a preset value (for example, 95%). At that time, the two are considered to match.
  • the optical signal received by the idle bandwidth B is a reflected signal generated by the secondary optical signal transmitted by the ONU on the optical fiber link, that is, a reflection signal between the ONU and the OLT.
  • the fiber link has secondary reflection of the end face.
  • the OLT records an end face secondary reflection detection result of the fiber link between the ONU and the OLT.
  • the end face secondary reflection detection result may include whether the fiber link between the ONU and the OLT has secondary surface secondary reflection, the optical power of the uplink optical signal of the ONU, and the ONU a time difference between the reception time of the uplink optical signal and the reflected signal and a delivery time of the uplink bandwidth A.
  • Step S304-6 The OLT determines that there is no end face secondary reflection on the fiber link between the ONU and the OLT.
  • Step S306 after performing end face secondary reflection detection on each of the optical links between the ONUs and the OLTs, the OLT detects the end face secondary reflections according to the end face of the fiber link between the ONUs and the OLTs.
  • the reflected reflective end faces are positioned.
  • the OLT can analyze and judge the detection result of the optical fiber link between each ONU and the OLT after performing the secondary secondary reflection detection on all the optical links between the ONU and the OLT. If there are multiple ONUs or end-stage secondary reflections of the fiber links between all ONUs and the OLT, the OLT can determine the probability of secondary surface secondary reflection on multiple branch fibers in the actual PON system. The two reflective end faces that cause the secondary reflection of the end face are all on the main fiber.
  • each of the ONUs has a certain optical power when transmitting the uplink optical signal, and when there is secondary reflection of the end surface in the uplink optical fiber link of the ONU, part of the uplink optical signal of the ONU The reflection occurs on the reflective end face, so the optical power of the upstream optical signal of the ONU detected by the OLT in the upstream bandwidth A is reduced. Therefore, if the OLT determines that there is only one end surface reflection of the optical fiber link between the ONU and the OLT, analyze the optical power of the uplink optical signal of the ONU, and uplink the optical power of the ONU uplink optical signal with the uplink of other ONUs. The optical power of the optical signal is compared. If the optical power of the upstream optical signal of the ONU is smaller than that of the other ONUs, it can be determined that at least one end surface of the end surface causing the secondary reflection of the end surface is on the branch fiber of the ONU.
  • the OLT may further calculate an optical fiber between the ONU and the OLT according to a time difference between an uplink optical signal of the ONU and a received time of the reflected signal, and a sending time of the uplink bandwidth A. The distance between the two reflective end faces of the secondary reflection of the end face of the link occurs, thereby determining the specific position of the reflective end face.
  • the following uses an application example in a Gigabit-Capable Passive Optical Network (Gigabit-Capable Passive Optical Network) to further describe the detection of the optical fiber link in the passive optical network provided by the embodiment of the present invention. method.
  • Gigabit-Capable Passive Optical Network Gigabit-Capable Passive Optical Network
  • the OLT when performing end-face secondary reflection detection on a fiber link between an ONU and an OLT, the OLT uses an op-up PLOAM (Physical Layer Operations, Administration and Maintenance) command.
  • the ONU drives to the 04 ranging state to provide the ONU with the ranging bandwidth, and the open window suspends the uplink transmission of all ONUs.
  • Using the pop-up PLOAM command to drive the ONUs one by one to the 04 ranging state to provide the ranging bandwidth to the ONU is equivalent to the ONU granting the upstream bandwidth A in the above embodiment, and the ONU sends the measurement to the OLT according to the ranging bandwidth.
  • PLOAM Physical Layer Operations, Administration and Maintenance
  • the distance response window is equivalent to adding an idle bandwidth B after the uplink bandwidth A in the above embodiment, and no ONU can send the uplink signal during the empty window.
  • the ONU After entering the 04 ranging state, the ONU sends a ranging response signal to the 0LT in response to the ranging bandwidth, 0LT
  • the ranging response signal may be detected at the ranging bandwidth, and the ONU may be determined by detecting whether another ranging response signal can be received during the empty window (ie, the OLT determines whether two ranging response messages can be received) Whether the secondary fiber reflection of the upstream fiber link with the OLT has occurred.
  • the step of detecting the fiber link in the above GPON can be applied to an EPON (Ethernet Passive Optical Network) and a 10 Gigabit-Capable Passive Optical Network (10 Gigabit-Capable Passive Optical Network).
  • EPON Ethernet Passive Optical Network
  • 10 Gigabit-Capable Passive Optical Network 10 Gigabit-Capable Passive Optical Network
  • the method for detecting a fiber link in a passive optical network can also be implemented in an XGPON.
  • the OLT can modify the preamble of the ONU to be a long preamble, and at the same time, only one PLOAM uplink bandwidth is opened for the ONU.
  • the REGISTRATION_ID (registration ID) message is sent to the ONU, the OLT can perform two according to whether the ONU performs The secondary REGISTRATION_ID message is replied to detect whether there is end face secondary reflection on the uplink between the ONU and the OLT.
  • the OLT allocates an uplink bandwidth to each ONU one by one, and configures an idle bandwidth after the bandwidth; receiving the uplink bandwidth.
  • the uplink optical signal sent by the ONU automatically detects whether there is end surface secondary reflection of the optical fiber link between the ONU and the OLT according to whether the optical signal matching the uplink optical signal is received in the idle bandwidth. Therefore, the detection method provided by the embodiment of the present invention does not need to perform on-site operations, and only needs to perform simple analysis and judgment, thereby realizing the labor saving cost and improving the efficiency of checking the secondary reflection of the end face.
  • the embodiment of the present invention further provides a detection system for a fiber link in a passive optical network, and the system may be implemented as shown in FIG. Network architecture.
  • the detection system of the optical fiber link in the passive optical network may include an OLT and an ONU, where the OLT is connected to the ONU in a point-to-multipoint manner through the ODN.
  • the OLT is configured to allocate an uplink bandwidth to the ONU, and configure an idle bandwidth after the uplink bandwidth; receive an uplink optical signal sent by the ONU in the uplink bandwidth, and detect whether the received bandwidth is received in the idle bandwidth. And determining, by the detection result, whether the optical fiber link between the ONU and the OLT has secondary reflection of the end face according to the detection result;
  • the ONU is configured to send the uplink optical signal to the OLT according to an uplink bandwidth allocated by the OLT.
  • the idle bandwidth may be a dedicated bandwidth for detecting end face secondary reflection of a fiber link between the ONU and the OLT
  • the length of the idle bandwidth may be The optical link between the ONU and the OLT does not receive the uplink optical signal sent by other ONUs when detecting the secondary reflection of the end face.
  • the length of the idle bandwidth is greater than twice the transmission distance of the optical fiber plus the uplink bandwidth. length.
  • the OLT detects whether an optical signal matching the uplink optical signal is received in the idle bandwidth, and determines whether a fiber link between the ONU and the OLT is determined according to the detection result.
  • the end face secondary reflection process it may be detected whether an optical signal from the optical fiber link between the ONU and the OLT is received in the idle bandwidth, if a fiber link from the ONU and the OLT is received. And determining, by the optical signal, whether the optical signal received in the idle bandwidth matches the uplink optical signal, where the matching is that the data of the two is the same or the data similarity exceeds a preset value, if the idle The optical signal received in the bandwidth is matched with the upstream optical signal, and the optical fiber link between the ONU and the OLT is determined to have secondary reflection of the end face.
  • the OLT may further locate the secondary reflection of the end face according to the detection result of the secondary reflection of the end face of the optical link between each ONU and the OLT, where the detection result includes the ONU and the OLT. Whether the secondary fiber reflection of the end face and the optical power of the upstream optical signal of the ONU occur.
  • the OLT can detect the optical fiber link between each ONU and the OLT in the process of locating the reflective end face that causes the secondary reflection of the end face according to the detection result of the optical fiber link between each ONU and the OLT. Performing an analysis and judging, if there is a secondary reflection of the end face of the fiber link between the plurality of ONUs and the OLT, it is determined that both end faces causing the secondary reflection of the end face are on the trunk fiber; or, if the OLT determines that there is only one ONU and The optical fiber link between the OLTs has an end face secondary reflection, and compares the optical power of the uplink optical signal of the ONU with the optical power of the uplink optical signals of all other ONUs, if the optical power of the upstream optical signal of the ONU is not the maximum And determining at least one reflective end face that causes secondary reflection of the end face to be a branch fiber of the ONU.
  • the detection system of the optical fiber link in the passive optical network provided by the embodiment of the present invention can also reduce the cost and improve the efficiency of detecting the secondary reflection of the end face.
  • the embodiment of the present invention further provides a detecting device for the optical fiber link in the passive optical network, where the detecting device may be a passive optical network PON.
  • the optical line terminal OLT or the internal function module of the OLT is integrated inside the OLT.
  • the detecting device may include a bandwidth allocation module 501, a receiving module 502, a detecting module 503, and a positioning module 504.
  • the bandwidth allocation module 501 is configured to allocate an uplink bandwidth to the ONU, and configure an idle bandwidth after the uplink bandwidth.
  • the receiving module 502 is configured to receive an uplink optical signal sent by the ONU in the uplink bandwidth.
  • the detecting module 503 is configured to detect whether an optical signal matching the uplink optical signal is received in the idle bandwidth, and determine, according to the detection result, whether the optical fiber link between the ONU and the OLT has a secondary end reflection .
  • the OLT may further include:
  • the positioning module 504 is configured to generate a detection result according to a fiber link between each ONU and the OLT.
  • the reflective end face of the secondary reflection is positioned.
  • the idle bandwidth may be a dedicated bandwidth for detecting the secondary reflection of the end face of the optical fiber link between the ONU and the OLT, and the length of the idle bandwidth may be When the end-line secondary reflection detection is performed on the optical fiber link between the ONU and the OLT, the uplink optical signal sent by other ONUs is not received, for example, the length of the idle bandwidth is greater than twice the transmission distance of the optical fiber plus The length of the upstream bandwidth is as follows:
  • the detecting module 503 may include:
  • the detecting unit 601 is configured to detect whether an optical signal from the optical fiber link between the ONU and the OLT is received in the uplink bandwidth;
  • the determining unit 602 is configured to determine, when the detecting unit detects, that the optical signal received from the optical link between the ONU and the OLT is received by the idle unit, whether the optical signal received in the idle bandwidth is Matching with the uplink optical signal, where the matching means that the data of the two is the same or the data similarity exceeds the preset value; the determining unit 603 is configured to determine, in the determining unit, that the data is received in the idle bandwidth.
  • the optical signal matches the uplink optical signal, it is determined whether the optical fiber link between the ONU and the OLT has secondary reflection of the end face.
  • the detection result may include whether an optical fiber link between the ONU and the OLT has an end face secondary reflection and an optical power of the uplink optical signal of the ONU, and the like; wherein the positioning module 504 In the process of locating the reflective end face that causes the secondary reflection of the end face according to the detection result of the optical fiber link between each ONU and the OLT, the detection result of the optical fiber link between each ONU and the OLT can be specifically analyzed.
  • each functional module and functional unit may refer to the description of the foregoing method embodiments. It can be seen from the above description and the embodiments that the detecting device of the optical fiber link in the passive optical network provided by the embodiment of the present invention can achieve the purpose of reducing labor cost and improving detection efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Description

无源光网络中光纤链路的检测方法、 系统和装置
技术领域
本发明涉及 PON (Passive Optical Network, 无源光网络)技术, 特别地涉及无源光 网络中光纤链路的检测方法、 系统和装置。 背景技术
PON通常包括 OLT (Optical Line Terminal,光线路终端)、 ODN ( Optical Distribution Network, 光分配单元) 和多个 ONU (Optical Network Unit,光网络单元) 。
PON采用点到多点的方式连接, 上行多个 ONU采用 TDMA ( Time Division Multiple Access, 时分多址) 工作方式共享光传输介质。 在 TDMA模式下, OLT对 ONU进行带宽 授权, 对 ONU来说, 这种带宽授权即为其发光时隙, 每个 ONU都有自己特定的发光时 隙, 在正常情况下, 各 ONU只有在分配给自身的特定发光时隙内才会发送上行光信号。
如果 ODN存在光纤损伤或者光纤连接处出现异常,在 OLT和 ONU之间的光纤链路可 能会产生反射端面,若所述光纤链路存在两个反射端面,某个 ONU发生的上行光信号可 能会在所述两个反射端面之间形成端面二次反射而在上行方向生成二次反射光。 如图 1 所示, ONU在 OLT分配的发光时隙内发送上行光信号, 当此上行光信号遇到端面 0时, 有一部分会被端面 0反射而在下行方向生成一次反射光, 而当此一次反射光下行遇到端 面 1时, 又会被端面 1反射而在上行方向形成二次反射光, 即端面二次反射光。 由于在 TDMA模式下,每个 ONU的发光时隙不同, 当所述端面二次反射光刚好位于另一个 ONU 的发光时隙时,端面二次反射光可能会对此 ONU的上行光信号产生干扰, 从而造成上行 帧丢失 (Loss of Frame, LOF) 。
OTDR (Optical Time Domain Reflectometer, 光时域反射仪) 是一种常用的光纤传 输特性检测设备,其可以通过检测测试脉冲在光纤链路的事件点(比如熔接点、连接器、 转接头、 光纤弯曲或断裂)发生反射而返回的反射信号获得光纤链路的传输特性, 从而 对 PON中存在的网络故障进行定位和分析。
但是, 由于 OTDR仅能够通过反射信号定位具体的光线事件点, 而对于两个或多个 事件点之间是否会产生影响上行业务的二次反射问题, 依靠 OTDR是不能检测得到的。 因此, 在采用 OTDR定位光线事件点之后, 一般还需要现场人工分析的方式来判断 PON 的光纤链路是否发生端面二次反射, 但这种检测方法需要投入大量的人力物力, 如此一 来, 提升了成本, 也降低了故障排查的效率。 发明内容
本发明提供了一种无源光网络中光纤链路的检测方法、 系统及装置以降低人工成 本, 提升故障检测效率。
本发明实施例提供的一种无源光网络中光纤链路的检测方法, 包括, 给 ONU分配 上行带宽, 并在所述上行带宽后配置空闲带宽; 在所述上行带宽接收所述 ONU发来的 上行光信号; 检测在所述空闲带宽中是否接收到与所述上行光信号相匹配的光信号, 并 根据检测结果判断所述 ONU与 OLT之间的光纤链路是否出现端面二次反射。
本发明实施例提供的一种无源光网络中光纤链路的检测系统, 包括 OLT和 ONU: 所述 OLT用于给 ONU分配上行带宽, 并在所述上行带宽后配置空闲带宽; 在所述上行 带宽接收所述 ONU发来的上行光信号, 并检测在所述空闲带宽中是否接收到与所述上 行光信号相匹配的光信号, 并根据检测结果判断所述 ONU与 OLT之间的光纤链路是否 出现端面二次反射;
所述 ONU用于根据所述 OLT分配的上行带宽, 向所述 OLT发送所述上行光信号。 本发明实施例提供的一种无源光网络中光纤链路的检测装置, 包括带宽分配模块, 用于给 ONU分配上行带宽, 并在所述上行带宽后配置空闲带宽; 接收模块, 用于在所 述上行带宽接收所述 ONU发来的上行光信号; 检测模块, 用于检测在所述空闲带宽中 是否接收到与所述上行光信号相匹配的光信号, 并根据检测结果判断所述 ONU与 OLT 之间的光纤链路是否出现端面二次反射; 定位模块, 用于根据各个 ONU与 OLT之间的 光纤链路的检测结果, 对造成端面二次反射的反射端面进行定位。
在上述无源光网络中光纤链路的检测方法、系统和装置中,所述 OLT在分配给 ONU 的上行带宽后配置空闲带宽, 并根据所述空闲带宽中是否接收到与所述 ONU在所述上 行带宽发送的上行光信号相匹配的光信号, 自动检测出 ONU与 OLT之间的光纤链路是 否存在端面二次反射。 因此, 采用本发明实施例提供的检测方法不需要进行现场作业, 只需进行简单的分析判断从而实现了在节省人力成本的同时,提高了排查端面二次反射 的效率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有 技术描述中所需要的附图作简单介绍,很明显,下面描述中的附图仅仅是现有技术的说明 及本发明的一些实施例,对于本领域的普通技术人员来说,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他附图。
图 1是端面二次反射产生的原理示意图;
图 2是本发明一种实施例提供的无源光网络中光纤链路的检测方法的流程图; 图 3是无源光网络系统的网络架构示意图;
图 4是本发明另一种实施例提供的无源光网络中光纤链路的检测方法的流程图; 图 5是图 4所示检测方法中判断 ONU与 OLT之间的光纤链路是否存在端面二次反 射的流程图;
图 6是本发明实施例提供的无源光网络中光纤链路的检测装置的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明技术方案进行清楚完整地描述,显然,所 描述的实施例仅是本发明的一部分实施例而不是全部实施例.基于本发明的实施例,本领 域的普通技术人员在没有创造性劳动的前提下获得的其他实施例,均属于本发明的保护 范围。
本发明实施例提供了一种无源光网络中光纤链路的检测方法, 请参阅图 2, 其中, 光线路终端 (OLT) 可以首先给光网络单元 (ONU) 分配上行带宽, 并在所述上行带宽 后配置空闲带宽; 所述 OLT在所述上行带宽接收所述 ONU发来的上行光信号; 并且, 所述 OLT可以进一步检测在所述空闲带宽中是否接收到与所述上行光信号相匹配的光 信号, 并根据检测结果判断所述 ONU与 OLT之间的光纤链路是否出现端面二次反射。
本发明实施例提供的无源光网络中光纤链路的检测方法可以适用于如图 3 所示的
PON。 所述无源光网络系统 (PON) 100可以包括至少一个光线路终端 (OLT) 110、 一 个光分配网络 120 (ODN) 和多个光网络单元 (ONU) 130。
其中, 从所述 OLT到所述 ONU的方向定义为下行方向, 而从所述 ONU到所述 OLT 的方向定义为上行方向。在下行方向,所述 OLT采用时分复用( Time Division Multiplexing, TDM) 方式将下行数据广播给所述多个 ONU, 各个 ONU只接收携带自身标识的数据; 而在上行方向, 所述多个 ONU采用时分多址 TDMA的方式与所述 OLT进行通信, 每个 ONU严格按照所述 OLT分配的时隙发送上行数据。采用上述机制, 所述 OLT发送的下行 光信号为连续光信号; 而所述 ONU发送的上行光信号为突发光信号。
所述无源光网络系统可以是不需要任何有源器件来实现所述 OLT与所述 ONU之间 的数据分发的通信网络系统, 比如, 在具体实施例中, 所述 OLT与所述 ONU之间的数据 分发可以通过所述 ODN中的无源光器件(比如分光器)来实现。 并且, 所述无源光网络 系统 100可以为 ITU-T G.983标准定义的异步传输模式无源光网络 (ATM PON) 系统或 宽带无源光网络 (BPON) 系统、 ITU-T G.984标准定义的吉比特无源光网络 (GPON) 系统、 IEEE 802.3ah标准定义的以太网无源光网络 (EPON) 、 或者下一代无源光网络 (NGA PON, 比如 XGPON或 10G EPON等) 。 上述标准定义的各种无源光网络系统的 全部内容通过弓 I用结合在本申请文件中。
所述 OLT通常位于中心局(Central Office, CO) , 其可以统一管理所述多个 ONU, 并在所述 ONU与上层网络之间传输数据。具体来说,该 OLT可以充当所述 ONU与所述上 层网络 (比如因特网、 公共交换电话网络(Public Switched Telephone Network, PSTN)之 间的媒介, 将从所述上层网络接收到的数据转发到所述 ONU, 以及将从所述 ONU接收 到的数据转发到所述上层网络。 所述 OLT的具体结构配置可能会因所述无源光网络 100 的具体类型而异, 比如, 在一种实施例中, 所述 OLT可以包括发射机和接收机, 所述发 射机用于向所述 ONU发送下行连续光信号, 所述接收机用于接收来自所述 ONU的上行 突发光信号, 其中所述下行光信号和上行光信号可通过所述光分配网络进行传输。
所述 ONU可以分布式地设置在用户侧位置 (比如用户驻地) 。 所述 ONU可以为用 于与所述 OLT和用户进行通信的网络设备, 具体而言, 所述 ONU可以充当所述 OLT与所 述用户之间的媒介, 例如, 所述 ONU可以将从所述 OLT接收到的数据转发到所述用户, 以及将从所述用户接收到的数据转发到所述 OLT。应当理解, 所述 ONU的结构与光网络 终(Optical Network Terminal, ONT)相近, 因此在本申请文件提供的方案中, 光网络单 元和光网络终端之间可以互换。
所述 ODN可以是一个数据分发系统, 其可以包括光纤、 光耦合器、 分光器和 /或其 他设备。在一个实施例中, 所述光纤、光耦合器、 分光器和 /或其他设备可以是无源光器 件, 具体来说, 所述光纤、 光耦合器、 分光器和 /或其他设备可以是在所述 OLT和所述 ONU之间分发数据信号是不需要电源支持的器件。 具体地, 以光分路器 (Splitter) 为 例,所述光分路器可以通过主干光纤连接到所述 OLT, 并分别通过多个分支光纤连接到 所述多个 ONU, 从而实现所述 OLT和所述 ONU之间的点到多点连接。 另外, 在其他 实施例中,该 ODN还可以包括一个或多个处理设备,例如,光放大器或者中继设备 (Relay device) 。 另外, 所述 ODN具体可以从所述光线路终端 110延伸到所述多个 ONU, 但 也可以配置成其他任何点到多点的结构。
本发明一种实施例提供的无源光网络中光纤链路的检测方法可以如图 4所示,其可 以适用于图 3所示的 PON系统, 所述方法包括:
步骤 S300, OLT检测来自 ONU的上行光信号是否出现上行帧丢失。
当出现流氓 ONU或者某个光纤链路出现端面二次反射时, PON系统将出现非正常 上行光, 所述非正常上行光可能会对某个或者某些 ONU的上行光造成干扰而导致发生 上行帧丢失。 当 OLT检测出某个 ONU没有上行帧丢失, 表明此 ONU的上行光纤链通 信正常; 若 OLT检测出某个 ONU出现上行帧丢失, 则进行步骤 S301 , 启动流氓 ONU 检测, 或者直接进行步骤 S302, 启动端面二次反射检测。
步骤 S301, OLT启动流氓 ONU检测, 判断 PON系统是否存在流氓 ONU。
当 PON在 TDMA的方式下工作时, 流氓 ONU 的出现也会导致其他 ONU上行帧 丢失的情况发生, 所以当光纤链路出现上行帧丢失的情况时, 可以先对光纤链路进行流 氓 ONU检测, 如果光纤链路中存在流氓 ONU, 则进行步骤 S307, 进一步确定出流氓 ONU。 如果不存在流氓 ONU, 则进行步骤 S302。 当然, 步骤 S301是可选步骤, 也可 以不经过此步骤直接进行步骤 S302。
步骤 S302, OLT启动端面二次反射检测, 逐个地给 ONU分配一个上行带宽 A, 并 在所述 ONU的上行带宽 A之后配置空闲带宽 B。
为便于描述, 假设所述 PON系统包括 N个 ONU, 以下将给第 i个 ONU ( l^i^N) 分配的上行带宽 A记为上行带宽 Ai,将附加在所述上行带宽 Ai之后的空闲带宽 B记为 Bio 其中, 所述上行带宽 Ai满足所述第 i个 ONU—个最短上行帧的要求, 即其长度不 小于所述第 i个 ONU的最短上行帧的长度; 所述空闲带宽 Bi作为对所述第 i个 ONU 与 OLT之间的光纤链路进行端面二次反射检测的专用带宽,不授权给任何一个 ONU进 行上行发送, 即是没有 ONU可以使用的。
在一种实施例中, 所述空闲带宽 Bi的宽度可以保证 OLT在对所述第 i个 ONU与 OLT之间的光纤链路进行端面二次反射检测时不会接收到其他 ONU发送的上行光信 号, 比如所述空闲带宽 Bi的长度可以大于所述第 i个 ONU的光纤传输距离的两倍时间 加上所述上行带宽 Ai的长度,其中所述光纤距离的两倍时间是光信号在所述第 i个 ONU 和 OLT之间的光纤链路传输两次的时间, 比如光在所述光纤链路往返两次的时间。
步骤 S303, ONU通过其与 OLT之间的光纤链路按照 OLT分配的上行带宽 A向 OLT 发送上行光信号。
步骤 S304, OLT在所述上行带宽 A接收 ONU发来的上行光信号, 并通过检测在 所述空闲带宽 B是否从所述 ONU与 OLT之间的光纤链路接收到与所述上行光信号相匹 配的光信号, 判断所述 ONU与 OLT之间的光纤链路是否存在端面二次反射。
具体而言, 如果所述 ONU与 OLT之间的光纤链路存在端面二次反射, 比如, 当所 述 ONU和 OLT之间的 ODN的主干光纤或者分支光纤出现内部损伤或者弯曲、 或者主 干光纤与 OLT或分光器的公共端口的连接处不紧密、或者分支光纤与 ONU或分光器的 分支端口连接处不紧密等, 将会在所述光纤链路的对应位置形成反射端面, 若所述光纤 链路中存在两个以上的反射端面, 则 ONU发送的上行信号将会在所述反射端面形成端 面二次反射, 其中所述端面二次反射形成的反射信号与所述上行光信号相匹配, 且所述 反射光信号将在所述空闲带宽 B被 OLT接收到。
请一并参阅图 5, 步骤 S304可以具体包括:
S304-1, OLT在所述上行带宽 A从所述 ONU和 OLT之间的光纤链路接收到 ONU 发来的上行光信号。
S304-2, OLT检测在所述上行空闲带宽 B是否接收到来自所述 ONU和 OLT之间的 光纤链路的光信号, 若检测到, 转至步骤 S304-3 ; 否则, 转至步骤 S304-6。
S304-3 , OLT判断在所述上行带宽 A中接收到的上行光信号与在所述空闲带宽 B 中接收到的光信号是否匹配, 若二者匹配, 转至步骤 S304-4; 否则, 转至步骤 S304-6。
其中, OLT将在所述上行带宽 A接收到的上行光信号与在所述空闲带宽 B接收到 的光信号进行对比分析, 当二者的数据相同或者近似度超过预设值 (比如 95 % )时, 即认 为二者相匹配。
S304-4, 判定所述空闲带宽 B接收到的光信号为所述 ONU发送的上行光信号在光 纤链路发生端面二次反射而产生的反射信号, 即所述 ONU和所述 OLT之间的光纤链路 存在端面二次反射。
S304-5 , OLT记录所述 ONU和 OLT之间的光纤链路的端面二次反射检测结果。 在一种实施例中,所述端面二次反射检测结果可以包括所述 ONU和 OLT之间的光 纤链路是否发生端面二次反射、 所述 ONU的上行光信号的光功率、 所述 ONU的上行 光信号和所述反射信号的接收时间的时间差和所述上行带宽 A的下发时间。
S304-6, OLT判定所述 ONU和所述 OLT之间的光纤链路不存在端面二次反射。 步骤 S305, OLT采用相同的检测方法, 逐个地检测其他 ONU与 OLT的光纤链路 是否存在端面二次反射。
步骤 S306, 在对所有 ONU与 OLT之间的光纤链路都逐个进行端面二次反射检测 之后, OLT根据各个 ONU与 OLT之间的光纤链路的端面二次反射检测结果对端面二次 反射的反射端面进行定位。
其中, OLT在对所有 ONU与 OLT之间的光纤链路都逐个进行端面二次反射检测 之后, 可以对各个 ONU与 OLT之间的光纤链路的检测结果进行分析判断。 如果存在多 个 ONU或者所有 ONU与 OLT之间的光纤链路发生端面二次反射,由于在实际 PON系 统中在多个分支光纤上同时出现端面二次反射的几率比较低, 因此 OLT 即可判断出造 成端面二次反射的两个反射端面均在主干光纤上。
另外, 每个 ONU在发送上行光信号时, 该光信号均具有一定的光功率, 而当所述 ONU的上行光纤链路中存在端面二次反射时, 由于所述 ONU的上行光信号中一部分在 反射端面发生反射,因此 OLT在上行带宽 A检测到的所述 ONU的上行光信号的光功率 会减小。 因此, 如果 OLT判断出只有一个 ONU与 OLT之间的光纤链路存在端面二次 反射, 分析此 ONU的上行光信号的光功率, 并将所述 ONU上行光信号的光功率与其 他 ONU的上行光信号的光功率做对比, 如果该 ONU的上行光信号的光功率小于其他 ONU, 那么可判断出造成端面二次反射的端面中至少有一个端面在所述 ONU的分支光 纤上。
应当理解, 上述关于端面二次反射发生在主干光纤还是分支光纤只是初步判断, 在 具体实现方式上可能需要结合其他技术手段进行检测验证。另外,在具体实施例中, OLT 还可以根据所述 ONU的上行光信号和所述反射信号的接收时间的时间差和所述上行带 宽 A的下发时间推算出所述 ONU与 OLT之间的光纤链路发生端面二次反射的两个反射 端面的距离, 从而确定所述反射端面的具体位置。
为更好理解上述实施例,以下结合在 GPON( Gigabit-Capable Passive Optical Network. 吉比特无源光网络) 中的应用实例, 进一步阐述本发明实施例提供的无源光网络中光纤 链路的检测方法。
在 GPON系统中,当对某个 ONU与 OLT之间的光纤链路进行端面二次反射检测时, OLT使用 op-up PLOAM ( Physical Layer Operations, Administration and Maintenance , 物 理层操作管理和维护)指令将 ONU驱动到 04测距状态从而给所述 ONU提供测距带宽, 并开空窗暂停所有 ONU的上行发送。 使用 pop-up PLOAM指令将 ONU逐个驱动到 04 测距状态从而给所述 0NU提供测距带宽这一过程相当于上述实施例中给 0NU授权上 行带宽 A, ONU根据此测距带宽向 OLT发送测距响应信号; 所述开空窗相当于上述实 施例中在上行带宽 A后附加一个空闲带宽 B,在空窗期间没有 0NU可以发送上行信号。 ONU在进入 04测距状态之后, 在响应所述测距带宽向 0LT发送测距响应信号, 0LT 可以在测距带宽检测到所述测距响应信号, 并通过检测在空窗期间是否可以接收到另一 个测距响应信号 (即 OLT判断是否可以接收到两个测距响应消息) 来判断此 ONU与 OLT之间的上行光纤链路是否发生了端面二次反射。
同样,上述 GPON中检测光纤链路的步骤可以适用于 EPON(Ethemet Passive Optical Network,以太网无源光网络)和 10GEPON( 10 Gigabit-Capable Passive Optical Network, 10吉比特以太网无源光网络)。
此外, 本发明实施例提供的无源光网络中光纤链路的检测方法也可以在 XGPON中 实现。 在 XGPON系统中, OLT可以将 ONU的前导修改为长前导, 同时给 ONU只开 一个 PLOAM上行的带宽, 在向 ONU下发请求 REGISTRATION_ID (注册 ID) 消息应 答之后, OLT可以根据 ONU是否进行了两次 REGISTRATION_ID消息应答来检测所述 ONU与 OLT之间的上行线路是否存在端面二次反射。
可见, 本发明实施例提供的无源光网络中光纤链路的检测方法中, 所述 OLT逐个 给每个 ONU分配一个上行带宽, 并在该带宽后配置一空闲带宽; 在所述上行带宽接收 ONU发来的上行光信号, 对根据在所述空闲带宽中是否接收到与所述上行光信号相匹 配的光信号, 自动检测出 ONU与 OLT之间的光纤链路是否存在端面二次反射。 因此, 采用本发明实施例提供的检测方法不需要进行现场作业, 只需进行简单的分析判断从而 实现了在节省人力成本的同时, 提高了排查端面二次反射的效率。
基于以上实施例提供的无源光网络中光纤链路的检测方法,本发明实施例还进一步 提供了一种无源光网络中光纤链路的检测系统,所述系统可采用如图 3所示的网络架构。
具体地, 本发明实施例提供的一种无源光网络中光纤链路的检测系统可以包括 OLT 禾口 ONU, 其中所述 OLT通过 ODN以点到多点的方式连接到所述 ONU。
所述 OLT用于给 ONU分配上行带宽, 并在所述上行带宽后配置空闲带宽; 在所述 上行带宽接收所述 ONU发来的上行光信号, 并检测在所述空闲带宽中是否接收到与所 述上行光信号相匹配的光信号, 并根据检测结果判断所述 ONU与 OLT之间的光纤链路 是否出现端面二次反射;
所述 ONU用于根据所述 OLT分配的上行带宽, 向所述 OLT发送所述上行光信号。 在所述检测系统中, 具体地, 所述空闲带宽可以是用于检测所述 ONU与 OLT之间 的光纤链路的端面二次反射的专用带宽, 所述空闲带宽的长度可以使得对所述 ONU与 OLT之间的光纤链路进行端面二次反射检测时不会接收到其他 ONU发送的上行光信 号,比如,所述空闲带宽的长度大于光纤传输距离的两倍时间加上所述上行带宽的长度。 在一种实施例中, 所述 0LT在检测在所述空闲带宽中是否接收到与所述上行光信 号相匹配的光信号, 并根据检测结果判断所述 ONU与 OLT之间的光纤链路是否出现端 面二次反射过程中,可以检测在所述空闲带宽是否接收到来自所述 ONU和 OLT之间的 光纤链路的光信号, 若接收到来自所述 ONU和 OLT之间的光纤链路的光信号, 判断在 所述空闲带宽中接收到的光信号是否与所述上行光信号相匹配,其中所述匹配是指二者 的数据相同或者数据相似度超过预设值,若在所述空闲带宽中接收到的光信号与所述上 行光信号相匹配, 确定所述 ONU与 OLT之间的光纤链路出现端面二次反射。
在一种实施例中, 所述 OLT还可以根据各个 ONU与 OLT之间的光纤链路的端面 二次反射检测结果对端面二次反射进行定位, 其中所述检测结果包括所述 ONU和 OLT 之间的光纤链路是否发生端面二次反射以及所述 ONU的上行光信号的光功率等。
比如, 所述 OLT在根据各个 ONU与 OLT之间的光纤链路的检测结果对造成端面 二次反射的反射端面进行定位的过程中,可以对各个 ONU与 OLT之间的光纤链路的检 测结果进行分析判断, 如果多个 ONU与 OLT之间的光纤链路存在端面二次反射, 判定 造成端面二次反射的两个端面均在主干光纤上; 或者, 如果所述 OLT判断出只有一个 ONU与 OLT之间的光纤链路存在端面二次反射, 将所述 ONU的上行光信号的光功率 与其他所有 ONU的上行光信号的光功率做对比, 如果该 ONU的上行光信号的光功率 不是最大, 判定造成端面二次反射的至少一个反射端面在所述 ONU的分支光纤。
通过以上说明可以看出,本发明实施例提供的一种无源光网络中光纤链路的检测系 统也可以实现降低成本, 提高排查端面二次反射的效率。
基于以上实施例提供的无源光网中光纤链路的检测系统,本发明实施例还提供了一 种无源光网络中光纤链路的检测装置, 所述检测装置可以是无源光网络 PON中的光线 路终端 OLT或者作为 OLT的内部功能模块集成在 OLT内部, 如图 6所示, 该检测装置 可以包括带宽分配模块 501, 接收模块 502和检测模块 503和定位模块 504。
其中, 带宽分配模块 501, 用于给 ONU分配上行带宽, 并在所述上行带宽后配置 空闲带宽;
接收模块 502, 用于在所述上行带宽接收所述 ONU发来的上行光信号;
检测模块 503, 用于检测在所述空闲带宽中是否接收到与所述上行光信号相匹配的 光信号,并根据检测结果判断所述 ONU与 OLT之间的光纤链路是否出现端面二次反射。
可选地, 在一种实施例中, 所述 OLT还可以包括:
定位模块 504, 用于根据各个 ONU与 OLT之间的光纤链路的检测结果, 对造成端 面二次反射的反射端面进行定位。
在图 6所示的检测装置中,具体地,所述空闲带宽可以是用于检测所述 ONU与 OLT 之间的光纤链路的端面二次反射的专用带宽,所述空闲带宽的长度可以使得对所述 ONU 与 OLT之间的光纤链路进行端面二次反射检测时不会接收到其他 ONU发送的上行光信 号,比如,所述空闲带宽的长度大于光纤传输距离的两倍时间加上所述上行带宽的长度; 在一种实施例中, 检测模块 503可以包括:
检测单元 601, 用于检测在所述上行带宽是否接收到来自所述 ONU和 OLT之间的 光纤链路的光信号;
判断单元 602, 用于在所述检测单元检测出在所述空闲单元接收到来自所述 ONU 和 OLT之间的光纤链路的光信号时, 判断在所述空闲带宽中接收到的光信号是否与所 述上行光信号相匹配, 其中所述匹配是指二者的数据相同或者数据相似度超过预设值; 确定单元 603, 用于在所述判断单元判断出在所述空闲带宽中接收到的光信号与所 述上行光信号相匹配时,确定所述 ONU与 OLT之间的光纤链路是否出现端面二次反射。
在一种实施例中,所述检测结果可以包括所述 ONU和 OLT之间的光纤链路是否发 生端面二次反射以及所述 ONU的上行光信号的光功率等; 其中, 所述定位模块 504在 根据各个 ONU与 OLT之间的光纤链路的检测结果对造成端面二次反射的反射端面进行 定位的过程中,可以具体用于对各个 ONU与 OLT之间的光纤链路的检测结果进行分析 判断, 如果判断出多个 ONU与 OLT之间的光纤链路存在端面二次反射, 判定造成端面 二次反射的两个端面均在主干光纤上;或者如果所述定位模块 504判断出只有一个 ONU 与 OLT之间的光纤链路存在端面二次反射,将所述 ONU的上行光信号的光功率与其他 所有 ONU的上行光信号的光功率做对比, 如果该 ONU的上行光信号的光功率不是最 大, 判定造成端面二次反射的至少一个反射端面在所述 ONU的分支光纤。
应当理解, 上述检测装置在进行 PON的光纤链路检测的过程中, 各个功能模块和 功能单元的具体实现可以参照上述方法实施例的描述。通过以上说明及实施例可以看出 本发明实施例提供的一种无源光网络中光纤链路的检测装置可以实现降低人工成本,提 高检测效率的目的。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发明可借 助软件加必需的硬件平台的方式来实现, 当然也可以全部通过硬件来实施。 基于这 样的理解, 本发明的技术方案对背景技术做出贡献的全部或者部分可以以软件产品 的形式体现出来, 该计算机软件产品可以存储在存储介质中, 如 ROM/RAM、 磁碟、 光盘等, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或 者网络设备等) 执行本发明各个实施例或者实施例的某些部分所述的方法。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本发明披露的技术范围内, 可轻易想到的变 化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权 利要求的保护范围为准。

Claims

权利要求
1、 一种无源光网络中光纤链路的检测方法, 其特征在于, 包括:
给 ONU分配上行带宽, 并在所述上行带宽后配置空闲带宽;
在所述上行带宽接收所述 ONU发来的上行光信号;
检测在所述空闲带宽中是否接收到与所述上行光信号相匹配的光信号, 并根据检测 结果判断所述 ONU与 OLT之间的光纤链路是否出现端面二次反射。
2、 如权利要求 1所述的无源光网络中光纤链路的检测方法, 其特征在于, 所述空 闲带宽是用于检测所述 ONU与 OLT之间的光纤链路的端面二次反射的专用带宽,所述 空闲带宽的长度使得对所述 ONU与 OLT之间的光纤链路进行端面二次反射检测时不会 接收到其他 ONU发送的上行光信号。
3、 如权利要求 2所述的无源光网络中光纤链路的检测方法, 其特征在于, 所述空 闲带宽的长度大于光纤传输距离的两倍时间加上所述上行带宽的长度。
4、 如权利要求 1所述的无源光网络中光纤链路的检测方法, 其特征在于, 所述检 测在所述空闲带宽中是否接收到与所述上行光信号相匹配的光信号, 并根据检测结果判 断所述 ONU与 OLT之间的光纤链路是否出现端面二次反射包括:
检测在所述空闲带宽是否接收到来自所述 ONU和 OLT之间的光纤链路的光信号; 若接收到来自所述 ONU和 OLT之间的光纤链路的光信号,判断在所述空闲带宽中 接收到的光信号是否与所述上行光信号相匹配,其中所述匹配是指二者的数据相同或者 数据相似度超过预设值;
若在所述空闲带宽中接收到的光信号与所述上行光信号相匹配, 确定所述 ONU与
OLT之间的光纤链路出现端面二次反射。
5、 如权利要求 1所述的无源光网络中光纤链路的检测方法, 其特征在于, 还包括 根据各个 ONU与 OLT之间的光纤链路的检测结果,对造成端面二次反射的反射端 面进行定位,其中所述检测结果包括所述 ONU和 OLT之间的光纤链路是否发生端面二 次反射以及所述 ONU的上行光信号的光功率。
6、 如权利要求 5所述的无源光网络中光纤链路的检测方法, 其特征在于, 所述根 据各个 ONU与 OLT之间的光纤链路的检测结果,对造成端面二次反射的反射端面进行 定位包括:
对各个 ONU与 OLT之间的光纤链路的检测结果进行分析判断; 如果多个 ONU与 OLT之间的光纤链路存在端面二次反射,判定造成端面二次反射 的两个反射端面均在主干光纤上。
7、 如权利要求 5所述的无源光网络中光纤链路的检测方法, 其特征在于, 所述根 据各个 ONU与 OLT之间的光纤链路的检测结果,对造成端面二次反射的反射端面进行 定位包括:
对各个 ONU与 OLT之间的光纤链路的检测结果进行分析判断;
如果只有一个 ONU与 OLT之间的光纤链路存在端面二次反射, 将所述 ONU的上 行光信号的光功率与其他所有 ONU的上行光信号的光功率做对比, 如果该 ONU的上 行光信号的光功率不是最大,判定造成端面二次反射的端面至少有一个反射端面在所述 ONU的分支光纤。
8、 如权利要求 1至 Ί中任一项所述的无源光网络中光纤链路的检测方法, 其特征 在于:
所述上行带宽为将所述 ONU驱动至测距状态而提供给所述 ONU的测距带宽, 所 述空闲带宽为用于暂停所有 ONU的上行发送的空窗, 所述上行光信号为所述 ONU在 被驱动至测距状态之后向所述 OLT发送的测距响应信号;
其中, 所述检测在所述空闲带宽中是否接收到与所述上行光信号相匹配的光信号, 并根据检测结果判断所述 ONU与 OLT之间的光纤链路是否出现端面二次反射包括: 在接收到所述 ONU 的测距响应信号之后, 检测在所述空窗期间是否接收到所述 ONU的另一个测距响应信号, 如果接收到, 判断出所述 ONU与 OLT之间的光纤链路 出现端面二次反射。
9、 一种无源光网络中光纤链路的检测系统, 其特征在于, 包括 OLT和多个 ONU: 所述 OLT用于给 ONU分配上行带宽, 并在所述上行带宽后配置空闲带宽; 在所述 上行带宽接收所述 ONU发来的上行光信号, 并检测在所述空闲带宽中是否接收到与所 述上行光信号相匹配的光信号, 并根据检测结果判断所述 ONU与 OLT之间的光纤链路 是否出现端面二次反射;
所述 ONU用于根据所述 OLT分配的上行带宽, 向所述 OLT发送所述上行光信号。
10、 如权利要求 9所述的无源光网络中光纤链路的检测系统, 其特征在于, 所述空 闲带宽是用于检测所述 ONU与 OLT之间的光纤链路的端面二次反射的专用带宽,所述 空闲带宽的长度使得对所述 ONU与 OLT之间的光纤链路进行端面二次反射检测时不会 接收到其他 ONU发送的上行光信号。
11、 如权利要求 10所述的无源光网络中光纤链路的检测系统, 其特征在于, 所述 空闲带宽的长度大于光纤传输距离的两倍时间加上所述上行带宽的长度。
12、 如权利要求 9所述的无源光网络中光纤链路的检测系统, 其特征在于, 所述检 测在所述空闲带宽是否接收到来自所述 ONU和 OLT之间的光纤链路的光信号;
若接收到来自所述 ONU和 OLT之间的光纤链路的光信号,判断在所述空闲带宽中 接收到的光信号是否与所述上行光信号相匹配,其中所述匹配是指二者的数据相同或者 数据相似度超过预设值;
若在所述空闲带宽中接收到的光信号与所述上行光信号相匹配, 确定所述 ONU与 OLT之间的光纤链路出现端面二次反射。
13、 如权利要求 9 所述的无源光网络中光纤链路的检测系统, 其特征在于, 所述
OLT还用于根据各个 ONU与 OLT之间的光纤链路的检测结果,对造成端面二次反射的 反射端面进行定位,其中所述检测结果包括所述 ONU和 OLT之间的光纤链路是否发生 端面二次反射以及所述 ONU的上行光信号的光功率。
14、 如权利要求 13所述的无源光网络中光纤链路的检测系统, 其特征在于, 所述 OLT对各个 ONU与 OLT之间的光纤链路的检测结果进行分析判断;
如果多个 ONU与 OLT之间的光纤链路存在端面二次反射,判定造成端面二次反射 的两个端面均在主干光纤上。
15、 如权利要求 13所述的无源光网络中光纤链路的检测系统, 其特征在于, 所述 OLT对各个 ONU与 OLT之间的光纤链路的检测结果进行分析判断;
如果只有一个 ONU与 OLT之间的光纤链路存在端面二次反射, 将所述 ONU的上 行光信号的光功率与其他所有 ONU的上行光信号的光功率做对比, 如果该 ONU的上 行光信号的光功率不是最大, 判定造成端面二次反射的至少一个反射端面在所述 ONU 的分支光纤。
16、 如权利要求 9至 15中任一项所述的无源光网络中光纤链路的检测系统, 其特 征在于:
所述上行带宽为将所述 ONU驱动至测距状态而提供给所述 ONU的测距带宽, 所 述空闲带宽为用于暂停所有 ONU的上行发送的空窗, 所述上行光信号为所述 ONU在 被驱动至测距状态之后向所述 OLT发送的测距响应信号;
其中, 所述 OLT在接收到所述 ONU的测距响应信号之后, 检测在所述空窗期间是 否接收到所述 ONU的另一个测距响应信号, 如果接收到, 判断出所述 ONU与 OLT之 间的光纤链路出现端面二次反射。
17、 一种无源光网络中光纤链路的检测装置, 其特征在于, 包括:
带宽分配模块, 用于给 ONU分配上行带宽, 并在所述上行带宽后配置空闲带宽; 接收模块, 用于在所述上行带宽接收所述 ONU发来的上行光信号;
检测模块,用于检测在所述空闲带宽中是否接收到与所述上行光信号相匹配的光信 号, 并根据检测结果判断所述 ONU与 OLT之间的光纤链路是否出现端面二次反射。
18、 如权利要求 17所述的无源光网络中光纤链路的检测装置, 其特征在于, 所述 空闲带宽是用于检测所述 ONU与 OLT之间的光纤链路的端面二次反射的专用带宽,所 述空闲带宽的长度使得对所述 ONU与 OLT之间的光纤链路进行端面二次反射检测时不 会接收到其他 ONU发送的上行光信号。
19、 如权利要求 18所述的无源光网络中光纤链路的检测装置, 其特征在于, 所述 空闲带宽的长度大于光纤传输距离的两倍时间加上所述上行带宽的长度。
20、 如权利要求 17所述的无源光网络中光纤链路的检测装置, 其特征在于, 所述 检测模块包括:
检测单元,用于检测在所述上行带宽是否接收到来自所述 ONU和 OLT之间的光纤 链路的光信号;
判断单元, 用于在所述检测单元检测出在所述空闲单元接收到来自所述 ONU 和 OLT之间的光纤链路的光信号时,判断在所述空闲带宽中接收到的光信号是否与所述上 行光信号相匹配, 其中所述匹配是指二者数据相同或者数据相似度超过预设值;
确定单元,用于在所述判断单元判断出在所述空闲带宽中接收到的光信号与上述上 行光信号相匹配时, 确定所述 ONU与 OLT之间的光纤链路是否出现端面二次反射。
21、 如权利要求 17所述的无源光网络中光纤链路的检测装置, 其特征在于, 还包 括定位模块, 用于根据各个 ONU与 OLT之间的光纤链路的检测结果, 对造成端面二次 反射的反射端面进行定位,其中所述检测结果包括所述 ONU和 OLT之间的光纤链路是 否发生端面二次反射以及所述 ONU的上行光信号的光功率。
22、 如权利要求 21所述的无源光网络中光纤链路的检测装置, 其特征在于, 所述 定位模块对各个 ONU与 OLT之间的光纤链路的检测结果进行分析判断;
如果多个 ONU与 OLT之间的光纤链路存在端面二次反射,判定造成端面二次反射 的两个反射端面均在主干光纤上。
23、 如权利要求 21所述的无源光网络中光纤链路的检测装置, 其特征在于, 所述 定位模块对各个 ONU与 OLT之间的光纤链路的检测结果进行分析判断;
如果只有一个 ONU与 OLT之间的光纤链路存在端面二次反射, 将所述 ONU的上 行光信号的光功率与其他所有 ONU的上行光信号的光功率做对比, 如果该 ONU上行 的光信号的光功率不是最大,判定造成端面二次反射的端面至少有一个反射端面在所述
ONU的分支光纤上。
24、 如权利要求 17所述的无源光网络中光纤链路的检测装置, 其特征在于: 所述上行带宽为将所述 ONU驱动至测距状态而提供给所述 ONU的测距带宽, 所 述空闲带宽为用于暂停所有 ONU的上行发送的空窗, 所述上行光信号为所述 ONU在 被驱动至测距状态之后向所述 OLT发送的测距响应信号;
其中, 所述检测模块在接收到所述 ONU的测距响应信号之后, 检测在所述空窗期 间是否接收到所述 ONU的另一个测距响应信号,如果接收到,判断出所述 ONU与 OLT 之间的光纤链路出现端面二次反射。
PCT/CN2011/080201 2011-09-27 2011-09-27 无源光网络中光纤链路的检测方法、系统和装置 WO2012149773A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/080201 WO2012149773A1 (zh) 2011-09-27 2011-09-27 无源光网络中光纤链路的检测方法、系统和装置
CN201180002223.6A CN102388549B (zh) 2011-09-27 2011-09-27 无源光网络中光纤链路的检测方法、系统和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/080201 WO2012149773A1 (zh) 2011-09-27 2011-09-27 无源光网络中光纤链路的检测方法、系统和装置

Publications (1)

Publication Number Publication Date
WO2012149773A1 true WO2012149773A1 (zh) 2012-11-08

Family

ID=45826498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080201 WO2012149773A1 (zh) 2011-09-27 2011-09-27 无源光网络中光纤链路的检测方法、系统和装置

Country Status (2)

Country Link
CN (1) CN102388549B (zh)
WO (1) WO2012149773A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2664076T3 (es) 2013-12-09 2018-04-18 Huawei Technologies Co., Ltd. Aparato y método para detectar una señal óptica de enlace ascendente
US10567075B2 (en) * 2015-05-07 2020-02-18 Centre For Development Telematics GIS based centralized fiber fault localization system
CN106027144B (zh) * 2016-07-07 2018-12-07 邦彦技术股份有限公司 一种光纤通信中反射现象的定位识别方法及系统
US10256910B2 (en) * 2017-04-24 2019-04-09 Futurewei Technologies, Inc. Control and management of passive optical network reach extenders
CN112910548A (zh) * 2019-12-04 2021-06-04 中兴通讯股份有限公司 测定onu状态的方法、检测仪表及系统
CN113824506B (zh) * 2020-06-20 2023-01-06 华为技术有限公司 光信号处理方法、光收发器、控制器和光线路终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790111A (zh) * 2009-01-23 2010-07-28 华为技术有限公司 一种光分布网检测方法、装置及系统
CN102004107A (zh) * 2009-09-02 2011-04-06 Gp检验有限公司 用于探测对象中的缺陷的方法和装置
CN102075244A (zh) * 2010-12-30 2011-05-25 北京格林伟迪科技有限公司 一种诊断以太无源光网络中长发光光网络单元的方法
CN102142897A (zh) * 2011-03-29 2011-08-03 华为技术有限公司 一种光网络单元的检测方法、装置和无源光网络系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130262B2 (ja) * 2009-07-17 2013-01-30 アンリツ株式会社 光線路障害探索装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790111A (zh) * 2009-01-23 2010-07-28 华为技术有限公司 一种光分布网检测方法、装置及系统
CN102004107A (zh) * 2009-09-02 2011-04-06 Gp检验有限公司 用于探测对象中的缺陷的方法和装置
CN102075244A (zh) * 2010-12-30 2011-05-25 北京格林伟迪科技有限公司 一种诊断以太无源光网络中长发光光网络单元的方法
CN102142897A (zh) * 2011-03-29 2011-08-03 华为技术有限公司 一种光网络单元的检测方法、装置和无源光网络系统

Also Published As

Publication number Publication date
CN102388549B (zh) 2014-03-12
CN102388549A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
EP2421179B1 (en) Method, device and system for testing optical network
US7729612B2 (en) Method and system for maintenance of a passive optical network
US7428382B2 (en) System and method for performing in-service fiber optic network certification
EP3112838B1 (en) Optical network test instrument including optical network unit identifier capture capability from downstream signals
KR100663462B1 (ko) 수동형 광 가입자 망
US8290364B2 (en) Method, optical network and network device for locating fiber events
CN102714545B (zh) 光收发模块、无源光网络系统、光纤检测方法和系统
KR100584383B1 (ko) 광선로가입자장치들의 링크 상태를 관리하기 위한광선로종단장치 및 이를 적용한 기가비트 이더넷 기반의수동 광가입자망
EP2602946B1 (en) Single-fiber bi-directional optical module and passive optical network system
WO2012149773A1 (zh) 无源光网络中光纤链路的检测方法、系统和装置
WO2018157291A1 (zh) 无源光网络系统中通信的方法、光线路终端和光网络单元
US20090016714A1 (en) System and method for performing in-service fiber optic network certification
EP2690802B1 (en) System for the certification of a passive optical network and for the detection of problems and faults in the last fibre legs
WO2008128462A1 (fr) Procédé, système et appareil de détection de défaut pour un réseau réparti optique
CN102045105A (zh) 一种故障主动检测隔离方法和光线路单元
CN106506069B (zh) 光线路终端、光收发模块、系统以及光纤检测方法
KR100765471B1 (ko) 광망 종단 장치와 광 회선 단말장치 및 광망 종단장치의 광송신단 제어방법
CN107078793B (zh) 一种光纤故障诊断方法、装置及系统
US8861961B2 (en) Passive optical network, access method thereof, optical network unit and optical line termination
EP3975580B1 (en) Method for determining connection of optical network terminals, apparatus and system
CN101583053A (zh) 一种由gpon系统处理非法光网络单元的方法
JP2011035738A (ja) 障害onu特定方法及び装置
WO2022111045A1 (zh) 确定无源光网络传输时延的方法
WO2011153840A1 (zh) 长距无源光网络中实现光线路检测的方法及装置
KR20040063453A (ko) 이피오엔 시스템의 알티티 측정 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002223.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864830

Country of ref document: EP

Kind code of ref document: A1