WO2012148300A1 - Device for generating electrical energy - Google Patents

Device for generating electrical energy Download PDF

Info

Publication number
WO2012148300A1
WO2012148300A1 PCT/RU2011/000278 RU2011000278W WO2012148300A1 WO 2012148300 A1 WO2012148300 A1 WO 2012148300A1 RU 2011000278 W RU2011000278 W RU 2011000278W WO 2012148300 A1 WO2012148300 A1 WO 2012148300A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
contact
insulated
electrode
conductive material
Prior art date
Application number
PCT/RU2011/000278
Other languages
French (fr)
Russian (ru)
Inventor
Геннадий Александрович ОЛЕИНОВ
Original Assignee
Oleynov Gennady Aleksandrovitsch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oleynov Gennady Aleksandrovitsch filed Critical Oleynov Gennady Aleksandrovitsch
Priority to PCT/RU2011/000278 priority Critical patent/WO2012148300A1/en
Publication of WO2012148300A1 publication Critical patent/WO2012148300A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators

Definitions

  • the invention relates to electricity and it is applicable where there is a receipt or expenditure of electrical energy, i.e. when used as a source of electrical energy, as a cooling device or air conditioner, in the electrolytic production of substances, such as aluminum.
  • a device for generating electric energy is known according to the application N ° PCT / RU 2010/000428, containing a conductive material that allows incomplete screening of the electric field, for example, in the form of a semiconductor with mixed conductivity and at least three electrodes, one of which is insulated from this material, while others are in contact, being current collectors.
  • a potential difference is applied to two electrodes, one of which is isolated from the material, a potential difference is applied to the contacting electrodes or current collectors supplied to the load.
  • This invention allows to create devices more efficient, for example more powerful.
  • the device for generating electric energy current collectors are installed at different distances, in a conductive material, from the selected or one insulated electrode. Those. the distance between the first, near current collector and the insulated electrode creating an electric field in this material is less than the distance between the insulated electrode and the second, far collector.
  • the device may contain at least one more, an additional electrode isolated from the material, for example, when connected to the near current collector, when located between the insulated electrode and the far current collector, or in contact with it, when connected to a voltage source.
  • the device can be made in the form of a capacitor, between the plates of which there is a conductive material and one of the plates is isolated from it, and the material itself has a protrusion in contact with a remote current collector.
  • Another option would be to place the material on different sides of the approximate current collector and partially isolate it from the material on the side opposite to the insulated electrode where the remote current collector is located, mainly with the location on this opposite side of the other current collector.
  • figure 1 shows an embodiment of the device in the form of a flat capacitor.
  • Figure 2 is an embodiment of a device with an arrangement of current collectors in the material itself.
  • Fig.4 is an embodiment as in Fig.1, but of a different form.
  • a device for generating electrical energy contains an electrically conductive material 1 (Fig.1,2,3, 4), which by its properties allows the electric field to penetrate inside itself, minimally shielding, and at the same time it must have a sufficiently high level of conductivity.
  • an electrically conductive material 1 Fig.1,2,3, 4
  • Fig. 3 also shows the second insulated electrode 4.
  • the current collector electrode 5 is contacted with material 1, which is closer to the insulated electrode 3 than the other current collector 6 (in Fig. 1 these distances are shown in the form of arrows). In Fig. 3, if we consider the electrode 3, then the current collector 5 is closer to it than the current collector 7.
  • An insulated electrode 3 with a near current collector 5 Figs.
  • insulated electrodes 3 and 4 are connected to terminals 8, designed to be connected to a voltage source, and current collectors 5 and 6 (Figs. 1,2,4) or 5 and 7 (Fig. 3) are connected to load 9.
  • at least one additional e electrode 10. The latter can be isolated from the material 1 and connected to the current collector, for example, 5 (Fig. 1,4), when located between the electrodes 3 and 6, or to contact the material 1, when connected, to the insulated electrode 3 (Fig. 2) through resistance 11 and when located closer to the current collectors 6. Partial isolation from the material 1, the current collector 5 in section 12 (Fig.
  • the device may take the form of a capacitor, between the plates of which there is material 1 (f ig. 1), insulated by layer 2 from the lining 3, with a protrusion 13 in contact with the current collector 6.
  • Material 1 can be located on different sides from the near current collector 5 (Figs. 2 and 3), which is partially isolated from it, with the contact surface 14 only from the side of the electrode 3 and the execution of current collectors with gaps 15 filled with material 1.
  • the current collector can be made in the form of strips perpendicular to the plane of the drawing.
  • the current collector 6 (figure 2), also made in the form of strips, is located, at the same time, near the current collectors 5 with isolation from it.
  • a potential difference is established, for example, by connecting a voltage source to the terminals 8 with a minimum or equal to zero power behind insulation 2.
  • the field from the electrode 3 passes through the conductive material 1 to the current collector electrode 4, inducing electric charges in it and creating in the material 1, at the point of contact with the current collector, an average potential different from the supply potential to the electrode 4. That is . thereby, a contact potential difference is formed at the point of contact, which, either after deducting a small potential difference on the surface of the current collector 6, or in total with the potential of the current collector 7 (Fig. 3), is supplied with the current to the load 9.
  • the contact potential difference when executed with one insulated electrode, near the surface of the other current collector 6 in contact with the material 1, must be made as small as possible, which is achieved by minimizing the electric fields near it, for example, by means of an additional electrode 10 in FIG. 2 and regulation resistance 11.
  • the magnitude of the current through the load 9 depends on the conductivity of the material 1, which must combine a sufficiently high conductivity and minimal shielding of the electric field.
  • the material 1 must have a minimum coefficient of dielectric constant (shielding displaced charges), which limits the possibility of using aqueous solutions.
  • the main energy generation occurs in the place of the contact potential difference, according to the type of the Seebeck effect, i.e. with decreasing temperature at the point of contact and, for example, heating the load 7. Therefore, this device is applicable as a refrigerator or air conditioner, heater.
  • the device When using electrolyte 1 as a material, the device is applicable as an electrolyzer, with current collector electrodes that do not consume electricity. According to the above schemes, it is possible to carry out rechargeable batteries due to heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)

Abstract

The device for generating electrical energy comprises a material having sufficient conductivity given minimal screening of the electric field. This can be a semiconductor with mixed conductivity, an electrolyte or a conductor with a specific form or thickness. Current-collecting electrodes which can be connected to a load and are near to and far from at least one electrode, which is insulated from the material and produces an electric field therein, for example when connected to a voltage source, are brought into contact with said material. The device can be in the form of a capacitor, with said material being arranged between the plates of said capacitor, and with one of the plates being insulated from said material, whereas the material has a projection which makes contact with the remote current collector. The current to a load results from the contact potential difference arising owing to the concentration of charges with the same polarity which are induced near the contact surface of the near current collector or plate. Correspondingly, the contact potential difference (and charge at the surface) at the point of contact of the remote current collector should be as low as possible, in the case of an embodiment with one insulated electrode. For this purpose, in particular, an additional insulated electrode is mounted between the remote current collector and the insulated electrode. An embodiment of the device with, for example, two insulated electrodes under a voltage is possible, with the surface of the current collector, which makes contact with the material and is connected to the load, being brought near to each of said insulated electrodes. The invention is suitable for use as an electrical energy source, a cooler or air conditioner, a heater or an electrolyser of a self-recharging battery.

Description

УСТРОЙСТВО ДЛЯ ГЕНЕРАЦИИ ЭЛЕКТРИЧЕСКОЙ  DEVICE FOR ELECTRIC GENERATION
ЭНЕРГИИ.  ENERGY.
Изобретение относится к электричеству и оно применимо там, где происходит получение или расходование электрической энергии, т.е. при применении как источника электрической энергии, как охлаждающего устройства или кондиционера, при электролитическом получении веществ, например алюминия. The invention relates to electricity and it is applicable where there is a receipt or expenditure of electrical energy, i.e. when used as a source of electrical energy, as a cooling device or air conditioner, in the electrolytic production of substances, such as aluminum.
Известно устройство для генерации электрической энергии по заявке N° PCT/RU 2010/000428, содержащее токопроводящий материал, допускающий не полное экранирование электрического поля, например, в виде полупроводника со смешанной проводимостью и, как минимум, три электрода, один из которых электроизолирован от этого материала, а другие контактируют, являясь токосъёмниками. При подаче разности потенциалов на два электрода, один из которых изолирован от материала, на контактирующих электродах или токосъёмниках возникает разность потенциалов, подаваемая на нагрузку. A device for generating electric energy is known according to the application N ° PCT / RU 2010/000428, containing a conductive material that allows incomplete screening of the electric field, for example, in the form of a semiconductor with mixed conductivity and at least three electrodes, one of which is insulated from this material, while others are in contact, being current collectors. When applying a potential difference to two electrodes, one of which is isolated from the material, a potential difference is applied to the contacting electrodes or current collectors supplied to the load.
Данное изобретение позволяет создавать устройства более эффективными, например более мощными. This invention allows to create devices more efficient, for example more powerful.
Для этого в устройстве для генерации электрической энергии токосъёмники устанавливаются на разных расстояниях, в проводящем материале, от выбранного или одного изолированного электрода. Т.е. расстояние, между первым, ближним токосъёмником и изолированным электродом, создающим электрическое поле в этом материале, меньше, чем расстояние между изолированным электродом и вторым, дальним токосъёмником. Устройство может содержать ещё, как минимум один, дополнительный электрод, изолированный от материала, например, при подключении к ближнему токосъёмнику, при нахождении между изолированным электродом и дальним токосъёмником, или контактирующий с ним, при подключении к источнику напряжения. Устройство может быть выполнено в виде конденсатора, между обкладками которого находится проводящий материал и одна из обкладок от него изолирована, а сам материал имеет выступ, контактирующий с отдалённым токосъёмником. Другим вариантом может быть расположение материала с разных сторон от приближённого токосъёмника и частичная изоляция его от материала со стороны, противоположной изолированному электроду, где расположен отдалённый токосъёмник, преимущественно с расположением с этой, противоположной, стороны другого токосъёмника. Изолированных электрода могут быть два, к каждому из которых, своей контактирующей с материалом поверхностью, приближены токосъёмники. To do this, in the device for generating electric energy, current collectors are installed at different distances, in a conductive material, from the selected or one insulated electrode. Those. the distance between the first, near current collector and the insulated electrode creating an electric field in this material is less than the distance between the insulated electrode and the second, far collector. The device may contain at least one more, an additional electrode isolated from the material, for example, when connected to the near current collector, when located between the insulated electrode and the far current collector, or in contact with it, when connected to a voltage source. The device can be made in the form of a capacitor, between the plates of which there is a conductive material and one of the plates is isolated from it, and the material itself has a protrusion in contact with a remote current collector. Another option would be to place the material on different sides of the approximate current collector and partially isolate it from the material on the side opposite to the insulated electrode where the remote current collector is located, mainly with the location on this opposite side of the other current collector. There can be two insulated electrodes, current collectors are close to each of them, with its surface in contact with the material.
Чертежом поясняется данное предложение. The drawing illustrates this proposal.
Где на фиг.1 показан вариант выполнения устройства по форме плоского конденсатора.  Where figure 1 shows an embodiment of the device in the form of a flat capacitor.
На фиг.2 - вариант выполнения устройства с расположением токосъёмников в самом материале.  Figure 2 is an embodiment of a device with an arrangement of current collectors in the material itself.
На фиг.З - вариант выполнения с двумя изолированными электродами.  In Fig.Z - an embodiment with two insulated electrodes.
На фиг.4 - вариант выполнения как на фиг.1 , но другой формы.  In Fig.4 is an embodiment as in Fig.1, but of a different form.
Устройство для генерации электрической энергии содержит электропроводящий материал 1 (фиг.1,2,3, 4), который по своим свойствам позволяет электрическому полю проникать внутрь себя, минимально экранируя, и в то же время он должен обладать достаточно высоким уровнем проводимости. Для создания электрического поля в материале 1 установлен, как минимум один, изолированный слоем изоляции 2 от него, электрод 3. На фиг.З показан и второй изолированный электрод 4. С материалом 1 контактируют электрод-токосъёмник 5, более приближенный к изолированному электроду 3, чем другой токосъёмник 6 (на фиг.1 эти расстояния показаны в виде стрелок). На фиг.З, если мы рассматриваем электрод 3, то к нему более ближе токосъёмник 5, чем токосъёмник 7. Изолированный электрод 3 с ближним токосъёмником 5 (фиг 1,2,4,) или изолированные электроды 3 и 4 (фиг.З), подключены к клеммам 8 , предназначенным для подсоединения к источнику напряжения, а токосъёмники 5 и 6 (фиг.1,2,4) или 5 и 7 (фиг.З) подключены к нагрузке 9. Для минимизации величины заряда, одноимённого заряду токосъёмника 5, на поверхности дальнего токосъёмника 6 (фиг.1,2, и 4), которая контактирует с материалом 1, установлен, как минимум один, дополнительный электрод 10. Последний может быть изолирован от материала 1 и подключен к токосъёмнику, например, 5 (фиг.1,4), при расположении между электродами 3 и 6, или контактировать с материалом 1, при подключении, к изолированному электроду 3 (фиг.2) через сопротивление 11 и при расположении ближе к токосъёмникам 6. Такой же цели может служить частичная изоляция от материала 1, токосъёмника 5 на участке 12 (фиг.1), расположенного со стороны дальнего токосъёмника 5. По существу устройство может иметь вид конденсатора, между обкладками которого находится материал 1 (фиг.1), изолированный слоем 2 от обкладки 3, с выступом 13, контактирующим с токосъёмником 6. Материал 1 может находиться, с разных сторон от ближнего токосъёмника 5 (фиг.2 и 3), который частично изолирован от него, с контактной поверхностью 14 лишь со стороны электрода 3 и выполнением токосъёмников с промежутками 15, заполненными материалом 1. Например, токосъёмник может быть выполнен в виде полос, перпендикулярных плоскости чертежа. Дальний, от электрода 3, токосъёмник 6 (фиг.2), также выполненный в виде полос, расположен, при этом, возле токосъёмников 5 с изоляцией от него. При работе устройства между электродами 3 и 5 (фиг.1,2, и 4) или изолированными электродами 3 и 4 (фиг.З) устанавливается разность потенциалов, например, путём подключения к клеммам 8 источника напряжения с минимальной или равной нулю мощностью из-за изоляции 2. Поле от электрода 3 проходит через проводящий материал 1 до электрода- токосъёмника 4, индуцируя в нём электрические заряды и создавая в материале 1, в месте контакта с токосъёмником, среднего потенциала, отличного от потенциала подвода к электроду 4. Т.е. тем самым в месте контакта образуется контактная разность потенциалов, которая или за вычетом малой разности потенциалов на поверхности токосъёмника 6, или в сумме с потенциалом токосъёмника 7 (фиг.З), подаётся с током на нагрузку 9. A device for generating electrical energy contains an electrically conductive material 1 (Fig.1,2,3, 4), which by its properties allows the electric field to penetrate inside itself, minimally shielding, and at the same time it must have a sufficiently high level of conductivity. To create an electric field in the material 1, at least one electrode 3 is installed, isolated by an insulation layer 2 from it, 3. Fig. 3 also shows the second insulated electrode 4. The current collector electrode 5 is contacted with material 1, which is closer to the insulated electrode 3 than the other current collector 6 (in Fig. 1 these distances are shown in the form of arrows). In Fig. 3, if we consider the electrode 3, then the current collector 5 is closer to it than the current collector 7. An insulated electrode 3 with a near current collector 5 (Figs. 1,2,4) or insulated electrodes 3 and 4 (Fig. 3) are connected to terminals 8, designed to be connected to a voltage source, and current collectors 5 and 6 (Figs. 1,2,4) or 5 and 7 (Fig. 3) are connected to load 9. To minimize the amount of charge of the current collector charge 5 , on the surface of the distant current collector 6 (Fig.1,2, and 4), which is in contact with the material 1, at least one additional e electrode 10. The latter can be isolated from the material 1 and connected to the current collector, for example, 5 (Fig. 1,4), when located between the electrodes 3 and 6, or to contact the material 1, when connected, to the insulated electrode 3 (Fig. 2) through resistance 11 and when located closer to the current collectors 6. Partial isolation from the material 1, the current collector 5 in section 12 (Fig. 1) located on the side of the distant current collector 5 can serve the same purpose. Essentially, the device may take the form of a capacitor, between the plates of which there is material 1 (f ig. 1), insulated by layer 2 from the lining 3, with a protrusion 13 in contact with the current collector 6. Material 1 can be located on different sides from the near current collector 5 (Figs. 2 and 3), which is partially isolated from it, with the contact surface 14 only from the side of the electrode 3 and the execution of current collectors with gaps 15 filled with material 1. For example, the current collector can be made in the form of strips perpendicular to the plane of the drawing. Far from the electrode 3, the current collector 6 (figure 2), also made in the form of strips, is located, at the same time, near the current collectors 5 with isolation from it. When the device is operating between the electrodes 3 and 5 (Figs. 1,2, and 4) or the insulated electrodes 3 and 4 (Fig. 3), a potential difference is established, for example, by connecting a voltage source to the terminals 8 with a minimum or equal to zero power behind insulation 2. The field from the electrode 3 passes through the conductive material 1 to the current collector electrode 4, inducing electric charges in it and creating in the material 1, at the point of contact with the current collector, an average potential different from the supply potential to the electrode 4. That is . thereby, a contact potential difference is formed at the point of contact, which, either after deducting a small potential difference on the surface of the current collector 6, or in total with the potential of the current collector 7 (Fig. 3), is supplied with the current to the load 9.
Чем меньше материал 1 экранирует, т.е. ослабляет электрическое поле между электродами 3 и 5, тем больший заряд индуцируется на контактирующей с материалом 1 поверхности токосъёмника 4 и тем больше контактная разность потенциалов. С другой стороны контактную разность потенциалов, при выполнении с одним изолированным электродом, возле контактирующей с материалом 1 поверхности другого токосъёмника 6 необходимо делать как можно меньшей, что достигается минимизацией электрических полей возле неё, например, с помощью дополнительного электрода 10 на фиг.2 и регулированием сопротивления 11. Величина тока через нагрузку 9 зависит от проводимости материала 1, который должен сочетать и достаточно высокую проводимость, и минимальное экранирование электрического поля. Что достижимо при наличии подвижных носителей обоих знаков, например, в полупроводниках со смешанной проводимостью, в электролитах или в проводниках специальной формы и толщины. Кроме того материал 1 должен обладать минимальным коэффициентом диэлектрической проницаемости (экранирование смещёнными зарядами), что ограничивает возможность применения водных растворов. The less material 1 shields, i.e. weakens the electric field between the electrodes 3 and 5, the greater the charge is induced on the surface of the current collector 4 in contact with the material 1 and the greater the contact potential difference. On the other hand, the contact potential difference, when executed with one insulated electrode, near the surface of the other current collector 6 in contact with the material 1, must be made as small as possible, which is achieved by minimizing the electric fields near it, for example, by means of an additional electrode 10 in FIG. 2 and regulation resistance 11. The magnitude of the current through the load 9 depends on the conductivity of the material 1, which must combine a sufficiently high conductivity and minimal shielding of the electric field. What is achievable in the presence of mobile carriers of both signs, for example, in semiconductors with mixed conductivity, in electrolytes or in conductors of a special shape and thickness. In addition, the material 1 must have a minimum coefficient of dielectric constant (shielding displaced charges), which limits the possibility of using aqueous solutions.
Основная генерация энергии происходит в месте контактной разности потенциалов, по типу эффекта Зеебека, т.е. с понижением температуры в месте контакта и с, например, нагревом нагрузки 7. Следовательно данное устройство применимо в качестве холодильника или кондиционера, нагревателя. При применении в качестве материала 1 электролита, устройство применимо в качестве электролизёра, с электродами-токосъёмниками, не потребляющего электроэнергию. По приведённым схемам можно выполнять аккумуляторы с подзарядом за счёт тепла.  The main energy generation occurs in the place of the contact potential difference, according to the type of the Seebeck effect, i.e. with decreasing temperature at the point of contact and, for example, heating the load 7. Therefore, this device is applicable as a refrigerator or air conditioner, heater. When using electrolyte 1 as a material, the device is applicable as an electrolyzer, with current collector electrodes that do not consume electricity. According to the above schemes, it is possible to carry out rechargeable batteries due to heat.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ. CLAIM.
1. Устройство для генерации электрической энергии, содержащее электропроводящий материал с не полным экранированием электрического поля, например, в виде полупроводника, с контактирующими с этим материалом электродами или токосъёмниками, подключаемыми к нагрузке, и, как минимум одним, изолированным от проводящего материала электродом для создания электрического поля в материале, например, путём подключения к источнику разности потенциалов относительно одного из токосъёмников, отличающееся тем, что один из токосъёмников расположен ближе к выбранному изолированному электроду, чем другой токосъёмник, т.е. расстояние между ближним токосъёмником и изолированным электродом, в проводящем материале, меньше, чем между последним и дальним. 1. Device for generating electrical energy containing an electrically conductive material with incomplete screening of the electric field, for example, in the form of a semiconductor, with electrodes in contact with this material or current collectors connected to the load, and at least one electrode isolated from the conductive material to create electric field in the material, for example, by connecting to the source a potential difference relative to one of the current collectors, characterized in that one of the current collectors is located bl same to the selected insulated electrode current collector than the other, i.e., the distance between the near current collector and the insulated electrode in the conductive material is less than between the last and the far.
2. Устройство для генерации электрической энергии по п.1 , о т л и - чающееся тем, что установлен ещё, как минимум, один дополнительный электрод, изолированный, например, при нахождении между изолированным электродом и дальним токосъёмником с подключением к ближнему токосъёмнику, или контактирующий с материалом, при подключении к источнику напряжения, создающего электрическое поле в проводящем материале. 2. A device for generating electric energy according to claim 1, wherein the at least one additional electrode is installed, insulated, for example, when located between the insulated electrode and the distant current collector with connection to the near current collector, or in contact with the material, when connected to a voltage source that creates an electric field in the conductive material.
3. Устройство для генерации электрической энергии по п.1, о т л и - ч аю щ е е с я тем, что оно выполнено в виде конденсатора, одна из обкладок которого, являясь изолированным электродом, изолирована от проводящего материала, находящегося между обкладками, контактирующего с другой обкладкой и имеющего выступ, контактирующий с дальним токосъёмником. 3. The device for generating electric energy according to claim 1, with the fact that it is made in the form of a capacitor, one of the plates of which, being an insulated electrode, is isolated from a conductive material located between the plates in contact with another lining and having a protrusion in contact with the distant current collector.
4. Устройство для генерации электрической энергии по п.1, о т л и - чающееся тем, что проводящий материал расположен с разных сторон приближённого токосъёмника, который частично изолирован от него, а контактная поверхность приближённого токосъёмника с материалом находится со стороны изолированного электрода, причём дальний токосъёмник расположен со стороны изолированной части ближнего. 4. The device for generating electrical energy according to claim 1, wherein the conductive material is located on different sides of the approximate current collector, which is partially isolated from it, and the contact surface of the approximate current collector with the material is on the side of the insulated electrode, and the distant current collector is located on the side of the insulated part of the near.
5. Устройство для генерации электрической энергии по п.1, о т л и - ч аю щ е е с я тем, что имеются, как минимум два изолированных от материала электрода, контактными поверхностями к каждому из которых приближены токосъёмники, подключаемые к нагрузке. 5. The device for generating electric energy according to claim 1, with the fact that there are at least two electrodes isolated from the material, contact surfaces connected to the load are close to each of them.
PCT/RU2011/000278 2011-04-28 2011-04-28 Device for generating electrical energy WO2012148300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2011/000278 WO2012148300A1 (en) 2011-04-28 2011-04-28 Device for generating electrical energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2011/000278 WO2012148300A1 (en) 2011-04-28 2011-04-28 Device for generating electrical energy

Publications (1)

Publication Number Publication Date
WO2012148300A1 true WO2012148300A1 (en) 2012-11-01

Family

ID=47072584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2011/000278 WO2012148300A1 (en) 2011-04-28 2011-04-28 Device for generating electrical energy

Country Status (1)

Country Link
WO (1) WO2012148300A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142697A1 (en) * 2013-03-11 2014-09-18 Oleynov Gennady Aleksandrovich Device for generating electrical energy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU93053367A (en) * 1993-11-30 1996-05-10 Г.А. Олейнов DEVICE FOR ELECTRIC ENERGY
RU2152112C1 (en) * 1998-12-11 2000-06-27 Черных Виталий Петрович Electric power generation process
JP2009278817A (en) * 2008-05-16 2009-11-26 Cateye Co Ltd Vibration electric power generator
JP2010075038A (en) * 2008-07-16 2010-04-02 Ask:Kk Electric power generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU93053367A (en) * 1993-11-30 1996-05-10 Г.А. Олейнов DEVICE FOR ELECTRIC ENERGY
RU2152112C1 (en) * 1998-12-11 2000-06-27 Черных Виталий Петрович Electric power generation process
JP2009278817A (en) * 2008-05-16 2009-11-26 Cateye Co Ltd Vibration electric power generator
JP2010075038A (en) * 2008-07-16 2010-04-02 Ask:Kk Electric power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142697A1 (en) * 2013-03-11 2014-09-18 Oleynov Gennady Aleksandrovich Device for generating electrical energy

Similar Documents

Publication Publication Date Title
CN106469839B (en) Battery module, the battery pack including battery module and the vehicle including battery pack
KR20160118600A (en) Triboelectric energy harvester using friction between conductor and conductor
KR101384721B1 (en) System for preventing deterioration of storage capacity of lead acid battery and reusing lead acid battery by electrical treatment
RU2011111135A (en) DEVICE AND METHOD FOR PRODUCING ELECTRIC ENERGY
KR100994817B1 (en) Electrical power saving device
JP2013517591A5 (en)
KR20140004061A (en) Casing for an electrochemical cell
JP2011512633A5 (en)
CN102388481A (en) Galvanic cell, cell stack, and heat sink
RU140924U1 (en) ELECTROCHEMICAL DEVICE
JP2015501072A (en) Electrical energy storage module and method of manufacturing electrical energy storage module
CN111542964B (en) Battery module, battery pack including the same, and vehicle including the battery pack
CN111490381A (en) Rotary connecting unit, connecting channel selection device and charging equipment
CN109149991A (en) Friction nanometer power generator and triboelectricity method
CN206259436U (en) Bipolar plates combination electrode, battery unit and battery bag
WO2012148300A1 (en) Device for generating electrical energy
WO2012148299A1 (en) Electric perpetual motion machine
KR20150130695A (en) Battery assembly and battery module having the battery assembly for controlling temperature of battery cell
US9209448B2 (en) Conductive connection structure for secondary batteries
KR101696339B1 (en) Improvement device of energy efficiency using electron density increase
CN106340556B (en) Double light solar power generation components
WO2015105430A2 (en) Electric device
WO2012018276A1 (en) Device for generating electrical energy
JP2016162492A (en) Composite battery
RU2010148115A (en) DEVICE FOR ELECTRIC POWER GENERATION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864386

Country of ref document: EP

Kind code of ref document: A1